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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Ensemble pruning techniques are widely used to enhance a
set of classifiers’ efficiency and predictive performance by selecting a
subset of representative models, preventing redundancy, and ensuring
diversity in classification tasks. The Optimum-Path Forest (OPF), a sta-
ble and efficient graph-based framework, offers versatile supervised and
unsupervised capabilities in various machine-learning applications. The
supervised version provides remarkable results with a simple graph-based
structure produced by a training process conducted over a single dataset.
However, one can notice little effort in OPF-based ensemble learning.
This paper introduces an innovative approach to pruning OPF classifiers
using meta-descriptions learned by Graph-Matching Networks, which are
further employed to cluster similar OPF instances. The strategy selec-
tively chooses representative models that excel in predictive tasks from
groups generated by unsupervised OPF. Results demonstrate compet-
itive performance to state-of-the-art pruning algorithms, with experi-
ments conducted over fifteen public datasets, encouraging further explo-
ration of Graph Matching Networks applied to ensemble pruning.

Keywords: Graph Matching · Graph Matching Networks ·
Optimum-Path Forest · Ensemble Pruning

1 Introduction

A graph is a mathematical tool that models the relationship of objects by rep-
resenting each instance as nodes or vertices whose connections are determined
through an adjacency relation. Its first use remits to the eighteenth century’s
topological problem of Königsberg bridge [1], and has numerous applications on
today’s issues, ranging from routing [16], network flow [8], and social network
modelling [25] to machine learning [9,19,20].

Graph representations help encode complex and abstract structural informa-
tion, including DNA sequences, documents, and images. In this sense, a graph
represents general knowledge of a given domain. Finding similar graphs corre-
sponds to uncovering patterns in such complex structures. The area that studies
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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such similarities is called graph matching (GM) and regards the problem of find-
ing correspondences between sets of nodes while preserving complex relational
information among them [2].

In the context of graph matching, one can find a broad spectrum of related
research involving robust and efficient approaches through spectral embed-
dings [14], Lagrangean relaxations optimized via sub-gradient and message pass-
ing mechanisms [24], and strategies based on non-convex and non-separable opti-
mization problems, employing matching constraint decomposition involving pair-
wise and higher-order constraints. Additionally, a Gromov-Wasserstein learning
framework has been proposed by Xu et al. [27] for joint graph matching and
embedding vector learning based on dissimilarity measurements between graph
pairs.

Usually, graph matching is conducted through embedding-based approaches
[26]. Nevertheless, recent works tackled the problem through a network-based
method, which employs a cross-graph attention mechanism to compute a simi-
larity score, namely Graph Matching Networks (GMNs) [12]. The method cal-
culates the similarity score jointly, producing more robust and accurate results.

Apart from GM, a graph-based framework for supervised and unsupervised
learning called Optimum-Path Forest [17,18,23] obtained notorious popularity
in past years due to its successful implementation over a wide range of appli-
cations. Among such implementations, Jodas et al. [10] recently proposed the
OPFsemble, an OPF-based mechanism to tackle ensemble pruning, with sig-
nificant results compared to state-of-the-art approaches. In such context, OPF
revealed itself as a feasible solution applied to the pruning of classifiers constitut-
ing an ensemble model, thus becoming an interesting and promising approach to
obtain a performance similar to that of the complete set when selecting a subset
of models.

Ensemble pruning techniques can be applied in several ways, such as in classi-
fier selection experiments. Approaches include Reduce-Error Pruning and Kappa
Pruning, Complementarity Measure, Margin Distance Minimization models, and
Orientation Ordering and Boosting-Based Ordering [15]. Besides, Zyblewski et
al. [28] tackled the problem via a clustering-based approach to capturing the
models with similar performance and selecting the ones from each produced
cluster. Apart from the well-known and established performance in grouping
similar data, most clustering algorithms still suffer from the need to define the
number of clusters while grouping the input data.

This paper offers a novel ensemble pruning strategy that combines the
strength of Optimum-Path Forest and Graph Matching Networks to create a
robust solution. Firstly, the method performs a weak classification of several data
subsets using an ensemble of supervised OPF-based classifiers whose predictive
performance similarities are computed by GMNs. Further, such graphs (classi-
fiers) are clustered according to their similarities using the unsupervised OPF,
and the well-known Gaussian Mixture Model learning algorithm determines the
importance of each group, which will be used in the prediction phase. Lastly, we
select the most representative model per cluster and prune the remaining ones
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with similar predictive capabilities. In short, the motivation behind this paper
lies in the successful application of three main concepts: (i) using the OPF frame-
work for ensemble and classification in general, (ii) the employment of GMN to
expose the similarity among graph-based models, and (iii) the performance of
ensemble pruning to extinguish redundancy and improve performance. In this
context, the main contributions of this paper are described as follows:

– To propose a novel ensemble pruning method combining Optimum-Path For-
est and Graph Matching Networks;

– To evaluate GMNs in the context of OPF graph similarities computation; and
– To foster the literature regarding graph-based approaches and ensemble prun-

ing.

The remainder of this paper is organized as follows. Section 2 presents a
literature review concerning the topic of ensemble pruning, and Sect. 3 provides a
theoretical background concerning supervised and unsupervised OPF classifiers.
Section 4 describes the proposed approach, followed by the methodology provided
in Sect. 5. Last but no least, Sects. 6 and 7 state the results and conclusions,
respectively.

2 Related Works

To our knowledge, no papers have modeled the problem of ensemble pruning
as a graph-matching task. This section briefly reviews some papers on graph
matching that we believe are interesting to this work.

In 2015, Lyzinski et al. [14] proposed a graph-matching approach efficient for
very large graphs that combine spectral graph embeddings with seeded graph
matching using a divide-and-conquer procedure. A couple of years later, a study
conducted by Swoboda et al. [24] obtained state-of-the-art results by introducing
several Lagrangean relaxations on the graph matching problem optimized using
sub-gradient and message passing (dual ascent) mechanisms.

Later on, Lê-Huu et al. [11] formulated the graph matching problem as a non-
convex non-separable optimization problem using decomposition of matching
constraints, providing a modular and scalable framework that can be instantiated
into different variants, namely pair-wise and higher-order constraints. Further,
Xu et al. [27] proposed a Gromov-Wasserstein learning framework to jointly
match graphs and learn embedding vectors by measuring dissimilarities between
pairs of graphs.

Yujia et al. [12] presented a cross-attention-based matching mechanism com-
posed of two main steps: training a Graph Neural Network to learn graph rep-
resentations in a vector space and using these representations to calculate the
similarity between pairs of graphs to detect software vulnerabilities. Similarly,
Fey et al. [5] provided a two-stage neural architecture for graph matching that
employs localized node embeddings to compute the correspondences between
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nodes and uses synchronous message-passing networks to iteratively reach a
matching consensus in such likenesses by the nodes’ local neighborhoods.

More recently, Guo et al. [7] proposed a semantic histogram-based graph
matching method to tackle the problem of visual multi-robot localization. In
contrast, Qu et al. [22] introduced the Edge Attention-adaptive Graph Match-
ing network to solve the problem of outliers in practical scenarios. Finally, Lin
et al. [13] presented a contrastive learning-based technique called Contrastive
Matching with Momentum Distillation to address the problem of noisy corre-
spondence in graphs.

To the best of our knowledge, no additional study has employed the concept
of graph-matching networks in the context of ensemble pruning applications. The
proposed method is inherently suited for graph-structured data, such as adja-
cency matrices, which are fundamental to the OPF model, thereby supporting
the proposed method. In addition, the method is scalable to larger datasets since
the OPF framework has been applied to a wide range of research comprising a
variety of data representations. A notable study by Papa et al. [17] revealed the
OPF capabilities in large datasets from different domains, including an image
dataset with magnetic resonance images of the human brain. This aspect demon-
strates the model’s ability to handle larger datasets effectively, thus showing the
adaptability of the proposed ensemble pruning to larger datasets.

3 Theoretical Background

This section provides the theoretical background regarding Optimum-Path For-
est and the main concepts related to graph matching and Graph Matching Net-
works.

3.1 Optimum-Path Forest

The Optimum-Path Forest framework [17,18,23] encodes input patterns as graph
nodes in a high-dimensional space and creates optimum-path trees over these
points, which are generated from the training instances and are built to optimize
the separation between classes/clusters. Further sections detail the supervised
and unsupervised OPF versions.

Supervised Learning with Complete Graph: Let G = (V, E , w) be a com-
plete and weighted graph where V = {x1,x2, . . . ,xn} corresponds to the set of
vertices (samples), such that xi ∈ R

D, and (xi,xj) ∈ E denotes an arc from
the set of edges E , such that i �= j. Moreover, arcs are weighted by the function
w : E → �+, which can be a similarity, matching, or distance measure.

Let C ∈ �n×n be a matrix such that Cij represents the cost of the optimum
path between xi and xj . The cost Cij is determined by function f(Cij), designed
to capture the expected separation between classes. Papa et al. [17,18,23] pro-
posed to use the maximum arc-weight along a path, but other functions can also
be employed, provided some restrictions are satisfied.
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The goal is to find the optimum path O∗
ij between two training instances xi

and xj that minimizes the cost function f(Cij) as follows:

O∗
ij = arg min

Oij

f(Cij), ∀i, j ∈ {1, 2, . . . , n}, (1)

where Oij represents a path between xi and xj . Notice that several approaches,
e.g., Dijkstra’s algorithm, dynamic programming, or branch and bound tech-
niques, can be used for this purpose. The optimum-path O∗ is selected based
on the algorithm and the defined cost function, representing the most efficient
route between the instances in terms of class separation. Costs are initialized
to 0 for the prototype samples, i.e., connected samples with different labels in
a Minimum Spanning Tree computed over V. A large cost is assigned to the
remaining samples.

Once the optimum paths are determined, an optimum-path forest is built
by finding the minimum-cost path between all pairs of instances within the
same class, thus forming trees in the forest. This structure provides an efficient
framework for classification purposes.

To classify a new pattern xnew, the distances between xnew and all training
instances are calculated. Let γi,new be a cost between samples xi and xnew. The
classification step aims at solving the following optimization problem:

x∗ = arg min
xi

γi,new, ∀i, j ∈ {1, 2, . . . , n}. (2)

In other words, x∗ ∈ V denotes the node that offered the minimum cost to xnew,
also assigning its label to the new sample.

Unsupervised Learning: OPF groups training samples in its unsupervised
form, connecting them to their k-nearest neighbors with weighted arcs. In this
version, nodes are also weighted by a probability density function (PDF) as
follows:

ρ(xi) =
1

√
2πψ2k

∑

∀xj∈Ak(xi)

exp
(−d2(xi,xj)

2ψ2

)
, (3)

where Ak(xi) is the k-neighborhood of sample xi, ψ = mw

3 , and mw is the
maximum weight among graph edges. The optimum number of nearest neigh-
bours, k∗, is determined by minimizing the graph cut over V within the range
1 ≤ kmax ≤ |V| [23]. The model elects prototypes P based on maxima of the
PDF, and each xj is assigned the path with the highest minimum density value
as follows:

fmin(〈xj〉) =
{

ρ(xj) if xj ∈ P
ρ(xj) − δ otherwise,

fmin(〈φxi
· 〈xi,xj〉〉) = min{fmin(φxi

), ρ(xj)}, (4)
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where φxi
denotes a path starting from a prototype in P with terminus at sample

xi, and δ is a small constant.

3.2 Graph Matching Network

Graph Matching is an existing graph theory and computer science issue. It
addresses the analysis and comparison of graphs to identify similarities or corre-
spondences between them. In short, GM aims to check the equivalence between
two graphs or discover correspondences between the vertices of different graphs.
According to Pavithra et al. [21], GM refers to the correspondence of a collection
of edges that do not share common vertices in a graph. this problem is tackled
by modelling a pair of input graphs in a vector embedding space that facilitates
the subsequent similarity assessment. Usually, such approaches involve taking
the graph embedding representations independently for the graphs’ equivalency
estimation. However, Li et al. [12] proposed graph-matching networks for simul-
taneous graph similarity learning, introducing a cross-graph attention mecha-
nism. The model takes pairs of graphs as input, using an encoder network with
a multilayer perceptron architecture to obtain initial embedding representations
for nodes and edges. Additionally, GMN adjusts the node update module in each
propagation layer, considering aggregated messages and a cross-graph correspon-
dence vector for enhanced node association between graphs. Unlike traditional
methods that compute similarity scores separately, their approach calculates
scores jointly for graph pairs, promoting robustness at a slightly higher compu-
tational cost.

Formally speaking, let (G1, G2) be the pair of two graphs G1 and G2, and
hG1 and hG2 the graph-level representation after applying the propagation and
aggregation functions on both graphs. Both functions represent Multilayer Per-
ceptron (MLP) networks. Their purpose is to map the nodes and edges of the
graph into vector representations using the graph’s adjacency matrix. During the
learning process, the similarity for the graph pair is computed using a pairwise
loss function represented as follows:

Lpair = E(G1,G2,t)[max{0, γ − t(1 − d(G1, G2))}], (5)

where t ∈ {−1, 1} represents the label indicating similar (1) or dissimilar (-1)
graphs, γ is the margin parameter, and d(G1, G2) = ‖hG1 − hG2‖2, i.e., the
Euclidean distance between the graphs in the vector space. This loss function
promotes d(G1, G2) < 1−γ when the pair is similar (t = 1), and d(G1, G2) > 1+γ
when t = −1. Subsequently, the loss is optimized using gradient descent-based
methods.

4 Proposed Approach

The proposed methodology addresses classifier pruning into an eight-step model,
illustrated in Fig. 1. The first five steps comprise the training phase, while the
remaining three compose the test (prediction) phase. Such steps are detailed
below:
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Fig. 1. Pipeline of the proposed ensemble pruning based on Graph Matching Networks
and Optimum-Path Forest.

I. The first step splits the training set into N subsets using bootstrap aggre-
gation (bagging) from random sampling with replacement. This approach
is similar to the one employed by the Random Forest model, i.e., it pro-
vides each classifier with a different subset of the training set to allow for
variation reduction, generalization, and robustness.

II. The second step trains N supervised OPF classifiers to initialize the ensem-
ble. In this stage, we allocate each training subset to its corresponding OPF
instance, setting the stage for the subsequent training process. This delib-
erate assignment ensures that each OPF instance receives the appropriate
training data, facilitating the development of distinct classifiers that col-
lectively contribute to the overall ensemble model diversity. The tailored
nature of this step emphasizes the precision and individualization in pro-
ducing each OPF classifier, an essential preparation for the subsequent
stages of our methodology.

III. The third step applies GMNs to compute the graph similarities among the
trained OPF instances within the ensemble model. The approach entails
creating a graph representation after training the OPF model with the
training data. First, we apply the supervised OPF to establish the graph
structure using the features of the training data. This process is an inherent
aspect of the OPF model, which produces a graph with the edges repre-
senting the distance of the adjacent training samples. Next, we create an
adjacency matrix based on this graph structure and then represent the
nodes and edges as feature vectors. Similar to the study of Li et al. [12],
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we set the corresponding nodes’ and edges’ features to a constant of 1 s
so that we can represent only the graph’s adjacency structure and node
distribution. Then, the nodes and edges features are provided in pairs to
the GMN model to compute their embeddings and similarity. We create
a pair between each OPF classifier generated in the previous step to feed
a GMN model to capture their embedding representations. The processed
embeddings are then compared via a pairwise similarity function, produc-
ing a similarity value for the analyzed graph pair. Formally speaking, let
S be the set of supervised OPF instances composing the ensemble model.
The process to yield a set of graph pairs from S is achieved as follows:

Gp = {(Gi, Gj) | Gi, Gj ∈ S ∧ i �= j for i = 1, 2, . . . , N}, (6)

where Gp stands for the resulting set of graph pairs which is subsequently
fed into the GMN model. This process yields a similarity matrix M ∈
�N×N , where a cell mij corresponds to the similarity value between graphs
Gi and Gj .

IV. This step involves clustering similar OPF instances based on the similar-
ities computed by GMN. We used the unsupervised OPF to group the
supervised OPF instances using the similarity matrix Gp obtained in the
previous step.

V. The contribution of each cluster is derived from a probability density func-
tion modeled from a Gaussian distribution computed from each group.
This process involves a Gaussian Mixture Model (GMM) initialized with
the mean vector and covariance matrix of the clusters calculated in the
previous step. The GMM is trained through an iterative process on the
initial mean and covariance matrix with a specified number of iterations to
find the weights of each distribution. As we have a reasonable estimative
of both the mean and covariance matrix, we modified the Expectation-
Maximization algorithm to learn the weights of each Gaussian distribution
only. Notice these weights are used in the prediction phase only.

VI. As a critical measure to enhance diversity, refine generalization capabilities,
and facilitate accurate predictions during inference, the proposed pruning
strategy removes all classifiers from each group but the prototypes (nodes
marked with ‘X’ in Fig. 1). By isolating these representative instances, we
eliminate redundant or less informative classifiers.

VII. In the prediction step, each individually selected model is presented with
a new test sample. This involves providing the input test data to each
supervised OPF model, allowing them to generate individual predictions
based on their learned patterns and characteristics. The prediction step not
only involves obtaining individual model predictions for a given test sample
but also considers the weight of each classifier (step V) in the ensemble,
resulting in a refined final prediction that leverages the strengths of each
model.
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VIII. The final step combines the provided individual predictions into a final clas-
sification result using soft voting. The weights associated with the selected
classifiers are assigned to the respective individual predictions, represent-
ing each classifier’s relative importance or contribution within the ensemble
model.

Let Y = {ω1, ω2, . . . , ωc} be a set of labels and z be a test sample. Besides,
let λ : V → Y be labeling function and P (z) = {p1(z),p2(z), . . . ,pc(z)} be
a set of class probabilities concerning z computed by the classifers comprising
the final ensemble, such that pi(z) ∈ �m and m < N stands for the number
of selected classifiers after pruning. Our soft voting strategy calculates the class
probabilities assigned to sample x as follows:

pi(z) =
m∑

j=1

wjpij(z),∀i ∈ {1, 2, . . . , k}, (7)

where wj stands for the weight of the j-th classifier (step V), and pij denotes
the probability of the i-th class computed by the j-th supervised OPF classifier.

It is worth noting the standard OPF does not cope with soft classification.
Although past works attempted to deal with such a shortcoming [3,4], they
either work with binary classification problems or require fine-tuning additional
parameters. We propose the following strategy to compute the j-th classifier’s
probability concerning the i-th class:

pij(z) = softmax{−φ(b,z)|b ∈ Q(z) ∧ λ(b) = i}, (8)

where φ(b,z) stands for the cost node b offered to testing sample z, Q(z) outputs
the training sample that conquered z. In a nutshell, pij(z) stands for the set of
class probabilities assigned by a training sample b to z, which are computed
using a softmax over the optimum-path costs assigned by a sample b.

Before applying the softmax function, we first normalize all costs φ(b,z)
using a minimum-maximum normalization to restrict them within the range of 0
and 1. Then, we take the negative of the normalized costs, for higher probabilities
encode smaller normalized costs. This procedure generates probabilities for each
class ωi ∈ Y while ensuring their sum equals 1, i = 1, 2, . . . , c.

The final class prediction is formulated as follows:

yz = arg max
i

(pi(z)),∀i ∈ {1, 2, ..., c}, (9)

where yz represents the label for which the weighted probability is the highest.
We also employed two straightforward variants when applying the prediction

step by the supervised OPF classifiers selected from the pruning procedure. Such
additional strategies involve hard and soft voting computed by applying equal
weights to the class labels’ probabilities computed by Eq. 7. In the latter variant,
the classifiers’ weights are equally assigned by taking the ratio of the number of
classifiers selected after pruning, thus ensuring that each classifier contributes
similarly to the final prediction.
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5 Methodology

This section describes the methodology concerning the employed datasets and
experimental setup.

5.1 Dataset

The experiments were conducted over a set of 15 datasets available in the UCI
machine learning repository1: Speaker Accent Recognition (D1), Cervical Cancer
(D2), Breast Cancer Wisconsin (D3), Breast Cancer Wisconsin - Original (D4),
Breast Cancer Wisconsin - Prognostic (D5), Forest Type Mapping (D6), Glass
Identification (D7), Indian Liver Patient Dataset (D8), Iris (D9), Mammographic
Mass (D10), Diabetic Retinopathy Debrecen (D11), Primary Tumor (D12), Seis-
mic Bumps (D13), Statlog - Vehicle Silhouettes (D14), and Vertebral Column
(D15). The datasets include binary and multiclass labels, exhibiting diversity in
features. The datasets underwent a preprocessing step to address missing values,
with each feature’s missing data provided with the average value. Subsequently,
standardization was applied by scaling the data assuming a Gaussian distribution.

5.2 Experimental Setup

Each dataset was split into 20 folds by employing proportions of 70%, 15%, and
15% for training, validation, and testing of the models, respectively, assuming a
cross-validation strategy for performance assessment.

Unsupervised OPF for graph matching-based pruning was compared to sim-
ilar clustering-based algorithms, namely k-Means and agglomerative clustering,
and the example margin and ensemble diversity proposed by Guo et al. [6],
thus reaching a fair comparison with the state-of-the-art techniques for ensem-
ble pruning. The baseline algorithms employed in our study are provided by
PyPruning, a comprehensive framework offering diverse algorithms that serve
as foundational methods for our comparative and experimental analyses. The
framework is accessible through the GitHub repository2.

All pruning strategies, including our proposed method, were assessed across
three ensemble setups initialized with 10, 30, and 50 supervised OPF instances.
Such diversity assessment allowed for a detailed exploration of each prun-
ing method’s impact, enhancing the robustness of the comparative analysis.
Additionally, we limited the iterations to 100 concerning the Expectation-
Maximization approach to determine classifiers’ weights using the Gaussian Mix-
ture Model.

In the baseline setup, we used a pruning strategy from the PyPruning frame-
work, selecting a subset of representative classifiers based on each pruning algo-
rithm function. The chosen number of classifiers, denoted as r, follows the crite-
ria set by each baseline pruning algorithm. Table 1 outlines the selection criteria

1 https://archive.ics.uci.edu.
2 https://github.com/sbuschjaeger/PyPruning.

https://archive.ics.uci.edu
https://github.com/sbuschjaeger/PyPruning
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for each ensemble arrangement. The values of r increase proportionally but are
capped at half of the classifiers used to initialize the ensemble model.

Table 1. Selection criteria for each ensemble configuration.

Ensemble setup Subset for r

10 classifiers 5

30 classifiers [5,10,15]

50 classifiers [10,15,25]

However, the above hyperparameter optimization is partially dispensable
when operating the unsupervised OPF classifier3. Nevertheless, as outlined in
Sect. 3.1, selecting the appropriate k-max value becomes essential to ensure the
accurate grouping of analogous samples when employing the unsupervised OPF
algorithm. Therefore, the k-max parameter was properly optimized to select
the best value whose F1-score is the highest when employing the validation set
through each clustering attempt using the unsupervised OPF algorithm. This
process is repeated in each of the 20 data split configurations.

GMN training followed Li et al.’s [12] setup using their GitHub code4. Ini-
tially, a synthetic training set with diverse graph setups was created. Each graph
was initialized with n = 20 nodes and edge probability p = 0.2. For each pro-
duced graph G, a positive sample G1 was then formed by replacing kp edges with
new edges in G, while a negative sample G2 was created by substituting kn edges
from G, with kp < kn. This resulted in pairs (G1, G2) and (G1, G3). Following
Li et al.’s strategy [12], kp and kn were both set to 1 and 2, respectively. Sub-
sequently, the model underwent 500,000 training steps with a batch size of 20
samples and a learning rate set to 0.0001. In addition, a 128-sized vector for OPF
graph embedding was utilized. The learning process aimed to minimize graph
similarity errors using a pairwise loss function based on Euclidean distance in
the graph’s vector space.

Regarding the comparison analysis, we employed the F1-score to assess the
efficacy of each pruning method used in this work. In addition, we evaluated the
optimal value for r, i.e., the number of selected classifiers that showed the highest
average F1-score for each baseline pruning algorithm over the testing set. Fur-
thermore, we employed the Wilcoxon signed-rank test with a significance of 0.05
(5%) to inspect statistical differences between the proposed pruning strategy’s
outcomes and the ensemble model’s results obtained without applying any prun-
ing approach. Similarly, statistical differences among the pruning algorithms’
results were assessed using the Friedman test with the same significance level of
5%.

3 Although unsupervised OPF figures one hyperparameter only, i.e., k-max, it can
learn the number of clusters on-the-fly.

4 https://github.com/Lin-Yijie/Graph-Matching-Networks.

https://github.com/Lin-Yijie/Graph-Matching-Networks
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6 Results and Discussions

This section discusses the comparative analysis involving the F1-score values
yielded by each pruning algorithm. The highest score values are presented in
bold, while statistical differences are underscored when assessing the comparative
analysis between the pruning results and the outcomes when no pruning strategy
is applied to the ensemble model.

Table 2 compares the GMN pruning’s results with those achieved when no
pruning strategy is applied to the ensemble model. Notice the statistically sim-
ilar scores yielded by most of the tested datasets, particularly for the 50 classi-
fiers configuration. Such comparative analysis implies that the proposed strategy
attained similar behavior as if the ensemble model were employed with all OPF
instances during the inference step.

Table 2. Average F1-scores against the baseline, i.e., no pruning.

10 classifiers 30 classifiers 50 classifiers

No pruning Pruning No pruning Pruning No pruning Pruning

D1 0.806±0.059 0.777±0.057 0.819±0.040 0.799±0.041 0.819±0.041 0.811±0.043

D2 0.944±0.020 0.936±0.026 0.943±0.023 0.944±0.027 0.944±0.020 0.943±0.021

D3 0.952±0.017 0.954±0.015 0.954±0.018 0.947±0.021 0.954±0.017 0.950±0.020

D4 0.823±0.046 0.823±0.049 0.824±0.045 0.810±0.042 0.827±0.044 0.816±0.046

D5 0.652±0.088 0.664±0.102 0.671±0.089 0.660±0.093 0.665±0.084 0.663±0.089

D6 0.673±0.047 0.675±0.046 0.674±0.045 0.669±0.058 0.676±0.047 0.670±0.047

D7 0.937±0.050 0.935±0.052 0.941±0.046 0.946±0.048 0.943±0.046 0.946±0.043

D8 0.762±0.038 0.734±0.043 0.772±0.036 0.760±0.039 0.773±0.034 0.766±0.037

D9 0.600±0.028 0.588±0.032 0.606±0.026 0.600±0.022 0.607±0.028 0.613±0.032

D10 0.949±0.021 0.946±0.020 0.951±0.017 0.949±0.018 0.951±0.018 0.951±0.017

D11 0.312±0.052 0.310±0.054 0.320±0.050 0.306±0.048 0.328±0.060 0.325±0.053

D12 0.707±0.113 0.681±0.109 0.721±0.111 0.712±0.088 0.722±0.108 0.704±0.099

D13 0.906±0.019 0.900±0.016 0.909±0.018 0.903±0.015 0.908±0.019 0.904±0.016

D14 0.694±0.036 0.694±0.035 0.696±0.041 0.685±0.033 0.697±0.043 0.693±0.034

D15 0.819±0.046 0.811±0.047 0.827±0.044 0.820±0.040 0.829±0.044 0.816±0.039

Underscored values stand for statistical difference at p = 0.05.

Table 3 shows the average F1-score values computed from the 20 splits applied
to each dataset. The pruning strategy by the GMM version attained comparable
results with the counterpart versions applying hard voting (HV) and soft voting
(SV) with equally distributed weights. In most cases, the soft voting approach
improves the prediction capability by providing higher average scores than the
hard voting of the class label predictions. Notice the average scores provided
by the Accent, Forest types, and Iris datasets, to cite a few, which achieved
the highest average score values with the soft voting strategies compared to
the hard voting approach. Regarding the comparative analysis with the baseline
algorithms, one can notice the competitive results achieved by the proposed app-
roach regarding the comparative assessment with corresponding average values
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provided by k-Means, agglomerative clustering, and the pruning with the mar-
gin and diversity strategy. OPF-GMN-based pruning provided results similar to
those of the baseline algorithms, although the latter approaches outperformed
the OPF-GMN in most cases. However, since the pruning approach relies on the
prototype selection from the clusters produced by the unsupervised OPF algo-
rithm, it is worth noting that there is no need to determine the expected number
of classifiers after applying the pruning procedure with the proposed method.

In addition, we conducted a further analysis to determine the minimum num-
ber of OPF classifiers required to achieve maximum accuracy in specific classi-
fication scenarios. We assessed the minimum, maximum, and average amount
of OPF instances selected from running the 20 folds on each employed dataset.
Table 4 provides such results for the pruning strategy harnessed by the GMN
model. Regarding the minimum selection, all ensemble configurations provided
a minimum set of one OPF instance for further inference of the sample class label.
Moreover, an interesting point pertains to the maximum number of classifiers
each ensemble configuration provides, constituting nearly half of the instances
initialized for the ensemble model.

Following the same analysis, we assessed the number of classifiers that show-
case the highest average scores for each baseline pruning algorithm across the
20-fold execution. Table 5 provides such comparative assessment. Similar to the
GMN-based pruning strategy, the methods lead to almost half the number of
OPF instances assembled for the ensemble setup. Regardless of which pruning
method is used, such results reveal the trend toward selecting more classifiers as
the number of models increases in the ensemble initialization.

The experiments conducted in this study utilized datasets from the UCI
repository, which are relatively small in size. While these datasets have demon-
strated our method’s effectiveness, the proposed ensemble pruning can be
adapted to larger, more structured datasets. Our method is inherently scal-
able and adaptable to larger datasets and structured data, such as those defined
by adjacency matrices, an intrinsic aspect of the OPF model, thus favoring the
proposed approach.

As a last discussion, the pruning technique is widely used in machine learning
applications with the main objective of reducing the computational cost of mod-
els, making them more efficient in processing time and resource use. It is worth
noting that in some cases, pruning offers statistically similar results with fewer
classifiers in the ensemble, as shown by our results. Although pruning may result
in better performance for specific techniques and methods, it is not guaranteed
in all cases. In fact, such a problem can occur when the underlying classifiers per-
form poorly during the classification process. However, this issue is not exclusive
to the OPF classifier; it can arise with any classifier. The source of this problem
lies in the pruning process itself, making it an inherent challenge across vari-
ous classification models, thus affecting the ensemble pruning performance. This
behavior can be explained by the particular nature of the data and models used,
where the additional complexity without the pruning technique allows for better
capture of the nuances present in the data, resulting in superior performance.
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Table 3. Average F1-Score provided by each baseline.

10 classifiers

Ours HV Ours SV Ours GMM k-Means Agglom. Rank I.M.

D1 0.775±0.058 0.776±0.056 0.777±0.057 0.792±0.059 0.785±0.062 0.775±0.046

D2 0.934±0.025 0.937±0.027 0.936±0.026 0.940±0.024 0.941±0.025 0.942±0.023

D3 0.951±0.019 0.954±0.016 0.954±0.015 0.949±0.014 0.949±0.014 0.951±0.018

D4 0.800±0.046 0.821±0.049 0.823±0.049 0.817±0.040 0.822±0.045 0.815±0.049

D5 0.672±0.098 0.662±0.099 0.664±0.102 0.641±0.083 0.647±0.093 0.649±0.095

D6 0.665±0.042 0.675±0.043 0.675±0.046 0.669±0.052 0.673±0.055 0.677±0.049

D7 0.932±0.057 0.935±0.050 0.935±0.052 0.937±0.048 0.939±0.046 0.932±0.051

D8 0.736±0.033 0.737±0.045 0.734±0.043 0.739±0.047 0.738±0.047 0.723±0.041

D9 0.587±0.031 0.589±0.029 0.588±0.032 0.604±0.026 0.604±0.028 0.604±0.030

D10 0.941±0.020 0.946±0.019 0.946±0.020 0.947±0.019 0.949±0.020 0.945±0.019

D11 0.293±0.055 0.314±0.057 0.310±0.054 0.310±0.053 0.319±0.051 0.302±0.050

D12 0.689±0.101 0.684±0.112 0.681±0.109 0.696±0.110 0.690±0.109 0.688±0.093

D13 0.902±0.016 0.899±0.017 0.900±0.016 0.904±0.019 0.905±0.019 0.905±0.018

D14 0.694±0.038 0.695±0.037 0.694±0.035 0.693±0.037 0.694±0.038 0.691±0.038

D15 0.803±0.045 0.810±0.045 0.811±0.047 0.807±0.052 0.811±0.052 0.817±0.052

30 classifiers

Ours HV Ours SV Ours GMM k-Means Agglom. Rank I.M.

D1 0.797±0.041 0.810±0.042 0.799±0.041 0.819±0.041 0.809±0.043 0.802±0.047

D2 0.939±0.021 0.944±0.025 0.944±0.027 0.943±0.025 0.944±0.022 0.946±0.021

D3 0.944±0.021 0.945±0.020 0.947±0.021 0.955±0.018 0.955±0.017 0.956±0.014

D4 0.799±0.044 0.810±0.042 0.810±0.042 0.823±0.044 0.826±0.039 0.813±0.048

D5 0.654±0.079 0.654±0.090 0.660±0.093 0.667±0.086 0.667±0.102 0.659±0.088

D6 0.660±0.052 0.671±0.056 0.669±0.058 0.676±0.047 0.681±0.044 0.674±0.046

D7 0.939±0.049 0.946±0.048 0.946±0.048 0.939±0.046 0.941±0.046 0.946±0.044

D8 0.751±0.037 0.758±0.041 0.760±0.039 0.763±0.033 0.760±0.035 0.757±0.032

D9 0.592±0.028 0.599±0.023 0.600±0.022 0.604±0.030 0.608±0.031 0.609±0.028

D10 0.944±0.019 0.950±0.017 0.949±0.018 0.952±0.018 0.952±0.019 0.948±0.019

D11 0.292±0.050 0.301±0.050 0.306±0.048 0.318±0.057 0.322±0.050 0.312±0.050

D12 0.721±0.099 0.708±0.090 0.712±0.088 0.716±0.105 0.716±0.115 0.693±0.096

D13 0.903±0.017 0.903±0.016 0.903±0.015 0.909±0.017 0.907±0.019 0.907±0.018

D14 0.692±0.032 0.684±0.034 0.685±0.033 0.700±0.042 0.699±0.032 0.694±0.042

D15 0.806±0.038 0.821±0.042 0.820±0.040 0.823±0.041 0.823±0.042 0.824±0.049

50 classifiers

Ours HV Ours SV Ours GMM k-Means Agglom. Rank I.M.

D1 0.798±0.051 0.808±0.041 0.811±0.043 0.819±0.045 0.817±0.046 0.806±0.045

D2 0.936±0.023 0.943±0.021 0.943±0.021 0.942±0.025 0.945±0.025 0.945±0.020

D3 0.946±0.018 0.950±0.020 0.950±0.020 0.954±0.017 0.956±0.015 0.953±0.017

D4 0.795±0.044 0.817±0.039 0.816±0.046 0.826±0.040 0.828±0.042 0.818±0.045

D5 0.679±0.096 0.666±0.088 0.663±0.089 0.663±0.092 0.671±0.095 0.672±0.105

D6 0.665±0.039 0.672±0.044 0.670±0.047 0.678±0.052 0.677±0.048 0.680±0.055

D7 0.936±0.051 0.946±0.043 0.946±0.043 0.939±0.047 0.943±0.046 0.950±0.040

D8 0.748±0.030 0.763±0.038 0.766±0.037 0.770±0.039 0.768±0.031 0.760±0.034

D9 0.602±0.041 0.614±0.032 0.613±0.032 0.610±0.032 0.608±0.029 0.611±0.029

D10 0.942±0.018 0.951±0.017 0.951±0.017 0.952±0.018 0.952±0.018 0.948±0.016

D11 0.304±0.052 0.328±0.051 0.325±0.053 0.325±0.052 0.328±0.055 0.326±0.054

D12 0.715±0.105 0.703±0.098 0.704±0.099 0.709±0.113 0.720±0.106 0.709±0.095

D13 0.902±0.017 0.904±0.017 0.904±0.016 0.907±0.018 0.908±0.018 0.908±0.019

D14 0.699±0.033 0.694±0.035 0.693±0.034 0.700±0.036 0.701±0.032 0.700±0.041

D15 0.810±0.038 0.816±0.039 0.816±0.039 0.829±0.038 0.824±0.038 0.826±0.043
† Underscored values stand for statistical difference computed by the Friedman
test with p=0.05.
*HV=Hard Voting; SV=Soft Voting; GMM=Gaussian Mixture Model;
Agglom.=Agglomerative Clustering; I.M.= Individual Margin.
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Table 4. Minimum, maximum and average number of classifiers selected after the
pruning procedure.

10 classifiers 30 classifiers 50 classifiers

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

D1 1 6 3.7±1.6 1 15 7.3±4.6 2 23 12.3±7.2

D2 1 5 2.7±1.5 1 15 6.5±5.0 3 25 16.4±8.1

D3 1 6 3.4±1.7 1 16 7.8±5.8 1 24 14.3±7.4

D4 1 6 3.5±1.6 1 16 5.8±5.7 1 25 12.2±8.8

D5 1 6 3.1±1.6 1 15 5.7±5.3 1 26 10.1±8.0

D6 1 7 3.5±1.8 1 15 5.5±4.4 2 25 12.7±9.0

D7 1 6 3.6±1.2 1 18 10.7±5.0 1 25 15.1±8.4

D8 1 6 3.8±1.4 1 15 8.7±4.6 1 26 14.2±8.1

D9 1 6 2.7±1.6 1 13 4.8±4.7 1 25 11.4±8.2

D10 1 5 3.0±1.6 1 16 8.6±5.5 1 26 13.7±8.5

D11 1 6 2.9±1.5 1 14 7.0±4.9 2 24 12.8±7.8

D12 1 6 3.0±1.7 1 15 7.2±4.8 1 24 11.0±8.8

D13 1 5 2.9±1.3 1 16 5.8±4.5 2 24 8.2±6.8

D14 1 7 3.1±1.9 1 15 6.2±4.7 1 25 12.5±7.5

D15 1 5 3.6±1.1 1 16 8.8±5.2 3 24 15.4±8.2

Table 5. Number of estimators selected for each baseline.

10 classifiers 30 classifiers 50 classifiers

k-Means Agglom. Rank I.M. k-Means Agglom. Rank I.M. k-Means Agglom. Rank I.M.

D1 (r = 5) (r = 5) (r = 5) (r = 15) (r = 15) (r = 15) (r = 25) (r = 25) (r = 25)

D2 (r = 5) (r = 5) (r = 5) (r = 15) (r = 5) (r = 15) (r = 25) (r = 10) (r = 25)

D3 (r = 5) (r = 5) (r = 5) (r = 15) (r = 15) (r = 10) (r = 25) (r = 15) (r = 10)

D4 (r = 5) (r = 5) (r = 5) (r = 15) (r = 10) (r = 15) (r = 25) (r = 25) (r = 25)

D5 (r = 5) (r = 5) (r = 5) (r = 15) (r = 10) (r = 15) (r = 10) (r = 10) (r = 15)

D6 (r = 5) (r = 5) (r = 5) (r = 15) (r = 5) (r = 15) (r = 10) (r = 25) (r = 10)

D7 (r = 5) (r = 5) (r = 5) (r = 5) (r = 10) (r = 10) (r = 15) (r = 10) (r = 10)

D8 (r = 5) (r = 5) (r = 5) (r = 15) (r = 15) (r = 15) (r = 15) (r = 25) (r = 25)

D9 (r = 5) (r = 5) (r = 5) (r = 5) (r = 15) (r = 5) (r = 15) (r = 25) (r = 25)

D10 (r = 5) (r = 5) (r = 5) (r = 10) (r = 10) (r = 5) (r = 25) (r = 10) (r = 25)

D11 (r = 5) (r = 5) (r = 5) (r = 5) (r = 15) (r = 15) (r = 25) (r = 25) (r = 15)

D12 (r = 5) (r = 5) (r = 5) (r = 15) (r = 15) (r = 10) (r = 25) (r = 25) (r = 25)

D13 (r = 5) (r = 5) (r = 5) (r = 15) (r = 10) (r = 15) (r = 25) (r = 25) (r = 25)

D14 (r = 5) (r = 5) (r = 5) (r = 15) (r = 5) (r = 10) (r = 25) (r = 10) (r = 15)

D15 (r = 5) (r = 5) (r = 5) (r = 10) (r = 10) (r = 10) (r = 25) (r = 15) (r = 25)

However, applying the pruning technique was mainly motivated by reducing the
computational cost and not necessarily by the expectation of achieving state-
of-the-art results (SOTA). Thus, the variation in observed results reflects the
complexity and adaptability of machine learning techniques to different scenar-
ios and data sets, highlighting that the decision to use pruning must be based
on a careful analysis of the specific needs of each application.
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7 Conclusions

This paper presented a novel ensemble pruning approach integrating Graph
Matching Networks and Optimum-Path Forest classifiers. Such a design allows a
suitable application to graph matching problems owing to the model’s intrinsic
graph-based structure. Combining a reduced and diverse ensemble of OPF clas-
sifiers was the initial hypothesis to achieve similar predictive performance with
comparable results to the entire ensemble model but with a lower computational
cost. In addition, the proposed method was designed to prevent the necessity of
specifying the required number of models to compose the final ensemble. The
results revealed comparable performance with statistical similarities when no
pruning is applied to the ensemble model and competitive predictive capabilities
with state-of-the-art ensemble pruning methods. Furthermore, it is important to
note that this work focuses only on classic machine learning models, particularly
the Optimal Path-Forest model, rather than deep learning techniques.

Regarding future work, we aim to extend this work by replacing the softmax-
based strategy used to perform the soft classification and evaluate the Proba-
bilistic OPF for the task. Although our study employed small datasets, which are
valuable for benchmarking and pose unique challenges like overfitting and data
sparsity, future work will involve extensive testing on larger datasets for further
validation and enhancing our method’s performance. In addition, OPF was not
designed for regression tasks, so we did not address regression in this study.
However, we plan to explore regression tasks once an OPF regressor becomes
available.
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11. Lê-Huu, D.K., Paragios, N.: Alternating direction graph matching. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4914–4922.
IEEE (2017)

12. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: International Conference on
Machine Learning, pp. 3835–3845. PMLR (2019)

13. Lin, Y., Yang, M., Yu, J., Hu, P., Zhang, C., Peng, X.: Graph matching with bi-level
noisy correspondence. In: 2023 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 23305–23314. IEEE Computer Society, Los Alamitos (2023)

14. Lyzinski, V., et al.: Spectral clustering for divide-and-conquer graph matching.
Parallel Comput. 47, 70–87 (2015)
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Abstract. Graph Anomaly Detection (GAD) has attracted consider-
able attention for its potential in detecting anomalies. However, an over-
looked issue in prior research is the presence of extremely high-degree
node, which can introduce noise into GAD, escalate computational costs,
and intensify the problem of over-smoothing. To tackle this issue, this
paper first presents a novel graph anomaly dataset, NFTGraph, charac-
terized by a notable presence of extremely high-degree nodes. A series
of experiments on this dataset sheds light on the influence of such nodes
on GAD. Moreover, we introduce a novel model, the Super Node-Aware
Graph Neural Network (SNGNN), designed to mitigate the noise ema-
nating from extremely high-degree nodes. Experimental results demon-
strate that SNGNN outperforms extant models, achieving an average
improvement of over 2% in the Area Under the ROC Curve (AUROC),
and effectively reducing noise.

Keywords: Graph Anomaly Detection · Extremely High-degree Nodes

1 Introduction

Graph, a data structure with nodes and edges, has been widely used to model
real-world scenarios, such as social networks [12], financial trading networks [30],
and paper citing networks [10]. Since graph structures can capture relationships
between entities, many anomaly detection methods are also based on graphs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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[2,38], aiming to identify anomalies that are distinct from the majority in the
graph. Historically, numerous models for graph anomaly detection (GAD) have
been put forth, such as CONAD [38] and PCGNN [20]. These models have
contributed to the advancement of GAD.

Fig. 1. The distribution of node degrees among the foremost 50 nodes.

However, a critical aspect overlooked by prior GAD studies pertains to the
presence of extremely high-degree nodes, which can influence GAD models sig-
nificantly. Firstly, since extreme high-degree nodes results in the formation of
a tightly connected component within the graph, anomalies may inadvertently
assimilate features from normal nodes through neighbor aggregation. This pro-
cess complicates the delineation of anomalous nodes, introducing noise into the
learning process. Moreover, the extensive connectivity associated with high-
degree nodes could lead to elevated computational costs and exacerbate the
issue of over-smoothing.

To elucidate the influence of extremely high-degree nodes, we first introduce a
novel graph anomaly dataset termed NFTGraph. As depicted through the yellow
and gray lines in Fig. 1, both NFTGraph and its variant, NFTGraph-Tiny, man-
ifest pronounced traits of extremely high-degree nodes. Additionally, utilizing
these datasets, we investigate the influence of such nodes, including their role in
introducing noise to GAD, amplifying computational costs, and intensifying the
issue of over-smoothing. In response, we propose the Super Node-Aware Graph
Neural Network (SNGNN), a novel GAD model that incorporates a Dummy
Node and Link Predictor to mitigate the noise stemming from extremely high-
degree nodes. Experimental results indicate that SNGNN surpasses current mod-
els, marked by an average increase of over 2% in the detection Area Under the
ROC Curve (AUROC), alongside a reduction in noise. In essence, our contribu-
tions are multifaceted:
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– We provide critical insights into the influence of extremely high-degree nodes,
emphasizing their potential to disrupt GAD, amplify computational costs,
and exacerbate the issue of over-smoothing.

– SNGNN is designed to mitigate the noise generated by extreme high-degree
nodes. Experimental results indicate that SNGNN surpasses current methods
across four datasets, registering an average enhancement of more than 2% in
detection AUROC, while effectively reducing noise.

Moreover, we make the dataset and code publicly available on Github to facilitate
further research.

2 Related Works

Graph Anomaly Datasets: Numerous graph anomaly datasets are widely
employed in previous studies. For example, Weibo [17] and Reddit [17] are
derived from social networks. Questions [26] is a question-answering dataset.
Moreover, Amazon [24], Yelpchi [27], Tolokers [26] and Elliptic [34] are also
famous GAD datasets. While these traditional datasets have played a pivotal role
in advancing GAD, they fall short in accurately representing real-world networks
by not encompassing the distinct attributes of extremely high-degree nodes.
They obstruct a comprehensive understanding of the influence of extremely high-
degree nodes on GAD.

Degree-Related GNNs: Historically, several GNNs with a focus on degree-
related considerations have been introduced to rectify node degree distribution
biases. Notable examples include DEMO-Net [36] and SL-DSGCN [31], which
implement degree-specific node transformations, and DegFairGNN [23] employs
a function for generating debiasing contexts. Other GNNs addressing degree-
related performance differences include Tail-GNN [22] and RawlsGCN [15], etc.
However, these models have primarily been explored within the context of node
or graph classification tasks. Thus far, a scarcity of research has addressed the
ramifications of extremely high-degree nodes in anomaly detection tasks.

3 Data Collection and Properties

To understand the influence of extremely high-degree nodes, we initially gather
data from NFT transactions on the blockchain and organize it into a graph
structure. (1) Raw data: We extract certain fields of ERC-1155 NFT transac-
tion on the Ethereum blockchain to compose the format of raw data. (Table 1).
(2) Graph Structure: The From and To addresses, acting as the sending and
receiving parties of a transaction, serve as the source and target nodes in the
graph. An edge is established between the source and target nodes if tokens
are transferred between them. Each node possesses 50-dimensional attributes.
(3) Labeling Suspicious Node: We label nodes that exhibit interactions with
the ground-truth fraudulent nodes (encompassing Ponzi schemes [6] and phishing

https://github.com/AnonymousDataCodeHub/NFTGraph
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scams [5]) exceeding a count of three instances as suspicious nodes. Suspicious
nodes aim to alleviate the notable imbalance of ground-truth fraudulent nodes
aligning with the NFTGraph’s node set. (4) Variant Dataset: By extract-
ing 20,000 of the most active nodes while excluding isolated nodes, we form
NFTGraph-Tiny, leading to a substantial size reduction. This is executed with
the recognition that certain GNNs may encounter challenges in handling exten-
sive graphs within resource-constrained environments. More details are described
in the supplemental materials.

Table 1. Format of raw NFT transaction data.

TxHash From To Token Timestamp Amount Value($) TxFee($)

0xb5...b420 0x94...7293 0x6e...b7d3 0xd0...2430 20220730055230 1 78.52 2.23

0xa5...aeea 0x00...0000 0xd8...ac95 0xd0...2430 20220730055230 14 0.0 0.98

0xa2...bdf1 0x5b...1abb 0x4f...6580 0xd0...2430 20220730055138 1 0.0 0.33

... ... ... ... ... ... ... ...

Properties: Table 2 illustrates a comparison of statistical properties between
NFTGraph and several other graph anomaly datasets [29]. The anomaly ratio
of NFTGraph is only 0.39%, making it the lowest in the dataset. Moreover, in
NFTGraph, the highest degree (No.1 deg) is 789,782, significantly surpassing
No.2 deg. This pattern is consistent in NFTGraph-Tiny, but in other graph
datasets, the discrepancy between No.1 deg and No.2 deg is less pronounced.

Table 2. Statistics of NFTGraph and some common graph anomaly datasets.

Dataset #Nodes #Edges Anomaly Avg deg No.1 deg No.2 deg q1 q2

Weibo 8,405 416,368 10.3% 99.08 4,447 2,769 44.88 27.95

Reddit 10,984 168,016 3.3% 30.59 5,112 3,134 167.10 102.44

Amazon 11,944 8,847,096 9.5% 1481.43 13,964 13,874 9.43 9.37

YelpChi 45,954 7,739,912 14.5% 336.85 1,004 996 2.98 2.96

Tolokers 11,758 530,758 21.8% 90.28 2,140 2,113 23.70 23.40

Questions 48,921 202,461 3.0% 8.28 1,541 1,186 186.18 143.29

Elliptic 203,769 438,124 9.8% 4.30 475 291 110.46 67.67

NFTGraph-Tiny 20,000 245,221 1.30% 24.52 18,104 1,330 738.27 54.24

NFTGraph 1,161,847 2,851,407 0.39% 4.91 789,782 20,000 160904.05 4074.64

4 Exploring the Influence of Extremely High-Degree
Node

4.1 Definition of Extremely High-Degree Node

In the past, scholars have proposed the concepts of influential nodes and central
nodes [3,11], which differ from extremely high-degree nodes. While extremely
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high-degree nodes primarily focus on node degree, influential nodes and central
nodes can be defined in various ways, such as through K -shell value [14] or
betweenness centrality [3], among others.

Define a high-degree node in a graph as a node with a degree greater than or
equal to the average degree (avg deg). An extremely high-degree node is defined
as a node whose degree/avg deg≥ q (q ≥ 1), indicating that the node’s degree
exceeds the average degree by q times. q is a hyperparameter that varies depend-
ing on the dataset. Let q1 denote the hyperparameter selectively elevating No.
1 node to an extremely high-degree node, while q2 signifies the hyperparameter
concurrently elevating both No. 1 and No. 2 to extremely high-degree nodes.
As seen from Table 2, for NFTGraph, q1 exceeds 16,0000, and q2 also exceeds
4,000. Furthermore, there is a considerable discrepancy between the values of
q1 and q2, whereas for graph datasets including Weibo, Reddit, and Questions,
q1 and q2 are closer. This demonstrates significant characteristics of extremely
high-degree nodes. NFTGraph-Tiny exhibits similar features. The threshold q
is determined through hyperparameter tuning on the dataset’s validation set to
optimize the detection AUROC. For simplicity and clarity in illustrating the
influence of extremely high-degree nodes, we set q equal to q1 in subsequent dis-
cussions. Therefore, only the node with the highest degree is considered as the
extremely high-degree node (abbreviated as SN).

4.2 Experimental Settings

Datasets: Due to the similarity properties between NFTGraph and NFTGraph-
Tiny, and the challenges faced by certain GNNs in handling large graphs, the
proposed NFTGraph-Tiny is chosen as the foundational dataset. To assess the
influence of SN, a variant dataset is introduced by removing SN and the edges
connected to it. These two graphs are respectively denoted as w/ SN and w/o
SN. From Table 3, it can be observed that without SN, No.1 degree decreased
from 18,104 to 1,330, bringing it closer to the degrees of its immediate neighbors.
AnomalyAvgDeg represents the average degree of all abnormal nodes. The aver-
age abnormal node degree of NFTGraph-Tiny is 27.66, indicating that abnor-
mal nodes generally have lower degrees than SN. Moreover, to demonstrate the
advantage of the proposed dataset, several commonly used and well-known graph
anomaly datasets, namely Weibo [17,19], Reddit [19,39], and Questions [26], are
selected for comparison, as shown in Table 3.

Task Description: This section outlines a task aimed at identifying suspicious
nodes. Formally, the objective is to train a model f : f(u) → {0, 1}, where
∀u ∈ V, V is node set, 1 denotes anomaly nodes and 0 denotes normal nodes.

Models and Evaluation Metrics: To comprehensively evaluate the influnce of
SN, this section selects 34 anomaly detection models, including both supervised
and unsupervised models, based on GNN and non-GNN models. Specifically,
the unsupervised and non-GNN models [40] include OCSVM, LOF, CBLOF,
COF, HBOS, SOD, COPOD, ECOD, LODA, and IForest; unsupervised and
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Table 3. Datases for exploring the influence of SN.

Datasets #Nodes #Edges #Feature #Anomaly No.1–5 Deg AnomalyAvgDeg

NFTGraph-Tiny w/ SN 20,000 245,221 50 259 [18104,1330,1212,1020,917] 27.66

NFTGraph-Tiny w/o SN 19,999 227,118 50 259 [1330,1211,1020,916,793] 27.66

Weibo w/ SN 8,405 416,368 400 868 [4447,2769,2723,2558,2523] 54.82

Weibo w/o SN 8,404 411,922 400 868 [2767,2721,2556,2521,2376] 54.82

Reddit w/ SN 10,984 168,016 64 366 [5112,3134,3106,2608,2518] 24.75

Reddit w/o SN 10,983 162,905 64 366 [3134,3106,2608,741,2476] 24.75

Questions w/ SN 48,921 202,461 301 1460 [1541,1186,901,741,739] 20.93

Questions w/o SN 48,920 200,921 301 1460 [1185,900,740,738,717] 20.93

GNN-based models [19] include ANOMALOUS [25], ONE [1], OCGNN [33],
CoLA [21], DONE [2], AnomalyDAE [8], CONAD [38], and DOMINANT [7];
supervised and non-GNN models [30] include MLP, KNN, SVM, RF; supervised
and GNN-based models [30] include GCN [16], SGC [35], GIN [37], Graph-
SAGE [12], GAT [32], GT [28], GAS [18], BernNet [13], AMNet [4], GHRN [9],
GAT-Sep [42], PCGNN [20]. Due to the severe class imbalance between suspi-
cious and non-suspicious nodes, the Area Under the ROC Curve (AUROC) is
chosen for evaluation. Other settings are in the supplemental materials.

4.3 Influence of SN on GNN-Based and Non-GNN-Based Models

Table 4 presents the AUROC of models on NFTGraph-Tiny, Weibo, Reddit, and
Questions datasets, along with their corresponding graphs without SN. Refining
Table 4, the significant change rate is defined as the proportion of models with
AUROC changes exceeding 2% (±2%) after removing SN, while the positive
significant change rate indicates an augmentation in AUROC (+2%) after
SN removal.

Table 5 illustrates the significant change rates for both non-GNN and GNN
models. Remarkably, the significant change rate for NFTGraph-Tiny surpasses
that of Weibo, Reddit, and Questions, with datasets such as Weibo and Ques-
tions showing a minimal 0% significant change rate. This highlights the distinct
advantage of employing NFTGraph-Tiny for exploring the influence of extremely
high-degree nodes, thereby suggesting the limited utility of other datasets in this
context.

Across the four datasets, the significant change rates of GNN-based mod-
els are substantially higher than those of non-GNN-based models. Specifically,
within the NFTGraph-Tiny dataset, GNN-based models show a remarkable sig-
nificant change rate of 70.00%, in contrast to the 50.00% observed for non-
GNN-based models. Furthermore, Table 5 highlights that the positive signifi-
cant change rate for GNN-based models surpasses 50%. This outcome appears
counterintuitive since the inclusion of SN is theoretically expected to enhance
the informational content, suggesting that graphs incorporating SN should uni-
formly exhibit superior AUROC performance. Nonetheless, the empirical data
reveals that over half of the GNN-based models achieve higher AUROC scores
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Table 4. AUROC of anomaly detection models. Bold for significant change of AUROC
(Higher AUROC).

Models Datasets NFTGraph-Tiny Weibo Reddit Questions

w/ SN w/o SN w/ SN w/o SN w/ SN w/o SN w/ SN w/o SN

Unsupervised & non-GNN-based OCSVM 0.4763 0.5018 0.8001 0.8017 0.5702 0.5703 0.5995 0.5995

LOF 0.5658 0.5332 0.5756 0.5756 0.5369 0.5372 0.5680 0.5679

CBLOF 0.5134 0.5106 0.8003 0.8084 0.5809 0.5827 0.6016 0.6003

COF 0.5662 0.5430 0.4877 0.4885 0.5755 0.5756 0.5591 0.5591

HBOS 0.4998 0.5041 0.4038 0.4034 0.5338 0.5338 0.5951 0.5951

SOD 0.6590 0.6405 0.4258 0.4249 0.5495 0.5402 0.5526 0.5553

COPOD 0.5977 0.5977 0.4736 0.4738 0.4974 0.4975 0.6059 0.6059

ECOD 0.5240 0.5241 0.4774 0.4775 0.4999 0.4999 0.6015 0.6015

LODA 0.5749 0.5412 0.7139 0.7096 0.5630 0.5633 0.5745 0.5745

IForest 0.6016 0.6009 0.5500 0.5502 0.5942 0.5514 0.6057 0.6020

Unsupervised GNN-based ANOMALOUS 0.6159 0.6818 0.9876 0.9876 0.5688 0.5629 0.5527 0.5530

ONE 0.5445 0.4992 0.6637 0.6518 0.5356 0.5157 0.4867 0.5102

OCGNN 0.6327 0.5389 0.8251 0.8257 0.6308 0.6139 0.5590 0.5745

CoLA 0.4943 0.4021 0.4254 0.4464 0.4963 0.5409 0.5306 0.5465

DONE 0.5734 0.5858 0.5536 0.6569 0.5518 0.5556 0.6644 0.6639

AnomalyDAE 0.5555 0.5803 0.8256 0.8268 0.5805 0.5709 0.4771 0.4995

CONAD 0.5382 0.5424 0.6311 0.7050 0.4680 0.5174 0.6019 0.6021

DOMINANT 0.6026 0.6251 0.7015 0.6290 0.5129 0.5138 0.6036 0.6028

Supervised non-GNN-based MLP 0.5645 0.6730 0.9738 0.9669 0.6771 0.6765 0.6753 0.6785

KNN 0.5994 0.6204 0.9672 0.9674 0.6067 0.6301 0.6760 0.6789

SVM 0.5756 0.5773 0.9536 0.9539 0.6622 0.6659 0.6359 0.6410

RF 0.6539 0.6314 0.9864 0.9865 0.6290 0.6312 0.5621 0.5512

Supervised GNN-based GCN 0.6580 0.6401 0.9830 0.9867 0.7172 0.7122 0.7018 0.7011

SGC 0.5968 0.6179 0.9892 0.9893 0.6842 0.6885 0.6911 0.6921

GIN 0.6688 0.6164 0.9881 0.9901 0.7028 0.6574 0.7185 0.7185

GraphSAGE 0.5777 0.6437 0.9934 0.9932 0.6949 0.7130 0.7197 0.7179

GAT 0.6510 0.6405 0.9800 0.9816 0.6866 0.6724 0.7037 0.7093

GT 0.6163 0.6518 0.9899 0.9897 0.6444 0.6682 0.6949 0.7134

GAS 0.6663 0.6636 0.9828 0.9824 0.6858 0.6627 0.7118 0.6913

BernNet 0.6230 0.6628 0.9783 0.9853 0.6868 0.6763 0.6951 0.7095

AMNet 0.6970 0.6601 0.9808 0.9858 0.6445 0.6371 0.6990 0.6989

GHRN 0.6734 0.6656 0.9792 0.9892 0.6894 0.7180 0.7204 0.7210

GAT-Sep 0.6775 0.6534 0.9846 0.9863 0.6665 0.6739 0.6913 0.6892

PCGNN 0.6895 0.6377 0.9848 0.9846 0.6779 0.6785 0.6929 0.6692

upon the removal of SN, with some models registering a remarkable AUROC
increase of up to 7% (e.g., ANOMALOUS). This phenomenon indicates that SN
and its connected edges might introduce noise that, via neighbor aggregation,
obscures the distinction between normal and anomalous nodes, complicating
their differentiation.

4.4 Impact of SN on Unsupervised and Supervised GADs

Given that GNN-based models generally exhibit higher significant change rates
compared to non-GNN-based models, the experimental results of GNN-based
models are further analyzed to assess the influence of SN on unsupervised and
supervised settings.

From Table 6, it can be observed that, regardless of the supervised or unsu-
pervised setting, the significant change rate of NFTGraph-Tiny is not lower than
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Table 5. Significant change rate for non-GNN and GNN models.

NFTGraph-Tiny Weibo Reddit Questions

non-GNN-based 50.00% 0.00% 14.29% 0.00%

GNN-based 70.00% 20.00% 40.00% 25.00%

non-GNN-based w/o SN + 42.86% – 50.00% –

GNN-based w/o SN + 50.00% 75.00% 50.00% 60.00%

that of the other three datasets, which also shows the advantages of NFTGraph-
Tiny. Additionally, the positive significant change rates of unsupervised GNN
models are higher than those of supervised GNN models across the four datasets.
This suggests that, after removing SN, unsupervised GNN models achieve a
higher proportion of models with increased AUROC. This phenomenon may be
attributed to the absence of training labels in unsupervised GNN models, mak-
ing the noise introduced by SN edges more impactful for anomaly detection.
Consequently, after removing SN, unsupervised GNN models may learn better,
highlighting the importance of considering the noise introduced by SN.

Table 6. Significant change rate for unsupervised and supervised GADs.

NFTGraph-Tiny Weibo Reddit Questions

Unsupervised GAD 50.00% 50.00% 50.00% 37.50%

Supervised GAD 66.67% 0.00% 33.33% 16.67%

Unsupervised GAD w/o SN + 75.00% 75.00% 50.00% 100.00%

Supervised GAD w/o SN + 50.00% – 50.00% 0.00%

4.5 Computational Cost

Considering the highlighted benefits of NFTGraph-Tiny, it will be the primary
dataset employed for further investigation in subsequent sections. Additionally,
to more effectively demonstrate the impact on computational costs, this sub-
section will also incorporate NFTGraph to provide statistics on the average
number of node neighbors and the execution time for both 1-layer and 2-layer
Graph Attention Networks (GAT).

Table 7 shows the average number of 1-hop and 2-hop neighbors of GAT in
NFTGraph-Tiny is 11.26 and 2386.39. Upon removing SN, the average number
of 1-hop neighbors remains relatively unchanged, while the average number of
2-hop neighbors sharply decreases to 123.88. This is due to the fact that the
degree of SN in NFTGraph-Tiny is 18,104, indicating that the majority of the
whole 20,000 nodes in the graph are connected to SN. More pronounced dispar-
ities are observed in NFTGraph and NFTGraph w/o SN. Table 8 demonstrates
how the execution time of GAT varies with different numbers of layers. Notably,
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on NFTGraph-Tiny and NFTGraph, removing SN leads to a nonlinear decrease
in execution time, with a more significant reduction observed for 2-layer GAT
compared to a single layer. The presence of SN significantly impacts the com-
putational cost, leading to a substantial increase in both the average number of
node neighbors and the execution time.

Table 7. Average number of node neigh-
bors for GAT at different hops.

Dataset/Hops 1-hop 2-hop

NFTGraph-Tiny 11.26 2386.39

NFTGraph-Tiny w/o SN 10.36 123.88

NFTGraph 2.45 27647.54

NFTGraph w/o SN 1.86 20.42

Table 8. Execution time (s) of GAT
with different numbers of layers.

Dataset/Layer Number 1-layer 2-layer

NFTGraph-Tiny 4.89 5.84

NFTGraph-Tiny w/o SN 4.58 5.31

NFTGraph 49.26 91.06

NFTGraph w/o SN 20.03 33.73

4.6 Over-Smoothing

To investigate the influence of extremely high-degree nodes on the issue of over-
smoothing, we compute two over-smoothing metrics [41]: Instance Information
Gain (GIns) and Group Distance Ratio (RGroup). These calculations are per-
formed across different layer numbers of GAT applied to both the NFTGraph-
Tiny dataset and its variant (w/o SN). Generally, lower values of these metrics
indicate a higher level of over-smoothing.

Figure 2 illustrates the changes in the over-smoothing metrics GIns and
RGroup for different layer numbers of GAT. It is evident that, in the majority of
cases, as the number GAT’s layers increases, the metrics decrease, indicating a
progressive over-smoothing of node representations. Upon removal of SN, both
GIns and RGroup metrics exhibit an increase compared to the original, thereby
alleviating the over-smoothing phenomenon. Therefore, the results demonstrate
that with the same layer number of GNN, the presence of extremely high-degree
nodes increases the likelihood of over-smoothing.

5 Method and Experiments

5.1 SNGNN

In this section, we introduce a novel graph anomaly detection model, named
Super Node-Aware Graph Neural Network (SNGNN), aimed at mitigating the
noise generated by nodes with extremely high degrees. The conceptual framework
of SNGNN is depicted in Fig. 3.

In SNGNN, we first introduce a dummy node (DN) as a new node, and
establish edges between DN and all anomaly nodes in G0, as follows:

V = V ∪ {DN}, E = E ∪ {e′}, (1)
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Fig. 2. Over-smoothing metrics GIns and RGroup for different layer numbers of GAT on
NFTGraph-Tiny and NFTGraph-Tiny w/o SN. Lower values of these metrics indicate
a higher level of over-smoothing. On average, the presence of extremely high-degree
nodes increases the over-smoothing problem.

where,
e′ = (DN, s),∀s ∈ Nanomaly, (2)

where V represents the set of nodes, and E denotes the set of all edges. Edge
e = (u, v) connects u and v ({u, v} ∈ V). Nanomaly denotes the set of anomaly
nodes.

Subsequently, we undertake the task of link prediction for the SN. This com-
ponent inputs the SN and its neighboring nodes into a Link Predictor (LP),
yielding a probability vector (c) that represents the likelihood of an edge exist-
ing between SN and its neighbors. Here, we employ a straightforward dot product
as the LP, which is articulated as follows:

cn =< hSN , hn >,∀n ∈ Nneigbhour (3)

where hn is the hidden vector of node n, Nneighbour is the set of the original
neighbors of SN, and <,> indicates the dot product between two vectors. Then,
the p1-quantile (cp1) and p2-quantile (cp2) are derived from the probability vector
c. Nodes with probabilities below cp1 are severed from SN, whereas those with
probabilities above cp2 are linked to SN. Formally:

ASN,n =

{
0, cn ≤ cp1

1, cn ≥ cp2

,∀n ∈ Nneigbhour, (4)

where ASN,n = 0 signifies the absence of an edge between the SN and node n
in the adjacency matrix A.

Finally, we update the node representations by aggregating neighbor infor-
mation according to the updated graph topology at each iteration. Utilizing the
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Fig. 3. Schema of SNGNN.

node representations from the final layer, we then ascertain whether nodes are
anomalous.

The rationale behind the development of SNGNN encompasses several key
aspects: Firstly, considering the typically lower degree of anomalous nodes
themselves (as indicated by AnomalyAvgDeg in Table 3), the integration of a
dummy node (DN) connected to all identified anomalous nodes serves to mitigate
the imbalance between low-degree anomalous nodes and extremely high-degree
nodes to some extent. Moreover, the inclusion of DN facilitates the acquisition
of a more “pure” representation of anomalous nodes during the propagation pro-
cess. This is crucial as the connection of anomalous nodes to their normal coun-
terparts results in the amalgamation of information from normal nodes during
the neighbor aggregation phase by GNN, which is counterproductive for accu-
rately modeling the representations of anomalous nodes.

Secondly, the implementation of thresholds p1 and p2 allows for the discon-
nection of edges with probabilities below p1 and the maintenance or addition
of edges with probabilities above p2. This approach is designed to evaluate the
reliability of edges associated with the SN. By learning from anomaly labels,
the model is capable of autonomously determining the optimal thresholds to
either facilitate or inhibit message transmission, thereby diminishing noise in
the connections to SN and enhancing the model’s resilience.

5.2 Experiments

Setup: NFTGraph-Tiny, Weibo, Reddit, and Questions datasets are used, and
the task is anomaly detection. The baseline models include three basic GNNs:
GCN, GAT, and GraphSAGE, as well as several GNNs that achieve better per-
formance in Table 4: PCGNN, GAS, GIN, AMNet and GHRN. Settings are dif-
ferent from Sect. 4.2, which can be found in the supplemental materials.

Results: Table 9 shows the comparison of AUROC between SNGNN and
other GADs. Across all four datasets, SNGNN consistently achieves the highest
AUROC, with an average increase of over 2% compared to other models. Notably,
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on the NFTGraph-Tiny dataset, SNGNN achieves an AUROC of 0.6980, sur-
passing GHRN by 5%. Similarly, on the Weibo dataset, SNGNN’s AUROC is
0.9926, higher than the second-best model GraphSAGE. Likewise, on Reddit
and Questions, SNGNN outperforms GCN (0.7189) and GraphSAGE (0.7259)
models, resulting in a 1% AUROC improvement. It is noteworthy that SNGNN
exhibits at least a 5% AUROC improvement on NFTGraph-Tiny, significantly
higher than the approximately 1% improvement observed on other datasets. This
performance disparity stems from the notably higher degree values of social net-
works in NFTGraph-Tiny compared to Weibo, Reddit, and Questions, as evi-
denced in Table 3, underscoring SNGNN’s superior efficacy in this context.

Table 9. Comparison of AUROC between SNGNN and other GADs. The best perfor-
mance is shown in bold, while the second-best performance is underlined.

Model/Dataset NFTGraph-Tiny Weibo Reddit Questions

GCN 0.5953 0.9875 0.7189 0.6819

GAT 0.6226 0.9902 0.6733 0.7167

GraphSAGE 0.6428 0.9917 0.6800 0.7259

PCGNN 0.5832 0.9848 0.7079 0.6784

GAS 0.5552 0.9915 0.6996 0.7111

GIN 0.5929 0.9908 0.6872 0.7160

AMNet 0.6263 0.9764 0.6731 0.7064

GHRN 0.6479 0.9860 0.6963 0.7164

SNGNN 0.6980 0.9926 0.7272 0.7325

5.3 Ablation Study

To validate the effectiveness of SNGNN, we design several ablation tests. Specif-
ically, while keeping the other parts and hyperparameters unchanged, Dummy
Node (referred to as w/o DN) and Link Predictor (referred to as w/o LP) are
removed separately, and then the performance is observed.

Table 10 shows the results of ablation tests. Notably, the removal of the
Dummy Node (DN) results in a diminished detection AUROC for SNGNN. This
effect is particularly pronounced on the NFTGraph-Tiny and Questions datasets,
where the AUROC for SNGNN drops by over 5% and 3%, respectively. Similarly,
the elimination of the Link Predictor (LP) also leads to a reduction in AUROC,
with a significant decrease of more than 6% on the NFTGraph-Tiny dataset.
Consequently, the incorporation of both Dummy Node and Link Predictor is
essential for the effectiveness of SNGNN.

In addition, we visualize the changes in the number of edges of graphs caused
by the LP of SNGNN in the training stage, and simultaneously match the
changes in the AUROC of the validation set, as shown in Fig. 4. As can be seen,
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Table 10. Results of ablation study for
SNGNN.

Dataset/Model w/o DN w/o LP SNGNN

NFTGraph-Tiny 0.6414 0.6351 0.6980

Weibo 0.9914 0.9919 0.9926

Reddit 0.7188 0.7239 0.7272

Questions 0.7086 0.727 0.7325

Table 11. Performance of noise reduc-
ing.

Dataset/Model w/o DN&LP SNGNN

NFTGraph-Tiny 0.5807 1.9401

Weibo 1.6492 2.9917

Reddit 0.8738 1.4031

Questions 1.1473 1.7393

on the four datasets, the operation of LP deleting edges is dominant, the total
number of edges in graphs is gradually decreasing, while the AUROC on the val-
idation set is generally increasing, which may be due to the noise caused by LP
eliminating SN connecting edges, thus improving the performance of SNGNN.

Fig. 4. Changes in the number of edges caused by the Link Predictor of SNGNN and
changes in the AUROC on the validation set during training.

Additionally, we compute the average inter-group distance (DisInter) [41]
between anomalies and normal nodes. A higher DisInter metric indicates that
SNGNN more effectively distances the embeddings of anomalous nodes from
those of normal ones, signifying more precise outcomes. This metric serves as an
indicator of the model’s efficiency in noise reduction. In Table 11, the baseline
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represents the SNGNN model without the Dummy Node (DN) and Link Predic-
tor (LP), essentially constituting the GNN backbone of SNGNN (corresponding
to the Update stage in Fig. 3). For the Reddit dataset, the baseline is GCN,
while for other datasets, it is GraphSAGE. Table 11 demonstrates that SNGNN
achieves a greater DisInter value compared to its baseline, indicating that the
incorporation of DN and LP enhances the model’s ability to reduce noise.

Furthermore, parameter sensitivity analysis of SNGNN is provided in the
supplemental materials.

6 Conclusion and Limitation

In this paper, our focus is on exploring the influence of extremely high-degree
nodes on graph anomaly detection (GAD). To address this objective, we first
introduce a novel graph dataset, NFTGraph, and conduct a comprehensive anal-
ysis of the influence, including the introduction of noise to GAD, the escalation
of computational costs, and the exacerbation of over-smoothing phenomena.
Additionally, we propose a novel model called Super Node-Aware Graph Neural
Network (SNGNN) to mitigate the noise introduced by extremely high-degree
nodes. SNGNN demonstrates superior performance compared to existing mod-
els, achieving an average improvement in detection AUROC of over 2% while
efficiently reducing noise.

Although SNGNN specifically targets the SN, it can be extended and applied
to all extremely high-degree nodes. In addition, in the future, we will further
analyze the relationships between SNGNN’s performance and other issues, such
as computational costs, over-smoothing and heterophily, and further improve
SNGNN to mitigate these influences. Additionally, extremely high-degree nodes
are prevalent in various real-world networks, such as influencers in social net-
works, banks in financial trading networks, and super-spreaders in disease trans-
mission networks. In the future, our aim is to investigate these aspects beyond
the scope of blockchain transaction networks.
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SCU2023D008.

References

1. Bandyopadhyay, S., Lokesh, N., Murty, M.N.: Outlier aware network embedding
for attributed networks. In: AAAI, vol. 33, pp. 12–19 (2019)

2. Bandyopadhyay, S., Vivek, S.V., Murty, M.: Outlier resistant unsupervised deep
architectures for attributed network embedding. In: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining, pp. 25–33 (2020)

3. Bhattacharya, R., Nagwani, N.K., Tripathi, S.: Detecting influential nodes with
topological structure via graph neural network approach in social networks. Int. J.
Inf. Technol. 15(4), 2233–2246 (2023)



Understanding the Influence of Extremely High-Degree Nodes on GAD 33

4. Chai, Z., et al.: Can abnormality be detected by graph neural networks? In: IJCAI
(2022)

5. Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in
ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1–16
(2020)

6. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting ponzi
schemes on ethereum: towards healthier blockchain technology. In: WWW, pp.
1409–1418 (2018)

7. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: SIAM International Conference on Data Mining, pp. 594–602 (2019)

8. Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection
on attributed networks. In: ICASSP, pp. 5685–5689. IEEE (2020)

9. Gao, Y., Wang, X., He, X., Liu, Z., Feng, H., Zhang, Y.: Addressing heterophily
in graph anomaly detection: a perspective of graph spectrum. In: Proceedings of
the ACM Web Conference (2023)

10. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic citation indexing
system. In: Proceedings of the Third Conference on Digital Libraries, pp. 89–98
(1998)

11. Hafiene, N., Karoui, W., Romdhane, L.B.: Influential nodes detection in dynamic
social networks: a survey. Expert Syst. Appl. 159, 113642 (2020)

12. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, vol. 30 (2017)

13. He, M., Wei, Z., Huang, Z., Xu, H.: Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. NeurIPS (2021)

14. Hu, H., Sun, Z., Wang, F., Zhang, L., Wang, G.: Exploring influential nodes using
global and local information. Sci. Rep. 12(1), 22506 (2022)

15. Kang, J., Zhu, Y., Xia, Y., Luo, J., Tong, H.: Rawlsgcn: towards rawlsian difference
principle on graph convolutional network. In: WWW, pp. 1214–1225 (2022)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

17. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: 27th SIGKDD, pp. 1269–1278 (2019)

18. Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph con-
volutional networks. In: the 28th CIKM, pp. 2703–2711 (2019)

19. Liu, K., et al.: Bond: benchmarking unsupervised outlier node detection on static
attributed graphs. In: NeurIPS, vol. 35, pp. 27021–27035 (2022)

20. Liu, Y., et al.: Pick and choose: a gnn-based imbalanced learning approach for
fraud detection. In: WWW, pp. 3168–3177 (2021)

21. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on
attributed networks via contrastive self-supervised learning. IEEE Trans. Neural
Netw. Learn. Syst. 33(6), 2378–2392 (2021)

22. Liu, Z., Nguyen, T.K., Fang, Y.: Tail-gnn: tail-node graph neural networks. In:
The 27th SIGKDD, pp. 1109–1119 (2021)

23. Liu, Z., Nguyen, T.K., Fang, Y.: On generalized degree fairness in graph neural
networks. In: 37th AAAI, pp. 7–14 (2023)

24. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In: Proceedings of the 22nd International
Conference on Blockchain, pp. 897–908 (2013)

25. Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q., et al.: Anomalous: a joint modeling
approach for anomaly detection on attributed networks. In: IJCAI, vol. 18, pp.
3513–3519 (2018)



34 X. Sun et al.

26. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A
critical look at the evaluation of gnns under heterophily: are we really making
progress? arXiv preprint arXiv:2302.11640 (2023)

27. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review net-
works and metadata. In: 21th SIGKDD, pp. 985–994 (2015)

28. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W.: Masked label prediction: unified
message passing model for semi-supervised classification. In: IJCAI (2021)

29. Tang, J., Hua, F., Gao, Z., Zhao, P., Li, J.: Gadbench: revisiting and benchmarking
supervised graph anomaly detection. In: NeurIPS, vol. 36 (2024)

30. Tang, J., Li, J., Gao, Z., Li, J.: Rethinking graph neural networks for anomaly
detection. In: ICML, pp. 21076–21089 (2022)

31. Tang, X., et al.: Investigating and mitigating degree-related biases in graph con-
volutional networks. In: the 29th CIKM, pp. 1435–1444 (2020)

32. Velickovic, P., et al.: Graph attention networks. arXiv preprint (2017)
33. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural

networks for anomaly detection in attributed networks. Neural Comput. Appl.
33(18), 12073–12085 (2021)

34. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph
convolutional networks for financial forensics. arXiv preprint (2019)

35. Wu, F., Jr., A.H.S., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying
graph convolutional networks. In: The 36th ICML, vol. 97, pp. 6861–6871 (2019)

36. Wu, J., He, J., Xu, J.: Demo-net: degree-specific graph neural networks for node
and graph classification. In: 25th SIGKDD, pp. 406–415 (2019)

37. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

38. Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J.: Contrastive attributed network
anomaly detection with data augmentation. In: Advances in Knowledge Discovery
and Data Mining: 26th Pacific-Asia Conference (PAKDD), pp. 444–457 (2022)

39. Zhao, T., Deng, C., Yu, K., Jiang, T., Wang, D., Jiang, M.: Error-bounded graph
anomaly loss for gnns. In: The 28th CIKM, pp. 1873–1882 (2020)

40. Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a python toolbox for scalable outlier detec-
tion. JMLR 20(96), 1–7 (2019)

41. Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R.: Towards deeper graph neural
networks with differentiable group normalization. In: NeurIPS, vol. 33, pp. 4917–
4928 (2020)

42. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L.: Beyond homophily in graph
neural networks: current limitations and effective designs. In: NeurIPS, vol. 33
(2020)

http://arxiv.org/abs/2302.11640


Spatio-Temporal Heterogeneous Graph
Neural Network With Multi-view
Learning For Traffic Prediction

Liting Song1 , Qianqian Ren1(B) , and Ying Zhou2(B)

1 Department of Computer Science and Technology, Heilongjiang University,
Harbin 150080, China

renqianqian@hlju.edu.cn
2 Heilongjiang Network Space Research Center, Harbin 150090, China

zhouying9666@126.com

Abstract. Among various traffic data modeling and predicting meth-
ods, graph learning-based models attract more attention, because of
their powerful representation ability for modeling spatial and temporal
dependencies with graph neural networks. Despite their promising per-
formance, several key problems have not been well addressed: 1) Sensed
data are often noisy in many real transportation scenarios. 2) The spatio-
temporal correlations of traffic data are complex and dynamic, especially
for long-term modeling and predicting. In such cases, existing methods
may not lead to satisfactory prediction results. In this paper, we aim
at the above problems by exploring a Spatio-Temporal Heterogeneous
Graph Neural Network With Multi-View Learning Framework(MVJGL)
for traffic prediction. In particular, we first model different types of traffic
features and construct multiple graph structures. Then, we design two
parallel heterogeneous gated temporal convolution modules to extract
long and short-term temporal dependencies from different traffic fea-
tures, respectively. Moreover, we introduce parallel graph convolutions
to cross-characterize the time-varying spatial dependencies of each view.
Extensive experiment results on four real traffic datasets show the supe-
rior performance grain obtained by the proposed model.

Keywords: Traffic prediction · multi-view · graph convolution · graph
learning

1 Introduction

As an essential issue of intelligent transportation systems (ITS), traffic prediction
has attracted much attention in recent years [1]. Robust and accurate traffic
prediction helps improve the operational efficiency and reliability of the traffic
system, thus guiding traffic resource allocation, developing traffic routines, and
relieving traffic congestion. In addition, traffic prediction is also meaningful in
road safety assurance and traffic accident prevention [2]. However, the dynamic
and complex spatial-temporal traffic features propose challenges for accurate
traffic prediction.
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Many traffic forecasting approaches have been proposed. Deep learning-based
methods are efficient in improving forecasting accuracy via modeling the tempo-
ral and spatial correlations in traffic data [3]. In particular, convolution neural
networks are often utilized to model the spatial dependencies, recurrent neu-
ral networks (e.g., LSTM [4], GRU [5]) and temporal convolution networks
(TCN) [6] are employed to extract temporal dependencies. Recently, graph
convolution networks (GCNs) have been introduced in modeling spatial cor-
relations and graph representation. Among these methods, predefined static
graph-based methods construct graph structures by linking road networks, while
graph learning-based methods [7] automatically learn dynamic spatial dependen-
cies. Graph-WaveNet [8] modeled spatial dependencies by constructing an adap-
tive adjacency matrix, MTGNN [9] automatically extracted single dependencies
between variables to construct dynamic graphs. The dynamic graph construc-
tion method employed by DMSTGCN [10] learned the specific multiple spatial-
temporal correlations of road segments. PGCN [11] captured the spatial correla-
tions over time by generating progressive graph structures. The above methods
have effectively improved the accuracy of traffic forecasting, but it is far from
being well addressed, which faces the following challenges.

– Challenge 1: Data noise and incompleteness. As factors such as traffic
flow, traffic crowd, and weather conditions change, data noise and incomplete-
ness are inevitable in collected sensed data. Therefore, constructing a spatial
graph based on a single traffic feature may not reveal the real topology of the
road network. It motivates us to model spatial dependencies from multiple
traffic features.

– Challenge 2: Complexity and dynamicity. Traffic conditions are com-
plex and dynamic. The spatial correlations among different nodes of the road
network vary at different time steps, existing methods based on pre-defined or
stationary graphs may not obtain satisfactory forecasting results. Therefore,
it is important to model the varying spatial-temporal dependencies, especially
in the application of long-term prediction.

– Challenge 3: Multi-view fusion. Constructed multiple views are needed to
effectively fuse to comprehensively exploit the multiple aspects of the complex
spatial correlations. It is meaningful to enhance prediction performance.

In light of these challenges, we propose a Spatio-Temporal Heterogeneous Graph
Neural Network With Multi-View Learning For Traffic Prediction framework
(MVJGL) for improving traffic prediction accuracy. MVJGL aims to learn mul-
tiple continuous graph structures from multiple traffic features to characterize
complex spatial and temporal correlations. Specifically, we solve the first chal-
lenge by mining the potential correlations among multiple traffic features. In
response to the second challenge, we propose a dynamic graph learning mod-
ule for representing continuous long-range spatial dependencies between nodes
with multiple views that vary dynamically over time. Furthermore, two heteroge-
neous temporal convolution modules are proposed to jointly learn the temporal
correlations from historical observations. Finally, a multi-view fusion module is
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proposed to interact and integrate the multiple features. Our contributions are
highlighted as follows:

– In this paper, a novel Spatio-Temporal Heterogeneous Graph Neural Network
(MVJGL) framework for traffic prediction is proposed, which is featured by
the two streams of graph learning, temporal networks, and GCNs.

– The proposed MVJGL extracts the dynamic dependencies from multiple traf-
fic features, which contributes to exploit the complex latent relations of the
traffic system and reduce the influence of data noise.

– Extensive experiments are conducted on four real-world traffic datasets. The
experimental results demonstrate that MVJGL outperforms the state-of-the-
art baseline methods by up to 2.3% in forecasting accuracy.

The paper is organized as follows. In Sect. 2 we summarise related work in the
field of traffic prediction, and in Sect. 3 we formulate the research question. In
Sect. 4 we describe the model, in Sect. 5 an extensive experimental evaluation is
performed and Sect. 6 concludes the paper.

2 Related Work

In this section, we summarize the related study in three aspects: traffic forecast-
ing, graph neural networks and dynamic graph learning approaches for traffic
forecasting.

2.1 Traffic Forecasting

Existing works address the problem of traffic prediction in the following cat-
egories: Traditional statistically based methods usually use historical data to
build models. Such methods use historical traffic data to analyze traffic states
and trends to predict future traffic speeds [12]. These methods have the advan-
tages of better explainability and easy implementation. Still, they cannot con-
sider complex traffic scenarios and changes in traffic mobility leading to poor
prediction results. Machine learning-based methods use historical traffic data
to train models that can forecast future traffic speeds by analyzing and learn-
ing the patterns of the data [13,14]. Machine learning methods are relatively
small in terms of data requirements, and the data needed mainly include his-
torical observation and traffic environment factors. For example, weather and
road conditions can be obtained using sensors, GPS and other devices. Machine
learning methods are less computationally complex, typically use fewer hardware
resource requirements and have relatively better predictive results, but they are
influenced by factors such as data attributes and model selection. Recently, deep
learning methods have obtained better performance in traffic speed forecasting,
especially for time series data of traffic speeds [9,15]. Deep learning methods
usually need to use a large amount of observations to train the model. The
computational complexity is higher and requires the use of higher-performance
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hardware resources to train deep neural networks. In terms of forecasting accu-
racy, deep learning methods can usually obtain better results, but over-fitting
may occur for smaller amounts of data. In general, all of the above methods can
be used for traffic prediction, and the model selection depends on the specific
application scenario and requirements. Machine learning methods can be chosen
if the data volume is small and the computation speed is fast. If the data volume
is large and high forecast accuracy is required, the deep learning method can be
chosen.

2.2 Graph Neural Networks

To extract the complex spatial correlations in road networks, recent studies have
used deep learning models integrated with graph neural networks. DCRNN [3]
used diffusion convolution to capture spatial-temporal features in spatial graphs
and temporal correlations are extracted by gated recurrent units to encode tem-
poral information. In addition, Graph-WaveNet [8] used adaptive graph convo-
lution to model spatial correlations to improve the limitations of spatial relation-
ships in predefined traffic networks. STSGCN [16] introduced a spatial-temporal
synchronous paradigm to model the spatial and temporal correlations. MRA-
BGCN [17] designed a two-component graph convolution method to represent
nodes and edges separately for learning complex nonlinear relationships. In sum-
mary, graph neural networks became a popular trend for the extraction of spatial-
temporal attributes.

2.3 Dynamic Graph Learning

To better describe complex traffic conditions, models used dynamic graph learn-
ing methods to represent the road space relationships. GMAN [18] used a
node2vec approach to learn node representations and the embedding of nodes
into vectors to preserve graph structure information. Graph-WaveNet [8] learned
spatial dependencies by constructing an adaptive adjacency matrix. AGCRN [19]
used an adaptive parametric learning (NAPL) module to capture node-specific
patterns. PGCN [11] captured spatial correlations over time by generating a pro-
gressive graph approach, which adapted to the data. MTGNN [9] automatically
extracted one-way relationships between variables to construct dynamic graphs.
Several recent studies have proved that the use of dynamic graphs showed great
effectiveness in the field of traffic prediction, and traditional predefined static
graph methods are no longer able to be satisfied with complex traffic prediction
needs.

3 Problem Definition

Definition 1 (Spatial-Temporal Graph). The traffic network is represented as
a graph Gt = (V,E,At), where V = {v1, v2, · · · , vN} represents the set of N
nodes, E is the set of edges among nodes, and At ∈ RN×N denotes the potential
correlations at a certain time step t.



Spatio-Temporal Heterogeneous Graph Neural Network 39

Fig. 1. The architecture of MVJGL. The model can be roughly divided into five parts:
the Gated Temporal Convolution Networks(Gated TCN), the Gated temporal recur-
rent unit(Gated TGRU), the Dynamic Graph Learning module, the Dynamic Graph
Convolution module, and the multi-view fusion module.

Definition 2 (Multiple Traffic Features). Xt ∈ RN×C represents the traffic
characteristics observed by all nodes at time t, such as traffic speed, traffic vol-
ume, etc. In this paper, we take two traffic features as an example. In particular,
traffic speed is treated as the primary feature, and traffic volume is treated as the
auxiliary feature. Traffic observations of the primary feature and auxiliary fea-
ture collected at time step t by all nodes in Gt are denoted as XS

t ,XO
t ∈ RN×C .

Problem Description (Traffic Prediction). Our objective is to learn a nonlinear
function, denoted as f(·), which can forecast the primary feature for the future
Q time steps ̂Y S

t:t+Q based on historical primary feature and auxiliary features
for T time steps. We formulate the problem as follows:

[XSt−T+1:t ;XOt−T+1:t ]
f(·)−−→ [̂YSt:t+Q

] (1)

4 Methodology

Our model learns graph structure from multiple traffic features followed by
dynamic graph convolution modules and temporal convolution modules, which
jointly exploit the spatial and temporal dependencies for long and short-term
traffic prediction. The overall model architecture is illustrated in Fig. 1, which
stacks L layers. Each layer consists of the following four components:

– A dynamic graph learning module that learns multiple views from different
traffic features. The learned views are fed into the consequent graph convolu-
tion modules to extract the dynamic spatial dependencies. In this paper, we
consider traffic features including traffic speed and traffic volume.

– Two heterogeneous temporal convolution modules, Gated Temporal Convo-
lution Network (GTCN) and Gated Temporal Recurrent Unit (TGRU) cap-
ture multiple temporal correlations from the patterns of two traffic features,
respectively.
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– Two dynamic graph convolution modules are used to cross-model the spatial
dependencies of multiple features, one for the primary traffic feature view and
the other for the auxiliary traffic feature view.

– A multi-view fusion module weights the spatio-temporal dependencies of mul-
tiple features.

4.1 Heterogeneous Temporal Convolution Module

To comprehensively model the temporal dependencies from multiple features,
such as traffic speed and traffic volume, we correspondingly design two hetero-
geneous temporal convolution networks to model each traffic feature. In partic-
ular, we integrate the gated mechanism with the temporal convolution network
(GTCN) to extract the temporal correlations from the primary feature, while
the gated temporal recurrent unit (TGRU) to extract correlations from the aux-
iliary feature. Inspired by the gating mechanism such as GRU, we integrate gate
structure with temporal convolution networks to adjust the flow of information
passing to the next module.

Gated Temporal Convolution Networks. We design gated temporal con-
volution networks (GTCN) to capture dynamic behaviors of primary features
in the temporal dimension. As shown in Fig. 2(a), GTCN is composed of two
temporal convolution layers and a gated mechanism.

We will next describe the details of GTCN. The input is XS =
{xS

1 , xS
2 , · · · , xS

N}, where xS
i ∈ RN×C(C=1 for GTCN). Next, the input is passed

through two dilated convolution modules separately for the convolutional results
Zf and Zs. Then, sigmoid and tanh function are used to Zf and Zs, respectively.
They map the outputs of the first TCN to (0,1) and the results of the second
TCN to the interval (-1,1). Finally, the element-wise product of tanh(Zf ) and
σ(Zs) is output.

In particular, GTCN is composed of two dilated convolution modules to
exploit the multiple features, and the dilation factor is introduced to process
long-term traffic data. Thus, GTCN is defined as follows:

HS(l) = tanh(Θ1 � XS(l−1)) � σ(Θ2 � XS(l−1)) (2)

where XS(l−1) ∈ RN×T×C denotes the input sequence from the primary feature
at l-th layer (l ∈ [1, 2, ..., L]), HS(l) ∈ RN×T×C represents the output of GTCN
module. Θ1 and Θ2 are two convolution kernels parameters. � denotes the dilated
convolution, and � denotes the element-wise multiplication operation.

Gated Temporal Recurrent Unit. The gated temporal recurrent unit
(TGRU) module aims to extract temporal dependencies from the auxiliary fea-
ture. Given the input patterns XO = {xO

1 , xO
2 , · · · , xO

N}, where xO
i ∈ RN×C(C=1

for TGRU) at the l-th layer. Gated TGRU is mathematically defined as follows:

HO(l) = tanh(Θ3 � XO(l−1)) � σ(gO(l−1)) (3)
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where HO(l) is the hidden state at the l− th layer, and gO(l−1) denotes the
output of GRU unit. Θ3 represents the convolution kernel parameter. Formally,
gO(l) is updated as:

zO(l) = σ(Wx1X
O(l−1) + Ux1h

O(l−1)))

rO(l) = σ(Wx2X
O(l−1) + Ux2h

O(l−1)))
˜hO(l) = tanh(WhXO(l−1) + Uh(rl � hO(l−1)))

gO(l) = (zO(l) � ˜hO(l) + (1 − zO(l)) � hO(l−1))

(4)

Fig. 2. The detail of our proposed heterogeneous temporal convolutional networks. (a)
GTCN for primary feature extraction. (b) TGRU for auxiliary feature extraction.

The GRU method merges the information transmitted from the previous
layer with the input of the subsequent layer and dynamically updates the input
data weights. It filters and prioritizes key information within patterns, which
facilitates the learning of vital dependencies between various time steps in the
pattern. Regarding traffic speed attributes, gated TCN enhances the model’s
capability to capture long-distance dependencies and dynamically adjust the
information flow. For traffic volume attributes, considering the characteristics of
time series data, we combine the short-term information processing advantages of
recurrent neural networks (GRU) with the long-term dependent capture capabil-
ity of TCN. The gating mechanism further enhances the flexibility and efficiency
of the model.

4.2 Dynamic Graph Learning Module

We solve the spatial features from two aspects, namely primary feature and
auxiliary feature to enhance the graph learning results. The spatial correlations
between nodes in the graphs are constantly changing due to the complexity and
dynamics of traffic observations. The methods based on pre-defined graphs or
static graphs cannot capture dynamically varying spatial dependencies, which
influences prediction results. To address this problem, we present a dynamic
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graph learning module for modeling dynamic and continuous spatial dependen-
cies from multiple traffic features. For each iteration, two feature matrices AS(l)

and AO(l) are generated at the same time step, which is fed into the two dynamic
graph convolution modules. In this paper, the design for the primary feature is
taken as an example, and the generated tensor AS(l) represents the neighbor-
hood relationship between the source node and the target node at the time step
t, which is represented by the following formula:

Al
1 =

d
∑

i=1

d
∑

j=1

M l
1(i)M

l
2(j)M

l
h(i,j)

Al
2 =

d
∑

τ=1

Al
1M

l
3(τ)

AS(l) = ReLU(tanh(Al
1(A

l
2)

T − Al
2(A

l
1)

T ))

(5)

Time nodes are data points with different time steps, and each time node repre-
sents the traffic state with a specific time step. MVJGL uses learnable parame-
ters to generate a dynamic spatial dependency tensor and constructs a dynamic
graph by randomly initializing the node embeddings, i.e., initializing at the
beginning of the training period by random values to generate three learnable
matrices M l

1, M l
2, and M l

3, and a core tensor M l
h to represent the relationship

between different nodes and the relationships between time steps. As the model
is trained, these matrices and tensors are continuously updated and optimized
by a back-propagation algorithm to capture the dynamics of the traffic network.
M l

1 ∈ RN1×d represents the matrix of embedded time nodes, M l
2 ∈ RN2×d rep-

resents the matrix of embedded source nodes, and M l
3 ∈ RN3×d represents the

matrix of embedded target nodes. The core tensor M l
h ∈ Rd×d×d is intended

to represent the dynamics in the graph, which captures the complex relation-
ships between nodes and time steps. N1, N2, N3 represent the number of time
intervals, the number of source nodes, and the number of target nodes, respec-
tively, and d is the dimension of node-embedding. Through the above meth-
ods, MVJGL captures the heterogeneous relationship between source and target
nodes by transposing the source and target node matrices at moment t, strength-
ens the difference signals between source and target nodes, helps the model learn
and capture the complex relationship between source and target nodes at the
same time flexibly and generates the dynamic neighborhood tensor AS(l), which
improves the prediction performance and the dynamic response to the changes
of the traffic network.

4.3 Dynamic Graph Convolution Module

Taking into account the interactions between multiple traffic features and the
spatial interactions between neighboring nodes, we use dynamic graph convo-
lutional crossover to extract spatial features in the road network. The dynamic
graph convolution module can update the node features by aggregating the infor-
mation between each node and its neighboring nodes to efficiently process data
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Fig. 3. The detailed architecture of dynamic graph convolution module.

with a dynamic graph structure. In our model, we design two parallel GCNs to
process primary and auxiliary features, respectively, after a feature complemen-
tation strategy to enhance the accuracy of traffic prediction. This cross-strategy
approach not only reveals the potential correlation between speed and volume
but also increases the model’s knowledge of complex traffic patterns, especially
during peak hours and traffic congestion. Figure 3 shows the architecture of this
module. We cross-pass HS and HO outputs from the temporal convolutional
network and AS(l) and AO(l) generated by the dynamical graph learning module
into the two dynamical graph convolutional modules. The GCNs are defined as
follows:

Z
S(l)
k = AO(l)Z

S(l)
(k−1)(k > 0)

XS(l) = concat(ZS(l)
0 , Z

S(l)
1 , · · · , Z

S(l)
K )

(6)

where k ∈ [0,K], Z
S(l)
0 = HS(l), and XS(l) is the output of the GCN for the pri-

mary feature. Specifically, the outputs of the dynamic graph convolution modules
for the primary feature and auxiliary feature are denoted as XS(l) and XO(l),
which will be fed into the multi-view fusion module.

4.4 Multi-view Fusion Module

To realize the interaction between the spatiotemporal correlation of different
features and enhance the global correlation of a single node in the network, a
multi-view weight fusion module is proposed to fuse the traffic feature informa-
tion extracted from two dynamic graph convolution modules. By marking differ-
ent weights on various features, highlighting the importance of primary features
and the auxiliary role of auxiliary features, and improving the utilization rate of
various data. The operation l−th layer is formulated as follows:

X l
S = XS(l) � α + XO(l) � β (7)

where α, and β are the corresponding weights for the primary feature and auxil-
iary feature. α+β = 1. The weight fusion module fuses multiple spatial-temporal
features to get the final result.
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4.5 Output Module

Our output module consists of two standard 1 × 1 convolution layers. The skip
connection layer is partly a 1×Li convolution that connects the hidden states of
the primary feature of each module after the temporal convolution module. Li

is the length of the input sequence corresponding to i-th jump-connected layer,
which normalizes the feature to have the same sequence length 1.

X = concat(X0
S ,X1

S , · · · ,XL
S ) (8)

Mean absolute error (MAE) is used to train the model:

L(θ) =
1
N

N
∑

n=1

| Yn − Ŷn | (9)

where θ denotes all learnable parameters in MVJGL, N is the number of samples,
Ŷn and Yn are predicted values and ground truth of the n-th sample.

5 Experimental Studies

We conduct extensive experiments on four real work traffic datasets described
in detail in Table.1. We aim to validate the performance of MVJGL against
baseline methods toward answering the following questions:

– RQ1. Does the proposed MVJGL outperform existing baseline methods on
traffic prediction problems?

– RQ2. Do all modules of the model benefit the overall performance of
MVJGL? How does each module affect the model performance?

– RQ3. Does the proposed multiple-view scheme contribute to graph learning
and improving prediction accuracy?

5.1 Datasets and Evaluation Metrics

Table 1 reports the detailed information of four datasets, PEMS-BAY [8],
METR-LA [8], PEMSD4 [20] and PEMSD8 [20]. In particular, we choose traffic
speed as the primary feature and traffic volume as the auxiliary feature. For
PEMS-BAY and METR-LA datasets, 70% of data are set for training, 20% of
data are used for testing, and 10% are used for validation. For PEMSD4 and
PEMSD8, 60% of data are selected for training, 20% of data are used for testing,
and the rest 20% are used for validation.

In the experiments, we adopt Absolute error (MAE), mean absolute per-
centage error (MAPE), and root mean square error (RMSE) to evaluate the
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performance, which is formulated as follows:

MAE(Y, Ŷ ) =
1
N

N
∑

n=1

| Yn − Ŷn |,

MAPE(Y, Ŷ ) =
1
N

N
∑

n=1

| Yn − Ŷn |
| Yn | × 100%,

RMSE(Y, Ŷ ) =

√

√

√

√

1
N

N
∑

n=1

(Yn − Ŷn)2,

(10)

where ̂Y and Y denote the predicted value and ground truth,respectively.

Table 1. Statistics of Datasets.

Dataset #Nodes #Time Steps #Time Span

METR-LA 207 34272 4 months

PEMS-BAY 325 52116 5 months

PEMSD4 307 16969 2 months

PEMSD8 170 17833 2 months

5.2 Experimental Settings

The number of stacked layers L is 4, and the dilated rates of the temporal con-
volution at each layer are [1,2,1,2,1,2,1,2]. The maximum depth of the dynamic
graph convolution module is k = 2. We set weights in the fusion model as
α = 0.7, β = 0.3. The dimension of node-embedding d = 32. The channel size of
the temporal dilated convolution is set to 32, and the hidden dimension of the
graph learning module is set to 16. The Batch size is set to 64. Epochs are set to
200, early-stop scheme with a patience of 30 is adopted. Our MVJGL is trained
by Adam optimizer with a learning rate of 0.001.

5.3 Baselines

To provide a comprehensive evaluation of the MVJGL method, we compare the
performance with many representative baseline methods. We carefully choose
the compared statistic approaches, and the representative and deep learning
approaches.

– HA: It refers to the historical average approach.
– FC-LSTM [21]: It integrates fully connected and LSTM structures.
– ASTGCN [20]: It is a model that combines attention mechanisms with con-

volutions.
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– STFGNN [22]: It designs a spatial-temporal fusion graph by introducing
a gated convolutional neural network module in order to capture local and
global spatial and temporal correlations simultaneously.

– AGCRN [19]: It designs a powerful method for traffic prediction that
employs graph convolution networks and recurrent networks to adaptively
learn the graph structure and capture temporal dependencies in dynamic
spatial-temporal data.

– STGODE [23]: It employs continuous graph neural network for traffic pre-
diction.

– DMSTGCN [10]: It designs a multiple features-based graph convolution
neural network for traffic forecasting.

– DCRNN [3]: It utilizes diffusion graph convolution and recursive neural
networks.

– GMAN [18]: It adopts attention mechanism and transformer for prediction.
– Graph WaveNet [8]: It introduces a generation adaptive graph method and

diffusion graph convolution.
– MTGNN [9]: It leverages graph neural networks to forecast multivariate

time series.
– STDGCN [24]: It combines new graph generation methods and fusion strate-

gies in spatial-temporal network architecture to capture the deep dynamic
dependencies in the historical information of dynamic graphs.

– ST-LGSL [25]: It utilizes multi-layer perceptron and KNN graph generator
to explore spatial-temporal features, a prediction module combining gated
temporal convolution and diffusion graph convolution to optimize traffic pre-
diction performance.

Fig. 4. Performance comparing of baselines on the PEMSD4 dataset.

Fig. 5. Performance comparing of baselines on the PEMSD8 dataset.
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5.4 Comparison Results

Table 2 report the prediction results of MVJGL against multiple baseline meth-
ods for 15, 30, and 60-min traffic forecasting. We observe that our MVJGL
obtains the best results in terms of MAE, RMSE, and MAPE, respectively. This
significant performance improvement validates the effectiveness of our model in
addressing challenges posed by traffic prediction problems. Based on the exper-
imental results, the following observations are obtained.

(1) Deep learning-based models perform better than traditional methods
because they can exploit complex and non-linear traffic features. As FC-
LSTM is a recurrent neural network, it only takes temporal correlations and
ignores spatial dependencies resulting in worse performance.

(2) Gnn-based models such as ASTGCN, AGCRN, STFGNN and DMSTGCN
use graph neural networks to extract temporal and spatial dependencies in
road networks, thus achieving better prediction performance. However, since
the convolution operations of these models only aggregate the information
of the adjacent nodes of each layer, they are not good at extracting the
spatial-temporal dependencies of remote changes.

(3) STGODE combines graph embedding with ordinary differential equation
method to improve the prediction accuracy. Both AGCRN and DMSTGCN
make significant improvements when trying to learn dynamic graphs. How-
ever, because they rely on the global shared graph structure, none of them
achieves satisfactory results.

(4) Our proposed model consistently outperforms all baselines on different
datasets. For example, for the METR-LA, the best MAE of baselines is

Table 2. The comparative results on METR-LA and PEMS-BAY.

15min 30min 60min

MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE

METR-LA

HA 4.16 13.00% 7.80 4.16 13.00% 7.80 4.16 13.00% 7.80

FC-LSTM 3.44 9.60% 6.30 3.77 10.09% 7.23 4.37 13.20% 8.69

ASTGCN 4.86 7.81% 9.27 5.43 10.13% 10.61 6.51 11.64% 12.52

STFGNN 3.26 8.04% 7.43 4.03 10.22% 9.44 5.02 13.03% 11.62

AGCRN 2.87 7.70% 5.58 3.23 9.00% 6.58 3.62 10.38% 7.51

STGODE 3.47 8.76% 6.76 4.36 11.14% 8.47 5.50 14.32% 10.33

DMSTGCN 2.85 7.54% 5.54 3.26 9.19% 6.56 3.72 10.96% 7.55

MVJGL(ours) 2.80 7.40% 5.41 3.16 8.92% 6.42 3.53 10.21% 7.37

PEMS-BAY

HA 2.88 6.80% 5.59 2.88 6.80% 5.59 2.88 6.80% 5.59

FC-LSTM 2.05 4.80% 4.19 2.20 5.20% 4.55 2.37 5.70% 4.96

ASTGCN 1.52 3.22% 3.13 2.01 4.28% 4.27 2.61 6.00% 5.42

STFGNN 1.36 2.83% 2.81 1.67 3.78% 3.79 1.97 4.64% 4.52

AGCRN 1.35 2.87% 2.83 1.69 3.84% 3.81 1.96 4.67% 4.52

STGODE 1.43 2.99% 2.88 1.84 3.84% 3.90 2.30 4.61% 4.89

DMSTGCN 1.33 2.80% 2.83 1.67 3.81% 3.79 1.99 4.78% 4.54

MVJGL(ours) 1.30 2.80% 2.76 1.63 3.79% 3.70 1.92 4.55% 4.40
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3.62 while MVJGL is 3.53 for 60-minute prediction results, the improve-
ment is up to 2.48%. Our approach achieves these results as it concerns both
primary feature and auxiliary features, and learns multiple views for cap-
turing spatial-temporal dependencies. Furthermore, heterogeneous temporal
convolution networks model multiple temporal dependencies from different
features, which can be susceptible to data noise existing in sensed data and
achieve the best performance. MVJGL further improves the prediction per-
formance by learning dynamic graphs at different time steps, generating a
continuous sequence of graphs.

Figures 4 and 5 visually show the comparison of different methods at different
prediction intervals across the four publicly available data sets. We observe that
when the prediction intervals increase, traffic forecasting tasks become more
difficult, and thus the prediction accuracy of all models decreases. While the
accuracy of MVJGL decreases the least in most cases, it implies that MVJGL
gets the advantage of solving long-term forecast tasks. On the PEMSD8 dataset,
the ST-LGSL model has a better long-term prediction effect than our model, but
the ST-LGSL model is weaker than the MVJGL model in short and medium-
term prediction tasks and is limited by the dataset. Furthermore, the prediction
results of dynamic graph-based methods are significantly better than that of
predefined graph-based ones (e.g., DCRNN, ASTGCN, etc.). Our model adopts
multi-view-based dynamic graphs learning, its performance is significantly better
than that of other global shared graphs-based models. We conclude that the use
of a multi-view module is meaningful for improving traffic prediction results.

5.5 Ablation Study

Table 3. Ablation Study on METR-LA Dataset

Dataset Models (15 min/30 min/60 min)

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

METR-LA MVJGL-HT 3.08 8.36% 6.00 3.73 10.72% 7.46 4.75 14.54% 9.26

MVJGL-GT 2.86 7.59% 5.55 3.28 9.20% 6.61 3.72 10.85% 7.63

MVJGL-TG 2.81 7.56% 5.47 3.19 9.10% 6.53 3.58 10.55% 7.47

MVJGL-M 2.83 7.66% 5.51 3.21 9.10% 6.54 3.60 10.50% 7.45

MVJGL-A 3.00 8.09% 5.87 3.62 10.42% 7.24 4.53 13.97% 8.93

MVJGL-G 2.98 7.90% 5.89 3.59 10.22% 7.27 4.44 13.71% 8.97

MVJGL-F 2.82 7.42% 5.46 3.20 8.95% 6.46 3.59 10.24% 7.39

MVJGL(ours)2.80 7.40%5.41 3.16 8.92% 6.42 3.53 10.21%7.37

This section validates the effectiveness of the key components in MVJGL and
implements ablation experiments on the METR-LA dataset. We conduct the
ablation study from two aspects, temporal dimension and spatial dimension.
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Temporal Dimension. For the temporal dimension, three variants of MVJGL
are introduced.

– MVJGL-HT: It removes the temporal convolution module.
– MVJGL-GT: It removes the gated temporal convolution module.
– MVJGL-TG: It removes the gated temporal recurrent unit module.

Spatial Dimension. For the spatial dimension, four variants of MVJGL are
presented

– MVJGL-M: It removes the multi-view learning module and uses a global
shared graph.

– MVJGL-A: It removes the auxiliary feature module.
– MVJGL-G: It removes the dynamic graph convolution module.
– MVJGL-F: It removes the fusion module and adds the outputs of two GCNs.

All the variant models adopt the same settings as MVJGL except for the dif-
ferences introduced above. The MAE, RMSE, and MAPE results for the METR-
LA are presented in Table 3. The results demonstrate that all key components of
MVJGL contribute significantly to traffic prediction. In particular, the temporal
convolution module(MVJGL-HT) has the greatest influence on the results, it is
because the parallel heterogeneous convolution structure is efficient in capturing
multiple-scale temporal dependencies, especially for long-term prediction. The
design of the auxiliary feature (MVJGL-A) in the model also has a great influ-
ence on the prediction performance. This is because the function of solving the
data noise problem through multiple features fails. It is found that the multi-view
dynamic convolution module design (MVJGL-G) also has a significant impact
on the model performance, especially on the medium and long-term prediction
results. This verifies the effectiveness of multiple views in spatial dependency

Fig. 6. Visualization of the graph structure for the first 30 nodes.



50 L. Song et al.

extraction. The fusion module fuses the primary and auxiliary features with
different weights to improve the utilization of various data and improve the per-
formance of the model.

5.6 Effects of Multi-view and Dynamic Graph Learning

We further investigate the robustness of multi-view design in improving predic-
tion results. MVJGL can effectively extract spatial features from noisy traffic
data even if it only relies on the primary features. The heatmap analysis of
dynamic adjacency matrices from Fig. 6 further indicates that the graph learning
module proficiently captures spatial dependencies sensitive to temporal changes,
thereby improving graph representation. Figure 7 shows the variation of the
hyperparameter, with a convolution kernel size of 2 producing the best per-
formance, deviations from this value can lead to reduced accuracy and excessive
smoothing problems.

Fig. 7. Hyperparameter effects of graph convolution sizes k on METR-LA dataset.

6 Conclusion

This paper introduces a spatio-temporal heterogeneous graph neural network
with multi-view learning for traffic prediction. Unlike traditional approaches
based on predefined graphs or models built on globally shared graphs, we uti-
lize multiple traffic features to learn multiple continuous dynamic graphs for the
complex spatial correlation representation. Meanwhile, MVJGL models and fuses
information from multiple traffic features to capture potential hidden connec-
tions among nodes of traffic networks, thus further improving the performance
of the traffic prediction task. Extensive experimental results on various traffic
datasets demonstrate the superior prediction results of our proposed model.

In our future work, we will focus on the following two aspects:
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– Apply our model to solve spatio-temporal prediction problems in other
domains such as energy, stock market, etc.

– Consider incorporating more traffic features (e.g., pedestrian flow, traffic sig-
nals, major festivals, traffic accidents, etc.) into the model to further improve
the accuracy of the model’s prediction results.
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Abstract. Detecting social bots, which continuously evolve, presents
an escalating challenge. Although graph-based detection techniques uti-
lize various relationships within social networks to model node behavior,
they often fail to account for inherent heterophily–connections between
different types of accounts. When message passing occurs across het-
erophilous edges, it can cause feature blending between bots and legiti-
mate users, leading to indistinct representations. To address this issue,
we propose BotSCL, a contrastive learning framework that is aware of
heterophily. BotSCL adapts by differentiating between representations
of heterophilous neighbors while aligning representations of homophilous
ones. Our approach employs two graph augmentation strategies to create
varied graph views and introduces a channel-wise, attention-free encoder
to address the limitations of traditional neighbor information aggrega-
tion. Supervised contrastive learning then helps the encoder focus on
aggregating information specific to each class. Extensive experiments on
two real-world social bot detection datasets reveal that BotSCL outper-
forms existing baseline models, including advanced bot detection meth-
ods, as well as techniques based on partial heterophily and graph con-
trastive learning.

Keywords: homophily and heterophily · social bot detection ·
supervised contrastive learning

1 Introduction

Social bots, which are automated accounts often used for malicious activities
like spreading misinformation [9], promoting extremism [16], and interfering in
elections [10], continue to present a major challenge on social networks. These
bots are highly adaptable, constantly evolving to bypass new detection methods.
In response, numerous bot detection technologies have been developed.

Twitter account analysis typically involves gathering a wide range of data
types, such as tweet text [19], metadata [3,34], and temporal activity pat-
terns [6]. This holistic approach provides a comprehensive understanding of
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account behavior. The extracted features are then integrated into various clas-
sifiers, utilizing deep neural networks with different architectures to enhance
model generalization [32]. Recent advancements in graph neural network-based
methods [2,11] have driven progress in understanding semantic relationships by
constructing heterogeneous graphs and employing relational graph transformers
that aggregate insights from both intra-relational and inter-relational contexts.

Fig. 1. Illustration of heterophily influence. Message passing on heterophilous edges
leads to feature mixing and classification boundary shift in social bot detection.

Despite the success of graph-based detection methods, many fail to account
for heterophily, which refers to connections between different classes of accounts.
Recent studies [23,31] show that Twitter bots often engage with human users
more frequently, challenging the conventional view that bots primarily interact
with each other to boost their influence [9]. As illustrated in Fig. 1, when both
homophilous and heterophilous interactions are present, message passing along
heterophilous edges can cause node representations to blend with those of the
opposite class. Therefore, an effective graph-based detection approach should
prevent inter-class feature blending to produce more distinct representations.
Our method’s key insight is to use supervised contrastive learning [17] to improve
inter-class discrimination. By treating nodes of the same class as positive pairs
and those of different classes as negative pairs, we can promote the aggregation
of class-specific information while avoiding feature mixing.

Building on these insights, we present a novel framework called Social Bot
Detection with Supervised Contrastive Learning (BotSCL). First, we develop
two graph augmentation strategies–feature augmentation and topological struc-
ture augmentation–to create different graph views. Then, we design an encoder
to aggregate similar and distinct information across feature channels. Finally,
supervised contrastive learning is applied in a cross-view manner to generate
class-consistent representations.
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This paper makes the following key contributions:

– We introduce and analyze the negative impact of heterophily on social bot
detection, supported by experimental data.

– We propose the BotSCL framework, which mitigates the effects of heterophily
on social bots in the feature space through supervised contrastive learning.

– Extensive experiments on two real-world datasets demonstrate that BotSCL
consistently outperforms all baseline methods.

2 Related Work

In this section, we will explore related research in three key areas: graph-based
social bot detection, graph neural networks (GNNs) for heterophilous graphs,
and contrastive learning.

2.1 Graph-Based Social Bot Detection

Graph-based techniques for social bot detection have gained significant trac-
tion in recent research. [2] pioneered the use of graph convolutional networks
(GCN), combining account features with the structural properties of relation
graphs to enhance detection. Satar [13] further refined this approach by employ-
ing GCNs for feature engineering and integrating self-supervision to detect bots.
Building on this, Relational Graph Convolutional Networks (R-GCNs) [26] were
adopted by [15] to aggregate information from multiple relationships, and this was
later enhanced by [11], who introduced additional relations and applied graph
transformers for more adaptive neighbor aggregation. RoSGAS [36] leverages
heterogeneous information networks to model diverse entities and relationships
in social networks effectively, using adaptive reinforcement learning to improve
performance. These methods generally assume that bots and humans interact
more within their respective classes, and the smoothing of node representations
is advantageous for classification. However, in reality, advanced bots can evade
detection by actively engaging with human users, making this assumption less
reliable.

2.2 GNNs for Graphs with Heterophily

Given the widespread presence of heterophily, GNNs designed for heterophilous
graphs have become a significant focus of research. Broadly, there are two pri-
mary approaches: Aggregation of non-local neighbor information: Techniques
in this category gather information from higher-order neighbors [1,38] or from
potential same-class neighbors [25,30] to enhance intra-class information aggre-
gation. Adaptive Message Passing: Approaches like FAGCN [5] combine high-
and low-frequency information, while GPRGNN [8] utilizes learnable weights
to aggregate information from different hop distances. In social bot detection,
bots tend to display more heterophilous behavior, while humans generally exhibit
homophilous tendencies. Consequently, directly applying GNNs designed for het-
erophilous graphs to bot detection may not deliver optimal outcomes due to the
differing behaviors of bots and humans.
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2.3 Contrastive Learning

Contrastive learning focuses on training an encoder that produces consistent
representations across different views of the data. Graph contrastive learning
(GCL) extends this approach to the graph domain, allowing nodes to learn rep-
resentations in a self-supervised manner. For instance, GRACE [39] generates
augmented graph views by removing edges and masking features, treating the
same node in different views as a positive pair. DGI [29] optimizes node represen-
tations by maximizing mutual information between local and global embeddings.
Supervised contrastive learning, first applied in the field of computer vision [17],
treats instances of the same class as positive pairs and those of different classes
as negative pairs. This approach ensures that embeddings from the same class
are pulled closer together while those from different classes are pushed apart.

3 Methodology

The complete pipeline of BotSCL is illustrated in Fig. 2. The process begins with
the application of two graph augmentation techniques to produce two distinct
graph views. Next, nodes aggregate similar information from their homophilous
neighbors while adaptively distinguishing the representations of heterophilous
neighbors for each relation. Finally, node representations are optimized through
supervised contrastive learning.

Fig. 2. The proposed BotSCL framework.

3.1 Graph Augmentation

Graph contrastive learning (GCL) leverages various graph augmentation tech-
niques, such as edge addition, feature masking, and personalized PageRank dif-
fusion, to create diverse graph views [37]. However, it’s important to recognize
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that not all augmentation methods are suitable for graphs with heterophily. For
instance, [35] utilizes low-pass and high-pass filters to generate graph views for
self-supervised contrastive learning, while [21] classifies edges as either within-
class or between-class, then constructs homophilous and heterophilous views
accordingly. Despite their effectiveness, both methods face challenges, including
potential information loss and the introduction of noise.

To address these limitations and enable the simultaneous handling of both
homophilous and heterophilous edges without the need for explicit differentia-
tion, we propose a new graph augmentation technique called class-aware node
shuffling (CNS). This method involves randomly swapping nodes within the same
class. By doing so, we can obtain representations that remain stable despite
changes in the neighborhood, without significantly disrupting the underlying
graph structure. This is achieved through intra-class feature swapping:

˜X = C(X ,Ytrain). (1)

Additionally, we employed a traditional graph augmentation method, edge
removing (ER), to augment the graph structure. The edge removal method can
be formulated as follows:

Ẽ = E � ME , (2)

where E is total edge set, each element of ME , mE
ij stands for the mask value

of edge eij and mE
ij ∼ B(1 − pe), pe is the probability to be removed. Through

the aforementioned two graph augmentation methods, both the features and
topological structure of the original graph are augmented. Note that graph aug-
mentation is optional for BotSCL, as supervised contrastive learning can be
employed in a single-pass manner.

3.2 Aggregation Strategy

Multi Modal Feature Fusion. Multiple modalities, such as tweets, metadata,
and account descriptions, have been shown to significantly improve social bot
detection [11,15]. Unlike traditional node classification tasks, social bot detec-
tion relies on features that span diverse types and dimensions of social content.
Therefore, it is essential to use a multi-layer perceptron (MLP) to align the
dimensions of these heterogeneous feature vectors. Following prior work [11,15],
we first extract numerical features xcat

i and boolean features xbool
i for each node

vi. Additionally, RoBERTa [20] is employed to extract descriptive features xdes
i

from the account descriptions. Furthermore, RoBERTa is also used to obtain
average feature representations xtweet

i from up to 20 tweets per account.
In this study, we further use TransformerEncoder [27] for feature fusion adap-

tively by treating the feature vectors of different types as token embeddings:

x0
i = TransformerEncoder([xcat

i , xbool
i , xdes

i , xtweet
i ]), (3)

where x0
i is the concatenation of the TransformerEnocder outputs. In this way,

benefiting from the self-attention and residual mechanisms within Transformer,
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a better fusion of information from different modalities is achieved, effectively
countering feature camouflage of social bots. On top of that, we apply another
MLP to x0

i and obtain the input of the graph convolutional layer h
{0}
i :

h
{0}
i = σ(WIx

0
i + bI), (4)

where WI , bI are learnable parameters and σ(·) is a nonlinear activation function.

Information Aggregation Beyond Homophily. After generating aug-
mented views, BotSCL employs an encoder capable of aggregating information
from both similar and dissimilar neighbors in a distinguishable way to pro-
duce effective node representations. In the spectral domain, GNNs that operate
under the homophily assumption function as low-pass filters. However, previ-
ous research on graphs with heterophily [22] has demonstrated that high-pass
filters, which capture differential information, are more suitable for modeling
heterophilous connections.

In the spatial domain, low-pass filtering is achieved by aggregating informa-
tion from neighboring nodes, while high-pass filtering is performed by distin-
guishing between the representations of different neighbors. These two filtering
operations can be mathematically formulated as follows:

(

h
{l}
i

)

Low
= W {l} ∑

j∈N(i)

(

h
{l−1}
i + h

{l−1}
j

)

,

(

h
{l}
i

)

High
= W {l} ∑

j∈N(i)

(

h
{l−1}
i − h

{l−1}
j

)

.
(5)

In addition to these two, there are other filters that retain different frequency
band information, such as band-pass filters. Although [22] employs a channel-
wise attention mechanism to fuse low-pass, high-pass filters, and self-information,
there still exists information loss from other frequencies. Inspired by the above,
we design a channel-wise frequency-adaptive mechanism to aggregate similar
information from homophilous neighbors and differential information from het-
erophilous neighbors. Specifically, given a central node vi ∈ V and its arbitrary
neighbor vj ∈ Nr(vi), we first use a linear transformation and a separate element-
wise multiplication across channels to obtain the query and key:

q
{l}
i = W

{l}
A h

{l−1}
i � Q{l},

k
{l}
j = W

{l}
A h

{l−1}
j � K{l},

(6)

where W
{l}
A ∈ R

dl−1×dl−1 is the weight martix of layer l, Q{l},K{l} ∈ R
1×dl−1

are weight vectors for query and key and � denotes the Hadamard product
operation. q

{l}
j and k

{l}
i can also be calculated in the same way.

Then we calculate the channel-wise and pass-free attention coefficient α
{l}
ij

for edge eij :

α
{l}
ij = tanh(

q
{l}
i � k

{l}
j + q

{l}
j � k

{l}
i

2
). (7)
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It is worth noting that the obtained α
{l}
ij using the above calculation method is

direction- and relation-agnostic and can be also seen as the embedding of edge
eij . Furthermore, due to the use of the tanh activation function, any element in
α

{l}
ij is in the range of [–1, 1], which breaks the previous restriction on the sum

of neighbor information.
Finally, we aggregate information from the neighbors using the generated

channel-wise weights α
{l}
ij to obtain l layer node representation h

{l}
i :

h
r,{l}
i = W {l}

r (λ{l}h{l−1}
i +

∑

j∈Nr(i)

α
{l}
ij

|Nr(i)| � h
{l−1}
j ), (8)

h
{l}
i =

1
R

R
∑

r=1

h
r,{l}
i , (9)

where W
{l}
r ∈ R

dl−1×dl is the weight matrix for relation r, and |Nr(vi)| is the
number of neighbor nodes on relation r. Following the graph filter proposed
by [5], we apply a hyperparameter λ{l} to preserve the information of the node
itself. RGT [11] uses an attention mechanism to fuse information from different
relations, but here we trivially take the average of information from different
relations to avoid information missing.

3.3 Supervised Contrastive Optimization

Following the previous contrastive learning framework [29,37], we use a projec-
tion head consisting of two MLP layers to obtain zi:

zi = W2σ(W1h
{L}
i + b1) + b2, (10)

where h
{L}
i is the output of last layer L. Thus, we can obtain projections zα

i and
zβ
i of node vi in two graph views Gα and Gβ in respect.

Next, we employ supervised contrastive learning as the loss function for train-
ing. However, because this approach considers all nodes of the same class across
different views as positive pairs, it can lead to overfitting. In this case, the rep-
resentations of nodes from the same class become overly similar, impairing the
model’s ability to generalize to unseen nodes. To mitigate overfitting, we imple-
ment supervised contrastive learning in a cross-view manner. For a randomly
chosen set of N samples from the training nodes, we first project each node
through the graph augmentation, encoder, and projection head described ear-
lier. Taking node vi from graph view Gα as an example, we consider its projection
and the projections of same-class nodes from other views as positive pairs, while
projections from different-class nodes are treated as negative pairs, to compute
the contrastive loss.

Lα
i = − 1

Nyi

N
∑

j=1

1yi=yj
· log

ecos(zα
i ,zβ

j )/τ

N
∑

k=1

ecos(zα
i ,zβ

k )/τ

, (11)
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Algorithm 1: The first training process of BotSCL
Input : a directed and multi-relation graph G = {V, E , X}, the labels of train

nodes Ytrain, Training epochs Nepochs, the number of layers in the
encoder L

Output: node representations H
1 initialization;

2 generate two graph views Gα and Gβ ← Eq. (1–2);
3 for e = 1, · · · , Nepochs do

4 obtain H{0} ← Eq. (3–4);
5 for each graph view do
6 for l = 1, · · · , L do

7 q
{l}
i , q

{l}
j , k

{l}
i , k

{l}
j ← Eq. (6);

8 α
{l}
ij ← Eq. (7);

9 for r = 1, · · · , R do

10 h
r,{l}
i ← Eq. (8);

11 end

12 h
{l}
i ← Eq. (9);

13 end

14 obtain node representations H{L};
15 end

16 zα
i , zβ

i ← Eq. (10);
17 L ← Eq. (11–12);
18 update parameters through backpropagation;

19 end

20 return H =
[
H{0}‖H{L}

]

where Nyi
represents the number of samples in the same class as node vi among

N samples, cos(·, ·) function is used to calculate the cosine similarity, and τ is the
temperature coefficient which can regulate the degree of distribution uniformity.

Finally, we calculate the loss for all nodes in the sampled set of two views in
the same way, and take the average:

L =
1

2N

N
∑

i=1

(Lα
i + Lβ

i ). (12)

Training Strategy. In this study, we adopt a two-stage training approach
similar to previous contrastive methods [29,37,39]. In the first stage, we use
the previously described method to generate node representations and update
the model parameters by minimizing L. Given that the original features preserve
important class information [7], we proceed to the second stage by concatenating
the encoder input H{0} with the output H{L}: H =

[

H{0}‖H{L}] ∈ R
n×(d0+dL).

In this stage, we utilize a straightforward machine learning classifier, namely
Logistic Regression (LR), for both training and evaluation using H.
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4 Experiments

4.1 Experiment Setup

Datasets. TwiBot-20 [14] and TwiBot-22 [12], which include user followers
and following relations, are well-suited for our method and subsequent experi-
ments. TwiBot-20 consists of 229,580 nodes and 227,979 edges, while TwiBot-22
includes one million nodes and 3,743,634 edges. We partition the datasets into
training, validation, and test sets using a 7:2:1 ratio.

Baselines. To evaluate the effectiveness of BotSCL, we compare it with several
different methods, described briefly below:

Homophilous GNNs: GCN [18] and GAT [28] are representative GNNs
based on the homophily assumption, where information is aggregated by sum-
ming up neighbor representations.

Heterophilous GNNs: H2GCN [38], FAGCN [5], and GPRGNN [8] are
models specifically designed to address heterophilous edges by employing various
information aggregation techniques.

Graph-Based Social Bot Detection: Alhosseini et al. [2], EvolveBot [33],
Moghaddam et al. [24], BotRGCN [15], and RGT [11] leverage graph struc-
tures to improve social bot detection.

Graph Contrastive Learning: DGI [29], GRACE [39], and GBT [4] are
prominent self-supervised graph contrastive learning frameworks that learn node
representations without labels. SupCon [17] refers to supervised contrastive loss,
which we implement by adapting the loss function of GRACE.

Hyperparameter Setting. We use a GNN with two layers, each having a
hidden dimension of 32. To mitigate overfitting, we apply a dropout mechanism
with a rate of 0.5. The temperature coefficient is set to 0.07 to enhance the
distribution of the representation space.

4.2 Heterophily Evidence and Influence

Before investigating the impact of heterophily on social bot detection, we first
analyze the levels of homophily and heterophily in the datasets. In the TwiBot-
22 dataset, the homophily ratios for follower and following relationships among
human nodes are 88.05% and 96.20%, respectively, whereas for bot nodes, these
ratios are 16.55% and 6.25%, respectively. This disparity suggests a clear pattern
where social bots are more inclined to interact with human nodes.
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Fig. 3. Heterophily influence on previous graph-based methods.

To illustrate the adverse effects of heterophily, we plot the accuracy changes
as heterophilous edges are progressively removed in increments of 0.1, as shown
in Fig. 3. We evaluate four different models: GCN, GAT, BotRGCN, and RGT.
The results demonstrate a significant increase in accuracy for all models as
heterophily decreases. This underscores the importance of considering both
homophilous and heterophilous edges in graph-based social bot detection.

4.3 Performance Comparison

Table 1 provides a summary of the detection results for all baselines and
BotSCL on the TwiBot-20 and TwiBot-22 datasets. The performance metrics for
homophilous GNNs and graph-based social bot detection methods are derived
from an empirical survey of social bot detection [12] and additional experiments
conducted by us. BotSCL outperforms all 14 baseline methods in terms of both
Accuracy and F1-score.

As shown in Table 1, heterophilous GNNs generally outperform homophilous
GNNs, suggesting that accounting for heterophilous edges can help iden-
tify sophisticated bots with extensive human connections. Compared to het-
erophilous GNNs, BotSCL not only incorporates various types of relations but
also employs supervised contrastive loss as the optimization objective, result-
ing in improvements in both Accuracy and F1-score across both datasets. Self-
supervised contrastive learning methods perform less effectively on TwiBot-
20, which has a large number of unlabeled nodes, but show better results on
TwiBot-22. This discrepancy is likely due to uneven training distributions, as
fewer training nodes are used for TwiBot-20 in the second training stage. Our
method significantly outperforms these self-supervised approaches, highlighting
the crucial role of supervised signals in effectively handling both homophilous
and heterophilous edges.
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Table 1. Performance comparison on TwiBot-20 and TwiBot-22 in terms of accu-
racy and F1-score. The best and second-best results are highlighted with bold and
underline.

Methods TwiBot-20 TwiBot-22

Accuracy F1-score Accuracy F1-score

GCN 77.53 ± 1.73 80.86 ± 0.86 80.07 ± 0.77 51.71 ± 4.05

GAT 83.27 ± 0.56 85.25 ± 0.38 85.07 ± 1.19 69.32 ± 4.02

FAGCN 85.43 ± 0.40 87.36 ± 0.32 88.11 ± 1.43 77.43 ± 3.20

H2GCN 85.84 ± 0.34 87.57 ± 0.15 89.09 ± 1.16 79.99 ± 1.53

GPRGNN 86.05 ± 0.34 87.50 ± 0.30 89.07 ± 1.20 80.48 ± 1.62

Alhosseini et al. 59.88 ± 0.59 72.07 ± 0.48 47.72 ± 8.71 38.10 ± 5.93

EvolveBot 65.83 ± 0.64 69.75 ± 0.51 71.09 ± 0.04 14.09 ± 0.09

Moghaddam et al. 74.05 ± 0.80 77.87 ± 0.71 73.78 ± 0.01 32.07 ± 0.03

BotRGCN 85.75 ± 0.69 87.25 ± 0.74 79.66 ± 0.14 57.50 ± 1.42

RGT 86.57 ± 0.42 88.01 ± 0.42 76.47 ± 0.45 42.94 ± 0.49

DGI 84.93 ± 0.31 87.09 ± 0.36 79.61 ± 0.13 44.06 ± 1.52

GRACE 84.74 ± 0.88 86.90 ± 0.84 80.02 ± 0.91 46.17 ± 4.48

GBT 84.74 ± 0.92 86.87 ± 0.79 79.75 ± 0.76 47.27 ± 3.08

SupCon 86.10 ± 0.14 87.67 ± 0.16 80.00 ± 0.24 44.41 ± 3.83

BotSCL 87.26±0.31 88.79±0.27 82.39±0.50 61.53±1.45

4.4 Ablation Study

We conduct an ablation study to assess the effects of various modules and graph
augmentation techniques on social bot detection. We develop three ablation
models: one without self-supervised learning (w/o Sup), one lacking negative
information aggregation (w/o Neg), and one utilizing cross-entropy loss. The
results of these ablation models on TwiBot-20 and TwiBot-22 are summarized
in Table 2.

The results indicate a significant decline in performance when self-supervised
learning is omitted, highlighting its essential role in effective information aggre-
gation during the message-passing process. Although the model without nega-
tive information aggregation still performs relatively well due to the strength
of supervised contrastive learning, its effectiveness is reduced compared to the
full model. In contrast, the model using cross-entropy loss performs noticeably
worse, as it mainly focuses on the commonalities among training samples while
neglecting exceptional cases.

Additionally, different graph augmentation methods affect model perfor-
mance in varying degrees. Notably, CNS and edge removal have substantial
impacts, with CNS being crucial for generating category-invariant representa-
tions. On the other hand, augmentation methods such as feature masking and
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Table 2. Ablation Study in terms of Different Modules and Graph Augmentation
Methods.

Settings TwiBot-20 TwiBot-22

Accuracy F1-score Accuracy F1-score

full model 87.26±0.31 88.79± 0.27 82.39± 0.50 61.53±1.45

w/o Sup 86.45 ± 0.21 88.45 ± 0.19 82.00 ± 0.61 56.20 ± 2.88

w/o Neg 86.90 ± 0.45 88.48 ± 0.35 82.12 ± 0.46 53.43 ± 1.16

cross entropy 84.50 ± 0.53 87.19 ± 0.36 80.13 ± 0.86 46.59 ± 0.89

CNS 87.13 ± 0.17 88.70 ± 0.20 81.90 ± 0.26 58.78 ± 0.84

edge adding 86.96 ± 0.14 88.55 ± 0.11 82.02 ± 0.64 58.93 ± 2.17

edge removing 87.11 ± 0.15 88.67 ± 0.14 82.17 ± 0.37 61.46 ± 1.46

featuren masking 86.81 ± 0.21 88.50 ± 0.14 81.99 ± 0.40 61.78 ± 1.29

edge addition have minimal effects or can introduce noise, potentially disrupting
node feature information.

Fig. 4. Sensitive analysis of hyperparameter λ{1} and λ{2} on two datasets.

4.5 Sensitive Analysis

We assess the performance of BotSCL with respect to the hyperparameters λ{1}

and λ{2}, as our model incorporates two layers of information aggregation. We
vary these parameters from 0.1 to 1.0 in increments of 0.1, keeping all other model
parameters constant. The results on TwiBot-20 and TwiBot-22 are presented in
Fig. 4a and Fig. 4b, respectively.

Figure 4 shows that increasing the hyperparameters λ{1} and λ{2} leads to
a gradual improvement in accuracy for both TwiBot-20 and TwiBot-22. Specif-
ically, when both hyperparameters are set to 1, the model achieves its highest
classification performance. This highlights the importance of preserving self-
information. Figure 4b reveals a noticeable accuracy drop for TwiBot-22 when
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the hyperparameter is reduced to 0.8. In contrast, for TwiBot-20, the accuracy
decline is more gradual, with a sharp drop occurring only when the hyperpa-
rameter approaches 0.4. This discrepancy can be attributed to TwiBot-22 hav-
ing labels for all nodes and facing class imbalance issues. When the weights for
original information are too low, the representation of the central node can be
dominated by neighboring information.

Overall, despite variations in hyperparameters, the accuracy changes are
within 0.04 for TwiBot-20 and within 0.01 for TwiBot-22. This indicates that
while the hyperparameters λ{1} and λ{2} do influence the performance of
BotSCL, the model is not highly sensitive to their values.

Fig. 5. User representations visualization. Red represents bots, while blue represents
humans. (Color figure online)

4.6 Visualization

We visualize node representations obtained from six different models—GCN,
FAGCN, BotRGCN, RGT, DGI, and our method BotSCL—on the TwiBot-22
dataset. Node representations from each model are first computed and then
reduced to 2D using t-SNE for visualization. For clarity, we randomly select
1000 humans and 1000 bots from the test set for this visualization.

As shown in Fig. 5, node representations from homophilous GNNs are more
scattered compared to those from FAGCN. These homophilous models, which
operate on the assumption of homophily, tend to smoothen the representations
of neighboring nodes without distinguishing between them, resulting in a distri-
bution that is heavily influenced by local information. In contrast, the represen-
tations produced by BotSCL exhibit more pronounced clustering with fewer local
clusters. While FAGCN accounts for both homophilous and heterophilous edges,
its use of cross-entropy loss may overlook samples from less frequent distribu-
tions, leading to less distinct clustering. DGI, which lacks supervised signals dur-
ing training, shows poor discriminative power and exhibits significant class over-
lap, where the representations of bots and humans are nearly indistinguishable.

5 Conclusion

In this paper, we reveal that social bots can evade graph-based detection meth-
ods by actively engaging with human users. To counter this, we propose BotSCL,
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which incorporates both homophilous and heterophilous edges into the detection
framework. The core of BotSCL is its encoder, which leverages supervised con-
trastive learning to integrate or differentiate neighbor representations effectively.
Our extensive experiments on two real-world social bot datasets highlight the
detrimental effect of heterophily on detection performance and demonstrate the
superior effectiveness of the proposed BotSCL method.
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graph infomax. In: ICLR (Poster), vol. 2, no. 3, p. 4 (2019)

30. Wang, T., Jin, D., Wang, R., He, D., Huang, Y.: Powerful graph convolutional
networks with adaptive propagation mechanism for homophily and heterophily.
In: AAAI, pp. 4210–4218 (2022)

31. Williams, E.M., Novak, V., Blackwell, D., Platzman, P., McCulloh, I., Phillips,
N.E.: Homophily and transitivity in bot disinformation networks. In: SNAMS,
pp. 1–7. IEEE (2020)

32. Wu, Y., Fang, Y., Shang, S., Jin, J., Wei, L., Wang, H.: A novel framework for
detecting social bots with deep neural networks and active learning. Knowl.-Based
Syst. 211, 106525 (2021)

33. Yang, C., Harkreader, R., Gu, G.: Empirical evaluation and new design for fight-
ing evolving twitter spammers. IEEE Trans. Inf. Forensics Secur. 8(8), 1280–1293
(2013)

34. Yang, K.C., Varol, O., Hui, P.M., Menczer, F.: Scalable and generalizable social
bot detection through data selection. In: AAAI, vol. 34, pp. 1096–1103 (2020)

35. Yang, W., Mirzasoleiman, B.: Contrastive learning under heterophily. arXiv
preprint arXiv:2303.06344 (2023)

36. Yang, Y., et al.: Rosgas: adaptive social bot detection with reinforced self-
supervised gnn architecture search. ACM Trans. Web (2022)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2211.14065
http://arxiv.org/abs/2109.05641
http://arxiv.org/abs/2002.05287
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2303.06344


68 Q. Wu et al.

37. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

38. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. Adv. Neural.
Inf. Process. Syst. 33, 7793–7804 (2020)

39. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

http://arxiv.org/abs/2006.04131


SimDrop: Towards Deep Graph
Convolutional Networks

Gongjunjian Zhang and Lu Bai(B)

Beijng Normal University, Beijng, China

Abstract. Recently, graph neural networks have achieved impressive
results in areas like graph representation learning. However, as the num-
ber of layers in graph neural networks continues to increase, the per-
formance of the network does not improve as expected. The primary
obstacle to building deep graph neural networks is considered to be the
over-smoothing problem. In this paper, we first theoretically analyze the
relationship between over-smoothing problem and the algebraic connec-
tivity of graphs, and establish the relationship between algebraic connec-
tivity and edge dropping operations based on the degrees of nodes in the
graph. We propose SimDrop, it consists of two parts: a sampler based
on algebraic connectivity, and a sampler based on node feature similar-
ity. Our method can perceive both the structural information and node
feature information of the graph, aiming to alleviate the over-smoothing
problem in deep graph neural networks. Experimental evaluations on var-
ious datasets demonstrate that our method achieves better performance
in both full-supervised and semi-supervised tasks.

Keywords: graph convolutional networks · over smoothing · algebraic
connectivity

1 Introducation

Graph neural networks [10,16,27,29,30,36] have been shown to be quite suc-
cessful in learning representations of nodes and graphs on graph structured data
[1,7,11], as well as in downstream tasks such as node classification [10,16,29],
graph classification [35], and link prediction [18]. However, most graph neu-
ral networks are designed with only one or two layers. This is different from
convolutional neural networks [20], where stacking more layers can learn more
features of samples and improve the network’s expressive power. Stacking layers
on graph neural networks [16] fails to learn the rich topological information and
node features in graph data [15,36] because these models suffer from severe over-
smoothing [23]. As the number of layers in a graph neural network approaches
infinity, the output will exponentially approach a certain subspace. Regardless
of the input node features, deep graph neural networks can only learn the degree
information of nodes and information about the connected components. They
cannot leverage higher-order topological information [36] and the original node
features [15] from graph data.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 69–84, 2025.
https://doi.org/10.1007/978-3-031-78183-4_5
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On aware of this, several studies have focused on addressing the over-
smoothing issue. The residual connection inspired by deep CNNs [17,29,31] from
the computer vision domain is shown to be an effective strategy for addressing the
over-smoothing issue for various graph convolution networks. Recently, data aug-
mentation strategies proposed from works likes DropEdge, PTDNet [22], DSpar
[19] and NeuralSparse [37] from the perspectives of graph structure and expres-
sive power can be used as general techniques for improving robustness and GNN
training. DSpar [19] sparsify the graph before training using node degree infor-
mation to train more efficiently. NeuralSparse [37] remove task-irrelevant edges
and simultaneously optimize graph sparsification and representation for more
robust performence. However, these models achieve their best results in training
and robustness tasks, but they cannot solve over-smoothing problem and make
networks become deeper. Among the various methods proposed so far, Dropedge
[24] involves randomly dropping a portion of the graph edges with a probabil-
ity p at each layer of network training. This method has been theoretically and
experimentally proven to effectively alleviate over-smoothing and can improve
the performance of various deep graph neural networks.

However, Dropedge cannot fully exploit the higher-order structural informa-
tion and node feature information in graph within network design. And previous
works based on subgraph sampling and edge-dropping methods can be associ-
ated with the simple node-level random walk on unweighted graphs, hence they
are only able to learn pure structure information but no feature information.

In this paper, we advance this by introducing SimDrop, an improved version
of DropEdge. SimDrop consists of two components: a sampler based on algebraic
connectivity [5], and a sampler based on node feature similarity [15]. Unlike pre-
vious approaches that analyze the eigenvalues of the adjacency matrix to improve
network expressive power, we introduce algebraic connectivity from the Lapla-
cian matrix to measure over-smoothing through changes in algebraic connectivity
and design a better dropping method to reduce the convergence speed of over-
smoothing. According to the variation of algebraic connectivity and the close
relationship with node degrees, we assigned different weights to the adjacency
matrix based on node degrees. Secondly we introduce a node feature sampling
method, using cosine similarity as a distance measure between node features to
adjust the edge dropping probability. Our node feature sampling method not
only leverages all the benefits of DropEdge in mitigating over-smoothing but
also jointly learns feature and structure information from the input graph data.

In summary, this paper contributes the following:

1. We theoretically analyzed the relationship between over-smoothing and the
algebraic connectivity of the graph Laplacian matrix. To our knowledge, this
is the first study to incorporate algebraic connectivity into deep GCNs to
address the over-smoothing problem.

2. Unlike the unbiased sampling approach in DropEdge, we propose SimDrop
including an edge sampling method based on node degrees and node fea-
ture sampling method to learn the feature and structural information from
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graph data, that directly alleviates over-smoothing and enhances the expres-
sive power of graph neural networks.

3. Our method SimDrop can be incorporated into various existing graph neu-
ral network frameworks. Experimental results show that SimDrop exceeds
DropEdge and the vanilla graph neural network without sampling in mitigat-
ing over-smoothing problem.

2 Related Work

Graph Neural Network. Inspired by the extensive application of convolu-
tional neural networks [12,20] in computer vision, [30] begins exploring the use
of convolutional neural networks for non-Euclidean data, like graphs. Bruna et
al. [2] builds upon the theoretical foundation of graph signals by introducing the
Laplacian matrix and Fourier transform. They incorporate convolution opera-
tions from signal processing into tasks involving graph data. Then [16] based
on the theory of first-order Chebyshev polynomials and Laplacian regularization
matrices, they propose the graph convolutional neural network with first-order
local features. This laid the foundation for various graph convolutional neural
network models [7,10,11,27,29]. SimP-GCN [15] discovers that the information
aggregation process of graph neural networks can disrupt node similarity in
the original feature space, limiting model performance. An adaptive aggregation
method is proposed to combine graph structure with node features, preserv-
ing feature similarity. Although SimP-GCN also focuses on the representation
capability of nodes on graphs, our method SimDrop applies node similarity as a
measure to alleviate over-smoothing in deep GNNs.

Methods to Alleviate over-Smoothing. Recently, some work have demon-
strated the effectiveness of training graph convolutional networks with an
increasing number of layers. We categorize existing methods into two types.
The first kind of solutions is motivated by the deep CNN strategy in the area
of computer vision research, such as Skip connection [12], DenseNet [14], and
dilated aggregation [32]. DeepGCN [17] analogizes optimization methods from
CNN, employing three modules: GCN, ResGCN, and DenseGCN. These mod-
els use different ways to incorporate skip connections. JKNet [31] based on the
random walk extension connects the hidden embeddings of each layer output
to the final layer. DRGCN [34] uses a dynamic block for each node to adap-
tively extract information from its initial representation and an evolving block
to capture developing residual patterns.

The second kind of solution originates from the perspective of the graph struc-
ture, combining deep aggregation strategies with shallow graph neural networks.
GDC [6] extends personalized PageRank to graph diffusion processes. DropEdge
[24] implicitly increases graph diversity and reduces message passing by using a
stochastic edge dropout strategy. DropMessage [4] introduces a message matrix
to delete propagated messages instead of the adjacency matrix, allowing a node
to send different messages to different neighbors. pathGCN [3] develop expressive
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spatial operators for GCNs by learning from random paths within the graph. A-
DGN [8] stemming from an ODE formulation preserves long-term dependencies
between nodes and prevents gradient explosion or vanishing.

Unfortunately, these methods do not focus on the real causes of over-
smoothing and can only mitigate a portion of the model degradation from a
graph data input perspective and cannot theoretically justify the effectiveness
of the methods. By exploiting our method SimDrop, we are able to alleviate
over-smoothing and boost the expressive power of GNNs on node classification
tasks.

Fig. 1. Illustrations of SimDrop,backbone can be ResGCN,DenseGCN,IncepGCN.

3 Preliminaries

Notations. Considering a connected undirected graph G = (V, E) with n nodes
and m edges. V = {ν1, ν2, . . . , νn} denotes the group of nodes, where n denotes
the number of nodes. E is the set of connected edges, where the connection
between νi and νj is eij . We use A to denote the adjacency matrix of the graph
G, let D denote the degree of node in the degree matrix of the graph G. We use
X to denote the features of the graph G, with xi being the feature of node i.
The symbol “∼” denotes random sampling.

GCN. Let Ã = A+ I, let D̃ denote the degree matrix corresponding to Ã. The
feature propagation formula for adding hidden layers and weight matrices is as
follows:

H(l+1) = σ(D̃−1/2ÃD̃−1/2HlWl) (1)

where H(l+1) = {h1, h2, . . . , hn} are the node features of the l-th layer, with

H(0) = X as the initial feature matrix. D̃
−1/2

ÃD̃
−1/2

Hl belongs to the fea-
ture propagation process. Wl are trainable parameters optimized by the loss
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function, and σ denotes the activation function which constitute the feature
transformation process. In vanilla GCN, nodes collect feature vectors from their
neighbors and combine them with their own features to update their represen-
tations, resulting in interacted nodes having very similar representations.

Over-Smoothing. The following is a definition of over-smoothing from [23,24]
: let w1 ≤ w2 ≤ · · · ≤ wN be the eigenvalues of Ã. Assume the set of eigenvalues
in Ã are sorted in ascending order, let the count of the largest eigenvalue wN

being M . i.e. (w(N−M) < w(N−M+1) = · · · = wN ). The eigenvalue which is the
second largest in the adjacency matrix Ã is defined as w := maxN−M

n=1 |wn|. Let
O ∈ R

N×M be the feature space associated with wN−M+1, wN , and let sl denote
the maximum value in Wl, then we have wN−M ≤ wN−M+1 = · · · = wN = 1
and

dM(Hl) ≤ slwdM(H(l−1)) (2)

where M := {OC |C ∈ R
M×C}, and d is Frobenius-norminduced distance. This

inequality indicates that as the number of network layers l tends to infinity, the
output of the graph neural network on graph G will approach a low-dimensional
subspace M at an exponential rate. This subspace is independent of the node
features X of the network input, leading to the problem of over-smoothing. This
equation indicates that the eigenvalues of the modified adjacency matrix Ã have
a crucial impact on the over-smoothing problem. It is easy to see that increasing
the eigenvalue of the adjacency matrix that is second in magnitude can alleviate
over-smoothing, which is the aim of the DropEdge method.

Dropedge. [24] have analyzed from both theoretical and experimental perspec-
tives that randomly dropping a fixed number of edges from graph can increase
the value of w, reducing the speed of node feature information propagation and
alleviating over-smoothing problem. Additionally, the randomly dropping can
increase the diversity of graph, preventing the occurrence of overfitting. At each
training epoch, DropEdge uniformly drops a certain number of edges from the
graph. From the perspective of the adjacency matrix, this means converting a
fixed portion of positive values in the adjacency matrix to 0. It can be expressed
in formula as follows:

Adrop = A − Â (3)

Algebraic Connectivity. The algebraic connectivity [5] λ2 of graph G is the
second smallest eigenvalue in the Laplacian matrix of G. The magnitude of alge-
braic connectivity reflects the overall connectivity of the entire graph. In addition
to being related to the number of nodes in the graph, the value of algebraic con-
nectivity also depends on the way nodes are connected to each other. For random
graphs, the algebraic connectivity decreases as the number of nodes increases and
increases with the increase of the average degrees. The importance of algebraic
connectivity [21] lies in: 1. Measuring the robustness of a graph. 2. Being closely
related to random walks on the graph.
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4 Method

Relationship Between Algebraic Connectivity and over-Smoothing.
[23,24] have shown that many methods for mitigating over-smoothing can slow
down the convergence speed of node feature similarity to 0. However, employ-
ing these methods fails to improve the expressive power of deep graph neural
network. In many tasks, there is not much difference in performance between
these deep models and shallow models, which means they fail to fully exploit
the advantages of deep graph neural networks.

From previous analysis [21,31], The over-smoothing in graph neural networks
is equivalent to node-level lazy random walk on the graph. So we can analyze
over-smoothing from the perspective of random walk. And the convergence rate
of the lazy random walk to the stationary distribution is determined by the
second smallest eigenvalue of the adjacency matrix: a smaller one implies faster
convergence. The relationship between the eigenvalues of the adjacency matrix
and the Laplacian matrix is as follows: λi = 2−2wi. We analyze the relationship
between oversmoothing and algebraic connectivity using the eigenvalues λ2 and
the corresponding eigenvectors of the Laplacian matrix. We need to adopt some
concepts from [9,21]. If a random walk mixes in one step, then for any node

g and h, we have |pt (h) − π (h)| ≤
√

d(h)
d(g)w

t
2, where pt (h) is the probability

that the random walk of node h at time t. π (h) is the long-term probability of
being at node h in the stationary distribution. The degree vector d is the Perron
vector in the graph adjacency matrix. wt

2 denotes the second smallest eigenvalue
of the graph’s Laplacian matrix used for the random walk in the t step. Using
1 − x ≈ exp(−x), we can prove the following.

|pt (h) − π (h)| ≤
√

d (h)
d (g)

(
1 − 1

2
λ2

)t

⇔
√

d (h)
d (g)

(
1 − 1

2
λ2

)t

≤ d (h)
2d (V )

⇔
(

1 − 1
2
λ2

)t

≤
√

d (h) d (g)
2d (V )

⇔

exp
(

− tλ2

2

)
≤

√
d (h) d (g)
2d (V )

⇔

− tλ2

2
≤ ln

(√
d (h) d (g)
2d (V )

)
⇔

t ≥ 2 ln

(
2d (V )√
d (h) d (g)

)
/λ2

where V is the number of nodes in graph. For all graphs with approximately
constant degrees, the upper bound on the mixing time is ln(n)/λ2, which means
that the smaller the algebraic connectivity, the slower the convergence speed of
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over-smoothing. To slow down the speed, we first analyze the impact of edge
dropping [9] on algebraic connectivity from a theoretical perspective. Dropping
an edge in a given undirected graph does not increase any of its eigenvalues.
The eigenvalues before and after the topological change satisfy the following
interlacing Lemma 1 [9].

Lemma 1. Assuming G is an undirected graph with n vertices, and vi,vj are
two vertices of graph G. eij ⊂ E(G). Let Gdrop = G − eij. We have λ1(Gdrop) ≤
λ1(G) ≤ λ1(Gdrop) ≤ · · · ≤ λn(G).

The trace of the Laplacian matrix tr(L) =
∑N

i=1 λi(G) = 2E, where E is the
number of edges. Lemma 1 implies that there is at least one strict inequality:
0 ≤ λ2(G)−λ2(Gdrop) ≤ 2. The inequality indicates that reducing the edges will
decrease the algebraic connectivity.

To demonstrate the impact of different edge dropping strategies on algebraic
connectivity, we first consider adding an edge eij to the graph, where eij /∈ E . Let
qi be a one-hot vector with the i-th position as 1 and all other positions as 0. We
obtain the Laplacian matrix Ladd after adding an edge. We have Ladd = L+ΔL
and ΔL = ΔD −ΔA, where ΔD is the augmented degree matrix and ΔA is the
adjacency matrix. We have ΔD = qiq

T
i + qjq

T
j and ΔA = qiq

T
j + qjq

T
i . Then we

obtain Ladd = L + (qi − qj)(qi − qj)T which indicates that after adding an edge,
Ladd is composed of the original Laplacian matrix L and a rank one matrix.
Similarly, we can obtain that after dropping an edge, the Laplacian matrix of
graph G becomes Lremove = L − (qi − qj)(qi − qj)T . By combining the above
equation [21] with the previous part λ2(G) = min‖x‖2=1x

TLx and letting u
represent the eigenvector corresponding to the algebraic connectivity of L, we
can compute the upper bound of the algebraic connectivity after dropping an
edge. λ2(Gdrop) ≤ xTLx = λ2(G) − (ui − uj)2. When we drop a set of edges
Em ⊂ E , the upper bound of the algebraic connectivity becomes λ2(Gdrop) ≤
xTLx = λ2(G) − ∑

k=(i,j)∈Em
(ui − uj)2. It can be observed that dropping the

top edges m based on the eigenvector corresponding to the algebraic connectivity
result in the most significant decrease in algebraic connectivity and slowing the
convergence speed of over-smoothing.

Degree-Based Sampling. Following Wang et al. [28], we propose a simple and
computationally less complex strategy to reduce algebraic connectivity: remov-
ing edges connected to high degrees. This results in a larger change in λ2(G).
Calculating eigenvector corresponding to algebraic connectivity and finding the
optimal edge dropping strategy computationally is infeasible. Balancing between
not disrupting important substructures in the graph during the edge dropping,
which can lead to a decrease in the performance of graph neural networks, and
slowing down the convergence rate of over-smoothing as much as possible is
desirable. Meanwhile, nodes with low degrees or nodes connected to nodes with
high degrees can only receive limited information or receive a lot of mislead-
ing information. Therefore, we use node degree as a metric to drop edges. We
perform node-degree-based sampling on the adjacency matrix, where edges are
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randomly dropped based on the size of node degrees. The higher the degree of a
node, the greater the probability that the edges connected to it will be dropped.
The formula for node degree-based sampling is as follows:

A(k)
de ∼ DegreeSample(A,D,p) (4)

Here, p denotes the dropping probability, which varies with the change in graph
neural network layers.

Fig. 2. Using cosine similarity to calculate node feature similarity.

Node Feature Similarity Sampling. We propose a method of edge drop
based on node feature similarity, called node feature similarity sampling. It uses
cosine similarity as the distance metric for node features between layers of the
network to dynamically adjust the probability of dropping edges, thus learning
both feature and structural information from the original graph data. We define
the feature vectors of node i and node j as h

(k)
i and h

(k)
j . The cosine similar-

ity of node features is linearly correlated with message passing between nodes.
The more dissimilar the feature similarity, the lower the probability of exchang-
ing information between them. The similarity calculation schematic diagram is
depicted in Fig. 2. We define the similarity of the nodes between node i and node
j in the k-th layer of the graph neural network as s

(k)
ij

s
(k)
ij =

‖h(k)
i · h(k)

j ‖
‖h(k)

i ‖ · ‖h(k)
j ‖

(5)

In homogeneous graphs, it can measure the similarity between node fea-
tures. Nodes with more similar features are more likely to belong to the same
category. To facilitate subsequent network processing, we normalize the node
feature similarity. After passing the normalized node feature similarity matrix
and the adjacency matrix sampled based on node degrees obtained in the previ-
ous section are passed through an indicator function I(s(k)ij > γ). The adjacency
matrix obtained after sampling with our node feature similarity is

A(k)
drop(i,j) = I(s(k)ij > γ) =

{
1, if s

(k)
ij > γ and Adeg(i,j) > 0

0, otherwise
(6)
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Here, γ is a threshold value varying from datasets. This equation implies that
edges between nodes with different characteristics are more likely to be removed.

The node feature sampling method can alleviate the over-smoothing problem
by slowing the rate of information exchange between nodes of different types.
Compared to graph neural networks using subgraph sampling [36], our node fea-
ture sampling can enhance the expressive power of graph neural networks while
reducing computational complexity. It also does not require manual construc-
tion of the corresponding subgraphs, which offers better versatility. Compared
to DropEdge, our method not only mitigates the over-smoothing problem but
also further slows down the convergence speed of over-smoothing. Furthermore,
it retains more information on the characteristics of the input layer nodes, thus
enhancing the performance of graph neural networks.

In terms of heterogeneous graphs, when the adjacent nodes belong to dif-
ferent types, the features of the two nodes propagate misleading information,
which makes the nodes cannot distinguish between them. In graph representa-
tion learning, the meaning of node representations in each dataset is different,
and there are no unified tokens similar to those in computer vision and natural
language processing. Our node feature sampling method can still enhance the
performance of graph neural networks.

Overall Framework. After the analysis of the three parts above, the final ver-
sion of SimDrop is the integration of the Degree-based sampling and Node feature
similarity sampling. The detailed algorithm design is shown in Algorithm 1.

Algorithm 1 SimDrop
Input: The adjacency matrix A;The degree matrix D;The feature matrix H;The num-

ber of layers K;The drop rate p,the threshold γ;
Output: The set of Dropped adjacency matrices A = {A(1)

drop . . .A
(k)
drop};

1: Initialize A = {};
2: for layer K = 1, 2, · · · , k do
3: Compute S(k) = cos(H(k),H(k)T );

4: A
(k)
de ∼ DegreeSample(A,D,p);

5: A
(k)
drop = I(S(k),A

(k)
de , γ);

6: A ⋃
A

(k)
drop;

7: end for
8: return A
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5 Experiment

5.1 Experiment Setting

In this section, we apply our SimDrop on node classification tasks using five
datasets [13,25,33], including supervised and semi-supervised learning tasks.
Additionally, we perform an ablation study to examine the different components
of our method and analyze the loss throughout the training process.

Table 1. Datasets Statistics.

Dataset Node Edge Feature Class Training/Validation/Testing

Cora(full) 2708 5429 1433 7 1624/542/542

Citeseer(full) 3327 4732 3703 6 1995/666/666

Pubmed(full) 19717 44338 500 3 11829/3944/3944

Cora(semi) 2708 5429 1433 7 140/500/1000

Citeseer(semi) 3327 4732 3703 6 120/500/1000

Pubmed(semi) 19717 44338 500 3 60/500/1000

ogbn-arxiv 169343 1166243 128 40 90941/29799/48603

Flickr 89250 899756 500 7 50%/25%/25%

Dataset. First, we use three publicly available datasets: three standard citation
network datasets, Cora, CiteSeer, and PubMed. For fully supervised datasets,
we divide the dataset into training, validation, and testing sets at a ratio of 60%,
20%, and 20%. Then, we conduct the experiments on the Node Property Predic-
tion of Open Graph Benchmark and Flickr. In semi-supervised experiments, for
Cora, Citeseer, Pubmed and ogbn-arxiv, we evaluate the performance with accu-
racy, and for Flickr, we evaluate with micro-F1 scores. The statistics of overall
datasets are summarized in Table 1.

Configurations. In our experiments, the standard GCN model is combined
with backbone layers to construct our architecture. The overall experimental
design diagram is depicted in Fig. 1. Batch normalization and l2 normalization
are applied in the training process. Additionally, we use ReLU as the activation
function, and the proposed architecture is optimized using the Adam algorithm.
For every dataset and different layers, the number of learning rate, dropout
rate and the number of epochs is selected based on the highest cross-validation
accuracy.
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Baseline Methods. We compare our method SimDrop with other alleviat-
ing over-smoothing methods, including GCN [16], Dropedge [24], Jknet [31],
ResGCN [17], DenseGCN [17], Inception GCN [26]. We apply these methods to
various GCNs as baseline models and compare their performance across different
datasets in both fully-supervised and semi-supervised tasks.

Backbone Models. We apply the SimDrop method to three popular network
architectures: ResGCN, Inception GCN, and DenseGCN. For ResGCN, resid-
ual connections at each layer are used to capture effective information from the
early layers of the network. For DenseGCN, dense connectivity between layers is
leveraged to improve information flow in the network and capture node feature
information effectively. For InceptionGCN, an Inception structure is employed
to decompose convolutional layers and regularize to enhance computational effi-
ciency. We adopt the DropEdge method and our SimDrop method to three net-
work architectures: ResGCN, Inception GCN, and DenseGCN. And we compare
and analyze their performance with GCN and JKnet.

5.2 Experimental Results and Analysis

A Node Classification Analysis. Table 2 summarizes the results for the deep
models with varying layer counts in fully-supervised tasks. For the node classifi-
cation task, performance is evaluated by accuracy on three public datasets: Cora,
CiteSeer, and PubMed. We can see that the impact of SimDrop methods varies
across different datasets, backbone models, and layer configurations. For exam-
ple, SimDrop methods on DenseGCN obtain an average accuracy improvement
of 1.9% on Pubmed in 32 layers, while 0.1% on Citeseer in 32 layers. It is evi-
dent that SimDrop consistently outperforms NoDrop and DropEdge in enhanc-
ing performance across all backbones and varying layer configurations. When
using DenseGCN or IncepGCN as the backbone, SimDrop generally maintains
stability with increasing layers and nearly achieves the best performance.

Table 3 summarizes the results in semi-supervised tasks. We can see the clas-
sification performances of our SimDrop method outperform the baseline methods
on semi-supervised tasks. Especially with a 1% improvement on the Cora dataset
comparing with NoDrop method and DropEdge. A reasonable explanation is
that our SimDrop method can learn more feature and structural information
from graph data and slow down the convergence speed of over-smoothing.

B Training Process Analysis. We conduct experiments on various graph
neural networks to analyze the loss throughout the training process. Figure 3
illustrates the variation of loss throughout the training process of using different
graph neural network strategies in Cora, Citeseer, and Pubmed dataset. The
experimental results indicate that our SimDrop strategy achieves the fastest
convergence and the most stable performance among all methods.
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Table 2. Testing accuracy(%) on full-supervised tasks.

Dataset Model 2 layers 4 layers 8 layers 16 layers 32 layers 64 layers

Cora GCN 85.6 85.1 78.6 82.4 72.5 51.6

ResGCN – 84.3 84.6 84.2 85.5 66.8

DenseGCN – 85.6 84.2 85.4 84.3 84.2

Incep GCN – 82.6 83.0 84.4 84.1 84.3

ResGCN Drop – 86.1 86.6 84.1 61.9 31.8

DenseGCN Drop – 87.2 86.6 86.2 87.6 86.8

incep Drop – 86.7 85.9 87.6 86.3 87.2

JKNet – 84.3 83.5 84.1 84.2 85.2

Res SimDrop – 86.8 87.1 85.0 62.2 31.9

Dense SimDrop – 87.6 86 86.2 87.1 87

Incep SimDrop – 87.1 86.6 87.6 86.9 87.8

Citeseer GCN 75.8 76.2 74.8 65.3 58.4 43.2

ResGCN – 75.1 74.4 74.7 75.8 70.9

DenseGCN – 75.6 76.1 76.1 74.8 76.2

Incep GCN – 75.7 75.5 74.7 75.3 75.2

ResGCN Drop – 77 76.9 78.7 60.9 23.1

DenseGCN Drop – 77.6 77.4 78.2 77.4 78.2

Incep Drop – 76.5 77.7 77.5 77.6 78.6

JKNet – 72.3 73.4 72.2 72.4 72.3

Res SimDrop – 77.1 77.7 78.1 61.9 23.4

Dense SimDrop – 76.8 78.4 78.4 77.5 78.9

Incep SimDrop – 77.4 77.4 77.5 77.8 78.0

Pubmed GCN 86.5 86.8 85.4 85.2 85.3 78.4

ResGCN – 85.9 86.8 87.1 85.5 84.6

DenseGCN – 86.6 86.5 86.5 86.6 OOM

Incep GCN – 86.2 86.7 86.9 86.6 OOM

ResGCN Drop – 87.4 87 87.1 82.6 50.6

DenseGCN Drop – 87.5 86.6 87.5 85.3 OOM

Incep Drop – 87.1 87.2 87.6 86.3 OOM

JKNet – 87.5 86.6 86.4 86.6 86.5

Res SimDrop – 87.6 87.1 87 83.2 69.1

Dense SimDrop – 87.5 87.5 87.7 87.2 OOM

Incep SimDrop – 86.9 88.0 87.8 86.7 OOM

C Ablation Study. In this section, we explore different components of our
SimDrop. Figure 4 presents the results of an ablation study that assesses the
contributions of our two techniques based on the ResGCN model: degree-based
sampling and node feature similarity sampling. The ND results indicate that
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Table 3. Testing accuracy(%) on semi-supervised tasks. micro-F1 scores for Flickr
dataset.

Model Dataset

Cora Citeseer Pubmed ogbn-arxiv Flickr

GCN 80.7 69.6 77.5 70.46 50.10

ResGCN 78.7 64.3 75.2 70.55 50.09

DenseGCN 78.9 66.4 76.2 70.93 50.07

IncepGCN 68.2 66.3 76.4 70.74 51.64

ResGCN Drop 79.4 69.5 76.2 70.66 51.78

DenseGCN Drop 81.4 66.9 76.4 70.83 51.66

Incep Drop 80.4 67.7 68.3 70.77 51.65

ResGCN SimDrop 81.1 70.0 77.2 70.89 51.90

DenseGCN SimDrop 82.4 69.1 76.7 71.01 52.07

Incep SimDrop 81.9 68.3 78.0 71.23 51.94

Fig. 3. Training loss on different datasets. Left: Cora; Middle: Citeseer; Right: Pubmed.

ResGCN helps mitigate the over-smoothing issue. However, compared to ND,
the DD results reveal that degree-based sampling benefits shallow layers but
falls short for deeper layers. Additionally, when combined with node feature
similarity sampling, the model shows significant improvement, highlighting the
importance of learning node feature information for deep GCNs.

Fig. 4. Accuracy comparison of different components. Left: Cora; Right: Citseer (ND:
NoDrop. DD: Degree Drop. FD: Feature Drop. SD: SimDrop).
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6 Conclusion

In this paper, we theoretically analyse the impact of algebraic connectivity and
edge dropping on alleviating the over-smoothing problem and propose two effec-
tive edge dropping methods inspired by theoretical analysis: edge dropping based
on node degree and edge dropping based on node feature similarity. Edge drop-
ping based on node degree can slow down the convergence rate of over-smoothing,
while edge dropping based on node feature similarity can enhance the expressive-
ness of deep graph neural networks. Our overall framework, SimDrop, combines
these two methods and applies them to node classification tasks in both full-
supervised and semi-supervised learning settings. Experimental results demon-
strate that our method achieves better performance in both shallow and deep
models.
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27. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

28. Wang, H., Van Mieghem, P.: Algebraic connectivity optimization via link addi-
tion. In: 3d International ICST Conference on Bio-Inspired Models of Network,
Information, and Computing Systems (2010)

29. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871. PMLR (2019)

30. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

31. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.I., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks. In: International
Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

32. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1511.07122


84 G. Zhang and L. Bai

33. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph
sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019)

34. Zhang, L., Yan, X., He, J., Li, R., Chu, W.: Drgcn: dynamic evolving initial residual
for deep graph convolutional networks. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, pp. 11254–11261 (2023)

35. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architec-
ture for graph classification. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

36. Zhao, L., Jin, W., Akoglu, L., Shah, N.: From stars to subgraphs: uplifting any
gnn with local structure awareness. arXiv preprint arXiv:2110.03753 (2021)

37. Zheng, C., et al.: Robust graph representation learning via neural sparsification.
In: International Conference on Machine Learning, pp. 11458–11468. PMLR (2020)

http://arxiv.org/abs/1907.04931
http://arxiv.org/abs/2110.03753


A Quantum-inspired Approach to
Estimate Optimum-Path Forest Prototypes
based on the Traveling Salesman Problem

Maria Angélica Krüger Miranda1 , Felipe Fernandes Fanchini2 ,
Leandro Aparecido Passos2 , Douglas Rodrigues2 ,

Kelton Augusto Pontara da Costa2(B) , Rafał Sherer3 ,
and João Paulo Papa2

1 Institute of Computing, Campinas State University - UNICAMP, Campinas, Brazil
2 São Paulo State University (UNESP), School of Sciences, Bauru, Brazil

kelton.costa@unesp.br
3 Institute of Computational Intelligence, Czestochowa University of Technology,

Czestochowa, Poland

Abstract. Quantum mechanics emerge as a promise for the future of
computing, broadening the horizons for solutions concerning complex
tasks, e.g., NP-hard problems. Alongside quantum computing, machine
learning has become indispensable. This paper explores the potential
integration of quantum computing principles into the Optimum-Path
Forest (OPF), a graph-based framework comprised of solutions for
machine learning, optimization, and image processing. We are partic-
ularly interested in the supervised OPF approach, which elects the most
representative samples for each class, aka prototypes, as the connected
samples from different classes in a minimum spanning tree (MST) com-
puted over the training set. By harnessing quantum parallelism and
superposition, this paper introduces a new approach to identifying pro-
totypes employing a quantum-based Traveler Salesman Problem (TSP)
algorithm, which provides an alternative to computing MSTs and yields
a hybrid version of the OPF classifier. The experiments on established
datasets demonstrated the promising potential of this approach while
also underscoring the necessity for further research in this field.

Keywords: Quantum Computing · Machine Learning · Quantum
Optimization · Optimum-Path Forest.

1 Introduction

The functioning of the human brain has intrigued many scientists since ancient
times. The study and replication of cognition for the computational environ-
ment begin with modeling the first artificial neuron by Warren McCulloch et
al. [16]. From this point on, the field of artificial intelligence and machine learn-
ing (ML) gained strength and prominence until becoming fundamental in today’s
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activities. However, although artificial intelligence has broad applicability, it is
constrained to highly complex problems on traditional computers and issues
involving the manipulation of large volumes of data, which impose a challenging
task even for the supercomputers available today.

Parallel to ML, quantum computing has recently received attention follow-
ing the introduction of the first quantum computers, which are now a subject of
interest for businesses and academics alike, with significant investments in this
field. Quantum computers leverage fundamental principles of quantum mechan-
ics, such as superposition and entanglement of states, which are crucial for mod-
eling physical phenomena observed in quantum mechanics [4]. Theoretically, this
paradigm could help solve problems that traditional computers cannot tackle in
a feasible amount of time, e.g., large number decomposition into prime factors,
searching for elements in unordered lists, and optimization problems. Such cir-
cumstances have encouraged huge and increasing investments from big compa-
nies in developing and advancing this technology.

Recent research indicates that quantum computing may address certain
obstacles faced in machine learning [1,8,26], giving rise to a new study area
known as Quantum Machine Learning (QML). By integrating concepts from
physics, mathematics, and computing, QML broadens the scope of challenges
that can be tackled by machine learning. It also has the potential to decrease
computational load, enhance classification rates, and significantly improve the
efficiency of these algorithms.

While quantum computing holds great promise in theory, its practical appli-
cation in complex scenarios is hampered by the instability of its atomic units
(qubits) and the high resource demand for information representation. Fortu-
nately, researchers have developed hybrid machine learning models that blend
quantum and classical algorithms to overcome these limitations. By harnessing
the power of quantum concepts, these models can significantly improve the per-
formance of machine learning. Ongoing efforts to adapt conventional ML tech-
niques to the quantum realm and develop hybrid models hold great potential for
expanding the field in novel and exciting directions.

This work proposes a hybrid version of the Optimum-Path Forest (OPF),
a framework for designing pattern classifiers based on graphs. We are particu-
larly interested in the supervised OPF with a complete graph [19,20], which has
been applied to various applications. Some of them include the description of
textures in images [18], diagnosis of laryngeal diseases [21], and classification of
fingerprints [17], among others [22,23,28].

In short, it implements a novel OPF version that replaces the standard pro-
cedure of computing the prototypes, i.e., the nodes representing each class from
the training set, by a quantum implementation of the Traveling Salesman Prob-
lem (TSP) algorithm. Experiments conducted over a limited1 amount of samples
from the Boat dataset shows that the hybrid approach can obtain similar results

1 A restricted number of samples is imposed due to the limitation of actual quantum
computers.
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under a quantum environment. Therefore, the main contributions of this paper
are described as follows:

OPF-based algorithms perform pattern classification through a reward-
competition process, in which key nodes called prototypes compete among them-
selves to conquer the remaining samples. What differentiates one OPF from
another concerns the amount of labeled data and the problem itself. Regarding
supervised learning, the OPF with a complete graph is the most used approach
due to its straightforward formulation. The prototypes found by a minimum
spanning tree (MST) over the training set are the nearest samples from different
classes, further used to start the competition process.

The fundamental idea involves a quantum-inspired TSP algorithm to
encounter the OPF prototypes during the training phase, i.e., the most repre-
sentative samples belonging to distinct classes. Since TSP is NP-hard, quantum
computing can solve it by taking advantage of parallelism and processing multi-
ple possibilities simultaneously. Experiments conducted on a limited number of
samples2 from well-known datasets showed that the proposed hybrid approach
could achieve similar or superior results in a quantum environment.

The main contributions of this article are described below:

– To introduce a hybrid version of the Optimum-Path Forest classifier that
figures prototype computation using quantum computing;

– To implement a novel approach to compute OPF prototypes using Traveling
Salesman Problem algorithm; and

– To introduce a hybrid OPF classifier that combines traditional and quantum
computing elements.

The remainder of this paper is organized as follows. Section 2 provides the
theoretical background concerning the supervised OPF and quantum machine
learning, while Section 3 describes the proposed approach. Following, Section 4
describes the datasets and experimental setup. Finally, Sections 5 and 6 state
the experimental results and conclusions, respectively.

2 Theoretical Background

2.1 Optimum-Path Forest

Optimum Path Forest is a graph-based framework for machine learning that
models dataset samples as the nodes of a graph whose arcs describe the rela-
tionship between each pair of instances. The supervised version proposed by
Papa et al. [19,20] arranges the training instances as a fully connected graph
whose edges are weighted by the distance between pairs of vertices. Further, the
model computes an MST by adapting Prim’s algorithm, and the nodes connect-
ing samples from distinct classes are marked as prototypes inserted into a set P.
Finally, the prototypes compete among themselves in a conquering-like fashion
2 A restricted number of samples are imposed due to the limitation of real quantum

computers.
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to offer each remaining vertices an optimum cost computed through the fmax

function:

fmax(〈s〉) =
{
0 if s ∈ P,
+∞ otherwise

fmax(φs · 〈s,z〉) = max{fmax(φs), d(s,z)}, (1)

where s and z are arbitrary nodes, φs stands for a path rooted in P and the ter-
minus at sample s, and φs · 〈s,z〉 stands for the concatenation between the path
φs and the edge 〈s,z〉. Moreover, d(s,z) represents the distance between sam-
ples s and z. Finally, fmax(φs) denotes the maximum distance among adjacent
samples in the path φs .

The training step is then performed by assigning an optimum cost C(z) to
each sample z in the training set D:

C(z) = min
∀s∈D

{max{C(s), d(s,z)}}, (2)

where s represents the instance that conquered z.
The classification step computes the distances between each test instance

and every training node for further computing the minimum cost, similarly to
Equation 2. Finally, the test sample is labeled with the same label as the proto-
type associated with the path that offered the optimum cost. This procedure is
repeated until the entire test set is covered.

2.2 Quantum Machine Learning

Quantum Machine Learning regards distinct research areas dependent on the
combination of resources it consumes, i.e., classical and quantum data and com-
puting strategy [25]. The most explored area uses classical data and quantum
computing, namely the classical-quantum approach, which is usually employed
to encompass optimization problems. Such a procedure usually employs quan-
tum annealing, i.e., a method that considers intrinsic quantum properties to
solve optimization and probabilistic sampling problems.

Quantum annealing [5] is a process that models a problem as an energy land-
scape and prepares a ground state composed of n qubits. Further, it employs the
qubits’ superposition and entanglement properties to simulate different energy
states through the natural evolution of quantum physics and find the configu-
ration whose system’s energy is the lowest. The technique represents the input
data using Hamiltonians, a mathematical tool capable of describing the total
energy of a physical system.

Hamiltonians can be computed through the Quadratic Unconstrained Binary
Optimization (QUBO) [13], a problem whose solution is given by a binary vector
x ∈ �n that optimizes the following function:

minxtQx, (3)

where Q is a square symmetric matrix of order n of coefficients.
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Most machine learning techniques are based on optimization problems, i.e.,
such algorithms are designed to minimize an objective (cost) function. In graph-
based ML models, it is feasible to express the nodes’ connectivity using qubits
|0〉 and |1〉 through a binary sequence optimized by QUBO to represent the
presence or absence of each edge. QUBO is also helpful in solving traditional
graph problems like maximum cut, binary linear programming, graph coloring,
backpack problems, and traveling salesman problems.

Usually, QUBO problems can be solved using the Quantum Approximate
Optimization Algorithm (QAOA) [3], a hybrid variational algorithm developed
to cope with combinatorial optimization algorithms. However, a more recent
method called Feedback-Based Quantum Optimization (FALQON) [15] shows
itself more favorable for the task due to its advantages regarding the guaran-
tee of convergence by avoiding possible crashes in local minima. The algorithm
implemented using variational quantum circuits is based on optimal path theory
and the Trotter-Suzuki Theorem [12].

3 Quantum-inspired Prototype Computation

This paper discusses the challenge of prototype selection in quantum computing.
The conventional method of selecting prototypes in the OPF classifier involves
the MST. However, adapting it to the quantum context can be challenging since
it requires graph optimization. We are unaware of any paper that presents an
efficient approach to computing an MST in the quantum domain. The paper
proposes a novel approach to solving TSP using quantum algorithms, leveraging
that a TSP visiting all nodes once creates a Hamiltonian cycle that includes
all edges of an MST. Hence, one can simulate the TSP graph into an MST by
eliminating one edge from each cycle.

The TSP models a graph whose nodes represent cities and whose edges denote
the distance between each pair of nodes. Given an origin and a destination, the
method’s objective is to find the lowest-cost route that visits all cities exactly
once and returns to the origin. Regarding computational complexity, it is classi-
fied as an NP-hard problem, which means no known algorithm can provide the
global best solution in polynomial time.

Let G = (V,E) be a graph where V and E denote the set of vertices and
edges, respectively, and each edge (vi, vj) ∈ E has an associated weight wij , i.e., a
distance between its corresponding vertices vi, vj ∈ V . The TSP can be described
using a binary sequence that indicates whether the edge (vi, vj) is present (eij =
1) or not (eij = 0) in the problem solution. One can mathematically formulate
this problem through the minization of the following cost function:

C(x) =
∑
i

∑
j>i

wijeij +

⎛
⎝∑

i

∑
j>i

eij − n

⎞
⎠

2

+

⎡
⎢⎣∑

i

⎛
⎝∑

j �=i

eij − 2

⎞
⎠

2
⎤
⎥⎦ ,

(4)
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where the first term concerns the lowest-cost path, the second ensures that the
number of edges must equal the number of nodes n, and the third guarantees
that each vertex must contain two edges.

The TSP can be adapted to the quantum computing domain by adjusting
the cost function presented in Equation 4 in Hamiltonian terms and representing
the variable eij as Z̃ij , described as follows:

Hc =
∑
i

∑
j>i

wijZij + P1

⎛
⎝∑

i

∑
j>i

Zij − n

⎞
⎠

2

+ P2

⎡
⎢⎣∑

i

⎛
⎝∑

j �=i

Zij − 2

⎞
⎠

2
⎤
⎥⎦ ,

(5)

where P1 and P2 are ad-hoc parameters (weights for each restriction), and Z is
an operator that plays the role of the quantum computing3. The Hamiltonian
Hc describes all graph configurations and those that do not meet the above
restrictions will be penalized so that they are not considered possible solutions
when searching for the lowest energy state [10].

4 Methodology

This section describes the datasets and experimental setup employed to evaluate
the proposed approach.

4.1 Datasets

1. Boat [14]: a synthetic dataset that comprises 100 samples distributed into
three classes, each represented by two variables. The choice is motivated by
the ease of manipulation and visualization.

2. Breast Tissue [24]: a small real-world dataset containing 106 breast tissue
instances represented by nine features distributed into six irregular pattern
classes, i.e., carcinoma, fibro-adenoma, mastopathy, glandular, connective,
and adipose.

3. Heart [7]: a real dataset containing 303 samples represented by 13 features
and distributed across two classes.

4. Diabetes [11]: a real dataset containing 768 samples represented by 8 features
and distributed over two classes.

5. Ionosphere [27]: a real dataset containing 351 samples represented by 35
features and distributed over two classes

3 Due to the lack of space, we did not detail the formalism concerning quantum oper-
ators.
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6. LungCancer [6]: a real dataset with 59 samples represented by 6 features
across two classes.

Processing large matrices poses hardware limitations, limiting the usage of the
complete datasets. We randomly selected eight samples from each dataset only,
respecting the label proportions. Four were used to compose the training set,
and the remaining were part of the test set.

4.2 Experimental Setup

This work employs the OPFython [2], a Python-based library that implements
the OPF framework. The supervised OPF addressed in this manuscript models
the training set as a complete graph whose adjacency relationship is established
by the Euclidean distance between the vertices. Afterward, the graph nodes
are normalized to assemble the Hamiltonian described in Equation 5, which is
further minimized using FALQON [29]. The prototypes (connected samples in
the TSP graph solution with different labels) are then selected, and the standard
(classifical) OPF training procedure is performed. Figure 1 depicts the proposed
approach.

After the dataset is partitioned into four samples for training and four for
testing purposes, the Quantum TSP replaces the standard procedure to gen-
erate the prototypes. The method employs the QuTip [9] library to assemble
the matrix operations and the Hamiltonian, whose weights P1 = 9 and P2 = 7
(Equation 5) were selected through a grid search in the range {2, 3, . . . , 30}. Fur-
ther, the FALQON algorithm is performed during 10, 000 iterations to optimize
the Hamiltonian, i.e., to minimize the system’s energy state.

Finally, the prototypes are derived from the closed Hamiltonian cycle
obtained in the previous step. This selection process is akin to the standard
OPF, whereby nodes connected to samples from distinct classes are designated
prototypes. The algorithm then proceeds to the subsequent training phase, which
assembles the forest of optimum paths.

The procedure was constructed using Python 3.11 with the support of the
OPFython libraries in version 1.0.12, Qiskit 0.43.0, and Qutip 4.7.1. Further-
more, the Pipenv virtual environment manager was used to control the project’s
dependencies. The experiments were conducted using a Windows 10 system run-
ning on an AMD R© Ryzen 5 3500U processor with 16 GB of memory and a
Radeon R© 540X Series GPU.
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Fig. 1. The pipeline describes the OPF training using the TSP to find prototypes
where the light green module runs in a quantum computer.

5 Experiments and Results

The experiments involved two scenarios: (i) the first evaluates FALQON’s con-
vergence to the minimum energy state and its compatibility with the TSP graph
solution, and (ii) the second scenario assesses the model’s effectiveness.

5.1 Convergence Analysis

The main focus of these experiments is to verify whether the FALQON algorithm
converges to the lowest energy state and whether this state adequately represents
the solution graph of the TSP problem. Due to the extensive computational
complexity demanded by large matrix computations in a quantum context, the
experiments were repeated 100 times per dataset using a considerably reduced
number of randomly selected balanced instances per execution, i.e., four samples
for training and four for testing purposes.

In the first experiment, we considered the Boat dataset under two scenarios:
eight and ten samples. Figure 2a depicts the convergence curve, i.e., the system’s
energy is minimized throughout the iterations. Furthermore, Figure 2b indicates
the probability associated with each graph model. Since we have a graph with
four nodes, the total number of edges is six for a complete graph. Considering
QUBO formulation assigns a binary value to each edge, i.e., it will compose the
solution or not, we have 26 possible solutions (states). The one with the highest
probability is the solution that minimizes the system’s energy. It is worth noting
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that both the classical and the quantum models achieved accuracy of 100%.
While classical OPF took an average training time of 0.5 seconds, its counterpart
quantum version required 27 seconds.

Fig. 2. (a) Convergence analysis and (b) the probability associated to each possible
solution (state) for the first scenario.

An additional experiment considered the Boat dataset with ten samples,
i.e., five for training and five for testing purposes. Figures 3a and 3e illustrate
the convergence curve and the probability associated with each state (now we
have 210 possible solutions). Both models achieved an accuracy of 50%. Training
averaged 0.96 seconds for the classical OPF and 5 hours for the quantum version.

Fig. 3. (a) Convergence analysis and (b) the probability associated to each possible
solution (state) for the second scenario.

The second experiment considers all datasets mentioned earlier to evaluate
the efficiency of quantum TSP algorithms. Table 1 presents the averaged accu-
racy obtained for each dataset, and Table 2 shows the training time for each
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OPF version. It is essential to highlight that the number of executions for the
quantum algorithms was 5, 000, and each model was trained 25 times on each
dataset to calculate the averaged accuracy.

Table 1. Average accuracies for each dataset and algorithm

Traditional OPF Quantum OPF (TSP) )

Boat 0.85 0.79
Breast Tissue 0.75 0.76

Heart 0.58 0.53
Diabetes 0.63 0.56

Ionosphere 0.62 0.54
LungCancer 0.83 0.7

Average 0.6866 0.6466

Table 2. Average training time for each dataset

Traditional OPF Quantum OPF (TSP)

Boat 0.01592 19.55148
Breast Tissue 0.01826 25.65221

Heart 0.01989 15.63850
Diabetes 0.02731 24.67932

Ionosphere 0.02542 24.30720
LungCancer 0.02202 25.43112

Average 0.02147 22.543305

Although the classical version of OPF achieved the best accuracy and training
times, the quantum model also presented similar accuracy. However, in terms
of execution time, quantum algorithms exhibited longer average times due to
the need to simulate the algorithm on a conventional machine. It is important
to note that implementing the TSP algorithm requires controlling the collapse
of the quantum state after the simulation, which can be challenging and time-
consuming. We also highlight the main idea of this manuscript is not (yet) to
present a quantum-based approach that can be more efficient than classical OPF
but to show its viability instead. We expect these results to be more efficient
when more robust quantum computers are available.

5.2 Discussion

One can observe that classical and TSP-based OPF versions achieved similar
results in the first set of experiments, and quantum TSP was able to find the
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minimum energy solution. Although the classical and quantum models did not
reach 100% accuracy in the second scenario, i.e., the Boat dataset with five sam-
ples for training, they exhibited similar behavior. Concerning the entire dataset
experiment, both versions achieved close effectiveness, with classical OPF being
much faster. Again, we have no access to native quantum computers, i.e., all
experiments were simulated in a classical computer, affecting TSP-based OPF
efficiency.

Extensive research efforts are dedicated to optimizing algorithms and increas-
ing their efficiency. Quantum searches, such as Grover’s algorithm, have been a
particular area of focus, as they can significantly accelerate search processes in
some instances. This method could enhance the performance of MST algorithms.
However, perfecting its practical application remains challenging, as current out-
comes are less satisfactory than those produced by classical computing. More-
over, quantum computing technology is still in its early stages, which means
that even promising theories may need more practical implementation due to
technological constraints. Despite these challenges, the FALQON algorithm has
consistently achieved optimal results for the TSP in various test scenarios. Its
reliability makes it a valuable tool for finding optimal solutions.

Furthermore, the reliable results from these experiments underscore the prac-
tical and valuable applications of quantum modules in optimization problems,
especially as quantum technology becomes more readily available. This research
implies that the quantum method exhibits excellent potential despite the con-
straints of present simulation technology. As quantum technologies progress, the
integration of algorithms such as FALQON holds even greater promise, given
the possibility of its full deployment instead of the simplified approach.

Regarding the computation burden, training models using the quantum mod-
ule take considerably longer than the classical module, mainly when dealing with
the five-vertex graph. This is because the module is ran and simulated on a clas-
sical computer rather than being implemented through quantum circuits that
are parameterized on quantum hardware computers.

6 Conclusions

This study has demonstrated that it is feasible to integrate quantum imple-
mentation elements into machine learning models. Although access to quantum
computers is still limited, adapting these models to the quantum context can
significantly enhance performance and pave the way for promising future appli-
cations, thereby advancing research at the intersection of quantum computing
and machine learning.

Upon careful analysis, this work successfully achieves its intended purpose by
exploring the fundamental principles of quantum computing and optimization
and utilizing the OPF classifier, which boasts a multitude of practical applica-
tions. The outcomes of this research establish a robust groundwork for further
investigation and demonstrate the potential of quantum techniques in augment-
ing conventional machine learning models. These findings imply that leveraging
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quantum methodologies to enhance the OPF classifier can lead to significant
progress at the intersection of quantum computing and classical machine learn-
ing.

6.1 Challenges

During the preparation of the quantum module, several challenges were faced.
The first challenge involved working with large-scale matrices, which presented
a significant technical difficulty. The second challenge related to the FALQON
algorithm simulation using the Qiskit library required additional efforts to handle
this resource effectively.

Moreover, when solving the Traveling Salesman Problem using the QUBO
formulation, each edge in the graph is represented as a qubit, meaning that a
graph with n edges will need n qubits to be properly represented in a quantum
context. However, this approach presents computational challenges, especially
when determining the size of matrices used to describe the operators in the
Hamiltonian. To represent these operators, n matrices of order 2n are required
for every n number of edges in the graph. For instance, a complete graph model
with four samples is formed by six edges, resulting in an operator with dimensions
of 6×64×64 (six quadratic matrices of order 64). As the number of edges grows,
so does the memory needed to store these matrices, making it challenging to train
models with large datasets.

6.2 Future Works

Based on the study’s results and analysis, several promising directions for future
research can improve the algorithm’s efficiency. Initially, deep research in quan-
tum optimization is essential to enhance the FALQON algorithm so that quan-
tum simulations can be carried out through the Qiskit library and experiments
using real quantum hardware.

Additionally, investigating techniques for manipulating large matrices and
modeling quantum graphs can expand the training set, enabling the analysis
of the quantum solution’s advantage in larger datasets compared to classical
models.
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Abstract. Facial super-resolution/hallucination is an important area of research
that seeks to enhance low-resolution facial images for a variety of applica-
tions. While Generative Adversarial Networks (GANs) have shown promise
in this area, their ability to adapt to new, unseen data remains a challenge.
This paper addresses this problem by proposing an incremental super-resolution
using GANs with knowledge distillation (ISR-KD) for face to cartoon. Previous
research in this area has not investigated incremental learning, which is critical
for real-world applications where new data is continually being generated. The
proposed ISR-KD aims to develop a novel unified framework for facial super-
resolution that can handle different settings, including different types of faces
such as cartoon face and various levels of detail. To achieve this, a GAN-based
super-resolution network was pre-trained on the CelebA dataset and then incre-
mentally trained on the iCartoonFace dataset, using knowledge distillation to
retain performance on the CelebA test set while improving the performance on
iCartoonFace test set. Our experiments demonstrate the effectiveness of knowl-
edge distillation in incrementally adding capability to the model for cartoon
face super-resolution while retaining the learned knowledge for facial halluci-
nation tasks in GANs. The code is released at https://github.com/TRINETRA-
DEVKATTE/ISR-KD-Network.

Keywords: Knowledge Distillation · Incremental Learning · Face to Cartoon
Super-Resolution

1 Introduction

Facial super-resolution/hallucination is a crucial field of research that aims to enhance
the quality of low-resolution facial images for various applications, including security
systems, medical imaging, and entertainment [24]. Generative Adversarial Networks
(GANs) [7] have shown promising results in facial super-resolution tasks [31]. How-
ever, one of the challenges faced by GANs is with their limited ability to adapt to
new and unseen data. This limitation becomes particularly critical in real-world sce-
narios where new facial data is continuously generated, such as in surveillance systems
or video streaming platforms.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 99–114, 2025.
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In this work, we address this challenge by exploring the potential of incremen-
tal learning in the context of GAN-based facial super-resolution. Incremental learning
enables the model to continually learn and adapt to new data while retaining knowl-
edge acquired from previous training stages [27]. The proposed Incremental Super-
Resolution with Knowledge Distillation (ISR-KD) aims to develop a unified frame-
work for facial hallucination that can handle various settings, including different types
of faces and different levels of detail. The proposed ISR-KD leverages the benefits of
knowledge distillation [10] to retain the performance of the pre-trained GAN-based
super-resolution network while incrementally learning from new data.

To evaluate the effectiveness of our approach, we consider a pre-trained GAN-based
super-resolution network on the CelebA dataset, which consists of a large collection of
celebrity faces, and then incrementally train the network on the iCartoonFace dataset
for super-resolution, which contains cartoon-style images. The knowledge distillation
loss is utilized for training. The experimental results demonstrate the effectiveness of
knowledge distillation in incrementally expanding the model’s capability for facial hal-
lucination tasks within the GAN framework. The ability to incrementally adapt to new
data and retain previously learned knowledge makes the proposed approach highly suit-
able for real-world applications where the facial data distribution evolves over time. The
major contributions of this paper are as follows:

– This paper proposes an Incremental Super-Resolution technique using Knowledge
Distillation (ISR-KD) for exploiting the existing knowledge for super-resolution on
new types of images without training from scratch.

– The proposed model is originally developed and trained for face super-resolution
and incrementally trained for cartoon face super-resolution.

– The proposed model is able to improve the cartoon face super-resolution perfor-
mance with negligible performance drop for original face super-resolution.

In the remainder of this paper, Sect. 2 provides a comprehensive review of litera-
ture while Sect. 3 presents the proposed ISR-KD framework. Sections 4 and 5 describe
the experimental setup and the experimental results, respectively. Finally, concluding
remarks are drawn in Sect. 6.

2 Related Work

2.1 Incremental Learning and Knowledge Distillation

Incremental learning has been widely exploited in computer vision for different appli-
cations to incrementally add new classes to a trained model [30]. Knowledge distillation
is also heavily utilized to transfer the gained knowledge from one model to other model
or one type of data to other type of data [8,21]. Welling et al. [25] proposed herding
selection criterion to choose samples from the previous dataset. The incremental Clas-
sifier and Representation Learning (iCaRL) was proposed by Rebuffi et al. [20] which
first extracts features using new data and then performs classification using nearest mean
of exemplars rule, after that it combines the classification and distillation loss to adjust
the exemplar. End-to-End Incremental Learning (EEIL) was proposed by Castro et al.
[2] to perform feature extraction and classification. EEIL uses a joint loss function for
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classification and distillation. The problem of class imbalance was addressed by Hou
et al. [11] by proposing a unified classifier and incremental learning. Bias Correction
Layer (BiC) was introduced by Wu et al. [27] to handle the last fully connected layer
being biased towards new classes.

Chenshen et al. [26] proposed memory replay GANs which combats catastrophic
forgetting problems by joint retraining and aligning replays. Mengyao et al. proposed
Lifelong GAN [29] which used knowledge distillation to combat catastrophic forgetting
by encouraging the model to produce visually similar results to a pre-trained model.
The Learning without Forgetting (LwF) [15] method proposed by Li and Hoiem in
2017 prevents catastrophic forgetting by adding task-specific parameters to the original
model when learning a new task. However, LwF requires storing parameters for each
learned task and is dependent on the correlation between the tasks. Dhar et al. (2019)
proposed Learning without Memorizing (LwM) [4] that allows a model to learn new
classes incrementally without requiring data from base classes. This is achieved by
restricting the divergence between student and teacher models using attention maps
generated from the gradient flow information.

Though incremental learning is widely used to add new classes and knowledge dis-
tillation is heavily utilized for light-weight models, they are not well explored for super-
resolution over new type of images. In this paper, the incremental learning facilitated by
knowledge distillation is exploited for face to cartoon incremental super-resolution.

2.2 Face Super-Resolution

In recent years, deep learning models have shown outstanding performance for Face
Super-Resolution (FSR) [13]. Hao et al. [5] proposed PCA-SRGAN which pays atten-
tion to the cumulative discrimination in the orthogonal projection space spanned by a
PCA projection matrix of face data to improve the performance of GAN-based mod-
els on super-resolving face images. The Edge and Identity Preserving Network (EIP-
Net) [14] addresses the distortion of facial components by providing edge information
and data distributions. A generative and controllable face super-resolution (GCFSR)
framework is introduced in [9] that reconstructs high-resolution images while preserv-
ing identity information without additional priors. A deep FSR method with iterative
collaboration between two recurrent networks is proposed in [19] by leveraging the
facial landmarks for image recovery and accurate landmark estimation. A supervised
pixel-wise GAN (SPGAN) is investigated in [32] that performs the super-resolution at
different scales while considering face identity. The denoising diffusion probabilistic
models are combined with image-to-image translation to perform super-resolution via
repeated refinement [23].

A pre-prior guided approach is exploited in [18] that extracts facial prior infor-
mation from high-resolution images and embeds them into low-resolution images to
improve face reconstruction performance. Shuang et al. [16] uses a multi-scale deep
network that incorporates both global and local facial priors to generate high-quality
super-resolved face images. First, the feature extraction module extracts multi-scale
features of the input image, then the super-resolution module utilizes these features
along with the facial parsing prior to generate high-quality super-resolved face images.
The 3D facial priors are incorporated into face super-resolution in [12] by exploiting
the facial structures and identity information for improved performance.
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Fig. 1. Proposed face to cartoon incremental super-resolution method using knowledge distilla-
tion. Conv, ReLU, and T conv represent Convolution Layer, ReLU Layer, and Transpose Con-
volution Layer, respectively. Pre-trained FSR Generator is trained on CelebA Dataset. The incre-
mental FSR Generator is initialized with weights of Pre-trained FSR Generator and trained on
combined CelebA and iCartoonFace images using the proposed method.

A SPARNet architecture is proposed in [3] for face super-resolution by leverag-
ing spatial attention mechanisms to capture key face structures effectively. SPARNet
achieves promising performance, even for very low-resolution faces. A self-attention
learning network (SLNet) is proposed in [28] for three-stage face hallucination. SLNet
leverages the interdependence of low and high-level spaces to achieve better recon-
struction. A CNN-Transformer Cooperation Network (CTCNet) is investigated in [6]
for face hallucination by incorporating a local-global feature cooperation module and a
feature refinement module to enhance the local facial details and global facial structure
restoration.

From the above, it appears that all existing works do not address the face super-
resolution with incremental learning, where the network is trained on one type of faces
and extended to other type of faces. This paper proposes the hallucination for face to
cartoon incremental learning scenario.
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3 Proposed Methodology

3.1 Problem Description

We tackle the problem of incremental super-resolution, where we consider a trained
model to perform super-resolution in source domain, i.e., IS

LR → IS
SR, and incre-

mentally train it to perform super-resolution in target domain, i.e. IT
LR → IT

SR, while
retaining the performance for super-resolution in source domain. In the experiments,
the source and target domains are considered as human faces from CelebA dataset and
cartoon faces from iCartoonFace dataset, respectively.

Let IHR ∈ R
hHR×wHR×c be the high resolution image data, and ILR ∈

R
hLR×wLR×c be the corresponding low resolution image data, where hHR andwHR are

height and width of high resolution images, hLR and wLR are height and width of low
resolution images, and c is the number of channels. The image degradation function φ
can be described as,

ILR = φ(IHR, θ),

where θ represents the choice of kernel for down-sampling the image, and the random
noise is added to the image to account for random variations during the down-sampling.

Face super-resolution (FSR) is the inverse process of image degradation for down-
sampling a high resolution image. Mathematically, it is expressed as,

ISR = φ−1(ILR, δ) = G(ILR, δ),

where G is the FSR generator network with parameters δ, and the super-resolved image
is represented by ISR.

To update the FSR generator using incremental learning, we use a pre-trained FSR
generatorGS trained on the source domain images (IS

LR, I
S
HR) as a starting point. Then,

we train our Incremental FSR generator GT on a new dataset which is created using a
combination of source domain and target domain images. Using images from a source
domain while incrementally training for a target domain allows us to use knowledge
distillation. This helps us in combatting catastrophic forgetting problem. Knowledge
distillation is achieved by feeding the low resolution images from source domain IS

LR

as input to the pre-trained FSR generator GS as well as the incremental FSR generator
GT , simultaneously and comparing their outputs, i.e., IS

SR,S = GS(IS
LR) and IS

SR,T =
GT (IS

LR), using L2 loss. It Incentivizes the incremental FSR generator GT to maintain
its performance on the source domain task. The proposed method is illustrated in Fig. 1.

The incremental learning process combined with knowledge distillation can be for-
malized as follows,

δoptimal = argmin
δT

[
LT (IT

HR, GT (IT
LR, δT ))+

λLkd(GT (IS
LR, δT ), GS(IS

LR, δS))

]
, (1)

where LT is the loss function measuring the difference between the super-resolved
images IT

SR,T = GT (IT
LR, δT ) and the high-resolution images IT

HR in the target
domain. Lkd is the knowledge distillation loss function, which measures the differ-
ence between the outputs of the incremental FSR generator GT and the pre-trained



104 T. Devkatte et al.

FSR generator GS when fed with low-resolution images IS
LR from the source domain.

δS represents the parameters of the pre-trained FSR generator GS which are obtained
by training from scratch on source domain. δT represents the parameters of the incre-
mental FSR generator GT that are first initialized as δS and then updated to minimize
the combined loss.

The goal of the above objective is to update the parameters δT of the incremental
FSR generator GT in a way that minimizes the loss functions for target domain images,
while also ensuring that the knowledge distillation loss between GT and GS is min-
imized. It should be noted that δS is kept frozen while we train the incremental FSR
generator GT in an incremental fashion. The regularization coefficient λ balances the
importance of knowledge distillation loss in the overall objective.

3.2 Knowledge Distillation

The proposed method utilizes a pre-trained Facial Super-Resolution (FSR) generator
GS , as depicted in Fig. 1, which has been trained on source domain images from the
CelebA dataset. To ensure the stability of GS during the training process, all layers of
GS are frozen. This pre-trained FSR generator is then employed for knowledge dis-
tillation to mitigate the issue of catastrophic forgetting. Another generator, denoted as
GT (Incremental FSR generator), as shown in Fig. 1, is initialised using weights of
GS and incrementally trained on target domain images from the iCartoonFace dataset
and a small subset of images from the source domain CelebA dataset. Low resolution
images from source domain IS

LR are given as input to GS and GT , the generated super-
resolved images IS

SR,S and IS
SR,T are then used for knowledge distillation. Specifi-

cally, knowledge distillation is performed by computing the L2 loss between IS
SR,S and

IS
SR,T . Basically, this loss encourages the generatorGT to match the output of generator

GS for the source domain images, thereby preventing the forgetting of source domain
knowledge by the network GT .

Moreover, the outputs from bottleneck layers of GS and GT for low-resolution
images from source domain IS

LR are also compared using the L2 loss. This compari-
son ensures that the bottleneck representation of GT , which is actively being trained on
inputs from the target domain, does not deviate significantly from the bottleneck repre-
sentation of GS , which was trained on inputs from the source domain. The knowledge
distillation loss is expressed as follows,

Lkd = LR(IS
SR,S , IS

SR,T ) + LF (ht, hs), (2)

where IS
SR,S and IS

SR,T represent the outputs of the GS and GT , respectively, while hs

and ht indicate the hidden layer responses from the GT and GS , respectively for the
source domain images. LR represents the response-based loss, computed on the output
logits, and LF denotes the feature loss, computed from the hidden layer.

3.3 Edge Block

Traditional generative networks can lead to blurry images as high-frequency edge infor-
mation is often lost during image resizing and re-scaling. Edge information can be used
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Fig. 2. (left) Edge block having an edge extraction layer. Here, B is the batch size, H is the
height of tensor, W is the width of tensor, c is the number of channels in tensor, r is the scaling
factor and s is the stride variable. (right) A schematic diagram of Discriminator architecture.
Here, s indicates the stride and the list of numbers adjacent to s indicates the stride of convolution
layers grouped with the same number of output channels.

to improve the quality of images generated by face-generative networks by providing
additional guidance to the generator during training. The edge block allows the gener-
ator to better preserve the fine details of the input images, by capturing the structural
differences between two images rather than individual pixels. In addition, incorporat-
ing edge information can help to combat the disadvantages of using L2 loss, which is
sensitive to changes in individual pixels and causes the blurry generated images.

The edge block, as depicted in Fig. 2(left), plays a key role in leveraging edge infor-
mation within the facial resolution network. This block is designed to be computation-
ally efficient and consists of a low-pass filter constructed using an average pooling layer.
The edge block uses a variable kernel size with stride 1 and “SAME” padding to retain
the spatial resolution. The kernel size used during the average pool step depends on the
size of input image, i.e., kernel size as (5, 7, 10) is used for input tensor of size (32×32,
64 × 64, 128 × 128), respectively. By applying the low-pass filter, a blurred version of
the original image is obtained. The difference between the blurred image and the orig-
inal image yields the edge map, which highlights the edges present in the image. The
edge map is then concatenated with the original image and propagated to the subsequent
layer. To reduce the number of edge maps to a single-channel representation, a point-
wise convolution operation is employed. This single-channel edge map is subsequently
compared with the edge map of the high-resolution image, which is obtained using the
Canny edge detector [1] by applying adaptive threshold selection [22].

Let EHR be the edge map of the high-resolution image and ESR be the edge map
of the generated super-resolved image. The edge loss (Ledge) is computed by compar-
ing the generated edge map (ESR) with the ground truth edge map (EHR). Therefore,
the edge loss (Ledge) can be defined as:

Ledge =
1

H × W

H∑
i=1

W∑
j=1

(ESR(i, j) − EHR(i, j))2, (3)
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where H and W represent the height and width of the edge maps, respectively. Min-
imizing the edge loss encourages the generated image to have similar edge structures
as the high-resolution ground truth image, leading to enhanced sharpness and preserva-
tion of fine details.

3.4 Generator Architecture

The generator network consists of three similar modules with a convolution layer at the
beginning and at the end. Each module is made up of a residual block, transpose convo-
lution layer, ReLU activation function and an edge block. The edge block is shown in
Fig. 2(left). The residual block is made up of two convolution layers, each followed
by a ReLU activation function. The transpose convolution performs a 2× up-sampling.
Overall, the network performs 8× up-sampling. In Fig. 1, refer to Incremental FSR
Generator for detailed visualization. The generator is trained with adversarial loss and
other losses described in this paper.

3.5 Discriminator Architecture

The discriminator is a CNN used to distinguish between real and generated images. It is
illustrated in Fig. 2(right). The network consists of seven convolution layers with leaky
ReLU activation in the first six layers and two fully-connected layers. The input to the
network is a super-resolution image which is passed through the network to determine
if it is a real or a generated image. Initially, the input image passes through the first
convolution layer, which has a kernel size of 3×3, a stride of 1, and 128 output channels.
The output of this layer is then passed through another convolution layer, which has a
kernel size of 3×3, a stride of 2, and 128 output channels. The same process is repeated
for two more convolution layers, each with 256 output channels. After these layers,
the image is passed through two more convolution layers, with 256 and 512 output
channels, respectively. Finally, the image is passed through one last convolution layer,
with 512 output channels. The output of this layer is then flattened and passed through
two fully-connected layers to determine whether the input image is a real or a generated
high-resolution image. The leaky ReLU activation function is used for all convolution
layers with a slope of 0.2 for negative activations. The generator and discriminator are
trained with an adversarial loss function to classify real and generated images.

3.6 Objective Function

The objective function for Face to Cartoon Incremental Super-Resolution using Knowl-
edge Distillation task is given by loss LISR−KD as,

LISR−KD = λkdLkd + λedgeLedge + λadLad

+λlceLlce + λidLid + λrlLrl,
(4)

where Lkd, Ledge, Lad, Llce, Lid and Lrl are knowledge distillation loss, edge loss,
adversarial loss, luminance-chrominance error, identity loss and reconstruction loss,
respectively. λkd represents the combined effect of LR and LF on Lkd as shown in Eq.
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(2). λ’s are the hyper parameters used as the weights for different loss functions. Ledge

loss is defined in Eq. (3), respectively. Lad, Llce, Lid and Lrl losses are described in
the rest of this subsection.

Adversarial Loss. The adversarial loss function is defined as,

Lad = Ex∼p(IT
HR)[logDT (x)]

+Ez∼p(IT
LR)[log(1 − DT (GT (z)))].

(5)

The aim of the Generator is to minimize the second term of equation Lad as it wants
to fool the discriminator by predicting the generated samples as real. The aim of the
Discriminator is to maximize Lad to make sure that the discriminator can accurately
distinguish between samples coming from the probability distribution of high resolution
images p(IT

HR) and the probability distribution of hallucination images p(IT
SR,T ).

Luminance-Chrominance Error. Luminance-chrominance error occurs in image
super-resolution tasks due to the mismatch between luminance (brightness) and chromi-
nance (color) components.

The difference between two images in the Luminance-chrominance space (i.e.,
YCbCr) is calculated as,

Llce =
√

ΔY 2 + ΔCb2 + ΔCr2, (6)

where ΔY , ΔCb and ΔCr are the difference between super-resolution and high-
resolution images in Y , Cb and Cr channels, respectively. Minimizing Llce improves
the Luminance-chrominance preservation in the super-resolution images.

Identity Loss. We use the identity loss as the JS divergence which measures the sim-
ilarity between two probability distributions. The generated and ground truth images
are passed through a pre-trained Inception-V1 network to extract 512-class encoded
vectors, denoted as VSR and VHR, respectively. The identity loss is calculated as,

Lid =
1
2
KL(VSR|M) +

1
2
KL(VHR|M), (7)

where KL is the Kullback-Leibler divergence and M is the average distribution of VSR

and VHR given as,M = (VSR+VHR)/2. The identity loss as JS divergence assesses the
similarity between high-level features of generated and ground truth images, measuring
how closely the generated output aligns with the high-resolution images.

Reconstruction Loss. The reconstruction loss is computed as mean squared
error (MSE) between the pixel values of the generated image and the corresponding
pixel values of the ground truth image. Mathematically, it can be expressed as,

Lrl =
1
N

N∑
i=1

(ISRi
− IHRi

)2, (8)

where N represents the total number of pixels in the images, and ISRi
and IHRi

denote
the pixel values for the ith pixel in the generated and ground truth images, respectively.
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Table 1. The Experimental results of the proposed ISR-KD model on different dataset settings.
The % change is obtained by comparing with the model on CelebA dataset trained from scratch.

Dataset ISR-KD Setting Test Dataset PSNR SSIM FID

CelebA NA CelebA 24.2420 0.7097 44.3340

(From Scratch) iCartoonFace 20.5817 0.5781 113.3130

Cartoon-CelebA-1 0 CelebA and CelebA 23.5397 (↓2.90%) 0.6817 (↓3.95%) 74.3212 (↓67.64%)

20,000 Cartoon images iCartoonFace 20.6933 (↑0.54%) 0.5991 (↑3.63%) 98.8749 (↑12.74%)

Cartoon-CelebA-2 10,000 CelebA and CelebA 23.9387 (↓1.25%) 0.7007 (↓1.27%) 59.3153 (↓33.79%)

20,000 Cartoon images iCartoonFace 20.7170 (↑0.66%) 0.6007 (↑3.91%) 98.0944 (↑13.43%)

Cartoon-CelebA-3 20,000 CelebA and CelebA 23.9526 (↓1.19%) 0.7005 (↓1.30%) 61.3342 (↓38.35%)

20,000 Cartoon images iCartoonFace 20.7170 (↑0.66%) 0.5998 (↑3.75%) 99.3709 (↑12.30%)

Cartoon-CelebA-4 10,000 CelebA and CelebA 24.0124 (↓0.95%) 0.7047 (↓0.70%) 57.2367 (↓29.10%)

50,000 Cartoon images iCartoonFace 20.8310 (↑1.21%) 0.6092 (↑5.38%) 87.6397 (↑22.66%)

Cartoon-CelebA-5 20,000 CelebA and CelebA 24.1403 (↓0.42%) 0.7096 (↓0.01%) 58.1901 (↓31.25%)

50,000 Cartoon images iCartoonFace 20.8387 (↑1.25%) 0.6072 (↑5.03%) 91.8344 (↑ 18.96%)

4 Experimental Settings

Datasets: For experimental analysis, CelebA [17] and iCartoonFace [33] datasets are
used in this paper. The CelebA dataset contains 202,599 face images from 10,177
identities. Whereas, the iCartoonFace dataset contains 389,678 cartoon face images
from 5,013 identities. The CelebA dataset is used as the source domain and iCar-
toonFace dataset is used as the target domain. In this paper, we experiment with five
different combinations (i.e., Cartoon-CelebA-1, Cartoon-CelebA-2, Cartoon-CelebA-
3, Cartoon-CelebA-4 and Cartoon-CelebA-5) by considering varying number of images
randomly from CelebA and iCartoonFace datasets as detailed in Table 1.

Experimental Setup: The data augmentation is performed by center cropping to a
size of 178× 178 pixels, resizing to a size of 128× 128 pixels, horizontal flipping with
a probability of 0.5, and rotating with 90 and 270◦. The generator and discriminator are
trained using the Adam optimizer with learning rate 1e − 4 and Epsilon 1e − 8. Beta1
and Beta2 for Generator are 0.9 and 0.999, respectively. However, for Discrimina-
tor they are 0.5 and 0.9, respectively. The model is trained for 100 epochs. The model
is trained and tested on an Nvidia Quadro RTX 6000 GPU using the TensorFlow frame-
work. The values of LR, LF , and λedge hyperparameters are 5, 0.01, and 0.3. However,
λad, λlce, λid, and λrl are set to 1.

5 Experimental Results and Discussion

5.1 Quantitative Results

Table 1 presents the performance of the proposed ISR-KD network. In case of Cartoon-
CelebA-1 dataset combination, where knowledge distillation is not employed as this
dataset does not contain any CelebA face images, we observe an increase in the per-
formance on the iCartoonFace test set, but a significant drop in the performance on the
CelebA dataset. This decline can be attributed to the catastrophic forgetting problem,
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Fig. 3. The generated samples depicting the visual effects of using incremental learning in com-
bination with knowledge distillation for facial super-resolution task. The left half of the image
contains the results for CelebA dataset (Source Domain). The right half shows the results after
incrementally training on the iCartoonFace dataset (Target Domain).

which occurs when a model forgets previously learned knowledge while training on new
data. To mitigate this problem, we introduced incremental hallucination using knowl-
edge distillation by re-feeding some images from the source domain (i.e., CelebA face
images) to a pre-trained generator as shown for Cartoon-CelebA-2, Cartoon-CelebA-
3, Cartoon-CelebA-4, and Cartoon-CelebA-5 datasets. This additional step introduces
a knowledge distillation loss, which helps to overcome catastrophic forgetting. As a
result, the performance on the CelebA test set is almost retained, while simultaneously
improving the performance on the iCartoonFace test set. An improvement of 5.03%
on iCartoonFace dataset and a drop of only 0.01% on CelebA dataset is observed in
Table 1 in terms of SSIM on Cartoon-CelebA-5 training dataset setting, which has
20,000 images from CelebA and 50,000 images from iCartoonFace. We note that the
number of samples from Cartoon images also plays an important role as the results
using Cartoon-CelebA-5 setting are better than the Cartoon-CelebA-3 setting, in spite
of having the same number of CelebA samples. Hence, the proposed approach can
effectively deal with the catastrophic forgetting issue in the context of super-resolution.
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Table 2. Similarity between the samples generated without and with incremental learning using
the proposed approach.

Test Results Images PSNR SSIM FID

CelebA Test Set 33.2640 0.9425 18.7007

iCartoon Test Set 28.8210 0.8850 25.3614

5.2 Qualitative Results

Figure 3 illustrates the visual results achieved by combining Incremental training and
knowledge distillation. The ISR-KD model was first trained on the entire CelebA train-
ing set before undergoing incremental training on a small subset of the iCartoonFace
dataset. The left portion of the image displays results for the CelebA dataset. Given that
the model was initially trained on the CelebA dataset and subsequently incrementally
trained on the iCartoonFace dataset, one might anticipate a substantial decline in the
quality of super-resolved (SR) images after incremental training on the iCartoonFace
dataset, an occurrence referred to as catastrophic forgetting. However, by employing
knowledge distillation, we were able to counteract these effects, and the results clearly
indicate that the images with and without incremental learning are nearly indistinguish-
able. The quality of images super-resolved from the iCartoonFace dataset improved after
incremental training. In order to show the degree of degradation on source images and
degree of improvement on target images, we compute the average similarity between the
generated samples without and with incremental learning on both CelebA and iCartoon
test sets in terms of PSNR, SSIM and FID in Table 2. The higher PSNR & SSIM and
smaller FID on CelebA test set shows higher similarity between the generated images
using without and with incremental learning, which means low degradation. The vice-
versa is observed on iCartoon test set which shows more dissimilarity means high
improvement in the generated samples after applying the incremental learning.

5.3 Ablation Study on Loss Hyperparameters

Table 3 presents the results of different loss hyperparameter settings on the Cartoon-
CelebA-2 dataset. We focus on adjusting LR and LF values in Eq. (2), while keeping
λedge fixed at 0.3 and other hyperparameters set to 1. The LR = 5 and LF = 0.01 are
used in other experiments as this setting yields the best performance on the iCartoon-
Face dataset. This choice of hyperparameters shows a good trade-off between maintain-
ing high performance on the CelebA dataset while enhancing the performance on the
iCartoonFace dataset.

5.4 Cross-Dataset Analysis

We also perform the cross-dataset analysis by first training the model from scratch on
50, 000 Cartoon images and then applying incremental learning using the proposed
approach on a dataset consisting of 20, 000 Cartoon images from source domain and
20, 000 CelebA face images from the target domain. The results reported in Table 4
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Table 3. Performance comparison of various LR and LF loss hyperparameter settings in Eq. (2)
on the Cartoon-CelebA-2 dataset with λedge fixed at 0.3 and all other hyperparameters set to 1.

Hyper-parameters CelebA Test Dataset iCartoonFace Test Dataset

PSNR SSIM FID PSNR SSIM FID

LR = 15, LF = 0.04 24.0721 0.7086 58.0514 20.6202 0.5920 108.8132

LR = 10, LF = 0.08 24.1119 0.7082 57.1407 20.7152 0.5962 103.8281

LR = 5, LF = 0.08 24.0707 0.7070 57.7262 20.7109 0.5982 100.7698

LR = 5, LF = 0.04 24.0941 0.7069 58.0286 20.7397 0.5991 100.931

LR = 5, LF = 0.01 23.9387 0.7007 59.3153 20.717 0.6007 98.0944

Table 4. Cross-dataset analysis by first training on Cartoon images from scratch and then incre-
mentally learn on CelebA images using the proposed method.

Train Dataset iCartoonFace Test Dataset CelebA Test Dataset

PSNR SSIM FID PSNR SSIM FID

Cartoon (From Scratch) 20.8648 0.6055 94.0667 23.6665 0.6834 75.2700

Incremental Learning 20.8364 0.6061 90.7447 24.1532 0.7074 56.3191

Table 5. Comparison of proposed method with joint training approach.

Training TypeDataSet PSNR SSIM FID

Incremental CelebA 24.1403 0.7096 58.1901

iCartoonFace 20.8387 0..6072 91.8344

Joint CelebA 24.2541 0.7197 59.2465

iCartoonFace 20.7822 0.6049 97.8604

confirm that the proposed ISR-KD improves the performance on CelebA while main-
taining the similar performance on iCartoon dataset. This analysis also points out that
performing super-resolution on cartoon face images is a difficult problem as compared
to normal face images.

5.5 Comparsion with Joint Training Approach

As shown in the Table 5, the incremental learning approach using ISR-KD achieves
comparable performance on the source dataset (CelebA) compared to the joint train-
ing approach. This is important because it demonstrates that our method can effec-
tively retain knowledge from the original training data. However, on the target dataset
(iCartoonFace), the joint training approach shows slightly better performance metrics
(PSNR, SSIM). However, it’s important to consider the context of our proposed method.
ISR-KD is specifically designed for scenarios where the target data is not readily avail-
able but becomes accessible over time. In such situations, joint training is not feasi-
ble. Our approach offers a solution by allowing for incremental training on the target
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Table 6. Results of Extended ISR-KD model when trained on Cartoon-CelebA-2 dataset setting.

Test Dataset PSNR SSIM FID

CelebA 24.19 (0.23 ↓) 0.71 (0.31 ↑) 58.42 (31.76 ↑)
iCartoonFace 20.74 (0.77 ↑) 0.60 (3.94 ↑) 98.02 (13.49 ↑)

data while minimizing performance degradation on the source data. This is particu-
larly valuable for applications where the model needs to continuously adapt to new data
streams while maintaining performance on previously learned tasks.

5.6 Performance on Extended Network

In this experiment, the incremental FSR generator network is extended by adding six
convolution layers with padding set as SAME to the rear end of the network. The newly
added layers are initialized with random weights. The weights of the other layers are
initialized from the pre-trained FSR generator (Fig. 1). The extended model is trained on
the Cartoon-CelebA-2 dataset. Table 6 shows that increasing the depth of incremental
FSR generator leads to better results for source (CelebA) as well as incremental target
(iCartoonFace) facial hallucination tasks.

6 Conclusion

In this research paper, we addressed the problem of adapting GANs to new and
unseen data in the context of facial hallucination. We combine the incremental learn-
ing and knowledge distillation in the proposed ISR-KD framework. The incorpora-
tion of knowledge distillation allows the model to retain the performance on previous
dataset while enhancing its capability on new dataset. We used the pre-trained GAN-
based super-resolution network on the CelebA dataset and incrementally trained it on
the combined CelebA and iCartoonFace dataset using our proposed framework. We
achieved superior performance on target Cartoon dataset while maintaining the perfor-
mance on the source CelebA dataset, mitigating the issue of catastrophic forgetting.
Future research directions include investigating different knowledge distillation meth-
ods, different networks, and evaluating on larger and more diverse datasets.
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Abstract. The task of deducing the causal network from time series data and
identifying relationships amongmultiple series is increasingly vital across various
sectors such as industry, medicine, and finance. Despite numerous algorithms
being proposed for this purpose, the majority are predicated on the stationarity
assumption.However, in disciplines like climatology andneuroscience, time series
often exhibit non-stationarity, characterized by a data distribution that shifts over
time. In this paper,we introduce an innovative algorithmdesigned to discern causal
relationships from non-stationary time series. Our approach unfolds in three key
steps: Initially,weharness the concept of copula entropy to estimate the conditional
transfer entropy, offering a streamlined method for non-parametric conditional
independence testing. Subsequently,we introduce the time index,which influences
other variables at specific time lags, and by integrating the conditional transfer
entropy, we execute the independence tests. This leads us to propose the CE-
CDN (Copula Entropy-based Causal Discovery from Non-stationary time series),
a two-stage algorithm tailored for learning the causal network and identifying
change modules. Finally, through comparative analysis with existing algorithms,
our experimental findings indicate that CE-CDN not only excels in managing
non-stationary time series but also boasts commendable time efficiency.

Keywords: Causal Discovery · Non-stationarity · Copula Entropy · Time Series

1 Introduction

Time series represent a sequence of data points recorded over time. Analyzing the rela-
tionships between these observations at various moments is crucial for enhancing pre-
dictive accuracy and informing decision-making processes. However, this analysis is
often fraught with challenges, particularly the issue of non-stationarity. In numerous
disciplines—ranging from economics [1] to climate research [2] and biological analy-
sis [3]—the time series frequently exhibit non-stationarity. This characteristic indicates
a shift in the data distribution over time. As a result, the analysis of causality within
non-stationary time series gets extensive attention.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 115–131, 2024.
https://doi.org/10.1007/978-3-031-78183-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78183-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-78183-4_8


116 J. Yang and X. Rao

Traditional causalitymethods for time series assumedata stability,which canmislead
when applied to non-stationary series that change over time. Recent approaches to non-
stationary causality are split into two: one [4–6] tracks changes in causal strength, while
the other [3] also detects shifts in causal directions. For the latter, it can be further lead
to the problem of stationary state detection. We focus on the former as a foundational
step for the latter.

In addressing the challenge of non-stationarity, Huang et al. [4] proposed temporal
linear causal and nonlinear noisemodels, yet failed to locate the changing causalmodule.
In a subsequent effort, the same team [5] developed a state-space model that accommo-
dates temporal variations in causal intensity and noise, yet this model is predicated on
linearity. Zhang et al. [6] incorporated time or domain indices to delineate the evolving
causalmodules and to ascertain instantaneous causal relationships.Kang et al. [7] offered
a high-order causal entropy for distributed network analysis, though at a high computa-
tional cost. Building upon these contributions, we introduce a novel two-stage algorithm,
CE-CDN, designed to identify lagged change modules and discern causal relationships
that encompass nonlinear. Furthermore, CE-CDN offers a streamlined approach for
non-parametric conditional independence testing.

The work of this paper is organized as follows:

(1) We begin by introducing the relationship between mutual information and copula
entropy [8]. We then reformulate the conditional transfer entropy as the sum of four
distinct copula entropy components. Finally, we estimate the copula entropy using
an entropy estimator. This transformation is demonstrated to offer a more effective
approach to measuring independence;

(2) At the maximum time delay, we introduce a smoothly varying time-related vari-
able that laggingly affects others to represent the non-stationary mechanism. Sub-
sequently, under the additive noise model and by integrating the conditional trans-
fer entropy with a constraint-based method, we propose the CE-CDN algorithm.
This algorithm is designed to learn the relationships among variables and between
variables and the time index;

(3) We compare CE-CDNwith other causal discovery algorithms for time series, includ-
ing CCM, HCE, NAVAR, DYNOTEARS, VarLiNGAM and PCMCI(cmiknn and
gpdc). Experiments demonstrate that CE-CDN achieves good results on non-linear
and non-stationary data, with superior time performance. Furthermore, the algorithm
is applied to a real dataset to identify causal connections.

Sections are organized as follows: Sect. 2 introduces related work; Sect. 3 describes
preliminary knowledge; Sect. 4 details the CE-CDN; Sect. 5 and 6 analyses the
experimental results; Sect. 7 concludes the work of this paper.

2 Related Work

Traditional causal network learning methods for time series fall into three categories:
Constraint-based: tsFCI by Entner and Hoyer et al. [9] and PCMCI by Runge et al. [10],
which combines PC and MCI. Functional Causal Models: Hyvarinen et al. [11] fused
LiNGAM with VAR, and Peter et al. [12] introduced models with independent noise.
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Score-based: Pamfil et al. [13] extended NOTEARS to DYNOTEARS, and Sun et al.
[14] used convolutional neural networks for time series analysis.

The above algorithms are under the assumption of stationary time series. We now
turn to the discussion of non-stationary causal discovery works, which encompass both
instantaneous and time-delayed relationships.

For the instantaneous causal discovery, Huang et al. [5] introduced a state-space
model where the causal coefficients and noise variance are permitted to vary over time.
These parameters are estimated using the SAEM algorithm, albeit under the assumption
of linear causality, which may not be universally applicable. Zhang et al. [6] proposed
CD-NOD, which utilizes a proxy variable to account for confounding factors, followed
by the application of traditional constraint-basedmethods combinedwith non-parametric
conditional independence tests to learn the causal structure. Fujiwara et al. [15], building
on the linear non-Gaussian-acyclic model and the just-in-time framework, introduced
JIT-LiNGAM. This model estimates the local linear causal structure from past data upon
receiving a new input sample, demonstrating robust nonlinear detection capabilities.
However, it has not yet been adapted for time-delay embedding scenarios.

We concentrate on time-delayed causal relationships, where the causality is inher-
ently from the past to the present. To address this, Xing et al. [16] proposed Time-
Varying Dynamic Bayesian Networks (TV-DBNs) to model the directed dependence
and structural changes in non-stationary entities such as organisms or neural time series.
Huang et al. [4] suggested exploiting smooth changes to estimate a time-varying causal
model, using temporal information as a common cause and applying Gaussian process
regression for estimation. However, this method lacks a clear mechanism for positioning
changing modules. Kang et al. [7] introduced the High-Order Causal Entropy (HCE)
algorithm, which identifies network structures in a distributed manner. Yet, it struggles
with high-dimensional challenges and suffers from high time complexity.

In order to identify lagged change modules and provide a simple method for the
non-parameter conditional independence test in causal learning processes, this paper
proposes a causal structure learning algorithm CE-CDN that can effectively deal with
nonlinear and non-stationary time series.

3 Preliminary Knowledge

3.1 Mutual Information and Transfer Entropy

Mutual information is an important measure in information theory, widely used to quan-
tify the correlation between random variables. The mutual information between two
variables, symbolized here as I, can be described by Eq. (1).

I
(
X 1,X 2

)
= H

(
X 2

)
− H

(
X 2|X 1

)
= H

(
X 1

)
+ H

(
X 2

)
− H (X 1,X 2) (1)

The following H represents the differential entropy. When extended to high-
dimensional continuous observation variables, the multivariate mutual information of
the generalized redundant [17] can be calculated by Eq. (2).

I
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)
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(
X 1

)
+ H

(
X 2

)
+ · · · + H

(
X n) − H (X 1,X 2, . . . ,X n) (2)
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Transfer entropy is essentially conditional mutual information, under which the
dynamic process is considered simultaneously. Specifically, it measures how the past of
X decreases the uncertainty of Y, given the past of Y. When considering the conditional
set Z, it is called the conditional transfer entropy, as shown in Eq. (3).

CTEX→Y |Z(t) = I(Yt,Xt−1|Yt−1,Zt−1) = H (Yt |Yt−1,Zt−1) − H (Yt |Xt−1,Yt−1,Zt−1)

= I(Yt,Xt−1,Yt−1,Zt−1) − I(Yt,Yt−1,Zt−1) − I(Xt−1,Yt−1,Zt−1) + I(Yt−1,Zt−1),

(3)

where the subscript t-1 denotes the embedded history length of the variables.

3.2 Conditional Transfer Entropy Estimation

As shown in Eq. (3), the calculation of conditional transfer entropy (CTE) can be
expressed as the sum of four terms, each representing multivariate mutual informa-
tion. Subsequently, we will elucidate the relationship between mutual information and
copula entropy [8]. Following this, we will demonstrate how the computation of CTE
can be reformulated in terms of a sum of copula entropies.

Definition 1 (Copula entropy [8]): letX ∈ RN be a set of random variables, its marginal
function u = [F1, . . . ,FN] and copula density function is c(u), then the copula entropy
expression of X is shown in Eq. (4).

Hc(X) = −
∫

c(u)logc(u)du, (4)

where c(u) represents the N th order derivative of copula distribution function C(u).

Theorem 1 (Sklar’s theorem): If T is a joint distribution, F and G are its marginal
distribution, then there is a copula function C for all x and y belong to R, satisfying
T (x, y) = C(F(x),G(y)). If F and G are continuous, then C is unique.

Theorem 2: The mutual information of random variables is the opposite number of
their joint copula entropy.

Proof of Theorem 2: Take two variables as example, follow Theorem 1, then the
joint cumulative distribution function of x and y can be expressed as Eq. (5).

PXY (x, y) = C(PX (x),PY (y)), (5)

let u = PX (x), v = PY (y), c(u, v) can be expressed as the Eq. (6).

c(u, v) = ∂2C(u, v)

∂u∂v
= ∂2PXY (x, y)

pX (x)∂x ∗ pY (y)∂y
= pXY (x, y)

pX (x) ∗ pY (y)
, (6)

we can obtain the relationship between I and the copula entropy, as shown in Eq. (7).

I(X ,Y ) =
¨

pXY (x, y)log
pXY (x, y)

pX (x) ∗ pY (y)
dxdy =

¨
c(u, v)logc(u, v)dudv



Copula Entropy Based Causal Network Discovery 119

=
¨

c(u, v)pX (x)pY (y)logc(u, v)dxdy = −Hc(u, v), (7)

similarly, multivariate mutual information shares the same conclusion.
As described in Theorem 2, the conditional transfer entropy in Eq. (3) can finally be

composed of four-term copula entropy, as shown in Eq. (8).

CTEX→Y |Z(t) = −Hc(Vt,Ut−1,Vt−1,W t−1) + Hc(Vt,Vt−1,W t−1)

+ Hc(Ut−1,Vt−1,W t−1) − Hc(Vt−1,W t−1), (8)

whereU,V,W separately denotes the marginal distribution ofX, Y, Z. Consequently, the
calculation of CTE can ultimately be reduced to the problem of estimating information
entropy.

KNN estimation [17] is usually used to calculate the entropy value of continuous
random variables, whose calculation formula is shown in Eq. (9).

H
∧(

X 1,X 2, . . . ,X d
)

= −ψ(k) + ψ(N ) + logcd + d

N

∑N

i=1
logε(i), (9)

where the digamma function ψ(x) = �′(x)/�(x) denotes the digamma function, d and
N are separately mean the dimensions and the number of observation variables, cd is
equal to 1 when adopt the maximum norm, ε(i) denotes twice the amount of distance
from the ith observation of [X 1,X 2, . . . ,X d ] to its kth neighbor.

3.3 Definitions and Assumptions in Non-stationary Time Series Causal Discovery

To obtain causal relationships from observed time series data, several assumptions are
necessary, including sufficiency, the Markov condition, and faithfulness. Additionally,
building upon the CD-NOD [6], we introduce the concept of changing causal modules.
These modules may be associated with changes that could be explained by certain
confounders. Subsequently, these confounders could exert influence on other variables
at specific time lags, leading to distribution shifts. The following presents definitions
and assumptions essential to this paper.

Definition 2 (Time series data): Time-series data is a collection of data recorded in
order. For the observed data that include d variables at t time, it can be written as
Xt = {X 1

t ,X 2
t , . . . ,X d

t }. And the Xt−τ means the past of the data (τ denotes the lag
time delay).

Definition 3 (Conditional independence): For the set of observed variables Xt =
{X 1

t ,X 2
t , . . . ,X d

t }, and condition set Z ⊆ Xt−τ \ {X i
t−τ }, if CMI

(
X i
t−τ → X j

t |Z
)

< α,

then the X i
t−τ conditional independent to X j

t , denoted as X i
t−τ ⊥ X j

t |Z.

Definition 4 (Causal link): For the set of past observations Xt−τ , if X i
t−τ ⊥ X j

t |Z not

ture, then there is a causal link from X i
t−τ to X j

t , its representation is shown in Fig. 1(a):
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Fig. 1. (a) Causal link. (b) Pseudo confounder.

Assumption 1 (Pseudo causal sufficiency [6]): Assuming the existence of pseudo con-
founders, a time proxy variable C is introduced, as shown in Fig. 1(b). This variable can
be written as a smooth function of time. At each time instance, the values of these con-
founders are fixed. Therefore, the pseudo causal sufficiency assumption is introduced,
considering the causal adequacy of the model in the presence of potential confounding
factors.

Assumption 2 (Lagged causal effects [18]): We assume that causality operates in a
lagged manner, implying that there is no instantaneous causality at time t. This assump-
tion also ensures that the lagging parent variable is sufficient to satisfy the Markov
condition.

4 Algorithm Introduction

In this section, we first introduce and analyze the framework of CE-CDN, which is
presented in two parts. The first part concerns the two-stage algorithm for learning the
causal network structure. The second part focuses on the independence test method,
specifically the conditional transfer entropy calculation process required in the first part.
Finally, we analyze the time complexity of these two components.

4.1 Causal Structure Learning of the Non-stationary Time Series

The process of learning the causal network from non-stationary time series data can be
divided into two stages.

The first stage involves causal connection discovery, where we calculate the condi-
tional transfer entropy between variables and between variables and time exponents. This
involves assessing the conditional mutual information at different time delays, denoted
by τ . If the calculated value exceeds a specified threshold, it is added to the correspond-
ing parent node set. As a result, this stage allows us to identify the lagged parent nodes
for each variable at time t.

For temporal datasets containing d-dimensional variables and a time index variable,
we consider the maximum time delay condition τmax . The condition set comprises the
delays τ for each variable. Steps 6 and 7 involve calculating the conditional mutual
information between each node and its lagged nodes. If this value exceeds a threshold,
the lagged node is added to the parent node set. Consequently, by step 8, we have
obtained the lagged parent node set for each variable at time t. Additionally, steps 9
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and 10 account for non-stationary factors, specifically detecting causal links between
the time index variable C and other variables. This allows us to identify modules that
change and affect the nodes at time t in a lagged manner.

After the first stage, we obtain the parent node set Pa
(
X j
t

)
for variables at time t.

However, there may still be incorrect parent nodes present. To ensure that the results
converge to the true causal diagram under an infinite sample size, redundancy removal
is necessary. Consequently, the second stage involves the false positive removal phase.
For the parent set of each variable, the conditional independence test method is the same
as in the first stage. The difference lies in the constraint applied to the condition set. In
step 15, we test the independence between X i

t−τ ⊆ Pa(X j
t ) and X

j
t . Step 16 evaluates the

calculated value. If the value is less than the threshold, step 17 removes the node from
its parent set. Thus, we can eliminate incorrect parent nodes at this stage and obtain the
final parent set for the nodes at the last time t. The framework encompassing the two
stages is illustrated in Algorithm 1.
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4.2 Estimation of the Conditional Transfer Entropy

This subsection outlines the estimation process of conditional transfer entropy, which is
a necessary component of the two-stage algorithm described above. The process consists
of two main steps, both aimed at preparing for the calculation of copula entropy.

The first step involves obtaining the marginal probability distribution of each vari-
able within the set X, which contains m-dimensional variables. This distribution can be
estimated using rank statistics, specifically by sorting the time series data.

In the second step, leveraging the relationship between copula entropy and mutual
information, the conditional transfer entropy—essentially a form of conditional mutual
information—is converted into the sum of four copula entropies. For the estimation
of copula entropy, we employ the k-nearest neighbor entropy estimator proposed by
Kraskov et al. As shown in Eq. (10), we set k to 3. d corresponds to the number of
variables in Hc at step 23, and N represents the number of samples. cd is equal to 1
when adopt the maximum norm. For the first term, ε(i) denotes twice the amount of
distance from the ith observation of [Mk

t ,M j
t−1,M

k
t−1,M

z1
t−1, . . . ] to its kth neighbor.

H
∧(

X 1,X 2, . . . ,X d
)

= −ψ(k) + ψ(N ) + logcd + d

N

∑N

i=1
logε(i) (10)

Consequently, the final result can be derived by estimating the sum of these four
copula entropies. The framework of the overall process is depicted in Algorithm 2.

4.3 Time Complexity Analysis

In this section, we focus on discussing the time complexity of the CE-CDN algorithm.
We denote the dimension bym, the number of samples by n, and themaximum time delay
by k. The first part of the algorithm, which estimates the conditional transfer entropy, has
a time complexity that primarily consists of two stages: the rank stage and the k-nearest
neighbor estimation stage.



Copula Entropy Based Causal Network Discovery 123

During the rank stage, according to Eq. (8), the maximum dimensions for ranking
would be m + 1. By applying a rank sorting algorithm to these dimensions, the time
complexity is O (mnlogn). In the entropy estimation stage, the time complexity of cal-
culating the distance between each pair of samples is O (n2). To obtain the distance
from the i-th observation to its k-th nearest neighbor, a sorting algorithm is applied to
a two-dimensional array. The time complexity for this operation under n samples is O
(n2logn). Thus, the total time complexity for this part is O (mnlogn + n2logn).

For the second part of the algorithm, its time complexity mainly includes the con-
straint stage and the error parent nodes removal stage. According to the framework of
Algorithm 2, the total time complexity for this part isO (m2k). Therefore, combining this
with the first part, the overall time complexity of the CE-CDN algorithm isO (m3knlogn
+ m2kn2logn).

5 Experimental Results and Analysis

5.1 Experiment 1

To verify the effectiveness of our algorithm, we compared it with NAVAR [19], PCMCI
[10], HCE [7], DYNOTEARS [13], VarLiNGAM [11] and CCM [20]. The synthesized
non-stationary time-series dataset was generated by Eq. (10).

X i
t = aifi

(
Pa

(
X i
t

))
+ big(t − τ) + εit, (11)

where fi represents the dependent function, which can have either a linear or nonlinear
relationship with its lagged causes, denoted by Pa(X i). Under the maximum time delay
τmax, the lag of causes can range from 1 to τmax. g is a smooth time-varying function
with a time lag of τ . The coefficients ai and bi modify the function’s response. The final
term, εit , represents Gaussian noise.

In this simulation, we defined the time function g(t) = cos(t/50), and randomly
generated time series networks based on functional dependencies, including both linear
and nonlinear causal relationships. The network size was varied to include 5, 10, 15, and
20 dimensions, with the maximum time delay set to τmax = 5. Furthermore, to test the
algorithm’s performance with different sample sizes, we applied it to datasets containing
1000, 2000, and 3000 samples. In each dataset, we identified nodes directly affected by
the time index as non-stationary, leading to two scenarios: (1) For a given ratio of non-
stationary nodes rnon, the number of non-stationary nodes across various dimensions d
would be rnon* d; (2) With a fixed dimension, the proportion of non-stationary nodes
was set to 0.1, 0.2, 0.3, 0.4, and 0.5.

Figure 2 and Fig. 3, which correspond to these two cases, illustrate the performance
of different algorithms in reconstructing the causal network with sample sizes of 1000,
2000, and 3000. Additionally, due to the high time complexity of the independence test
algorithm in PCMCI using cmiknn, we limited our comparison to the 1000-sample case.

5.2 Experiment 2

To further verify the effectiveness of the algorithm, we conducted Experiment 2. In this
experiment, the time function was set to g(t) = t, and the data was regenerated using
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Fig. 2. The F1-score and FPR of the algorithms at the same ratio of non-stationary nodes, with
the time function g(t) = cos(t/50).

Fig. 3. The F1-score and FPR of the algorithms at different ratios of non-stationary nodes, with
the time function g(t) = cos(t/50).

the same experimental setup as described in Experiment 1.

X i
t = aifi

(
Pa

(
X i
t

))
+ big(t − τ) + εit (12)

The experimental setup is the same as in Experiment 1. The performance of different
algorithms is depicted in Fig. 4 and 5.

Fig. 4. The F1-score and FPR of algorithms at the same rnon. (g(t) = t)
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Fig. 5. The F1-score and FPR of algorithms at different rnon. (g(t) = t)

Furthermore,we conducted a non-stationarity test on the variables directly influenced
by the time index. The time series and ADF test results are presented in Fig. 6. By
comparing the ADF statistic with the critical values, it can be observed that if the ADF
statistic is greater than the critical values and the p-value is greater than the level of
significance, then we accept the null hypothesis that the time series data has a unit root,
meaning the time series is non-stationary.

Fig. 6. Non-stationary time series.

5.3 Experiment 3

To compare the performance of algorithms at different maximum time delays, we also
conducted Experiment 3. The performance metrics for models with 5, 10, 15, and 20
variables are reported in Table 1.

5.4 Experimental Analysis

The performance of each algorithm at the same non-stationary rate is shown in Fig. 2
and 4, which respectively represent different time functions.

In Fig. 2, it can be observed that our algorithm’s False Positive Rate (FPR) is essen-
tially lower than other algorithms, regardless of whether the sample size is 1000, 2000,
or 3000. In terms of the F1 score, PCMCI outperforms our algorithm at the 15-variable
level for both 1000 and 3000 samples, and HCE performs better than our algorithm at the
5-variable level for 2000 and 3000 samples. Apart from these instances, our algorithm
generally outperforms other algorithms. In Fig. 4, it can be observed that PCMCI takes
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Table 1. Performance of different algorithms for 5, 10, 15, 20 variables with lag 2 and 4.

a leading position at the 20-variable level for 1000 samples, and HCE is slightly higher
than our algorithm at the 10-variable level for 3000 samples. The FPR shows the same
performance as in Fig. 2.

The performance of each algorithm at different non-stationary rates is depicted in
Fig. 3 and 5, which respectively represent different time functions.

InFig. 3, it can be observed that our algorithmgenerally outperformsother algorithms
in terms of the F1 score and FPR. In Fig. 5, with a sample size of 3000, the F1 scores
of HCE and PCMCI are superior to our algorithm at the non-stationary rates of 0.2 and
0.4, respectively. In all other cases, our algorithm takes precedence.

In terms of performance at maximum lag delays of 2 and 4, as can be observed from
Table 1, DYNOTEARS exhibits excellent performance in True Positive Rate (TPR).
However, in terms of overall performance measured by the F1 score, our algorithm
generally outperforms other algorithms.

Through the above analysis, it is evident that our algorithm generally performs better
than other algorithms. For CCM, which is based on state-space reconstruction theory,
there are several considerations. It is effective for nonlinear causal problems, particularly
in the analysis of small-scale and short-term time series. CCM has high recognition
sensitivity for weakly coupled systems but may produce errors under strong coupling
conditions. As it requires analysis on an established state space, it is susceptible to the
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influence of noise points. Besides, since the algorithm is often used for the analysis of
bivariate systems, its performance in multivariate analysis systems may be poor.

NAVAR extends the vector autoregressive model to perform Granger causal anal-
ysis and introduces neural networks to learn the contribution of variables to a specific
observed variable in the past. It uses the contribution value as a score to represent causal
relationships, offering outstanding advantages in capturing nonlinear relationships but
has limitations in dealing with higher-order interactions.

Table 2. Running time (second) of different algorithms at various samples.

PCMCI combines the PC algorithm for the selection of the conditional set and further
tests in the MCI stage to control the false positive rate. However, the algorithm operates
under the assumption of stationarity. Therefore, when considering non-stationary time
exponents, there may be some impact on performance.

What’s more, we also provide a comparison of the running time of non-parametric
method algorithms, as shown in Table 2, representing the mean running time across
sample sizes of 1000, 2000, and 3000. From the sample size of 1000, it is observed
that CE-CDN’s time performance is superior to other algorithms, and it demonstrates
better performance in processing sample data compared to the non-parametric methods
PCMCI (cmiknn/gpdc). In the samples of 2000 and 3000, CCM shows a lower running
time. However, it exhibits poor performance in terms of F1 score and FPR.

In our approach, we propose using copula entropy to estimate conditional transfer
entropy (CTE) and perform conditional independence tests through CTE. In the process
of estimating conditional transfer entropy, first, we transform it into the sum of four
multivariate mutual information terms. Then, based on the relationship between mutual
information and copula entropy, we further transform it into the sum of four copula
entropies. Finally, by estimating each copula entropy using the KNNmethod, we obtain
an estimate of the conditional transfer entropy. As estimating copula entropy necessi-
tates obtaining the marginal probability distributions of variables, time series values are
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converted to ordinal ranks, which greatly enhances the algorithm’s tolerance for non-
stationarity and non-linear outliers. Additionally, compared to the direct estimation of
mutual information for each multivariate set, this approach reduces both computational
effort and time complexity. Hence, CE-CDN shows excellent performance in processing
sample data within a reasonable time frame.

In summary, the experimental results demonstrate that the CE-CDN algorithm can
effectively address the issue of constructing causal networks from non-linear and non-
stationary time series.

6 Real Data Experiment

Climate-related time-series data were collected from NOAA Physical Sciences Labo-
ratory. In the 1948 to 2023 seasonal reanalysis dataset of the NCEP / NCAR model
[10], the sea level pressure in the Western Pacific (WPAC) was selected, defined by
the regional coordinates of approximately 5° southern latitude to 5° northern latitude
and 130° to 150° east longitude. Additionally, we collected air temperature data from
the Central Pacific (CPAC), Eastern Pacific (EPAC), and Tropical Atlantic (ATL), with
specific coordinates as follows:

• Central Pacific (CPAC): 5° southern latitude to 7.5° northern latitude, 150° to 120°
west longitude

• Eastern Pacific (EPAC): 5° southern latitude to 7.5° northern latitude, 103° to 80°
west longitude

• Tropical Atlantic (ATL): 5° northern latitude to 20° northern latitude, 55° to 30° west
longitude.

• The time series of the above is shown in Fig. 7. A point on the timeline represents
the running average of a specific year’s data.

Fig. 7. Timeseries of climate data and Discovered causal relationships.

Additionally, the discovered causal links, with a maximum time delay set to 2, are
illustrated in Fig. 8. Here we compare our result with PCMCI and DYNOTEARS, since
other methods have discovered fewer causal links.

The blue-shaded area corresponds to the time index. As shown in the causal diagram,
PCMCI and DYNOTEARS have not identified the relationship between the time index
and the variables. In our discovered results, EPAC and ATL laggly affects the WPAC
[21], andWPAC laggly affects the ATL [22]. Additionally, CPAC is influenced by EPAC
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Fig. 8. Causal links returned by CE-CDN, PCMCI and DYNOTEARS (Color figure online)

[23] and ATL [24]. When the temperature of the Tropical Atlantic rises, it leads to an
increase in sea-level air pressure. Concurrently, the temperature in the Western Pacific
is relatively low, forming a downdraft. The low pressure formed in the Western Pacific
causes high-pressure air from the Tropical Atlantic to flow over the Western Pacific.
Therefore, changes in the temperature of the Tropical Atlantic may lead to changes in
sea level pressure in the Western Pacific.

Furthermore, when the Eastern Pacific experiences reduced temperatures due to the
influence of the Peruvian cold current, the high air pressure sinks to form low pressure,
and high pressure forms at sea level. At the same time, the temperature in the Western
PacificOcean is rising due to adverse currents, causing the air to expand and rise, forming
a lower pressure area with high pressure at high altitudes.

Due to the influence of the air pressure gradient force, the high-pressure airflow in
the Western Pacific flows towards the low-pressure area in the Eastern Pacific. Simulta-
neously, the high sea-level airflow in the Eastern Pacific flows towards the low-pressure
area at sea level in the Western Pacific, forming the Walker circulation. Thus, temper-
ature changes in the Eastern Pacific will impact the sea level pressure in the Western
Pacific, as mentioned in the analysis of sea level changes by Zuo et al. [25].

7 Conclusion

In this paper, we propose an algorithm for learning causal networks from non-stationary
time series. It mainly includes two parts, firstly, estimating the conditional transfer
entropy using copula entropy, which provides an efficient calculation method. After that,
we introduce a time index with a lagged effect on other variables to represent changing
causal modules. Under the assumption of pseudo causal sufficiency, we learn the causal
relationships using a constrained approach with non-parametric conditional indepen-
dence tests. The experimental results show that the CE-CDN algorithm can effectively
address the issue of reconstructing causal networks from non-stationary data. Addition-
ally, it also performs better than the majority of baselines in terms of time performance.
In the future, we will further study the causal relationships within non-stationary time
series, especially the challenges posed by instantaneous causal links and the issue of
changing causal directions. Following work will conduct intensive research.



130 J. Yang and X. Rao

References

1. Papana, A., Kyrtsou, C., Kugiumtzis, D., Diks, C.: Detecting causality in non-stationary time
series using partial symbolic transfer entropy: evidence in financial data. Comput. Econ. 47,
341–365 (2016)

2. Mudelsee, M.: Trend analysis of climate time series: a review of methods. Earth Sci. Rev.
190, 310–322 (2019)

3. Cai, R., Huang, L., Chen, W., Qiao, J., Hao, Z.: Learning dynamic causal mechanisms from
non-stationary data. Appl. Intell. 53, 5437–5448 (2023)

4. Huang, B., Zhang, K., Schölkopf, B.: Identification of Time-Dependent Causal Model: a
gaussian process treatment. In: Proceedings of the 24th International Conference on Artificial
Intelligence, pp. 3561–3568. AAAI (2015)

5. Huang, B., Zhang, K., Gong, M., Glymour, C.: Causal discovery and forecasting in non-
stationary environments with state-space models. In: International Conference on Machine
Learning, pp. 2901–2910. PMLR (2019)

6. Zhang, K., Huang, B., Zhang, J., Glymour, C., Schölkopf, B.: Causal discovery from
nonstationary/heterogeneous data: skeleton estimation and orientation determination. In:
International Joint Conference on Artificial Intelligence, pp. 1347–1353. IJCAI, US (2017)

7. Kang, M., Chen, D., Meng, N., Yan, G., Yu, W.: Identifying unique causal network from
nonstationary time series. arXiv preprint arXiv:2211.10085 (2022)

8. Ma, J., Sun, Z.: Mutual information is copula entropy. Tsinghua Sci. Technol. 16(1), 51–54
(2011)

9. Entner, D., Hoyer, P.O.: On causal discovery from time series data using FCI. In: Proceedings
of the 5th EuropeanWorkshop on Probabilistic Graphical Models, pp. 121–128. PGM (2010)

10. Runge, J.,Nowack, P.,Kretschmer,M., Flaxman, S., Sejdinovic,D.:Detecting andquantifying
causal associations in large nonlinear time series datasets. Sci. Adv. 5(11), eaau4996 (2019)

11. Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector
autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(5), 1709–1731 (2010)

12. Peters, J., Janzing,D., Schölkopf, B.: Causal inference on time series using restricted structural
equation models. In: Proceedings of the 26th International Conference on Neural Information
Processing Systems, pp. 154–162. NIPS, Curran Associates Inc., Red Hook (2013)

13. Pamfil, R., et al.: DYNOTEARS: structure learning from time-series data. In: International
Conference on Artificial Intelligence and Statistics, pp. 1595–1605. PMLR (2020)

14. Sun, X., Schulte, O., Liu, G., Poupart, P.: NTS-NOTEARS: learning nonparametric DBNs
with prior knowledge. arXiv preprint arXiv:2109.04286 (2021)

15. Fujiwara, D., Koyama, K., Kiritoshi, K., Okawachi, T., Izumitani, T., Shimizu, S.: Causal
discovery for non-stationary non-linear time series data using just-in-time modeling. In:
Conference on Causal Learning and Reasoning, pp. 880–894. PMLR (2023)

16. Song, L., Kolar, M., Xing, E.: Time-varying dynamic Bayesian networks. In: Proceedings of
the 22nd InternationalConferenceonNeural InformationProcessingSystems, pp. 1732–1740.
Curran Associates Inc., Red Hook (2009)

17. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E
69(6), 066138 (2004)

18. Runge, J.: Causal network reconstruction from time series: from theoretical assumptions to
practical estimation. Chaos Interdisc. J. Nonl. Sci. 28(7) (2018)

19. Bussmann, B., Nys, J., Latré, S.: Neural additive vector autoregression models for causal
discovery in time series. In: Soares, C., Torgo, L. (eds.) DS 2021. LNCS, vol. 12986, pp. 446–
460. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88942-5_35

20. Sugihara, G., et al.: Detecting causality in complex ecosystems. Science 338(6106), 496–500
(2012)

http://arxiv.org/abs/2211.10085
http://arxiv.org/abs/2109.04286
https://doi.org/10.1007/978-3-030-88942-5_35


Copula Entropy Based Causal Network Discovery 131

21. Huang, L., He, J., Lu, C.: Review and prospect of research on the western Pacific subtropical
high. J. Arid Meteorol. 30(2), 255–260 (2012)

22. Wang, B., Jiao, Z., Cao, J.: A study on the relationship between the sea surface temperature
and the ridge of the subtropical high in the western Pacific. J. Yunnan Univ. (Nat. Sci. Edn.)
27(4), 332–336 (2005)

23. Tan, R., Rong, G.: Equatorial Pacific ST warming and transmission characteristics of El Nino
process. J. Appl. Meteorol. Sci. 3(2), 165–172 (1992)

24. Zheng, J., Liu, Q.: Interactions between the tropical Pacific Ocean and the tropical Atlantic
SST master modes. Oceanologia Et Limnologia Sinica 6(2), 799–806 (2010)

25. Zuo, J., Yu, Y., Chen, Z.: The analysis of sealevel variation factor along China coast. Adv.
Earth Sci. 9(5), 48–53 (1994)



DSparsE: Dynamic Sparse Embedding
for Knowledge Graph Completion

Chuhong Yang, Bin Li(B), and Nan Wu

Beijing Institute of Technology, Beijing, China
{3120230733,binli,wunan}@bit.edu.cn

Abstract. Addressing the incompleteness problem in knowledge graph
remains a significant challenge. Current knowledge graph completion
methods have their limitations. For example, ComDensE is prone to
overfitting and suffers from the degradation with the increase of net-
work depth while InteractE has the limitations in feature interaction and
interpretability. To this end, we propose a new method called dynamic
sparse embedding (DSparsE) for knowledge graph completion. The pro-
posed model embeds the input entity-relation pairs by a shallow encoder
composed of a dynamic layer and a relation-aware layer. Subsequently,
the concatenated output of the dynamic layer and relation-aware layer
is passed through a projection layer and a deep decoder with residual
connection structure. This model ensures the network robustness and
maintains the capability of feature extraction. Furthermore, the conven-
tional dense layers are replaced by randomly initialized sparse connection
layers in the proposed method, which can mitigate the model overfit-
ting. Finally, comprehensive experiments are conducted on the datasets
of FB15k-237, WN18RR and YAGO3-10. It was demonstrated that the
proposed method achieves the state-of-the-art performance in terms of
Hits@1 compared to the existing baseline approaches. An ablation study
is performed to examine the effects of the dynamic layer and relation-
aware layer, where the combined model achieves the best performance.

Keywords: Knowledge Graph · Graph Completion · Link
Prediction · Sparse Embedding

1 Introduction

Knowledge Graph (KG) is a directed heterogeneous graph that represents con-
cepts, entities, and their relationships in a structured form using knowledge
triples. Knowledge triples are typically represented as (s, r, o), where s, r and o
denote the subject entity, the relation, and the object entity, respectively. KGs
have a wide range of applications in various fields, including natural language
processing, information retrieval, recommendation systems, and semantic web
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technologies. They are used to represent and organize knowledge in a structured
and machine-readable format, which can be used to power intelligent applica-
tions and services.

Some well-known KGs, including Wikidata [26] and DBpedia [1], contain
billions of knowledge triples, but they are often incomplete, which poses a sig-
nificant challenge in the field of knowledge graph research. To address this issue,
knowledge graph completion has emerged as an important task, which aims to
predict missing knowledge triples. Typically, link prediction that focuses on
predicting the missing entity in a knowledge triple is adopted for knowledge
graph completion. Graph embedding, which uses low-dimensional, dense, and
continuous vectors to represent nodes and relationships in knowledge graphs,
is the basis of most link prediction methods. Existing link prediction models
can be categorized into tensor decomposition models [13], translational models,
and deep learning models [18]. Recently, pre-trained language models, such as
Large Language Model, have also been introduced to solve KG incompletion
problem [7,31].

In this paper, we propose a deep learning model, called DSparsE, for KG com-
pletion, where a new model that includes a relation-aware layer and a dynamic
layer to extract features and residual connections used for decoding is proposed
for link prediction. The previous multilayer perceptron (MLP) model ComDensE
[12] retains both shared fully connected layers and relation-aware fully con-
nected layers, and concatenates their results by a projection layer to achieve
feature fusion. The relation-aware layer can be seen as a MLP with dynamic
weights that changes with the input data. However, this dynamic processing
is not comprehensive because the weights of the shared layers are still fixed,
which limits the network’s expressive power. MoE [9,20] and CondConv [29]
were proposed in 2017 and 2019, respectively. The former divides the fully con-
nected layer into several expert layers and uses a separate network to gener-
ate the combination weights of these expert layers. It takes the expert blocks
with the top k weights for feature fusion. The latter uses dynamic convolution
kernels based on input data for convolution operations. These dynamic methods
give the network greater flexibility and have been shown to have good applica-
tion potential. Thus DSparsE introduces a dynamic structure similar to MoE
into the encoding end, and takes the results of all expert blocks for weighted
fusion.

Compared to fully connected networks, convolutional layers introduce
position-related sparse connections, which suppress overfitting effectively, save
computing resources, and capture feature correlations between adjacent pixels
efficiently. However, in link prediction for knowledge graph completion, the input
of neural network is a one-dimensional embedding vector, which does not nat-
urally have correlation information like pixels in images. Most of the aforemen-
tioned convolution-based models [5,11,16,24] attempt to enhance the interaction
between entity and relation embedding vectors in different dimensions. These
methods achieved good results on many datasets, but they still suffer from insuf-
ficient feature interaction and interpretability. Therefore, this paper uses sparse
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layers with adjustable sparsity to replace all dense layers. Sparse layers can be
seen as an upgrade to convolutional layers, while at the same time alleviating the
overfitting issues faced by dense layers through unstructured pruning [6].

In addition, the research of ComDensE [12] shows that the effect of a single
wide network layer is even better than a deep network, which has the degradation
problem. This paper introduced residual connections [8] to solve the degradation
problem when deepening network models. In summary, the contributions of this
paper are listed as follows:

– We propose a novel link prediction model for knowledge graph completion,
which introduces a shallow but wide dynamic layer and a relation-aware layer
to the encoding end and a deep but thin residual structure to the decoding
end. This enables neural networks to perform better information fusion and
has the potential to deepen the network layers.

– By replacing all the fully connected layer with sparse layers, our model not
only mitigates overfitting risks effectively, but also preserves its capability of
feature interactions. Moreover, at comparable interaction levels, fixed sparse
structures demonstrate enhanced predictability compared to other methods
like dropout or downscale of output dimensions.

– A serial of tests and ablation studies were conducted on FB15k-237,
WN18RR, and YAGO3-10 demonstrate that our proposed model achieves
state-of-the-art performance in terms of Hits@1. Furthermore, by applying
t-SNE dimensionality reduction to the output of the gating layer within the
dynamic layer, it was discovered that the gating structure distributes weights
to expert blocks based on the semantic information of entity-relation pairs.

2 Background and Related Works

A knowledge graph is a collection of triples (facts) that represent relationships
between entities, denoted as G = {(s, r, o)} ⊆ E × R × E , where s ∈ E and o ∈ E
are the triple subject and object, respectively, and r ∈ R is the relationship
between them. Link prediction for KG completion can be viewed as a point-wise
learning to rank problem, where the goal is to learn a scoring function that maps
an input triple (s, r, o) to a score ψ(·): E × R × E �→ R.

Related works on link prediction for knowledge graph completion are sum-
marised as follows:

– Tensor decomposition models
Tensor decomposition models treat the link prediction as a task of tensor
decomposition. It encodes the knowledge graph as a three-dimensional ten-
sor, which is incomplete due to the incompleteness of knowledge graph. This
tensor is decomposed into a combination of low-dimensional vectors, from
which the embeddings of entities and relations can be obtained. The model
learns the relationships between vectors by setting a loss function and pre-
dicts the existence and correlation of underlying facts in knowledge graph.
Typical tensor decomposition models include DistMult [28], ComplEx [23],
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TuckER [2], etc. Although these models are mostly lightweight and easy to
train, they are sensitive to sparse data and have limited modeling capabilities.

– Translational models
Translational models are based on the assumption that the relationship
between entities can be represented by the translation of an entity vector.
A typical translational model is TransE [4]. This model learns the embed-
dings of entities and relations by minimizing the energy function, and predicts
the existence of underlying facts in knowledge graph. Translational models
are simple and easy to train, but they are not suitable for modeling sym-
metric relations and complex relations. To address these issues, TransH [27],
TransR [14], and TransD [10] models are proposed to enhance the modeling
capability by dynamically mapping entities and relations and suppress the
homogenization tendency of embedding vectors. Moreover, some improved
methods based on TransE introduce additional computation overhead.

– Deep learning models
Deep learning models for link prediction can be categorized as models based
on simple MLPs, models based on convolutional neural networks (CNNs),
models based on graph neural networks (GNNs), and models based on recur-
rent neural networks (RNNs) or transformers. In link prediction, these net-
works usually take the entity and relation embeddings as input, and obtain
a vector after encoding and decoding the input data through several neural
network linear and nonlinear layers. Networks based on simple MLPs, such
as ComDensE [12], add a relation-aware component, which generates differ-
ent weight matrices for different relations that appear in the training set
based on the common layer. Models based on CNNs include ConvE [5], Con-
vKB [16], ConvR [11], and InteractE [24]. These methods convert embedding
vectors into two-dimensional feature maps in different ways and apply filters
for convolution. More specifically, ConvR uses the relation embedding vector
as the convolution kernel, while InteractE enhances the interaction between
features by reshaping them into a checkerboard pattern. Models based on
GNNs include R-GCN [19] and CompGCN [25]. These methods use graph
convolutional networks to grab the neighborhood information of entities and
relations and aggregate them into the entity embedding vector. Those meth-
ods naturally take advantage of the graph structure and achieve good results
on some datasets. However, the parallelization challenge caused by the het-
erogeneous graph structure limits the performance of these methods. Some
methods use fine-tuning pre-trained language models for link prediction, such
as KG-BERT [30] and Rhelphormer [3]. Although these models achieve good
performance, they suffer from high complexity and require external informa-
tion beyond knowledge graph.

3 DSparsE for Link Prediction

This paper proposes a novel neural network model called DSparsE for link pre-
diction, whose architecture is shown in Fig. 1. The proposed DSparsE model con-
sists of two parts: encoder and decoder. The encoding part includes a dynamic
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Fig. 1. The architecture of DSparsE. The encoding end is composed of a dynamic
layer and a relation-aware layer. The decoding end is composed of several residual
MLP layers. Note that all the dense layers are replaced by sparse layers with
certain sparsity degrees.

layer, a relation-aware layer and a projection layer. The decoding part is a resid-
ual layer. Note that the dense MLPs are replaced by sparse MLP layers in
DSparsE, where a sparsity degree is used to measure the sparsity of weight
matrix. The sparsity degree is a hyperparameter that can be adjusted according
to dataset.

In DSparsE, the robustness of the network is enhanced through dynamic
module augmentation, which leverages randomly initialized sparse unstructured
pruning via a weight matrix combined with joint learning from stacked expert
blocks. This structure maximizes the network’s expressive power and allows the
network to deepen to improve its performance. Since deepening the network may
lead to a decrease in accuracy, the residual connections in DSparsE can alleviate
this effect.

In Fig. 1, DSparsE takes the d-dimensional head node embedding es and the
d-dimensional relation embedding er as inputs. These two embeddings are con-
catenated to form a 2d-dimensional vector, which is further passed through a
dynamic layer and a relation-aware layer in parallel. The output features of these
two layers are concatenated and further passed through a projection layer. A
detailed introduction of the aforementioned layers in DSparsE is as follows.

3.1 Dynamic Layer

The dynamic layer consists of multiple sparse MLP layers and a gate layer. This
network structure enhances the robustness of the model and improves the pre-
diction performance. The dynamic layer takes the concatenation of input vectors
[es;er] and produces k different output vectors eout1 ,eout2 , ...,eoutk through k
parallel MLP layers. The output vector of the dynamic layer is obtained by
taking a weighted combination of these output vectors eout1 ,eout2 , ...,eoutk . The
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combination weights are determined by a gate layer, which includes a dense fully
connected layer and a softmax layer controlled by a temperature parameter t.
The output of the gate layer can be denoted by

g = softmax(Ωgate([es;er]/t)). (1)

where Ωgate(·) is a affine function. Thus the output of dynamic layer can be
written as

eout,D =
∑k

i=1
gi × eouti , (2)

where g � [g1, g2, · · · , gk].

3.2 Relation-Aware Layer

To achieve more accurate feature extraction, we introduce a sparse relation-
aware layer that changes dynamically with the input relation [10,12]. This can be
viewed as part of the network dynamic nature (See [12] for more details). The
output of the sparse relation-aware layer is given by

eout,R = f(Ωα
R([es;er])). (3)

where Ωα
R(·) is a sparse affine function with sparsity degree α ∈ (0, 1), and f

denotes the activation function.

3.3 Projection Layer

The projection layer in DSparsE is a sparse MLP layer. With the input being
the vector concatenation of eout,D and eout,R, the output of the projection layer
is a d-dimensional vector and can be given by

eout,P = f(Ωα
P ([eout,D;eout,R])), (4)

where Ωα
P (·) is a sparse affine function with sparsity degree α ∈ (0, 1).

3.4 Residual Layer

A residual block consists of a sparse MLP layer, a batchnorm layer, an activation
layer (such as ReLU), a dropout layer and a residual connection. The input and
output of the residual block has the same dimension. The decoder of DSparsE is
a stack of multiple residual blocks, where the output of the i-th residual block is
formulated as

eResi
= f(BN(Ωα

Resi
(eResi−1)) + eResi−1), (5)

where BN(·) denotes the batch normalization operation and eResi
the output

vector of the i-th residual block, and Ωα
Resi

(·) is a sparse affine function with
sparsity degree α. Note that eRes0 is set to the output of the projection layer
eout,P . As introduced in [8,15], residual connections ease the training of deep
networks and prevent the degradation of deep networks.
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3.5 Sparse Structure of MLP

It is known that a dense layer may have a large number of useless parame-
ters, which lead to poor model generalization and increase training difficulty [6].
Although a convolutional layer is a sparse and parameter-sharing linear layer and
the number of parameters is much lower than that of a dense (fully connected)
layer, it leads to insufficient information exchange and difficulty in extracting
features. Moreover, convolving the feature embeddings of nodes and relations
does not have a physical interpretation. To tackle this issue, we can introduce
sparse MLP layer in DSparE. In the training stage, the elements of weight matrix
are initialized randomly with zeros in certain probability, which leads to a sparse
MLP layer. Given the parameters of a dense MLP layer W and a sparsity degree
α, the parameters of a sparse MLP layer W α can be formulated as

Wα
i,j =

{
0 with probability α,

Wi,j with probability 1 − α.
(6)

A sparse MLP layer can be viewed from two directions. On one hand, it can
be viewed as the result of a convolutional layer with enhancing interaction and
removing weight sharing. On the other hand, it can be viewed as the result of
pruning a dense layer.

Finally, we calculate the scores and loss function. The score is obtained by
taking the dot product of the output of the residual layer edecode and the object
entity embedding vector eo and further applying the sigmoid function, which is
formulated as

ψ = σ(edecode · eo), (7)

where ‘·’ denotes the dot product and σ denotes the sigmoid function. For the
loss function, we adopt the binary cross entropy loss function

L=− 1
N

∑
i
yi log ψ(s, r, oi)+(1 − yi) log(1 − ψ(s, r, oi)), (8)

where N is the number of entities, yi is the label of the i-th entity, the label
yi = 1 of the entity oi if (s, r, oi) ∈ G, and yi = 0 otherwise.

4 Experiments and Analysis

4.1 Datasets and Evaluation Settings

In our experiments, we use 1-N training strategy introduced by [5] to train
DSparsE and evaluate the performance of DSparsE on three typical datasets:
FB15k-237 [22], WN18RR [5] and YAGO3-10 [21]. Our evaluation of link pre-
diction is conducted in the filtered setting, where we calculate scores for all
other potential triples in the test set that are not present in the training, valida-
tion, or test set. To generate these potential triples, we corrupt the subjects for
object prediction. We use mean reciprocal rank (MRR) and Hits at N (Hits@N)
metrics to evaluate the performance of our model on these datasets. To ensure
robust evaluation, we train and evaluate our models five times and average the
performance results.
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Table 1. A comparison of prediction performance on different datasets. The
best result is in bold, and the second best result is underlined.

Model FB15k-237 WN18RR YAGO3-10

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

TransE [4] 0.199 0.471 0.290 0.422 0.512 0.465 – – –

TransD [10] 0.148 0.461 0.253 – 0.508 – – – –

DistMult [28] 0.155 0.419 0.241 0.390 0.490 0.430 0.240 0.540 0.340

CompGCN [25] 0.264 0.535 0.355 0.443 0.546 0.494 – – –

R-GCN [19] 0.151 – 0.249 – – – – – –

ConvE [5] 0.237 0.501 0.325 0.400 0.520 0.430 0.350 0.620 0.440

ConvKB [16] – 0.517 0.396 – 0.525 0.248 – – –

TuckER [2] 0.266 0.544 0.358 0.443 0.526 0.470 – – –

ComplEx [23] 0.158 0.428 0.247 0.410 0.510 0.440 0.260 0.550 0.360

RESCAL [17] 0.269 0.548 0.364 0.417 0.487 0.441 – – –

RotatE [17] 0.241 0.533 0.338 0.417 0.552 0.462 0.402 0.670 0.495

KG-BERT [30] – 0.420 – – 0.524 – – – –

ComDensE [12] 0.265 0.536 0.356 0.440 0.538 0.473 – – –

InteractE [24] 0.263 0.535 0.354 0.430 0.528 0.463 0.462 0.687 0.541

DSparsE (proposed) 0.272 0.551 0.361 0.443 0.539 0.474 0.464 0.690 0.544

4.2 Prediction Performance

Table 1 shows the performance of the proposed method compared to existing
methods. It can be seen that DSparsE reached the state-of-the-art performance
on FB15k-237, WN18RR and YAGO3-10 in terms of Hits@1. On FB15k-237, it
achieves a improvement of 2.6% and 3.4% in Hits@1 compared to ComDensE and
InteractE, respectively. On WN18RR, the improvement is not significant com-
pared to CompGCN and TuckER, but it still outperformed those models based
on translation and deep learning. On YAGO3-10, DSparsE achieves the state-
of-the-art performance on all the metrics, which highlights the effectiveness of
the proposed model. Furthermore, DSparsE performs better than those models
based on feature convolution. For instance, on FB15k-237, it achieves a improve-
ment of 14.8% in Hits@1 compared to ConvE and 6.6% in Hits@10 compared to
ConvKB. KG-BERT, a link prediction model based on BERT pre-trained lan-
guage model, performs average on small knowledge graph like FB15k-237 and
WN18RR, and its accuracy is much lower than DSparsE. It is observed that
DSparsE outperforms KG-BERT with a 24% and 3% improvement in Hits@10
on FB15k-237 and WN18RR, respectively.

4.3 Ablation Studies and Further Experiments

The Effect of Sparsity Degree. To further explore the effect of sparsity
degree, we applied sparse structure to replace the dense layers in DSparsE, Com-
DensE, and InteractE. The performance comparison is shown in Fig. 2. It can
be observed that the accuracies of both ComDensE and DSparsE models first
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Fig. 2. Hits@1 of InteractE, ComDensE, and DSparsE under different sparsity degrees
on FB15k-237.

increase and then decrease with the increase of sparsity, and the highest accu-
racies of both models appear at a sparsity of around 0.5. This indicates that
low sparsity in the network can lead to overfitting, limiting its potential, while
increasing sparsity properly can mitigate this issue. However, excessively high
sparsity reduces the number of effective parameters and disrupts neuron connec-
tions, diminishing the network’s expressive power and impairing training due to
decreased neuronal interaction. Note that DSparsE is less adversely affected by
the increase of sparsity compared to ComDensE, owing to its marginally greater
parameter count and more complex structure.

On the other hand, the performance of the InteractE model demonstrates
a consistent decrease with the increase of sparsity. This trend is due to the
model architecture of InteractE, where the final feature decoding layer is only an
MLP layer. The experiment results indicate that introducing increased sparsity
over the sparse interactions already captured by the earlier convolutional layers
adversely affects the model’s predictive performance.

Furthermore, the results demonstrate that enhancing a network’s effective-
ness can be achieved by introducing random sparsity. However, two questions
arise:

1. Can we achieve a similar performance by reducing the scale of the
linear layer?

2. Can we achieve a similar performance by increasing the dropout
probability?

To address the first question, we do experiments by reducing the output
dimension in the linear layers. Specifically, for a linear layer with output dimen-
sion d, we downscale the output dimension to d̂ = αd. For the second ques-
tion, we do experiments by increasing the dropout rate to p̂ = p + α(1 − p),
where p is the original dropout rate. The results are shown in Fig. 3. It indicates
that decreasing the number of neurons significantly degrades the performance,
whereas increasing dropout rate drastically deteriorated the performance. This is
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Fig. 3. The effects of downscale and
dropout. Sparse represents the pro-
posed sparse structure, Downscale means
cutting off part of the output dimen-
sion of the network, and Dropout means
adding extra dropout based on the origi-
nal dropout layer. The experiment is con-
ducted on FB15k-237.

Fig. 4. Hits@1 of DSparsE under
different numbers of experts and
temperatures on FB15k-237. t
denotes the temperature and Pure MLP
denotes an MLP layer which has the
same number of parameters as the
dynamic layer.

due to the fact that reducing the neuron number confines the output to a smaller
subspace, limiting expressive freedom. On the other hand, since each training
iteration changes the dropout mask, an excessively high dropout introduces more
uncertainty, thus diminishing network stability.

The Effect of Experts. Figure 4 illustrates the performance of DSparsE in
Hits@1 scores under different expert and temperature settings on FB15k-237.
The experiment results indicate that the prediction performance first increases
and then decreases with the rising number of expert blocks. The increase of
performance be explained from two aspects. On one hand, in contrast to a non-
partitioned fully connected structure (i.e., a very wide fully connected layer), the
expert blocks in the dynamic layer represent a form of regular sparse connections.
These sparse connections are further integrated through a decision layer, namely
a gating layer, forming a hypernetwork structure, which brings robustness to the
entire network. On the other hand, the expert blocks in the dynamic layer can
be viewed as sub-modules in an ensemble learning framework. This ensemble
learning architecture can effectively suppress the propagation of errors, reducing
the variance in prediction results.

However, when the number of expert blocks becomes large, the perfor-
mance deteriorates. This is due to an increase in network parameters introduces
additional training complexity, diminishing the network’s generalization perfor-
mance. Moreover, the gating network is fundamentally a multi-classifier. An
excessive number of categories increases the decision-making complexity of the
network.
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Table 2. The ablation study on dynamic layer and relation-aware layer on
FB15k-237. D, R and Res denote the dynamic layer, relation-aware layer, and residual
layer, respectively.

Hits@1 Hits@10 MRR

D + R + Res (Proposed) 0.272 0.551 0.361

D + Res 0.254 (−0.018) 0.526 0.345

R + Res 0.266 (−0.006) 0.538 0.355

Res(depth = 1) 0.237 (−0.035) 0.499 0.325

Res(depth = 3) 0.236 (−0.036) 0.509 0.325

Res(depth = 5) 0.238 (−0.034) 0.511 0.325

Res(depth = 10) 0.235 (−0.037) 0.504 0.324

Another key factor is the temperature of the dynamic layer. High temperature
values lead to weight homogenization. Conversely, low temperature values can
render many experts ineffective in learning, thus degrade the performance.

The Effects of Dynamic Layer and Relation-Aware Layer. Our ablation
studies demonstrate that both the dynamic and relation-aware layers are essen-
tial for achieving the optimal performance, as shown in Table 2. The Dynamic
layer compensates for the relation-aware layer’s lack of interconnectedness, facil-
itating the integration of diverse relational knowledge. The expert layer’s gat-
ing output is determined by head-relation pairs, fostering a more entity-aware
weighting system and enabling the connection of different knowledge types. The
interaction between these two layers yields enhanced performance, highlighting
their synergistic effect. Furthermore, if both the dynamic layer and relation-
aware layer are removed and only the decoder with the residual connection is
left, it leads to a significant performance degradation. This decline in perfor-
mance cannot be mitigated by increasing the number of layers in the decoder.
The result indicates that both the encoder and the decoder are indispensable for
link prediction in DSparsE.

Furthermore, we disclose some insights of the gate layer. Each entity-relation
pair passed through the gating layer yields an output vector. Using the t-SNE
dimensionality reduction technique, these high-dimensional vectors can be visu-
alized in Fig. 5 and Fig. 6. Each point in these figures represents a unique entity-
relation pair, distinguished by different colors corresponding to different rela-
tionships. The visualization results reveal the following observations:

– The entity-relation pairs with the same relationship type tends to cluster
together, which indicates the proximity within the space of the gated layer
outputs.

– The spatial distribution of clusters is significantly influenced by the nature of
the relationships. For instance, relationships denoting inverse meanings (e.g.,
nominee inv and nominee) or semantic opposites (e.g., place of birth vs. place
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Fig. 5. The output of gated layer for each entity-relation pair. Each point
represents an entity-relation pair in latent space after t-SNE reduction. The color of a
point represents the relation type.

Table 3. Hits@1 of DSparsE under different residual layer depths on FB15k-
237. Note that the Wide linear layer means a wide and shallow network with the same
number of parameters replaces the deep structure with residual connections in decoder.

Depth of layers With residual connection Without residual connection Wide linear layer

depth = 1 0.2682 0.2671 (−0.0011) –

depth = 2 0.2691 0.2522 (−0.0169) 0.2633 (−0.0058)

depth = 3 0.2716 0.2276 (−0.0440) 0.2550 (−0.0166)

depth = 4 0.2681 0.1908 (−0.0773) 0.2511 (−0.017)

depth = 100 0.2639 0.02338 (−0.2401) 0.2490 (−0.0149)

of burial) exhibit divergence in the reduced dimensional space. Conversely,
relationships with similar semantics (e.g., nationality and city town) are close
in the latent space. This demonstrates that DSparsE can capture various
associations between entities and relations.

– Alterations in the head entity of a relation pair result in minor shifts within
the vector output. For a fixed relation, the relative positions of entity within
its corresponding cluster does not display a discernible pattern. This is due to
the relatively lower frequency of triples involving individual nodes compared
to those associated with a particular relation type, posing challenges in accu-
rately modeling semantic information [4]. However, certain examples, such
as Mariah Carley and Dmitri Shostakovich (notable in the music domain)
demonstrate proximity within clusters pertaining to specific relations.

The Effect of Residual Blocks. With the increasing scale of dataset, a
deeper decoding layer is expected to ensure that the network’s performance.
However, simply increasing MLP layers leads to a rapid degradation in per-
formance. Employing residual connections maintains the expressive potential of
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Fig. 6. The distribution of different entities in the same relation cluster (e.g.,
a relation named Location). The points that close to each other are semantic similar
in latent space.

the network effectively. The presence of residual connections in DSparsE ensures
the expressive capability when deepening the network. Table 3 shows the per-
formance of DSparsE in Hits@1 under different numbers of residual blocks on
FB15k-237. It can be observed that the accuracy decreases rapidly as the number
of layers increases if the residual blocks are replaced with fully connected layers.
In our model, the residual connections reduce the effect of increasing the num-
ber of layers. Furthermore, if a wide and shallow network with the same number
of parameters is used to replace the deep structure with residual connections,
there is still a performance degradation. These experiments demonstrate that a
shallow but wide encoder for feature extraction and a deep but thin decoder for
feature decoding can effectively enhance the performance of link prediction.

5 Conclusion

This paper proposed a new model called DSparsE for knowledge graph comple-
tion. By introducing wide dynamic layer and relation-aware layer as an encoder
and a deep residual connection layer as a decoder, the model representation
power was enhanced effectively. This model employs sparse MLP layers and
residual structures to alleviate overfitting, which reduces the difficulty of train-
ing deep networks and improves prediction performance. The experiment results
demonstrate that the proposed DSparsE achieves the best performance in terms
of Hits@1 on the FB15k-237, WN18RR, and YAGO3-10 datasets. Moreover, it
was discovered that the hypernetwork structure formed by gated layers can effec-
tively capture the semantic features and semantic associations of entity-relation
pairs, with the results of latent space dimensionality reduction exhibiting inter-
esting clustering and intra-cluster deviation phenomena. Ablation studies have
further proven that the shallow-to-deep network structure of DSparsE improves
the link prediction performance.
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Abstract. Although deep neural networks exhibiting superior perfor-
mance across numerous tasks, their application in high-risk domains is
limited by a lack of interpretability and trustworthiness. In this paper,
an interaction value calculation method is firstly proposed, which faith-
fully represents the interaction utility of each variable in the feature
map. Secondly, an interpretable method for top-down construction of
interaction hierarchy graph based on interaction utility is proposed to
understand the visualized knowledge represented by filters and to eluci-
date the decision-making process of the network. Extensive experiments
were carried out on publicly available datasets and models that had
been pre-trained. Experimental results indicate that each node in the
graph consistently corresponds to the same part of an object across var-
ious images belonging to the same category. The faithfulness evaluation
shows that the filters involved in the graph nodes have a major role in
the network. Furthermore, the quantitative evaluation shows that our
method improves over the others by an average of 0.18%, 1.19%, and
2.18% on the EBPG, mIoU, and Bbox metrics, respectively.

Keywords: Explainable AI · Interpretability · Computer Vision

1 Introduction

For the past decade, convolutional neural networks (CNNs) have led the field of
computer vision research, demonstrating outstanding performance across vari-
ous tasks including image classification [13], object detection [6,28], and other
related domains [9,12,17]. However, CNNs often lack interpretability and trust-
worthiness due to their large number of free parameters, especially in high-risk
areas such as medical diagnostics [8], financial risk forecast [26] and autonomous
driving [16] where they often exhibit unexpected behavior and cause irreparable
damage. Therefore, it is vital to open the black box of CNNs and improve their
trustworthiness and transparency. We believe that a CNN trained for various
scenarios can encode rich information about the object through its multilayer
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Fig. 1. The interaction hierarchy graph is constructed based on the interaction values
of the feature maps, and one or more nodes in the graph represent the information
encoded by a particular convolutional filter. The visual knowledge encoded by the CNN
convolutional filter is understood by the hierarchical graph and the decision process is
clarified by the edges of the graph.

convolution. We provide a perspective that enables us to interpret the informa-
tion encoded within the convolutional layers and to analyze the CNN decision
process, which also presents a number of challenges, such as (i) What kind of
visual knowledge do CNN’s convolutional filters encode? (ii) Which filters are
primarily involved in the recognition results of the model? (iii) What are the
relationships between the filters of the different convolutional layers?

Interpretable algorithms are able to make deep learning models understand-
able to humans. Researchers are increasingly interested in developing methods
to visualize and interpret deep neural networks. However, there is a trade-off
between performance and interpretability. The pursuit of interpretability can
result in degradation of performance, which is undesirable in environments with
some serious consequences, such as incorrect classifications or flawed decision-
making processes. This paper focuses on post-hoc interpretability, that is, inde-
pendent methods for interpreting an already trained and fixed target model,
without compromising its performance. In this paper, the interaction value of
the feature map is calculated by introducing multi-order interactions, which
reflect the interaction utility of a variable in the feature map. In addition, we
propose hierarchical graphs to understand the information encoded by the filters.
As illustrated in Fig. 1, the hierarchical graph is constructed by extracting graph
nodes in the feature interaction graph of the specified convolutional layer and
computing the between-layer relationships of the nodes in a top-down manner.
The contribution of this paper is as follows.

1 The interaction value calculation method is proposed that can reflect the
interaction utility of variables, which can signify the interaction of each vari-
able of the feature map in the CNN and provide a basis for interpretability.

2 The interpretable method for constructing hierarchical graphs using top-down
of interaction values is proposed to understand the encoding information of
filters and clarify the decision paths of CNN.
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2 Related Work

Interpretability has several different directions. One branch of interpretability is
post-hoc explanation methods, which aim to explain why a trained model made
a specific decision in response to a given input. Post-hoc explanation methods
can be divided into perturbation-based methods [3,19,25], which perturb the
input and measure the degree of influence on the model outcome, and gradient-
based methods [20,22,24], which calculate the back propagation of the modified
gradient function.

Saliency Maps. Numerous efforts [2,20,29,34] have been made to investigate
saliency map methods that reflect the pixels that have the greatest impact on
model predictions. The saliency map approach in CNNs is the most intuitive
way to explore patterns hidden within neurons. The up-convolutional network
[5] transforms the feature map of the convolutional layer into an image. Gradient-
based visualization [2,20] evaluates input images that maximize the activation
score of neural units by gradients in back propagation. However, the saliency
map only knows which areas the model focuses on and does not explain its
decision process.

Decision Paths. [30] propose a distillation guided routing method to explore
critical data routing paths in neural networks, which can faithfully compress the
model into a compact model. In other words, the trustworthiness of the model
compression is improved with interpretability. Explanatory Graph [32] generates
graphs from CNN where each node represents a partial pattern corresponding
to an activation peak in the relevant layer, and each edge connects two nodes in
adjacent layers to reflect the interrelationship. [27] combines decision trees and
neural networks, allowing neural networks to have decision tree-like interpretabil-
ity and to output intermediate decisions for prediction. [33] roughly represents
the path of a CNN prediction by a decision tree with semantics, where each node
in the tree represents a decision pattern of the CNN. But these approaches only
superficially decompose the decision paths of the network and do not explain
the rationale for such decisions and the knowledge hidden in the decisions.

3 Method

In this section, we design the interaction values to reflect the utility of each vari-
able in the input image or feature map of the model. Graph nodes are extracted
from the peaks of the interaction values of the feature graph, and the edges of
the graph connect two nodes of the neighbouring layer. The nodes represent the
visual knowledge of a particular convolutional filter, and the edges represent the
interrelationships of this visual knowledge and the decision paths of the model.
The construction process of the interaction hierarchy graph is shown in Fig. 2.
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Specifically, firstly, the feature graph of the deep neural network is extracted
and its corresponding interaction values are calculated according to Eq. 4. Then,
the peaks of each interaction feature graph are found using Eq. 5, and the graph
nodes are extracted from the interaction peaks according to 6. Finally, the edges
between the upper nodes and the lower nodes are created according to 7. This
clarifies (i) which object parts activate which filters in the model, (ii) which fil-
ters play an important role in the detection of the model, (iii) how the filters of
the different convolutional layers are related to each other, and (iv) How much
do these filters contribute to the prediction score. Theoretically, we could explain
CNN under different tasks. However, in this study, we focus on the CNN used
for object classification to simplify the story.

Preliminaries: Before analyzing the CNN decision process, we first introduce
the multi-order interactions [31] between input variables. Given a pre-trained
DNN model v and an input image X = {1, 2, , ..., n} with n variables, v(X)
denotes the network output of X. CNNs are usually inference through interac-
tions between variables rather than individual variables. For example, the inter-
action between pixels i, j, k can form the edge of an object. If this interaction
increases the output of the network, the pattern is considered to have a positive
effect on the network. Conversely, if this pattern decreases the output of the
network, this pattern has a negative effect on the network.

The multi-order interaction I(m)(i, j) between two input variables i, j ∈ X
is measured for interactions of different complexity. The m-order is consid-
ered to represent the contextual complexity. Overall, the multi-order interaction
I(m)(i, j) measures the average utility of the interaction between variables i, j
under all possible scenarios consisting of m variables. The multi-order interaction
I(m)(i, j) can be shown as:

I(m)(i, j) = ES⊆X\{i,j},|S|=m[Δv(i, j, S)] (1)

where S ⊆ X is any combination of m variables, v(S) is the output score when
keeping the variables in S constant but replacing the variables in X\S with
baseline value [1], and Δv(i, j, S) = v(S ∪{i, j})−v(S ∪{i})−v(S ∪{j})+v(S).

3.1 Interaction Value

As shown in Eq. 1, the multi-order interaction is computed only for the input, and
we expand it to each layer of the convolutional neural network. fl∼(·) represents
the latter part of the model after the l-th convolutional layer. In other words, the
model is divided into two parts starting from the l-th convolutional layer, with
fl∼(·) being the part after this separation. As with fl∼(·), let f∼l(·) : RH×W×3 �→
R

Hl×Wl×Dl be any function that converts the input into a feature map (i.e., the
first l layers of the CNN). So the feature map of the l-th convolution layer is
f∼l(X) = Al ∈ R

Hl×Wl×Dl . As before, the two variables i, j belong to Al. Thus
the multi-order interaction of the l-th layer feature map can be denoted as:

I
(m)
l (i, j) = ES⊆Al\{i,j},|S|=m[Δfl∼(i, j, S)] (2)
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Fig. 2. The overall structure of the proposed method. The feature interaction map
is generated by calculating the corresponding interaction values based on the feature
maps of the CNN, and graph nodes are extracted from the feature interaction graph.
One or more of these nodes correspond to the visual knowledge encoded by the specified
convolutional filter. The graph structure is constructed in a top-down manner based on
the nodes in each layer, and each edge in the graph connects two nodes in the adjacent
layer, which reflects the relationship between the upper and lower layers of the nodes.
The creation of edges is determined by the shortest Euclidean distance between the
lower node and the upper node. The interaction hierarchy graph reveals the filters that
play an important role in the CNN and clarifies their decision paths.

where
Δfl∼(i, j, S) =fl∼(S ∪ {i, j}) − fl∼(S ∪ {i})

− fl∼(S ∪ {j}) + fl∼(S)
(3)

According to the multi-order interactions at the pixel level, we find that
variable i is involved in computing interactions of |Al| − 1 complexities, which
jointly reflect the interaction utility of the variable. Thus, interaction value is
proposed to represent the complex interaction utility of a variable in a set of
features. For example, a variable i in the feature map Al which has |Al|−1 types
of multi-order interactions in the contextual features. The interaction value of
the variable i in the l-layer feature map is defined by the following equation.

V (i) =
1

(|Al| − 1)2
∑

j⊆Al\{i}

|Al|−2∑

m=0

I
(m)
l (i, j) (4)

The interaction value incorporates all orders of multi-order interaction
between variable i and any other variable, which represents the interaction utility
of variable i in the convolutional layer.
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Fig. 3. Mapping the upper level nodes into the lower level space and inferring the
attribution of the lower level nodes by the minimum Euclidean distance.

3.2 Interaction Hierarchy Graph

The interaction value of each variable in the feature map Al is calculated by
Eq. 4 to obtain the feature interaction map Vl = V (i ⊆ Al) ∈ R

Hl×Wl×Dl . Each
variable in the feature interaction map Vl corresponds to the interaction value
of the feature map Al.

To construct the hierarchical graph, positional constraints on the upper and
lower nodes are incorporated, mapping the lower nodes into the upper layer and
selecting edges based on the Euclidean distance between the lower and upper
nodes. The mask containing the node information Ml ∈ R

Hl×Wl×Dl is generated
via Eq. 5, which leaves the first λ of the variables in the feature interaction graph
unchanged and sets the others to 0.

Ml = Mλ(S(Vl), Vl) (5)

where λ ∈ [0, 1]. Let S(·) be a sorting function such that Sr(Vl) is the rth

largest element in Vl. We define the mask function Mλ(·) such that Mλ(S(Vl), Vl)
replaces all the variables in the feature interaction map with the mask distri-
bution. The Ml embodies variables that have excellent interaction utility in the
feature interaction map.

For an interaction feature map, the set of continuous variables on the two-
dimensional space is considered to be a graph node. Mk

l ∈ R
Hl×Wl is the feature

interaction map of the k-th filter in the l-th convolutional layer. There is not
necessarily one node in Mk

l , there may be more or none. Therefore we extract
the e graph nodes of the l-th convolutional layer by the Graphing operation.

{
Rk,l

t

}e

t=1
= Graphing (Ml) , k ≤ Dl (6)

where Rk,l
t = {(x, y), c, u} denotes a node in the graph that corresponds to the

node of the feature interaction graph of the k-th filter in the l-th convolutional
layer, specifically the t-th graph node in the l-th convolutional layer. (x, y) is the
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Algorithm 1. Construct the Interaction Hierarchy Graph
Input: feature map Al of the l-th conv-layer, node sets Gl+1 in the upper conv-layer.
Output: node sets Gl.

1: Calculate the interaction values for each variable of the feature map to obtain the
feature interaction map.

2: for i in Al do
3: Vl(i) = 1

(|Al|−1)2

∑
j⊆Al\{i}

∑|Al|−2
m=0 I

(m)
l (i, j)

4: end for
5: Mask containing the graph node information is derived from the feature interaction

graph.
6: Ml = Mλ(S(Vl), Vl)
7: Convert mask to graph node.

8:
{
Rk,l

t

}e

t=1
= Graphing (Ml) where Rk,l

t = {(x, y), c, u}
9: for t1 in [1, 2, ..., el+1], t2 in [1, 2, ..., el] do

10: if min
√

(xl+1
t1

− xl
t2

)2 + (yl+1
t1

− yl
t2

)2 and l is not top layer then

11: ul
t2 := t1

12: else
13: ul

t2 := −1
14: end if
15: end for
16: return

{
Rk,l

t

}e

t=1
∈ Gl

position of the node, c is the information of the node and u is the edge of the
node to some node in the previous convolution layer. The creation of the edge
u is illustrated in Fig. 3. Map the upper nodes in the lower space, calculate the
Euclidean distance between nodes in the lower layer and all nodes in the upper
layer, and create an edge between the lower node and the upper node with the
smallest distance. The specific calculation is shown in Eq. 7.

ul
t2 :=

⎧
⎨

⎩
t1

∣∣ min
1≤t1,t2≤el,el+1

‖P l+1
t1 ,P l

t2‖2 , l is top layer

− 1 , l − 1 is top layer
(7)

where el is the number of nodes in the l-th layer of the graph and P l
t1 = (xl

t1 , y
l
t1)

is the position of the t1-th node in the l-th convolutional layer. The construction
of the hierarchical graph is shown in Algorithm 1.

The information encoded by some nodes in the lower layers of the hierarchical
graph together constitute the information encoded by a node in the upper layers.

These graph nodes encode the same information in the same class of images.

3.3 Filter Contribution

Above we have constructed interaction hierarchy graphs to clarify the decision
making process of CNN and to understand the visual knowledge associated with
some of the filters through graph nodes. Next, we explore the contribution of
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Fig. 4. Visual knowledge of filters representation. Some critical filters in the same class
of images represent the same visual knowledge, but in other classes of images, these
filters encode irrelevant parts.

filters in CNN. Since one or more nodes in the hierarchical graph correspond to
a filter, we rename the filter’s sort number. Let the set of filters involved in the
graph be K = {k1, k2, ...}. The score of the filter in the CNN is calculated as
shown in Eq. 8.

Ski

l = f∼l(Al) − f∼l(Mki(Al)) (8)

where ki ∈ K, and M
ki(Al) represents the value of the ki-th channel Aki

l of the
feature map replaced by the baseline value.

From the scores of the filters obtained from the above equation, the contri-
bution of each filter is calculated by the softmax function with the following
formula.

Cki

l =
Ski

∑
k∈K Sk

l

(9)

where Cki

l represents the value of the contribution of the Ki-th filter in the l-th
convolution layer. We replace the channel of the feature map with the baseline
value, which corresponds to the filter for which the contribution will be sought.
The difference between the pre-replacement score and the post-replacement score
is the filter score and the contribution is derived from the filter score. In sum-
mary, we constrain the flow through the forward propagation to obtain the filter
contribution.

In this part, we only address the filters involved in the hierarchical diagram
and consider that the rest of the filters play a minimal role in the prediction of
the model’s results.
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Table 1. Quantitative evaluation results of the state-of-the-art approach compared
with our method on ResNet-50.

Metric EBPGmIoUBbox

Grad CAM [20] 60.08 32.16 60.25

Grad CAM++ [2] 47.78 30.16 58.66

Extremal Perturbation [7] 63.24 26.29 52.34

RISE [18] 32.86 27.40 55.55

Score CAM [29] 35.56 31.0 60.02

Integrated Gradient [24] 40.62 15.41 34.79

FullGrad [23] 39.55 20.20 44.94

Ours method 65.07 32.8 61.49

4 Experiments

In this section, the experimental setup is first introduced in terms of data sets
and models. Secondly, the representation of the images of the filters in the net-
work in the same and different classes is visualised. Then, convolution filters are
perturbed to demonstrate the faithfulness of the interaction hierarchy graph.
Finally, we compare a range of saliency methods to demonstrate the superiority
of our approach in localization evaluation.

4.1 Experimental Settings

Datasets: The following datasets were utilized in our experiments: (1) The
ILSVRC2012 [4] is a portion of the extensive, manually-labeled ImageNet, which
is organized based on the WordNet hierarchy. Each hierarchy node is associ-
ated with hundreds of images. This dataset contains 1000 leaf categories, with
the entire hierarchy comprising 1860 nodes. (2) PASCAL VOC 2007 [11] is a
dataset focused on object detection, including 4952 images across 20 categories.
(3) CIFAR-10 [14] is a subset of the Tiny Images dataset, composed of 60,000
32 × 32 color images distributed among 10 categories.

Types of CNNs: To demonstrate the broad applicability of the proposed
method, we considered three types of CNNs to prove our approach, i.e. the
VGG-16 [21], the ResNet-50 [10], the ResNet-101 [10] and the AlexNet [15].

4.2 Visual Knowledge of Filters

In this experiment, we tested whether the critical filters in the hierarchical graph
represent the same target part in different images of the same class. We con-
structed the interaction hierarchy graph on a VGG-16 network to extract filters
with outstanding roles based on node information. Specifically, as shown in Fig. 4,
we visualized some of the filters in layers 10 and 13 of the VGG-16 network. For
example, in the third row, the 299th filter in layer 13 represents the head and
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Table 2. Quantitative evaluation results of the state-of-the-art approach compared
with our method on VGG16.

Metric EBPGmIoU Bbox

Grad CAM [20] 55.44 26.52 51.70

Grad CAM++ [2] 46.29 28.10 55.59

Extremal Perturbation [7] 61.19 25.44 51.20

RISE [18] 33.44 27.11 54.59

Score CAM [29] 46.42 27.71 54.98

Integrated Gradient [24] 36.87 14.11 33.97

FullGrad [23] 38.72 26.61 54.17

Ours method 59.72 28.29 57.12

body parts of different Siamese cat images, while the 435th and 503rd filters
in layer 10 represent the nose and ear areas of the Siamese cat, respectively. In
the left part, the results of the visualization of the filters for different images
of the same category are indicated separately. It is easy to see that these filters
represent the same visual knowledge in the same category of images. In the right
part, these filters represent unrelated visual knowledge on other categories of
images, and these filters are not present in the hierarchical graph of the image,
i.e. these filters play a minor role in the prediction of the image. Experimen-
tal results show that our approach is able to understand the visual information
encoded by the filters in the network from within the convolutional layer, which
is consistent across images or datasets.

4.3 Quantitative Evaluation

This part measures the accuracy of the significance location evaluation by objec-
tive quantification. The saliency map of our method is derived from the feature
interaction map corresponding to the top 10% of the filter contribution ranking.
A number of metrics were quantified in the experiment, including Energy-Based
Pointing Game (EBPG), mean Intersection over Union (mIoU) and Bounding
box (Bbox).

Inspired by Energy-Based Pointing Game (EBPG), we binarised the
sample images using the bounding boxes of the prediction category. We specify
the ground-truth mask as G and the prediction mask as P . The metric then
indicates how many attention regions are within the predicted bounding box,
represented as Proportion = (‖G 	 P‖1/‖P‖1) × 100.

mean Intersection over Union (mIoU) is a recognised metric in image
segmentation that is used to anlayze the localization ability and significance of
attributes captured in the saliency map. mIoU = 1

k

∑k
i=1(P ∩G)/(P ∪G)×100,

where k is the number of classes. This metric evaluates global localization.
Bounding box (Bbox) is used to quantify the extent to which the impu-

tation method identifies and localizes the region of interest. Assuming that the
bounding box contains n pixels, we evaluate the number of top k pixels in the
prediction mask P . Bbox = (k/n) × 100, where k ≤ n.
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Fig. 5. Filter perturbations for training different CNNs on various image datasets,
with the red line being contribution-first driven perturbations and the blue line being
random perturbations. (Color figure online)

We compared our methods with the most advanced XAI methods, such as
Grad CAM [20], Grad CAM++ [2], Extremal Perturbation [7], RISE [18], Score
CAM [29], Integrated Gradient [24] and FullGrad [23]. Tables 1 and 2 show the
results of comparing our method with other methods on VGG-16 and ResNet-50
trained on the PASCAL VOC 2007 dataset. For each metric, the best is shown
in bold and the second best is underlined. All values are reported as percentages.
Our method achieves excellent results for different metrics and models.

4.4 Faithfulness Evaluation

The reliability of the filters corresponding to the nodes in the interaction hierar-
chy graph was verified. It is misleading to rely solely on the visualization of the
model’s convolutional filters for visual evaluation. Therefore, perturbations of
the convolutional kernel were introduced to ensure the visual interpretability of
the hierarchical graph. We selected the top 10% of filters in the model based on
the previously calculated filter contributions considered. The filters were selected
from the filter contribution ranking. In Sect. 3.3, the filter contribution calcula-
tion method within the convolutional layer is presented, and here we extend it
to the convolutional part of the whole model, i.e. the contribution of a particular
convolutional filter in the whole network. The score of each filter is calculated
according to Eq. 8, and then the global contribution of each filter is calculated
by putting all the scores into Eq. 9. Briefly, K in Sect. 3.3 refers to the set of
filters involved in the hierarchical graph within a convolutional layer, which is
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Table 3. Recognition evaluation results of the state-of-the-art approach compared with
our method on ResNet-50.

Metric AD(%)AI(%)

Grad CAM [20] 35.80 36.58

Grad CAM++ [2] 41.77 32.15

Extremal Perturbation [7] 39.38 34.27

RISE [18] 39.77 37.08

Score CAM [29] 35.36 37.08

Integrated Gradient [24] 66.12 24.24

FullGrad [23] 65.99 25.36

Ours method 31.70 39.36

replaced here with the set of filters for the whole network. As shown in Fig. 5, it
corresponds to a different dataset and model for each row and column, respec-
tively. The red line records the trend in accuracy for the gradual removal of the
top 10% filters, which shows a sharp decline. The blue line records the trend in
accuracy for the gradual random removal of the 2% to 10% filters, which shows
an erratic slow increase or decrease.

Moreover, the Hadamard product between the input sample and attention
mechanism primarily serves to obstruct the input sample, allowing for an assess-
ment of accuracy changes in the target class during the measurement of model
confidence in the classification task. To mitigate the influence of the convolution
kernel in the region of highest correlation, the partial correlation convolution
kernel is set to zero. Comparison methods like LIME, RISE, and Score CAM
are used to perturb the model input. Therefore, faithfulness is measured using
Average Drop and Average Increase. Average Drop (AD) measures the maxi-
mum positive deviation between the prediction made using the input image and
the prediction obtained with the saliency map. The AD is defined as follows:
AD = 1

N

∑N
i=1(

1
Y c
i

max (0, Y c
i − Oc

i )) × 100, where Y c
i represents the predicted

score for class c on image i, and Oc
i is the predicted score for class c when using

the explanation map region as input. Here, N is the total number of images in
the dataset. The Average Drop indicates how the saliency map affects the scores,
with a lower AD value reflecting a higher credibility of the model. Conversely,
Average Increase (AI) describes the situation where the saliency map results
in a higher score. It is given by: AI =

∑N
i=1(

1
N Sign (Y c

i < Oc
i )) × 100. A higher

AI score signifies greater confidence in the model’s interpretability. Table 3 sum-
marizes the experimental results on the ILSVRC2012 dataset, where lower values
for average drop and higher values for average increase are desirable. The algo-
rithm proposed in this paper achieves an AD rate of 31.7% and an AI rate of
39.36%, with the AD rate being 3.66% superior and the AI rate being 2.28%
better compared to other methods.

The experimental results indicate that the filters selected from the interaction
hierarchy graph are critical to the prediction of the input image and the model.
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5 Conclusion

In this paper, interpretable interaction hierarchy graph methods are proposed
to improve the interpretability of deep neural networks. Interaction value based
on multi-order interactions is proposed, which can represent the interaction util-
ity of variables within the network. A top-down hierarchical graph construction
method based on interaction values is proposed to understand the visual encod-
ing of convolutional filters and to clarify the decision-making process of the
network. A method for calculating the contribution of convolutional filters is
proposed to differentiate the significance of filters in the network. Experimen-
tal results show that interaction hierarchy graph significantly enhances visual
interpretation and validates the interpretability of the model.
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Abstract. Counterfactual explanations are valuable tools in Explain-
able AI (XAI) for understanding complex machine learning models.
While successful in tabular and image data, existing optimization-based
counterfactual methods struggle with time series due to generated expla-
nations containing unrealistic high-frequency oscillations, which signifi-
cantly hinders their plausibility. This paper proposes a novel approach
to address this issue. Our method leverages the Discrete Fourier Trans-
form (DFT) to eliminate oscillations from counterfactual explanations
generated by any optimization-based technique. This allows for the uti-
lization of established counterfactual explanation algorithms from other
domains while ensuring the resulting explanations are temporally coher-
ent and interpretable for time series data. We demonstrate the effective-
ness of our approach on time series classification tasks using datasets
from the University of California Riverside (UCR) archive. Experiments
show significant improvement in the plausibility of counterfactual expla-
nations generated by three state-of-the-art methods. This paves the way
for a more efficient application of existing counterfactual explanation
techniques to the time series domain.

Keywords: Counterfactual Explanations · XAI · Time Series
Classification · Discrete Fourier Transform.

1 Introduction

Counterfactual explanation models have gained significant traction in the realm
of Explainable Artificial Intelligence (XAI), aiding in elucidating the decision-
making processes of complex machine learning models and offering actionable
insights for model improvement. They offer stakeholders valuable explanations,
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shedding light on why a specific decision was made and how slight changes in
input variables could lead to different outcomes. For example, rather than sim-
ply rejecting a mortgage application, a bank could provide a rationale through
a counterfactual explanation, saying something along the lines of: “Had your
yearly salary been $25,000 higher, your mortgage would have been approved”.
Counterfactual explanations, generated post hoc after training the black-box
classifier, involve constructing synthetic data points that lead to different model
outputs, known as counterfactual instances.

While prominently utilized in tabular and image data domains, counterfac-
tual models have encountered challenges in achieving similar success within the
domain of time series. Factors such as the absence of curated datasets, the
inherently non-intuitive characteristics of time series data, and its heightened
complexity collectively contribute to this limitation [11,20]. In the existing liter-
ature, methods generally adhere to two main approaches. Some aim to produce
a counterfactual explanation from the original input by incorporating features
from the available training data [1–3,8,15–17]. Others optimize a loss function
to find the smallest perturbation required to alter the model output while pre-
serving the fidelity of the original data [9,19,23,24]. These optimization-based
methods have originally been introduced for tabular and image data domains,
where they have proven to be effective, providing interpretable explanations
by perturbing individual features or pixels within reasonable bounds. In recent
works, the same methods have been applied to time series [3,10,14,16]. How-
ever, as we will show in the experiments, the continuous and sequential nature
of time series data complicates the perturbation process, resulting in unrealistic
counterfactual instances characterized by high-frequency oscillations throughout
their length. These noisy explanations fail to capture the temporal coherence of
the original data, diminishing their interpretability and utility for stakeholders.

In this work, we propose an approach to resolve this issue. Our solution
can be easily introduced to any optimization-based counterfactual explanation
algorithm, without significant overhead. It eliminates the noise from the coun-
terfactual instance by applying a low-pass filter in the frequency domain and/or
clipping the amplitudes of each frequency band to match time series in the origi-
nal dataset. Our objective is to further the progress of time series counterfactual
explanation techniques by facilitating a more efficient utilization of the well-
established literature in the tabular and image domains. Through experiments
on datasets from the University of California Riverside (UCR) [7] time series clas-
sification archive, we show that our approach highly improves the plausibility
of the counterfactual explanations generated by three state-of-the-art methods.
The rest of this paper is organized as follows. In Sect. 2, we introduce the coun-
terfactual explanation problem and the main optimization-based approaches. In
Sect. 3, we describe our proposed approach. In Sect. 4, we discuss the details
of the experiments and implementation. In Sect. 5, we present the results and
discuss the findings. Finally, we conclude with a summary in Sect. 6.
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2 Preliminaries

2.1 Problem Formalism

Consider a dataset with N time series instances D = {T1, T2, ..., TN}, such that
each Ti = (t1, t2, ..., tL) ∈ R

L, where L is the length of the time series (i.e.
number of time steps) is mapped to a class from the mutually exclusive set C =
{C1, C2, ..., CM}. Given a black-box classification model with prediction function
f : RL → C; T �→ C trained on the dataset and an instance T ∈ D with class
prediction f(T ) = Cm, a counterfactual explanation T ′ = T + δ is generated by
introducing a perturbation δ ∈ R

L to T to achieve f(T ′) = f(T +δ) = Cm′ where
Cm′ �= Cm is the target counterfactual class. Several criteria have been used
throughout the literature to assess the quality of a counterfactual explanation.
We focus on the two most important ones:

– Proximity: The counterfactual explanation has to be close to the original
time series instance. The L1-, L2-, and Linf -norms have all been used as
proximity measures [3,8,10,19,23]. Formally, ||δ||p∈{1,2,∞} has to be minimal.

– Plausibility: The counterfactual explanation has to be realistic. Thus, it
must lie within the data manifold of the training data. The use of autoen-
coders and outlier detection methods such as the local outlier factor [6], iso-
lation forests [18], and one-class support vector machine [21] have occurred
in the literature [3,8,23]

Optimization-based counterfactual explanation methods aim to find the best
perturbation δ by minimizing a loss function that incorporates desired counter-
factual criteria.

2.2 Wachter’s Method

Wachter et al. [24] proposed one of the first and most famous optimization-based
approaches for generating counterfactual explanations. The loss function defined
by the authors includes two terms:

λ(f(T ′) − Cm′) + d(T, T ′) (1)

The first term represents the quadratic distance between the black-box pre-
diction and the target class probability. It encourages the generation of a time
series instance belonging to the target class. The second term represents the
distance between the original data instance and the counterfactual explanation.
It ensures that the explanation remains as close as possible to the original data.
λ is a parameter that controls how confident the model should be in predicting
T ′ as belonging to Cm′ relative to the distance between T and T ′. The authors
suggest using high values of λ and the following distance function:

d(T, T ′) =
L∑

i

|ti − t′i|
MADi

(2)
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where the nominator represents the Manhattan distance (L1-norm) between the
two time series and the denominator represents the median absolute deviation
(MAD) at each time step.

MADi = medianj∈N (|Tj,i − mediank∈N (Tk,i)|) (3)

Wachter et al. [24] used the Adam optimizer to find the best perturbation
(assuming that the black-box model is differentiable) by randomly initializing
T ′ and minimizing the loss function. This process is repeated multiple times and
the explanation with the minimum loss value is selected.

2.3 Contrastive Explanation Method

Dhurandhar et al. [9] introduced the Contrastive Explanation Method (CEM),
a method for finding pertinent positives, the minimal set of features required
for a certain classification target, and pertinent negatives, the set of features
that have to be modified to achieve the classification target. The second prob-
lem is equivalent to finding counterfactual explanations [11,23]. CEM extends
Wachter’s loss function by replacing the distance function with an elastic net
regularizer function [27] and adding a third term that encourages the generated
explanation to be within the data manifold of the original dataset. It generates
counterfactual explanations by minimizing the following loss function:

λ(f(T ′) − Cm′) + d(T, T ′) + γ||δ − AE(T + δ)||22 (4)

The first term is similar to Wachter’s method’s. The second term is the elastic
net regularizer [27] defined as:

d(T, T ′) = β||δ||1 + ||δ||22 (5)

The third term represents the L2 reconstruction loss of T ′ = T + δ using an
autoencoder model AE trained on D. The loss function has three hyperpareme-
ters: λ, β, γ ≥ 0. The best counterfactual explanation is found by optimizing the
loss function using the FISTA algorithm [4]. CEM was originally proposed for
tabular and image data. In addition, Labaien et al. [14] have shown that it is
also suitable for explaining time series data.

2.4 Counterfactual Explanations Guided by Prototypes

Van Looveren and Klaise [23] introduced Counterfactual Explanations Guided
by Prototypes (CEGP), a method that extends CEM by adding a new term to
the loss function that encourages the generated counterfactual instance to fall
within the data manifold of the target class Cm′ :

λ(f(T ′)−Cm′)+ d(T, T ′)+ γ||δ −AE(T + δ)||22 + θ||ENC(T ′)− protom′ ||22 (6)
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ENC represents the encoder part of AE and protom′ is the average encoding of
the K (a hyperparameter) nearest neighbors of ENC(T ) from class Cm′ . There-
fore, the fourth term represents the Euclidean distance (L2-norm) between the
prototype of the target class and the encoding of the counterfactual explanation.

In case the AE is not available, CEGP uses k-d trees [5] to compute the
target class prototype protom′ by building a k-d tree using all Cm′ instances and
selecting the nearest element of the tree to T . The loss function becomes:

λ(f(T ′) − Cm′) + d(T, T ′) + θ||T ′ − protom′ ||22 (7)

such as the last term is now computed in the original data space.

2.5 TimeX

Filali Boubrahimi et al. [10], a model-agnostic counterfactual explanation algo-
rithm for time series that works similarly to CEGP when the AE is not available.
Instead of using k-d trees to compute class prototypes, TimeX uses dynamic
barycenter averaging. In addition, TimeX generates a saliency map to find the
most significant contiguous segment in the time series and limits the gradient
updates to it. This results in less sparse perturbations.

2.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a fundamental tool in signal processing
and time series analysis. It provides a way to decompose a signal into its con-
stituent frequencies, revealing the underlying periodic components that make up
the signal. The DFT transforms time series T = (t1, t2, ..., tL) into a sequence of
complex numbers called Fourier coefficients DFT (T ) = (X1,X2, ...,XL), which
represent the signal in the frequency domain. Each Fourier coefficient is a com-
plex number with a real and imaginary part Xk = (realk, imagk) computed as

Xk =
L∑

i=1

tie
−j2π k

L+1 i such as j =
√−1 is the imaginary unit.

The initial Fourier coefficients are associated with lower frequency bands or
the gradually evolving segments within a signal. On the other hand, the later
coefficients correspond to higher frequency bands or the fast-changing segments.
Typically, the primary Fourier coefficients are employed for signal characteriza-
tion, facilitating low-pass filtering and signal smoothing.

The Inverse Discrete Fourier Transform (IDFT) is the reverse process of
the DFT. It takes a sequence of complex numbers representing a signal in the
frequency domain and reconstructs the original signal in the time domain. Given
a sequence of Fourier coefficients X = (X1,X2, ...,XL), where each coefficient
is a complex number with real and imaginary parts, the IDFT computes the

corresponding time series T = (t1, t2, ..., tL) as ti = 1
L

L∑
k=1

Xkej2π ik
L .
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3 Proposed Approach

3.1 Motivation

The optimization-based counterfactual explanation approaches described in the
previous section have proven their success for tabular and image data. However,
when used to explain time series models, the counterfactual instances tend to
look unrealistic due to the nature of the perturbation strategy. By optimizing
the loss function and modifying the original time series based on the gradients,
the methods end up producing noisy explanations with high-frequency oscilla-
tions throughout their length. While this might be mitigated for tabular data by
limiting the range of possible values for each feature to fit the original data, it
is not possible to implement for time series due to their continuous and sequen-
tial nature, which makes it challenging to constrain the perturbations within
reasonable bounds without disrupting the temporal coherence of the data. The
use of autoencoders and class prototypes to guide the perturbations and ensure
the respect of the original data manifold is another solution that works well for
tabular and image data. However, as we show in Sect. 5.1, such methods still
generate unrealistic time series explanations. In this work, we propose a solution
that leverages the DFT to eliminate the oscillations problem for all optimization-
based counterfactual explanation methods. We to contribute to the advancement
of time series counterfactual explanation techniques by enabling a more effec-
tive application of the already established literature in the tabular and image
domains.

3.2 Low-Pass Filtering

The first approach to eliminate the oscillations is to decompose the time series
into its frequency components using DFT, apply a low-pass filter to remove fre-
quency bands higher than those commonly found in the original dataset, and
reconstruct the time series using the IDFT. This is a common approach used in
signal smoothing; the only difference is that the threshold is determined based
on the original data. In this section, we describe its introduction to the counter-
factual optimization process.

Let Dm′ = {∀Ti|Ti ∈ Cm′} be the set of original data instances from class
Cm′ . To generate a counterfactual explanation with target class Cm′ , the first
step is to determine the threshold value th above which frequencies will be
filtered from Dm′ . We describe this process in Algorithm 1. We define p as
the percentile of frequencies to discard from Dm′ . p is the only user-defined
parameter. It controls how conservative the filtering will be, i.e. lower values
of p result in the inclusion of frequency bands that are rarely present in Dm′ .
Algorithm 1 starts by computing the distribution of power values across different
frequency components PSD as the average of all Power Spectrum Density (PSD)
arrays of each T ∈ Dm′ . At the same time, the algorithm keeps track of the
frequency bands returned by DFT(T) in freqs (lines 1–14). Next, the algorithm
sorts the power values in PSD in ascending order to determine the value powp

required for a frequency band to be considered significant (lines 15–17). Then,
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Algorithm 1. GET THRESHOLD()
Inputs: Dataset D, target class Cm′ , percentile of frequencies to discard p.
Output: Low-pass filter threshold th.

1: Compute average PSD:
2: PSDs ← empty list
3: freqs ← empty set
4: for T in Dm′

5: if T ∈ Cm′

6: PSD ← empty list
7: for k, z in DFT(T) � k is the frequency and z is its Fourier coefficient
8: PSD.append(|z|2)
9: freqs.add(k)

10: PSDs.append(PSD)

11: PSD ← mean(PSDs)
12: Sort PSD in ascending order and get power value at p:
13: PSD ← sort(PSD)
14: powp ← PSD[ p

100
× length(PSD)]

15: Get significant frequency components:
16: significant freqs ← empty list
17: for k in freqs
18: if PSD[k] ≥ powp

19: significant freqs.append(k)

20: Return highest frequency component:
21: th ← max(significant freqs)
22: return th

Algorithm 2. FILTER()
Inputs: Time series T , low-pass filter threshold th.
Output: Filtered time series.

1: Compute DFT(T ) and select frequency bands lower than th with their
corresponding Fourier coefficients:

2: dft ← DFT(T )
3: coeffs ← empty list
4: for k, z in DFT(T)

5: if k ≤ th
6: coeffs.append((k, z))

7: Reconstruct the filtered time series using IDFT:
8: T ← IDFT(coeffs)
9: return T

the significant frequencies are selected depending on their values in PSD (lines
18–24). Finally, it returns th as the highest frequency component within the
significant frequencies (lines 25–27).

Once th is computed, integrating the low-pass filtering procedure into the
counterfactual search is a straightforward process: it is applied to the potential
counterfactual time series T +δ (with δ being the gradient) at each optimization
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step as shown in Algorithm 5. The low-pass filtering procedure is described in
Algorithm 2. First, the time series is transformed to the frequency domain using
DFT (line 2). Then, coefficients corresponding to frequency bands higher than
th are discarded (lines 3–6), and the remaining ones are used to reconstruct the
filtered time series using IDFT (lines 7–9).

3.3 Frequency Clipping

The previous approach can efficiently eliminate the oscillations. However, com-
pletely discarding some frequency bands results in information loss correlated
with their power. Therefore, we propose another solution that preserves all fre-
quency components within the signal. The idea is to limit the amplitude of each
frequency component to values within their ranges in the original data. In Algo-
rithm 3, we compute the ranges of real and imaginary components of the Fourier
coefficients present in Dm′ . Similar to p in the low-pass filtering approach, we
define plow and pup as user-defined parameters that reduce the ranges of values
to the most common ones in Dm′ .

Algorithm 3 starts by computing the DFT of each time series Dm′ and storing
the real and imaginary components of the resulting Fourier coefficients in arrays
dedicated to each frequency band; these arrays represent the distributions of
the amplitudes in the original data Dm′ . At the same time, the algorithm keeps

Algorithm 3. GET FREQ RANGES()
Inputs: Dataset D, target class Cm′ , lower and upper percentiles plow and pup.
Output: Lists of lower and upper bounds of real and imaginary ranges for each fre-
quency rlow, rup, ilow, and iup.

1: Get all real and imaginary components of the Fourier coefficients:
2: reals, imags ←arrays of size L = length(T) � each array element is an empty list

3: freqs ← empty set
4: for T in Dm′

5: if T ∈ Cm′

6: PSD ← empty list
7: for k, z in DFT(T) � k is the frequency and z is its Fourier coefficient
8: real, imag ← z[0], z[1]
9: reals[k].append(real)

10: imags[k].append(imag)
11: freqs.add(k)

12: Sort each list in reals and imags in ascending order and return lower and upper
bounds of ranges:

13: rlow, rup, ilow, iup ← arrays of size L = length(T) � each array element is an empty list

14: for k in freqs
15: real[k] ← sort(real[k])
16: imag[k] ← sort(imag[k])
17: rlow[k], rup[k] ← real[k][ plow

100
× L], real[k][

pup

100
× L]

18: ilow[k], iup[k] ← imag[k][ plow
100

× L], imag[k][
pup

100
× L]

19: return rlow, rup, ilow, iup
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track of the frequency bands returned by DFT(T) in freqs (lines 1–14). Then,
it sorts the distributions of amplitudes at each frequency band and selects the
corresponding lower and upper boundaries based on plow and pup.

Similarly to the low-pass filtering approach, the frequency clipping is per-
formed to the potential counterfactual explanation T + δ at each optimization
step as shown in Algorithm 5. The clipping process is described in Algorithm 4.
First, the time series is transformed to the frequency domain using DFT (line 3).

Algorithm 4. CLIP()
Inputs: Time series T , lists of lower and upper bounds of real and imaginary ranges
for each frequency rlow, rup, ilow, and iup.
Output: Frequency clipped time series.

1: Compute DFT(T ) and clip the real and imaginary components of the coefficients:
2: coeffs ← empty list
3: dft ← DFT(T )
4: for k, z in DFT(T)

5: real, imag ← z[0], z[1]
6: real, imag ← min(real, rlow[k]), min(imag, ilow[k])
7: real, imag ← max(real, rup[k]), min(imag, iup[k])
8: z ← real + j.imag � j =

√−1
9: coeffs.append((k, z))

10: Reconstruct the clipped time series using IDFT:
11: T ← IDFT(coeffs)
12: return T

Algorithm 5. EXPLAIN()
Inputs: Time series to explain T , black-box classifier prediction function f , target
class Cm′ , boolean values indicating whether the low-pass filter and/or clipping should
be applied is filter and is clip.
Output: Counterfactual explanation T ′.
1: Initialize counterfactual:
2: T ′ ← T
3: for number of iterations or until convergence
4: Minimize loss function:
5: δ ← argmin LOSS()
6: Get potential counterfactual:
7: T ′ = T ′ + δ
8: if is filter
9: T ′ ← FILTER(T ′)

10: if is clip
11: T ′ ← CLIP(T ′)

12: Update counterfactual if conditions are met

13: if f(T ′ + δ) == Cm′ & d(T ′ + δ, T ) < d(T ′, T ) � d() is a distance function

14: T ′ = T ′ + δ

15: return T ′
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Then, each real and imaginary components of each Fourier coefficient are clipped
into the ranges defined by rlow, rup, ilow, and iup (lines 5–7). Next, the clipped
coefficients are reconstructed (line 9). Finally, the IDFT is used to reconstruct
the final time series (line 12).

3.4 Time Complexity

Wachter’s method is the least computationally demanding of the counterfactual
algorithms introduced in Sect. 2. We show that our approach does not increase
the complexity of its counterfactual search. Let n be the number of parameters
in the black-box classification model. At each search iteration, the model pre-
diction f(T ) is evaluated with a complexity of approximately O(nL), and its
gradients are computed with the same complexity O(nL). The low-pass filtering
and frequency clipping in Algorithm 2 and Algorithm 4 have a time complexity
of O(L2) corresponding to the DFT and IDFT steps. Since n >> L for typical
black-box models, introducing our approach to the counterfactual search does
not add to its complexity. Furthermore, using Fast Fourier Transform (FFT)
instead of DFT reduces the complexity of our approach to O(L logL).

4 Experimental Setup

To evaluate the addition of the low-pass filtering and clipping procedures to
optimization-based counterfactual explanation methods, we experiment with the
three methods described in Sect. 2, namely Wachter’s method, CEM, and CEGP.
We generate counterfactual explanations using all three methods as described in
Algorithm 5: first with is filter = is clip = False (denoted as: Orig.), then with
is filter = True and is clip = False (denoted as: F.), with is filter = False
and is clip = True (denoted as: C.), and finally with is filter = is clip = True
(denoted as: F.C.). For CEGP, we generate explanations with the help of an AE
as described in Eq. 6 (CEGP-AE) and using k-d tree prototypes as described in
Eq. 7 (CEGP-KD).

4.1 Black-Box Classification Models

We conduct the experiments using Residual Network (ResNet) [25] as the black-
box classification model. ResNet is a classic deep learning architecture that
achieved good results on the UCR time series classification archive in a recent
benchmark [12]. We keep the default parameter configuration and train the
model for 1500 epochs as suggested in the work by Fawaz et al. [12].

4.2 Datasets

We evaluate the counterfactual explanations generated from the UCR archive
[7] of univariate time series datasets. First, we train ResNet models on the pre-
defined training sets of all 117 fixed-length datasets from UCR (we discard the
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11 variable-length ones to avoid preprocessing issues). Then, we test the models’
classification performances on their respective test sets and select the datasets
with f1-scores of 100% from the UCR archive to ensure that the counterfactual
explanations are robust, i.e. that the label did not flip due to uncertainty on the
classification model side. The seven selected datasets are described in Table 1.

Table 1. Datasets Descriptions

Dataset Train Size Test Size Classes Length Data Type

BME 30 150 3 128 Simulated

Coffee 28 28 2 286 Spectro

GunPoint 150 150 2 150 Motion

Meat 60 60 3 448 Spectro

Plane 105 105 7 144 Sensor

Trace 100 100 4 275 Sensor

ShapeletSim 20 180 2 500 Simulated

4.3 Implementation Details

We used the implementations of Wachter’s method, CEM, and CEGP provided
in the Alibi library [13]. For TimeX, we used the public code provided by the
authors [10]. Our additions to the code are made public in our project website1.
We used the following parameter values for all datasets: p = 5, plow = 25, and
pup = 75. Further tuning should result in better results.

As to the AE models used for CEM and CEGP, we used the architecture of
Encoder originally proposed by Serrà et al. [22] for the encoder part. Encoder is
a hybrid deep convolutional neural network inspired by FCN [25]. It consists of
three convolutional blocks, each followed by instance normalization, PReLU acti-
vation, dropout, and max-pooling layers. The third convolutional block includes
an attention mechanism. The only difference is that we replace the instance
normalization with batch normalization layers. Then, we build a decoder model
that mirrors the encoder structure using transposed convolutional layers and
upsampling. Additionally, it ensures the output shape matches the input shape
by adjusting the convolutional layer parameters. We train the models for 3000
epochs (with early stopping after 200 epochs) using the code and parameter con-
figuration from [12] and tune the learning rate and dropout rate for each dataset.
In addition, we select the optimization algorithm and loss function that performs
best for each dataset. The code for training the AEs and the parameters used
for each dataset are also available on the project website2.

1 https://sites.google.com/view/CFOPT/home
2 https://sites.google.com/view/CFOTP/home

https://sites.google.com/view/CFOPT/home
https://sites.google.com/view/CFOTP/home
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5 Experimental Results

In this section, we evaluate the counterfactual explanations generated using all
methods. Due to space restrictions, we only show the average ranks in Table 2
and Table 3. The full results can be found on the project website. Similarly, we
include figures for other datasets on the website.

5.1 Plausibility

To assess the improvements brought by the filtering and clipping approaches to
each of the three methods, we compute the outlier factors (ratio of explanations
detected as outliers compared to the original dataset) using isolation forests (IF)
[18] and the one class support vector machine (OC-SVM) [21] method (on the
raw time and the matrix profile [26] (OC-SVM MP) representations of the time
series). Table 2 shows the average ranks of each approach for each evaluation
measure. While the use of the filtering approach did not significantly improve
the plausibility, the clipping produced better explanations in all cases.

Table 2. Outlier factor average ranks

Avg. Rank IF OC-SVM OC-SVM MP

Orig. F. C. F.C. Orig. F. C. F.C. Orig. F. C. F.C.

Wachter 2.67 3.17 1.67 1.50 3.14 2.86 1.29 1.29 3.14 3.14 1.29 1.43

CEM 3.14 2.57 1.14 1.00 3.14 2.86 1.00 1.14 2.86 3.00 1.14 1.00

CEGP-KD 2.86 3.29 1.29 1.43 3.29 3.43 1.00 1.00 2.71 3.14 1.29 1.29

CEGP-AE 2.86 2.71 1.00 1.14 2.86 2.71 1.00 1.00 3.29 2.71 1.00 1.00

TimeX 2.83 2.33 1.67 1.67 2.17 2.17 1.33 1.33 2.20 2.20 1.40 1.40

5.2 Proximity

To evaluate the explanations in terms of proximity, we show the average ranks of
the L1, L2, and Linf norms in Table 3. Optimization-based approaches typically
do best when it comes to these measures, at the expense of plausibility. The
results in Table 3 and on the website show that, overall, our approach does not
significantly increase the distance between the explanation and the explained
time series. In fact, some improvements might be observed, particularly when
using an AE to guide the perturbations.
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Table 3. Proximity average ranks

Avg. Rank L1 L2 Linf

Orig. F. C. F.C. Orig. F. C. F.C. Orig. F. C. F.C.

Wachter 1.17 1.83 3.50 3.50 1.57 2.00 3.00 3.43 1.83 1.83 3.00 3.33

CEM 2.43 3.14 2.14 2.29 2.14 2.57 2.71 2.57 2.57 2.71 2.43 2.29

CEGP-KD 1.86 2.29 2.57 3.29 2.00 2.14 2.86 3.00 1.86 2.29 2.86 3.00

CEGP-AE 2.43 2.29 2.57 2.71 2.43 2.29 2.57 2.71 2.57 2.86 1.86 2.71

TimeX 1.00 2.00 3.33 3.67 1.17 1.83 3.33 3.67 1.00 2.00 3.50 3.50

5.3 Visual Plausibility

We evaluate the counterfactuals by visually comparing them to the original time
series. We select the Coffee dataset which contains spectrographs of two coffee
bean types: Arabica and Robusta. Each plot in Fig. 1, 2 and 3 contains all time
series from the corresponding class. The original spectrographs in Fig. 1. show
the existence of a main characteristic feature that differentiates Arabica beans
from Robusta beans, located in the rectangular boxes. For the Arabica class,
the three peaks are aligned along a descending diagonal line, whereas for the
Robusta class, the three peaks form a reversed V shape with the highest one in
the middle.

Figure 2 and Fig. 3 display the counterfactual explanations generated using
the state-of-the-art methods before and after introducing our clipping approach.
Without clipping, all explanations were affected by the high-frequency noise
issue, which correlates with the high outlier factors. The use of the clipping step
eliminates the oscillations, resulting in time series similar to the original ones.
Moreover, the clipping produced the characteristic segments of both Arabica and
Robusta instances, whereas the original methods did not.

Fig. 1. Original Coffee time series.
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Fig. 2. Coffee (Arabica) counterfactual explanations generated with Wachter’s method
(a and e), CEM (b and f), CEGP-KD (c and g), and CEGP-AE (d and h).

Fig. 3. Coffee (Robusta) counterfactual explanations generated with Wachter’s method
(a and e), CEM (b and f), CEGP-KD (c and g), and CEGP-AE (d and h).

5.4 PCA

We use Principal Component Analysis (PCA) to visualize the distributions of
the counterfactual explanation samples by projecting them onto the 2-D space
defined by the first two principal components of the training set. In Fig. 4, each
class is represented by a combination of color and shape, with the unfilled shapes
representing original training data samples and the filled shapes representing the
counterfactual data. Comparing the plots in the first row to those in the sec-
ond row clearly demonstrates that the explanations generated using our clipping
approach respect the class distributions of the target class, whereas the ones pro-
duced by the original methods still belong to their original class data manifold.

5.5 Sensitivity Analysis

The experiments we presented above were performed with p = 5.0, plow = 25,
and pup = 75. In this section, we explore how changing these values affects the
resulting explanations on the Coffee dataset. We define q such that plow = 100−q
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Fig. 4. First two PCA components of Coffee explanations generated with Wachter’s
method (a and e), CEM (b and f), CEGP-KD (c and g), and CEGP-AE (d and h).

Fig. 5. L1 sensitivity to p (a) and to q (b).

Fig. 6. IF sensitivity to p (a) and to q (b).

and pup = q. First, we set q = 25 and generate counterfactual explanations
with different values of p. Figure 5 shows the L1 proximity and IF outlier factor
results as a function of p for all algorithms with the addition of the smoothing
step (F.). Except for a slight decrease in L1 values for the CEM counterfactuals
as p increases, there is no significant change when varying this parameter. Then,
we set p = 5.0 and experiment with different values of q. Figure 6 shows the L1

proximity and IF outlier factor results. On one hand, we can see a clear increase
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in L1 values as p increases. On the other hand, the outlier factor decreases
as p increases. Therefore, choosing an appropriate value for p is a crucial design
decision that depends on which criterion is more important for the given scenario.

6 Conclusion

In conclusion, our work presents a significant step forward in addressing the chal-
lenges associated with applying optimization-based counterfactual explanation
methods to time series data. By introducing a novel approach that leverages
DFT to mitigate unrealistic high-frequency oscillations in generated explana-
tions, we have significantly enhanced the plausibility of generated time series
counterfactuals. Our experiments on datasets from the UCR archive underscore
the effectiveness of our approach in improving the quality of explanations gen-
erated by state-of-the-art methods. Through this contribution, we aim to bridge
the gap between counterfactual explanation techniques developed for tabular
and image data domains and their application to time series.
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and GEO Directorates under NSF awards #2204363, #2240022, #2301397, and
#2305781.
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Abstract. Runoff forecasting plays a crucial role in water resource man-
agement and flood mitigation, but it often faces significant challenges due
to data deficiency and decentralized datasets. Inadequate hydrological
data in many watersheds hinders the development of accurate prediction
models, while organizational barriers and concerns about data privacy
lead to information silos, preventing effective collaborative modeling. To
address these issues, we propose FedHydroDSW, a novel personalized
federated learning framework for runoff forecasting in data-scarce water-
sheds. Our approach enables decentralized model training across mul-
tiple organizations without requiring direct data sharing, thus preserv-
ing data privacy. FedHydroDSW incorporates unique model similarity
metrics and parameter adaptation methods, utilizing insights from data-
rich areas to refine forecasts in data-scarce regions. Experiments on the
CAMELS dataset show that FedHydroDSW significantly outperforms
standalone and conventional federated learning methods, with an aver-
age 30.1% increase in NSE, and reductions of 28% in RAE and 26.6% in
RMSE across multiple data-scarce basins. By enabling secure cross-silo
learning, our FedHydroDSW strategy paves the way toward more equi-
table runoff forecasting globally. The customized training and pattern
recognition techniques represent major progress in deploying federated
intelligence for impactful hydrological predictions. Our code is publicly
available at https://github.com/xyjie37/FedHydroDSW.

Keywords: Runoff forecasting · Federated learning · Data-scarce
watersheds · Personalized modeling · Hydrological information silos ·
Privacy-preserving collaboration

1 Introduction

Accurate runoff forecasting [19,28] is critical for effective water resource manage-
ment and flood mitigation, as it enables informed decision-making and proactive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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measures to minimize the socioeconomic and environmental impacts of hydro-
logical extremes. Traditional physical-driven runoff prediction methods [21] typ-
ically rely on mathematical models describing rainfall-runoff relations within
specific catchment areas, drainage basins, or watersheds. Recently, data-driven-
based runoff prediction methods [13], which are based on statistical relationships
between input and output data, have gained significant attention. Particularly,
neural network-based methods [8–10] have emerged as powerful tools for runoff
forecasting. These approaches possess remarkable fitting capabilities, enabling
them to effectively capture complex relationships between input and output
variables without explicit knowledge of specific hydrological processes.

Neural network-based models [18] are increasingly employed for hydrological
predictions, with their effectiveness heavily reliant on both the quality and vol-
ume of available data. Studies [4,11] have indicated that models gain in accuracy
when trained on data from multiple basins compared to those relying on single-
basin datasets. However, challenges arise due to the diverse nature of hydrological
data [3] and the commonality of data silos [7], which are created by security and
privacy concerns that limit data sharing. These barriers significantly impede
the progression of sophisticated neural network models for runoff predictions,
necessitating extensive data sharing [24]. Furthermore, many global watersheds,
particularly those in less developed regions, are characterized by an acute lack
of hydrological data, stemming from inadequate monitoring infrastructure and
limited data collection resources [22]. This issue is compounded by information
silos, which isolate the scant data within specific entities, hindering shared access
due to data privacy, regulatory restrictions, or a lack of collaboration incentives.
Addressing the scarcity of data is paramount for refining models but also for
facilitating fair and sustainable management of water resources, especially given
the uncertainties associated with global climate change.

Federated learning has recently emerged as a promising approach [2] for
enabling collaborative model development, allowing multiple entities, such as
watershed management organizations across different states, to collaboratively
develop models without the need to share sensitive or proprietary data directly.
This approach effectively enables the aggregation of hydrological models from
varied sources while safeguarding privacy and security. Despite FL’s success in
diverse domains [20,27], its application in hydrological runoff prediction has
been limited, raising concerns about the capability of FL-derived neural network
models to generalize effectively across different hydrological scenarios.

This study introduces FedHydroDSW, a self-adaptive personalized federated
learning framework designed to address the challenges associated with data-
scarce watersheds and hydrological information silos. The distinction between
data-rich and data-scarce watersheds is: data-rich basins have extensive years
of hydro-meteorological datasets, while data-scarce basins have limited years
of data. This categorization allows us to leverage insights from data-rich areas
to refine forecasts in data-scarce regions, enhancing accuracy and reliability.
Our approach enables decentralized model training across organizations with-
out direct data sharing, preserving privacy. FedHydroDSW incorporates unique
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model similarity metrics and parameter adaptation methods. We evaluate Fed-
HydroDSW using the CAMELS hydrological dataset and demonstrate significant
improvements in prediction accuracy compared to local modeling and conven-
tional federated learning approaches, particularly for watersheds with limited
data availability. The main contributions of this paper are:

– We introduce FedHydroDSW, a novel personalized federated learning frame-
work for runoff forecasting in data-scarce watersheds. This method enables
decentralized model training across multiple organizations without the need
for direct data sharing, preserving data privacy.

– FedHydroDSW incorporates unique model similarity metrics and parameter
adaptation methods, utilizing insights from data-rich areas to refine forecasts
in data-scarce regions. This addresses the challenges of data scarcity and
information silos in hydrological forecasting.

– Experiments on the CAMELS dataset show that FedHydroDSW significantly
outperforms standalone and conventional federated learning methods, with an
average 30.1% increase in NSE, and reductions of 28% in RAE and 26.6% in
RMSE across multiple data-scarce basins. This validation not only proves the
effectiveness of the proposed method but also underscores its potential as a
versatile tool in hydrological modeling and water resource management.

2 Related Work

Recent advances in runoff prediction leverage neural networks for their fea-
ture learning and nonlinear mapping capabilities. Notable developments include
Backpropagation (BP) neural networks [25], Recurrent Neural Networks (RNN)
[28], Long Short-Term Memory (LSTM) [11], and Gated Recurrent Units (GRU)
[8,26]. These models have significantly enhanced runoff forecasting accuracy by
utilizing complex hydrological data. Applications, such as the GRU-based model
[26], highlight the potential of neural networks to improve long-term runoff pre-
dictions. Ding et al. [6] introduced an interpretable spatio-temporal attention-
based LSTM method that shows promise in flood forecasting. Moishin et al. [17]
combined Convolutional Neural Networks (CNNs) with LSTM to predict floods
using daily rainfall data. However, the effectiveness of these neural network mod-
els heavily relies on the availability of large, high-quality hydrological datasets.
Variations in data size and quality can result in overfitting, underfitting, and
compromised generalization capabilities.

Access to diverse data sources significantly improves runoff prediction mod-
els by providing a broad spectrum of environmental, climatic, and geographi-
cal information. This variety leads to higher model accuracy, improved general-
ization across different regions, and better adaptability to evolving conditions.
Kratzert et al. [11] demonstrated the advantages of integrating multi-basin data
by training an LSTM neural network for runoff prediction, showing superior
performance through data fusion across various basins. Similarly, Han et al.
[9] developed a rainfall-runoff model using data from multiple sub-watersheds,
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proving its efficiency over traditional physical-based models through central-
ized training. Nonetheless, the issue of data silos remains largely unaddressed,
restricting data sharing and consequently limiting the models’ ability to gen-
eralize. This limitation affects prediction accuracy and the development of the
models. Moreover, while data isolation in distributed data systems offers oppor-
tunities for collaborative learning, it also presents significant challenges, such as
data privacy and integration issues. Overcoming these information silos is imper-
ative to unlock the full potential of neural networks in hydrological forecasting.

The persistence of information silos makes federated learning (FL) an essen-
tial solution. Rasha et al. [2] propose that FL provides a decentralized frame-
work that enables collaborative learning while maintaining data privacy. This
approach is particularly beneficial in fields where data diversity and continuous
model improvement are crucial. For instance, Zhang et al. [27] utilized FL for
traffic flow prediction without data sharing, and Savi et al. [20] applied it to
enhance short-term energy consumption predictions. Chen et al. [5] introduced
FedLGAN, combining FL, GANs, and LSTM for detecting and fixing anoma-
lies in hydrological data. These examples underscore federated learning’s ability
to mitigate the limitations caused by data isolation, enhancing the evolution
and adaptability of neural network methods in data-sensitive domains. However,
applying federated learning in hydrological prediction remains challenging.

Hydrological data scarcity, especially in less developed areas, arises from
infrastructural, financial, geographical, and logistical challenges [12,14]. Lim-
ited resources, geographical barriers, and poor coordination between agencies,
along with restrictive data-sharing policies, hinder the establishment and main-
tenance of monitoring systems. Environmental changes and natural disasters fur-
ther exacerbate data collection efforts, worsened by technological disparities and
a shortage of skilled professionals. Researchers have proposed various methods
to improve runoff prediction in data-deficient basins [11,14,16,30]. For instance,
Kratzert et al. [11] and Ma et al. [14] suggested leveraging regional data to
develop and fine-tune LSTM models for specific data-scarce basins. However,
these methods often overlook the issues of information silos and data sharing,
assuming that models for data-rich basins can be directly adapted to data-scarce
environments, which may not always hold true due to unique basin characteris-
tics. Thus, effectively predicting runoff in data-scarce basins remains a significant
challenge, and traditional federated learning approaches have yet to provide a
comprehensive solution to these complex issues.

3 Methodology

3.1 Problem Formulation

We address the challenge of runoff prediction in a scenario where hydrolog-
ical data is decentralized, leading to uneven data distribution across differ-
ent geographic regions. In this setting, certain watersheds suffer from data
scarcity due to technological constraints, hindering traditional centralized mod-
eling approaches. These traditional methods also face additional challenges such
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as privacy, regulatory, and organizational barriers, complicating the aggrega-
tion and collaborative training of models with data from various regions. To
counter these issues, we propose a federated training framework. This innova-
tive approach involves a network of nodes, each representing different basins.
By integrating data from these diverse nodes without actual data transfer, the
framework facilitates a rich learning environment that benefits from the unique
characteristics and data available in each basin. Specifically, we categorize basins
into two groups: data-rich basins R = {R1,R2, . . . ,Rr} and data-scarce basins
S = {S1,S2, . . . ,Ss}. In our framework, r and s indicate the numbers of data-rich
and data-scarce basins, respectively, with r � s. Data-rich basins are character-
ized by extensive hydro-meteorological datasets ΦTrain

i , unlike their data-scarce
counterparts, which possess limited datasets ΨTrain

j . Our objective is to enhance
the accuracy of runoff predictions across all basins by minimizing the local model
prediction loss. This loss is calculated using the following formulas for each basin
type, aiming to reduce the discrepancies between predicted and observed runoff
values: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L(wi) =
1

|ΦTrain
i |

∑

φi,χi∈ΦTrain
i

|f(wi;φi) − χi|2,

L(uj) =
1

|ΨTrain
j |

∑

ψj ,ζj∈ΨTrain
j

|f(uj ;ψj) − ζj |2,
(1)

Here, |ΦTrain
i | and |ΨTrain

j | denote the sizes of the training sets for the data-
rich basins Ri and data-scarce basins Sj , respectively. The loss functions L(wi)
and L(uj) quantify the prediction accuracy for each basin type, where wi and uj

represent the model parameters. Input features and observed runoff values are
denoted by (φi, χi) for data-rich basins and (ψj , ζj) for data-scarce basins. The
model’s predictions are given by f(wi;φi) and f(uj ;ψj) for the respective basin
types. By leveraging federated learning, we aim to find optimal, personalized
models for each basin that utilize knowledge from data-rich environments R to
improve predictions in data-scarce ones S. This approach seeks to mitigate the
challenges posed by data scarcity and technological constraints while preserving
data privacy by avoiding direct data sharing between basins.

3.2 FedHydroDSW: Federated Runoff Forecast for Data-Scarce
Watershed

We introduce FedHydroDSW, a novel federated learning approach for intri-
cate temporal hydrological data analysis in runoff prediction. This method
promotes privacy-preserving model training across varied hydrological condi-
tions by enabling indirect data sharing. FedHydroDSW excels in assimilating
insights across regions, particularly enhancing the capabilities of data-scarce
areas through the knowledge derived from data-abundant counterparts. It fea-
tures a dynamic model adjustment mechanism during training to refine predic-
tive performance by harnessing inter-basin similarities, thus improving accuracy
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and mitigating convergence challenges. An illustrative diagram of the FedHy-
droDSW methodology is provided in Fig. 1.

Fig. 1. Overview of the FedHydroDSW algorithm for collaborative runoff prediction
across multiple watersheds. The Parameter Server coordinates model exchange, aggre-
gation, and personalization, while each watershed performs local training and model
updating in an iterative process.

It is worth noting that we use a uniform model structure across basins for sim-
plicity, scalability, and efficient aggregation. While heterogeneous models tailored
to each node’s data and computational capacity could enhance performance,
they pose challenges in aggregation, fairness, and consistency. Addressing these
issues may require techniques like federated distillation and meta-learning. Our
current work focuses on uniform models, but we plan to explore heterogeneous
structures in future research.

Runoff Prediction Neural Model: We optimize our model for accurate runoff
predictions in data-scarce watersheds by balancing complexity with simplicity
to avoid overfitting and underfitting. Our approach utilizes a local BiLSTM
model [23], known for managing complex temporal data, with integrated dropout
techniques for effective regularization, enhancing learning without overfitting,
and maintaining long-term dependencies. The model setup includes a learning
rate of 0.001, a batch size of 256 samples, time steps of 30, and five features per
sample. It comprises an input layer, two LSTM layers with a 20% dropout rate to
prevent overfitting, and a fully connected output layer producing one prediction
value per batch. The use of the Tanh activation function adds nonlinearity,
enabling the model to capture complex data patterns, culminating in reliable
runoff predictions.

Self-adaptive Personalized Local Training: Our approach innovatively
combines joint training methodologies across both data-rich and data-scarce



186 Z. Xie et al.

hydrological basins. By exploiting the inherent similarities in hydrological
dynamics across diverse basins, our method enables data-scarce basins to lever-
age insights from their data-rich counterparts. This symbiotic relationship not
only augments the predictive accuracy of runoff models in data-scarce regions but
also enhances the models’ out-of-distribution prediction capabilities. Conversely,
data-rich basins benefit from this methodology by refining their models through
the diversified training data pool. Distinct from traditional techniques, which
primarily focus on training with data-rich basins before making adjustments for
data-scarce ones, our method emphasizes the mutual adaptability between the
two during the federated training phase.

Building on this foundation, we propose a personalized federated learning
approach, inspired by [29], tailored to the unique challenges of hydrological pre-
diction across basins with varying data availability. Unlike conventional feder-
ated learning, which often fails to exploit similarities between clients fully, our
method ensures that basins are exposed only to models from other basins with
relevant similarities during each update round. This selective sharing mechanism
mitigates the risk of model convergence towards suboptimal solutions. Given the
constraints of federated learning, direct computation of data similarity between
basins is not feasible. We assess similarity through the adaptability of models
across different basins, allowing for a tailored and efficient update process for
each basin, particularly focusing on those with scarce data. To ensure a compre-
hensive evaluation of model performance, we also monitor Mean Absolute Error
(MAE) throughout the training, in addition to validation loss. We calculate these
metrics at the end of each local training round for both the training and val-
idation sets. This multi-metric approach provides a more robust assessment of
model adaptability and performance, especially in the early stages of training.

The procedure begins with basins uploading their model parameters (updated
in round t) to the parameter server (PS). For data-rich basins, these parameters
are denoted as wt

set. For data-scarce basins, the parameters are denoted as ut
set.

The PS then redistributes these parameters among the computing nodes for the
next training round, spearheading the global training initiative. For a data-scarce
basin Sj , this means receiving a bespoke set of models (wt

set ∪ ut
set) tailored for

personalized updates. The update process in basin Sj unfolds in three steps:
Step 1: Sj evaluates the received models’ adaptability to the specific runoff

prediction task at hand. Models that demonstrate lower adaptability compared
to the current model of Sj are excluded from further consideration. Due to the
inherent challenges in directly comparing complex models, we shift our focus
towards assessing the performance of these models on the local dataset. This
dataset is divided into training and validation sets, denoted as ΨTrain

j and ΨVal
j ,

respectively. The adaptability is quantified by calculating both the validation
loss and the MAE metric:

L(vk) =
1

|ΨVal
j |

∑

ψj ,ζj∈ΨVal
j

|f(vk;ψj) − ζj |2, (2)
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MAE(vk) =
1

|ΨVal
j |

∑

ψj ,ζj∈ΨVal
j

|f(vk;ψj) − ζj |, (3)

where vk represents parameters from any basin being evaluated on Sj , f(vk;ψj)
is the predicted runoff, and ζj is the observed runoff.

To address potential instability in early training stages and balance the
emphasis between immediate performance and long-term improvement, we use a
composite loss LC based on the validation loss (L) and the MAE metric (MAE):

LC(vk) = γ · L(vk) + (1 − γ) · MAE(vk) (4)

where the dynamic weighting factor γ is adjusted linearly based on the training
progress:

γ = 0.5 + 0.5 · current round
total rounds

(5)

This ensures equal weighting between MAE and validation loss at the start of
training (γ = 0.5) and gradually increases emphasis on validation loss, reaching
γ = 1.0 at the final round. This approach allows the model to benefit from both
metrics throughout the training while simplifying the hyperparameter tuning.
We consider a model to be adapting well if its LC(vk) shows a consistent decrease
over multiple evaluation periods. This dynamic weighting approach allows us to
balance between multiple model performance indicators early in training while
gradually shifting focus toward generalization capability as training advances.
Models with lower LC are considered more adaptable and are retained for further
consideration in the subsequent steps.

Step 2: Sj assigns weights to models reflecting their adaptability for enhanc-
ing runoff prediction accuracy. The process entails comparing the composite
losses of received models with the local model’s previous round composite loss,
LC(ut−1

j ). This comparison aims to determine each model’s relative improve-
ment or decline in performance, thereby assessing their contribution to the
personalized update for this round. Utilizing the local model from the previ-
ous round, ut−1

j , as a benchmark facilitates a clear evaluation of each external
model’s impact without overshadowing the local model’s ongoing contribution.
The adaptability weight for each received model is calculated using the formula:

ak =
LC(ut−1

j ) − LC(vt
k)

‖vt
k − ut−1

j ‖ (6)

Here, ‖·‖ denotes the L2 norm. A positive ak value signals that a model performs
better on the local validation set than Sj ’s current model, indicating its potential
utility for the prediction task. We consider a model to be adapting well if its
LC shows a consistent decrease over multiple rounds. Conversely, a negative ak

suggests incompatibility, prompting its exclusion by setting ak to zero. To ensure
equity among models, weights ak > 0 are normalized, yielding final weights:

a∗
k = max(ak, 0)/

k∑

n=1

max(ak, 0) (7)
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Subsequently, the local model’s weight is derived from comparing its performance
between rounds t − 1 and t through:

aj =
LC(ut−1

j ) − LC(ut
j)

|ut
j − ut−1

j | (8)

This approach fine-tunes the model’s accuracy and provides a criterion for ceas-
ing training early based on successive improvements in model performance.

Step 3: The focus shifts to constructing and applying the weighted model
for updates on the local training set, following the groundwork laid in Step 1
and 2. Here, Sj integrates the normalized weights, acquired for both the received
models and its own model ut

j , represented collectively as a = {a∗
1, a

∗
2, . . . , a

∗
k, aj}.

The composite model for local updates, denoted as ût
j , is synthesized by

ût
j = a∗

1v
t
1 + a∗

2v
t
2 + . . . + a∗

kvt
k + aju

t
j , (9)

where each term represents a component model, weighted appropriately accord-
ing to its relevance and performance as determined in the preceding steps.

Upon determining the composite weights, Sj proceeds to update its model
on the local training dataset, ΨTrain

j , to generate new model parameters for the
ensuing round, denoted ut+1

j . This approach deviates from standard federated
learning practices by basing updates on the aggregated insights from ût

j , instead
of merely updating from ut

j . This strategy ensures that the update leverages
broader knowledge, incorporating beneficial features and learned parameters
from other models while maintaining a focus on local data relevance.

Subsequently, Sj uploads the updated parameters ut+1
j to the PS, completing

the cycle. This iterative process, encapsulating Steps 1 through 3, continues
until the predetermined number of global communication rounds. The sequential
operations executed by basin Sj are methodically outlined in pseudocode format
to facilitate understanding and replication, as exemplified in Algorithm 1. Note
that we employ the Adam algorithm for optimization and parameter updates
are computed by modifying the corrected moments.

To sum up, our FedHydroDSW framework addresses several critical chal-
lenges in hydrological modeling for data-scarce watersheds. The personalized
federated learning approach enables knowledge transfer from data-rich to data-
scarce basins without direct data sharing, preserving privacy while mitigating
data scarcity. Our dynamic weighting strategy adjusts γ dynamically during
training to address early-stage model instability. Initially balancing between
MAE and validation loss, it gradually emphasizes generalization as training pro-
gresses, preventing overfitting to limited local data in scarce basins. The com-
posite loss LC combines MAE for overall model optimization with validation loss
for point-wise accuracy. Finally, our adaptive model aggregation method ensures
that each basin’s model remains tailored to its unique hydrological characteris-
tics while benefiting from collective learning, addressing the challenge of hetero-
geneity across watersheds. Together, these components synergistically work to
improve prediction accuracy and model adaptability in data-scarce watersheds.
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Algorithm 1: The training of FedHydroDSW on participating agents
Input : Set of models vt

set = {vt
1, v

t
2, . . . , v

t
k}, number of local training rounds

E, learning rate α, total rounds T
Output: Updated model ut+1

j

1 for iteration t from 1 to E do
2 Get γ = 0.5 + 0.5 · (t/T );

3 Get composite losses LC,set = {LC(vt
1), LC(vt

2), . . . , LC(vt
k)} using ΨVal

j ;
4 Compute and normalize the weights to get {a∗

1, a
∗
2, ..., a

∗
k, aj} using LC(vk);

5 Construct the weighted model ût
j for local updates:

ût
j = a∗

1v
t
1 + a∗

2v
t
2 + . . . + a∗

kvt
k + aju

t
j ;

6 Update the local model based on the training set ΨTrain
j and ût

j using the

ADAM optimization: ut+1
j = ût

j − α · ∇LC(ût
j);

7 return Updated model ut+1
j

4 Empirical Analysis

4.1 Dataset and Preprocessing

Our study employs the CAMELS dataset [1], encompassing over 35 years of daily
meteorological data and observed discharge records from 1980, distributed across
18 hydrological units (HUCs) as categorized by the U.S. Geological Survey. Pre-
processing of the dataset is crucial for ensuring analytical accuracy and involves
a rigorous selection of vital climatological variables. This phase includes the
selection of key external data features (precipitation, short wave radiation, max-
imum and minimum temperatures, atmospheric pressure), normalization (x′ =
(x − xmean)/xstd) to achieve uniformity, determination of an appropriate time
step length, and reshaping of data into a three-dimensional format tailored for
the BiLSTM model. This preparation facilitates a multivariate single-step pre-
diction on a daily scale, formulated as ŷt+1 = f(yt−T+1, . . . , yt;xt−T+1, . . . , xt),
where f(·) denotes the model’s mapping function from input data to output
predictions, and T signifies the chosen time step length. The processed dataset
for each basin, whether data-rich or data-scarce, consists of input features and
corresponding observed discharge values.

4.2 Design of the Experimental Study

Our experimental setup evaluates the FedHydroDSW framework’s runoff fore-
casting capabilities, emphasizing its performance in data-scarce environments
compared to traditional methods.

We examine three coastal U.S. Hydrologic Unit Codes (HUCs) across New
England, California, and the Pacific Northwest. Each region includes a consis-
tent configuration of seven data-rich watersheds and two data-scarce watersheds
(North River at Shattuckville, MA, and Swift River near Roxbury, Maine in
New England; Pescadero Creek near Pescadero, CA, and Redwood Creek at
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Orick, CA in California; and Minam River at Minam, OR, and St. Joe River
at Calder, ID in the Pacific Northwest). This selection enables a comprehensive
assessment across varied hydrological conditions. Data for the data-rich water-
sheds span the last 20 years, while the data-scarce watersheds are limited to the
most recent two years, creating a controlled environment to test the framework’s
adaptability. The datasets are divided into training, validation, and testing seg-
ments, reflecting the data availability within each basin, to thoroughly examine
FedHydroDSW’s predictive accuracy. During the training process, we implement
the dynamic weighting factor γ as in Eq. (5) that balances the importance of
validation loss and MAE in our composite loss function LC . This γ is adjusted
linearly from 0.5 to 1.0 over 50 global communication rounds, gradually shifting
emphasis from equal weighting to greater focus on validation loss.

The final model evaluation utilizes the Nash-Sutcliffe Efficiency Coefficient
(NSE), Root Mean Square Error (RMSE), and Relative Absolute Error (RAE) as
metrics to gauge the model’s accuracy and reliability. NSE evaluates the model
accuracy with a range of (−∞, 1], where 1 signifies perfect model fit and values
above 0.5 are deemed acceptable. RAE assesses error relative to a benchmark,
with scores ranging from [0,+∞); below 1 suggests better-than-average perfor-
mance, while above 1 indicates poorer performance. RMSE measures prediction
error dispersion, highlighting outliers.

⎧
⎪⎪⎪⎪⎪⎨
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(10)

Here n is the sample size, ŷi is the predicted discharge, yi is the observed dis-
charge, and ȳ is the mean observed discharge.

Our FedHydroDSW framework adopts a specialized Local-BiLSTM archi-
tecture for each basin by applying a consistent dropout rate of 0.1 for regu-
larization across different time steps. We tailor the model’s complexity based
on the data’s richness: employing batch sizes of 128 for well-documented basins
and 64 for those less studied. Each basin undergoes three training epochs before
model updates are shared globally, over 50 communication rounds, adhering to
a training-validation division at a ratio of 70 to 30. The performance of our
FedHydroDSW method is benchmarked against four leading approaches:

– Local-BiLSTM [23]: Only local historical data is employed for training
runoff prediction models, acting as the baseline for local model evaluations.

– Multi-FineTuned [11]: A multi-source fine-tuning strategy, involving initial
pre-training on datasets from both data-rich and data-scarce basins, with
subsequent fine-tuning on data-scarce basins.

– Transfer-A [14]: Only input and output layer weights are updated after ini-
tial pretraining with data-rich sources, preserving all other LSTM and recur-
rent weights. This maintains fundamental behaviors while tailoring input-
output dynamics to the target dataset.
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– Transfer-B [14]: Only the weights related to input, output, and LSTM hid-
den state transformations are updated, while input-to-LSTM layer weights
remain unchanged. This method retains foundational knowledge while adapt-
ing to the new dataset’s characteristics.

– FedAvg [15]: Each node independently trains a model with local data; the
central server then averages updates to form a global runoff prediction model.

4.3 Experimental Result and Discussion

Experiment I: We streamline the comparison of runoff prediction models
across selected HUCs to gauge their prediction accuracy. This experiment aims
to identify the most effective model under different regional climates and sce-
narios of data availability. In data-scarce regions, we fine-tune models using
the only available data from 2006 to 2007 and then evaluate their performance
over six months in 2008. Figure 2 provides a compelling visual representation of
the experimental results, specifically illustrating the comparative analysis across

Fig. 2. RAE, RMSE, and NSE Performance Comparison of Hydrological Forecast Mod-
els Across North River at Shattuckville, MA; Pescadero Creek near Pescadero, CA; and
Minam River at Minam, OR, Over a Six-Month Period in 2008.
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the North River at Shattuckville, MA; Pescadero C NR Pescadero CA; and
Minam River at Minam, OR. This analysis showcases the performance differ-
entials between the FedHydroDSW framework and established methodologies
under the lens of data scarcity.

The experiment showcases that FedHydroDSW consistently achieves lower
RAE and RMSE values and higher NSE scores compared to the benchmarks
set by conventional methods. In data-scarce regions where conventional models
typically struggle due to insufficient training data, FedHydroDSW substantially
reduces prediction errors and aligns more closely with observed runoff trends.
These improvements demonstrate FedHydroDSW’s ability to effectively leverage
federated learning, enabling the model to benefit from the collective data insights
gathered from various watersheds without directly sharing sensitive data. By
allowing data-scarce basins to fine-tune models based on insights derived from
data-rich counterparts, the framework ensures that each local model is optimally
adjusted to the specific hydrological conditions and data distributions of its
corresponding watershed.

Experiment II: We test the FedHydroDSW method’s ability for mid to long-
term runoff forecasting over a year in three data-scarce basins, evaluating the
model’s reflection of runoff trends and response to seasonal changes against
actual data. Figure 3 shows the FedHydroDSW model’s runoff predictions from
October 1, 2008, to September 30, 2009, for three US watersheds: North River at
Shattuckville, MA; Pescadero C NR Pescadero CA; and Minam River at Minam,
OR. These data-scarce basins, representing diverse climates—humid continental,
Mediterranean, and maritime, respectively—highlight FedHydroDSW’s long-
term forecasting ability across different hydrological conditions.

Fig. 3. Analysis of observed versus predicted discharges in three distinct watersheds
during October 1, 2008 - September 30, 2009, utilizing FedHydroDSW.

The precision of the FedHydroDSW predictions is notably apparent in the
North River at Shattuckville, MA, where the model’s forecasts align closely
with actual observations, effectively capturing peak flow events indicative of the
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seasonal variability. Similarly, in Pescadero C NR Pescadero CA, the frame-
work exhibits adaptability to the unique conditions of central California, accu-
rately reflecting discharge fluctuations despite environmental differences from
the North River. The inferred performance in the Minam River at Minam, OR,
although not detailed quantitatively, suggests FedHydroDSW’s consistent pre-
dictive accuracy extends to the diverse hydrological landscapes of the Pacific
Northwest. Collectively, these results underscore the FedHydroDSW model’s
potential as a federated solution for runoff forecasting across different geographic
regions.

Experiment III: We evaluate the generalization of our models on unknown
data-scarce watersheds with the available data from 2006–2007, conducting five
rounds of fine-tuning to assess adaptability and performance. After fine-tuning,
we assess the average model effectiveness and robustness for 2008–2010 across
various settings. Table 1 displays the evaluation of generalization capabilities
for several runoff prediction models across three untrained, distinct watersheds:
Swift River near Roxbury, Maine (ID:01055000), Redwood Creek at Orick, Cal-
ifornia (ID:11482500), and St. Joe River at Calder, Idaho (ID:12414500). The
models’ performance is assessed to determine their accuracy and reliability in
predicting hydrological behavior in environments beyond their training regions.

Table 1. Evaluation of Generalization Performance for 2008–2010 by using the per-
formance metrics for various hydrological models within the Swift River near Roxbury,
Maine (ID:01055000); Redwood Creek at Orick, California (ID:11482500); and the St.
Joe River at Calder, Idaho (ID:12414500).

Models ID:01055000 ID:11482500 ID:12414500

RAE RMSE NSE RAE RMSE NSE RAE RMSE NSE

Local-BiLSTM 0.56 1.22 0.51 0.62 1.79 0.48 0.66 1.85 0.41

FedAvg 0.79 1.71 0.42 1.08 4.57 0.42 1.25 2.49 0.58

Multi-FineTuned 0.52 1.10 0.58 0.56 1.61 0.52 0.54 1.58 0.68

Transfer-A 0.51 1.08 0.58 0.57 1.57 0.53 0.54 1.54 0.69

Transfer-B 0.51 1.10 0.58 0.59 1.60 0.50 0.52 1.57 0.68

FedHydroDSW0.48 1.01 0.66 0.38 1.10 0.68 0.45 1.36 0.73

In this table, the FedHydroDSW model consistently demonstrates supe-
rior performance across all three watersheds. Specifically, the FedHydroDSW
achieves the highest NSE scores and the lowest RAE and RMSE scores, indicat-
ing its ability to predict runoff accurately. For the Swift River watershed in New
England, FedHydroDSW shows notable improvements over the other models,
achieving an NSE score of 0.66, which surpasses the next-best model’s perfor-
mance by significant margins. This trend continues across the other watersheds,
with FedHydroDSW recording the highest NSE scores of 0.68 and 0.73 for the



194 Z. Xie et al.

Redwood Creek and ST JOE RIVER watersheds, respectively. The RAE and
RMSE metrics underscore FedHydroDSW’s robustness, demonstrating its abil-
ity to maintain lower error rates than competing models, effectively capturing
both general trends and subtle nuances in hydrological data.

4.4 Ablation Study

We evaluate the contribution of each component of the FedHydroDSW frame-
work through a series of ablation experiments. These experiments assess the
impact of personalized federated learning, model similarity metrics, parameter
adaptation methods, and the dynamic weighting factor (γ) on the model’s perfor-
mance. The results of these experiments collected on Pescadero C NR Pescadero
CA watershed and are summarized in Table 2.

Table 2. Ablation Study Results on Pescadero C NR Pescadero CA from 2008–2010
by using the performance metrics

Model Configuration NSE RMSE RAE

FedAvg (Baseline) 0.47 1.43 1.37

Without Model Similarity Metrics 0.55 1.29 1.25

Without Parameter Adaptation Methods 0.58 1.25 1.21

Without Dynamic Weighting Factor (γ) 0.59 1.26 1.20

FedHydroDSW (Full Model) 0.63 1.23 1.18

To establish a baseline, we used a traditional federated learning approach
(FedAvg) without personalization, achieving an NSE of 0.47, RMSE of 1.43,
and RAE of 1.37. Removing model similarity metrics while retaining parameter
adaptation and the dynamic weighting factor improved the NSE to 0.55, RMSE
to 1.29, and RAE to 1.25. Eliminating parameter adaptation and using static
parameters across all basins resulted in an NSE of 0.58, RMSE of 1.25, and RAE
of 1.21. Using a fixed weighting factor (γ = 0.5) yielded an NSE of 0.59, RMSE
of 1.26, and RAE of 1.20.

We also conducted a series of ablation experiments focusing on four key
hyperparameters: learning rate, local batch size, SGD momentum, and the start-
ing value of γ. These experiments aimed to assess the impact of each hyperpa-
rameter on model performance, measured by the RAE, RMSE, and NSE. The
results are summarized in Table 3. The results indicate that a learning rate of
0.01 yields the best performance, achieving an NSE of 0.63, RMSE of 1.23, and
RAE of 1.18. Similarly, a local batch size of 128 and 256 both resulted in an NSE
of 0.63, RMSE of 1.23–1.25, and RAE of 1.18. Higher learning rates resulted in
poorer performance, highlighting the need for balance in these parameters. A
momentum of 0.5 produced the best results with an NSE of 0.63, while a very
high momentum (0.99) caused instability. For γ, a value of 0.5 was optimal, with
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an NSE of 0.63 and other values showing decreased performance, underscoring
the need for a balanced initial setting.

These experiments underscore the importance of each component in enhanc-
ing FedHydroDSW’s predictive accuracy. Personalized federated learning adapts
to local data while leveraging global knowledge, and model similarity metrics and
parameter adaptation ensure the aggregated model fits each watershed’s unique
characteristics. The dynamic weighting factor prevents overfitting by balanc-
ing immediate performance with long-term generalization. The ablation studies
also reveal that optimal settings for learning rate, batch size, SGD momentum,
and γ are critical for improving performance, providing insights for effectively
configuring the framework for runoff forecasting in data-scarce watersheds.

Table 3. Performance metrics for different hyperparameters in the ablation study of
FedHydroDSW. The table shows the impact of varying learning rates, batch sizes, SGD
momentum, and starting values of γ on RAE, RMSE, and NSE metrics.

Learning Rate Local Batch Size

Metric 0.001 0.01 0.1 0.5 32 64 128 256

RAE 1.21 1.18 1.09 1.25 1.23 1.20 1.18 1.18

RMSE 1.51 1.23 1.23 1.93 1.28 1.24 1.23 1.25

NSE 0.41 0.63 0.61 0.03 0.58 0.62 0.63 0.63

SGD Momentum Starting Value of γ

Metric 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7

RAE 1.22 1.18 1.18 1.14 1.18 1.19 1.18 1.18

RMSE 1.29 1.23 1.27 1.39 1.24 1.23 1.23 1.26

NSE 0.58 0.63 0.55 0.50 0.58 0.6 0.63 0.61

5 Discussion

The FedHydroDSW framework significantly advances runoff forecasting, espe-
cially for data-scarce watersheds. This framework uniquely integrates model sim-
ilarity metrics, parameter adaptation methods, and a dynamic weighting factor
to address challenges related to time series data scarcity and hydrological fore-
casting heterogeneity. One of the key improvements is the validation loss with
MAE evaluation, which ensures a balance between training performance and
generalization, leading to robust and reliable runoff predictions. Additionally,
the framework enhances predictive accuracy by integrating adaptable models
from data-rich basins into data-scarce ones, as validated by our experiments.
This approach helps mitigate some of the performance disparities and aims to
enhance the reliability of the forecasts.

Using a uniform model architecture across participating nodes facilitates effi-
cient aggregation and dissemination of model updates, providing a common
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baseline for performance comparison. While we acknowledge that nodes with
limited data may benefit from reduced model complexity, the decision to use uni-
form models ensures scalable deployment and seamless integration of updates.
However, heterogeneous models tailored to each node’s data and computational
capacity could further enhance performance but pose challenges in aggregation,
fairness, and consistency. Techniques such as federated distillation and meta-
learning may address these issues in future research. Our future work will further
expand the analysis to diverse watersheds with varying climates and data avail-
ability scenarios. By utilizing publicly available hydrological datasets, we aim
to conduct a comprehensive global assessment of FedHydroDSW’s performance
and generalizability. This will help address the current focus on a limited set of
coastal US watersheds and ensure broader applicability and robustness.

6 Conclusion

This study introduces FedHydroDSW, a federated learning framework for col-
laborative, privacy-aware training of runoff forecast models across organizations,
addressing data silos in hydrology. FedHydroDSW enhances prediction accuracy
by integrating personalized federated learning, model similarity metrics, param-
eter adaptation methods, and a dynamic weighting factor, ensuring tailored and
balanced performance. Empirical evaluations confirm FedHydroDSW’s superior
performance over conventional models, especially in data-scarce settings. Fed-
HydroDSW facilitates real-time environmental monitoring and promotes sus-
tainable practices through efficient data use and privacy-centric learning. Future
efforts will explore using heterogeneous models in federated learning to better
accommodate varying data complexities across nodes, ensuring robust perfor-
mance in diverse watersheds.
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Abstract. In the era of widespread intelligent frameworks and mod-
els, we are often surrounded by systems that house multiple models for
varied task-specific predictions. Given the general expanse of large intel-
ligent frameworks, we explore the use case of a large-scale setup with
locally differentiated machine learning models organized in a multi-tier
hierarchy. We specifically aim to understand how to support continu-
ous tier-specific inference queries in a hierarchical multi-model setting
while optimizing for network costs, storage space and respecting local
privacy constraints. This paper explores two intuitive frameworks in this
regard and performs a thorough comparative analysis between the frame-
works outlining numeric support points for the approaches. The paper
also introduces a novel dynamic protocol, termed Meet-in-the-Middle
(MITM), that combines the benefits of the previously introduced proto-
cols using a novel meet-in-the-middle, staggered model-caching approach.
Thorough testing and analysis of MITM on a distributed agricultural
disease-prediction dataset displays the superiority of the novel protocol
over the previously introduced frameworks, demonstrating a reduction of
up to 80% in real-time communication cost, 80% in memory utilization
and 50% in inference latency while maintaining comparable metrics of
accuracy at even higher levels of the multi-tier hierarchical framework.

Keywords: Multi-Layer Inferencing · Machine Learning · Optimized
Model Caching · Federated Learning · IIoT

1 Introduction

Machine learning models are widely deployed across various systems for data-
driven decision-making. The easy-to-train and adaptive nature of most machine
learning algorithms, allow us to choose from multiple available models and apply
them for specific tasks by fine-tuning on datasets, loss functions, and model
parameters [12]. The deployed models often follow a hierarchy arising from the
natural organization of the data generation process. For example, traffic predic-
tion can be performed using models deployed at street, borough, or city granu-
larity built using street traffic data [7].
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Inference queries may be serviced at various tiers of the hierarchy. Hierarchy-
sensitive inference may be performed either directly using models stored at nodes
in all the levels of the hierarchy or by aggregating the predictions from finer
granularity models [1]. The choice determines the trade-off between freshness,
privacy, accuracy, inference latency, and communication cost. As the expanse of
local models increases in large infrastructure setups, inferencing of multi-model
setups is going to become increasingly important [17].

We study the large-scale inference problem at multiple granularities from a
‘model caching’ point of view. A staggered meet-in-the-middle caching at vari-
ous levels of granularity is found to be an effective approach in comparison to
complete caching and zero caching scenarios. In this protocol the nodes at a few
of the levels, cache models and thus infer with almost no latency but some com-
putation, while others do not perform computationally elaborate inference and
simply aggregate the predictions from lower-level nodes by communicating over
the network. The cached layers are selected based on certain global optimizing
criteria in a staggered manner over time. The protocol provides a low inference
latency federated learning framework that can be applied over sensor, edge, fog,
and cloud devices. We demonstrate the efficacy of the approach using a case
study on crop disease forecasting at the granularity of fields, cities, sub-districts,
districts, and states.

2 Related Work

The problem of data and model aggregation has been studied in IoT, sensor
networks, and federated learning domains. A majority of the existing literature
in data aggregation covers aggregation approaches across flat networks and only
a few address hierarchical networks [2], especially in an IoT setting. Aggrega-
tion, in an intelligence setting, has been discussed elaborately as well, in the
context of ensemble methods in machine learning [15,20] and gradient boosting
frameworks [5]. However, similar to data aggregation studies, ensemble learning
techniques have generally been applied to flat networks and not multi-tier hierar-
chies, especially in inference gathering. No identifiable work, in data aggregation,
addresses the edge intelligence use case, specifically - optimizing the duplex flow
of information that must occur to perform inferences, if intelligent models are
present at edge nodes and inference is requested at a higher tier node in the
organizational hierarchy.

In recent years, hierarchical systems have found a natural fit in IoT (Internet
of Things) frameworks [8], where they are being studied extensively to reduce the
global transmission costs in the field of federated learning - a model aggregation
and consensus protocol where intelligent models are only present at the edge of
the network [3,13] - a setting that is very similar to ours. In this context, Model
caching, as a technique, is also being recently studied for efficient cloud-edge
computation offloading for machine learning tasks [6,18,19]. These studies use
optimization techniques to handle the trade-off between inference latency, edge
computation, and communication cost.
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In this paper, we experiment with caching - at tiers - as a method to perform
compute inference at all applicable tiers while only needing a fraction of the net-
work and communication cost. Caching, for ML inference, in hierarchical frame-
works, has not been explored yet. Caching, as a software system performance-
enhancing concept, has been largely explored. However, our work focuses on
using the same idea of caching in a hierarchical inference setting. We outline the
ideology, protocols, and implementations to both create the cache from scratch
as well as intelligently and regularly refresh it and outline the protocols for cache
hits and misses in this setting. In addition, our novel MITM protocol is signif-
icantly different from all works in this area since it can support multiple levels
of edge model heterogeneity - i.e. varying number of leaf nodes, varying number
of models - with large or no correlation in each node and a varying number of
labeled datapoints per such model. To the best of our knowledge, this is the
only aggregation work that recognizes the presence of multiple, potentially dif-
fering task models in individual nodes and still successfully correlates all such
task-specific inference values processed at any requested tier of interest in the
hierarchy.

3 Contributions of This Paper

In this paper, we make the following significant contributions:

– We discuss the problem statement of a hierarchical tier setup where data
points lie only at the last layer of setup but inference is important across
multiple tiers.

– The paper outlines and discusses in detail two different frameworks for
swift, multi-tier inferencing and outlines the drawbacks and benefits of both
approaches.

– The paper introduces a novel Meet-In-the-Middle framework that dynam-
ically establishes tiers where intermittent models can be cached for swift
inferencing. We provide detailed algorithms for tier selection, cache creation,
query completion on cached and non-cached tiers, a dynamic algorithm for
identifying cache staleness across tiers, and protocols for cache-refresh in our
tiered architectural setup.

– We conduct detailed experiments to tackle an agricultural pest-forecasting
use case that is the perfect example of systems that would benefit from swift,
multi-tier prediction - specifically for locally applicable, quick forecasting.

– We provide thorough experimental results to outline the benefits of MITM
over traditional multi-tier inferencing frameworks and demonstrate how inter-
mittent caching helps us implement swift multi-tier inferencing while enforc-
ing tangible savings in precision loss, inference latency, and communication
cost across the board.

4 Problem Setup

We consider a setup where a logical hierarchy exists for the data organization
as well as queries. In the case of spatial data, the hierarchies may be defined
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in terms of geographical granularity units and queries allow a choice of the
granularity unit. We also assume that compute nodes responsible for answering
queries corresponding to a particular granularity exist in the network, however,
data storage and model training happen only in the leaf level of the hierarchy
tree. This ensures locality and privacy preservation. We describe our setting
and problem statement, in more detail, through mathematical notations, in the
subsequent sections.

4.1 Mathematical Notation

Let us assume there are T = {T1, . . . , Tl} tiers of interest in our hierarchical
framework. Let us assume that each tier - {Ti} has a set of nodes of computation
denoted by Ci. In Figure 1, we have 13 compute nodes in the bottom-most tier
(T1), 4 in the tier above that (T2), 4 above that (T3) and so on.

Let Ci,j denote the j-th compute node in tier Ti. Each compute node can
house multiple models within it - one specific to each task. We use θ(Ci,j) to
denote the set of independent models in the compute node Ci,j . Consequently,
we use θk(Ci,j) to denote the k-th model in θ(Ci,j) where k < |θ(Ci,j)|. We
assume that at time t = 0 all physical models exist at the lowest level of the
hierarchy T1, i.e.,

|θ(Ci,j)| = 0 . . . ∀i ∈ [2, |T |],∀j ∈ [0, |Ci|] (1)

A query string, represented by (xinput, ĩ), consists of an input vector xinput

to be serviced at tier Tĩ i.e. we wish to obtain the inference on xinput as seen
from tier Ti. Syntactically, we aim to compute and obtain the result R (Table 1):

R(xinput, ĩ) = {θk(Cĩ,j)(xinput) |∀k ∈ C ˜i,j |} (2)

4.2 Performance Criteria

To assess the efficacy of model aggregation frameworks, we outline our metrics
of importance. We revisit them in the experiment section.

– Accuracy - Measured in terms of the error in regression prediction of the
machine learning models at the required tier.

– Inference Latency - Real-time forecast requires a reduced inference latency.
– Resource Conservation

1. Network Communication - Given the resource-constrained conditions of
most intelligent field devices, it is important to conserve the amount of
network communication overhead that each device incurs during contin-
uous inferencing.

2. Memory and Computation - Available Memory and Compute Costs are
also valuable metrics for resource-constrained devices.
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Table 1. Table of Notations

Notation Description

Ti Tier of Hierarchy

Ci Set of Nodes of Computation in Tier Ti

Ci,j jth node in Ci

θ(Ci,j) Set of models in the compute node Ci,j

θk(Ci,j) k-th model in θ(Ci,j)

R(xinput, ĩ) Inference result of xinput at tier Ti

SD Subdistrict Tier in our agricultural forecasting use-case
study

Ω(η) For any node η in tier Ti, Ω(η) are the nodes in Ti−1

that are children of η in the hierarchy

Γ (N) An inverse index of Task D to Predicted Values for Task
D from all nodes in set N

φ(L) A Function to return cached models at L if L contains a
model cache else false

– Data Privacy - In this paper, we recognize that data at the edge is often
local and sensitive. Hence, we undertake architectural decisions at each level
of each protocol to reduce the security risks of over-network communication
[14]. We achieve this by adopting measures to conserve data locality (no data
leaves local aggregation nodes) and enable knowledge transfer, when needed,
through appropriate model sharing only.

5 Multi-tier Inference Frameworks

In the next section, we present two intuitive multi-tier inference framework ide-
ologies and detail their implementation, benefits, and drawbacks.

5.1 Framework A: Bottom-Up

An intuitive approach to tier-specific inference is the simple aggregation of the
model output from the lowest tier nodes. This framework builds prediction values
at each tier from the bottom up. The input conditions are passed down to the
bottommost tier that houses the task models and a singular value for each task
and each node is then built up by performing weighted aggregation till the tier
of interest.

Inspired by studies of aggregation in hierarchical networks [4,9], we present
a weighted averaging approach for this aggregation (Figure 1). On reception of
(xinput, ĩ) at the bottom-most layer, we generate the set:

Rbottom(xinput) =
{[θk(C1,0)(xinput)), θk+1(C1,0)(xinput))...],
[θk(C1,1)(xinput)), θk+1(C1,1)(xinput)), ...]}

(3)
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and recursively build up to Rĩ that can be returned to the user.
Specifically, we generate a set where each element is a list corresponding to

the results of all task models in one computation node.

Fig. 1. Tier-specific inference using Framework A (Bottom-Up). Any input data point
has to traverse till the end of the computation framework and results are recursively
aggregated up till the tier of interest

5.2 Computation Methodology

We outline the steps for inferencing below:

– Step 1: Compute Rbottom using it’s definition in Eq. 3.
– Step 2: Moving upwards from T1, For every node η in C2, compute Ω(η) =

[Nodes in C1 that hierarchically lie under η].
– Step 3: For every η, also compute Γ (Ω(η)) = an inverse index {“TaskD” �→

“[Values from Rbottom for all models for Task D in Ω(η)]”}
– Step 4: For every D in Γ (Ω(η)), we now replace the list of values in

Γ (Ω(η))[D] with a single weighted average value:

MD
1,η =

α=|Γ (Ω(η))[D]|∑

α=0

w ∗ Γ (Ω(η))[D][α] (4)

where w is the total number of training data points on the edge node that
generated the value Γ (Ω(η))[D][α] i.e. a weighted average for task D.

– Step 5: All M values across all tasks in η and across all nodes in C2 are
then aggregated. This, now, becomes our task prediction vector for T2 and
syntactically our Rbottom+1 that we have built up from Rbottom.

We repeat this process recursively, building up from Rbottom until we have com-
puted Rĩ, which is the Tĩ tier-specific task prediction vector.
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5.3 Framework B: Tier-Caching

Fig. 2. Tier-specific inference using Framework B (Tier-Caching). Each node in a gray
tier contains cached locally-applicable task-specific models.

In contrast to Framework A’s ex-situ inference and upward result traversal
approach, another intuitive approach to a multi-tier inference framework is to
perform inference in situ at the tier of interest itself. Although unutilized in
Framework A, we now use our underlying assumption that each tier contains
physical fog nodes as necessary. In a multi-tier setup where physical models and
training data reside only on the bottom-most tier, we need to cache one model
per applicable task at every framework tier to support in-situ tier inference.

However, How do we generate models to cache at tiers that originally never
held any models? Intuitively, to generate cache models at higher tiers of the
framework, we need to build and generate the models from the bottom-up, one
tier at a time.

Through the years, several model aggregation protocols have been explored,
some of these include bootstrap aggregating, random forest algorithms, and
adaptive boosting in ensemble learning [9,16], however, their direct adaptation
to our use-case is not feasible as we want to generate models, not evaluation
datapoints, that we can cache. Given our constraint of resource-hungry devices,
it is not possible to train and store multiple models for one task at each fog
node. Instead, we propose choosing a single model to cache per task, from all
relevant models in the previous tier. We do this by comparing the applicability
of the models, as measured by evaluation performance against an unbiased, sep-
arated, and mixed global dataset, that is local to the tier where we’re generating
the cache. This is the setting for complete caching.

A detailed description of the framework is outlined below. Similar to frame-
work A, we outline building the cache for tier T2 from the models in tier T1.
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5.4 Computation Methodology

During Preprocessing :

– Step 1: For every node η in C2, compute Ω(η) = [Nodes in C1 that hierar-
chically lie under η].

– Step 2: For any node Z ∈ C1 in Ω(η), we extract and isolate a subset of task-
specific training data points that we will use for analysis (hereafter referred
to as evaluation points). In our experiment, we isolate 2 data points per
task per node before training.

– Step 3: For the nodes in Ω(η), we build 2 inverse indices at every computation
node - (I1, I2). I1 mapping “TaskD” �→ “[recorded evaluation points for D]”
and I2 mapping “TaskD” �→ “[Field models for D]”.

– Step 4: For every task D in I1, we compute I2[D], and evaluate each model
in I2[D] over the dataset I1[D].

– Step 5: An MSE loss is computed against the evaluation dataset for each
model. We cache the model with the lowest cumulative MSE, among all mod-
els, per D.

– Step 6: On performing this iteratively over all nodes in tier T2, and every
task under such node, we compute a single model, per task, per node, that
we can create at T2 using models from tier T1.

Having computed our model cache set at T2 we, iteratively, build the model
caches until our topmost tier, creating a cache for every tier (Table 2).

At inference: - We simply return θĩ[xinput]

Table 2. Benefits and drawbacks of Frameworks A and B

Pros Cons

Framework A: Bottom-Up

Accurate Inference Predictions Higher Inference Latency

Reduced memory usage - No caching Risk for data exposure over
network

Updated model learning affect result
values quickly

Framework B: Tier-Caching

Minimal inference Latency Higher Initial Setup Duration

Easier to compute at inference Slower model updates in top
tiers

Static Results, Superior Model
Filtering

Higher Memory Requirement
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6 Framework of Meet-In-The-Middle (MITM) Staggered
Caching

Our analysis of previous Frameworks A and B outlines the low-latency benefits
of in-situ and high accuracy benefits of ex-situ inferences. We now introduce
a meet-in-the-middle framework, that combines benefits from both our initial
frameworks and mitigates their drawbacks. The approach is illustrated in Fig. 3.

Fig. 3. Tier-specific inference using our MITM Framework (Staggered-Caching). Dark
Gray represents cached tiers. Input data traversal is at maximum till this tier.

In a multi-tier hierarchical framework, we introduce the concept of Staggered
Caching, which is the idea of caching intermittent and often unevenly distributed
layers in our hierarchical framework. Let φ(L) denote a function that returns
cached models at tier L if tier L is cached, else false.

6.1 Computation Methodology

– Cache Hit - Return φ(̃i)[xinput].
– Cache Miss - If φ(̃i) is false, find the closest tier below - j̃ = argmaxif(i) :=

{φ(i) �= False; ∀i < (̃i)}. We infer the values at tier Tj̃ by computing Rj̃ =
φ(j̃)[xinput] first. We can then build Rj̃ up to Rj̃+1 and finally to Rĩ using
the same weighted averaging aggregation logic we defined for Framework A
(Eq. 3).

Since the number of cached tiers is generally much lesser than the total
number of tiers, the framework’s evaluation performance is heavily dependent
on the placement of the cached tiers. To maximize variance in tier placement and
hence optimize framework performance, we propose a novel algorithm for optimal
tier placement, contingent on an input of constraint weights, that are generally
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use-case dependent. We outline and explain these points of consideration (input
constraints) of tier selection below:

– Distance between Cached tier and Non-Cached tier - pcomm in Algo-
rithm 1 - To reduce the communication overhead incurred for non-cache tier
inference, we need to prioritize reducing the overall distance between non-
cached and cached tiers.

– Proximity to bottom models - plocal in Algorithm 1 - Repeated Aggrega-
tion causes loss in precision.To preserve local applicability to ground reality,
it is better to cache lower and perform aggregated inference in higher tiers.

– Concurrent Cached Tiers - pconc in Algorithm 1- This constraint covers a
negative penalty - i.e. We want to avoid concurrent cached tiers since higher
variance (Staggering) in cache-tier placement will lead to a better-amortized
performance.
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Based on the weights placed on each of the above constraints, Algorithm
1, recursively computes a global weight for each possible combination and out-
puts a set of tiers that optimally fits our needs. We also provide a novel request
frequency, cache staleness, and time-based cache refresh protocol in our Supple-
mentary Appendix, to build on top of our algorithm.

6.2 Benefits and Drawbacks

The MITM Model Caching Frameworks combines multiple benefits from Frame-
works A and B. Some of these include:

1. Low Inference Latency (in comparison to Framework A): We match the
latency performance of Framework A in the case of a cache hit, and outper-
form A in the case of a cache miss since we atmost traverse to the last cached
tier.

2. Low Memory Requirements (in comparison to Framework B): Fewer
cached tiers mean a lesser memory requirement for MITM in comparison
to Framework B.

3. Mitigation of Security Concerns - We further mitigate the concern
related to over-network data transmission by conserving data locality and
only propagating up from the last cached tier instead of from the bottom-
most tier.

4. Static Updates (with support for dynamic cache updates) - As cached mod-
els remain generally static, we can plan how often we want to update our
caches.

7 Experimental Results

In this section, we present thorough experimental results for our three defined
frameworks against a popularly used, public, Government of India agricultural
dataset.

7.1 Use Case: Crop Disease Forecasting

We explore multi-tier inferencing frameworks in the context of an agricul-
tural disease forecasting task that spans multiple geographical locations and
is stretched vertically over 5 tiers. The final task of the dataset is to gather
and present granularity-specific forecasting results. We study the following tier
configuration for our use case:

1. Fields (Tier T1 - Bottom-most Tier) - Holds physical field models.
2. City (Tier T2)
3. Subdistrict (SD) (Tier T3),
4. District (Tier T4), and
5. State (Tier T5 - Topmost Tier)
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Given the one-to-many relationship between compute nodes of higher tiers
and the lower ones, we visualize a pyramid hierarchy for our use case. Deep
learning regression models, one per disease per node (so far referred to as tasks
in theory), are trained on local data at the lowest tier to predict the extent of
crop disease from agro-meteorological features.

Datasets. We use the “Cotton” plant dataset generated by the Indian Council
of Agricultural Research (ICAR)’s Crop Pest Disease Support System project
[10] for our experiments. The dataset contains 15,912 data points, aggregated
from 1982 to 2009, recorded across 6 cities in India. The dataset contains metrics
per city, across multiple years. Each data point is an 11-element vector depict-
ing: {Year, Week, Max Temperature, Minimum Temperature, Relative Humidity
(2 metrics), Rainfall, Wind Speed, Sunshine Duration, Evaporation} (X) and
{corresponding Pest Value}(Y).. Each city per year records different metrics for
multiple pests. These pests may be individual to that local city or shared between
neighboring cities, however, no such restriction in data persists. We create our
test set by aggregating, removing, and grouping a minor subset of random data
points for every disease across every city. We use a 90-10% training-test split
for this purpose.

Fig. 4. Hierarchical Dataset Distribution and total data points per field.
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Preprocessing. As part of our experiments, we first perform adequate dataset
cleaning, specifically zeroing empty attributes and ensuring all attributes are
metric constraint sanitized. We then divide the aggregated data into the hier-
archy defined in Fig. 4. We use this hierarchy in experiments, specifically, to
introduce multiple levels of heterogeneity that we can test around - differing
numbers of tier-to-sub-tier relationships, differing diseases, units for diseases,
and the number of data points for the diseases in each field. We make sure
to distribute city-specific data points into fields under that city only and only
partition data, in year-long batches, so each model gets to observe and learn
time-of-year and pest-level correlations properly. This allows the possibility of
the same disease to show in numerous fields but with varying data points, local
to their geography, which is a trend we are likely to find in real life as well.

Experiment Setup. Each field model contains one regression model per disease
that it contains data for. Each model is a 2-layer Neural Network, implemented
using Keras, with 32 fully connected neurons and 1 output neuron. Each model
is trained to optimize for the Mean Squared Error loss function and we rely
on the Adam optimizer for faster convergence. Each model is trained over 50
global iterations using a 32-datapoint batch size and a learning rate of 0.001 for
all experiments. All experiments are run on Google Colaboratory’s Nvidia Tesla
K80 GPU Back-end with randomly initialized starting parameters for each field
model. We aim to answer-”Given an input weather vector, and a tier, what are
the different pests, and their inferred disease values, from the granularity of the
specified tier”.

Test Notation. We utilize the (tier of request, [cached tiers]) notation for
MITM experiment results. We use the notation Πtier to signify that Ttier is
cached in this setting.

7.2 Results: Inference Latency

We present a detailed analysis of inference duration across all three frameworks in
Fig. 5. We test across multiple settings and find that Framework B outperforms
all other frameworks, owing to its in-situ inference. In contrast, Framework A
can take almost 2x as much inference time, in some cases. On the other hand,
the MITM Staggered Caching Framework performs much closer to B
all around, specifically in the (State, [City]) setting, which is a cache
miss, despite which, MITM records almost 50% lesser latency than
framework A. During Cache hits, MITM performs, expectedly, at par with
Framework B, while for Cache misses, MITM performs slightly worse than B
but much better than A throughout, thus establishing MITM’s superiority over
Framework A in inference latency.
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Fig. 5. Inference Duration metrics across Framework A, B and MITM in (tier of inter-
est, [cached tiers]) pairings. MITM performs at par with complete caching in most
cases.

7.3 Results: Accuracy

Through our experiments, we define accuracy as how close the output inferences
at the tier of interest (̃i) are, to the disease metrics recorded at the physical
model level. To compare the differences across the frameworks, we use the mean
squared error (MSE) measure (the lower, the better). Experimental Results in
Table 3 show that Framework A records the smallest MSE values while B shows
maximum deviation from ground truth. This is expected since Framework A
is similar to weighted averaging in ensemble learning, which performs well for
value aggregation [11]. In contrast, B performs sub-optimally since the local
applicability of data is lost when we perform inference at a higher tier using
models that were optimal at lower tiers. Our model selection algorithm reduces
this by using a global evaluation dataset to compute the best globally applicable
model. Owing to this, we note that MITM performs almost as well
as A, and much better than B across most scenarios, as seen in the
settings of (State, [City]) and (State, [SD]) queries (theoretical worst
case).

7.4 Results: Memory Used

We report the amount of constant memory required for caching across all frame-
works. Since framework A performs no caching, we compare caching memory
requirements across frameworks B and MITM only. In addition to reduced mem-
ory footprint in comparison to B, we also notice that as the tier of caching moves
higher, our memory for cache storage reduces, since the number of nodes of com-
putation decreases as one moves up the pyramid resembling hierarchy(Table 4).
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Table 3. Accuracy(MSE, lower the better) across Frameworks A, B and MITM. MITM
performs almost at par with A across worst-case settings (ΠCity ,̃i=State)

ĩ = State

ΠCity ΠSD ΠDistrict ΠState

A 1041.84 1041.84 1041.84 1041.84

B 1726.9 1726.9 1726.9 1726.9

MITM 1084.63 1097.0 1246.65 1683.87

ĩ=District

ΠCity ΠSD ΠDistrict ΠState

A 1033.74 1052.34 1075.39 x

B 1133.24 1206.64 1175.3 x

MITM 1147.66 1182.6 1176.1 x

ĩ=SD

ΠCity ΠSD ΠDistrict ΠState

A 1058.75 1036.21 x x

B 1180.20 1146.84 x x

MITM 1190.68 1142.54 x x

Table 4. Memory used for Caching across Frameworks B and MITM (in KB). MITM
records a significant drop in usage across all settings.

ΠCity ΠSubDistrict ΠDistrict ΠState

B 604.36 604.36 604.36 604.36

MITM 117.92 117.92 141.77 104.48

-(%) 80.48 80.48 76.54 82.71

7.5 Results: Data Transmitted over Network

We also measure the data transmitted over the network during inference in Table
5. Since Framework B caches models at every tier, we measure B’s metric as 0. In
contrast, in A, communication overhead increases proportionally to the interest
tier. However, with MITM, a reduction in data communicated over the network
is witnessed, in comparison to A, even as we cache lower tiers and our request tier
is much higher. This is specifically seen in the ĩ = State setting, where
MITM sees a reduction of almost 50% per query (cached at City),
against A. The metric reduces further as our cache tier moves higher,
upto 80% for District caches.

7.6 Experiments Discussion

We thoroughly assess the performance of all three frameworks across multiple
caching scenarios and associated metrics. Intelligent MITM tiering pro-
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Table 5. Network Transmission Cost Comparison (in KB). ‘x’ marks non-existent
combinations. MITM outperforms Framework A in all cases.

ĩ=City ĩ=SD ĩ=District ĩ=State

A 0.968 1.472 1.976 2.384

B 0 0 0 0

ΠCity

ĩ=City ĩ=SD ĩ=District ĩ=State

MITM 0 0.504 1.008 1.416

ΠSD

ĩ=City ĩ=SD ĩ=District ĩ=State

MITM x 0 0.504 0.912

ΠDistrict

ĩ=City ĩ=SD ĩ=District ĩ=State

MITM x x 0 0.448

vides a significant advantage over no-caching and complete caching
frameworks. Although we present individual learnings in each section, a holis-
tic perspective paints an impressive picture. An example of this can be seen in
the [State, [City]] tier, where we see almost similar accuracy as Framework A in
50% of the inference time, half the data transmitted over the network per query,
and using 80% less memory than B. Suitable, smart placement of intermittent
caching provides the benefits of both fast and accurate inference as well as low
memory and data traversal costs.

8 Conclusion

We address the problem of hierarchical tier-specific inference in a multi-tier
multi-model setup with edge models. Two frameworks in this regard are stud-
ied and assessed, and a staggered meet-in-the-middle model caching approach
is proposed. Empirical studies on a crop disease prediction task show that the
proposed MITM method significantly outperforms purely bottom-up and tiered
caching protocols. The proposed approach may easily be extended to other con-
tinuous learning hierarchical inference tasks like traffic data analysis and large
IIoT settings.
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Abstract. Computer Vision has witnessed remarkable advancements
through the utilization of large Transformer architectures, such as Vision
Transformer (ViT). These models achieve impressive performance and
generalization capability when trained on large datasets and can be fine-
tuned on custom image datasets through transfer learning techniques. On
the other hand, time series forecasting models have struggled to achieve a
similar level of generalization across diverse datasets. This paper presents
ViT2, a framework composed of four modules, that addresses proba-
bilistic price forecasting and generalization for cryptocurrency markets.
The first module injects noise into the time series data to increase sam-
ple availability. The second module transforms the time series data into
visual data, using Gramian Angular Fields. The third module converts
the ViT architecture into a probabilistic forecasting model. Finally, the
fourth module employs Transfer Learning and fine-tuning techniques to
enhance its performance on low-resource datasets. Our findings reveal
that ViT2 outperforms State-Of-The-Art time series forecasting models
across the majority of the datasets evaluated, highlighting the potential
of Computer Vision models in the probabilistic time series forecasting
domain. The code and models are publicly available at: https://github.
com/kochlisGit/VIT2.

Keywords: Gramian Angular Fields · Vision Transformers ·
Probabilistic Time series Forecasting

1 Introduction

Inspired by the Transformer scaling achievement and performance in Natural
Language Processing (NLP) [10], multiple works in the Computer Vision (CV)
domain combined Convolutional Neural Networks (CNNs) with Self-Attention
architectures [2], while others replaced them entirely [11]. An important large
Transformer model that has demonstrated exceptional capabilities in generaliz-
ing patterns and handling complex image recognition tasks is the Vision Trans-
former (ViT) [4].

ViT has shown remarkable generalization results on large-scale datasets, like
ImageNet [3]. Moreover, it can be fine-tuned for more domain-specific datasets
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with less volume of data, through Transfer Learning. This process involves taking
a pre-trained model, which has already learned a rich set of features from the
large image dataset and adapting it to a new, but related task [13], reducing the
required data availability, as well as the required training time and computational
resources.

While Transfer Learning is highly successful in the CV and NLP domains,
it is less straightforward and effective in time series forecasting. This can be
partly because multi-dimensional time series can be highly diverse even in similar
domains. Such diversity is particularly present in cryptocurrency markets, as
demonstrated in Figure 1, making it challenging to find a global approach or
model that can generalize well within the time series domain [15] in the same
way that models like ViT do with images.

Fig. 1. Candlesticks for DAI-USD symbol pair in 3 different exchanges. It can be
noticed that this pair presents different trend in Exmo exchange. Additionally, the
high-low price ranges, represented by the vertical lines, are quite different in all 3
exchanges.

Several State-Of-The-Art Autoencoders and Transformer architectures have
been proposed for probabilistic time series forecasting, including Temporal
Fusion Transformers (TFT) [6], N-BEATS [8] and NHITS [2], which stand out
due to their impressive performance. However, analysis of these models in several
tasks, such as M3 and M4 competitions [9], in financial tasks [5], as well as our
work, reveal that such models achieve poor generalization performance, espe-
cially in tasks with low-resource data and gain small advantage by employing
Transfer Learning. Because there are several symbols (cryptocurrency tokens)
from various cryptocurrency exchanges in our work, these limitations would nor-
mally require models to be uniquely trained for each symbol of each exchange,
requiring a lot of training time and computational resources to achieve overall
satisfying performance.

To tackle these limitations, several time series to image encoding techniques
have been proposed [1,9,12,16], which enable the utilization of CNN-based mod-
els and large transformers that achieve high performance in image classifica-
tion tasks for time series forecasting tasks. Although these models demonstrate
promising results, there has been limited research on pre-trained transform-
ers specifically designed for probabilistic time series forecasting. Most existing
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research focuses on time series classification, while lacking the exploration of
Transfer Learning [14].

In this paper, we propose ViT2, a framework designed to overcome the lim-
itations of Transfer Learning and generalization challenges in the probabilistic
time series forecasting domain by implementing four modules. The first module
collects a large-scale dataset and injects Gaussian Noise to generate synthetic
time series samples. The second module applies Gramian Angular Fields (GAF)
transformations to time series features, converting them into images which are
then stacked along the depth axis, forming multi-channel images. The third mod-
ule modifies the ViT architecture to be compatible with probabilistic time series
forecasting tasks and trains it on the generated dataset. The final module applies
Transfer Learning and fine-tunes the model on a smaller-scale dataset, in order
to evaluate it in terms of performance and generalization capability.

Additionally, we present comprehensive comparison between the impact of
Transfer Learning techniques of our framework against several leading probabilis-
tic forecasting models, such as the TFT, N-BEATS, and N-HiTS. Our findings
demonstrate that ViT2 achieves very satisfying results compared to previous
State-Of-The-Art approaches, highlighting the robustness and effectiveness of
CV-based models in the probabilistic time series forecasting domain. Our con-
tribution can be summarized as follows:

– Integrate GAF with ViT for converting time series data into images, leverag-
ing ViT’s strengths in image classification for probabilistic time series fore-
casting.

– Implement an end-to-end framework, which benefits from Transfer Learn-
ing techniques, in comparison to leading probabilistic time series forecasting
models, such as TFT, N-Beats, NHits.

The remainder of this paper is organized into the following sections. Section
2 presents all the research prior to this work. Section 3 reviews all the necessary
literature. Section 4 covers thoroughly the four modules that compose our frame-
work. Section 5 presents the datasets, the metrics and the experimental setup and
discusses the experimental results. Finally, Section 6 concludes this work and pro-
poses future extensions.

2 Related Work

The Temporal Fusion Transformer (TFT) is a significant advancement in time
series forecasting, integrating the strengths of Long-Short-Term-Memory Net-
works (LSTMs) and attention mechanisms to address complex forecasting tasks
[6]. TFT employs a multi-head attention mechanism and Gated Residual Net-
works to selectively focus on relevant inputs and make accurate forecasts.
Although TFT demonstrates robust performance across several popular time
series forecasting tasks, it requires very long training time and heavy computa-
tional resources and the effectiveness of Transfer Learning in TFT is still unex-
plored.
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N-BEATS [8] is also a popular neural network architecture, designed to
address the computational intensity and required resources of transformer-based
models in time series forecasting. N-BEATS utilizes a stack of residual blocks,
allowing for a deep understanding of the time series components, such as trend
and seasonality, through its backward and forward residual links. Later, N-HiTS
was built upon the N-BEATS framework to introduce hierarchical temporal
aggregation, further enhancing the model’s ability to capture multiple time scales
and complex patterns from the given inputs [2].

Qi-Qiao et al. [5] explored applied Transfer Learning in LSTM Networks for
forecasting financial time series in their study . The authors pre-trained LSTMs
on two similar datasets before fine-tuning them on target-specific datasets,
thereby demonstrating the effectiveness of Transfer Learning in enhancing LSTM
model performance. However, in their research, they did not explore the potential
benefits of incorporating additional dataset sources and measure their impact on
LSTM’s forecasting capability. Furthermore, they completely disregarded alter-
native architectures, such as CNN models, which have also proven very efficient
in computer vision tasks through Transfer Learning.

Barra et al. [1]diverged from traditional time series forecasting methodolo-
gies by adopting an ensemble of CNN models, such as ResNet and AlexNet for
predicting stock prices within the S&P500 market. They further enhanced their
model by transforming the time series data into images through the Gramian
Angular Field (GAF) technique, a method which has proven quite effective
in time series classification tasks. While the GAF imaging technique boosted
the performance of the ensemble model, their models consist solely of Resid-
ual blocks, as well as Convolutional and Pooling layers, ignoring completely
more advanced architectures, such as Transformers. Additionally, despite their
model demonstrating satisfying generalization capabilities, the potential bene-
fits of applying transfer learning techniques to these models was not explored,
according to the authors.

Finally, in a recent study by Semenoglou et al [9], the authors proposed a
method of encoding time series data into visual formats for analysis, specifically
by transforming the data into 2D grayscale plots and then utilizing CNN-based
models like ResNet [9]. This technique outperformed the performance of lead-
ing time series forecasting models, including N-BEATS and NHits. However, we
noticed that the proposed conversion process to 2D plots inadvertently includes
non-essential information, such as black pixels surrounding the actual time series
data, represented in white color. Moreover, the study overlooks alternative meth-
ods of converting time series to images, such as GAF, which might have offered
improved results by minimizing the inclusion of irrelevant data.

To conclude this short literature review, combining time series to image
encoding methods with Computer-Vision-based models have yielded very
promising results in the domain of time series forecasting. However, in compari-
son to previous works, our approach suggests pre-training the Computer Vision
models in large-scale datasets, before applying them on target-specific datasets.
Furthermore, we utilize the Vision Transformer (ViT), due to its exceptional
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Fig. 2. The encoding process of GAF. The input time series becomes a 2D image.

performance and generalization capability in image recognition tasks and adapt
it into a probabilistic forecasting model. Lastly, we apply noise into the inputs,
aiming to train ViT with further samples, and thus enhance the robustness and
accuracy of its forecasts.

3 Background

In this section, we provide all the necessary literature that was utilized in our
work. This consists of the GAF, an imaging technique which has proven quite
efficient in time series recognition tasks, as well as the original ViT architecture,
which is a State-Of-The-Art deep learning model designed for Computer-Vision-
related tasks, such as image classification.

3.1 Gramian Angular Fields

GAF is a time series to image transformation technique that allows deep learning
models designed for visual data to recognise and capture complex patterns from
time series data. [12]. This transformation is achieved by first normalizing the
time series in ranges [−1.0, 1.0] or [0.0, 1.0] and then encoding them into matri-
ces based on angular information, capturing the temporal correlation between
different points in the series. The process involves computing the trigonometric
functions (cosine and sine) of the cumulative sum of time series data, which are
then mapped into a polar coordinate system. The resulting GAF can be either
a Gramian Angular Summation Field (GASF) or a Gramian Angular Difference
Field (GADF), depending on whether the summation or difference of angles is
used, as presented in Figure 2.
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Fig. 3. The original Vit Architecture designed for image classification tasks.

3.2 Vision Transformer

Unlike conventional CNNs that process images through localized filters, ViT
divides an image into a sequence of fixed-size patches and then processes each
patch sequentially to capture both local and global image features as presented in
Figure 3. This approach enables ViT to learn complex patterns, such as different
parts of the image that interact together, in a way that deep CNNs can struggle
with due to their inherently local nature of processing [4]. ViT has demonstrated
remarkable performance on various image recognition benchmarks, often outper-
forming state-of-the-art CNNs, especially when pre-trained on large-scale image
datasets and then fine-tuned for specific tasks via Transfer Learning techniques.

4 Methodology

In this section, we describe the methodology of our work, which is composed in
four modules, as described in Figure 4. The first module applies data augmen-
tation via Gaussian noise injection into candlesticks data, which are described
in Section 4, further increasing data availability. The second module applies
the GAF method to transform every time series features into images, which
are then stacked together along the depth axis to form multi-channel images.
The third module modifies the original ViT architecture to be compatible with
the multi-channel input images and converts it into a probabilistic forecasting
model. Then, the modified architecture is trained using the constructed images.
The final module applies Transfer Learning and fine-tunes the trained model on
a low-resource datasets.

4.1 Module 1 - Data Preprocessing

The ViT has showcased satisfying performance and generalization capability on
large-scale datasets. Consequently, the first module employs a data augmentation
strategy to enhance the data availability, aiming to further improve the frame-
work’s performance. Because the generated GAF images are heavily dependent
on the input time series, applying data augmentations on the constructed images
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Fig. 4. The four modules of constructing probabilistic forecasting ViT model.s

could potentially distort the market trends and price signals. Hence, the data
augmentations are applied directly on the time series prior to GAF Transforma-
tions.

To generate new time series data, we inject noise to the original input data,
defined as D ∼ N (0, σ2), which is normally distributed with mean μ = 0 and
standard deviation σ = e, with σ being a small constant value (σ << 1.0)
defined by the user. Subsequently, each new sample is generated as x′

i = xi + di,
as demonstrated in Figure 5.

Fig. 5. Comparison of the original close prices of BTCUSDT (ct) with a noisy
BTCUSDT (c′

t = ct + di,t), D ∼ N (0, 0.1).

In the final step of our data preparation process, we focus on extracting
the target values for our model, which correspond to the closing price of each
cryptocurrency token for the subsequent time step, denoted as yt+1. Because
the targets are absolute prices, it can be challenging to directly predict them. To
address this, we employ the Log Returns transformation on the target values,
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which is described in Equation 1. This is a common transformation in financial
time series forecasting, because it standardizes the scale of price changes, and
helps stabilize their variance.

yt+1 = ln(
ct+1

ct
) (1)

4.2 Module 2 - Visualizing Time Series

The second module begins by normalizing the data using MinMax technique, as
described in Equation 2, allowing the GAF transformation to be applied. Then,
it segments each input time series xi into timeframes fi,t, each of size S, with S
being a user-defined setting. Finally, it utilizes the Gramian Angular Summation
Field (GASF) to convert the timeframes into 2D matrices, defined as mi,t ∈S×S .
Finally, each image is stacked together, forming a multi-channel image defined
as Ii,t ∈S×S×N , with N being the number of features. The entire pipeline of this
module can be visualized in Figure 6

x′
i =

xi − min(xi)
max(xi) − min(xi)

(2)

Fig. 6. Pipeline of multivariate time series to multi-channel images. Each image has
N channels.

4.3 Module 3 - Probabilistic Forecasting ViT

The original ViT-base architecture features an input layer of shape (224, 224, 3),
followed by the Transformer-Encoder model, which is paired with an MLP head.
Its output is composed of a final linear layer whose units match the number
of classes to be recognized, followed by a softmax activation function that out-
puts the class probabilities. In contrast, the input layer is adjusted to (S, S,N)
dimensions, in order to be compatible with our input images. Moreover, the final
linear layer and softmax activation are replaced with singular linear unit, which
predicts the target value yt+1.
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Finally, the Multi-Quantile loss function is utilized, which is also used in
TFT architecture [6]. Unlike traditional regression loss functions, such as Mean
Squared Error (MSE) and Mean Absolute Error (MAE), which primarily esti-
mates the mean of the target variable, quantile regression aims to predict specific
quantiles simultaneously, providing a more comprehensive view of the possible
outcomes. The Multi-Quantile loss function requires the model to predict K out-
puts, as presented in Figure 7, each one for a single quantile qj ∈ (0, 1.0). The
quantile loss for a single quantile is described in Equation 3.

Fig. 7. Probabilistic Forecasting ViT architecture

Lq(y, ŷ) =
{

q · (y − ŷ) if y ≥ ŷ,
(1 − q) · (ŷ − y) if y < ŷ.

(3)

4.4 Module 4 - Transfer Learning & Fine-Tuning

To further enhance the performance of our framework, we initially train our
model on the large-scale dataset, which contains a large collection of time series
datasets. This provides a significantly larger volume of data for the model to train
on, improving its learning capacity and ability to generalize domain-specific time
series.

Subsequently, we transfer the weights of the pre-trained model to a new
model, which we then fine-tune it on the target dataset, which is the small-
scale dataset. Despite the reduced size and the fewer time series samples in this
dataset, the model’s forecasting accuracy remains robust due to the founda-
tional knowledge acquired during the initial training phase of the pre-trained
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model. This strategy effectively reduces the data requirements for training on
new, domain-specific datasets, making it a highly efficient method for adapting
our model to varied contexts.

5 Experiments and Discussion

In this section, we analyze the historical market datasets that are used to conduct
ViT2 evaluation. A range of experimental procedures are additionally described
to assess the performance of our framework. This section also provides details
about the hyper-parameter tuning and concludes by presenting the experimental
results.

5.1 Datasets

In this study, we gathered data from 151 cryptocurrency datasets, which are
publicly available through the CryptoDataDownload platform1. These datasets
include 14 unique exchanges and feature 46 unique symbols. Each dataset
includes daily candlestick records, composed of Open-High-Low-Close-Volume
(OHLCV) data points: ’Open’ represents the price at which trading began on
a given day, ’High’ denotes the highest price reached during the day, ’Low’
reflects the day’s lowest price, ’Close’ indicates the final trading price for the
day, and ’Volume’ accounts for the total traded volume of transactions. The
total count of candlesticks in each dataset is between 1000 and 2000 samples.

In addition to candlesticks, we also calculate popular technical indicators,
i.e. pattern-based mathematical formulas computed by the candlesticks and are
used by traders who follow technical analysis, including EMA, VWAP, RSI, CCI
and ADX [7]. Finally, we include the day of week for each sample, represented
by a number from 0 to 6.

5.2 Experimental Setup

We train ViT2 in our dataset along with several other state of the art approaches,
including TFT, NBEATS, NHits and ForCNN-ResNet, which are presented in
Section 2. Each model is tasked to predict the logarithmic returns of the next
day’s close price from a given timeframe, as described in Section 4.

To measure the performance of the forecasting models, we concatenate the
collected data into two distinct sets: a large-scale dataset and a small-scale
dataset, with the small-scale dataset being composed of 10% of the total data.
Initially, models are trained and evaluated using the large-scale dataset. Sub-
sequently, by employing Transfer Learning, each model is fine-tuned and fur-
ther evaluated on the smaller dataset. Additionally, we repeat the same process
by excluding samples generated through noise injection (NNI), as detailed in
Section 4, in order to underscore the impact of sample generation. Lastly, each

1 https://www.cryptodatadownload.com/.

https://www.cryptodatadownload.com/
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model is trained directly on the small-scale datasets without the use of Trans-
fer Learning (NTL), allowing us to assess their performance in domains with
low-resource data.

To ensure the integrity of our evaluation and avoid biases and overfitting
issues, we divided the datasets into train, validation and test sets, as demon-
strated in Figure 8. We evaluate each model’s performance on the validation
and test sets, using the Mean Squared Error (MSE) and the Mean Absolute
Error (MAE), which are also used in [2,6,8] to measure the performance of
N-BEATS and NHits.

Fig. 8. Train-Test Splits of large-scale and small-scale datasets

5.3 Hyper-parameter Tuning

The hyperparameter space of ViT2 is extensive, so we tune only the most sen-
sitive hyperparameters. The primary variable of ViT2 is the timeframe size,
which is selected to be S = 28, after experimenting with various sizes varying
from 16 to 48, in order to balance computational efficiency with model perfor-
mance. The selected optimization algorithm is Adam, known for its effectiveness
in Deep Learning models, with the learning rate set at 0.001 after a thorough
experimentation within the [0.001, 0.01] interval, ensuring the model’s learn-
ing process was neither too slow nor prone to converging to a local minimum
point. Moreover, we include 7 quantiles of [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98],
a strategy which was employed in the work of the previous forecasting models.
Each model is trained for 1000 epochs in both datasets, with early stopping
patience of 200 epochs to address any overfitting issues. Finally, we summarize
the hyperparameter selection in Table 1.

To enhance the fairness of our comparison, we manually fine-tuned the most
sensitive hyperparameters for the baseline models as well. Specifically, for the
TFT, we adjusted the hidden state size to 128 units and employed 2 LSTM layers
of 64 units each. Our experimentation identified 4 attention heads and a dropout
rate of 10% as the optimal configuration. In the case of N-Beats, we utilized 2
blocks with layer widths of 32 and 512 respectively, alongside a dropout rate
of 10%. For N-HITS, we implemented 3 blocks and optimized the architecture
by incorporating batch normalization, which improved its performance. With
ForCNN-ResNet, we kept the original ResNet-50 architecture as detailed in the
original paper. Across all models, we set the learning rate to 0.001 and the weight
decay to 0.001.
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Table 1. ViT2 Hyperparameters

Parameter Value

Timeframe Size (S) 28

Learning Rate (lr) 0.001

Quantiles (Q) [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98]

Epochs (e) 1000

Early Stopping Patience (p)200

Gaussian Noise (σ) 0.05

5.4 Results

Table 2. Performance Comparison in the Large-Scale dataset

Exchange Symbol Model (MSE/MAE)

- - Vit2 TFT N-BEATS NHits ForCNN-ResNet

Binance FILUSDT 0.0037/0.0400 0.0072/0.0605 0.0014/0.0256 0.0024/0.0354 0.0051/0.0501

Bitbay ETHUSD 0.0113/0.0506 0.0023/0.0304 0.0028/0.0290 0.0023/0.0304 0.02139/0.0808

Bittrex BTCUSDT 0.0010/0.0225 0.0130/0.0850 0.0037/0.0434 0.0046/0.0493 0.0043/0.0512

CEX BNBUSD 0.0024/0.0330 0.0068/0.0611 0.0041/0.04473 0.0038/0.0437 0.0038/0.0422

Exmo DOGEUSD 0.0061/0.0487 0.0034/0.0475 0.0006/0.0176 0.0014/0.0272 0.0067/0.0572

Exmo TRXUSD 0.0025/0.0331 0.0065/0.0586 0.0029/0.0347 0.0026/0.0379 0.0031/0.3981

Poloniex ADAUSDT0.0017/0.0295 0.0102/0.0752 0.0021/0.0315 0.0030/0.0397 0.0053/0.0621

Poloniex DAIUSDT 0.0001/0.0018 0.0023/0.0303 0.0016/0.0223 0.0017/0.0249 0.0012/0.0136

In our initial experiment, we evaluated each model’s performance on the test
set after training on the large-scale dataset, which included noise injection. The
outcomes are detailed in Table 2. Notably, our method surpassed the previous
state-of-the-art approaches in both MSE and MAE metrics across 5 out of 8
datasets (we report on the same 8 datasets as in the small-scale test set). The
results highlight the superior generalization ability of ViT2 compared to tra-
ditional models designed specifically for time series forecasting, as well as the

Table 3. Performance Comparison in the Small-Scale dataset via Transfer Learning
& without Noise Injection (NNI)

Exchange Symbol Model (MSE/MAE)

- - Vit2-NNI TFT-NNI N-BEATS-NNI NHits-NNI ForCNN-ResNet-NNI

Binance FILUSDT 0.0037/0.0399 0.0067/0.0588 0.0014/0.0253 0.0028/0.0332 0.0039/0.0412

Bitbay ETHUSD 0.0114/0.0505 0.0022/0.0288 0.0017/0.0224 0.0018/0.0243 0.0171/0.0582

Bittrex BTCUSDT 0.0010/0.0225 0.0138/0.0871 0.0033/0.0401 0.0031/0.0396 0.0037/0.0398

CEX BNBUSD 0.0024/0.0330 0.0048/0.0500 0.0032/0.0389 0.0035/0.0409 0.0102/0.0411

Exmo DOGEUSD 0.0061//0.0386 0.0047/0.0585 0.0003/0.0323 0.0034/0.0416 0.0116//0.0423

Exmo TRXUSD 0.0025/0.0331 0.0062/0.0574 0.0021/0.0320 0.0025/0.0353 0.0038/0.0626

Poloniex ADAUSDT0.0017/0.0295 0.0106/0.0762 0.0027/0.0352 0.0034/0.0416 0.0025/0.0228

Poloniex DAIUSDT 0.0001/0.0015 0.0024/0.0360 0.0001/0.0084 0.0022/0.0273 0.0025/0.0201
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Table 4. Performance Comparison in the Small-Scale dataset via Transfer Learning
& Noise Injection

Exchange Symbol Model (MSE/MAE)

- - Vit2 TFT N-BEATS NHits ForCNN-ResNet

Binance FILUSDT 0.0032/0.0383 0.0062/0.0575 0.0011/0.0233 0.0029/0.0365 0.0035/0.0399

Bitbay ETHUSD 0.0111/0.0495 0.0021/0.0277 0.0017/0.0217 0.0016/0.0209 0.0282/0.0713

Bittrex BTCUSDT 0.0009/0.0188 0.0114/0.0864 0.0030/0.0383 0.0009/0.0153 0.0109/0.0677

CEX BNBUSD 0.0015/0.0283 0.0075/0.0614 0.0031/0.0364 0.0021/0.0335 0.0112/0.0430

Exmo DOGEUSD 0.0076//0.0427 0.0038/0.0434 0.0002/0.0207 0.0014/0.0259 0.0110//0.0377

Exmo TRXUSD 0.0031/0.0376 0.0051/0.0521 0.0021/0.0320 0.0031/0.0389 0.0051/0.0542

Poloniex ADAUSDT0.0012/0.0244 0.0097/0.0673 0.0026/0.0342 0.0021/0.0298 0.0069/0.0631

Poloniex DAIUSDT 0.0001/0.0011 0.0022/0.0341 0.0001/0.0046 0.0008/0.0220 0.0028/0.0488

Table 5. Performance Comparison in the Small-Scale dataset, without Transfer Learn-
ing (NTL)

Exchange Symbol Model (MSE/MAE)

- - Vit2-NTL TFT-NTL N-BEATS-NTL NHits-NTL ForCNN-ResNet-NTL

Binance FILUSDT 0.0070/0.0427 0.0092/0.6644 0.0064/0.0435 0.0045/0.0422 0.0192/0.0877

Bitbay ETHUSD 0.0143/0.0556 0.0022/0.0291 0.0012/0.0209 0.0020/0.0274 0.0188/0.0626

Bittrex BTCUSDT 0.0022/0.0233 0.0138/0.0888 0.0076/0.0642 0.0096/0.0711 0.0202/0.0799

CEX BNBUSD 0.0069/0.0497 0.009/0.0757 0.0005/0.0512 0.0005/0.0554 0.0198/0.0682

Exmo DOGEUSD0.0096//0.0427 0.3437/0.5755 0.0212/0.1386 0.0104/0.0781 0.0148//0.0583

Exmo TRXUSD 0.0051/0.0376 0.0151/0.0953 0.0029/0.0402 0.0051/0.0523 0.0199/0.0743

Poloniex ADAUSDT 0.0048/0.0301 0.0176/0.0429 0.0101/0.0721 0.0033/0.0439 0.0212/0.0652

Poloniex DAIUSDT 0.0003/0.0098 0.0013/0.0079 0.0002/0.0025 0.0027/0.0243 0.0004/0.0212

ForCNN’s approach, especially in Poloniex-DAIUSDT dataset, which achieved
the same MSE as N-BEATS, but with the lowest MAE score. The accuracy of
its forecasts in that particular dataset is presented in Figure 9.

In the subsequent experiments, we focus on training and evaluating the mod-
els using the small-scale dataset. Before this training phase, we apply transfer
learning techniques to the models that were previously trained on the large-
scale dataset. This involves fine-tuning each model specifically for the small-
scale dataset. We repeat this process twice: once without implementing noise
injection, thereby maintaining the original number of training samples from the
large-scale dataset, and once with noise injection as described in Section 4. The
results of these experiments are presented in Table 3 for the experiment without
the noise injection and Table 4 for the experiment with noise injection. It can be
observed that ViT2 demonstrated a small advantage over the baseline models in
most datasets. Furthermore, it can be noticed that all models improved slightly
with the introduction of noise injection, marking it as a fast yet effective form
of data augmentation.

In the last experiment, we train every model directly in the small-scale
dataset, without utilizing Transfer Learning. As shown in Table 5, N-BEATS
and NHits demonstrate the strongest overall performance, while the CV-based
models underperform. This indicates CV-based models, especially ViT2, which
utilizes transformers, struggle without prior pre-training. The impact of utiliz-
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ing Transfer Learning for the CV-based models can be noticed by the increased
errors in several datasets. Notably, while ViT2 showed the most promising results
on the Exmo-DOGEUSDT dataset with an MSE of 0.0096 without the use of
Transfer Learning, its error is dropped to 0.0076 when utilizing the pre-trained
weights.

Fig. 9. Quantile Forecasts for Poloniex-DAIUSDT prices.

6 Conclusion & Future Work

In this paper, we introduce ViT2, a novel framework aimed at addressing the
challenges of generalization performance and Transfer Learning limitations in
the domain of time series probabilistic forecasting, specifically focusing on cryp-
tocurrency price estimation. Our approach leverages Gramian Angular Fields,
in order to transform time series data into images effectively, so that Computer-
Vision-based models can be employed. We base our framework on the ViT archi-
tecture and modify it into a probabilistic forecasting model by integrating the
Multi-Quantile loss function.

Furthermore, we increase the performance of our framework,by enriching our
dataset by incorporating noise injection, which is a simple yet effective technique
to increase sample availability. Subsequently, we pretrain ViT on a large volume
of data and then fine-tune it on the target-specific dataset, which has fewer
samples. Through the utilization of these techniques, we surpass both previous
State-Of-The-Art methodologies and popular time series forecasting models in
most of the experiments, including TFT, N-BEATS and NHits.

In the future we aim to expand ViT2 into other time-series-related forecasting
tasks, as well as experiment with more recent Computer-Vision-based architec-
tures, which have the potential to further contribute to the field of time series
forecasting.
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Abstract. In recent times, Large Language Models (LLMs) have
become an important tool for various business use cases. The power
of these LLMs can be leveraged in improving developer productivity, as
a knowledge base, for creating applications such as question answering
and information retrieval systems. Unfortunately, these benefits come at
the price of high usage costs and latency. The managed LLM services
charge based on tokens (words) processed which become very significant
with scale. Even self-hosted open source LLMs turn out to be expensive
because hosting requires expensive GPUs and scaling to many requests
would need significant horizontal scaling of these resources. In this con-
text, an LLM focused caching system can significantly reduce usage costs
as well as latency. This problem is addressed by GPTCache. The cur-
rent work termed waLLMartCache advances GPTCache by incorporating
the following features: (i) we introduce the support for a new database
Redis in GPTCache (our pull request is already merged with GPTCache
main branch) – this is used as L2 cache in our designed system, (ii)
presently, GPTCache is implemented to be run on a single node which we
enhance to span across multiple nodes to handle industry-scale requests
and consequently, we also designed a distributed eviction manager, (iii)
we further create partitions for individual tenants (clients) so that these
can be hosted together while maintaining semantic separations, (iv) we
present a decision engine that decides whether to cache an LLM response
based on our business use-cases, and (v) we showcase that loading FAQs
(which can be set to be stored persistently in the memory) while boot-
ing the LLM cache can be a simple yet effective strategy to boost cache
hits significantly. Although this system is in-house to our company, we
believe that the methodology shared in this paper is generic enough to
be adopted by any organization.
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1 Introduction

Large Language Model (LLM) is considered as one of the biggest disruptors
in technology nowadays. Although language models have persisted for many
years [7], LLMs have become immensely popular since the release of GPT-3 [9]
by OpenAI that later caught more attention with the release of GPT-3.5 [32]
and GPT-4 [21]. These LLMs have been found to be good at various tasks, such
as answering questions, summarizing texts, synthesizing new content, etc. while
newer applications involving the LLMs are being invented almost every day.
However, accessing the GPTs can be quite costly [20]; moreover, accessing them
using APIs typically involves non-uniform latencies – the situation is further
exacerbated if too many requests come from a user and consequently, the service
is temporarily revoked for that user; in such cases, the service is resumed only
after some cool-down period. Such untoward events hamper developer produc-
tivity and customer experience significantly which, in turn, may lead to revenue
and/or reputation loss for businesses that are dependent on the GPTs.

To alleviate these problems, GPTCache was introduced in [5]. GPTCache,
similar to the concept of the standard caches, stores responses from previous
queries sent to the LLMs and whenever a “similar” query is posed again, the
response is returned from the cache instead of invoking the LLM again. Thus,
GPTCache not only saves the cost incurred by availing the services from the
GPTs but also reduces the response speed by up to 10x [5]. Moreover, returning
the response from the cache is unaffected by network fluctuations – thereby mak-
ing the system more stable; inadvertent lockout periods from the GPT services
are also reduced if not avoided altogether.

Notably, GPTCache, in contrast to what its name may suggest, is applicable
to any LLM such as, Gemini [3], Claude [4], Llama2 [28], Falcon [2], Mistral [16]
and Dolly [12] just to name a few. Although GPTCache’s benefits are undoubt-
edly great, adopting it off-the-shelf for industry use-cases posed many challenges,
especially when it came to scaling the cache to a distributed system to handle
thousands of requests per minute. Consequently, we had to make upgrades to
the GPTCache which resulted into its updated version that we termed as waLL-
MartCache. Our system waLLMartCache advances GPTCache by incorporating
the following features:

1. We introduce the support for a new database Redis [27] in GPTCache (our
pull request is already merged with GPTCache main branch1) – this is used
as L2 cache in our designed system.

2. Currently, GPTCache is implemented to be run on a single node which we
enhance to span across multiple nodes to handle industry-scale requests and
consequently, we also designed a distributed eviction manager.

3. We further create partitions for individual tenants (clients) so that these can
be hosted together while maintaining semantic separations.

4. We present a decision engine that decides whether to cache an LLM response
based on retail business use-cases.

1 https://github.com/zilliztech/GPTCache/releases/tag/0.1.35

https://github.com/zilliztech/GPTCache/releases/tag/0.1.35
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5. We showcase that loading FAQs (which can be set to be stored persistently
in the memory) while booting the LLM cache can be a simple yet effective
strategy to boost cache hits significantly.

It is important to note that although waLLMartCache is in-house to our com-
pany, we believe that our methodology is generic enough to be adopted by any
organization.

The paper is organized as follows. Section 2 covers the related literature.
Section 3 describes GPTCache in brief. Section 4 explains our enhancements
made on top of GPTCache along with some empirical evidence of waLLMart-
Cache’s efficacy. Section 5 concludes the paper with a summary of the work done
and some potential future directions.

2 Related Work

Cache memory is a well-known concept in computer architecture whereby certain
information (instructions and/or data) is stored in a designated memory that has
a lower latency than the primary memory [15]. Semantic caching [11] stores data
in cache based on its meaning in contrast to traditional caching techniques which
typically exploit the concept of locality of reference [15] and does not usually look
into the meaning of the data. The idea of semantic caching is utilized in [17]
to convert cache misses to cache hits while accessing web sources through user
queries. In another work [19], semantic caching is used in the context of database
queries where a differentially private cache of earlier responses is employed to
answer the current workload while maintaining a privacy budget.

GPTCache [5] presents an open-source semantic cache that is specifically
geared towards providing faster LLM responses in addition to lowering the costs
of LLM usage. We will cover GPTCache, which is the foundation for the cur-
rent work, in detail in Section 3. GPTCache has already been integrated into
applications such as, AI Tutor [6], social and e-commerce recommender [31], and
power-aware model serving framework [25]. Note that LLM inference times vary
based on the lengths of the generated responses, and since LLM serving systems
generally serve requests on a First-Come-First-Serve (FCFS) basis, they often
suffer from head-of-line blocking issues. The authors of [24] plan to explore GPT-
Cache in conjunction with a speculative shortest-job-first scheduler to tackle this
problem. The same FCFS related problem is also addressed by the authors of [10]
who build a Language-Model-as-a-Service (LMaaS) based on efficient batching of
the LLM queries which, in turn, relies on predicting the lengths of the generated
responses. In the work described in [33], the authors propose a distillation-based
method to fine-tune the existing embeddings for better caching prediction. A sim-
ilar distillation based strategy is adopted in [1] and compared against GPTCache
– however, it may be noted that this method specifically focuses on text-to-image
generation prompts. In another related work [26], how to generate semantically
similar prompts has been explored – these prompts should help in determining
validity of cache hits and misses, and thus contribute to evaluating the efficacy
of the semantic caches.
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Fig. 1. The overall architecture of GPTCache. Note that in the original paper [5], the
Post-Processor module is applied only in case of cache hits but we apply it for both
cache hits and misses to adhere to the best industry practices.

3 GPTCache in a Nutshell

In this section, we briefly describe GPTCache whose details can be found at [5].
Conceptually, GPTCache is similar to other caches – whenever a new query is
fired, we first check if that query has already been posed to the LLM or not and
if a match is found, then the response is returned immediately from the cache;
otherwise, we follow the traditional route of sending the query to the LLM
and returning its response to the user – however, additionally, the query and the
response are stored in the cache for future references. Below are the modules that
are present in GPTCache as shown in Fig. 1. While explaining the GPTCache,
we also underline some salient features where our system design deviates from
the original one even when the aspects of distributed system, multi-tenancy, etc.
are not considered.

3.1 Adapter

This module serves as the interface for GPTCache that is accountable for con-
verting LLM queries into cache protocols and converting cache results into LLM
responses. Basically, the user should experience identical input/output behavior
from the system irrespective of whether caching is enabled or not; the adapter
is charged with ensuring a smooth and uniform user experience.
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3.2 Pre-processor

This module removes some of the redundant information that may be present in
the prompt, e.g., user identifiers. To understand an interesting example where
pre-processing may be required, let us consider the case where a long chat is
going on between the user and the LLM – however, every LLM typically has
a restriction on the number of tokens that it can process in the input prompt,
and hence upon nearing the maximum token limit, the pre-processing module
may compress the initial conversations or drop them altogether based on the
assumption that the recent chats influence the response considerably more than
the older ones. Note that dropping early chats may at times incur some per-
formance degradation compared to compression but on the other hand, it may
have significant economic impact – in industry, one typically works with the
individual clients to employ the best possible pre-processing strategy that suits
their performance needs while reducing their costs.

3.3 Embedding Generator

This module translates user queries into embedding vectors which are later used
for similarity based retrievals.

3.4 Cache Manager

This module lies at the core of GPTCache and primarily performs three sub-
tasks.

– L1 Cache Storage: When a user query arrives, it is first converted into
an embedding vector and stored in a vector database such as, Milvus [29],
Pinecone [22], Qdrant [23] or Weaviate [30]. For each user query, along with
an embedding vector, a unique scalar id is also generated that is used subse-
quently in the L2 cache.

– L2 Cache Storage: This storage stores the unique scalar ids generated by
the L1 cache along with the corresponding LLM responses. Any database
(including simple structural databases) that can store key-value pairs effi-
ciently can be used as the L2 cache.

– Eviction Management: This sub-module clears the cache by following a
pre-determined policy, for example, the Least Recently Used (LRU) policy or
the First-In-First-Out (FIFO) policy, to maintain the cache capacity.

It may be worth noting that the original paper [5] uses the terms vector stor-
age and cache storage whereas, we use L1 cache storage and L2 cache storage,
respectively. We deviate from the original terminology because of two reasons:
(i) we found the terms vector storage and cache storage confusing because both
are part of GPTCache, and (ii) L1 and L2 storages are commonly used terms
in the context of caching and also imply the order in which these storages are
accessed (similar to standard caches).
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3.5 Similarity Evaluator

This module finds the most similar query posed earlier based on the embedding
vectors generated. Typically, Euclidean distance or cosine similarity is used to
find the most similar query; however, if the distance is found to be greater than
some threshold d, then it is considered to be a cache miss and the LLM is
actually invoked.

3.6 Post-processor

This module massages the LLM response before it is outputted to the user. In
an industry context, we apply content filtering to filter the texts that may be
toxic or derogatory [13] which may lead to reputation loss. Furthermore, we also
scan for Personal Identifiable Information (PII) data and redact these from the
outputted responses to adhere to laws and regulations, wherever applicable. It
may be noted that while in the original GPTCache, post-processing is applied
only in the case of cache hits, we apply it both during cache hits and misses to
ensure that content filtering and redacting PII data are applied (among other
similar processes) so that AI is always used responsibly for both internal and
external uses.

4 waLLMartCache: An Enhanced Cache for LLMs

In this section, we delve into the details of the significant enhancements which
have been done to the GPTCache to adapt it for industry requirements.

4.1 Incorporating Redis as a Database

We had experimented with multiple databases before finalizing on Redis [27]
as the L2 cache storage. The experimental results with Redis are captured in
Table 1. The dataset used for these experiments is obtained from our in-house
Generative AI playground where any internal associate can pose a query to an
LLM and get its response. Although this “playground” is good for testing LLMs
and not meant for productionization (which may involve use-case specific fine-
tuning), we chose this dataset because it covered a large spectrum of the queries
(being fired by associates from all the teams) that are of importance to the
retail industry, and thus can act as a suitable proxy for our initial generic design
choices. The queries present in the dataset typically range from 500 to 1000
tokens. The LLM responses, however, can be very large, and hence we bucketize
these responses (referred to as Content in Table 1). As shown in Table 1, we
also consider the case where contents from all the different buckets are present
together and we refer to it as All. We check how much scale can Redis handle by
deploying 500 and 1000 concurrent users at once. We report the total number of
requests, Requests Per Second (RPS) and the average, the median and the P90
(90th percentile) response times for each combination of bucket size and number
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Table 1. Experimental results with Redis as an L2 cache storage

Content Size #Concurrent #Requests #RPS Average Median P90

Users Response Response Response

(#tokens) Time (ms) Time (ms) Time (ms)

<2K 500 135758 156 119 45 110

1000 170530 258 614 190 1100

2K to 5K 500 83035 155 141 55 140

1000 180694 239 1051 180 3800

5K to 10K 500 81536 158 152 91 230

1000 122708 217 1523 240 4800

>10K 500 91331 154 227 140 400

1000 103840 180 2463 380 7400

All buckets 500 135365 150 173 48 120

1000 190668 230 952 200 2100

of concurrent users. Due to our internal non-competition policy, we refrain from
mentioning the other databases that we explored. Nevertheless, it may be noted
that the closest competition scaled to only 30% of the RPS that was registered
for Redis for the same configuration. Lastly, our code for supporting Redis in
GPTCache is already merged with the open source repository and available for
everyone to use.

4.2 Designing a Distributed Cache for LLMs

This enhancement lies at the core of our designed system. We elaborate it with
the help of Fig. 2. In case of an industry-scale application, several hundreds of
requests may be submitted every second by hundreds of customers and asso-
ciates. The queries coming from the various users first undergo a load balancer
that distributes these queries uniformly across various nodes, each running an
instance of our waLLMartCache. After passing through the Adapter, a query
comes to the Distributed Cache Manager that has a local L1 Cache Storage
Manager and a local L2 Cache Storage Manager. There is no local storage resid-
ing in these individual nodes. Once the semantic embedding is obtained for the
query, we search for its most similar query in the central L1 Cache Storage. If
no similar query is found, then the LLM is invoked and the response is returned
to the user along with saving a copy in the L2 Cache Storage. In contrast, if a
similar query is found, then the L1 Cache Storage sends the corresponding scalar
id to the L1 Cache Storage Manager in the originating waLLMartCache node,
which shares the same to the L2 Cache Storage Manager that fetches the saved
LLM response from the central L2 Cache Storage that is finally returned to the
user. When any of the storages nears its capacity limit, we evict the entries that
are deemed to be erasable based on the chosen eviction policy, e.g., LRU. Note
that these deletions are carried out appropriately so that the two cache stor-
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Fig. 2. Design of our distributed cache for LLMs. Note that we do not show each
module from Fig. 1 here to maintain clarity and instead focus on the Distributed
Cache Manager module specifically.

ages are in sync (albeit the synchronicity may not be achieved instantaneously
but within a very small time lag in the order of milli-seconds), i.e., the vector
embeddings and the LLM responses that are linked through the unique scalar
ids are removed hand-in-hand.

4.3 Integrating Multi-tenancy

One aspect that was not addressed by GPTCache at all was handling multiple
tenants (i.e., clients) at the same time. Fundamentally, it is expected that the
system should not return a response that originated from a query posed by a
different client although it may be similar to the current query – returning such
responses may reveal sensitive information and thus violate our privacy policies.
To maintain the required semantic separations, we attach a metadata to the
query that contains the tenant’s id, and we maintain different instances of the
L1 cache vector database corresponding to each tenant; upon receiving a new
query, we search for similar previous queries only in that vector database that
belongs to the current tenant id. Conceptually, one may think that each database
is partitioned into buckets based on tenants’ ids as shown in Fig. 2.
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4.4 Improved Decision Engine for Caching

Fig. 3. Design of our decision engine which subsumes the Similarity Evaluator module
of GPTCache.

Our Decision Engine module subsumes the Similarity Evaluator module from
GPTCache. As illustrated in Fig. 3, the Decision Engine has three sub-modules
that we elaborate upon in this subsection.

– Code Detector: This sub-module is used to detect whether the query being
sent to the LLM contains code snippets or not. A user typically sends a code
snippet to an LLM either to understand what functionality is achieved by the
code or to seek the LLM’s help in order to optimize it. However, during our
experiments, we found that finding vector embedding based semantic simi-
larity between two queries having code snippets is a notoriously difficult task
that often leads to false positives, i.e., it results in erroneous cache hits. Two
codes may differ by a single operator (say + is replaced by −, or max by min)
and thus produce different outputs – their vector embeddings however will be
very similar thereby leading to fallacious cache hits. While such mistakes may
happen to code-free texts as well, the number of false positives in such cases
is distinctively low. Specifically, in our experiments, we found that true cache
hits occurred 90% of the times for code-free queries whereas, the percentage
of true cache hits for queries containing codes is only 9%; this number drops
further to meagre 3% when the number of tokens for the code containing
queries goes beyond 400. Therefore, we decided to include this sub-module
and in case it finds that the query includes code, then we send it directly to
the LLM and we do not cache such queries and corresponding responses.
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– Temporal Context Detector: To understand the necessity of this sub-
module, suppose we ask the LLM the question: “What was yesterday’s average
temperature?” Obviously, even if the exact same question is asked the next
day, returning the cached answer would be wrong. Therefore, we do not cache
those queries whose responses may differ with time. It is interesting to note
that sometimes the responses may differ with time even if there is no temporal
construct present in the query, for example, “What is the price of item X?”
Businesses often employ dynamic pricing [8] because of which the price of
item X may differ throughout the day, and hence caching the prices may
not be advisable. Therefore, this sub-module is deployed with the relevant
business intelligence baked in based on a specific client’s needs.

– Similarity Evaluator: This sub-module is identical to that of GPTCache
and already covered in Section 3.5.

It may be noted that the first two sub-modules in the Decision Engine have the
positive side-effect of keeping the cache storages restrained.

4.5 Pre-loading (non-volatile) FAQs into the Cache

Table 2. Experimental results for finding the efficacy of pre-loaded FAQs

#Concurrent #Requests #RPS Average Median P90 Cache Cache

Users Response Response Response Hit Hit

Time (ms) Time (ms) Time (ms) w/o FAQ w/ FAQ

1000 293304 329 45 35 70 80% 90%

LLMs are being integrated into chat bots. Chat bots are popularly used for
handling queries related to Customer Care issues among others. Fortunately,
many of the use-cases such as, Customer Care, often have to answer the same
questions repeatedly. Such common questions and their responses can be collated
into Frequently Asked Questions (FAQs) and can be pre-loaded into the cache
to boost up its hits – we found this simple idea to be very effective, in fact, it
improved the rate of cache hit by 10% as shown in Table 2. For the experiment
whose results are reported in this table, we had turned the FAQs non-volatile,
i.e., these were never evicted from the cache storages; however, making the pre-
loaded FAQs non-volatile is not a mandatory requirement and these may be
evicted in a similar fashion as other queries following an eviction policy. In
our experience, we found that making the pre-loaded FAQs non-volatile yields
superior performance.

Finally, we would like to mention that similar to making Redis available in
the open source GPTCache repository, we have plans to open source our other
contributions as well – we are currently waiting to receive the necessary approvals
from the higher authorities.
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4.6 Ablation Study

Table 3. Effects of Redis, distributed cache, decision engine and pre-loading FAQs on
semantic caching

Method Correct Hit Incorrect Hit Correct Miss Incorrect Miss Acc(%)

Reg Cde Tmp Reg Cde Tmp Reg Cde Tmp Reg Cde Tmp Reg All

Oracle 500 500 0 0 0 0 600 600 1100 0 0 0 100 100

GPTCache 401 422 0 59 435 77 550 222 545 90 21 478 86.4 64.8

WMC(1N) 401 422 0 59 435 77 550 222 545 90 21 478 86.4 64.8

WMC(4N) 399 418 0 61 438 77 548 222 543 92 22 480 86.1 64.5

WMC(4N)+DE 399 0 0 61 0 0 548 600 1100 92 500 0 86.1 80.2

WMC(4N)+DE+FAQ 488 0 0 65 0 0 498 600 1100 49 500 0 89.6 81.4

Table 4. Effects of multi-tenancy on semantic caching

Method T Correct Hit Incorrect Hit Correct Miss Incorrect Miss Acc(%)

Reg Cde Tmp Reg Cde Tmp Reg Cde Tmp Reg Cde Tmp Reg All

Oracle 1 250 250 0 0 0 0 300 300 550 0 0 0 100 100

2 250 250 0 0 0 0 300 250 550 0 0 0

GPTCache 1 199 215 0 55 288 59 250 36 245 46 11 246 82 57

2 202 207 0 52 291 61 251 36 240 45 16 249

WMC(4N)+DE+FAQ 1 211 0 0 55 0 0 249 300 550 35 250 0 83.8 79.4

2 212 0 0 54 0 0 250 300 550 34 250 0

WMC(4N)+DE+FAQ+MT 1 244 0 0 33 0 0 247 300 550 26 250 0 89.5 81.3

2 244 0 0 32 0 0 249 300 550 25 250 0

In this subsection, we explore what are the effects of the various constituents
of waLLMartCache with respect to GPTCache, and an Oracle that makes no
incorrect cache hit or miss – this Oracle is used to benchmark the performance
of GPTCache and our waLLMartCache. For these experiments, we chose a set
of 100 prompts containing code (Cde), 100 textual prompts containing temporal
context (Tmp) and 100 (regular) textual prompts without any temporal context
(Reg). For each prompt we create 5 semantically similar prompts (which should
ideally result in correct cache hits) and 5 dissimilar prompts (which should ide-
ally result in correct cache misses) – note that the 5 dissimilar prompts need to be
pairwise semantically different as well to ensure cache misses. We use GPT-4 [21]
to generate the semantically similar and dissimilar prompts from a given textual
prompt. For generating similar prompts, we instruct GPT-4 to make changes
such as, active to passive voice, compound to multiple simple sentences, positive
to double negative (e.g., “present” to “not absent”), replace a single or multiple
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words by their synonyms; similarly, for producing dissimilar prompts, we make
changes such as, positive to negative, replace a single or multiple words by their
antonyms, replace the entire prompt by some random unrelated Wikipedia sen-
tence(s). We have manually checked whether the resulting prompts were indeed
similar or dissimilar. In case of prompts containing code, to generate prompts
with similar meaning, we replaced equations by their mathematical equivalent
ones (e.g., y + y to 2 ∗ y), or added some constant and later subtracted the
same constant, etc. To produce dissimilar prompts with code, we deliberately
changed some of the operators, or removed equations partially or totally. Thus,
each prompt led to 10 additional prompts, and overall we had 3300 prompts
(including the original ones). The entire set is randomly shuffled before invoking
the LLM caches.

Table 3 underlines the effects of Redis, distributed cache, decision engine
and pre-loading FAQs (i.e., all the constituents except multi-tenancy) on waLL-
MartCache (WMC). Note that we report the correct and the incorrect cache
hits and misses similar to earlier literature [5,26]; we further show the break
ups for all three types of prompts: Reg, Cde and Tmp. To the best of our
knowledge, all related previous works [5,14,18,26,33] only focused on Reg(ular)
textual prompts, and did not delve into prompts containing codes or having a
specific type of context such as, temporal in our case, that may require spe-
cific caching strategies. Accordingly, we report accuracy (Acc) for Reg prompts
only (to maintain consistency with earlier literature) along with all types of
prompts together (All). For retail business use-cases, typically prompts having
temporal context should not be cached, for example, when dynamic pricing [8]
is employed. Therefore, as per our strategy, all textual prompts having temporal
context should result in cache miss; consequently, the Oracle in Table 3 has zero
correct hits and 1100 correct misses for Tmp category of prompts. For the other
two categories, the ideal number of correct cache hits is 500 (because of simi-
lar prompts) while the ideal number of correct cache misses is 600 (because of
dissimilar prompts and the original prompts which should result in misses when
executed for the first time). All experiments involving GPTCache and waLL-
MartCache were carried out five times – here we report their means rounded
to nearest integer. In Table 3, WMC(1N) represents waLLMartCache deployed
to only a single node – in this case, it differs from GPTCache only in its use
of Redis as L2 storage. As expected, there is practically no difference between
GPTCache and WCM(1N) on semantic caching because these have the same
Similarity Evaluator although Redis contributes in reaching much higher RPS
as mentioned in Section 4.1. waLLMartCache distributed to four nodes is repre-
sented as WCM(4N) which sees negligible drop in accuracies but it aids in scaling
the system drastically and boosts RPS further. However, when it is augmented
with the decision engine (WCM(4N)+DE), the DE forces the cache hits (both
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correct and incorrect) to zero for Cde and Tmp categories of prompts. Since ide-
ally all Tmp prompts should result in cache misses, the positive effect of DE is
obvious; in case of Cde prompts, we found DE to be beneficial because although
the Similarity Evaluator helped in getting some correct cache hits, it produced
larger number of incorrect cache hits thus bringing the overall accuracy down.
Therefore, although the accuracy for Reg remains identical for WCM(4N)+DE,
the accuracy for All improves considerably. It may be noteworthy that from the
results of Table 3, it may seem that our DE can identify codes and temporal
contexts perfectly from a given text; however, the designed DE may need fur-
ther enhancements especially in case of identifying temporal contexts. We believe
that identifying code snippets is not difficult if one builds a dictionary of all the
keywords supported by the programming languages of interest along with look-
ing for curly braces, sentences ending with semi-colon, etc. However, identifying
temporal context may be challenging because humans sometimes write English
in convoluted fashions – the 100 Tmp prompts chosen for this experiment were
not too complex and our DE could identify these in all cases even for their
similar and dissimilar counterparts. Finally, pre-loading FAQs has a beneficial
effect because now potentially even the first executions of the prompts can get a
correct cache hit if it is part of the FAQ list as can be seen from the additional
improvements in the accuracies for both Reg and, in turn, for All. Note that, in
practice, the advantage of having a pre-loaded FAQ can be even more based on
the length of the FAQ and the frequency in which these prompts are repeated
as evidenced in Section 4.5.

To measure the effect of supporting multi-tenancy, we distribute the prompts
from the earlier experiments to two equal halves and assign these to Ten-
ant (T) 1 and 2 – the results are captured in Table 4. Since GPTCache and
WMC(4N)+DE+FAQ cannot distinguish between prompts from the different
tenants, the number of incorrect cache hits is proportionately much higher com-
pared to the previous scenario. We refrain from mentioning the numbers for
WMC(1N), WMC(4N) and WMC(4N)+DE in Table 4 for brevity and also
because we believe that these numbers can be derived from the other rows in
this table. Lastly, WMC(4N)+DE+FAQ+MT which has multi-tenancy support
is able to do the necessary distinction and is able to achieve accuracies similar
to that of WMC(4N)+DE+FAQ in Table 3 which did not have multiple tenants
and therefore, their accuracies should be equivalent. Usually, the positive effect
of multi-tenancy increases linearly with the increase in the number of tenants.

5 Conclusion

LLMs have recently had profound effect on our lives. Programming, story telling,
reporting, auditing, chatting – all these activities can possibly be enhanced by
many folds by using LLMs effectively. Consequently, all industries are presently
in a race to leverage this new AI technology to increase their customer experi-
ences and revenues as quickly as possible. However, LLMs can be quite costly and
for large industries their costs can easily shoot up given their massive require-
ments. Furthermore, too many invocations of the proprietary LLMs often lead to
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service outages which are resumed only after some cool-down period. Therefore,
caching the responses of the LLMs can be an effective way to not only reduce
the costs but ensure better availability of the services. Additionally, returning
cached responses can reduce the latency significantly and provide a more stable
system. In [5], the authors develop a caching mechanism for LLMs called GPT-
Cache. However, when we tried to use this tool off-the-shelf, we found it to be
lacking in various aspects that made its adoption in an industrial setting diffi-
cult. Accordingly, we enhanced this tool and developed an in-house LLM caching
system called waLLMartCache that can additionally (i) support Redis database
(this contribution of ours is already integrated with the open source GPTCache),
(ii) scale to multiple nodes with support for a distributed eviction manager, (iii)
handle multiple individual tenants while maintaining semantic separations, (iv)
handle better semantic caching based on our decision engine, and (v) pre-load
the cache with (non-volatile) FAQs, if needed, that boost cache hits significantly.
In future, we plan to incorporate more LLMs and vector databases in our system,
and explore alternate cache eviction policies. We also plan to check if switching
LLMs in the interim based on historical data is a good idea or not, i.e., use a
more powerful LLM initially so that our cache is populated with richer responses
and then transition to a less powerful LLM if we believe that most responses in
the foreseeable future will be returned from the cache.
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Abstract. This paper introduces ReeSPOT, a novel Reeb graph-based
method to model patterns of life in human trajectories (akin to a fin-
gerprint). Human behavior typically follows a pattern of normalcy in
day-to-day activities. This is marked by recurring activities within spe-
cific time periods. In this paper, we model this behavior using Reeb
graphs where any deviation from usual day-to-day activities is encoded
as nodes in the Reeb graph. The complexity of the proposed algorithm
is linear with respect to the number of time points in a given trajec-
tory. We demonstrate the usage of ReeSPOT and how it captures the
critically significant spatial and temporal deviations using the nodes of
the Reeb graph. Our case study presented in this paper includes realis-
tic human movement scenarios: visiting uncommon locations, taking odd
routes at infrequent times, uncommon time visits, and uncommon stay
durations. We analyze the Reeb graph to interpret the topological struc-
ture of the GPS trajectories. Potential applications of ReeSPOT include
urban planning, security surveillance, and behavioral research.

Keywords: Reeb Graphs · Graph Networks · Trajectory Analysis

1 Introduction

Recently, there has been an increase in location-aware devices that use the
Global Positioning System (GPS) for many applications such as finding efficient
routes [17], fitness apps, understanding the progression of infectious diseases [6],
and predicting demographic information [19]. This collection of movements, and
thus vast amounts of raw trajectories, spotlights the need for a scalable repre-
sentation of these trajectories that preserves and highlights the structure and
topologically important movement patterns (Figure 1).

Human movement analysis is the core component of behavioral research,
urban planning, and computational sociology [3], which helps in better modeling
human behavior and predicting human movement patterns. Similarly, modeling
normal human behavior can also help identify abnormal human behavior. In
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Fig. 1. Map overlay of normal and anomalous trajectories from scenario 2 of the case
study, annotated with semantic labels for points of interest (POIs).

particular, given a set of movement patterns for a week, month, or year, we
want to capture any change in the semantic “patterns of life”. In this paper, we
model routine behaviors and movements that characterize daily human activities
in a given city using a concept from topology, Reeb graphs.

Traditional trajectory analysis methods are largely based on hand-crafted
geometric features and statistical techniques. Such features include traveling
distance, mean velocity [22], frequencies of areas or moving patterns [4]. Sta-
tistical approaches analyze the temporal patterns with respect to the frequency
of trajectory data to identify patterns such as traveling modes [8] and peri-
odic patterns [21]. These approaches are effective for handling structured and
less complex data sets but fail to generalize with high-dimensional data or the
dynamic nature of human mobility patterns.

Given the amount of GPS data that can be generated by one human on
a single day, another obvious direction to look at would be toward data-driven
learning methods. Specifically, sampling a single agent’s movement data, sampled
at a 1Hz frequency over a month, accumulates roughly 2 million data points.

Extrapolating these figures to a population of a small city like Santa Barbara,
with approximately 97,000 agents, results in a dataset comprising an immense
194 billion data points. This scale poses substantial challenges in terms of com-
putational resources and data management, and extrapolating to larger cities,
such as New York City, would significantly magnify these challenges. Recent
advances in deep learning have significantly enhanced the capability to model
human mobility patterns by performing the next-location prediction [10]. Par-
ticularly, long short-term memory networks (LSTMs) [7] and attention-based
models like Transformers [18] are good at capturing temporal regularities and
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anomalies in movement patterns. However, these black-box models lack inter-
pretability, thus limiting their applicability in real-time scenarios [20].

Towards interoperability along with large-scale modeling, Graph-based meth-
ods are very popular due to their ability to represent complex spatial relation-
ships and movement patterns efficiently. We need models that can succinctly
summarize an agent’s trajectory data—retaining essential information while dis-
carding redundancies. Transforming GPS data into graph data structures with
nodes as significant geographic locations and edges as the movement information
between enables intuitive models for pattern-of-life. Research directions include,
Guo et al. [5]’s graph model to establish precise topological relationships among
trajectories and geographic locations. Qi et al. [11] incorporate hybrid meth-
ods that blend graph-based approaches with statistical models to improve the
accuracy of trajectory searches and predictions. Another such work focuses on
hierarchical clustering based on graph similarity measures[12], further support-
ing the need for computational geometry.

In this paper, we use Reeb graphs to cluster the common behavior pattern
for a given agent. Our research is motivated by and related to previous research
on the construction of Reeb graphs for trajectory data [2,13]. A Reeb graph
captures the connectivity of level sets of a scalar function defined over a space,
effectively summarizing the topological features of the space. In the context
of trajectory data, scalar functions could represent attributes such as speed,
direction, semantics, or geographical points of interest. Reeb graphs can thus
map complex trajectories into more interpretable topological constructs. This
abstraction facilitates the detection of anomalies by comparing the topological
signatures of trajectories and identifying those that differ significantly from the
norm. Our main contributions are summarized below:

– We propose a novel Reeb graph-based approach to model the day-to-day
activities of a given agent. To the best of our knowledge, this is the first
demonstration of Reeb graphs to fingerprint an agent’s behavior.

– We discuss the algorithm and its time complexity demonstrating the scala-
bility of the proposed method.

– We design normal and anomalous scenarios, describe the methods for trajec-
tory generation and present detailed experiments on the interpretation and
analysis of Reeb graphs.

2 Methodology

2.1 Previous work on Reeb graphs

Reeb graph was first proposed to study the topology of a manifold [16]. Nodes of
the Reeb graph encode the evolution of the level sets of a real-valued function on
a manifold. The location of the node is the average location of the points of the
trajectories that constitute the node. Reeb graphs have been extensively used
in shape analysis for diverse datasets [1]. The first study of Reeb graphs for tra-
jectory group evolvement encodes the merging and splitting structure between
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different moving entities [2]. Similarly, the spatial subtrajectory clustering algo-
rithm presented a stricter problem [13–15] but discovers geometric and topo-
logical substructure. This is a computationally challenging problem because the
initialization step involves an exhaustive search of an agent’s events. Motivated
by these challenges, the central focus of this paper is to develop a method for fin-
gerprinting the behavior of an agent over time such as days, weeks, and months.
Our approach encodes significant spatio-temporal points of interest-specifically,
locations and durations that define critical aspects of an agent’s behavior. We
redefine the grouping definitions used in our adapted Reeb graph model. The
constructed Reeb graphs effectively partition a set of GPS points into meaningful
nodes and edges, thereby quantifying and identifying path deviations.

2.2 Reeb graph models agent pattern of normalcy

A trajectory T is defined as a dictionary (key: value) containing an ordered
sequence of time points and their associated GPS coordinates:

T = {t0 : p0, t1 : p1, t2 : p2, . . . , tm : pm}, (1)

where m is chosen according to the desired resolution to sample the pattern
of the agent. Here m denotes the total number of points in a given trajectory
T . The frequency of GPS data sampling decides m. For example, to model the
weekdays of an agent’s activities, the raw GPS data is sampled every second,
giving us m = 86400 which is the total number of seconds in a day. Similarly, if
the data is sampled every hour, then m = 24 points per day. We define n as the
total number of trajectories for a given agent. For example, to model month-long
data, n = 30 and for weekdays, n = 5. The common setting used throughout
the paper for our problem definition is m = 24 and n = 5. Each time point ti
corresponds to a GPS coordinate pi representing the position of the agent at
time ti. pi = (lati, loni), where lati represents the latitude and longi represents
the longitude. The Euclidean distance between two GPS coordinates pi and pi′

is calculated at time ti as follows:

d(pi, p
′
i) =

√
(lati − lat′

i)2 + (loni − lon′
i)2, (2)

where lati and loni are the latitude and longitude of the first point, and lat′
i and

lon′
i are those of the second point. d(pi, p

′
i) gives the 2-norm distance between

two points on the Euclidean plane. This approximates the geographic distance
of the points. The algorithm is defined with respect to a distance threshold ε
within which the points are considered sufficiently close together i.e. within a
small geographical area. This is the inter-trajectory distance that guides the
granularity of the Reeb graphs according to the problem definition.
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Human behavior typically follows a pattern of normalcy in day-to-day activ-
ities. This is marked by recurring activities within specific time periods. In order
to discover the large-scale spatio-temporal patterns, we represent the bundling
structure of trajectories as a Reeb graph R(V,E). Nodes of the Reeb graph will
pinpoint critical GPS points of the agent’s pattern. Intuitively, if a continuous
portion of a behavior of the agent happens at the same time and within the
same spatial distance (ε) every day then they present a pattern of normalcy. We
formalize this by introducing the concept of “bundles” to characterize normal
behavior through consistent daily subtrajectory events. Each trajectory begins
with an appear event at the first index and concludes with a disappear event at
the last index of T . Deviations from this norm by more than ε are classified as
disconnect events, while a return to the norm is labeled a connect event. For-
mally, for a given ε and m = 23 i.e. sampled every hour, let’s take two trajectories
T and T ′:

– At time t0: p0 and p′
0 are the appear events.

– At time t23: p23 and p′
23 are the disappear events.

– If d(p0, p′
0) ≤ ε, (p1, p′

1) ≤ ε, . . . , d(pk, p′
k) ≤ ε, but d(pk+1, p

′
k+1) > ε, then

tk+1 represents a disconnect event between T and T ′.
– If d(p0, p′

0) > ε, (p1, p′
1) > ε, . . . , d(pk, p′

k) > ε, but d(pk+1, p
′
k+1) ≤ ε, then

tk+1 represents a connect event between T and T ′.

2.3 Construction of Reeb graphs and analysis of time complexity

Reeb graph construction (illustrated in Figure 2) can be divided into the fol-
lowing major steps: event computation, construction of dynamic graphs (Gs),
connectivity query in the dynamic graph for bundle partition (P ), and construc-
tion of the Reeb graphs (R) from bundles partition as shown in Figure 2. The
first step of Reeb graph construction involves computing the connect and dis-
connect events. Algorithm 1 outlines the steps of computing events. The event
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Fig. 2. Reeb Graph Construction Over Time. We show the construction of Reeb
graphs R(V,E) for a set of five trajectories. The appear, disappear, connect, and dis-
connect events are shown on the left-hand side. Changes in the grouping of trajectories
due to these events are encoded as nodes on the right-hand side. Nodes of the Reeb
graph R on the right-hand side are shown in red color and the edges are shown in black
color throughout the paper.

computation takes O(m) time, where m represents the number of time points in
the trajectories T and T ′. At each time point, the algorithm looks for O(5 × 5)
possibilities of potential events. The second step of the Reeb graph involves han-
dling the events to construct dynamic graph Gs. The nodes of G represent the
daily trajectories and the edges of the G represent the ε-connectivity between
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them. The total number of nodes in G is 5 representing one trajectory for each
day of the agent. The connected component of the G will give us the ε−step
bundle partition of subtrajectories denoted by P = {B1, B2, . . . , Bk} such that
every segment in T0, T1, T2, T3, T4 is uniquely assigned to exactly one bundle.
The final step is to construct the Reeb graph from these bundles. Reeb graph
R can be constructed from P by connecting adjacent bundles with nodes and
bundles as edges similar to the described construction in [13]. So, the time com-
plexity of the Reeb graph construction step would be O(m) because in the worst
case, all the time points will have events. At each time, the connectivity query
to the dynamic graph with 5 nodes takes constant time. The more detailed steps
can be found in the Algorithm 2.

3 Experimentation/Case Study

3.1 Data generation

We model the pattern of life of a single agent over different trajectories. Each
trajectory is simulated using the SUMO software package [9] and represents real-
istic behavior and movement patterns over the course of one week. We construct
the Reeb graph for each trajectory and show how it sufficiently represents the
trajectory’s information with significantly fewer nodes.
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Fig. 3. 3D trajectory plots with computed Reeb graph nodes for scenario 1 in Section
3, where day 0 to day 4 are normal trajectories, and the anomalous trajectory is in
red.

In this case study, we analyze the behavioral patterns of a simulated high-
school student from the city of Santa Barbara, California (Figure 1), using tra-
jectory data that includes multiple points of interest (POIs), such as the stu-
dent’s home, school, park, grocery store, and lake. The student’s daily routine
typically consists of attending school from approximately 8:00 AM to 9:00 AM,
concluding at around 4:00 PM to 5:00 PM, followed by visits to recreational sites
before returning home. To thoroughly investigate both normal and anomalous
behavioral patterns, we generated five days of normal trajectory data, comple-
mented by additional days tailored to each specific scenario described earlier.
Each trajectory entry is recorded with timestamps, latitude, and longitude coor-
dinates. Figure 1 displays the student’s trajectories across different POI locations
for the rare location scenario, illustrating the distribution of both routine and
deviant movements. Figure 3 displays the same data as a 3D plot, providing a
clear spatio-temporal visualization of the student’s stay locations, duration, and
revisit frequencies.

3.2 Definition of anomalous behavior

We define L as a set of normal POIs and their corresponding time points,

L = {(lat1, lon1, t1), (lat2, lon2, t2), . . . , (latn, lonn, tn)}
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where (lati, loni) represents the geographic coordinates with lati ∈ [−90, 90] and
loni ∈ [−180, 180], and ti is the time at which these coordinates were recorded.
Relative to this definition, all the anomaly behaviors for a given agent are defined
as follows:

Scenario 1 (S1): Rare Location Anomaly Rare location anomaly refers
to a scenario when an agent visits a new location (lat∗, lon∗, ti) /∈ L. (lat∗, lon∗)
is spatially different from their normal spatial geographical points of interest
such as school or work. Reeb graph will encode this rare location by creating a
new node localizing the abnormality.

Scenario 2 (S2): Rare Route Visit Anomaly In this scenario, the agent
visits the same POI locations multiple times but utilizes a uniquely different
route on a single journey. This introduces disconnect event from their normal
movement pattern, resulting in a new node in the Reeb graph. More formally, if
(lat∗, lon∗, tk:l) /∈ (lat, lon, t1:k−1) and /∈ (lat, lon, tl+1:m), then nodes vk and vl

will be added to R.
Scenario 3 (S3): Uncommon Time Visit This is a case of time vio-

lation where the agent visits a familiar location at an uncommon time t∗ i.e,
(lati, loni, t

∗) �= (lati, loni, ti)
Scenario 4 (S4): Uncommon Stay Duration Anomaly In this sce-

nario the agent stays for an abnormal duration (Δ) at a specific location
(lat∗, lon∗, ti+Δ). This results in a disconnect event for the agent’s trajectory
from the normal pattern of life at ti.

3.3 Reeb Graph Generation

We use a down-sampling rate of one hour for Reeb graphs. This setting helps us
to monitor changes in location grouping states at each hour. The threshold ε for
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spatial connect and disconnect events is set to 0.0005 GPS degrees (5.56 meters).
Initially, we construct a Reeb graph from the normal activity trajectories of days
0 to 4 to model the student’s typical pattern of life.

As depicted in Figure 1 and Figure 3, ReeSPOT successfully identifies all
normal POIs as a part of the Reeb graph nodes, demonstrating its efficacy in
reflecting the spatial distribution of the student’s activities. Notably, an anoma-
lous scenario depicted in Figure 1 and Figure 3 shows the student visiting a
movie theater during school hours which is defined as a deviation from the nor-
mal. This is captured by a new Reeb graph node, highlighting its potential for
identifying critical spatial anomalies.

3.4 Analysis and interpretation of scenarios using Reeb graphs

To better understand the formation of Reeb graph nodes and demonstrate the
utility of the Reeb graph across all six scenarios, we generated time-latitude plots
(Figure 4). These plots, with the hour of day on the x-axis and latitude on the
y-axis, include trajectory points sampled every 10 seconds alongside Reeb graph
nodes. Each plot provides a visual representation of different behavioral patterns
and anomalies and illustrates ReeSPOT’s effectiveness in capturing anomalous
trajectories for all scenarios. We explain the scenarios one by one below:

– Figure 4(a) illustrates the student’s normal routine pattern, with stays at
home, school, and visits to various recreational spots. Notable events include
appear and disappear at the beginning and end of each day. There are three
disconnect events around hour 17 which indicates divergences to different
locations after school.Connect event shows trajectories getting merged back
on the way home at hour 18.

– Figure 4(b) for S1 depicts a rare location (lat∗, lon∗) where we visualize
an abnormal visit to the movie theater, showing three additional Reeb nodes
and altered connectivity events at hour 9 and 14.

– Figure 4(c) for S2 captures an alternative route to school. At hour 9, instead
of following the normal route, the student deviates towards a direction with
a lower latitude and then returns to school. This deviation is captured by the
bottom Reeb graph node at hour 9. Additionally, a disconnect event occurs
at 9, followed by a connect event at hour 10 when all trajectories converge at
the school.

– Figure 4(d) for S3 reveals an uncommon time anomaly, where the student
attends school at hour 2 and travels to the park at around hour 10, signifi-
cantly deviating from the typical schedule, but with the same POIs.

– Figure 4(e) for S4 shows another time-related anomaly with a prolonged
stay at home until almost hour 12, and similarly, 3 new nodes appear for the
reeb graph because of disconnect event from the usual trajectory.

– Figure 4(f) for S4 presents a detailed look at scenario 4, from hour 16 to
hour 17. Since the reeb graph sample rate is one hour, the reeb graph nodes
appear at hour 17 to represent the disconnect events in the past hour.
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Fig. 4. 2D Trajectory plots displaying time and latitude dimensions alongside com-
puted Reeb graph nodes. These plots illustrate both normal and anomalous scenarios
as outlined in Section 3.2. The detailed discussions on node generation and behavioral
analysis can be found in Section 3.4.

3.5 Reeb graph iteratively detects anomalous behavior of an agent

In the context of detecting anomalous trajectories within real-life data (test
dataset), we iteratively construct Reeb graphs on the test dataset to identify
daily anomalous trajectories. An initial Reeb graph is constructed using train-
ing data with all normal trajectories. Subsequently, for each daily trajectory in
the test dataset, the Reeb graph is iteratively updated day by day. To detect
anomalous behaviors effectively, we compute the distance between the exist-
ing Reeb graph and every updated version that includes the additional daily
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Fig. 5. (a) illustrates the Reeb graph node-level distances for both anomalous days.
(b) shows the day-level anomaly scores.

trajectory. The subsequent section details our methodology for calculating this
distance and presents the results derived from our case study.

3.6 Quantifying the distance between Reeb graphs

Given two Reeb graphs, a normal Reeb graph R1 and a Reeb graph with one
anomalous trajectory R2, each containing data points across dimensions of time
(0 to 23 hours), the following rules are used to calculate the distance between
Reeb graphs defined as d(R1, R2):

1. For each hour, if nodes exist in both R1 and R2, calculate the Euclidean
distance between the nodes.

2. If only one of the Reeb nodes graphs, R1 or R2, has a node at a particular
hour, calculate the distance to the temporally closest node from the other
Reeb graph.

3. If neither Reeb graph has a node for a given hour, the distance is 0.

Specifically, in point 2 above, we have a case where a node at time tk in Reeb
graph R1 has no corresponding node in R2. We find the Euclidean distance to
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the nodes in R2 at tk+1. If there are multiple nodes in R2 at tk+1 or tk−1, then we
select the one with the minimum distance. d(R1, R2) is the sum of the distances
computed every hour using the above rules.

Results In this case study, we created a synthetic test dataset to investigate
both spatial anomalies (Scenario 1, see Figure 4(b)) and temporal anomalies
(Scenario 3, see Figure 4(d)). The dataset comprises three days of randomly
simulated normal behavior and two days of anomalous behavior. Figure 5(a)
illustrates the node-level distances for both anomalous days. On Day 1, new
anomalous nodes appear at hour 8 (movie theater) and hour 13 (coming back).
Anomalous events on Day 3 occur at hours 2, 8, and 9. Figure 5(b) depicts the
day-level anomalies; the anomalous distance for Day 1 is higher than for Day 3,
reflecting the student’s travel to a more distant location on Day 1, whereas, on
Day 3, the anomalies involve the same POIs.

3.7 Scalability with Reeb Graphs

We successfully applied ReeSPOT to a simulated dataset that is closer to a real-
life distribution. This data is an extended version of the data that we described
in this paper for proof-of-concept. Here, instead of modeling weekdays of data
sampled every hour, we model the patterns over a month sampled at every
15-second interval. This results in m = 5760 and n = 30. For this dataset,
ReeSPOT models the patterns of daily activities for a simulated population of
800,000 agents. Each agent is processed independently, and the Reeb graphs for
the entire dataset were constructed within 7.2 hours, parallel processed across
384 CPU cores (AMD EPYC 9654 @ 3.7 GHz). We also implemented the spatial
Reeb graph, ReeBundle as proposed in [13] but the quadratic time complexity
with respect to m made it computationally challenging. More specifically, for
n = 7 and m = 5760, the Reeb graph construction took around 4 minutes for
an agent. ReeSPOT is linear with respect to m and thus for the same problem
setting it was able to construct Reeb graphs in approximately 12 seconds on
one CPU core. This is an important advantage over spatial Reeb graphs which
helps us to apply our method on large-scale datasets. Multi-processing across
384 cores enabled us to construct Reeb graphs in less than 8 hours. We also
tested ReeSPOT on medium-sized data with 10,000 agents over a period of one
week, Reeb Graphs were computed in approximately 5.5 minutes. The above
experiments show the applicability of ReeSPOT in modeling agent’s data at
different resolutions (weekly, monthly, yearly) and also emphasize the scalability
of the proposed algorithm.

4 Discussion and Future Work

In this paper, we proposed a Reeb graph-based approach (ReeSPOT) to model
the patterns of normalcy using day-to-day human trajectory data. The proposed
Reeb graphs abstract large-scale spatio-temporal data into a comprehensible
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topological construct. We design distinct real-life anomalous scenarios, develop
trajectory generation methods, and provide a thorough interpretation of Reeb
graph results. The parameters of ReeSPOT can control the granularity of the
model according to different applications. On the other hand, ReeSPOT depends
on the quality of the trajectory, so false positives can impact the accuracy of the
model. One explanation for this is the inherent stochasticity of general human
behavior.

Another application is a quantifiable sanity check for raw trajectory data
such as teleports. We synthesized such scenarios and observed additional nodes
in the Reeb graphs. Our experiment setting in this paper is based on the assump-
tion that each agent is independent and the activities conducted by one agent
are not related to the other. However, agents in a given population influence
the behavior of each other. Such correlations could serve as additional features
to our existing model. ReeSPOT has the flexibility to introduce more param-
eters and features to robustly support the data abstraction. Geo-foundational
features describe the nature of each location the agent visited such as residen-
tial, commercial, recreational, etc. Nodes of the Reeb graphs can be labeled with
such domain-specific information. Such representation can be used as an input
to data-driven methods instead of directly using deep learning methods on raw
GPS trajectories.
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Abstract. Partial multi-label learning (PML) addresses the issue of
training a multi-label predictor in the context of inaccurate supervision.
Objects in PML are relevant to multiple semantics, but only a subset
of them are valid. Besides false positive labels that mislead the learning
procedure, high dimensionality also acts as a stumbling block for boost-
ing PML. In this paper, a two-stage label disambiguation-based feature
selection method, LDFS-PML, is presented for partial multi-label learn-
ing. At first, to avoid false positive labels from misleading the feature
selection, a label disambiguation technique is devised based on the gran-
ular ball, which is the first attempt at multi-label disambiguation from
the perspective of cognition computing. By using the label disambigua-
tion technique, label-specific information concealed in the distribution
of data is captured, which is conducive to estimating the confidence of
candidate labels. In the second stage of LDFS-PML, a feature selection
algorithm is proposed which utilizes labeling confidence and simultane-
ously incorporates cognition computing from both global and local per-
spectives. Experiments are conducted on various PML datasets, and the
superiority of the proposed LDFS-PML is demonstrated.

Keywords: Feature selection · Partial multi-label learning · Granular
ball

1 Introduction

In the paradigm of partial multi-label learning (PML), model training is con-
fronted with imprecise supervised information generated by unreliable crowd-
sourcing annotators [1]. Specifically, in partial multi-label data, samples are
linked with multiple labels, of which some are ground-truth labels and the
remainder are noise labels, also known as false positive labels [2]. For instance, a
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scenario of PML can be illustrated in Fig. 1, where the object is tagged with six
relevant labels, but only athlete, sky, snowfield, and snowmobiling are ground-
truth labels while the remaining are noise ones, including tree and house. Similar
to multi-label learning [3], high dimensionality has emerged as a prevalent trend
in PML, which necessitates the development of feature selection techniques [4–7]
to deliver a compact feature subset consisting of discriminative characteristics
while simultaneously improving the performance and efficiency of PML. How-
ever, the selection process of discriminative features is misled by the false positive
labels in PML, which is a tricky problem that has attracted increasing attention
recently.

To avoid the pitfall of imprecise supervised information in the partial multi-
label problem, much research has been conducted to tackle the ambiguity of
candidate labels [8,9]. The primitive technique is to treat the association labels
equally and then feed them into any off-the-shelf learning model. This deviates
from the goal of enhancing the performance of PML, as such a strategy does not
fundamentally resolve the negative impact of noise labels on PML. As a result,
many researchers have embraced the label disambiguation strategy, wherein the
confidence of each candidate label being the ground-truth is estimated [10]. A
commonly used method is label propagation, which delivers the confidence of
candidate labels using neighborhood information iteratively. Nonetheless, the
method has been pointed out to be error-prone when label space is contaminated
seriously.

Fig. 1. An example of a PML scenario. In the set consisting of ambiguous labels, only
four of them in blue are ground-truth ones, while two in black are noise labels. (Color
figure online)

Besides noise labels, the high feature dimension also acts as a stumbling
block to improving the performance of PML. However, in the context of PML,
typical feature selection algorithms cannot be applied directly, as the procedure
of feature selection would be misled by false positive labels, which necessitates
the development of the label disambiguation technique[11,12]. Indeed, with the
label information distilled by the label disambiguation technique, one could con-
sider any feature selection approach suitable for multi-label data. Based on the
interaction with the classifier, the feature selection techniques can be classified
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as filter, wrapper, or embedded methods [13]. Distinct from the wrapper-based
approach that reflects the quality of selected feature subsets by the outcomes of
a specific classifier and the embedded-based approach that integrates the feature
selection process into the model learning, the filter-based method selects infor-
mative features without the help of any predictor, which is considered to have
better generalization ability. Drawing inspiration from cognition computing, this
work introduces a feature selection method based on the filter strategy, which
considers both global and local perspectives. This method forms the second part
of the proposed LDFS-PML algorithm.

Moreover, the emergence of granular ball computing has introduced a power-
ful data granulation technology to boost the robustness of model learning [14,15].
The main idea is to characterize samples using hyper-balls, where the label is
defined using the majority label within the ball. As a result, noise labels with a
minor proportion are omitted, and at the same time, the robustness of the model
is enhanced. However, the label-specific information concealed in the distribution
of samples has not been captured, which could be beneficial for measuring the
probability of samples being noise under a specific label. With this in mind, this
work proposes a granular ball-guided label disambiguation technique for partial
multi-label data, which comprises the first part of LDFS-PML.

The main contributions of this work are summarized as follows:

– To select discriminative features in the context of partial multi-label data, a
specific granular ball (SGB) computing technique is designed for label disam-
biguation. With SGB computing, the label-specific information is first cap-
tured by characterizing the distribution of samples to determine the labeling
confidence.

– To obtain a compact feature subset for PML, a filter-based feature selection
algorithm is designed from both global and local aspects. The global sample
similarity relation is considered to be preserved, which is applied to quan-
tify the quality of the feature subset. Additionally, motivated by cognition
computing, a term of local consistency is integrated.

– The effectiveness of our proposed LDFS-PML method, which comprises two
components: label disambiguation and feature selection, has been validated
on eight synthetic datasets and two real-world partial multi-label datasets.
Ablative studies are performed to analyze the effectiveness of each module.

2 Related Work

PML is predicated on the assumption that only a subset of pertinent labels cor-
respond to the ground truth [16]. The ubiquitous learning scenario has attracted
increasing attention from scholars. From the perspective of labels and features,
considerable research effort has been devoted to label disambiguation and feature
selection. From the aspect of label disambiguation, PARTICLE [17] estimates
labeling confidences using a label propagation technique. PML-GAN [18] pro-
poses a novel disambiguation strategy using an adversarial mode, which includes
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an encoder-decoder framework. PENAD [19] introduces a label enhancement-
based PML framework that takes into account the varying significance of candi-
date labels for each instance. To address the problem that iteratively optimizing
the disambiguation model is error-prone when false positive labels occupy a large
proportion of the label space, PML-LMNNE [20] is developed via the integra-
tion of large margin nearest neighbor and embedding. Focusing on the aspect of
selecting informative features for PML, several approaches have been developed
recently. PMLFS [11] develops a feature selection method for PML regarding the
noise and ground-truth labels as latent variables, and the corresponding model is
optimized iteratively. CLLFS [12] introduces a two-stage feature selection app-
roach for PML in which credible labels are initially distilled through label struc-
ture reconstruction, and a joint model is then devised to select both label-specific
and common features. However, in these feature selection frameworks for PML,
an embedded method is used, which may deteriorate the generalization ability
of the model.

Granular ball computing, a novel technology for knowledge discovery and
data mining, has recently garnered increasing attention as it provides a method
for knowledge granulation based on the concept of large-scale priority [21]. Gran-
ular ball computing has enriched research in various domains. Ball k -means [14]
utilizes the granular ball to develop an accelerated exact k -means algorithm for
fast and adaptive clustering. In terms of classification tasks, several scholars
devote their efforts to enhancing the efficiency, robustness, and scalability of the
model by leveraging the advantages of granular ball computing. For instance,
ILAGBRS [22] explores an improved granular ball rough set model for classifi-
cation, taking into account the dynamic nature of data. In the area of feature
selection, several approaches based on granular ball computing have been pro-
posed, some of which possess significant denoising capabilities. GBNRS [15] first
introduces the granular ball into the neighborhood rough set for the feature
selection task. The methods integrated with granular ball computing have made
great achievements, especially in improving the robustness of original models.
However, label-specific information hidden in the distribution of balls is omitted,
which could be captured for label disambiguation.

3 Proposed Approach

Formally, F = {f1, f2, . . . , fm} denotes a feature set, and L = {l1, l2, . . . , lq}
denotes a candiate label set. A training dataset in PML is represented by
TS = {(xi,yi)}ni=1, where xi =

{
x1
i , x

2
i , . . . , x

m
i

}
is the feature vector for the

i-th instance and yi =
{
y1
i , y

2
i , . . . , y

q
i

}
corresponding to the label vector contam-

inated by noise false positive labels. yj
i = 1 indicates i-th instance is labeled with

lj , otherwise, yj
i = 0. Thus, the feature space is denoted as X ∈ R

n×m, and the
label space is denoted as Y ∈ {0, 1}n×q. For label disambiguation, a labeling
confidence matrix is formalized as P ∈ [0, 1]n×q.

The framework of the presented LDFS-PML method is illustrated in Figure
2. Under the guidance of a specific label, SGBs are generated with different sizes.
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Fig. 2. The overall framework of LDFS-PML. The first stage is label disambiguation,
and the second stage is feature selection for PML.

After ball fusion, a ball with a tiny size is more likely to be an outlier or noise.
The delivered labeling confidence is applied to feature selection. The feature
significance index considers similarity preservation from a global perspective
and local consistency from a local perspective.

3.1 Label Disambiguation Using Granular Ball

A collection of SGB generated on TS deduced by lj ∈ L is expressed as SGBlj =
{sgb1, sgb2, . . . , sgbr} (r ≤ n). The center ci and radius ri for ∀sgbi ∈ SGBlj are
defined as

ci =
1

| X ′
i |

∑

x∈X′
i

x, ri = max{Δ(ci,x) | x ∈ X ′
i} (1)

where | · | denotes the cardinality of a set, Δ calculates the Euclidean dis-
tance between two vectors, and X

′
i ⊆ X is a subdataset on which sgbi is

calculated. Objects covered by the ball form a collection denoted as Oi =
{x | Δ(x, ci) ≤ ri,x ∈ X}. The association Oi for ∀sgbi ∈ SGBlj can be par-
titioned into two parts by lj , represented as Oi/lj =

{
O+

i , O−
i

}
, in which O+

i

consists of objects relevant to lj , and vice versa for O−
i . Thus, the label di and

label-specific purity pi for sgbi are defined respectively as

di =
�| O+

i |≥| O−
i |� , pi =

| O+
i |

| Oi | (2)

in which �·� is an indicator that returns 1 if predicate · holds and 0 otherwise.
Here, for ∀sgbi ∈ SGBlj , di = 1 denotes that sgbi is labeled with lj , and di =
0 denotes that lj is irrelevant to sgbi. The label-specific purity pi is directly
proportional to the number of positive samples labeled with lj in sgbi. Thus, ∀
sgbi ∈ SGBlj can be expressed as a quintuple sgbi = (Oi, ci, ri, di, pi).

In partial multi-label data, under the guidance of lj ∈ L, the label-specific
information can be naturally captured using SGB computing, which is beneficial
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for mitigating the impact of false positive labels on downstream feature selec-
tion. Concretely, by requiring the label-specific purity of SGBs to reach 1, the
resulting balls can precisely characterize the distribution of all samples labeled
with lj . Meanwhile, a sgbi ∈ SGBlj with di = 1 and a small size is more likely to
contain noise objects. To reduce the influence of the randomness of the 2-means
used for ball splitting and thereby improve the effectiveness of label disambigua-
tion, the granular ball covering model can be constructed by considering two
perspectives. (1) Overlap degree, balls close to each other may share common
objects as the radius of the ball defined in Eq. (1) uses a maximum operator,
which is not conducive to determining the true aggregation degree of local pos-
itive samples. The overlap degree is encouraged to be as small as possible. (2)
Average coverage degree, the more objects covered by a ball labeled with lj ,
the lower the probability that those objects are noise ones with respect to lj .
The optimization goal of SGB computing is formulated by

Min

⎛

⎜
⎝

∑

sgbi∈SGB+
lj

(| Oi |) − | Dlj |

⎞

⎟
⎠ / | Dlj | + | SGB+

lj
| / | Dlj |

s.t. pi ≥ T

(3)

where T is a threshold set to be 1 or can be searched in the range of [0.5,1],
SGB+

lj
=

{
sgbi ∈ SGBlj | di = 1

}
, and Dlj =

{
xh ∈ X | yj

h = 1
}

. The first term
reflects the overlap degree, and the second term is associated with the average
coverage degree. A ball fusion strategy is presented as follows to deliver an ideal
ball covering model for label disambiguation:

∀sgbi, sgbk ∈ SGB+
dj

: sgb∗
i

=

⎧
⎪⎨

⎪⎩

F(sgbi, sgbk) if | Ok |<| Oi |, p∗
i > T

andΔ(ci, ck) < ri + rk

sgbi, otherwise

(4)

where F(sgbi, sgbk) is a fusion operator that merges sgbk into sgbi, sgb∗
i is a

new ball generated on X
′
i ∪ X

′
k if fusion conditions are satisfied, and p∗

i is the
label-specific purity of sgb∗

i .
The label-specific information provided by label lj can be naturally cap-

tured by characterizing the distribution of positive objects using SGB computing.
Figure3 visualizes the generation process of SGBs, in which a 2-means algorithm
is applied to split the balls, and the splitting process is terminated when the
label-specific purity of the balls reaches 1 or 0. As observed in Fig.3(c), the dis-
tribution of the positive objects is characterized and balls with a tiny size are
more likely to consist of noisy data.
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Accordingly, a label disambiguation technique using label-specific informa-
tion captured by SGB is expressed as follows:

∀1 ≤ i ≤ n, 1 ≤ j ≤ q : pji

=

⎧
⎪⎨

⎪⎩

sup max
sgbk∈SGB+

lj

{R(xi, sgbk), �xi ∈ Ok∧ | Ok |≥ N�} if yj
i = 1

0 otherwise

(5)

where parameter N is used to determine the size of reliable balls that consist
of only non-noise samples, and R(xi, sgbk) = exp

(−Δ(xi, ck)2
)
. pji ∈ P reflects

the confidence of label lj with respect to the i-th object. The confidence value
of labels for each sample is normalized to [0,1]; then, ∀xi ∈ X,

∑q
j=1 pji = 1.

Fig. 3. The visualization of SGB computing on the fourclass dataset disturbed by
noisy data. Points colored bright green represent positive objects with respect to label
lj , while olive points represent negative ones related to lj . Noise points are plotted as
“+”.

3.2 Feature Selection Using Labeling Confidence

Intuitively, labeling confidence can reflect the relative importance of related
labels, which enriches the semantic information and may be conducive to the
learning procedure. A filter-based feature selection method is presented for the
labeling confidence matrix.

The principle of feature significance measure is to preserve the topology of
the sample space. An already selected feature set is denoted as S. Thus, an
affinity matrix on feature space S is expressed as AS =

{
AS

ij

}
n×n

, which can be
calculated as

AS
ij = exp

(
−‖ xi − xj ‖22

σ

)
(6)

Similarly, an affinity matrix can be constructed on the labeling confidence
matrix, which is defined as V = {Vij}n×n, where Vij = 1 − 1

2 ‖ pi − pj ‖1.
To preserve the global similarity, a function is formulated as follows

min
S,a,b

‖ aAS + b1 − V ‖2F (7)
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where a and b are variables presented for linear approximation to consider the
order of sample similarities. Moreover, inspired by cognition computing, a dis-
criminative feature subset can be quantified by the quality of knowledge granu-
lation. Specifically, an object is encouraged to be consistent with its neighbors
under feature space S. In light of this, we considered the consistency term from a
local perspective. An edge matrix is denoted as ES =

{
ES

ij

}
n×n

, where ES
ij is

calculated as

ES
ij =

{
1, if xj ∈ Nk (xi) or xi ∈ Nk (xj)
0, otherwise

(8)

where Nk (·) consists of k-nearest neighbors of the object. The local consistency
term can be constructed as

n∑

i=1

n∑

j=1

ZS
ij · Vij = Tr (ZV) (9)

where ZS
ij = AS

ij ·ES
ij . Thus, the final object function for the feature significance

measure can be formulated as

min
S,a,b

‖ aAS + b1 − V ‖2F +αTr (Z (1 − V))

s.t. Z = AS ◦ ES
(10)

where ◦ is a dot product operator.
To obtain solutions for a and b, a strategy is given assuming S is known. The

function (10) can be reformed as

Θ (a, b) = ‖ aAS + b1 − V ‖2F +αTr (Z (1 − V))

=Tr
(
a2ASAS + 2abAS1 + b212 − 2aASV

−2b1V + V2
)

+ αTr (Z (1 − V))

(11)

The partial derivatives of Θ w.r.t a and b are set to 0, thus

∂Θ

∂a
= aTr

(
ASAS

)
+ bTr

(
AS1

) − Tr
(
ASV

)
= 0 (12)

∂Θ

∂b
= aTr

(
AS1

)
+ bTr

(
12

) − Tr (1V) = 0 (13)

Based on the above two formulations, we obtain
(

Tr
(
ASAS

)
Tr

(
AS1

)

Tr
(
AS1

)
Tr

(
12

)
) (

a
b

)
=

(
Tr

(
ASV

)

Tr (1V)

)
(14)

According to Cauchy’s inequality,
(
Tr

(
AS1

))2
< Tr

(
ASAS

)
Tr

(
12

)
(in gen-

eral, AS �= 1). Thus, Tr
(
ASAS

)
Tr

(
12

)−Tr
(
AS1

)2 �= 0. The unique solution
for a and b can be calculated as

a =
Tr

(
ASV

)
Tr (11) − Tr

(
AS1

)
Tr (1V)

Tr (ASAS) Tr (11) − Tr (AS1) Tr (AS1)
(15)
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b =
Tr

(
ASAS

)
Tr (1V) − Tr

(
AS1

)
Tr

(
ASV

)

Tr (ASAS) Tr (11) − Tr (AS1) Tr (AS1)
(16)

Then, with the idea of global preservation and local consistency, a feature sig-
nificance measure for PML can be obtained:

L (S) =‖ aAS + b1 − V ‖2F + αTr (Z (1 − V)) (17)

The procedure of the LDFS-PML method is characterized in Algorithm 1.

Algorithm 1. LDFS-PML Algorithm
Input: PML training set TS; parameters N , k, and α.
Output: The sorted set of features.

1: Initialize selected feature set S ← ∅ ;
2: for each li ∈ L do
3: Specific granular ball computing guided by li;
4: for each xj ∈ X do
5: Updating labeling confidence pj

i by Eq.(5);
6: end for
7: end for
8: Normalization for labeling confidence matrix P ;
9: Calculate label similarity matrix V using P ;

10: repeat
11: for each f ∈ F − S do
12: Calculate AS , ES , and Z;
13: Calculate a and b by Eq.(15) and Eq.(16);
14: Calculate L (S ∪ {f});
15: end for
16: Select an f that minimizes the L (S ∪ {f});
17: S ← S ∪ {f};
18: until | S |=| F |;
19: Return a sorted set of features S.

4 Experiments

This section presents the performance evaluation of the proposed LDFS-PML
method. An ablation experiment is conducted to validate the efficacy of the label
disambiguation.

4.1 Datasets

The experiments are conducted on two real-world (Music emotion and
Music style) and eight synthetic datasets (the remaining ones). The details of
the datasets are outlined in Table 1. To generate synthetic PML datasets, we
adopt a random strategy, considering the original label count of each sample.
Specifically, for a sample tagged with d labels, d × t false positive labels are
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randomly added, where t is set to {0.2, 0.4, 0.6, 0.8}. For brevity, experiment
results on t = 0.6 and t = 0.8 are reported. To achieve high efficiency, datasets
containing over five thousand instances are sampled at a ratio of 0.2.

Table 1. Statistics of PML datasets.

Dataset #Inst.#Feat.#Classes Domain

flags 194 19 7 Image

water 1060 16 14 Chemistry

virus 207 440 6 Biology

reuters 294 1000 6 Text

guardian 302 1000 6 Text

bbc 352 1000 6 Text

cal500 502 68 174 Music

emotions 593 72 6 Music

music emotion 6833 98 11 Music

music style 6839 98 10 Music

4.2 Baselines

Comparative experiments are conducted by comparing LDFS-PML with six
state-of-the-art feature selection algorithms. Among these, PMLFS [11] is cus-
tomized for PML feature selection, and the others are presented for multi-label
feature selection, including GLFS from [23], MFSJMI from [24], MCDM from
[25], PMFS from [26], and SSFS from [27]. All parameters are tuned within the
range suggested by the existing literature. For our proposed LDFS-PML, N is
fixed as 3, k is searched in {3, 5, 7, 9, 11}, and α is searched in {0.01, 0.1, 1, 5, 10}

For the sake of fairness, all comparative algorithms choose the leading r
features for training. Here, r is configured at 20%, 30%, and 40%, corresponding
to datasets with feature counts exceeding 500, 100, and 0, respectively. The
quality of the selected feature subsets for PML is manifested in the performance
of a unified predictor, MLKNN [12].

4.3 Experimental Results

Five commonly used evaluation metrics are applied to the feature significance
measure, including average precision ranking loss, hamming loss, one error, and
coverage. Since the performance of the later four indexes is similar, only one
is reported. The comparison results are reported in Tables 2-3. In general, the
proposed LDFS-PML method outperforms the other six algorithms. It’s inter-
esting to note that the performances provided by LDFS-PML do not always
deteriorate as the ratio of false positive labels increases. This can be attributed
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Table 2. Experimental results of LDFS-PML with six state-of-the-art comparison
methods on real-world as well as synthetic PML datasets in terms of average precision
(the larger, the better).

Data set t LDFS-PML PMLFS GLFS MFSJMI MCDM PMFS SSFS

flags 0.6 .807 ± 033 .807 ± 033 .771 ± 025 .786 ± 036 .799 ± 031 .802 ± 039 .816 ± 026

0.8 .831 ± 035 .789 ± 034 .792 ± 017 .826 ± 032 .812 ± 032 .809 ± 042 .816 ± 026

water 0.6 .682 ± 017 .671 ± 012 .658 ± 015 .650 ± 016 .668 ± 015 .675 ± 011 .662 ± 018

0.8 .688 ± 022 .671 ± 012 .666 ± 014 .657 ± 018 .682 ± 011 .682 ± 016 .662 ± 018

virus 0.6 .692 ± 057 .640 ± 065 .669 ± 050 .660 ± 061 .665 ± 041 .666 ± 061 .661 ± 060

0.8 .712 ± 049 .672 ± 052 .672 ± 047 .644 ± 050 .655 ± 074 .662 ± 059 .661 ± 060

reuters 0.6 .521 ± 072 .495 ± 060 .511 ± 059 .497 ± 061 .473 ± 058 .491 ± 061 .498 ± 084

0.8 .534 ± 092 .495 ± 052 .512 ± 064 .494 ± 052 .497 ± 085 .500 ± 070 .496 ± 070

guardian 0.6 .538 ± 064 .503 ± 052 .492 ± 050 .496 ± 065 .502 ± 059 .489 ± 050 .494 ± 066

0.8 .544 ± 055 .491 ± 069 .513 ± 039 .495 ± 069 .489 ± 063 .511 ± 069 .494 ± 063

bbc 0.6 .525 ± 036 .495 ± 045 .517 ± 053 .495 ± 028 .500 ± 036 .489 ± 036 .497 ± 033

0.8 .538 ± 049 .490 ± 053 .520 ± 058 .490 ± 041 .497 ± 037 .487 ± 036 .495 ± 038

cal500 0.6 .498 ± 014 .491 ± 015 .493 ± 017 .496 ± 014 .491 ± 016 .492 ± 016 .492 ± 014

0.8 .496 ± 011 .495 ± 014 .494 ± 013 .493 ± 015 .491 ± 016 .493 ± 015 .492 ± 014

emotions 0.6 .817 ± 041 .794 ± 038 .800 ± 030 .800 ± 027 .782 ± 033 .777 ± 035 .777 ± 024

0.8 .817 ± 035 .804 ± 040 .788 ± 041 .791 ± 035 .767 ± 031 .776 ± 031 .772 ± 026

mus. em. - .737 ± 003 .730 ± 003 .737 ± 003 .737 ± 003 .732 ± 002 .733 ± 002 .733 ± 003

mus. st. - .762 ± 003 .757 ± 002 .759 ± 002 .761 ± 003 .759 ± 002 .760 ± 001 .760 ± 002

to the fact that LDFS-PML has captured rich label-specific information for
label disambiguation, and the information is retained and directly applied for
the downstream learning task. The more false positive labels there are, the
more label-specific information is captured, which is conducive to PML feature
selection.

Out of the 32 cases that are tested using eight synthetic PML datasets,
two noise ratios, and two evaluation metrics, LDFS-PML performs better in 29
of them, accounting for 90.6%. The proposed LDFS-PML consistently outper-
forms the other six comparison algorithms on seven datasets, including water,
virus, reuters, guardian, bbc, cal500, and music style. In some cases, LDFS-PML
obtained suboptimal performance, such as on flags and bbc datasets. Specifically,
on the music emotion dataset, LDFS-PML is comparable to GLFS and MFSJMI
in terms of average precision. According to the results of experiments, LDFS-
PML obtained satisfactory performance.

As the above-reported experimental results are based on a fixed number
of selected features, the performance of other dimensions might not be ade-
quately reflected. Consequently, we alter the size of the selected feature subset
to observe variations in classification performance. Figure 4 shows the outcomes
of the cal500 and emotions datasets in terms of average precision and rank-
ing loss. It can be observed that the proposed LDFS-PML method delivers a
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Table 3. Experimental results of LDFS-PML with six state-of-the-art comparison
methods on real-world as well as synthetic PML datasets in terms of ranking loss (the
smaller, the better).

Data set t LDFS-PML PMLFS GLFS MFSJMI MCDM PMFS SSFS

flags 0.6 .208 ± 033 .218 ± 035 .259 ± 033 .245 ± 045 .221 ± 031 .223 ± 042 .211 ± 024

0.8 .196 ± 035 .235 ± 038 .236 ± 025 .188 ± 036 .211 ± 029 .227 ± 043 .211 ± 024

water 0.6 .263 ± 008 .278 ± 013 .285 ± 013 .296 ± 014 .285 ± 017 .271 ± 011 .288 ± 015

0.8 .262 ± 011 .278 ± 013 .278 ± 012 .286 ± 011 .267 ± 013 .271 ± 007 .288 ± 015

virus 0.6 .203 ± 044 .233 ± 044 .215 ± 039 .222 ± 045 .216 ± 018 .209 ± 044 .228 ± 035

0.8 .203 ± 043 .226 ± 033 .211 ± 034 .226 ± 045 .232 ± 051 .216 ± 037 .228 ± 035

reuters 0.6 .386 ± 076 .402 ± 064 .391 ± 062 .418 ± 071 .443 ± 066 .412 ± 065 .418 ± 086

0.8 .363 ± 099 .413 ± 055 .390 ± 072 .412 ± 055 .406 ± 083 .405 ± 065 .415 ± 074

guardian 0.6 .381 ± 057 .417 ± 066 .413 ± 053 .410 ± 059 .407 ± 052 .427 ± 057 .420 ± 070

0.8 .380 ± 059 .423 ± 082 .397 ± 050 .418 ± 070 .432 ± 053 .405 ± 073 .431 ± 071

bbc 0.6 .399 ± 046 .418 ± 054 .374 ± 050 .406 ± 036 .401 ± 042 .412 ± 040 .410 ± 040

0.8 .376 ± 050 .436 ± 048 .392 ± 068 .422 ± 045 .422 ± 039 .416 ± 039 .411 ± 042

cal500 0.6 .182 ± 006 .183 ± 008 .183 ± 008 .182 ± 006 .183 ± 007 .184 ± 008 .183 ± 007

0.8 .181 ± 006 .182 ± 007 .183 ± 007 .182 ± 007 .183 ± 007 .183 ± 008 .183 ± 007

emotions 0.6 .148 ± 030 .168 ± 025 .165 ± 028 .167 ± 023 .181 ± 031 .186 ± 022 .181 ± 021

0.8 .154 ± 032 .164 ± 033 .179 ± 037 .173 ± 028 .192 ± 024 .182 ± 019 .189 ± 024

mus. em. - .313 ± 002 .323 ± 002 .311 ± 002 .312 ± 003 .319 ± 002 .318 ± 002 .318 ± 002

mus. st. - .403 ± 004 .409 ± 003 .408 ± 001 .405 ± 004 .409 ± 002 .406 ± 001 .407 ± 004

Table 4. Ablation study for LDFS-PML by comparing it with its variant that drops
the granular ball-based label disambiguation.

Method flags watervirus reute. guard.bbc cal500emot.mu.em.mu.st.

Average precision (the larger, the better)

LDFS-PML .831 .688 .712 .534 .544 .538.496 .817 .737 .762

LDFS-PML-I .815 .678 .706 .529 .531 .534 .492 .813 .737 .760

Ranking loss (the smaller, the better)

LDFS-PML .196 .262 .203 .363 .380 .376.181 .154 .313 .403

LDFS-PML-I .218 .269 .202 .384 .385 .383 .184 .158 .314 .407

Fig. 4. Classification performance for seven comparison algorithms by varying the num-
ber of selected features.
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Fig. 5. Performance of LDFS-PML with varying parameter configurations in termsof
average precision.

satisfactory result in most cases. The superiority of LDFS-PML becomes increas-
ingly apparent as the size of selected features grows. The superiority of LDFS-
PML can be demonstrated compared to the other six algorithms.

Parameter sensitivity is analyzed as shown in Fig. 5. Two real-world PML
datasets are used to validate the effectiveness of parameters α and k in terms of
average precision. The classification result is more sensitive to parameter k than
α. Results from other datasets show similar observations.

4.4 Ablation Study

The proposed LDFS-PML method consists of two stages: ball-based label disam-
biguation for partial multi-label data, and feature study. To validate the contri-
bution of the label disambiguation, the ablation study is conducted by comparing
LDFS-PML with its variant LDFS-PML-I, which drops the label disambiguation
stages. The label vectors of PML samples are normalized to [0, 1] , with equal
significance assigned to the pertinent labels. The results of the ablation study
on ten PML datasets in terms of two evaluation metrics are reported in Table
4. It can be observed from the outcomes that, compared to its variant LDFS-
PML-I, the full model produces superior values in most cases. This implies that
the ball-based label disambiguation technique can mitigate the influence of false
positive labels and enhance the feature selection performance in the context of
PML.

5 Conclusion

This paper introduces LDFS-PML, a two-stage feature selection approach specif-
ically designed for partial multi-label data. This approach pioneers a unique per-
spective on label disambiguation by capturing label-specific information. In the
first stage of LDFS-PML, a specific granular ball computing technique is devised
to capture the label-specific information that is concealed in the data distribu-
tion. The label-specific information is applied to construct a labeling confidence
matrix. In the second stage of LDFS-PML, labeling confidences containing rich
semantics are directly employed in feature selection. To fully utilize the infor-
mation in labeling confidence, the feature significance measure of LDFS-PML is
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devised based on global similarity preservation and local consistency inspired by
cognition computing. Interestingly, the method demonstrates enhanced perfor-
mance as the ratio of noise labels increases. Comprehensive experiments show
the superiority of LDFS-PML compared to six state-of-the-art methods on ten
datasets.
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Abstract. Electroencephalography (EEG) plays a pivotal role as a non-
invasive method for measuring brain activity, offering insights into cogni-
tive processes such as perception, attention, and memory. Its significance
lies in its ability to capture real-time neural dynamics with high tem-
poral resolution, making it particularly valuable for studying the com-
plexities of sensory perception, including olfaction. The human olfactory
system is crucial for the sense of smell; understanding how the brain
processes olfactory stimuli is complex due to the diverse nature of odor
molecules and individual variability in perception. This work presents
a novel pipeline for encoding unique digital representations of odors.
These techniques uncover unique odor representations, providing valu-
able insights into the intricacies of neural processing. These represen-
tations, embedded in matrices, have applications in healthcare, multi-
sensory immersion, and e-commerce. The work explores comprehension
of human cognition, while its practical implications underscore its rele-
vance across diverse domains.

Keywords: EEG · Encoder · Olfactory

1 Introduction

The human sense of smell is essential, shaping how humans understand the world,
remember experiences, and even feel emotions. Several researches have shown
that delving into smell can unlock deep insights into how the human brain works,
impacting everything from neuroscience to their understanding of cognition and
perception [1], [2]. By studying how the human brain interprets different odors,
scientists gain a richer understanding of the brain’s sensing principles [3], [4]. This
has led to breakthroughs in understanding the complex connections between the
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sense of smell and brain activity, paving the way for advancements in various
fields.

Odor sampling in humans elicits brain-wide neural activity that EEG devices
can capture, a non-invasive method for monitoring brain activity in real-time,
which is key to this research. It offers detailed insights into how the human brain
responds to smells with high precision. A comprehensive understanding of neural
mechanisms underlying odor processing has far-reaching impacts on things like
disease diagnosis, healthcare and lifestyle choices, emotions and memory. Despite
its powerful influence on emotions, memories, and actions, work on smell per-
ception often receives less attention compared to its other senses.

Despite the well-established quantification methods for visual stimuli, such
as RGB values for images, the task remains volatile for olfactory sensations.
This challenge arises due to the subject variations in olfactory perception and
the complicated nature of the olfactory system, which comprises more than 300
different types of receptors [5]. Understanding how the olfactory system captures
odor information and converts it into digital representations within the brain is
an interesting and difficult subject within neuroscience. This response will offer
an outline of how odors are encoded neurologically and the process by which this
data is translated into distinctive digital formats. EEG offers a window into how
our brains respond to different odors, enhancing our understanding of olfactory
processing. This insight can fuel personalized experiences, creating digital odor
encounters in real-time based on individual preferences or physiological reactions,
with potential applications spanning marketing, therapy, and entertainment.

Despite much development in understanding the neural mechanisms of per-
ception of the olfactory and processing of the olfactory input into higher brain
centers, lots of gaps exist. (Section 2). Various studies have been done related
to odor perception. Most studies have determined the specific neural substrates
and focused on the identification, but notably, they have not attempted to find
or map the unique neural representation of odor. Encoding brain patterns for
odors in humans is still significantly unexplored.

Encoded EEG signals will help in the efficient processing and analysis of
signals, hence speeding up processing to make research and clinical applications
more efficient in the future. Properly encoded EEG signals can be appropriately
used in highly advanced signal processing techniques and machine learning algo-
rithms. These included synthetic processes, systems integration with hardware,
artificial intelligence, neuromorphic modelling, and computer simulation of neu-
roprostheses. Accordingly, interpretation and visualization of the encoded EEG
signals enable researchers and clinicians to get a description of the underlying
neural dynamics and patterns.

To find the odor’s encoded pattern, we have proposed two-step approach as
follows-

– Developing Encoder Architecture: Designing a novel encoder architec-
ture for analyzing EEG responses to different odors, aiming to enhance the
precision and efficiency of odor representation in neural data.
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– Creating Unique Digital Representation of Odors: Formulating a
method to translate EEG signals into a distinctive digital format that covers
the neural responses associated with each odor.

This unique digital representation encapsulates the neural responses associ-
ated with each odor, providing a framework for further analysis and application.
Moreover, EEG provides an objective measure of smell’s impact on cognitive
and emotional states, aiding in the integration of aromas for therapeutic pur-
poses, stress relief, and mood enhancement. The fusion of EEG and odors holds
promise for innovative diagnostic tools in healthcare, where specific olfactory
stimuli could assist in diagnosing or monitoring neurological disorders by detect-
ing distinct changes in brain activity. Through this approach, we aim to con-
tribute to the advancement of olfactory research and its potential implications
in diverse domains, ranging from neuroscience to healthcare and sensory-driven
experiences (Figure 1).

Fig. 1. Application of unique digital representation of odors

2 Related Work

Odors play a vital role in our daily lives, affecting our behaviors, emotions,
memories, and overall well-being [6]. Understanding how humans perceive and
process odors goes beyond just experiencing smells. Studies have revealed that
odors have the power to stir strong emotions and memories, transporting us to
specific moments in our past [7]. The human sense of smell also helps us detect
potential dangers like spoiled food or harmful chemicals, contributing to our
survival instincts [8].
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Exploring olfactory information through EEG, this paper delves into the
intricate neural dynamics of the human sense of smell. EEG studies offer a
unique perspective, capturing the rapid and detailed processes involved in olfac-
tory perception with millisecond precision. These investigations unveil distinct
neural activation patterns at different stages of odor processing, from initial sen-
sory detection to higher-order cognitive and emotional responses [9]. Through
EEG, researchers have delineated the temporal sequence of events as the brain
swiftly identifies and distinguishes odors, engaging memory and emotional cen-
ters in the process [7]. Furthermore, EEG-based inquiries highlight the impact of
attention, expectation, and context on olfactory processing, revealing the intri-
cate interplay between cognitive factors and sensory experiences. By integrating
EEG with advanced analytical techniques like machine learning, new avenues
emerge for deciphering previously inaccessible neural signatures, deepening our
understanding of olfactory perception’s neural foundations.

There have been different studies going on the human olfactory system related
to EEG like a study that explores EEG responses to olfactory stimuli during task-
related delays [10], discusses the detection of specific EEG components linked to
olfactory signals [11], describes an experimental setup for discriminating odors
using EEG [12], and utilizes a self-attention network to classify EEG patterns
related to olfactory processing [13].

Many researchers worked on using an autoencoder for dimensionality reduc-
tion, and noise filtering for EEG data in other application scenarios. Research by
Chien et al. designed a new masked autoencoder network using semi-supervised
learning [14]. One research used a deep convolutional autoencoder for EEG noise
filtering [15]. On the other hand, researchers also worked on the identification
of odors using different techniques [16], [17], [18], [19]. However, encoding brain
patterns for odors in humans is still significantly unexplored.

This cooperative approach holds immense promise for advancing our under-
standing of the brain’s mechanisms underlying smell perception. Recent stud-
ies employing artificial neural networks to investigate the olfactory systems of
both mice and flies offer intriguing insights, suggesting convergent evolution
[20]. Another study proposes a novel mechanism in the insect olfactory system’s
mushroom body, utilizing slow lateral excitation between Kenyon cells to decode
spatiotemporal information from the antennal lobe, offering insights into tempo-
ral decoding in neuronal systems [21]. Decoding olfactory information has been a
focus of research for years. Zhu et al. conducted a study mapping olfactory recep-
tors across the olfactory bulb and examining their relationships in the mouse [22].

Most of the significant work has been done for either odor identification
or molecule-based odor digitization. Molecule-based digitalization of odors pre-
sented [23] makes the approach appealing since it holds a significant promise
of high specificity and reproducibility, as assured by existing knowledge in ana-
lytical chemistry and flavor science, but human neural perception is missing.
Mugihiko Kato et al.’s work on EEG spatiotemporal dynamics of odor repre-
sentations significantly advanced decoding olfactory information, showing rapid
transmission from olfactory areas to regions linked with emotion, semantics,
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and memory, with distinct dynamics for different perceptual aspects [24]. In
contrast, EEG-based digitization of odors offers a neurophysiological approach,
neural representations of odors are accessible during processing and encoding
in the brain, in response to the stimuli directly within the electrical activity
of the brain. This approach promises to capture, in principle, the subjective,
multidimensional nature of olfactory perception since neural responses in the
brain inherently reflect the integrated cross-modally processed information about
odors.

The human olfactory system commences with the detection of odor molecules
by specialized olfactory receptor neurons (ORNs) in the nasal cavity. These
ORNs express diverse odorant receptors, each sensitive to particular odor
molecules, initiating electrochemical signals transmitted to the olfactory bulb,
the primary processing center. In the olfactory bulb, ORN axons converge onto
glomeruli, forming synaptic connections with mitral and tufted cells, which then
relay olfactory information to higher brain regions. The neural encoding of odors
hinges upon the distinctive pattern of activation across ORNs, where each odor
molecule elicits a unique activation pattern, meticulously preserved through sub-
sequent neural processing stages, yielding a distinctive digital representation of
the odor in the brain. In this work, the EEG-based methods approach is consid-
ered to understand how to mimic the pattern of the brain to encode this complex
world of odors.

3 Methodology

The human olfactory system is responsible for perceiving, discriminating, and
identifying different odors. In this manner, processing the olfactory inputs at
the olfactory bulb in a distributed and hierarchical way, the system can develop
more and more abstract and finally invariant representations of the raw sensory
input, which therefore forms the basis for successful perception and recognition
of odors.

An autoencoder is a pair of the encoder network compressing the input data
to a lower-dimensional latent space and the decoder network reconstructing
the original input from the latent representation [25]. During this process, the
autoencoder learns to extract the most salient and informative features of the
input data efficiently for an encoding of the input into a compact, yet meaningful,
representation.

The conceptual parallelism of the human olfactory system with that of the
encoder architecture is relevant to the processing and encoding that the EEG sig-
nals will be subjected to within the context of digitizing odors. It means, there-
fore, that the high temporal resolution of the EEG data and the distributed
patterns of activation are related to odorant processing and may be thought
of as a complex multidimensional representation of the olfactory processing
mechanism of the brain. The overall workflow for this experiment is depicted
in Fig. 2. Initially, the EEG data undergoes preprocessing, followed by the gen-
eration of encoding representations utilizing an encoder. Subsequently, Singular
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Value Decomposition (SVD) is employed to create digital representations for
each odor.

Fig. 2. Sequential Workflow

3.1 Data Collection

This paper uses the dataset, which is available on open-source. This data consists
of 11 healthy postgraduates aged 24.9 ± 3.0, including 8 males and 3 females 1.
For each participant, 35 EEG samples were gathered while they smelled each
of the thirteen different odors. These samples were recorded for approximately
10 seconds using 32 electrodes. Five of the odors, including the odors of rose,
caramel, rotten, canned peach, and excrement, were selected from the T&T
olfactometer from Daiichi Yakuhin Sangyo Co., Ltd., Japan, while the remaining
eight were sourced from essential oils, such as mint, tea tree, coffee, rosemary,
jasmine, lemon, vanilla, and lavender. In total, 5005 EEG samples were collected,
resulting from the combination of 11 subjects, 13 odor types, and 35 samples
each.

3.2 Data Pre-processing

The data is converted from NS2 format to TXT format using MATLAB, and
each file has a 32 x 10010 dimension. There are a total of 5005 files. To mitigate
bias, the reference electrodes underwent averaging, while the values of other
electrodes were subsequently subtracted from these averaged values. Brain waves
are classified into five types: alpha, beta, gamma, delta, and theta, where each
one is related to a certain mental state [26]. The butterworth filter is a type
of signal-processing filter designed to have a frequency response [16]. We used

1 https://ieee-dataport.org/documents/olfactory-eeg-datasets-eegdot-and-eegdoc.

https://ieee-dataport.org/documents/olfactory-eeg-datasets-eegdot-and-eegdoc
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butterworth filtering from 10 to 50 Hz, which is alpha, beta, and gamma [27].
The data is then normalized between -1 to 1.

Topographical brain mapping via EEG analyzes brain activity patterns
evoked by odors: rose and excrement for this dataset are shown in Figure 3 at a
particular time. Color gradients on scalp regions represent EEG intensity, with
cooler hues indicating higher activity and warmer hues indicating lower activ-
ity. These maps reveal distinct neural activity patterns for each odor, offering
insights into how the brain processes and responds to different odors.

Fig. 3. Topographical Map for (a) Rose (b) Excrement

The dataset is partitioned into training and validation sets, considering
subject-specific and odor-specific distinctions. Each subject’s data is segregated
based on the type of odor, ensuring an equitable representation across both sets.
With 30 files allocated per subject per odor for training and 5 files for validation,
this approach ensures robust model evaluation and generalization in olfactory
research.

3.3 Encoder Network Architecture

In the context of neural encoding of odors, these encoders mimic the early stages
of the olfactory pathway to transform complex activation patterns of olfactory
receptors into a compact digital representation. By training on diverse olfac-
tory data, the model can extract salient features of odors, effectively translating
analog signals into a unique digital code for reconstruction.

The pre-processed data is passed into an autoencoder network consisting of
CNN and dense layers. The autoencoder network, illustrated in table 1, com-
prises an encoder, bottleneck, and decoder. The encoder employs convolutional
layers with tanh activation and max-pooling for feature extraction and dimen-
sionality reduction. The bottleneck layer contains dense nodes with tanh acti-
vation, facilitating compression. The decoder mirrors the encoder’s architecture
to reconstruct the input. This hierarchical design enables effective unsupervised
feature learning and dimensionality reduction. The autoencoder model is trained
on a train-validation dataset for 50 epochs using a batch size of 32 of the training
set. The training process utilizes the Adam optimizer with a fixed learning rate
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of 0.001. once the autoencoder is trained bottleneck layer is extracted for further
experiment.

Table 1. Convolutional autoencoder network architecture

Autoencoder LayerConfigration

Encoder Conv2D(32x7x7), tanh, MaxPooling(3,7)

Conv2D(64x5x5), tanh, MaxPooling(5, 5)

Conv2D(128x3x3), tanh, MaxPooling(2, 2)

Bottleneck Dense(13), tanh

Dense(286), tanh

Decoder Conv2D(128x3x3), tanh, MaxPooling(2, 2)

Conv2D(64x5x5), tanh, MaxPooling(5, 5)

Conv2D(32x7x7), tanh, MaxPooling(3,7)

Conv2D(1x3x3), tanh

3.4 Unique Digital Representation

The mathematical modeling of unique digital representation for each odor is
depicted in Figure 4. Encoding representations are extracted from the bottleneck
layer of the trained autoencoder model. In Figure 4, the matrix extracted from
the bottleneck layer is of size m × f , where m represents the total number of
data points, and f denotes the number of features obtained from the bottleneck
layer. For each odor, the matrix size is n × f , where n signifies the data points
representing that particular odor. The unique representation of each odor is
generated through Singular Value Decomposition (SVD), resulting in a matrix
of size s × f , where s corresponds to the calculated size of the Σ matrix.

In this study, the encoding representations are utilized for matrix factoriza-
tion through singular value decomposition (SVD) [28]. Singular value decom-
position is a mathematical technique used to decompose a matrix into three
constituent matrices, representing the singular values, left singular vectors, and
right singular vectors. It is a powerful tool in linear algebra and data analy-
sis, commonly employed for dimensionality reduction, noise reduction, and fea-
ture extraction. By identifying principal components capturing the most vari-
ance, SVD reduces dimensionality while preserving crucial information. Lower-
dimensional embeddings reveal odor similarities, differences, and underlying pat-
terns. Singular values offer insights into principal components’ importance, aid-
ing analysis of neural mechanisms in odor perception and recognition.

Let A be an m × n real or complex matrix. Then there exist orthogonal
matrices U of size m × m and V of size n × n, and a diagonal matrix Σ of size
m × n with non-negative real numbers on the diagonal, such that:
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Fig. 4. Sequential workflow from encoder to unique representation

A = UΣVT

where VT denotes the conjugate transpose of V. The diagonal elements of Σ
are the singular values of A, and the columns of U and V are called the left and
right singular vectors of A, respectively.

Through this method, each odor is uniquely represented by a matrix derived
from the encoding representations via Singular Value Decomposition. This app-
roach not only enables the extraction of essential features from EEG data but also
unveils complex patterns underlying olfactory responses and odor perception.

4 Result and Discussion

The utilization of encoder networks coupled with matrix factorization techniques
has provided insightful results in our study of olfactory data analysis. Through a
comprehensive approach encompassing data preprocessing, feature learning via
encoders, and subsequent matrix factorization using SVD, we’ve gained valuable
insights into odor perception and underlying patterns within the dataset. Our
initial data preprocessing steps were crucial for mitigating biases and ensuring
the integrity of the dataset. By averaging reference electrodes and applying a
Butterworth filter to the remaining electrodes, we standardized the data and
minimized noise, enhancing the robustness of subsequent analyses.
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4.1 Encoding Representations Analysis

Following the training of the autoencoder, the entire dataset underwent encod-
ing, with the subsequent extraction of output from the bottleneck layer. The
autoencoder network, with its hierarchical architecture comprising convolutional
and dense layers, proved effective in capturing essential features and reducing
dimensionality. The encoder facilitated feature extraction and dimensionality
reduction, while the bottleneck layer compressed the data into a latent space
representation. Subsequently, a thorough analysis of Kernel Density Estima-
tion (KDE) plots was conducted on encoding representations. It visually repre-
sents the probability density function of a continuous variable, smoothing out
data distribution by placing a kernel on each data point and summing them
to estimate the overall density. All the unique odor categories got similar KDE
plots. This observation is visually depicted in the accompanying KDE plots in
Fig. 5. Table 2 shows the statistical study of encoding representations for each
smell. The heatmap for the encoding representation is depicted in Figure 6.

Fig. 5. KDE plots for (a) Coffee (b) Excrement (c)Jasmine (d) Rotten

4.2 Odor Matrix Analysis

We utilize Singular Value Decomposition (SVD) to construct a matrix represen-
tation for each odor. Starting from the encoding representations, which encom-
pass values for the entire dataset with each data point comprising 13 features
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Table 2. Statistical study of extracted encoding representation

Odor Mean Variance Skewness Kurtosis Bandwidth

Jasmine -0.02584 0.2136 -0.02786 -0.7090 0.1490

Excrement -0.01818 0.2711 0.03314 -1.2545 0.1678

Lemon 0.00535 0.2084 0.02983 -0.8021 0.1471

Rotten 0.00493 0.2781 -0.02922 -1.2098 0.1699

Rosemary 0.00705 0.2228 -0.15106 -0.7642 0.1521

Tea Tree -0.02069 0.2122 0.03755 -0.7201 0.1485

Vanilla 0.02390 0.2270 -0.05445 -0.9325 0.1536

Canned Peach 0.06488 0.2858 -0.18891 -1.2583 0.1723

Coffee 0.00085 0.2101 -0.04736 -0.5814 0.1477

Lavender 0.02642 0.2189 -0.08759 -0.6691 0.1508

Rose 0.01704 0.2691 -0.07140 -1.1245 0.1603

Caramel 0.01122 0.2863 -0.04488 -1.1694 0.1632

Mint 0.01523 0.2040 -0.05732 -0.5463 0.1549

Fig. 6. Correlation heatmap of different odors for encoding representation

(Dense layer with 13 features) of size (5005x13), we generate a matrix for each
odor. This matrix, denoted as A, possesses dimensions (385, 13), reflecting the
number of data points (385) and features (13) for each odor.
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Fig. 7. Box plot for different odors unique representations

Table 3. Statistical study on unique representation generated after applying SVD

Group Mean Variance Skewness Kurtosis Bandwidth

Rose 7.65351 45.13421 0.88991 -0.41555 0.08323

Caramel 7.85219 48.60879 0.86518 -0.45977 0.07928

Rotten 7.71066 46.21828 0.87083 -0.45648 0.08591

Canned Peach 7.68822 50.72823 0.79675 -0.74323 0.08990

Excrement 7.73746 47.73887 0.78233 -0.69375 0.08848

Mint 6.76761 32.82482 1.04018 -0.07834 0.07905

Tea Tree 6.38282 29.98615 1.26795 0.47188 0.08976

Coffee 6.23291 29.41055 1.27533 0.53741 0.08975

Rosemary 6.12963 30.18061 1.27750 0.44488 0.09372

Jasmine 6.57075 26.29381 1.22415 0.35686 0.08680

Lemon 6.28444 29.34584 1.31927 0.68870 0.08582

Vanilla 6.49909 29.57909 1.08774 0.01161 0.08619

Lavender 6.22435 29.58958 1.29141 0.52465 0.09166

Upon applying SVD to matrix A, we obtain three constituent matrices: U,
Σ, and VT . The matrix U, sized (385, 13), captures the left singular vectors
corresponding to the data points, embodying essential characteristics of each
odor. Σ, a diagonal matrix with dimensions (13, 13), contains the singular values,
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Fig. 8. Correlation heatmap for different odors unique representations

signifying the significance of each feature in the decomposition process. Finally,
VT , with dimensions (13, 13), represents the right singular vectors, offering
insights into the underlying structure and relationships within the feature space.
This method allows us to effectively extract and represent distinct odor profiles
through a structured mathematical framework, facilitating further analysis and
interpretation of olfactory data.

Statistical study for the unique representation is provided in Table 3, which
shows the difference before applying SVD in Table 2. Figure 7 illustrates the
statistical analysis of the diagonal values in the Σ matrix for 10 distinct odors.
In contrast, Figure 8 demonstrates that upon applying SVD, the correlation
between pleasant and unpleasant odors diminishes as compared to Figure 6.
Figure 9 depicts the Euclidean distance between matrices, showcasing a wide
range of values. Lower values signify closer or more similar odor profiles, while
higher values indicate greater differences between profiles. This analysis provides
valuable insights into the relative proximity or disparity between pairs of odor
descriptors, crucial for understanding odor similarity and dissimilarity.

The SVD matrix facilitates a comprehensive analysis of Odor A’s unique
characteristics. Through odor reconstruction, essential features defining its dig-
ital signature are revealed. Feature extraction from left and right singular vec-
tors uncovers key olfactory attributes and neural mechanisms shaping Odor A’s
perception. Dimensionality reduction via principal components enables visual-
ization, potentially unveiling inherent patterns. Furthermore, comparison with
other odors using row vectors assesses similarity or dissimilarity, aiding in tasks
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Fig. 9. Euclidian distance for 10 different odors unique representations

like identification and categorization. Insights from this analysis inform various
applications including fragrance and flavor development, advancing understand-
ing of olfactory perception’s neural basis. We wanted to benchmark our pro-
cess to demonstrate its value and efficacy. To our knowledge, no work explicitly
addresses the task of converting odors into distinct digital representations using
EEG signals. This gap in the literature prevents direct comparison with state-
of-the-art techniques. In the future, we will likely benchmark the process with
other odor datasets. We are providing the code at this link 2.

5 Conclusion

This paper presents a combined approach of encoder-based feature learning and
matrix factorization through SVD has enabled us to uncover valuable insights
into olfactory data analysis. While our results demonstrate promising capabili-
ties in odor perception and feature extraction, further refinement and expansion
of the dataset will enhance the model’s discriminative power and generalizability.
This study lays the foundation for future research endeavors aimed at explaining
complex olfactory phenomena and advancing our understanding of sensory per-
ception. The encoding of olfactory information holds immense potential across
various sectors. The convergence of EEG with olfactory research yields diverse
applications. In medical studies, EEG explores how odors affect brain activ-
ity, aiding early disease detection like Alzheimer’s. Therapeutically, EEG tailors
2 https://github.com/A-2809/Neural-Encoding-of-Odors.

https://github.com/A-2809/Neural-Encoding-of-Odors
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olfactory interventions for mental health, alleviating conditions such as anxiety.
Consumer research benefits from EEG’s neuroanalysis of odor responses, refining
product development in industries like perfumery. Interactive learning leverages
EEG-Odor integration to adapt scenarios, enhancing engagement. Entertain-
ment, notably in virtual reality and gaming, utilizes EEG to create immersive
environments, adjusting scents based on player decisions. Aromachology benefits
from EEG’s quantification of odor impacts on emotions and cognition, enriching
understanding. Overall, encoding olfactory information has promising applica-
tions that span from healthcare to marketing and environmental monitoring.
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Abstract. Few-Shot Object Detection has received strong interest
recently, especially as collecting annotated training data for new and
varied problems becomes time-consuming and expensive. In Few-Shot
Object Detection, after training on ample “base” class data, the detector
is finetuned on few examples of “novel” classes such that the inference
performance is maximized over all classes in a test set. Most previous
works aim to learn novel classes independently, without regard to inter-
actions with semantically similar classes. We take a different view, inte-
grating contrastive learning with synthesized positive samples from sim-
ilar but distinct classes. We generate new positive samples via a convex
combination between a novel class feature and its closest classes’ features;
then, we encourage the novel class feature to be close to the generated
features using contrastive learning. Our method achieves state-of-the-art
results on the standard PASCAL-VOC and MS-COCO benchmarks, and
does so with minimally extra learnable parameters during training and
no extra parameters during inference.

1 Introduction

On the task of Few-shot Object Detection, object detectors are first trained on
ample “base” class data that contains a subset of all classes to be recognized
during inference; then, the detector is further trained on a set of “novel” class
examples – for which only limited training samples exist – such that performance
over a test set of both base and novel examples is maximized. This problem has
received increased attention, especially for tasks in which sufficient labeled data
is not available. This frequently occurs when the data domain shifts (i.e. ground-
based camera to aerial cameras), privacy laws prevent the release of data (i.e.
medical imaging), or data is prohibitively expensive to collect and annotate.

Early methods to solve this problem simply train on ample base data, and
later fine-tune on the novel examples [39]; this method, while exhibiting good
performance, overfits on the novel examples and compromises its performance on
base classes. During inference time, these detectors are biased towards recogniz-
ing base classes, but do so less effectively than base-only training. Recent works
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Fig. 1. A visualization of the features we generate. We find the semantically closest
class to green (in this case, blue), and generate new positives (light green triangles).
The remaining samples, from the closest class and other classes, are used to mine
negatives for contrastive learning. (Color figure online)

have alleviated some of these issues; gradient optimization methods [11,34],
contrastive learning among different categories [38], and knowledge distillation
between k-closest base and novel categories [42] have each pushed the state-of-
the-art forward. Contemporary works such as FSCE [38] and MFDC [42] use con-
trastive proposal encoding and base-novel distillation, respectively, to improve
few-shot object detection. One of the main drawbacks of contrastive proposal-
based encoding is that its supervised contrastive loss only considers intra-class
samples as positives, but not the relationship among classes; and MFDC con-
siders relations among the classes but not the interaction of samples within a
class.

In the data-scarce scenario, it is critical to integrate these ideas. We exploit
the key concepts of contrastive learning and knowledge distillation; noting that
the closest classes to a feature of interest are relevant to feature space, we pro-
pose to sample features along the line from a novel class feature to the closest
class using MixUp techniques [24,35,50], and add these feature as positives for
contrastive learning. Our method, compared to new generative methods [12],
requires no additional trainable modules to sample the new features. The only
parameters that are required are light-weight key and query encoders parameters
in the style of MoCo contrastive learning [18] during training; during inference,
we no longer need these modules and their associated parameters. Through our
algorithm, we address three key issues in few-shot object detection: 1) we add
new samples to address the data-scarcity issue; 2) we address the overfitting
issues in few-shot learning by improving the diversity of samples through mixup
of features; and 3) we separate classes more effectively in feature space by lever-
aging these mixed-up features in a contrastive learning framework.

We test our method on the standard PASCAL-VOC and MS-COCO bench-
marks, and show performance increases on each benchmark. In addition, we
visualize feature space and show that our method organizes the feature space to
optimize decision boundaries.

To summarize, we make the following contributions:
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– We generate new features between similar classes using mixup techniques and
demonstrate that this feature generation helps alleviates the data scarcity and
data diversity challenges in few-shot object detection.

– We integrate the aforementioned synthesized positives samples using a super-
vised contrastive loss to improve few-shot object detection performance. We
show that feature space is organized optimally for few-shot detection.

– We achieve state-of-the-art results on the standard PASCAL-VOC and MS-
COCO benchmarks to prove the effectiveness of our method.

2 Related Works

2.1 Few-Shot Object Detection

Few-Shot object detection methods can be split into Meta-Learning-based
approaches [6,8,14–16,26,33,45,49] and Transfer learning approaches [28,39,40,
47,51]. Meta-Learning methods train in an episodic manner; during “base” train-
ing, e episodes are sampled from a task distribution which contains N -classes
and K-shots (the support set), and a model learns to distinguish the N classes.
During the “novel” fine-tuning stage, episodes of the N novel classes are pre-
sented, and a network is expected to quickly adapt to this task. Many of these
methods follow dual-branch architectures, where a “support branch” is designed
to extract information that can be used to generate predictions in the “query”
branch through some aggregation procedure. Attention RPN [8] observed that a
detector trained on base classes struggles to generate proposals for novel classes,
and therefore deployed methods such as average-pooling and depth-wise cross-
correlation of query and support features before feeding them to the Region
Proposal Network. Work such as FsDetView [45] concatenated support and
query features multiplied channel-wise, the difference of these features, and the
query features themselves for detection and viewpoint estimation. Meta Faster
R-CNN [15] expanded on [45] by passing the features generated by FsDetView
through small convolutional networks before computing the loss. Other works
exploited spatial information during aggregation [27], attention maps [2,20], and
multi-level aggregation [16]. While Meta-Learning approaches have shown good
promise, we build upon Transfer Learning-based methods, and direct readers
to a thorough review of both Meta-Learning (and Transfer-Learning) methods
presented in [25].

Transfer Learning-based methods train a detector on copious base data dur-
ing its first stage and train on novel examples during a second stage. Among
the first Transfer Learning methods is TFA [39], which showed that simply fine-
tuning on the novel examples resulted in good performance. TFA trained the
base detector identically to the traditional Faster-RCNN [10] (using only the
base data and classes), and later, froze the entire network except classifier and
regressor during the novel fine-tuning stage. DeFRCN [34] adopted a similar
framework, but unfroze all the network components; noting that the objectives of
the RPN and RoI heads are competing, the authors decided to stop the gradient
from the RPN and scale the gradient from RoI head, achieving state-of-the-art
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performance. Built upon DeFRCN is CFA [11], an optimization method that
backpropagates gradients if the angle between the base and novel gradients is
acute; otherwise the base and novel gradients are projected to the averaged gra-
dient. While we draw inspiration from [38], we make significant and important
changes to the Supervised Contrastive Learning framework: we consider similar
(i.e. cosine-similarity) but different classes to contain “positive” examples for
contrastive learning, and mix the novel features with samples from this different
class. We generate these features without any additional trainable modules. The
details are presented in Sect. 3.

2.2 Contrastive Learning

The key goal of contrastive learning is to organize feature space to optimize
similarity and dissimilarity among data samples, and has been widely used in
self-supervised and unsupervised learning [5,19,44]. After early work in Face
Recognition to keep latent vectors of “positives” samples closer than those of
“negatives” in pairs or triplets [4,36,37], one of the most widely used loss function
is InfoNCE [32], which aims to recognize a positive example in the presence of
N − 1 noise examples. This loss is built upon the family of noise-contrastive
losses [13,31]. Self-supervised learning architectures adopted similar losses: in
SimCLR [3], two augmented versions of a sample were passed through encoder
and projection functions, and the similarity of these samples were maximized in
the presence of the remaining negatives samples from the batch. Learning strong
representations requires large batch sizes, which can exceed training memory; the
MoCo [18] framework avoided this by storing previous embeddings in a queue,
the encoder of which is a momentum update of the key encoder. Barlow Twins
[48] also passed two augmented versions of samples through networks, but unlike
SimCLR, seeks to make the cross-correlation between the representations to be
the identity, thus reducing redundancy.

Unlike self-supervised approaches, few-shot object detection has access to
class labels, which naturally allow applications of the Supervised Contrastive
Loss [23]. We show that our novel use of newly-generated samples integrated
into a distillation-based few-shot learning scheme improves performance without
requiring any additional learnable parameters.

3 Method

3.1 Problem Formulation

Formally, consider the sets of base classes Cb and novel classes Cn from dataset D
such that C = Cb∪Cn. Given at least M examples per base class Cb, and at most
K examples per novel class Cn with K << M , the goal is to find a model F (·)
with highest performance on the test set of D. During the base training stage,
all previous methods train on the same base dataset Dbase; however, during fine-
tuning on novel classes, assumptions differ as to what subset of novel and base
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Fig. 2. The main pipeline of our work. We add a Supervised Contrastive branch to the
[42] (top, red box); unlike FSCE [38], we consider the closest class – defined via cosine
similarity – to contain positives, and generate new samples via a convex combination
of the proposal of interest and the most similar features of the proposal’s closest class
(bottom). (Color figure online)

classes are available. We follow the work of MFDC [42], which assumes that the
full base dataset is available during novel fine tuning in addition to K novel
examples per-class.

3.2 Approach

Our goal is to address three issues in few-shot object detection: 1) data scarcity;
2) overfitting, and 3) feature space organization. Noting that distillation of base-
novel commonalities as well contrastive learning on proposals show performance
increases, we seek to integrate them to address the issues listed above. Our contri-
bution involves contrastive learning on proposals in which positive examples not
only belong to the same class, but also belong to a mixture of features from the
closest class. Previous work [35] has shown that mixing features improves few-
shot learning, and [21] showed mixing for hard negatives improves contrastive
learning. Our intuition is that not only should features from the same class be
close together (and further from unrelated classes), but they should be relatively
close to different but related classes. Note that this differs from FSCE [38] as
that work only considered positives to be those examples from the same class;
we include mixed samples from the top related class, similar to the distribution
distillation in MFDC [42]. Unlike previous methods that generate new samples
through an intensive generative process [12], our method requires no generative
training.

Formally, consider a novel-class foreground region proposal r, its extracted
RoI feature vr, and its associated ground-truth class as cgt as shown in Fig. 2,
bottom. We compute the cosine similarity between this feature and the prototype
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of each class c in the dataset given by μc = 1
Nc

ΣNc
i=1f

i
c, where f i

c are obtained
from a memory bank M.

dcr =
vr,cgt · μc

‖vr,cgt‖‖μc‖ , c ∈ Cn ∪ Cb \ {cgt} (1)

Next, we seek the class with which vr shares the highest similarity. To do
so, we first softmax-normalize dr, representing scores for all classes, to create a
score vector qr.

qr,c =
exp(dcr)

ΣC
i=1exp(dir)

, c ∈ Cn ∪ Cb \ {cgt} (2)

The scores qr are sorted from largest to smallest, signifying the most similar
to least similar classes in terms of cosine similarity. Our next goal is to alleviate
data scarcity and diversity issues by generating new features, and arranging
feature space such that similar classes are closer than different classes.

We implement this idea in a Supervised Contrastive Learning [23] framework.
Unlike previous works, which only consider as “positive” those features belong-
ing to cgt, we consider the closest classes’ features as candidates to mine more
positives. Let f ic ∈ Cb ∪ Cn/{cgt}, i = 1, . . . , Nc be features from the most similar
class c = arg max(qr) in the memory bank M. We compute the cosine similarity
sr,i between f ic and vr,cgt for i = 1, . . . , N and select P features f ic with greatest
similarity to vr,cgt , where P is a hyperparameter which we ablate in Sect. 4.4.
We use MixUp [50] to blend features from vr,cgt and f ic , i = 1, . . . , P , weighted
by its cosine similarity. Formally, this becomes

gi
r = sr,i · vr,cgt + (1 − sr,i) · f ic (3)

Here, we impose that sr,i > 0.5 to ensure that the synthesized feature gi
r

remains closer to vr,cgt than f ic . The new features gi
r are labeled as (gi

r, cgt), i.e.
labeled as the same class as vr,cgt which ensures that the synthesized feature is
treated as a “positive” during contrastive learning. Through this feature gen-
eration, we have addressed two drawbacks in few-shot object detection: 1) we
have added new samples, alleviating the data scarcity issues, and 2) we have
improved the diversity of novel samples, alleviating the overfitting issue.

The supervised contrastive learning framework requires negatives to be effec-
tive; among the remaining memory bank samples f i ∈ M that have not already
been labeled as positive, we compute the cosine similarity between vr,cgt and
f i and obtain scores nr,i and take as negatives the Q most similar vectors. We
therefore add the hard negatives for robust feature space learning. The super-
vised contrastive learning paradigm is implemented in a MoCo [18] framework;
given an input sample, referred to as the “query”, we seek to keep this close
to all other “keys” that are of the same label. As in the MoCo framework, we
pass the “query” features through a query encoder and “key” features through
the “key” encoder, where the key encoder is updated via a momentum update
of the trainable query encoder. Let zi = Proj(vr,cgt) be the projected feature
from the query encoder and zp = Proj(gi

r) be the projected features from the
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key encoder; za are also from the key encoder. These features are passed to a
Supervised Contrastive Loss [23], which is defined as

Lsupcon =
−1

|P (i)|Σp∈P (i)L(zi, zp) (4)

L(zi, zp) = log
exp(zi · zp/τ)

Σa∈A(i)exp(zi · za/τ)
(5)

where a ∈ A(i) indexes the set of all samples not including i and P (i) is the set of
positives. In the limited data scenario, where many stored proposals are similar to
each other, the addition of these positives add variation for contrastive learning,
and as shown empirically in [23], increasing the number of positives is important
to increase the loss for learning. In this way, we have addressed the third issue
of few-shot object detection: we separate the classes more effectively in feature
space by adding synthesized positives and hard negatives in the contrastive loss.
Denoting the traditional Faster-RCNN [10] loss as Ldet and the MFDC [42] loss
as Lmfdc = λcLdistill−cls + λlLdistill−loc + λdLdistill−dist we are left with a final
loss given by

Ltotal = Ldet + Lmfdc + λconmixLsupcon (6)

where λconmix is a hyperparameter. In Sect. 4, we discuss implementation details
and experimental results to show the effectiveness of our method.

4 Implementation Details and Experimental Results

Table 1. nAP50 for all splits of VOC. Best performing methods are in red, while
second best are in blue

Methods Split 1 Split 2 Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/cos (ICML ’20) [39] 39. 8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

FSCE (CVPR ’21) [38] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.8

Rententive RCNN (CVPR ’21) [9] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1

DeFRCN (ICCV ’21) [34] 53.3 47.4 58.7 58.8 59.6 33.0 37.0 49.5 53.8 48.5 47.1 45.8 52.7 52.8 52.6

CFA (CVPRW ’22) [11] 59.0 63.5 66.4 68.4 68.3 37.0 45.8 50.0 54.2 52.5 54.8 58.5 56.5 61.3 63.5

MFDC (ECCV ’22) [42] 63.4 66.3 67.7 69.4 68.1 42.1 46.5 53.4 55.3 53.8 56.1 58.3 59.0 62.2 63.7

VFA (AAAI ’23) [17] 57.7 64.6 64.7 67.2 67.4 41.4 46.2 51.1 51.8 51.6 48.9 54.8 56.6 59.0 58.9

Norm-VAE (CVPR ’23) [46] 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5

Ours 65.53 66.27 69.41 70.00 68.12 42.67 47.27 53.04 56.24 54.13 58.00 62.01 60.78 64.52 65.61

MFDC (ECCV ’22) [42] 51.34 ±6.62 63.86 ±4.45 64.07 ±3.82 68.57 ±1.54 68.46 ±1.65 36.57 ±4.61 46.78 ±2.28 49.23 ±2.06 52.87 ±1.84 55.13 ±1.67 45.96 ±6.74 58.71 ±3.46 58.57 ±2.90 62.79 ±1.71 65.09 ±0.71

Ours 51.98 ±6.44 64.21 ±4.10 64.88 ±3.59 68.91 ±1.52 68.54 ±1.21 36.20 ±5.13 46.13 ±2.56 49.32 ±2.17 52.67 ±1.50 55.35 ±1.46 46.06 ±6.63 58.61 ±3.62 58.55 ±3.22 63.01 ±1.51 65.10 ±0.60

4.1 Benchmark Datasets and Evaluation Metrics

Following the evaluation protocols designed by previous methods, we evalu-
ate our approach on the PASCAL-VOC [7] and MS-COCO datasets [29]. The
PASCAL-VOC dataset, containing a total of twenty classes, is divided into fifteen
base classes and five novel classes (i.e. |Cb| = 15, |Cn| = 5); during evaluation,
three different base-novel splits are used that shuffle the categories used for base
training and novel fine tuning; and for each split, various seeds are evaluated
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Table 2. Overall and Base AP for all splits of VOC. Best results are boldface

Metric Methods Split 1 Split 2 Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Overall mAP MFDC [42] 46.15 ±0.78 47.89 ±0.74 47.50 ±0.57 49.16 ±0.41 49.27 ±0.39 43.99 ‘ ±0.4845.20 ±0.46 45.23 ±0.25 46.72 ±0.2947.17 ±0.41 45.54 ±1.21 47.71 ±0.7247.63 ±0.66 49.23 ±0.34 49.75 ±0.34

Ours 46.23 ±0.8447.90 ±0.8047.50 ±0.6249.23 ±0.4549.30 ±0.3 44.06 ±0.6245.34 ±0.5345.47 ±0.3146.54 ±0.32 47.24 ±0.53 45.81 ±1.2347.70 ±0.75 47.86 ±0.6249.37 ±0.2649.82 ±0.22

Base mAP MFDC [42] 51.27 ±0.57 51.17 ±0.31 50.70 ±0.52 51.67 ±0.49 51.68 ±0.59 52.37 ±0.31 51.96 ±0.23 51.72 ±0.26 52.58 ±0.3152.71 ±0.33 52.07 ±0.59 52.34 ±0.53 52.41 ±0.75 53.31 ±0.24 53.53 ±0.36

Ours 51.55 ±0.5451.22 ±0.5650.91 ±0.8151.68 ±0.5551.6 ±0.42 52.46 ±0.3752.21 ±0.1951.88 ±0.2952.37 ±0.31 52.64 ±0.52 52.39 ±0.6252.37 ±0.7552.66 ±0.5053.43 ±0.2053.54 ±0.23

denoting the subset of K instances used for novel fine tuning. The MS-COCO
dataset is divided into sixty base classes and twenty novel classes, but unlike
PASCAL-VOC, standard evaluation protocols do not shuffle the categories for
different splits. Similar to PASCAL-VOC, however, the ten seeds – identifying
which K instances out of a possible M instances are used for training – are
included to average results.

We evaluate on the standard mean Average Precision (mAP) metric, which
integrates the precision and recall of the detector into a single metric; for the
PASCAL-VOC dataset, we report the novel AP50 over all three splits and for
shots {1,2,3,5,10} as in most previous works, as well as the overall mAP and
base class mAP. For the MS-COCO dataset, we report the overall AP, base
AP (bAP), and novel AP(nAP). In this paper, “AP” refers to the mAP on
the base and novel classes tested together, “bAP” refers to the mAP on the
base classes only, and “nAP” refers to the mAP reported on novel classes only.
Following TFA, we believe it is critical to report performance averaged over
multiple seeds; therefore, we evaluate on the first five-seeds of each dataset and
report those results in addition to the standard metrics on seed 0 of each dataset.

4.2 Implementation Details

We implement our algorithm in the Detectron2 library [43]. We follow the same
base training as MFDC and DeFRCN, with gradient decoupling between the RoI
heads and the RPN; note that we do not implement our contributions during
base training.

During novel fine-tuning, we implement the supervised contrastive loss in a
MoCo framework. The key and query encoders are of identical architecture with
a linear layer followed by a ReLU non-linearity followed by another linear layer.
The output features of the key and query encoders are 128-dimensional, and it is
in this feature space that the Supervised Contrastive Loss is implemented. The
momentum update parameter is set to 0.999. To compute the final supervised
contrastive loss, we average the loss for each foreground feature, which has its
own set of generated positive examples and negative examples. For each positive
novel foreground example, we generate an additional 200 positive features and
select 1600 additional samples as negatives from the larger memory bank for
contrastive learning. We set the Contrastive Loss temperature at 0.07. As in
MFDC, we use a batch size of 16 where 8 images come from the novel set and 8
come from the base set. During training, we start with a learning rate of 5×10−3,
and after training for 80% of the maximum number of iterations, we decrease
the learning rate by a factor of 0.1. The optimizer’s momentum is set to 0.9.
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4.3 Results

Table 3. Evaluation metrics for all {5,10,30} shots of COCO. Best performing methods
are in red, while second best are in blue

Methods 5-shot 10-shot 30-shot

AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/cos (ICML ’20) [39] 28.1 34.7 8.3 28.7 35.0 10.0 30.3 35.8 13.7

MPSR (ECCV 2020) [41] - - - 15.3 17.1 9.7 17.1 18.1 14.1

FSCE (CVPR ’21) [38] - - - - - 11.9 - - 16.4

DeFRCN (ICCV ’21) [34] 28.7 33.1 15.3 30.6 34.6 18.6 31.6 34.7 22.5

FADI (NeurIPS ’21) [1] - - 10.1 - - 12.2 - - 16.1

FCT (CVPR ’22) [16] - - 14.0 - - 17.1 - - 21.4

CFA w/fc (CVPRW ’22) [11] 30.1 37.1 9.0 30.8 37.6 10.5 31.9 37.7 14.7

CFA w/cos (CVPRW ’22) [11] 29.7 36.3 9.8 30.3 36.6 11.3 31.7 37.0 15.6

CFA-DeFRCN (CVPRW ’22) [11] 30.1 35. 0 15.6 31.4 35.5 19.1 32.0 35.0 23.0

LVC (CVPR ’22) [22] - - - - 31.9 17.8 - 33.0 24.5

MFDC (ECCV ’22) [42] 31.51 36.38 16.4 31.88 35.98 19.4 32.75 36.12 22.7

VFA (AAAI ’23) - - 16.2 - - - - - 18.9

Norm-VAE (CVPR’23) - - 15.9 - - 18.7 - - 22.5

Ours 31.85 36.79 17.03 32.36 36.59 19.68 32.73 36.10 22.7

MFDC [42] (ECCV ’22) 31.91 ±0.18 36.82 ±0.20 17.17 ±0.26 32.51 ±0.30 36.86 ±0.39 19.47 ±0.46 33.35 ±0.26 36.89 ±0.34 22.74 ±0.3

Ours 32.09 ±0.21 37.05 ±0.24 17.20 ±0.27 32.67 ±0.32 37.00 ±0.36 19.67 ±0.44 33.40 ±0.30 36.92 ±0.37 22.85 ±0.37

We report the nAP50 on the three splits of the PASCAL VOC dataset, as
shown in Table 1. As shown in Table 1, we improve on previous state-of-the-art
methods on nearly all shots and all splits of the data for seed 0. We specifically
note that we outperform previous methods in the extremely low 1-shot scenario,
where we increase performance by +2.1 points on split 1, and +0.56 points on
split 2; we believe this occurs because our additional samples serve as pivots to
arrange feature space when adequate labeled samples are not present. We note
that we have either the best or second best results for all shots on split 3, and
four out of five shots on split 1 and split 2. While Table 1 reports the seed 0
performance as in all previous literature, we believe that it is helpful to report
the averaged results over many seeds; we show the nAP50 averaged over seeds
zero to four in Table 1. In all scenarios for split 1, we see an improvement in
the novel AP50, as well as a reduction in the error. This shows that our method
organizes features space more appropriately for both detection and localization.

In addition to the nAP50 scores reported on three splits of the VOC data,
we report the overall and base AP scores in Table 2. While most papers only
report the novel AP50, we show that our method not only improves novel class
performance but also improves the overall and base class performance of our
detector. On all five shots of split 1, we increase or meet the performance of
MFDC, and for splits 2 and 3 we improve the overall AP in four our of five
cases. We see similar gains for the base AP, showing the effectiveness of our
method.

We also report our results on the more challenging MS-COCO dataset. We
compare the 5-shot, 10-shot, and 30-shot performance in Table 3, as enumerated
in previous literature. When evaluating on seed 0, as previous literature reports,
we note increases in the overall AP, base AP, and novel AP in both the 5-shot
and 10-shot scenario. As in Table 1, we also report the average performance over
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five seeds of the data. In all scenarios, we get improvements over the baseline.
We note an interesting phenomena; while we only use novel-class foreground
region proposals and their extracted features for supervised contrastive learning,
improvements are seen in the overall AP and base AP. While it is expected to
see improvements in overall AP, we posit that improvements in base AP are
due directly to the sample mixup; when a novel feature is mixed with a base
feature, we generate a hard example for both base and novel classes, and expect
our network to learn a boundary that is more robust. This has the downstream
effect of improving the decision boundaries on the base class.

4.4 Ablation Studies

Table 4. Number of additional (synthesized) positive samples for contrastive learning
in the COCO 5-shot scenario. We note that increasing the number of positives past
a certain threshold hampers base and overall performance while improving novel-class
performance.

Number of samples 5-shot

AP bAP nAP

10 31.78 36.77 16.79

50 31.94 36.94 16.95

100 31.84 36.82 16.92

200 31.85 36.79 17.03

In addition to benchmark performance increases, we conduct ablation stud-
ies to understand the benefit of mixing samples in contrastive learning. First,
we experiment with the number of positive mixed-up samples to add for con-
trastive learning (while keeping negatives constant), and report the results in
Table 4. We notice dual and competing phenomena; as we increase the number
of positive samples from ten to fifty, the overall AP, base AP, and novel AP
increase. However, as we increase from fifty samples to one hundred samples, all
three metrics decrease. When we increase the number of samples to two hundred
additional positives, the overall AP and base AP decrease compared to adding
fifty additional samples; however, the novel AP is at a maximum. Intuitively,
we note that increasing the number of positive examples essentially increases
the data on novel classes to improve learning; however, these positives are not
pure positives, which can confuse the network when learning decision bound-
aries. This implies that there is a mixup-positive tradeoff; while increasing the
number of positives improves learning, there is a limit at which overall, base, and
novel performance continue to increase. For real-world systems, it is important
to carefully tune the number of positives to be included in contrastive learning.

Secondly, we test the strength of our contribution by comparing the inclu-
sion, or lack thereof, of data generation for contrastive learning in Table 5. The
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Table 5. Supervised contrastive learn-
ing versus data generation+ con-
trastive learning, COCO dataset seed
0.

Shots Generation? AP bAP nAP

5-shot ✗ 31.75 36.67 16.98

✓ 31.85 36.79 17.03

10-Shot ✗ 32.05 36.15 19.77

✓ 32.36 36.59 19.68

30-Shot ✗ 32.84 36.16 22.88

✓ 32.73 36.10 22.7

Table 6. Effects of synthesizing 200
new samples on the COCO dataset,
seed 0

Synthesized Type 5-shot

AP bAP nAP

Positives 31.85 36.79 17.03

Negatives 30.70 36.66 16.84

Pos.+ Neg 31.79 36.75 16.91

Table 7. “Vanilla” Mixup vs Our Contribution for {5,10,30} shots of COCO seed 0.
Best performing methods are boldface

Methods 5-shot 10-shot 30-shot

AP bAP nAP AP bAP nAP AP bAP nAP

Vanilla Mixup 31.73 36.63 17.00 32.01 36.20 19.44 32.72 36.04 22.74

Ours 31.85 36.79 17.03 32.36 36.59 19.68 32.73 36.10 22.7

experimental settings mimic those used for Table 3, except that including “gen-
eration” generates an extra two hundred positive mixed samples, while “without
generation” denotes using only positives (i.e. same class as foreground sample)
from the memory bank for learning – traditional supervised contrastive learning.
Table 5 shows that, in the 5 and 10-shot scenarios, generation is important to
improving performance on all three metrics compared to standard contrastive
learning. In the 30-shot scenario we see a conflicting effect: while data genera-
tion still improves baseline results from Table 3, the extent is not as great when
using standard contrastive learning. The 30-shot scenario benefits from more
“pure” labeled data (i.e. no mixing) than the 5 and 10-shot case, which are bet-
ter positives for contrastive learning than the mixed samples. Overall, a clear
trend emerges identifying the benefits of sample mixup for few-shot detection –
especially in low-shot scenarios.

Next, we test whether generating mixed positives and negatives improves
learning and metrics, and report the results in Table 6. In this experiment, “pos-
itives” refer to generating two hundred additional positives from mixed samples
of the semantically similar class without including mixed negatives, while “nega-
tives” refers to mixing the two hundred hardest negatives (independent of class)
without including mixed positives. The entry “positives + negatives” refers to
using both positives and negatives. For all experiments, we use 1600 true neg-
atives in contrastive learning. We notice that when only positives samples are
added for sample mixup, we achieve the best performance overall. We posit that,
in the few-shot scenario, learning decision boundaries on positive samples allevi-
ates the dearth of labeled data; the plentiful negatives from the memory bank,
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which still provide adequate information and improve results, do not compensate
for the lack of labeled examples. Based on the results in Table 6, the majority of
observed performance increase is the result of the positives; when we add nega-
tives to the positives, the overall AP and base AP remain steady, while the novel
AP decreases. This shows that the positives have a stronger effect on learning
decision boundaries.

Additionally, we evaluate our use of mixup by comparing our contribution
to “vanilla” mixup [50] in Table 7. Vanilla Mixup, instead of mixing samples
from the most similar class as in our contribution, only mixes samples from the
same class; all other parameters, including the number of samples generated,
the supervised contrastive loss, etc. remain the same. As shown in Table 7, the
proposed method improves over vanilla mixup in nearly all metrics. Our intuition
suggests that vanilla mixup, which only mixes intra-class samples, is not very
effective in the few-shot scenario since the variation among samples is not great.
Vanilla mixup only addresses the data scarcity issue but not the data diversity
issue, which could lead to overfitting.

Table 8. Using most-similar vs least similar classes for feature generation, COCO
dataset seed 0

Shots Selection? AP bAP nAP

5-shot MFDC [41] 31.51 36.38 16.4

Least Similar 31.67 35.78 16.90

Most Similar 31.85 36.79 17.03

10-Shot MFDC [41] 31.88 35.98 19.4

Least Similar 31.99 36.13 19.62

Most Similar 32.36 36.59 19.68

30-Shot MFDC [41] 32.75 36.12 22.7

Least Similar 32.61 36.01 22.67

Most Similar 32.73 36.10 22.7

Finally, we answer the question: what happens if there are no similar classes
to novel classes for feature generation? We simulate this experiment by, instead
of selecting the most similar class for feature generation, we select the most dis-
similar class for data generation. We report the results of our experiment in
Table 8. While we do see minor performance degradations which are expected
when using the most dissimilar class, our model still maintains very good per-
formance. Surprisingly, we still improve performance as compared to MFDC in
the 5-shot and 10-shot scenarios (except for 5-shot base AP, in which we see a
minor performance decrease) even when using the least similar class. The reason
this occurs is that, in addition to hard negative mining, any mixup for feature
generation that occurs creates a noisy version of the novel feature; this addresses
the data diversity issue of few-shot object detection.
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4.5 Qualitative Results

Fig. 3. Qualitative examples on the MS-COCO. The top row is MFDC while the
bottom row is our method. In (a), we are able to recognize one of the horses which
MFDC does not. In (b), we recognize one “person” (a novel class) where MFDC does
not. Panel (c) shows that our method reduces the number of false-positive “sinks” in
the image, while also recognizing one of the bottles in the left corner that MFDC does
not.

The effects of the proposed contrastive learning method can be seen directly
on the data itself, as shown in Fig. 3. The top row shows results of our baseline,
the MFDC [42] model, while the bottom row shows results after training our
model. In Fig. 3(a), MFDC clearly misses the detection of one of the horses, while
our method is able to correctly detect the horse. In Fig. 3(b), our method is able
to recognize one “person” (a novel class) when MFDC is not able to do so. In both
examples, however, we still see limitations of state-of-the-art few-shot detection:
novel classes such as “person” are still difficult to recognize. Nevertheless, our
method improves results in a simple and effective way, without complicated data
generation procedures. Figure 3(c) clearly shows this; our method recognizes all
the objects that MFDC does, as well as recognizing the small “bottle” in the
lower left corner.

We can qualitatively understand feature space alignment through t-SNE [30]
analysis of feature space, as shown in Fig. 4, in which blue is “person”, red
is “bicycle”, green is “car”, and black is “motorcycle”. Figure 4(a) shows the
features for each class under the 5-shot scenario at the end of training for MFDC
[42], while (b) shows feature space after training with supervised contrastive
learning and feature generation. Based on the t-SNE visualization, we can clearly
see our learned decision boundaries more naturally separate the data between
classes, as compared to the small and tight clusters that are present in MFDC’s
learning paradigm. We also see the semantic nature of our contrastive learning
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framework; the “car” class is semantically similar to the “motorcycle” class,
and our contrastive framework imposes a feature space alignment that brings
these classes closer together. Before training, car (green) and motorcycle (black)
were interspersed in feature space among the other classes; our method arranges
feature space to bring these classes closer together, as well as clustering these
classes effectively. This clustering is clearly visible as the five distinct clusters of
the “person” class is collapsed into one cluster.

Fig. 4. t-SNE visualization of features for the COCO 5-shot seed 0 model, where blue
= “person”, red = “bicycle”, green = “car”, and black = “motorcycle”. Subfigure
(a) shows’ feature space trained like MFDC [42], and subfigure (b) shows features after
training with our contrastive loss + generation. Our method learns that “car” (green)
is most semantically similar to “motorcycle” (black), and arranges feature space for
these classes are closer together. (Color figure online)

5 Conclusion

In this paper, we present a novel use of contrastive learning with mixed positives
for few-shot object detection. Not only should features from a class be close to
other features within that class, but features from a similar class should “close”
in features space to other similar classes. We therefore generate features that
mix between the class of interest and its most similar class, and treat them as
positives for supervised contrastive learning. With our algorithm, we alleviate
many issues in few-shot object detection: 1) we alleviate data scarcity by gener-
ating synthesized positive samples; 2) we limit overfitting by generating diverse
samples; and 3) we organize feature space more effectively through contrastive
learning with synthesized samples. With limited extra parameters during train-
ing and none during inference, our algorithm improves few-shot object detection
on standard benchmarks.
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Abstract. Few-shot learning is crucial in machine learning and com-
puter vision. It enables models to recognize new objects with limited
labeled data, addressing the challenge of data scarcity and expanding
the application of machine learning to domains with scarce data. Previ-
ous methods built metric space using labeled data from the base set and
then classified queried images from the novel set by finding the nearest
class prototype. However, due to the presence of poor-quality data in the
novel set, the class prototype often exhibits instability. In response to this
challenge, this paper proposes a Semantic Conditional Translation Net-
work for reconstructing stable class prototypes. Specifically, images are
first divided into edge domain (i.e., images at the cluster edge) and pro-
totype domain (i.e., images at the cluster center). Then, an Enhanced
Generative Adversarial Network is introduced to learn the translation
from edge toward prototype, where a Non-parametric Classification Reg-
ularizer is designed to enlarge the discriminability of the translated sam-
ples. Meanwhile, class definitions are exploited as semantics providing
precise descriptions and enhancing translation performance. Experimen-
tal results demonstrate that the proposed method obtains competitive
results on four benchmark datasets.

Keywords: Few-Shot Learning · Generative Adversarial Networks ·
Multimodal Learning

1 Introduction

Deep learning models have made dramatic improvements through exploiting
a huge amount of annotated data [12]. However, in many real-world scenarios,
there are not enough labeled data provided for models, which reduces the applica-
tion range of traditional deep learning techniques. In contrast, humans possess a
remarkable cognitive ability to learn new concepts and recognize categories from
just a few examples. This exceptional capability enables humans to generalize
acquired knowledge and make accurate predictions even when confronted with
limited training instances [5]. Motivated by this, Few-Shot Learning (FSL) [51]
is proposed to mimic the humans’ ability to learn from a few labeled samples.

In the standard FSL setting, the models first rely on a well-annotated base
set to establish a robust metric space. This set provides rich and representative
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 313–329, 2025.
https://doi.org/10.1007/978-3-031-78183-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78183-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-78183-4_20


314 L. Chen et al.

annotated samples to facilitate model training and prior knowledge acquisition.
Subsequently, the model encounters a substantial challenge: identifying images
in a novel set that do not overlap with the categories in the base set. Notably,
for each category in the novel set, only a few labeled examples are available,
which significantly increases the difficulty for the model to generalize to new
instances. A natural and effective strategy involves mapping samples from the
novel set into the metric space and utilizing the few labeled samples to com-
pute class prototypes. Classification tasks are then accomplished by seeking the
nearest neighbor class prototype for a given query sample. However, inferring
class prototypes from a limited sample set tends to deviate from the genuine
class prototypes owing to the presence of low-quality data within the limited
samples, such as occlusion, incompleteness, or the inclusion of multiple targets,
thereby resulting in a deterioration of classification performance. Consequently,
accurately and efficiently capturing and representing category features for new
classes in environments with poor-quality data emerge as pivotal concerns in
FSL.

Fig. 1. Different paradigms for reconstructing stable class prototypes.

To tackle this issue, previous studies [57,59] have proposed diverse meth-
ods for reconstructing stable class prototypes, as depicted in Fig. 1. Specifically,
RestoreNet [57] suggested learning the mapping from edge samples to the class
center, as illustrated in Fig. 1b. Nevertheless, mastering the direct mapping from
edges to the center without external prior knowledge poses a significant chal-
lenge. ProtoComNet [59], as shown in Fig. 1a, improved upon RestoreNet by
designing complex nonlinear networks to integrate attribute labels. However,
nonlinear networks may encounter difficulties in accurately capturing the rela-
tionships between distributions due to the high-dimensional attributes inherent
in distributions. Moreover, attribute labels, being a limited data resource, are
unavailable for the majority of datasets.

Based on this, we propose the Semantic Conditioned Translation Network
(SCTN), aiming to leverage the powerful distribution learning capability of the
Conditional Generative Adversarial Network (CGAN) to establish a distribu-
tion mapping from edge samples to the center, thereby reconstructing class pro-
totypes. This learning paradigm is illustrated in Fig. 1c. Specifically, we first
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design an image domain division mechanism to divide the training data into two
image domains: the edge image domain and the prototype image domain. The
edge image domain comprises samples that are distant from the class centers,
with blurry class characteristics making them difficult to identify accurately, as
depicted in Fig. 2. Conversely, the prototype image domain encompasses samples
that are close to the class centers and exhibit distinctive class characteristics,
thus considered instances with strong class representativeness. Furthermore, we
utilize CGAN to establish and optimize the mapping between these two image
domains for reconstructing class prototypes. In this process, the conditional
information is derived from class definitions extracted from WordNet based on
class labels. Compared to simple class names, class definitions entail richer class
features and are easily accessible. Additionally, to enhance the discrimination of
the reconstructed class prototypes, we introduce a Non-parametric Classification
Regularizer (NCR). The entire system integrates these components, forming a
learning framework named Feature Enhanced Generative Adversarial Network
(FEGAN), the structure of which is shown in Fig. 2. The experimental results
demonstrate that SCTN achieves competitive results across four diverse FSL
datasets, confirming the effectiveness of this approach in reconstructing class
prototypes.

The contribution can be summarized in the following three points:

• The proposed image domain division mechanism separates strong and weak
class representations, where the information inside the weak class represen-
tation is further explored to help construct robust prototypes.

• The designed Semantic Conditioned Translation Network enhances the rep-
resentation of edge images by capturing the distribution of class prototypes,
thereby improving the model’s recognition performance on poor-quality data.

• A Non-parametric Classification Regularizer is introduced to constrain the
category of translated samples, thereby enlarging their discriminability and
improving the overall classification performance.

2 Related Work

In recent years, FSL has made significant developments in three main directions:
metric-based, optimization-based, and semantic-based.

Metric-based methods aim to learn a metric space in which inter-class dis-
tances are maximized and intra-class distances are minimized. In the early stage,
researchers devised various kinds of distance metrics to achieve precise estimation
of the distances between samples, including the L1 distance [30], the Euclidean
distance [51], the cosine distance [53], and the Mahalanobis distance [3]. After
that, some improvements were proposed. For example, in data augmentation [49]
approaches, hallucinated samples can be generated by deformation [9] and syn-
thesis [2,20,35,48,54,60] to overcome the difficulty of labeled data lacking. The
representation learning [4,25] approaches suggested to add a supervised [6,52,58]
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Fig. 2. FEGAN with two image domains. The left figure is the structure of the FEGAN,
where the solid rectangular indicates the feature embedding, and the dashed rectan-
gular represents the objective function. ve and vp denote the feature embedding sam-
pled from the edge and prototype image domains, respectively, i.e., ve ∼ Dedge and
vp ∼ Dproto. Here, ve and vp are from the same class and ac denotes their class seman-
tic information. The middle and right figures contain images sampled from the edge
and prototype image domains, respectively.

or self-supervised [14,19,39] training stage to pre-train a robust feature extrac-
tion network.

Optimization-based methods [1,44] aim at enabling the model to adapt
rapidly to a novel task using only a few labeled data through several steps
of learning. For example, MAML [18] proposed to learn a set of initialization
model parameters and then fine-tune them to novel tasks. However, updating
the entire model parameters with a few labeled data can lead to meta-overfitting.
CAVIA [61] and LEO [47] reduced the number of updated parameters at test
time. Specifically, CAVIA partitioned the model parameters into context param-
eters and shared parameters, while LEO employed low-dimensional latent space
optimization. On the other hand, TAML [27] suggested to learn an unbiased
initial model to avoid this problem. MetaNAS [17] further improved the per-
formance of MAML by integrating Neural Architecture Search (NAS) [16] into
MAML.

Semantic-based methods intended to combine vision and language informa-
tion to improve performance in visual recognition tasks. For instance, in [59],
attribute knowledge and unlabelled data are utilized to complete a representa-
tive prototype. In [55,56], it is suggested to use the class name to get a text
prototype and then mix a visual prototype to enhance the representativeness of
the prototype. In [33], a task-relevant adaptive margin loss based on the semantic
similarity between class names in the task is proposed to increase the discrimi-
native power of the embedding space. In [10], multiple types of semantic spaces
are used to synthesize instance features to achieve data augmentation.
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3 Methodology

This section specifies how the prototype instability issue is mitigated by the pro-
posed method through image domain translation. The definition of FSL and the
required background knowledge are presented first, followed by the description
of the proposed SCTN.

3.1 Background

First, let’s provide the problem definition for the classification task in few-shot
learning. The dataset includes two components: base set Dbase = {(x, y)|x ∈
Xbase, y ∈ Cbase} for training and novel set Dnovel = {(x, y)|x ∈ Xnovel, y ∈
Cnovel} for testing, where x denotes the image and y represents the label. Fur-
thermore, Xbase and Xnovel refer to the sets of images within the base and novel
components, respectively. It is important to note that the label space for both
sets is disjoint, that is, Cbase ∩ Cnovel = ∅. During the testing process, the sup-
port set S = {(xi, yi)}N×K

i=0 is randomly sampled from Dnovel, which contains
N classes with each class consisting of K samples. Then, the model is required
to correctly classify images in the query set Q = {(xi, yi)}N×M

i=0 into one of N
classes in the support set S, where M is the number of query samples in Q.
Generally, this type of classification task is named an N -way K-shot task.

Prototypical Network is a simple but effective FSL method. It first calcu-
lates the prototype of each class. For instance, the prototype of class c, labeled
as rc, is the mean value of all samples in the support set belonging to class c,
which is calculated in (1).

rc =
1

|Sc|
∑

xi∈Sc

f(xi), (1)

where Sc denotes the set of all samples belonging to class c in the support set
S and f denotes the backbone network. Labels are then assigned based on the
distance from query samples to each class prototype. Specifically, the probability
of a query sample q belonging to class c is calculated by (2).

P (y = c) =
exp d(q, rc)∑N
j=1 exp d(q, rj)

, (2)

where d(·, ·) denotes the negative Euclidean distance, i.e., d(i, j) = −||i − j||2,
and N denotes the number of classes.

Conditional Generative Adversarial Network (CGAN) is an impres-
sive generative model composed of a generator G and a discriminator D [41].
The generator generates images follow class-specific distribution from a random
Gaussian noise z and class label y, while the discriminator aims to separate the
generated image from the real one. Suppose x denotes the input image, pdata
stands for the input data distribution, and pz represents the noise distribution.
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The objective function of CGAN [41] is:

max
D

min
G

V (D,G) =Ex∼pdata(x)[log D(x|y)]+

Ez∼pz(z)[log(1 − D(G(z|y)))],
(3)

where y contains auxiliary information, i.e., class labels.

3.2 Overall Framework of SCTN

For the sake of convenience and ease of understanding in subsequent discourse,
it is assumed that image translation is implemented on class c. The samples
belong to class c in the base set Dbase are divided into two image domains,
namely the edge image domain Dedge = {(ve, c)} and the prototype image
domain Dproto = {(vp, c)}. Here, v represents feature embedding extracted from
image x by backbone network f , i.e., v = f(x), ve and vp denote the embedding
of the edge image domain and prototype image domain, respectively.

Image Domain Division. The image domain division operates on a per-class
basis, wherein each class c undergoes independent processing within the base set
Dbase. Firstly, a subset Dc is extracted from Dbase containing all samples labeled
as c, followed by the computation of the class center tc. This computation can be
performed using either the feature mean method or the k-means clustering algo-
rithm [21]. Subsequently, employing metrics such as cosine or Euclidean distance,
we measure the distances between each sample in Dc and its corresponding class
center tc to quantify the representational strength of each sample. Based on this
analysis, the top W closest samples, exhibiting stronger class representation, are
assigned to the prototype image domain Dproto, while samples distant from the
class center with weaker representation are allocated to the edge image domain
Dedge. Here, the parameter W is a manually set hyper-parameter, typically con-
figured to one-tenth the size of Dc. By implementing the image domain division
strategy, distinct groups of samples with varying degrees of class representation
can be effectively identified and distinguished.

Feature Enhanced Generative Adversarial Network. To learn the trans-
lation from weak class representative samples to strong class representative sam-
ples, Feature Enhanced Generative Adversarial Network (FEGAN) is designed
in SCTN to construct the translation from the edge distribution pedge to the pro-
totype distribution pproto. Specifically, FEGAN comprises two components: the
Conditional Generative Adversarial Network (CGAN) and the Non-parametric
Classification Regularizer (NCR).

The CGAN comprises a generator G and a discriminator D. The generator G
aims to enhance the feature representation of edge samples to emulate the feature
distribution of the prototype image domain, while the discriminator D is respon-
sible for accurately distinguishing whether input features originate from the edge
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distribution pedge or the prototype distribution pproto, thereby driving the gener-
ator to continuously optimize its performance. An illustration of FEGAN can be
found in Fig. 2. Initially, image samples for class c are extracted separately from
pedge and pproto, and these images are input to a pre-trained feature extractor
f to generate corresponding feature embeddings ve and vp. Subsequently, the
discriminator D is tasked with distinguishing whether input features originate
from pedge or pproto. On the other hand, the generator G endeavors to generate
prototype features for class c from the edge distribution pedge conditioned on
the semantic embedding ac, attempting to deceive the discriminator D. Here,
ac is derived from the class definition extracted from WordNet. It is noteworthy
that the input to the generator G is feature embedding v rather than Gaussian
noise z, distinguishing this method from existing data augmentation strategies
[35,48,56,60]. Through this approach, FEGAN not only leverages visual infor-
mation but also integrates higher-level semantic knowledge.

Based on the preceding discussion, the objective function of CGAN in
FEGAN is:

LCGAN (D,G) =Evp∼pproto(vp)[log D(vp|ac)]+

Eve∼pedge(ve)[log(1 − D(G(ve|ac)))],
(4)

where D(G(ve|ac)) and D(vp|ac) represent the probabilities of the input ve and
vp belonging to pproto given the semantic embedding ac, respectively.

The optimization process encompasses adversarial training between the dis-
criminator D and the generator G. Here, the discriminator aims to maximize the
loss value of the objective function LCGAN (D,G), while the generator endeavors
to minimize this value. The training of the discriminator and generator occurs
in alternating steps. The global optimum is reached when the generator effec-
tively establishes a mapping from the edge image domain to the prototype image
domain. At this stage, the discriminator assigns probabilities of 0.5 to the pro-
totype images and the edge images translated by the generator. This signifies
the achievement of a Nash equilibrium state, where real samples and translated
samples cannot be effectively distinguished by the discriminator.

Although CGAN, by introducing the class label ac as a conditional variable,
aids in constraining the category of translated samples, the inherent similarity
between semantics may pose a risk to the discriminability of translated samples.
Thus, FEGAN integrates a Non-parametric Classification Regularizer (NCR),
which explicitly establishes alignment relationships between samples of the same
category in both the prototype image domain and the edge image domain. This
mechanism ensures that translated samples accurately capture the distinctive
properties of their respective categories. The objective function of NCR is for-
mulated as follows:

LNCR(G) = E[‖G(ve|ac) − vp‖1], (5)

where ve and vp are samples from the edge and prototype image distributions,
respectively, i.e., ve ∼ pedge and vp ∼ pproto. Hence, the final objective of FEGAN
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is shown in (6), where β is a manually controlled hyper-parameter.

max
D

min
G

V (D,G) = LCGAN (D,G) + βLNCR(G). (6)

Prototype Fusing. During the testing phase, for each class c in the support
set S, two types of class prototypes are constructed: the mean prototype rmc
and the translated prototype rtc. The mean prototype is derived by computing
the average of all sample features belonging to class c (Formula 7). The trans-
lated prototype is generated by combining the mean prototype rmc with the
corresponding semantic information ac, which is then input into the pre-trained
generator G to generate a new representation (Formula 8).

rmc =
1

|Sc|
∑

xi∈Sc

f(xi), (7)

where Sc denotes the set of all samples belonging to class c in the support set S.

rtc = G(rmc |ac). (8)

rc = k1r
m
c + k2r

t
c, (9)

where k1 > 0, k2 > 0, and k1 + k2 = 1.
The mean prototype rm encapsulates task-specific visual features, whereas

the translated prototype rt integrates additional semantic information. To lever-
age the strengths of both, robust class prototypes rc are constructed through
convex combination using (9). Subsequently, labels are assigned to query sam-
ples q using (2), where d(·, ·) is implemented as the cosine distance.

4 Experiments

4.1 Datasets

The proposed method was evaluated on four widely used FSL datasets: MiniIm-
ageNet [53], TieredImageNet [45], CIFAR-FS [32], and FC100 [42].

MiniImageNet, derived from ImageNet [12], consists of 100 classes with 600
images per class, where 64 classes are designated for training, 16 for validation,
and the remaining 20 for testing. The image resolution for the ResNet is set to
84× 84, while for the Transformer, it is 224× 224.

TieredImageNet shares similarities with MiniImageNet as it is also
derived from ImageNet. However, it boasts a larger scale and a hierarchi-
cal structure, encompassing 608 classes distributed as 351/97/160 for train-
ing/validation/testing, while maintaining the same image resolution as Mini-
ImageNet.

CIFAR-FS, a variant of CIFAR100 [31], comprises 60,000 images across 100
classes, with 600 images per class. Adhering to a similar split as MiniImageNet,
64 classes are allocated for training, 16 for validation, and the remaining 20
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for testing. The image size for the ResNet is set to 32 × 32, whereas for the
Transformer, it is 224× 224.

FC100, an FSL version derived from the CIFAR100, includes 100 classes
with 600 images per class. It employs a superclass partition strategy, aimed
at mitigating information overlap. Following the partitioning scheme outlined
in [42], it is divided into 12/4/4 superclasses for training/validation/testing,
maintaining the same image resolution as CIFAR-FS.

4.2 Implementation Details

Architecture. In experiments, we utilized two feature extractors: ResNet12 [22]
and Swin Transformer [36]. Notably, the output dimension for ResNet12 is con-
figured to 640, while Swin Transformer’s output dimension is set to 768. The
generator G is a three-layer MLP with a LeakyReLU activation function [37],
where the two hidden layers of G have dimensions of 4,096 and 2,048, respec-
tively. The discriminator D is a two-layer MLP where the activation function in
the first layer is LeakyReLU and in the second layer is Sigmoid [46]. The hidden
layer of D has a dimension of 1,024.

Training Details. A two-step training procedure is performed in experi-
ments. In step one, the feature extractor f is pre-trained using the cross-entropy
loss function [24] and meta-tuned [8]. Next, G and D are trained 100 epochs with
a batch size of 128 using an Adam optimizer [29] with a learning rate of 1e-4.
The hyper-parameter β is set to one, [k1, k2] are set as [0.25, 0.75] for 1-shot
tasks and [0.9, 0.1] for 5-shot tasks. Class definitions are given from WordNet
[40] based on class labels. No other data augmentation strategies are used during
training, except for color jitter and random flipping.

Evaluation protocol. The proposed method is evaluated under 5-way 1-
shot and 5-way 5-shot settings. For each setting, 600 classification tasks are
uniformly sampled from the novel set. In each task, there are 15 query samples
per class. The mean and 95% confidence interval of the accuracy are reported.

4.3 Results

Tables 1, 2, 3 and 4 provide a detailed comparison of the proposed method
(SCTN) and existing methods on the 5-way 1-shot and 5-way 5-shot tasks.
Notably, in the 1-shot learning scenario, SCTN demonstrates a significant com-
petitive advantage. Specifically, SCTN, based on the ResNet architecture, has
surpassed several Transformer-based methods [7,15,23]. Moreover, when inte-
grating the Transformer into SCTN to form the SCTN-Trans version, this model
achieves the highest performance among all compared methods. In the 5-shot
task, SCTN demonstrates the best performance on CIFAR series datasets. How-
ever, on ImageNet series datasets, its performance closely follows the state-
of-the-art method FewTURE [23]. This observation can be attributed to Few-
TURE’s implementation of an online optimization strategy called “re-weighting”
during the inference stage of the 5-shot setting, which significantly enhances its
performance in 5-shot tasks but also substantially increases the computational
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Table 1. Comparison on miniImageNet dataset.

Method Venue Backbone 5-way 1-shot 5-way 5-shot

MatchNet [53] NeurIPS’16 ResNet-12 65.64 ± 0.20 78.72 ± 0.15

ProtoNet [51] NeurIPS’17 ResNet-12 62.39 ± 0.21 80.53 ± 0.14

MAML [18] ICML’17 ResNet-12 49.24 ± 0.21 58.05 ± 0.10

CTM [34] CVPR’19 ResNet-18 64.12 ± 0.82 80.51 ± 0.13

AM3 [55] NeurIPS’19 ResNet-12 65.30 ± 0.49 78.10 ± 0.36

RestroreNet [57] AAAI’20 ResNet-18 61.14 ± 0.22 -

FEAT [58] CVPR’20 ResNet-12 66.78 ± 0.20 82.05 ± 0.14

Meta-Baseline [8] ICCV’21 ResNet-12 63.17 ± 0.23 79.26 ± 0.17

SVAE-Proto [56] CVPR’22 ResNet-12 74.84 ± 0.23 83.28 ± 0.40

SUN [15] ECCV’22 ViT-S 67.80 ± 0.45 83.25 ± 0.30

FewTURE [23] NeurIPS’22 Swin-T 72.40 ± 0.78 86.38 ± 0.49

FGFL [11] ICCV’23 ResNet-12 69.14 ± 0.80 86.01 ± 0.62

Meta-AdaM [50] NeurIPS’23 ResNet-12 59.89 ± 0.49 77.92 ± 0.43

SP-CLIP [7] CVPR’23 Visformer-T 72.31 ± 0.40 83.42 ± 0.30

SCTN (Ours) Ours ResNet-12 74.30 ± 0.67 81.88 ± 0.54

SCTN-Trans (Ours) Ours Swin-T 75.86 ± 0.74 85.91 ± 0.51

Table 2. Comparison on tieredImageNet dataset.

Method Venue Backbone 5-way 1-shot 5-way 5-shot

MatchNet [53] NeurIPS’16 ResNet-12 68.50 ± 0.92 80.60 ± 0.71

ProtoNet [51] NeurIPS’17 ResNet-12 68.23 ± 0.23 84.03 ± 0.16

MAML [18] ICML’17 ResNet-12 67.92 ± 0.17 72.41 ± 0.20

TADAM [42] NeurIPS’18 ResNet-12 62.13 ± 0.31 81.92 ± 0.30

AM3 [55] NeurIPS’19 ResNet-12 69.08 ± 0.47 82.58 ± 0.31

CAN [26] NeurIPS’19 ResNet-12 69.89 ± 0.51 84.23 ± 0.37

CTM [34] CVPR’19 ResNet-18 68.41 ± 0.39 84.28 ± 1.73

RFS [52] ECCV’20 ResNet-12 69.74 ± 0.72 84.41 ± 0.55

FEAT [58] CVPR’20 ResNet-12 70.80 ± 0.23 84.79 ± 0.16

Meta-Baseline [8] ICCV’21 ResNet-12 68.62 ± 0.27 83.29 ± 0.18

SVAE-Proto [56] CVPR’22 ResNet-12 76.98 ± 0.65 85.77 ± 0.50

SUN [15] ECCV’22 ViT-S 72.99 ± 0.50 86.74 ± 0.33

FewTURE [23] NeurIPS’22 Swin-T 76.32 ± 0.87 89.96 ± 0.55

FGFL [11] ICCV’23 ResNet-12 73.21 ± 0.88 87.21 ± 0.61

Meta-AdaM [50] NeurIPS’23 ResNet-12 65.31 ± 0.48 85.24 ± 0.35

SP-CLIP [7] CVPR’23 Visformer-T 78.03 ± 0.46 88.55 ± 0.32

SCTN (Ours) Ours ResNet-12 74.20 ± 0.87 83.86 ± 0.67

SCTN-Trans (Ours) Ours Swin-T 78.35 ± 0.82 88.59 ± 0.57



Image Domain Translation for Few-Shot Learning 323

burden during inference. Comparison with the latest semantic-based methods
[7] reveals SCTN’s significant performance enhancement. Specifically, in the 1-
shot task evaluation across four datasets, SCTN achieves an average accuracy
improvement of 1.90%. For the 5-shot task, its average performance improvement
reaches 1.42%, affirming the effectiveness of the proposed SCTN in few-shot
learning.

Table 3. Comparison on CIFAR-FS dataset.

Method Venue Backbone 5-way 1-shot 5-way 5-shot

ProtoNet [51] NeurIPS’17 ResNet-12 72.20 ± 0.70 83.50 ± 0.50

MetaOptNet [32] CVPR’19 ResNet-12 72.80 ± 0.70 84.30 ± 0.50

MABAS [28] ECCV’20 ResNet-12 73.51 ± 0.92 85.65 ± 0.65

RFS [52] ECCV’20 ResNet-12 71.50 ± 0.80 86.00 ± 0.50

SUN [15] ECCV’22 ViT-S 78.37 ± 0.46 88.84 ± 0.32

FewTURE [23] NeurIPS’22 Swin-T 77.76 ± 0.81 88.90 ± 0.59

SP-CLIP [7] CVPR’23 Visformer-T 82.18 ± 0.40 88.24 ± 0.32

SCTN (Ours) Ours ResNet-12 81.41 ± 0.75 86.72 ± 0.62

SCTN-Trans (Ours) Ours Swin-T 83.56 ± 0.72 88.95 ± 0.57

Table 4. Comparison on FC100 dataset.

Method Venue Backbone 5-way 1-shot 5-way 5-shot

ProtoNet [51] NeurIPS’17 ResNet-12 41.54 ± 0.76 57.08 ± 0.76

TADAM [42] NeurIPS’18 ResNet-12 40.10 ± 0.40 56.10 ± 0.40

MetaOptNet [32] CVPR’19 ResNet-12 47.20 ± 0.60 55.50 ± 0.60

MABAS [28] ECCV’20 ResNet-12 42.31 ± 0.75 58.16 ± 0.78

RFS [52] ECCV’20 ResNet-12 42.60 ± 0.70 59.10 ± 0.60

FewTURE [23] NeurIPS’22 Swin-T 47.68 ± 0.78 63.81 ± 0.75

Meta-AdaM [50] NeurIPS’23 ResNet-12 41.12 ± 0.49 56.14 ± 0.49

SP-CLIP [7] CVPR’23 Visformer-T 48.53 ± 0.38 61.55 ± 0.41

SCTN (Ours) Ours ResNet-12 48.56 ± 0.76 59.99 ± 0.73

SCTN-Trans (Ours) Ours Swin-T 50.86 ± 0.76 64.00 ± 0.75

4.4 Ablation Study

Ablation Studies for Feature Enhanced Generative Adversarial Net-
work. A series of ablation experiments were conducted to assess the effective-
ness of different components of FEGAN on MiniImageNet and CIFAR-FS, with
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detailed results provided in Table 5. Initially, a baseline experiment was designed
using a non-linear network to capture the mapping between the prototype and
edge image distributions. However, the results showed poor performance, indi-
cating that relying solely on a non-linear network is inadequate for modeling
the distribution of the prototype image domain. Subsequently, the introduction
of CGAN during the modeling process significantly improved the overall per-
formance, affirming CGAN’s superiority in distribution learning over non-linear
networks. Moreover, the integration of the proposed NCR module into FEGAN
led to a more substantial performance enhancement. Specifically, in the 1-shot
learning task, FEGAN improved accuracy by 8.95% to 9.33% compared to the
baseline, while in the 5-shot scenario, it increased by 0.94% to 1.01%. This exper-
iment strongly supports the effectiveness of FEGAN.

Table 5. Ablation studies for Feature Enhanced Generative Adversarial Network.

Method MiniImageNet CIFAR-FS

5W1S 5W5S 5W1S 5W5S

Baseline model 64.97 ± 0.81 80.87 ± 0.58 72.46 ± 0.90 85.78 ± 0.64

+CGAN 69.30 ± 0.74 81.24 ± 0.57 75.96 ± 0.83 85.90 ± 0.65

+CGAN+NCR 74.30 ± 0.67 81.88 ± 0.54 81.41 ± 0.75 86.72 ± 0.62

Ablation Studies for the Semantic. The choice of text type and encoder
significantly influences the acquisition of semantic embeddings. Therefore, we
conducted experiments to compare and analyze the impact of these factors on
SCTN. Initially, we utilized two text encoders: BERT [13] (a natural language
pre-training model) and CLIP [43] (a multi-modal pre-training model) to gen-
erate semantic embeddings. Regarding text type, we focused on the differen-
tiation between class definitions and names. Specifically, we transformed class
names into sentences using templates and then inputted them into the encoder
to extract semantic embeddings. The experimental results, presented in Table 6,
indicate that in both 1-shot and 5-shot learning scenarios, SCTN employing
CLIP as the encoder exhibited superior performance, with accuracy enhance-
ments ranging from 3.77% to 7.61% and from 0.66% to 5.87%, respectively. This
suggests that CLIP demonstrates stronger adaptability in visual tasks. More-
over, irrespective of whether it was in a 1-shot or 5-shot scenario, SCTN utilizing
class definitions instead of names demonstrated superior performance, particu-
larly with an average accuracy improvement of 0.98% in the 1-shot setting. This
underscores that detailed class definitions help reduce the inherent ambiguity in
class names, leading to enhanced accuracy.
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Table 6. Comparison using different semantics.

Text Encoder Text Type MiniImageNet CIFAR-FS

5W1S 5W5S 5W1S 5W5S

BERT Name 65.66 + 0.79 80.87 ± 0.58 75.59 ± 0.87 86.00 ± 0.64

Definition 66.69 ± 0.80 80.98 ± 0.58 77.64 ± 0.81 86.15 ± 0.65

CLIP Name 73.57 ± 0.71 81.71 ± 0.56 81.29 ± 0.75 86.70 ± 0.62

Definition 74.30 ± 0.67 81.88 ± 0.54 81.41 ± 0.75 86.72 ± 0.62

Fig. 3. Samples from five novel classes are sampled from miniImageNet and tiered-
ImageNet visualized by t-SNE algorithm. The labels “Mini” and “Tiered” denote the
dataset, while “O” and “T” denote the original and translated feature space distribu-
tion, respectively.

4.5 Visualization Analysis

To further validate the effectiveness of the proposed method, a sampling of five
novel classes is conducted from the test sets of the miniImageNet and tieredIma-
geNet datasets. The distribution of these classes in the feature space is visualized
using t-SNE [38], a widely-used visualization technique. The resulting visualiza-
tions can be observed in subfigures 3a and 3b of Fig. 3. Subsequently, feature
enhancement is applied to all the samples using the trained FEGAN model. The
distribution of the enhanced samples in the feature space is depicted in subfig-
ures 3c and 3d of Fig. 3. Upon careful examination of the distributions before
and after feature enhancement, notable changes can be observed. Specifically,
the enhanced feature space exhibits a more compact intra-class distance, indi-
cating tight clustering of instances belonging to the same class. Furthermore, the
inter-class distance becomes more distinct and discernible, indicating a clearer
separation between different classes. This visual comparison provides compelling
evidence for the effectiveness of the proposed method. By rendering the intra-
class distances more compact and the inter-class distances more distinguishable,
the proposed SCTN method enables the construction of stable class prototypes,
ultimately leading to enhanced few-shot classification performance.



326 L. Chen et al.

5 Conclusion

In this paper, the Semantic Conditional Translation Network (SCTN) is pro-
posed to tackle the problem of unstable class prototypes in few-shot learning.
To tackle this problem, the base set is divided into a prototype image domain
with strong class representation and an edge image domain with weak class
representation. Then, the Feature Enhanced Conditional Generative Adversar-
ial Network (FEGAN) is used to learn the translation function between both
domains. Specifically, the generator in FEGAN is employed to learn a mapping
from the edge image domain to the prototype image domain under the control
of semantics, and the discriminator is employed to determine the class represen-
tation of an image. Importantly, a Non-parametric Classification Regularizer is
proposed to enlarge the discriminability of the mapped samples, thus enhancing
the translation performance. The trained FEGAN is used to improve the class
representation of the support set samples and thus stable class prototypes are
available. The experiment results show that SCTN achieves competitive per-
formance on four widely-used FSL datasets. In future, we intend to explore
additional potential applications of semantic information in enhancing visual
recognition tasks.
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Abstract. Transductive zero-shot learning (TZSL) aims to minimize
the domain shift between the learned and true distribution of the unseen
classes by allowing access to the unpaired samples from unseen classes.
While many distribution alignment based methods attempt to align both
visual and semantic spaces to train the classifier, their performance is
still limited by confirmation bias. Additionally, bidirectional alignment
approaches are based on the strong assumption that the intrinsic dimen-
sions of visual and semantic spaces are the same, which is rarely true. In
this work, we first highlight the limitations of bidirectional alignment in
terms of intrinsic dimensionality. We then present a pseudo-bidirectional
approach that, without any underlying assumptions on these spaces, uti-
lizes the learned visual-to-attribute mapping to minimize the distribution
shift between learned and true unseen visual feature distributions. We
further utilize an entangled loss between semantic and visual space to
minimize the confirmation or uncertainty bias and improve the adversar-
ial robustness. We, theoretically and empirically, show the performance
gain in addition to the adversarial robustness under the proposed setting.

Keywords: Zero-shot learning · Bias · Adversarial robustness.

1 Introduction

The aim of zero-shot learning is to recognize and classify objects or concepts
for which they have not been explicitly trained. In most of the practical sce-
narios, the computer vision models are required to be trained on a set of large
number of training examples paired with their corresponding labels, known as
seen classes. The trained model are then used to infer the labels for which there
are no available training examples, referred to as target labels. In inductive
zero-shot learning, samples from the target (or unseen) classes are not provided
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 330–345, 2025.
https://doi.org/10.1007/978-3-031-78183-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78183-4_21&domain=pdf
http://orcid.org/0000-0002-3915-925X
http://orcid.org/0000-0001-6532-942X
http://orcid.org/0000-0002-7257-5159
https://doi.org/10.1007/978-3-031-78183-4_21


Expert guided Transductive Zero-Shot Learning 331

for training. However, a sufficient number of paired examples are provided for
the seen categories. This approach requires the classifier to learn the relation
between visual and semantic spaces using the seen classes and transfers this
knowledge to the unseen classes assuming that such relevant knowledge exists.
This knowledge sharing requires annotated data such as vector embedding of
labels, attribute features and so on. However, transfer learning without access
to unseen labels can be quite challenging due to domain shift problem [3]. To
simplify the problem, Transductive zero-shot learning (TZSL) [4,13,14] utilizes
the unlabeled examples of the targeted classes for training. This allows access
to the collective target data distribution without correspondences to ease off the
burden of distribution shift.

Most of the approaches are influenced by generative modelling that intend
to align the distribution of real examples and generated examples followed by
training the classifier on the generated examples. Depending on the discrepancy
in the learned data distribution, the classifier may suffer from confirmation bias,
which means that the classifier is trained on the generated samples assuming
that they are correctly paired to their target labels. Additionally, many pre-
vious graph based approaches model the attribute relation using Word2Vec or
GloVe embeddings but rely on corpora training which may not provide neces-
sary characteristics to distinguish between the classes [19]. Moreover, knowledge
graph based methods [14] also has its own challenges. For example, knowledge
graphs may struggle with handling ambiguous concepts or entities with multiple
senses. Different classes or concepts can share similar or overlapping features,
making it challenging to disambiguate them solely based on the information in
the knowledge graph.

To address these limitations, we propose pseudo-bidirectional alignment that
utilizes expert information to learn bidirectional-like mapping. The contribution
of the proposed work is as follows:

1. We introduce pseudo-bidirectional alignment using Expert guided VAEGAN
that, unlike bidirectional adversarial learning, learns the semantic-to-visual
mapping based on the additional knowledge from an expert model, which is
visual-to-attribute mapping in our case.

2. The proposed model improves the semantic-to-visual mapping by incorpo-
rating knowledge from an expert model to learn distribution shift in a low
intrinsic dimensional space, contributing to a more robust and effective learn-
ing process.

3. A new entangled loss function is introduced for classifier training, by inte-
grating generated visual features and pseudo-labels. This leads to reduction
of confirmation bias and shows its effectiveness in terms of adversarial robust-
ness and, providing a novel and impactful contribution to the training process.

4. Both theoretical and experimental evidence were presented, showcasing the
remarkable performance of pseudo-bidirectional alignment. Finally, implicit
robustness is achieved through the proposed approach, contributing to the
model’s resilience in the face of various challenges. The method’s ability to
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overcome uncertainty is highlighted, making it a notable and impactful con-
tribution to the field of Transductive zero-shot learning.

2 Related Works

2.1 Zero-Shot Learning

Zero-shot learning has garnered a lot of interest in the past few years due to its
practical applications in many vision and language-related problems. Inductive
zero-shot entity recognition has previously been addressed in which most of them
tend to learn semantic to visual space mapping using projection mapping [32].
This approach of transferring knowledge from seen to unseen classes suffers from
domain shift due to non-overlapping distributions of seen and unseen classes.
Subsequently, some works utilize two networks to align the distributions in both
semantic and visual spaces by using generative modelling such as VAE and
GANs. For example, Cycle-WGAN [2] uses a new multi-modal cycle consistency
loss which constrains the optimization problem to generate useful visual features
for the training of classifier. Another method is to exploit the expert knowledge
for domain alignment by leveraging the expertise of a domain expert to constrain
the learning process, and it closely resembles our idea in this work. For example,
Norouzi et al. [15] proposes a convex combination mapping approach for zero-
shot learning. It incorporates expert knowledge in the form of semantic attributes
and enforces a regularization term to constrain the model’s predictions to be a
convex combination of attribute vectors. Since the model is regularized to align
its predictions with the provided attributes, noisy or misleading attributes might
negatively impact the learning process and lead to erroneous predictions. Field-
Guide-Inspired Zero-Shot Learning ([12]) is another interesting approach which
directly involves a human expert to interact with the learner. In this approach,
the learner is first trained on a set of base classes followed by interaction with
an expert annotator to seek minimal guidance on the attributes to classify the
unseen classes. The method may suffer from the knowledge gap between attribute
understandings of humans and the neural net, and it is relatively difficult to
align their knowledge due to variations in the human experts. Nevertheless, the
absence of knowledge of unseen classes serves as the performance bottleneck and
restricts the performance of inductive ZSL.

Contrary to an inductive setting, transductive ZSL allows the learner to
utilize the knowledge of examples from unseen classes without correspondence.
Generative models have been adopted by most of the state-of-the-art as adver-
sarial training allows to align the distribution. Marmoreo et al. [13] proposed the
idea of decoupled feature generation by encapsulating the visual patterns into
structured prior to boost the performance of conditional visual feature synthesis.
It uses DecGAN to capture the distribution of visual features and generate realis-
tic descriptors. The pioneering work in zero-VAE-GAN [4] is the first to attempt
the coupled Variational Autoencoder (VAE) and generative model for this task.
It uses generative methods to synthesize visual features conditioned on semantic
side information and learn a conventional supervised classifier from generated
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sample. However, when generative models are trained with seen classes, there
are inherently biased when it comes to generalization to unseen classes.

Fig. 1. Overall training methodology for proposed Transductive ZSL. Step 1 involves
adversarial training of visual-to-attribute mapper (fa) for both seen and unseen classes.
Step 2 utilizes fa from previous step for aligning distributions of true and generated
visual features of unseen labels. In step 3, we utilize the paired generated feature-label
and original feature-pseudolabel to train the classifier.

2.2 Graph Neural Networks in ZSL

Unlike multi-layer perceptron that has fully connected layers, graph neural nets
learn the node embeddings based on the node strength and its connections to
other nodes of the graph. Similar to self-attention [20–22], it is capable of learning
global representations based on the node connections and strengths. The recent
studies [7,14,29] have demonstrated the effectiveness of utilizing the graph struc-
ture in zero shot learning. Xiel et al. [29] proposed a region graph embedding
network to capture the relationships between various parts of the image using
graph convolutions. The graph nodes consist of local regions of the image and
are connected by the edges depending on the pairwise nodes’ similarity. Since the
regionwise features of the image may fail to capture the extent of the relation,
it translates to the edges’ strength resulting in misleading interaction between
patches. Similarly, the Visual-Semantic Entanglement network in [7] learns the
graph embeddings of visual features and maps it to the semantic attributes using
the knowledge graph. Additionally, it uses a multi-path entangled path network
which feeds the visual features from CNN to GCN to learn the semantic rela-
tions resulting in self-consistent regression for graph modelling. Liu et al. [14]
also exploits the knowledge graph through a transformer to learn class represen-
tations by embedding nodes in the knowledge graph. [10] exploits graph relation
for attribute propagation to refine the features in semantic space based on the
information aggregated from the neighbouring nodes. This approach does not
add any constraint to align the learned attribute features and therefore makes
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a strong assumption that attribute propagation does not affect the associated
attribute labels, and thus the label for the propagated attributes is the same
as the original associated label before propagation. While the knowledge graph
embeddings are useful in natural language-related problems, the semantic vec-
tors may not be directly applicable to computer vision problems. The limited
semantic coverage of knowledge graph vectors introduces a bias towards certain
classes restricting its ability to generalize for unseen classes. To avoid this lim-
itation, we directly utilize the attribute vectors associated with class labels to
represent the connection between nodes.

3 Limitations of Bidirectional Alignment

We use the idea of Intrinsic dimensionality and Wassertein distance to highlight
the limitation of bidirectional alignment [25].

Theorem 1 (Invariance of domain). If U is an open subset of Rn and f :
U −→ Rn is an injective continuous map, then V = f(U) is an open and f is a
homeomorphism between U and V .

Bi-VAEGAN [25] learns adversarial mapping between visual space and
attribute space. However, visual features comprise of additional details beyond
the attribute features and therefore, the Intrinsic dimension of visual feature
space (IDv) is relatively larger than that of attribute space (IDa). This limita-
tion may negatively impact the diversity of learned samples in visual space.

Proposition 1. Let x ∼ P and x′ ∼ P ′
be the samples from true and learned

distributions, respectively such that difference between the intrinsic dimension of
P ′

and P is δ. If D∗ is the intrinsic dimension of P, then normalized Wasserstein
distance, conditioned on [0, w], is given by,

W2
2 (F, G, w) =

2δ2

(D∗ + 2)(D∗ + δ + 2)(2D∗ + δ + D∗2 + D∗δ)
(1)

The proof of Proposition 1 is provided in supplementary material. It shows
that the Wasserstein distance is less sensitive to the distribution shift if the
underlying intrinsic dimension is large. This means that, for a given shift, the
Wasserstein loss in visual space remains relatively lower than that in attribute
space, and therefore, in the case of Bi-VAEGAN [25], adversarial learning in
visual space is not as effective as attribute space. We, therefore, propose to use
only attribute space to learn pseudo-bidirectional alignment.

4 Methodology

4.1 Problem Formulation

Transductive ZSL aims to classify the unseen classes by accessing the unpaired
examples from the domain of unseen classes Du. We denote by Ds =
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{(x, y, ay)|x ∈ X s, y ∈ Ys, ay ∈ As} the domain of seen classes, where x is
the visual feature, y is the corresponding label and ay is the attribute of that
category. Similarly, Du = {(x, u, au)|x ∈ X u, u ∈ Yu, au ∈ Au} is the set of
unseen labels, and A = As

⋃ Au. The model won’t have access to the labels for
x ∈ X u. For generalized setting, it is assumed that Ys ∩ Yu = Φ. Furthermore,
fa and Da are used to denote the visual-to-attribute mapper and the attribute
critic, respectively. Additionally, ψ◦fa assigns the label based on the cosine simi-
larity between the generated attribute vector and attribute from unseen domain.
We denote by xug the unseen generated visual feature vector. E and G are the
encoders and decoders of the variational autoencoder, where G is a graph neural
network. Let Ds

v denote the visual critic for seen classes only. The goal is to
develop a framework to classify the examples from unseen classes correctly in
both conventional and generalized setting.

For theoretical analysis, we denote by ε(h, f) = E(x,a)∈D[1f(x) �=h(x,a)]
the actual risk and ε̂(h, f) = 1

|D|
∑

(x,a)∈D[1f(x) �=h(x,a)] the empirical risk.
dh∗(D1,D2) and dHΔH(D1,D2) is the generative distance for optimal hypothesis
h∗ and HΔH distance [1], respectively. The details are discussed in supplemen-
tary material.

4.2 Overall Outline

Figure 1 shows the overall training pipeline of pseudo-bidirectional alignment.
The first stage involves training the visual-to-attribute mapper in adversarial
fashion for both seen and unseen classes. Subsequently, it is utilized for trans-
ferring knowledge to train the VAEGAN architecture to reduce domain shift
between true and generated visual features. Furthermore, it also exploits the
semantic relationship among the classes through graphical structure to adver-
sarially learn the visual features of unseen classes.

Visual-to-Attribute Mapping The first stage of training involves learning
attribute feature from the given visual feature for both seen and unseen classes.
It uses a simple multi-layer perceptron architecture which is trained in the super-
vised fashion with adversarial regularization for seen classes. For the samples
from unseen classes, the model is trained only in adversarial fashion. Unlike Bi-
VAEGAN [25], the adversarial learning on both seen and unseen classes helps
the attribute critic to learn the interaction between their distributions. The opti-
mization objective minimizes the L1 norm for the examples from Ds given by,

Ls
fa

= min
fa

max
Da

||fa(x) − ay||1 + λ1L
s
adv, (2)

where Ls
adv(As,Vs) = E[Da(as)]−E[Da(fa(xs))]+(||∇âsE[Da(âs)]||2 −1)2 with

â = αas +(1−α)fa(xs). The objective for the unseen classes is similarly defined
as,

Lu
fa

= Lu
adv =E[Da(au)] − E[Da(fa(xu))]

+ (||∇âuE[Da(âu)]||2 − 1)2,
(3)
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where au ∼ Au. The critic training includes the gradient penalty term [6] to
induce better Lipschitz stability.

Pseudo-Bidirectional Alignment for Attribute to Visual Mapping The
aim of training Expert-VAEGAN is to align the distributions of synthetic and
true visual features. It uses the visual critic Ds

v specifically to align the gen-
erated seen visual features conditioned on their corresponding attribute fea-
tures. Additionally, we use the visual-to-attribute map from the preceding stage
as an expert system to transfer the knowledge about the previously learned
relationship between visual and attribute space for unseen categories. We call
this approach pseudo-bidirectional alignment because it tends to diversify only
those components of visual features that are necessary to discriminate them
in attribute space. To alleviate this issue, we re-utilize the visual-to-attribute
mapper and attribute critic together to minimize the distribution shift between
generated and true visual features. Since they have already been trained in pre-
ceding step, they together serve as an expert through their learned mapping.
Firstly for seen categories, an encoder is explicitly used to learn the latent repre-
sentations for the visual features conditioned on their respective attribute space.
For unseen categories, we randomly sample the latent vector from a standard
Gaussian distribution and stack them with a sampled attribute vector. The con-
catenated attribute and latent vectors serve as the node embeddings for the
graph with the node connections defined by cosine similarity between the node
attributes. For two nodes with attributes ai and aj , the the weight of connecting
edge is defined as eij = <ai,aj>

||ai||2||aj ||2 . The constructed graph is then passed to the
first order Chebyshev graph net (ChebNet) that computes the visual features
corresponding to each node. Since it leverages the Laplacian eigenbasis of the
graph to perform convolutions in the spectral domain, ChebNet captures both
local and global structural dependency effectively. This, in turn, allows to learn
the visual features based on their attribute similarity more effectively. Further-
more, some of elements in the visual feature vector is randomly masked with
zero while training so to enhance the model’s ability to learn the intra-feature
connections.

For training, we apply the VAE objective on the latent space vectors of the
seen classes as it is known to prevent the mode-collapse in GAN training. Fur-
thermore, we add L1 loss to minimize the reconstruction error of visual features,
and an adversarial regularization to align the synthetic and true visual features
distributions. Since the visual features can be paired with its attribute features,
the adversarial training aligns the learnt and true feature distribution condi-
tioned on the attribute space. The overall training objective for the seen classes
is given by,

Ls = min
E,G

max
Ds

v

Ezs∼E(xs,as)[KL(zs||N (0, I))]+

Ezs∼E(xs,as)[||G(zs, as) − xs||1] + λ2Ls
Ds

v
,

(4)

where Ds
v = E[Ds

v(xs, as)] − Ex̄s∼G [Ds
v(x̄s, as)] + (||∇x̂sE[Ds

v(x̂s, as)]||2 − 1)2.
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For unseen examples, we directly utilize the attribute critic for adversarial
learning. In this case, the training can be formulated as,

Lu = min
G

max
Da

Ex̂u∼G [||fa(x̂u) − au||1] + λ3Lu
adv(G,Au), (5)

where Lu
adv(G,Au) = E[Da(au)]−Ex̂u∼G [Da(fa(x̂u))]+ (||∇āuE[Da(āu)]||2 − 1)2

and ā = αau + (1 − α)âu.
Here, λ2 and λ3 are the hyper-parameters. Equation 5 allows to align the

knowledge of the graph net with that of visual-to-attribute mapping. Instead
of strictly aligning visual features’ distribution for unseen labels, we utilize the
expert knowledge to learn the visual features discriminative enough to classify
them into correct categories.

Algorithm 1 Algorithm for pseudo-bidirectional alignment
X s,Ys, Xu, (Au,As), T1, T2 Trained G, E, fa, Ds

v, Da

for i in range (T1) do
Train the visual-to-attribute mapping transductively using equations 2 and 3.

end
for i in range (T2) do

Generate synthetic visual features x̂s for a sampled {xs,as}.
Train E and G for seen classes using equation 4.
Uniformly sample a batch of attributes au ∼ Au and z ∼ N (0, I).
Estimate the edge weights E = {eij} for ai, aj ∈ au.
Generate the corresponding synthetic visual feature x̂u ∼ G(z, au, E) and get
{x̂u,au}.
Train E and G for unseen classes using equation 5.
For training of classifier, generate a pair of true visual feature and its pseudo-label
{xu,ψ ◦ fa}.
Also, generate a pair of synthetic visual feature and original attribute vector
{x̂u,au}.
Train the classifier using the loss function 6.

end

4.3 Training the classifier

Since transductive setting allows access to unseen classes, it adds another degree
of freedom that we exploit in the loss function. It is to be noted that training
Expert-VAEGAN involves two modules that can assign a label to the visual
feature, one is visual-to-attribute mapping and the other one is the classifier
itself. To strengthen the alignment of their predictions, we apply entanglement
between true and learnt distributions in both visual and semantic space. For this,
we generate pseudo-labels from fa for the given true visual feature in addition
to the paired synthetic visual feature and the attribute vector. The combined
training objective for the classifier is given by,

Lcls = β[−Ex∼X uP (ψ ◦ fa|x; θ)] + (1 − β)[−Ex̂∼GP (y|x̂; θ)], (6)
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where P (y|x̂; θ) denotes the probability of assigning label y to the synthetic
feature x̂. Similarly, P (ψ ◦ fa|x; θ) is the probability of assigning the pseudo-
label ψ ◦ fa to the true features. The overall procedure for training is described
in the Algorithm 1.

4.4 Theoretical Perspective

In this section, we provide theoretical arguments to support our claims on adver-
sarial robustness and confirmation bias.

Confirmation (or Uncertainty) Bias

Theorem 2. Let R and H denote the hypothesis space of classifier h and visual-
to-attribute regressor R, respectively. Without the loss of generality, lets assume
that for regressor R, ψ ◦ R assigns the label based on the similarity measure
between predicted attribute and unseen classes’ attributes. If optimal classifier
h∗ satisfies the condition: h∗ = argmin

h′
ε̂s(h′, f)+ ε̂ug(h′, f)+ ε̂u(h′, ψ ◦R), Then

with probability 1 − δ, following inequality holds for N number of samples,

εu(h, f) ≤ ε̂s(h, f) + dh∗(X ug,X u) + dR∗(X u,X s)+

dh∗(X u,X s) +
1
2
dHΔH(X u,X s) + εu(h∗, f)

+ λ +

√
1

2N
log

2
δ
,

where λ = εs(h∗, f) + εu(h∗, ψ ◦ R∗) + εug(h∗, f)

We attempt to theoretically show that uncertainty or confirmation bias has
detrimental impact on the overall performance. In transductive zero shot learn-
ing, confirmation bias arises in two ways. Firstly, we assume that the synthetic
visual features belong to a particular class even though the generated feature
may be perturbed enough to change its category. Second, the confirmation bias
may get injected into the model through the conflict between the pseudo-label
assigned by visual-to-attribute mapping to the true visual features and label
predicted by the classifier. If the label predicted by the classifier and the pseudo-
label assigned by the mapper do not match with each other, the overall training
may converge to a sub-optimal solution. Theorem 2 shows that the loss function
in 6 implicitly adds a constraint of on R∗ and h∗ through εu(h∗, ψ ◦ R∗). For
prediction error to reduce on the unseen labels, the labels assigned by both of
them on a given feature must agree. Additionally, dh∗(X ug,X u) constrains the
distance between the distributions of X ug and X u to reduce, and second, third
and fourth terms are constant for a given problem due to fixed domain shift
between seen and unseen classes.
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Table 1. Performance comparison with state-of-the-art in both conventional and gen-
eralized ZSL. I and T refer to inductive and transductive settings, respectively. In
generalized ZSL, U and S indicate accuracies for unseen and seen labels, respectively,
and H is their harmonic mean. The best and second best results are shown in red and
blue, respectively.

Method Conventional Generalized

AWA2CUBSUN AWA2 CUB SUN

S U H S U H S U H

I RGEN [29] 73.6 76.1 63.8 67.1 76.5 71.5 60.0 73.5 66.1 44.0 31.7 36.8

I APNet [10] 68.0 57.7 62.3 83.9 54.8 66.4 55.9 48.1 51.7 40.6 35.4 37.8

I FG [12] - - - 65.0 65.8 65.4 59.6 52.8 55.8 61.3 41.3 49.3

I LSG [30] 61.1 52.9 53.4 84.9 60.4 70.6 50.4 49.6 50.0 23.1 52.8 32.2

I Assym. Net [24] - 55.9 57.6 - - - 19.4 56.5 28.9 18.5 28.6 22.5

T DSRL [31] 72.8 56.8 48.7 - - - 25.0 17.7 20.7 39.0 17.3 24.0

T F-VAEGAN-D2 [28] - 71.1 70.1 - - - 65.1 61.4 63.2 41.9 60.6 49.6

T Zero-VAEGAN [4] 89.0 69.1 68.4 87.0 70.2 77.6 57.9 64.1 60.8 35.8 53.1 42.8

T ZSL-KG [14] 78.1 - - 84.4 66.8 74.6 - - - - - -

T DecGAN [13] - - - - - - 44.3 57.2 49.9 68.4 60.9 63.4

T Bi-VAEGAN [25] 95.8 76.8 74.2 91.076.190.471.771.271.5 45.4 66.8 54.1

T Ours 96.4 77.2 75.2 92.689.691.170.373.972.1 58.7 66.262.2

Implicit Adversarial Robustness In self-training based methods, it is quite
common to apply label interpolation to improve adversarial robustness. How-
ever, [16] provides detailed analysis to contradict this assumption by showing
that interpolation in noisy labels is as large an adversarial risk as the poisoning
with similar noise rate.We, therefore, refrain from applying such interpolation
in our loss function. Instead, we now show that loss function 6 implicitly acts as
a weak upper bound on the robustness of the learned classifier. Our analysis for
robustness is based on two assumptions: (1) the generated samples already con-
tain adversarial noise, and therefore serves as adversarial examples [9], (2) We
follow [18,26] to use population consistency loss as the measure of robustness on
the unlabeled features from unseen classes. Based on this, we assume xug ∈ Bρ,
where Bρ(x) = {x′ : ||x′ − x|| ≤ ρ}. The population consistency loss is defined
as RB(h, x) = Ex∼D[1(∃ x′ ∈ Bρ(x) such that h(x) 
= h(x′))].

Theorem 3. Let x ∼ Du and x′ be the true and the corresponding adversarial
features, respectively. Let R(x) maps the given visual feature x to its correspond-
ing semantic feature, and ψ◦R(x) produces corresponding label based on semantic
feature similarity. The population consistency loss RB is weakly bounded by,

RB ≤Ex′∼Bρ(x),x∼Du [1(h(x′) 
= f(x))] + Ex∼Du [1(h(x) 
= ψ ◦ R(x))]+

Ex∼Du [1(ψ ◦ R(x) 
= f(x))],
(7)
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In Theorem 3, the first two terms represent the loss function 6 provided we
treat the generated features as the adversarial examples. The bound is apparently
weaker in the initial phase of training since we have no prior information about
the labels of x for unseen categories, and therefore the third term cannot be
explicitly controlled. However, as the model begins to converge, the third term
approaches to zero and the bound eventually becomes tighter. In other words,
the proposed loss function provides weak guarantee of adversarial robustness.

5 Experiments

In this section, we compare the performance with other state-of-the-art meth-
ods using benchmark datasets. Additionally, we provide empirical evidences to
support our theoretical analysis. We conduct our experiments on three datasets,
including AWA2 [27], CUB [23] and SUN [17]. The visual features of the images
are extracted using ResNet-101 pre-trained network. We analyse the performance
in both conventional and generalized setting by measuring overall accuracy for all
the unseen classes. The dataset and training details along with hyper-parameter
settings are provided in the supplementary material. In generalized setting, we
measure the accuracy for both seen (ACCs) and unseen classes (ACCu) and
express them using Harmonic mean given by H = 2ACCs×ACCu

ACCs+ACCu . Additionally,
We directly report the results from the published papers.

5.1 Performance Comparison

Since we utilize the graphical structure in VAE-GAN setup, We compare
the performance with VAE-GAN setups, including F-VAEGAN-D2 [28], Zero-
VAEGAN [4], DecGAN [13] and Field-Guided CADA-VAE [12], and graph based
approaches such as RGEN [29], APNet [10], LSG [30], Asymmetric Graph Net-
work [24] and ZSL-KG [14]. Table 1 presents the comprehensive comparison to
the aforementioned state-of-the-art models. In Conventional setting, our method
achieves the best performance in in all three datasets. In generalized setting, our
approach achieves best performance in AWA2 and CUB, and second best in SUN
in terms of harmonic mean. We argue that our idea is still competitive for two
reasons. Firstly, most of the generative methods apply strong discriminability
on both visual and semantic spaces, whereas our model learns the features in
visual space by solely transferring knowledge to semantic space and leveraged it
to learn the discriminant visual features. This approach reduces the dependency
on additional discriminator and aids to training stability. Secondly, it can be
observed that the model does not overfit on the seen categories and maintains
the decent balance between the observed and unobserved samples. It is to be
noted that Field-Guided CADA-VAE [12] achieved second best accuracy on the
seen classes of SUN dataset at the cost of unseen ones, and therefore overfits on
the seen labels. Overall, the method achieved competitive performance by simply
exploiting the knowledge of expert to learn the distribution of visual features.
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Fig. 2. Graphical comparison of performance under FGSM and PGD-20 attacks on
visual features for AWA2, SUN and CUB datasets.

5.2 Ablation studies

In this section, we analyse several aspects of the method to study their impacts
on the overall accuracy of the classifier. We discuss the impact of visual feature
masking and how the loss function based on pseudo-labels contributes to reduce
the confirmation bias in the network, and we empirically verify the Theorem
2. Additionally, we evaluate its robustness against commonly used adversarial
attacks to validate Theorem 3.

Table 2. Performance comparison with Top-1 accuracy under various settings.
Masking-10/20 means that 10/20 random elements in the visual feature vector are
masked during training. Methods without pseudolabel setting only uses the first term
of loss function for training. Best results are shown in bold.

Method Zero Shot LearningGeneralized Zero Shot Learning

AWA2CUB SUN AWA2 CUB SUN

S U S U S U

Baseline 85.3 58.7 61.8 92.5 76.8 50.2 49.2 48.8 38.3

Baseline+masking-10 91.9 65.9 69.9 92.8 79.5 69.6 55.4 47.8 52.1

Baseline+masking-20 91.2 65.2 70.7 93.5 78.5 72.8 61.0 48.4 51.9

Baseline+masking-10+pseudolabel 96.4 77.2 75.2 92.6 89.6 70.3 73.958.7 62.2

Feature Masking and Pseudo-labels The motivation to learn intra-class
feature dependencies is from Kong et. al. [8], which learns a new embedding
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to enhance the separability between seen and unseen classes. Instead of adding
learning overhead, we mask some of the elements in feature elements randomly
and train the model over the masked feature vectors. Since the visual features
extracted using ResNet-101 may also contain some redundant information, mask-
ing lets the network explore the intra-feature relationships to extract the maxi-
mum information and predict the correct attribute. Additionally, The graphical
structure allows to share the knowledge and exploit the inter-class relationships.
Table 2 shows a significant performance gain when a small fraction of visual
features are randomly masked. Moreover, there is no significant advantage when
we increase the number of masked features from 10 to 20. Therefore, all the
experiments are conducted with 10 masked elements in visual feature vector.
The performance is further supplemented by reduced confirmation bias when
trained with proposed loss function. The empirical studies on the confirmation
bias follows in the next section.

Analysing the robustness We study the robust accuracy of our approach
under two adversarial attacks, including FGSM [5] and PGD-20 [11] attacks.
For this, the visual features are subjected to these attacks for different pertur-
bation budgets, and the accuracy of classifier is then observed to evaluate the
robustness. Figures 2 (a)-(c) and Figures 2 (d)-(f) compare the performances
under FGSM and PGD-20 attacks, respectively. It can be observed that the
model trained with loss function 6 outperforms by a relatively large margin
supporting our claims in Theorem 3.

Fig. 3. Comparison of categorical distribution learnt by classifier and visual-to-
attribute mapper when trained for β = {0.5, 0}

Table 3. Top-1 accuracies on three datasets for different values of β. The best results
are obtained when both terms in the loss function are given equal weightage.

β 0 0.1 0.2 0.4 0.5 0.6 0.8 1

AwA252.794.894.095.196.494.994.391.1

SUN 71.371.171.772.275.269.268.864.9

CUB 65.870.270.671.277.272.771.962.2
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Mitigating Confirmation Bias To further support our claims on Theorem 2,
we ablate the value of β to show that minimizing both −Ex∼X uP (ψ ◦ fa|x; θ)]
and −Ex̂∼GP (y|x̂; θ) enhances the overall accuracy of the trained classifier. Table
3 shows the accuracies of the classifier when trained with different values of clas-
sifier. It is clearly evident that the overall performance increases significantly
when both losses are minimized with equal weightage. An intuitive explanation
is that when these losses are assigned unequal weights, one of the losses reduces
faster than other resulting in imbalance in their accuracy. Additionally, Figure
3 illustrates the histogram distribution of the labels predicted by the classi-
fier and visual-to-attribute mapper (fa). It can be observed that there is large
disagreement between the classes assigned by fa and the classifier for a given
visual feature. Such conditions result in higher uncertainty due to which classi-
fier converges to sub-optimal solution. Furthermore, the histogram distribution
are much better aligned for β = 0.5 showing consistency in the behaviour of
both modules.

6 Conclusions

In this work, we proposed an approach for transductive ZSL to tackle the mis-
match in intrinsic dimensionality during bidirectional domain alignment. In addi-
tion, we highlighted the confirmation or uncertainty bias that were prevalent
while training the classifier and compensated it through entangled loss function,
and then theoretically and empirically demonstrated the advantage of the pro-
posed loss function in terms of adversarial robustness. This approach results in
notable improvement in overall performance as compared to Bi-VAEGAN.
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Abstract. Hand gesture recognition allows humans to interact with
machines non-verbally, which has a huge application in underwater explo-
ration using autonomous underwater vehicles. Recently, a new gesture-
based language called CADDIAN has been devised for divers, and super-
vised learning methods have been applied to recognize the gestures with
high accuracy. However, such methods fail when they encounter unseen
gestures in real time. In this work, we advocate the need for zero-shot
underwater gesture recognition (ZSUGR), where the objective is to train
a model with visual samples of gestures from a few “seen” classes only
and transfer the gained knowledge at test time to recognize semantically-
similar unseen gesture classes as well. After discussing the problem and
dataset-specific challenges, we propose new seen-unseen splits for ges-
ture classes in CADDY dataset. Then, we present a two-stage frame-
work, where a novel transformer learns strong visual gesture cues and
feeds them to a conditional generative adversarial network that learns to
mimic feature distribution. We use the trained generator as a feature syn-
thesizer for unseen classes, enabling zero-shot learning. Extensive exper-
iments demonstrate that our method outperforms the existing zero-shot
techniques. We conclude by providing useful insights into our framework
and suggesting directions for future research. The code is available at:
https://github.com/sandipan211/ZSUGR.

Keywords: Underwater gesture recognition · Zero-shot learning ·
Autonomous underwater vehicles · Transformers · Cross-attention ·
Generative adversarial networks

1 Introduction

Despite our planet being 70% water, our knowledge regarding underwater ecosys-
tems remains limited. A major reason behind this is the harsh underwater envi-
ronment and human divers face trouble collecting data from ocean depths due
to several concerns like increasing hydrostatic pressure and oxygen depletion. In
the past few decades, humans have passed the baton to autonomous underwa-
ter vehicles (AUVs) that can assist marine experts in several ways by capturing
underwater images/videos, detecting oil spillage, inspecting oil and natural gas
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pipelines, and conducting bathymetric surveys – all while being well-resistant to
the problems faced by human divers. As a result, underwater exploration has
garnered a lot of attention nowadays, with applications in oceanography, marine
warfare, information navigation, and marine scene understanding.

In many underwater missions, AUVs are accompanied by human divers who
communicate non-verbally via different gestures. However, underwater gesture
recognition is a relatively under explored area in computer vision owing to the
lack of annotated datasets. Recently, a new gesture-based communication lan-
guage called CADDIAN [5] was developed, and an image-based underwater ges-
ture recognition dataset named CADDY [8] (Fig. 1b) was constructed as an
effort to facilitate vision research. However, there are primarily two challenges.
Firstly, underwater images suffer from problems like low contrast, haziness, color
distortion, and blurriness. As a result, traditional gesture recognition methods
face problems in analyzing them. Secondly, existing gesture recognition models
are predominantly supervised [2,18,20,32–34] and can only recognize gestures
from a predefined set used to train the models, failing to interpret “unseen”
gestures. This is an inevitable bottleneck as it is impossible to collect thousands
of labeled images for every possible gesture that might be used by human divers
in the wild. For instance, a new gesture meant to indicate low oxygen levels due
to a real-time accident might not be interpreted by an AUV equipped with a
supervised gesture recognition model, putting the human diver at risk.

Zero-shot learning (ZSL) has come to the limelight in recent years to allevi-
ate such data scarcity, which mimics the human tendency to learn from other
modalities (semantics or class attributes) like text or audio in the absence of
visual examples. The objective of ZSL is to transfer knowledge about a few
“seen” concepts/classes via a visual-semantic association and recognize unseen
ones. Although a few recent works explore zero-shot gesture recognition, it is
still unexplored in underwater scenarios.

In this paper, we introduce and study the task of zero-shot underwater ges-
ture recognition (ZSUGR). Being the first work of its kind, standard seen-unseen
zero-shot splits are currently unavailable. Therefore, we propose three new splits
by designating seen and unseen classes randomly, following previous splitting
strategies [14,31]. Considering the challenges in extracting strong visual features
from underwater images and the highly class-imbalanced nature of the CADDY
dataset (Fig. 1a), a two-stage framework is devised consisting of a novel trans-
former and a generative adversarial network. In the first stage, we design a novel
Gated Cross-Attention Transformer (GCAT) which is responsible for a strong
representation learning. Visual features extracted from a pretrained ResNet-50
are passed to an encoder, and its outputs are transformed into powerful ges-
ture representations by our novel gesture decoder. The trained GCAT is then
used as a visual feature extractor for the seen classes. A conditional Wasserstein
GAN [1] is then trained with these visual features, with seen class semantic
vectors as class conditional variables. Here, we rely on the text encoder of a pre-
trained visual-language model called CLIP [23] to obtain the semantic vector of
a gesture class. Visual features of unseen gestures can then be synthesized using
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our trained WGAN, enabling us to train a gesture classifier with data from both
seen and unseen classes, mitigating the bias problem in zero-shot settings [22].
Extensive experiments are conducted, showing the failure of supervised models,
our model’s improved performance compared to state-of-the-art zero-shot clas-
sification methods in conventional and generalized zero-shot settings (inspired
by previous zero-shot gesture recognition works [14,17,29]), and demonstrating
the role of improved visual representations for ZSUGR. To summarize, we make
the following contributions in this paper:

– We introduce the problem of zero-shot underwater gesture recognition from
images for the first time and discuss its real-world applications.

– Seen-unseen splits of gesture classes are proposed for the CADDY dataset for
zero-shot training and model evaluation.

– A two-stage network is proposed for ZSUGR consisting of a novel trans-
former that can be trained as a strong underwater visual feature extractor.
The obtained features can be fed to a class-conditional generative adversarial
network that can learn to synthesize visual features of unseen gestures.

Fig. 1. Properties of the CADDY dataset [8].

2 Related Works

2.1 Hand Gesture Recognition (HGR)

Vision-based HGR methods can be broadly categorized into dynamic (limb
movements indicate gesture) and static (hand shape and finger orientations
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indicate gesture). Among these, segmenting the hand using skin color models
to extract visual gesture features is a common practice [26,35]. With the avail-
ability of neural networks pretrained on large-scale datasets, transfer learning
approaches [28] have also been successful. However, the extracted visual features
are affected by factors such as lighting conditions and background clutter. To
enable HGR frameworks to recognize a wider range of gestures, 3D methods
are explored, where several sensors and cameras are used to obtain temporal
volumes [13] or skeletal joints [6] to analyze the hand shapes.

2.2 Zero-Shot Learning (ZSL)

Image classification remains the most researched vision task exploiting ZSL.
The first seen-unseen splits were formally provided for five datasets in the sem-
inal work of Xian et al. [30], who also popularized the concept of conventional
(only unseen class samples at test time) and generalized (samples from both
seen and unseen classes at test time) zero-shot learning settings. Meanwhile,
gesture recognition as a vision task is less explored. One of the earliest works
in zero-shot gesture recognition (ZSGR) unified coordinated natural language,
gesture, and context [27] to facilitate human-robot interactions. However, ZSGR
was standardized in the work of Madapana and Wachs [15], who used gestures
from two gesture-based datasets to define a total of 13 seen and 8 unseen classes.
Furthermore, they provided a list of 13 high-level semantic descriptors to char-
acterize each gesture class. Their zero-shot classifiers were inspired by previous
image classification methods [12,24]. In an extended work, they further intro-
duced hard zero-shot gesture recognition [17] where there are only a few visual
samples for the seen classes as well. Recently in another work, they introduced
a gesture attribute dataset [16] with segmented skeletal data and proposed a
joint semantic encoder optimizing reconstruction, semantic, and classification
losses [14]. Another novel dataset was built by Wu et al. [28] with 16 seen and 9
unseen classes, and then they proposed an end-to-end prototype learning frame-
work [29].

2.3 Underwater Diver Gesture Recognition

Since the arrival of the CADDY dataset [8], several works have been undertaken
in the last four years in underwater gesture recognition (UGR). The first such
work [32] used pretrained convolutional networks like ResNet, GoogleNet, and
others for transfer learning. Several other works that followed [2,18,20] com-
pared the performance of classical and deep learning methods for UGR. On
the other hand, DARE [33] demonstrated a hierarchical tree-structured classi-
fication scheme. Recently, VT-UHGR [34] used a pretrained ViT as the visual
encoder and a pretrained BERT as the text encoder for multimodal underwater
gesture feature learning. Data augmentation using generative methods has also
been used to improve UGR performance. However, most of these methods use
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transfer learning and do not provide any novel architecture for UGR. Addition-
ally, none of them are zero-shot learners. This paper presents the first work that
addresses both of these concerns.

3 Methodology

3.1 Problem Definition

Let we have a training set Dtrain = {(xi, yi)| xi ∈ Xseen, yi ∈ S}, where xi is an
image from a seen class yi. A separate set of unseen data Dnovel = {(xj , yj)| xj ∈
Xunseen, yj ∈ U} is given such that the sets of seen and unseen classes are
disjoint, i.e., S ∩ U = φ. Additionally, we have a semantic vector ai ∈ R

512

for each gesture class y ∈ S ∪ U . We work in the more realistic inductive zero-
shot setting [30] – where visual examples of unseen classes are unavailable during
training – instead of the transductive setting. Then, the task in conventional zero-
shot learning is to learn a classifier fzsl : Xunseen → U . For generalized zero-shot
learning, a small subset of Xseen (X sub

seen) is extracted as the set of seen samples
at test time, following the suggestions in the benchmark ZSL paper [30]. The
objective then changes to learning a classifier fgzsl : X sub

seen ∪ Xunseen → S ∪ U .

Fig. 2. Proposed two-stage framework for ZSUGR. Here, z denotes a random noise
vector, and a denotes semantic vector of a gesture class.

3.2 System Overview

Figure 2 shows our overall two-stage framework, which includes a novel trans-
former and a Wasserstein GAN (WGAN). Given an underwater image X ∈
R

C×H×W , its visual feature map Vb ∈ R
C′×H′×W ′

is first extracted using a
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pretrained ResNet-50 backbone. Since a transformer encoder considers each
spatial location in Vb as a token while computing self-attention, it is neces-
sary to keep track of the token positions. We construct positional embeddings
Xpos ∈ R

C′×H′×W ′
, add them element-wise with Vb , and pass the resulting fea-

ture map to the transformer encoder E. The outputs from E are then decoded
via our novel gated cross-attention mechanism guided by powerful visual repre-
sentations from a pre-trained CLIP. These decoded visual gesture features are
used as “real features” for training a WGAN, conditioned on class semantics.
The trained WGAN can be used to generate visual features corresponding to
unseen gesture classes. A classifier Φcls(.) is trained with seen class data and the
synthesized unseen class data for zero-shot gesture recognition. We discuss the
novel GCAT in Sec. 3.3, followed by the WGAN in Sec. 3.4.

3.3 Gated Cross-Attention Transformer (GCAT)

As mentioned in Sec. 3.2, the encoder E takes the input:

Xe = Vb + Xpos (1)

and performs a self-attention operation on the visual tokens. The output Oe ∈
R

C′×H′W ′
contains image-wide contextual information that is passed to our ges-

ture decoder Dec. Meanwhile, we extract additional visual features Vc ∈ R
C′′×k

from a pretrained CLIP image encoder and use them to refine the knowledge
coming from the encoder, yielding gesture features. To this end, Oe is first pro-
jected to CLIP dimension, and then a two-branch cross-attention mechanism is
proposed. The two branches perform identical operations, with the only differ-
ence being in the query (Q), key (K), and value (V ) assignments. The branch
assignments (Fig. 3) are as follows:

QL = Oe , KL = VL = Vc (2)
QR = Vc , KR = VR = Oe (3)

where L and R denote left and right branches. The attention outputs are normal-
ized using layer normalization (LN) operation and added to the branch queries:

AL = LN(QL + CrossAtt(QL,KL, VL)) (4)
AR = LN(QR + CrossAtt(QR,KR, VR)) (5)

Now, since visual inputs to Dec come from two sources – Oe based on ResNet
features and Vc based on CLIP features – it is beneficial to weight the attention
outputs for understanding the contribution of the encoder outputs as well as
CLIP context. Consequently, we propose a gating mechanism where we apply a
1 × 1 convolution first to the attention outputs of each branch and downscale
them by a factor of 2. A GELU activation [11] finally produces the gated values.
The gating function can hence be formulated as:

g(AL) = GELU(wLAL + bL ) (6)
g(AR) = GELU(wRAR + bR ) (7)
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where (wL , bL ) and (wR , bR ) denote the weights and biases of the convolutional
layer in the left and right branches respectively. The gated outputs indicate
how much cross-attention information should be preserved and how much can
be learned subsequently. The attention maps from the two branches are fused
together, and the source knowledge from the encoder is refined as:

Oe = Oe ◦ (AL + AR) (8)

where ◦ denotes Hadamard product. It is then passed to a feedforward network
(FFN), as shown in Fig. 3, to produce the final feature map OT containing
gesture cues. A channel-wise mean is taken at the end such that OT ∈ R

d.

Fig. 3. Architecture of our novel GCAT gesture decoder.

3.4 Transformed-Feature Generating Network

Due to problems like color distortion and haziness that underwater images suffer
from, it becomes exceedingly difficult to work in extreme scenarios like zero-shot
in the absence of visual images of unseen classes. Moreover, predictions may
get highly biased toward the seen classes owing to the imbalanced nature of
underwater datasets like CADDY. To alleviate the seen-bias problem, we employ
a conditional Wasserstein Generative Adversarial Network (c-WGAN) [1]. As
depicted in Fig. 2, it takes the visual gesture features OT corresponding to
seen classes as input and their semantic vectors (a) as a conditional variable.
The generator G attempts to mimic the true distribution of the visual features
OT while being discriminative in the visual space with guidance received from
the class semantics. It generates seen class features ÕT , which are then fed to
a critic network D along with features from true distribution OT . D acts as
a binary classifier that scores the “realness” of the input data (either coming
from the mimicked feature distribution or from the true distribution). During
backpropagation, D tries to improve its predictions, whereas G tries to improve
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itself based on the feedback from D and synthesizes features closer to the true
distribution. For optimization, we use the Wasserstein loss:

LWGAN = E[D(OT , a)] − E[D(ÕT , a)] + λE[(||∇ÔT
D(ÔT , a)||2 − 1)2] (9)

where the first two terms represent the critic loss in WGAN and the third
term represents a gradient penalty [9], with λ being the penalty coefficient.
ÕT = G(z, a) denotes the generated feature, and ÔT = ρOT + (1 − ρ) ÕT ,
with ρ ∼ U(0, 1). Additionally, we use a mode-seeking loss [19] to mitigate the
problem of mode-collapse in GANs:

LMS = E[||G(z1, a) − G(z2, a)||1/||z1 − z2||1] (10)

Here, z1 and z2 correspond to two noise vectors that produce different visual
features. The idea is to regularize that the generated features should get sampled
corresponding to noise vectors in the learned distribution that are far apart from
each other, giving rise to discriminative synthetic visual features.

Table 1. Details of proposed seen-unseen splits of the CADDY dataset.

Split Seen classes Unseen classes Xseen X sub
seen Xunseen

1 10 6 12505 1389 4584

2 10 6 10251 1139 7088

3 10 6 11713 1301 5464

3.5 Training and Inference

We follow a two-stage training process, as shown in Fig. 2. In the first stage,
we train the transformer GCAT to produce visual gesture features. We feed
them to a classifier Φc whose weights are initialized by the text embeddings (or
semantics) of the seen classes. For a class yi, we obtain its semantic vector by
converting the class name to “A photo of a diver gesturing [yi]” via a prompt
template ρg(.), and then using a pretrained CLIP text encoder [23] ψ(.) as:

ai = ψ(ρg(yi)) ∀ yi ∈ S ∪ U (11)

We minimize a cross-entropy loss (LCE) between the predicted and ground-truth
gesture labels, strengthening the visual feature representations for seen gestures.

The trained GCAT is used in the next stage as a feature extractor for under-
water images. With the extracted features (seen data), the c-WGAN is trained
to synthesize seen data by minimizing the loss (with hyperparameter α):

min
G

max
D

LWGAN + α LMS (12)
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Given unseen class semantic vectors, the trained GAN can then be used to gener-
ate unseen class visual features. The synthesized unseen features and the visual
features for seen classes extracted from the trained GCAT can then be combined
and used to train a linear softmax classifier Φcls(.) for zero-shot prediction. At
test time, visual gesture features of an image are first extracted using GCAT,
and the trained classifier Φcls(.) predicts the gesture class.

Table 2. Top-1 accuracy (in %) reported for CZSL and GZSL settings. H denotes
harmonic mean of seen and unseen accuracy in GZSL. Best results are in bold. Codes
for CZSL training and evaluation were not provided by DGZ [3].

Method Uczsl Sgzsl Ugzsl H

TFVAEGAN [21] 41.50 ± 5.47 79.57 ± 13.11 13.49 ± 5.28 22.51 ± 7.40

CNZSL [25] 16.72 ± 0.08 20.27 ± 3.84 11.88 ± 2.78 14.97 ± 3.23

FREE [4] 15.83 ± 3.95 84.88 ± 9.03 14.55 ± 3.36 24.61 ± 4.50

CE-GZSL [10] 39.89 ± 6.49 94.11 ± 0.55 2.58 ± 0.45 5.01 ± 0.87

DGZ [3] - 57.89 ± 2.90 15.72 ± 3.32 24.62 ± 4.14

Ours 45.91 ± 4.71 61.93 ± 5.71 20.03 ± 7.14 29.53 ± 7.06

4 Experiments

4.1 Dataset

All our experiments are conducted on the CADDY underwater stereo-vision
dataset [8], one of the largest publicly available underwater image datasets and
the only one for diver gesture recognition. Overall, 18,478 labeled diver gesture
images are present in CADDY, belonging to 16 different gesture classes (Fig. 1b).
The gestures used by divers correspond to the CADDIAN sign language [5].
Notably, the dataset is highly imbalanced with a long-tail distribution (Fig. 1a),
making it very challenging for zero-shot learning.

4.2 Zero-Shot Splits and Evaluation Protocols

Due to the absence of any previous work on ZSUGR, we define new splits of
the CADDY dataset, marking the classes to be used as seen/unseen for zero-
shot models. In previously undertaken zero-shot vision applications, seen-unseen
splits are proposed following two approaches. Some works designate fixed sets
of seen/unseen classes [30] for a given dataset. On the other hand, some works
randomly split the dataset classes into seen and unseen sets at a 50%/50%
proportion, and results are reported over multiple such random splits [31]. We
take this second approach to eliminate human bias in picking the seen-unseen
split. However, owing to highly imbalanced data, we propose to pick 10 seen and
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6 unseen classes randomly from the dataset, and three such splits are obtained.
Table 1 provides our split details.

For model evaluation, we follow the benchmark protocol for zero-shot clas-
sification [30]. For conventional zero-shot (CZSL) evaluation, we report the
top-1 accuracy for the unseen classes (Uczsl). In the case of generalized eval-
uation (GZSL), we compute the top-1 accuracy for both seen (Sgzsl) and
unseen (Ugzsl) classes and report their harmonic mean (H). The harmonic mean
encourages the model to perform well on both seen and unseen classes, which
is a more realistic metric for zero-shot settings. Since we have multiple random
splits, we indicate the mean and standard deviation of obtained accuracy across
the three random splits for all the reported results.

Fig. 4. Comparison of our GZSL confusion matrix with the state-of-the-art.

4.3 Implementation Details

All the experiments are undertaken in PyTorch using a single NVIDIA A100
GPU. The raw underwater images are resized to 3 × 224 × 224. We used the
ResNet-50 backbone to extract a feature map Vb of 256 × 7 × 7. Our encoder
E contains the same layers as the traditional transformer, consisting of a self-
attention mechanism, followed by layer normalization and neural layers. The
final encoder output is obtained after 3 blocks of encoder layers. We use 3 blocks
of decoder layers, and the final decoder output OT ∈ R

(7×7)×512 is averaged
across the feature maps to yield a 512-dimensional visual gesture feature. The
transformer GCAT is optimized using AdamW with a learning rate of 1e-5 and
weight decay of 1e-4. The output from the CLIP image encoder Vc used for
refining the encoder features is a feature map of dimension 768 × 50. As for the
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CLIP text encoder, the output embeddings are 512-dimensional vectors used as
semantic vectors for every class. In our c-WGAN, the generator (G) and critic
(D) networks are essentially two multi-layer perceptions, both optimized using
the Adam optimizer with a learning rate of 1e-4. In LMS, we use α = 1e − 4.

Fig. 5. Component analysis of our framework for the three proposed random splits.
Top-1 accuracy is reported in CZSL (Uczsl ) and GZSL settings (Sgzsl and Ugzsl with
harmonic mean H). E = GCAT encoder, RN-101 = ResNet-101 as feature extractor,
Dec = GCAT decoder, c-WGAN = Conditional WGAN.

4.4 Zero-Shot Results

Since there are no prior works in ZSUGR, we adapted a few zero-shot image
classification methods for the ZSUGR task, following previous works [14,17,29].
For a fair comparison, we train these methods with the same semantic vectors
as ours. We evaluate these models in both CZSL and GZSL settings and report
their mean and standard deviations over the three random splits we proposed.

Conventional Setting (CZSL). DGZ [3] did not provide their implementation
for CZSL evaluation. CZSL results for some other methods are reported in Tab. 2.
Our method outperforms all of them by a good margin with an average top-1
accuracy of 45.91 ± 4.71%.

Generalized Setting (GZSL). Table 2 suggests that CE-GZSL [10] is
extremely capable of recognizing seen gestures during evaluation with an accu-
racy of 94.11 ± 0.55% but performs very poorly in case of unseen gesture classes
with an accuracy of 2.58±0.45%, yielding low harmonic mean. This indicates that
CE-GZSL has low generalizability in ZSUGR for the CADDY dataset, although
it exhibited state-of-the-art (SOTA) generalizability in image classification. The
other methods suffer from the same issue as well. One of the reasons behind
such low generalization ability could be the class imbalance problem in CADDY,
which is not as extreme in the image classification datasets on which these meth-
ods are usually evaluated. Moreover, the zero-shot methods usually suffer from
the bias problem [22], where predictions for unseen class samples are incor-
rectly biased towards a similar seen class. Together, the bias problem and class
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Fig. 6. Attention visualization of GCAT gesture decoder for ten gestures.

imbalance make ZSUGR a challenging task for the SOTA zero-shot classifica-
tion methods. Meanwhile, our method seemingly finds a better balance between
seen and unseen class knowledge. Additionally, it deals with the bias problem
better than the other generative methods like TFVAEGAN [21], FREE [4], and
DGZ [3], indicating that our GAN has had superior training with gesture fea-
tures extracted from the novel GCAT, as compared to the ResNet-101 features
with which the GANs of other methods are trained. Consequently, we obtain the
best harmonic mean of 29.53 ± 7.06% (Tab. 2). For class-wise comparison, we
plot confusion matrices in Fig. 4 to demonstrate how the SOTA classification
method DGZ [3] fares against our method.

Table 3. Effect of activation function on top-1 accuracy (in %) during CZSL and GZSL
evaluation. H denotes the harmonic mean of seen and unseen accuracy.

Activation Uczsl Sgzsl Ugzsl H

GELU 45.16 ± 4.64 61.93 ± 5.71 20.03 ± 7.14 29.53 ± 7.06

ELU 44.66 ± 8.11 59.50 ± 12.11 18.05 ± 5.94 26.84 ± 6.54

RELU 45.38 ± 8.74 65.48 ± 2.03 14.73 ± 4.17 23.86 ± 6.65

Sigmoid 40.71 ± 5.25 36.50 ± 5.52 30.02 ± 2.81 32.67 ± 2.15

SiLU 47.71 ± 3.75 65.65 ± 5.09 15.46 ± 0.74 25.03 ± 1.24

Qualitative Analysis. Fig. 6 shows decoder attention visualizations highlight-
ing where our GCAT gesture decoder is focusing at test time while extracting
visual gesture features. We observe that our trained GCAT focuses on the hands
of the divers, resulting in highly relevant visual features extracted for ZSUGR.
Specifically, for relevant gestures like three, photo, and four, the decoder focuses
on the fingers, which are more informative. On the other hand, it shifts its focus
to both hands whenever relevant, whether the hands are close to each other (like
boat and carry) or distant (such as mosaic).
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Plight of Supervised Models. Previous works [18,20,32] have shown that
pretrained CNN models can be easily adapted to underwater gesture recognition
via transfer learning on CADDY. In Tab. 4, we mention the supervised gesture
recognition results for CADDY as reported by previous works, with the best
accuracy reaching 98% using ResNet-18. We employ these models in the GZSL
setting to investigate their performance in recognizing unseen gestures. To this
end, we obtain visual features from these pretrained CNNs via transfer learning
and compute a cosine similarity with the CLIP semantic vectors to get zero-
shot predictions. It can be observed from Tab. 4 that their performance drops
for both seen and unseen classes. Specifically, they fail miserably in recognizing
unseen gestures, with a best harmonic mean of 2.45 ± 4.18% achieved using
MobileNet-v3. On the contrary, our model achieves a harmonic mean of 29.53 ±
7.06%. Hence, the need for zero-shot models for underwater gesture recognition
is evident as the best-performing supervised models are insufficient.

4.5 Ablation Studies

Component Analysis. The baseline zero-shot performance of CLIP is
extremely underwhelming, as can be inferred from Fig. 5. Moreover, using raw
visual features extracted from CLIP to train the c-WGAN improves CZSL per-
formance to an extent but hurts generalizability, as the GZSL results demon-
strate. This reinforces the need for a task-specific framework for ZSUGR and
justifies the necessity of our work. To validate the effect of each component of
our framework, we conduct an ablation study on CADDY in both CZSL and
GZSL settings with the following changes to our framework: (i) removing the
novel GCAT gesture decoder and using only the vanilla encoder to get visual
features and (ii) removing the GCAT module and using pretrained ResNet-101
visual features to train our c-WGAN. Fig. 5 suggests that our decoder signifi-
cantly improves performance in both CZSL and GZSL settings across all three
random splits. This justifies refining the visual features extracted by the vanilla
encoder using our novel decoder, which makes GCAT attend to more critical and
discriminative regions of the diver’s hand within the image. On the contrary, the
raw features from ResNet-101 or the vanilla encoder alone are less effective.

Impact of Activation Functions. In Tab. 3, we study the choice of activa-
tion function in the architecture of our novel gesture decoder while training the
GCAT. In the CZSL scenario, we see comparable performance of the five differ-
ent activation functions we studied. Interestingly, in the GZSL setting, we find
that different activations have varying impacts on recognizing seen and unseen
gestures. For example, the sigmoid function generalizes well, but seen accuracy
is low. On the other hand, using SiLU [7] degrades unseen accuracy. The acti-
vation we used finally, GELU, performs well in both CZSL and GZSL settings.
In summary, it is evident that the activation functions can dictate the quality of
visual gesture features which can, in turn, hamper a generative method’s ability
to generate discriminative visual features for seen and unseen classes.
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Table 4. A performance comparison of pretrained CNN models in the supervised (done
by previous works) and generalized zero-shot settings (shown by us). Top-1 accuracy
(in %) is reported for supervised setting, whereas top-1 accuracy for seen and unseen
classes are reported over our proposed splits for GZSL.

Pretrained CNNSupervised Sgzsl Ugzsl H

AlexNet [32] 82.89 71.75 ± 2.19 0.76 ± 1.21 1.48 ± 2.35

VGG-16 [32] 95.00 76.20 ± 1.23 0.42 ± 0.57 0.84 ± 1.12

ResNet-18 [18] 98.00 53.54 ± 3.77 0.72 ± 1.25 1.38 ± 2.39

ResNet-50 [20] 97.06 61.94 ± 2.86 0.79 ± 1.27 1.53 ± 2.44

GoogleNet [32] 90.08 53.19 ± 3.46 0.8 ± 1.39 1.53 ± 2.64

MobileNet-v3 [18] 84.32 62.78 ± 5.21 1.31 ± 2.23 2.45 ± 4.18

5 Conclusion

We introduced the task of zero-shot underwater gesture recognition in this paper
and discussed its potential for diver-AUV communications. We proposed a two-
stage framework consisting of a novel transformer that learns strong visual ges-
ture representations and a conditional generative network that learns the dis-
tributions of these features. From the dataset perspective, we proposed three
random seen-unseen splits of the CADDY dataset and reported our results in
both conventional and generalized zero-shot settings, comparing them with state-
of-the-art classification methods. Through extensive experimentations and abla-
tions, we discussed how poorly supervised methods perform in zero-shot settings,
why existing zero-shot classification methods suffer so much from class imbal-
ance and bias problems, and how activation functions may impact transformers
for gesture recognition. One of the areas for future research could be learning the
semantic representations of gestures instead of using handcrafted prompt tem-
plates. We hope that this work can serve as a benchmark for the advancement
of ZSUGR as a field since there is a huge room for improvement.
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Abstract. Optic Atrophy is a significant cause of visual impairment
and demands accurate and timely diagnosis for effective treatment. How-
ever, diagnosis of this condition is often carried out by manual inspec-
tion by ophthalmologists. Recent studies have attempted to automate
this diagnosis using machine learning techniques from fundus images.
The prime challenge in this approach lies in the limited availability of
public datasets and the difficulty in handcrafting distinctive patterns in
the fundus images. The present work proposes using a Siamese network
architecture for Optic Atrophy detection using fundus images, which
would be effective despite the limited number of publicly available sam-
ples of the condition. The other contribution of the paper is the use of
augmentation techniques, viz., random Gaussian blur, and the addition
of salt-and-pepper noise to increase the generalization of the problem.
The Siamese network accepts pairs of inputs and classifies the images
as similar or dissimilar according to the distance of the two instances in
the embedding space. One of the images is taken as a standard image,
while the second is the test image. The proposed method provides better
results than the existing works.

Keywords: Optic Atrophy · Fundus Images · Few-Shot Learning ·
Data Augmentation · Siamese Network

1 Introduction

Optic atrophy is a condition where the optic nerve deteriorates or gets damaged,
leading to the loss of nerve tissues and causing visual impairment [7]. To diagnose
optic atrophy, doctors use methods like Optical Coherence Tomography, Oph-
thalmoscopy, and Visual Acuity Testing [17], followed by manual inspection.
Ophthalmoscopy, also known as fundoscopy, is a popular, non-invasive proce-
dure that involves examining the back of the eye, also known as the fundus,
with an ophthalmoscope [12]. This method does not require special preparation
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or anesthesia and produces images called fundus images [10]. Optic atrophy can
be identified by the pale optic nerve heads seen in these fundus images. However,
diagnosing optic atrophy is challenging due to the poor contrast and complex
structure of fundus images.

1.1 Motivation

Fundus imaging has emerged as a valuable diagnostic tool, offering detailed
insights into the structural changes within the retina and optic nerve head.
Traditional methods for detecting optic atrophy involve manual examination of
fundus images by ophthalmologists. The main indicators include changes in the
optic disc color and shape, thinning of the retinal nerve fiber layer, and the
appearance of the optic cup [4]. However, the manual examination is subjective
and time-consuming, leading to the development of automated techniques. In
recent years, machine learning approaches have shown promise in automating
the classification of ocular diseases, including Optic Atrophy, from fundus images
[6]. Some fundus images of healthy cases of optic atrophy are shown in Fig. 1,
obtained from [6]. In the figure, the main difference between normal healthy
patients depicted in the bottom row and patients with optic atrophy given in
the top row is the color of the optic disc. The optic disc is the circular region in
the fundus image where a number of blood vessels meet. The disks in the bottom
row appear reddish, as compared to yellowish color of the disks in the top row.
The cup to disc ratio is also normal [0.3 to 0.4] for the bottom row, while it is
not so for the optic atrophy cases. However, it is often very difficult to obtain
the discriminatory features with visual inspection, as such a clear distinction is
not always obtained. This issue makes the development of hand-crafted features
difficult for such data. Deep learning models offer vast computational power
and ability to learn intricate patterns from data, and hence may be employed to
offer a potential solution to enhance the accuracy and efficiency of Optic Atrophy
detection using fundus images and hence such approaches may be explored to
address the research issue.

1.2 Objectives

The prime objective of this work is to develop a deep neural network model with
limited training fundus image samples, and hence to improve the accuracy of
the existing methods.

1.3 Literature Survey

Till date, the major focus of automated diagnosis of ocular disorders from fundus
images has been on glaucoma detection. The literature on glaucoma detection
is relatively rich, while the detection of optic atrophy through fundus images
has not received much attention. Very recently, Sneha et al. [13] have proposed
the use of empirical wavelet transform (EWT) as features with support vector
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Fig. 1. Sample Fundus Image Taken From the Dataset depicting (a) optic atrophy and
(b) normal cases

Table 1. Literature Review

Author, Year Algorithm Database Remarks

Sneha et al., 2019 [13] EWT with SVM custom data - limited accuracy

- data not available publicly

Liu et al., 2021 [8] ResNet-152 custom data - range of optic disc abnormalities

- Spanish ethnicity

- data not available publicly

Wang et al., 2023 [14] VGG-16 custom data obtained from hospitals Dataset not publicly available

Lee et al., 2024 [6] ResNet-18 custom data obtained from hospitals - dataset available

- 39 categories

Wang et al., 2024 [6] DenseNet121 custom data obtained from hospitals - dataset not publicly available

- multiple ocular disorders

machines (SVM) for classifying optic atrophy based on extracted texture fea-
tures. This method was found to achieve significant accuracy improvements over
manual methods. The advent of deep learning has significantly advanced the field
of fundus image classification, with a few articles on optic atrophy detection. Liu
et al. [8] used ResNet-152 with a custom dataset to detect a range of optic disc
abnormalities, focusing on individuals of Spanish ethnicity. However, this data
is not publicly available. Wang et al. [14] employed VGG-16 with custom data
obtained from hospitals, but similarly, their dataset is not publicly accessible. In
contrast, Lee et al. [6] utilized ResNet-18 with hospital-acquired custom data,
and their dataset is available. Moreover, this dataset has 39 categories contain-
ing a total of 1000 fundus images. The most recent work in 2024 is by Wang et
al. [16] utilizing a DenseNet121 model to classify several ocular disorders includ-
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ing optic atrophy, achieving robust performance. A summary of the few recent
relevant works is provided in Table 1.

The table suggests that there is a scarcity of publicly available datasets, as
some researchers could not make the datasets available due to the non-agreement
of the participants [14]. The only standard publicly available dataset is by Lee et
al., [6] with 39 ocular disorder categories with a total of 1000 images. Specifically,
there are only 12 fundus images for the optic atrophy class. Further dividing these
images in the ratio 7:3 for training to testing it leaves us with only 8 images for
optic atrophy, categorizing it as a few-shot learning problem.

1.4 Research Issues

Examination of the literature reveals the following research issues:

– Limited availability of publicly available datasets for the problem,
– Only publicly available dataset has very few annotated data, with only 12

fundus images for optic atrophy class,
– Generation of synthetic data will require extensive manual inspection by

experts,
– Interpretability and explainability of the model’s predictions are essential for

clinical acceptance and trust.
– Limited scope for generalization to unknown data, thereby restricting real-

world applicability.

1.5 Contributions

The present work contributes to a few-shot learned Siamese architecture-based
neural network trained on a small-sized dataset. The dataset is generalized with
two data augmentation techniques to introduce variability in the dataset con-
cerning blurry and noisy acquisitions. Our assessment of the benchmark dataset
demonstrates its superior performance in accuracy, precision, and F1-score when
compared to existing methods. Our primary contribution lies in combining both
data augmentation and a Siamese network equipped with a contrastive loss func-
tion.

2 Dataset

The proposed model is based on the ‘1000 Fundus images with 39 categories’
dataset [3] developed by the Joint Shantou International Eye Centre (JSIEC),
Shantou city, Guangdong province, China. The dataset contains a total of 1000
fundus images representing 39 cases of different ocular diseases along with a
healthy class. The present work makes use of optic atrophy and healthy classes,
containing 12 and 38 images respectively. The images are further augmented
with Gaussian blur and addition of salt-and-pepper noise.
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2.1 Data Augmentation

Few-shot learning models rely on limited data to generalize well to new, unseen
data. By augmenting the training set with various distortions and noises, the
model learns to focus on the underlying anatomical structures rather than spe-
cific pixel patterns. This leads to better generalization to new images.

Gaussian Blur. By applying Gaussian blur, the model can learn to recognize
features even when they are slightly obscured or blurred, mimicking real-world
conditions where the quality of fundus images can vary due to factors like patient
movement or imperfect focus. This augmentation technique applies Gaussian
blur with random kernel sizes and standard deviations to the image [5].

Iblurred(x, y) =
1

2πσ2

M∑

i=−M

M∑

j=−M

exp
(

− i2 + j2

2σ2

)
· I(x + i, y + j) (1)

This operation yields a blurred version Iblurred(x, y) of the original fundus image
I(x, y) by convolving through different Gaussian masks of kernel size M and
standard deviations σ. The Gaussian mask defines the weight of each neighboring
pixel. The standard deviation σ controls the spread of the blur, while 1

2πσ2

normalizes the Gaussian kernel so that its total sum is 1.
The value of σ was empirically kept in the range [0.8, 1.2], while M ∈ Z, 3 ≤
M ≤ 9. In this manner, ten augmented images are obtained for the normal class
and 30 for the optic atrophy class, per original image.

Salt-and-Pepper Noise. Salt-and-pepper noise is also added to the images to
simulate the presence of random artifacts in the images, such as dust or pixel
dropouts. The successful handling of noisy data by the developed model would
ensure that the model is robust to such irregularities and enables the model
to generalize from limited data. The augmented images Inoisy(x, y) with added
noise are obtained as [5]

Inoisy(x, y) =

⎧
⎪⎨

⎪⎩

0 with probability psalt

255 with probability ppepper

I(x, y) otherwise
(2)

From the above equation, it is evident that the intensity at some random pixel
locations are set to 0 with a probability of psalt, while some are set to 255
with a probability of ppepper, while the remaining are kept intact. We have used
psalt = ppepper = 0.05, which means random 5% pixels are set to 0, while other
random 5% are set to 255, and the remaining 90% are kept unchanged. As such,
10 and 30 more images per image were obtained for the normal and atrophy
classes, respectively (Figs. 2 and 3).

In this manner, the normal class images were extended to 38(10+10+1) = 798
images. Likewise, the optic atrophy images were extended to 12(30 + 30 + 1) =
732.



Optic Atrophy Classification from Fundus Images 367

Fig. 2. Sample augmentation of images of a healthy patient with Gaussian blur

Fig. 3. Sample augmentation of images of a patient having optic atrophy with Gaussian
blur

2.2 Dataset Split

The dataset is split into training, validation, and test sets with respective per-
centages of 70%, 15%, and 15%.

3 Network Architecture

The network is inspired by a Siamese Network, which has gained popularity in
many medical-image-based diagnosis tasks due to its few-shot learning capabil-
ities [11]. Siamese networks have emerged as a powerful architectural paradigm
within the context of computer vision and similarity learning. These networks
are designed to compare and contrast the similarity between inputs, making
them ideal for tasks such as face recognition, signature verification, and anomaly
detection.

This network takes two images, viz. Image 1 and Image 2, as inputs and
outputs 0 or 1 depending on whether they belong to the same class or not, as
shown in Fig. 4. At the heart of Siamese networks are two identical neural net-
works, which are parallel to each other. Each network accepts a distinct input,
processes the input independently, and computes an output vector. The archi-
tecture is designed such that the two networks do not interact directly with each
other during the forward pass. Instead, their output vectors are compared using
a similarity or distance metric, such as the Euclidean distance, cosine similar-
ity, or contrastive loss. This comparison produces a similarity score that reflects
how closely related the two inputs are. As illustrated in Fig. 4, the Siamese Net-
work comprises three convolutional layers succeeded by pooling layers suited for
acquiring pairwise similarities. The details of the layers involved are as follows:

– Conv Layer 1: 32 filters, kernel size 3 × 3, ReLU activation
– Max Pooling Layer 1: Pool size 2 × 2
– Conv Layer 2: 64 filters, kernel size 3 × 3, ReLU activation
– Max Pooling Layer 2: Pool size 2 × 2
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Fig. 4. Architecture of the network

– Conv Layer 3: 128 filters, kernel size 3 × 3, ReLU activation
– Max Pooling Layer 3: Pool size 2 × 2

– Dense Layer 1: 256 nodes, ReLU activation
– Dense Layer 2: 128 nodes, ReLU activation
– Dense Layer 3: 64 nodes, ReLU activation
– Output Layer: 1 node, Sigmoid activation

The embedding vectors of the branches are compared by a distance metric.

4 Hyper-parameter Optimization

Hyper-parameter optimization is a critical step in improving the performance
and generalization capability of neural networks. For the Siamese Network archi-
tecture described, we explored various hyper-parameters including learning rate,
batch size, optimizer choice, and regularization techniques. The goal is to iden-
tify the optimal set of hyper-parameters that yield the best performance on the
validation dataset.

4.1 Hyper-parameter Space

The following hyper-parameters were considered for optimization:

– Learning Rate: We experimented with {0.001, 0.01, 0.1}, of which, 0.001
gives the optimal result.

– Batch Size: We have taken the candidates for batch size of 16, 32 and 64.
The optimal performance is obtained at 32.

– Optimizer: Stochastic Gradient Descent [1] is used as the optimizer for this
work.

– Weight Initialization: We involved Xavier initialization as the method of
weight initialization [1].
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– Number of Epochs: The model performs optimally at 50 epochs.

A combination of grid search and random search techniques was employed
to identify the optimal set of hyper-parameters.

4.2 Baseline Model Training

A baseline convolutional neural network (CNN) architecture was trained using
the entire dataset for classification into the two classes. Standard loss functions
like cross-entropy loss and optimizer algorithms such as Adam were employed to
optimize the model parameters. This baseline model served as a starting point
for further embedding learning.

Algorithm 1 Baseline CNN Training for Two Classes
1: Input: Fundus image dataset with two classes (normal, optic atrophy)
2: Output: Trained CNN model
3: Initialize CNN architecture
4: Set hyperparameters: learning rate = 0.1, batch size = 2, number of epochs = 100
5: Split dataset into training and validation sets
6: Initialize optimizer = Adam and loss function = binary cross-entropy
7: Training:
8: for each epoch do
9: for each batch in training set do

10: Forward pass: Compute predicted probabilities for each class
11: Calculate loss using predicted probabilities and ground truth labels
12: Backward pass: Update model parameters to minimize loss
13: end for
14: Validate the model on the validation set
15: end for
16: Output: Trained CNN model

Algorithm 2 Siamese Network Architecture
1: Input: Fundus image pairs (x1, x2)
2: Output: Embeddings e1, e2
3: Define CNN architecture CNNshared (shared weights)
4: Initialize distance metric function dist
5: Forward Pass:
6: Pass image x1 through CNNshared to obtain embedding e1
7: Pass image x2 through CNNshared to obtain embedding e2
8: Compute Distance:
9: Calculate distance d = dist(e1, e2)

10: Output: Distance d
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4.3 Training the Siamese Network

A contrastive loss function Lcontrastive is defined [15] to penalize the model when
the distance between embeddings of images from the same class is large, and the
distance between embeddings of images from different classes is small.

Lcontrastive(y, d) =
1
2
y · d2 +

1
2
(1 − y) · (max(margin − d, 0))2 (3)

Here, y is a binary label indicating whether the pair of samples are similar (y = 1)
or dissimilar (y = 0). The value d is the distance between the two samples,
typically computed using a distance metric, which is explained in Sect. 5.1. The
parameter margin defines a radius around the dissimilar pairs. If the distance
d is within this margin for dissimilar pairs, it incurs a loss. It helps in creating
a margin between similar and dissimilar pairs. For similar pairs (y = 1), the
term 1

2y · d2 encourages the distance d between similar pairs to be as small
as possible. Since y=1, this reduces to 1

2d2. The factor 1
2 is typically used to

simplify the gradient calculation. For dissimilar pairs (y = 0), the term 1
2 (1−y) ·

(max(margin − d, 0))2 is active. It encourages the distance d to be larger than
the margin. If d is less than the margin, the term max(margin − d, 0) will be
positive and contribute to the loss. If d is greater than the margin, the term will
be zero, indicating no penalty.

The Siamese network was trained using pairs of fundus images sampled from
the dataset. For each training iteration, pairs of images were sampled, ensur-
ing an equal distribution of intra-class and inter-class pairs. This was ensured
through the data augmentation techniques. A learning rate scheduler was used
to adjust the learning rate during training for better convergence.

Algorithm 3 Training the Siamese Network
1: Input: Fundus image pairs (x1, x2), ground truth labels y
2: Output: Trained Siamese network
3: Initialize Siamese network architecture
4: Set hyperparameters: learning rate = 0.1, batch size = 2, number of epochs = 50
5: Split dataset into training and validation sets
6: Initialize optimizer = Adam and contrastive loss function Lcontrastive

7: Training:
8: for each epoch do
9: for each batch in training set do

10: Sample positive and negative image pairs (x1p, x2p) and (x1n, x2n)
11: Forward pass: Compute embeddings e1p, e2p, e1n, e2n
12: Calculate contrastive loss Lcontrastive using embeddings and ground truth

labels
13: Backward pass: Update model parameters to minimize contrastive loss
14: end for
15: Validate the model on the validation set
16: end for
17: Output: Trained Siamese network
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4.4 Embedding Space Visualization

The learned embeddings were visualized using t-SNE dimensionality reduction
[2] technique to ensure that the embeddings were well-separated in the embed-
ding space.

5 Results

The performance of the proposed network needs to be compared against that
of existing methods. The ability of distance metrics to encapsulate the discrim-
inating capabilities in the embedding space also need to be examined. Hence,
we evaluate the performance of the proposed network on the test set using var-
ious distance metrics and compare the performance of the same with existing
reported methods.

5.1 Distance Metric Evaluation

We have used the following distance metrics to compare the embeddings [9].

Euclidean Distance. The Euclidean Distance between two embeddings x1 and
x2, in an n-dimensional space, is obtained as

d(x1,x2) =

√√√√
n∑

i=1

(x1i − x2i)2 (4)

Manhattan Distance. The Manhattan Distance is obtained as the absolute dif-
ference as

d(x1,x2) =
n∑

i=1

|x1i − x2i| (5)

Cosine Similarity. This distance signifies the cosine of the angle between the
two embedding vectors, computed as

d(x1,x2) =
x1 · x2

‖x1‖‖x2‖ (6)

Hamming Distance. This distance is obtained as

d(x1,x2) =
1
n

n∑

i=1

I(x1i �= x2i) (7)

The performance comparison for these different distances is given in Table 2. We
find that the cosine similarity performs better in this regard. This observation
may be attributed to the fact that cosine similarity considers only the orientation
of the vectors in the embedding space and is unaffected by the magnitude of the
vectors.
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Table 2. Performance of Siamese Network with Different Distance Metrics

Distance Metric Performance

Accuracy Precision Recall F1 Score

Euclidean Distance 88.45 0.89 0.95 0.919

Manhattan Distance 86.77 0.84 0.88 0.859

Cosine Similarity 91.13 0.92 0.89 0.904

Hamming Distance 87.23 0.87 0.89 0.879

5.2 Comparison With Existing Works

The performance of the proposed Siamese network is compared with that of two
existing methods. The results show that the proposed method outperforms the
existing methods, except for the recall, where VGG-16 has a better recall. Since
the dataset is well-balanced and representative of the two classes, VGG16 was
able to achieve high recall by effectively learning discriminative features for each
class. This may not be true if a more skewed dataset was used for training (Table
3).

Table 3. Results of Fundus Image Classification

Model Accuracy (%) Precision Recall F1 Score

Sneha et al. (EWT with SVM) [13] 82.853 0.786 0.812 0.794

Liu et al. (ResNet-152) [8] 85.137 0.814 0.877 0.838

Wang et al. (VGG-16) [14] 87.244 0.837 0.916 0.868

Lee et al. (ResNet-18) [6] 83.924 0.833 0.891 0.862

Wang et al. (DenseNet-121) [16] 87.242 0.837 0.913 0.868

Siamese (proposed) 91.130 0.921 0.891 0.904

5.3 Ablation Study

To understand the contribution of each component within our deep network
architecture, we performed an ablation study by systematically removing or
altering specific layers and observing the impact on model performance. The
architecture in question comprises three convolutional layers, each followed by
max pooling, and several dense layers leading to a final sigmoid-activated output
layer. We conducted experiments on a dataset of fundus images for optic atro-
phy classification. The performance was evaluated using accuracy and F1-score
metrics on the validation set.

– Baseline Model: The full model with three convolutional layers achieved an
accuracy of 91.13% and an F1-score of 0.90.
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– Removing Conv Layer 3: Excluding the third convolutional layer (128 filters)
resulted in a significant drop in performance, with accuracy falling to 85%
and the F1-score to 0.82. This indicates that deeper features extracted by the
third layer are crucial for distinguishing subtle differences in fundus images.

– Removing Conv Layer 2: Omitting the second convolutional layer (64 filters)
caused the accuracy to decrease to 78% and the F1-score to 0.75. This layer
appears essential for capturing intermediate-level features.

– Removing Conv Layer 1: Excluding the first convolutional layer (32 filters)
led to the most drastic reduction in performance, with accuracy plummeting
to 65% and the F1-score to 0.60. This suggests that initial feature extraction
is vital for the model’s overall success.

– Effect of Pooling Layers: Removing all max pooling layers resulted in over-
fitting, with training accuracy at 95% but validation accuracy dropping to
70%. This highlights the importance of pooling layers in reducing spatial
dimensions and preventing overfitting.

The ablation study confirms that each convolutional layer contributes signifi-
cantly to the model’s performance. The first convolutional layer is critical for
initial feature extraction, while subsequent layers refine these features to improve
classification accuracy. Pooling layers play a crucial role in generalization by pre-
venting overfitting.

6 Conclusion

The paper proposes a Siamese network architecture trained for classifying fundus
images as either healthy or indicative of optic atrophy. Due to the limited avail-
ability of training data, data augmentation techniques have been employed to
expand the dataset, enabling more robust model training. The limited availabil-
ity of data has also prompted the use of the Siamese network, which has shown
significant performance for few-shot learning problems. The proposed network is
shown to have outperformed traditional architectures like ResNet and VGG16
in terms of classification metrics.

The results of the work also demonstrate that cosine similarity yielded the
best performance when comparing image embeddings generated by the proposed
Siamese network.

The results of the present work offer sufficient promise to extend the proposed
approach to future research problems such as detection of other ocular anomalies
such as glaucoma, optic neuropathy, and diabetic retinopathy. By exploring the
broader spectrum of ocular diseases, the authors aim to contribute to the devel-
opment of more accurate and versatile diagnostic tools for use by ophthalmic
healthcare practitioners, thereby offering better opportunities for patient care.

Acknowledgements. The authors acknowledge Dr. Poulami Roy, MBBS, M.S,
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analysis.
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Abstract. Online handwritten text recognition technology has been
increasingly applied in intelligent touch-based and pen-based devices.
Current mainstream methods are mostly designed for horizontally writ-
ten texts, thus are difficult to handle texts in any writing direction.
This paper proposes a recognition framework based on over-segmentation
which is applicable to text recognition of any writing direction. It divides
text line inclination styles into two cases: texts with the entire line rotated
and texts with the line direction rotated while keeping the characters
upright. A text line inclination style classification module is introduced
in the preprocessing stage to classify these two cases. The former case can
be recognized using a horizontal text line recognizer after rotation cor-
rection. For the latter case, an improved over-segmentation algorithm is
designed based on stroke classification using bidirectional long short-term
memory networks (BiLSTM) to achieve text recognition in any writing
direction. Experimental results demonstrate that the proposed method is
capable of text recognition in any writing direction and achieves highly
competitive results on the CASIA-OLHWDB and ICDAR2013-Online
datasets.

Keywords: Online Handwritten Chinese Text Recognition · Text
Recognition in Any Writing Direction · Improved Over-segmentation

1 Introduction

With the development and progress of deep learning, end-to-end methods based
on implicit segmentation have gradually become the mainstream approach for
recognizing handwritten Chinese texts [1–5]. Compared to implicit segmentation-
based end-to-end methods, explicit segmentation-based recognition methods
have the advantage of providing the position of each character in the text along
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with the final recognition result. This is of great significance for downstream
tasks such as confidence calibration, text editing, and text correction. However,
for the recognition problem of texts in any writing direction, neither the explicit
segmentation-based methods nor the implicit segmentation-based methods can
solve it effectively. Explicit segmentation-based methods have the potential of
adapting to any-direction texts because the embedded character classifier there
can flexibly recognize segmented characters irrespective of line direction. There-
fore, this paper focuses on the recognition of online handwritten texts in any writ-
ing direction and proposes an improved method based on the over-segmentation
framework.

Currently, in over-segmentation-based frameworks, the segmentation module
typically uses methods based on connected component analysis [8], which per-
forms well in segmenting neat and horizontal texts. However, with the widespread
use of electronic tablets and interactive electronic screens, people write texts
more freely to generate texts of various writing styles, including variable writ-
ing directions. Rule-based over-segmentation algorithms only consider horizontal
and vertical writing, making it ineffective for accurately segmenting texts in any
writing direction. Additionally, when the stroke direction of adjacent characters
overlaps significantly, rule-based methods can mistakenly merge strokes, leading
to decreased character segmentation and recognition performance. Designing del-
icate over-segmentation rules cannot deal with highly complicated and variable
cases of segmentation. While implicit segmentation-based methods can partially
address this problem by collecting or synthesizing a large number of texts in any
writing for training, they suffer from the inherent limitation of not segmenting
characters and the reliance on huge training data in a similar style with testing
data. In summary, the problems of segmentation and recognition of texts in any
writing direction remain unresolved.

This paper addresses the recognition of online handwritten Chinese texts in
any writing direction. Chinese characters are composed of basic strokes such
as horizontal/vertical/diagonal, hooks, and dots, arranged in a specific order.
Each text line is formed by a sequence of strokes from the beginning to the end.
Regardless of the variation in the writing direction of the texts, as long as the
stroke components of each character are merged, the characters in texts of any
writing direction can be segmented, thereby addressing the recognition problem
of texts in any writing direction.

Building upon our previous work [6], we propose a stroke classification model
based on bidirectional long short-term memory (BiLSTM) networks [7]. We can
perform character segmentation by classifying the strokes in the text and then
merging all the strokes from adjacent starting to ending markers. Since the BiL-
STM model allows for end-to-end training, by training it with synthesized text
data in any writing direction along with horizontally written data, we can address
the recognition problem of texts in any writing direction. Furthermore, this app-
roach further improves the recognition performance of horizontally written texts
under the over-segmentation framework. Compared to end-to-end recognition
methods, the proposed method only requires training a concise stroke classifica-
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tion model without the need to train the entire model end-to-end, significantly
reducing training costs and adapting to various application scenes. The main
contributions of this work include the proposed framework for online handwrit-
ten text recognition of any writing direction, the method to classify the text
line inclination style into two cases, and an improved stroke classification-based
over-segmentation method.

The rest of this paper is organized as follows: Sect. 2 reviews related work.
Section 3 describes our proposed method. Section 4 presents experimental results,
and Sect. 5 draws concluding remarks.

2 Related Work

2.1 Text Over-Segmentation

Over-segmentation methods for online handwritten text can be divided into
rule-based and deep learning-based approaches. Rule-based approaches can han-
dle both online and offline data segmentation. On the other hand, most deep
learning-based approaches convert online sequences into offline images and com-
bine rules with convolutional neural networks for segmentation. However, the
segmentation performance is unsatisfactory for online texts with significant writ-
ing overlaps due to the lack of temporal information after converting online data
into offline images.

In the early stages, Liu et al. [9] proposed a segmentation algorithm based on
connected component analysis and contour shape analysis. It was successfully
applied to the recognition of Japanese handwritten postal addresses. Building
upon this work, Wang et al. [10] were the first to apply this method to Chi-
nese handwritten text recognition tasks, achieving state-of-the-art recognition
performance at that time. Xu et al. [11] proposed a novel approach for separat-
ing handwritten touch characters based on skeleton and contour analysis. This
method achieved good segmentation results for individual connected characters.
For online data, it can be converted into offline images and then segmented using
the aforementioned methods. Alternatively, connected component analysis can
be directly applied to online data for segmentation. Wu et al. [12] proposed a
two-step over-segmentation algorithm that utilizes a convolutional neural net-
work (CNN) for secondary filtering of segmentation points to improve the seg-
mentation performance. However, since the algorithm was originally designed to
address the offline text line segmentation problem, converting online data into
offline images results in the loss of temporal information and degraded segmen-
tation performance.

2.2 Text Recognitions in Any Writing Direction

Currently, a large amount of handwriting recognition work is focused on address-
ing the recognition of horizontal or vertical texts. Explicit segmentation-based
methods face challenges in designing complex rules to handle text segmentation
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in any writing direction. Implicit segmentation-based methods can address this
issue by synthesizing a large number of samples with various writing styles and
directions, but they can only provide the recognition result for texts in a similar
style to training data, and cannot output character segmentation positions, these
methods require a significant amount of training data in any writing direction,
resulting in high training costs.

Nakagawa et al. [13] proposed an algorithm for unconstrained handwritten
Japanese text recognition within an over-segmentation framework. The method
achieved promising recognition results. Building upon this work, Hao et al. [14]
separated handwritten text with arbitrary character direction and text direction
into text elements. This approach achieved recognition performance similar to
that of normal horizontally written texts. However, the rule design of this method
is complex. Long et al. [15] proposed a centroid balance-based analysis and
correction method, but it can only handle the overall rotation of texts. Yan et
al. [16] introduced a two-step rotation correction method. They determined the
inclination angle by fitting a straight to the center of gravity of strokes and
then rotated the entire text and each stroke separately. However, this two-step
rotation method can cause changes in the shape of the characters. Yang et al. [17]
introduced path signature features into character recognition and applied them
to rotation-free text recognition. These advancements in research have aimed to
address the challenges of recognition in unconstrained and any writing direction,
but are still lacking in recognition texts of any writing direction accurately.

3 Methodology

3.1 Overview

To achieve text recognition in any writing direction, we propose an improved
method based on the BiLSTM networks, as shown in Fig. 1. This method
addresses the issues of traditional over-segmentation methods by transforming
the character segmentation problem into a stroke classification problem. It mod-
els and learns the categories of character strokes.

To solve the problem of recognizing texts in any writing direction, this chapter
defines two text line inclination styles: (1) the overall rotation of the text and (2)
the rotation of the writing direction while keeping the characters upright. For the
first style, the simplest approach is to synthesize a large amount of data and train
a stroke classification model. However, this method significantly increases the
training costs and overhead. To reduce reliance on synthesized data, we employ
a rule-based approach to determine the orientation of the texts. For cases where
the texts are rotated overall, they are simply rotated to a horizontal position,
and methods for recognizing horizontally written texts are used for recognition.
For the other style, we synthesize the corresponding data and combine it with
horizontally written text data to train and optimize the model.

After over-segmentation, the primitive segments are dynamically combined
into candidate characters in text line recognition, using our previously proposed
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Fig. 1. Overall diagram of the improved over-segmentation based recognition method.

method [6]. For evaluating the candidate paths in text line recognition, the can-
didate characters are classified using a convolutional prototype network, which is
pre-trained on isolated character samples, and then trained end-to-end on string
samples.

3.2 Classification of Text Line Inclination Style

Different populations have significant variations in their writing styles due to
factors such as age, educational background, and personal habits. When writing
online text, even the same individual can produce texts with different shapes due
to differences in input speed, carelessness, posture, and devices used. Inspired
by the literature [13,14], the direction of handwritten text can be divided into
the writing direction of the whole text and the writing direction of individual
characters. Based on these two directions, inclined styles of text lines can be
classified into two types: texts with the entire line rotated and texts with the
line direction rotated while keeping the characters upright, as Fig. 2 shown.
In the one type, both the character direction and the line direction have an
angle with the horizontal direction. This can be considered as a rotation of
horizontal lines in any direction. In the other type, the direction of the characters
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is generally aligned with the character in the horizontally written line, with only
the line direction having an angle with the horizontal direction. It should be
emphasized that vertical writing is a special case of this type, where the direction
of characters and text lines are both perpendicular to the horizontal direction.

Fig. 2. The two text line inclination styles.

According to the analysis above, we have designed a rule-based and non-
training method to determine the directions of text lines and characters to iden-
tify the inclination style of text lines. For calculating the direction of the text
line, we use the least squares method to fit the centroids of all strokes in the text,
and the inclination angle of the fitted line is considered the angle of the text line.
For the direction of characters within the text, in standard writing, the direction
of writing is usually consistent with the movement direction of the pen tip, that
is, from top to bottom and from left to right. Therefore, we define 0◦ as left to
right and 90◦ as top to bottom. Then, we calculate the direction of the writing
trajectory formed by adjacent points and use it as a feature for each stroke. By
analyzing the distribution of these features, we can obtain a histogram of stroke
momentum for the text line. The first two peaks of this histogram can determine
the writing direction of the characters.

Due to the fact that there is no need to continue using the writing direction
of text lines and characters in the subsequent process, our method can achieve an
almost indistinguishable classification accuracy compared to separately designed
learnable writing direction classification models and does not require additional
data for training.

Figure 3 presents an example of determining the inclination style of a text. It
specifies that the character writing direction is 0◦ for left to right, 90◦ for top to
bottom, 180◦ for right to left, and 270◦ for bottom to top. In the histogram shown
in the figure, The first two peaks of this histogram components correspond to 0◦

and 90◦, respectively. This indicates that the writing direction of the character
is from left to right and top to bottom. The calculated angle of the fitted line is
−27.14◦, indicating that the text is inclined upward by 27.14◦. This suggests that
the text undergoes rotation of the writing direction while keeping the characters
upright.
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Fig. 3. Example of text line inclination style classification.

3.3 Stroke Classification Model Based on BiLSTM

Rule-based over-segmentation algorithms [22,23] have achieved good results in
Chinese and Japanese text recognition but are not robust, especially for Chinese
characters with overlapping parts. Current approaches to handling texts in any
writing direction involve complex secondary rotation correction and segmenta-
tion rules. To address these challenges, we analyze Chinese character writing
characteristics and propose treating character segmentation as a stroke classi-
fication task. By categorizing strokes into four classes: initial strokes, inserted
strokes, ending strokes, and isolated strokes, and training a classification model,
we aim to accurately segment characters from the text with a high recall rate
for character positions.

Algorithm 1 Stroke merging algorithm
1: Input: Text stroke sequence Seq, Stroke classification model ModelLSTM

2: Output: Primitive fragment set P = ∅
3: for Strki in Seq do
4: Clsi = ModelLSTM (Strki)
5: if Clsi == Start stroke then
6: Fragi = ∅, Fragi ∪ {Strki}
7: else if Clsi == Insert stroke then
8: Fragi ∪ {Strki}
9: else if Clsi == End stroke then

10: Fragi ∪ {Strki}, P ∪ {Fragi}
11: else if Clsi == Isolated stroke then
12: P ∪ {Strki}
13: end if
14: end for

The model structure consists of two BiLSTM layers, one average pooling
layer, and the final classification layer. The model takes input data as pi =
(Δxi,Δyi, xi, yi, si), where Δxi, Δyi, xi, yi, and si denote the horizontal offset,
vertical offset, horizontal coordinate x, vertical coordinate y, and pen state of
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the current sequence point, respectively. The pen state has values of s = 0 for
the writing state and s = 1 for the pen lifted state after writing.

As shown in Algorithm 1, the first step is to input the text line sequence into
the BiLSTM model. The model will segment and classify the sequence based
on the pen state s, resulting in a classified stroke sequence. After obtaining the
category for each stroke, the stroke sequence is divided into multiple sets based
on the input order and the predicted positions of isolated strokes. Then, the sets
that do not contain isolated strokes are processed. The strokes from the adjacent
starting and ending strokes within each set are merged. This forms a primitive
unit composed of the strokes in each set. These primitive units, along with the
isolated strokes, arranged in order, represent all the primitive fragments of the
current text line.

We consider the primitive fragments that only contain their strokes as candi-
dates with si = 1. Then, we merge adjacent primitives as candidates with si = 2.
Finally, we obtain all the candidate characters for that line.

4 Experiments

4.1 Dataset

The CASIA-OLHWDB [18] dataset contains both isolated characters and
string samples, divided into a training set with 816 writers and a test set with
294 writers, which consists of 3, 129, 496 isolated character samples belonging
to 7, 356 classes and 41, 710 handwritten text lines. The string test set includes
10, 510 text lines from 1, 020 text pages, with a total of 269, 674 characters from
2, 631 classes. The ICDAR2013 [19] Online competition dataset consists of
3, 432 online Chinese handwritten text lines from 60 writers.

We first evaluated the performance of our method on these databases and
compared our method with state-of-the-art approaches. Subsequently, we used
the ICDAR2013-Online dataset as the source dataset to synthesize text data
in any direction and tested the segmentation and recognition performance of
our model. Then, we conducted ablation studies to explore the effectiveness of
our method. Finally, we evaluated the recognition performance on horizontally
written text collected from different devices. The CH-Textline dataset is writ-
ten and collected directly on an electronic screen, divided into two subsets with
1, 021 and 1, 108 text lines, respectively. The SCUT-TouchScreenLCD [20]
dataset contains 8, 809 text lines written on LCD screens by the South China
University of Technology, We randomly selected 1026 lines of text for testing.
Additionally, we generated data using the Diffusion Model [21] called DS-SY,
which has the same semantics as the ICDAR2013-Online dataset, consisting of
1, 000 text lines.
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4.2 Performance Metrics

String Recognition Performance Metrics. Following [10,25], the string
recognition performance is evaluated by character level correct rate (CR) and
accurate rate (AR). The definition is as follows:

CR =
Nt − De − Se

Nt
× 100% (1)

AR =
Nt − De − Se − Ie

Nt
× 100% (2)

where Nt is the total number of characters in the test set. The numbers of substi-
tution errors (Se), deletion errors (De), and insertion errors (Ie) are calculated
by aligning the recognition result string with the ground truth transcript by
dynamic programming.

String Segmentation Performance Metrics. For string segmentation tasks,
we use precision, recall rate, and F1-score to evaluate. The definition is as follows:

Precision =
True positives

True positives + False positives
(3)

Recall =
True positives

True positives + False negatives
(4)

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(5)

In the following experiments, “P” indicates the precision, “R” indicates the
recall, and “F1” indicates the F1 score.

4.3 Implementation Details

We utilized an NVIDIA Titan 12G GPU to build and train our model based
on the PyTorch. We employed two layers of BiLSTM with a hidden size of 100.
The batch size was set to 16. We used the RMSprop optimizer for training with
an initial learning rate of 0.001. The learning rate was halved every 15 epoch,
and a total of 100 epochs were trained. In the inference stage, we used the
same Convolutional Prototype Network (CPN) in our previous work [6] as the
character classifier, and used a completely consistent dynamic search to complete
the recognition.

4.4 Ablation Experiment

To validate the excellent performance of the BiLSTM-based stroke classification
model in text line over-segmentation tasks, this study conducted comparative
experiments with a connected component-based segmentation method on the
CASIA-OLHWDB2.0-2.2 test set. It is important to note that this experiment
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Table 1. Comparison of segmentation performance and recognition speed of different
methods on the CASIA-OLHWDB test set.

Method P R F1 Line/S

Connected Component Analysis 69.49 98.64 81.54 1.75

Ours 98.32 99.38 98.85 0.93

“P” indicates the precision, the “R” indicates the recall and
the “F1” indicates the F1 score.

evaluated the model’s segmentation performance in terms of character bound-
aries and not the overall character segmentation performance.

The experimental results, as shown in Table 1, indicate that the recall rate of
the BiLSTM-based segmentation method is slightly higher than that of the con-
nected component-based method. However, the precision rate and F1 score are
significantly higher for the BiLSTM-based method compared to the connected
component-based method, demonstrating substantial improvements in both final
recognition performance and recognition speed.

4.5 Comparison with the State-of-the-Art Methods in the
Horizontal Text Recognition Task

To further demonstrate the effectiveness and competitiveness of the proposed
method in this chapter, we conducted a performance comparison with current
mainstream methods in the task of horizontal text recognition. It should be
noted that in our proposed method, the segmentation model is trained using the
CASIS-OLHWDB2.0-2.2 text line training set and randomly synthesized text
line data in any writing direction. The recognition model is pre-trained using
the CASIS-OLHWDB1.0-1.2 character training set, and weakly supervised fine-
tuning is performed using the CASIS-OLHWDB2.0-2.2 text line training set. The
performances of other methods are all reported in their corresponding papers.

The detailed comparison results on the CASIA-OLHWB test set are pre-
sented in Table 2. Our method achieved a recognition performance of AR 92.46
and CR 93.30 without using a language model. When using only the 5 − gram
language model, the recognition performance improved to AR 96.6 and CR
96.75. Our proposed method achieved the best performance in both scenarios,
without using any language model and only using the 5−gram language model.

It is worth noting that Xie et al. [24] used an additional implicit language
model and incorporated extra semantic information, which led to higher recog-
nition performance in their work.

Table 3 provides a detailed performance comparison of the ICDAR2013-
Online test set. Our method achieved a recognition performance of AR 96.08
and CR 96.19 when using only the 5−gram language model. Compared to our
previous work, the addition of the BiLSTM-based over-segmentation improve-
ment algorithm further improved the recognition performance. In the experiment
settings without using a language model, our method surpassed the work of Xie
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Table 2. Comparison of performance between BiLSTM improved method and main-
stream methods on CASIA-OLHWDB test set.

Method Without LM With LM

AR CR AR CR

Shi et al. [1] 87.67 89.58 – –

Wang et al. [22] – – 92.97 93.76

Zhou et al. [23] – – 94.69 95.32

Xie et al. [24] 91.38 92.29 95.50 96.09

Xie et al. [24] 93.31* 94.47* 97.23* 97.50*

Chen et al. [6] 89.66 91.71 94.77 95.47

Ours 92.46 93.30 96.64 96.75

The “∗” represents the use of additional implicit
language models.
The AR represents the accuracy and the CR rep-
resents the correct rate.

et al. [24], but there is still a gap compared to the best method. This is because
our proposed method mainly improves the segmentation performance, while the
character recognition performance remains unchanged. Even without any data
augmentation, our proposed method still demonstrates potential and competi-
tiveness.

4.6 Text Recognition Experiment in Any Writing Direction

To enable the model to segment characters in text lines with any writing direc-
tion, we explicitly modeled it by generating training data that includes text lines
with writing direction rotation while keeping the character upright. This data
was combined with normal data to train the stroke classification model. For the
test set, we synthesized text lines with any writing direction using the test set
data.

The method we used involves sampling the horizontal spacing ΔH and ver-
tical spacing ΔV of characters from two Gaussian distributions, which are esti-
mated from the training set of text lines. Specifically, we computed the mean
and standard deviation of the horizontal and vertical spacing between characters
in the training set of text lines. Using these statistical values, we generated two
Gaussian distributions, one for sampling the horizontal spacing and the other
for sampling the vertical spacing of characters.

To further validate the effectiveness of the proposed method in recognition
tasks, we synthesized training data with the same quantity and semantics as the
CASIA-OLHWDB training set but with varying angle ranges. Additionally, we
synthesized test data with different angle ranges, which have the same quantity
and semantics as the ICDAR2013-Online test set.

Tables 4 and 5 display the model’s segmentation and recognition performance
on data with different skew angle ranges. The analysis reveals that as the skew
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Table 3. Comparison of performance between BiLSTM improved method and main-
stream methods on ICDAR2013-Online test set.

Method Without LM With LM

AR CR AR CR

Shi et al. [1] 83.60 85.14 – –

Xie et al. [24] 86.85 87.82 91.81 92.67

Xie et al. [24] 88.88* 90.17* 96.50 97.15

Peng et al. [2] 91.24 91.81 – –

Peng et al. [2] 95.05† 95.46† 97.36† 97.63†

Peng et al. [3] 94.46 94.67 97.89† 98.06†

Chen et al. [6] 87.62 89.49 95.37 95.55

Ours 90.66 91.23 96.08 96.19

The “∗” represents the use of additional implicit
language models.
The “†” represents the use of additional Trans-
former language models.

Table 4. The segmentation performance of the model on data with different writing
angles.

Writing Angle Segmentation Performance

Start Insert End Isolated

P R P R P R P R

0◦ 0.98 0.98 0.99 0.99 0.98 0.98 0.97 0.97

0◦ ∼ 3◦ 0.98 0.98 0.99 0.99 0.98 0.98 0.97 0.97

0◦ ∼ 5◦ 0.98 0.97 0.99 0.99 0.98 0.97 0.97 0.96

0◦ ∼ 10◦ 0.98 0.97 0.99 0.99 0.98 0.97 0.97 0.96

10◦ ∼ 45◦ 0.96 0.96 0.98 0.98 0.97 0.96 0.96 0.96

Table 5. The recognition performance of the model on data with different writing
angles.

Writing Angles Recognition Performance

AR CR

0◦ 90.66 91.23

0◦ ∼ 3◦ 90.62 91.20

0◦ ∼ 5◦ 90.55 91.07

0◦ ∼ 10◦ 90.38 90.82

10◦ ∼ 45◦ 89.84 90.44
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angle increases, the segmentation performance is somewhat affected, resulting
in a slight decrease in recognition performance. This phenomenon is reasonable
because the source data used for synthesis has relatively small skew angles, and
the synthesized data mostly falls within the range of 0◦ to 10◦. Therefore, as
the angle increases, there is a slight decline in the segmentation and recognition
performance. However, since the synthesized data can be integrated into the
training process, randomly skewed text line data can be dynamically generated
during each mini-batch iteration and trained together with the original data. As
a result, the integrated model can still achieve a high level of recognition for text
lines with any writing direction.

4.7 Generalization Experiment

To validate the good generalization ability of the proposed BiLSTM improve-
ment algorithm, this study conducted recognition performance tests using hori-
zontally written text line data collected from different devices and weakly labeled
horizontally written data generated using a diffusion model-based approach.

Table 6. The recognition performance of the model when tested with different data.

Dateset Recognition Performance

AR CR

ICDAR2013-Online 90.66 91.23

CH-Textline1.0 85.57 89.10

CH-Textline1.1 83.52 87.29

SCUT-TouchScreenLCD 86.72 87.54

DS-SY 80.67 80.49

From the experimental results as shown in Table 6, it can be observed that
the proposed method in this study demonstrates usable recognition performance
on data obtained from different acquisition methods, even without any data aug-
mentation. Even for the data generated using the diffusion model [21], the pro-
posed method still achieves usable recognition performance. This indicates that
the proposed method is capable of learning the relationships between strokes and
the visual features of characters, and it possesses a certain level of generalization
ability.

4.8 Further Visualization and Analysis

The visualization results are shown in Fig. 4. The upper part of the figure com-
pares the segmentation results of the same texts. It can be observed that the
BiLSTM-based method can achieve more accurate text segmentation and obtain
more precise primitive fragments while ensuring segmentation recall.
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Fig. 4. Visualization experimental results of two over-segmentation methods.

Fig. 5. Visual segmentation results of texts in any writing direction using an improved
BiLSTM method.

The lower part of Fig. 4 showcases the segmentation results for digit strings
and English in handwritten texts. Due to the presence of overlapping strokes,
the method based on connected component analysis tends to incorrectly merge
strokes as connected components, leading to irreparable errors in subsequent
recognition. In contrast, the improved method demonstrates better segmenta-
tion performance when dealing with characters with overlapping strokes. This
is because the BiLSTM model can learn the relationships between strokes,
enabling more accurate character segmentation. Through the BiLSTM model,
the improved method captures the sequential information of strokes within char-
acters and utilizes contextual information for segmentation decisions. Therefore,
even in the presence of stroke overlap, this method can accurately segment char-
acters into their respective components.

Figure 5 illustrates the over-segmentation results of the improved method
for arbitrarily written texts. Combining it with Fig. 4, it can be observed that
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regardless of the writing direction of the texts, the improved method consistently
produces good results. This is because BiLSTM itself can capture dependencies
within sequences and consider both the forward and backward information of
input sequences. Through training with synthesized data, it can learn the under-
lying patterns and structures of strokes in text sequences of any writing direc-
tion, enabling effective modeling of the temporal sequences of texts written in
any direction.

5 Conclusions

In this paper, we propose a stroke classification model based on BiLSTM to
improve the over-segmentation algorithm. Unlike previous methods based on
connected component analysis, our proposed improvement method consequently
solves the recognition for text lines written in any direction.

To our best knowledge, our work is the first to utilize deep learning meth-
ods to improve online text line over-segmentation and achieve recognition for
text lines written in any direction within the over-segmentation framework. Our
proposed method partially addresses the recognition of texts written in any direc-
tion and achieves competitive recognition results for horizontal text recognition
tasks. However, the BiLSTM-based method still struggles with connected char-
acters, Therefore, further exploration and research are needed to address the
segmentation of connected characters.
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Abstract. Conventional Few-shot learning (FSL) techniques often
struggle with overfitting and representation collapse, especially with
imbalanced datasets. Existing inductive methods try to learn fine-grained
features but fail to capture the correlation between the support and
query embeddings. This leads to limited discriminative feature learn-
ing, resulting in sparse prototypes and overlapping decision boundaries.
To address these issues, we propose Prototypical Feature Optimized
Network ProFONet , a novel approach for training inductive prototypi-
cal networks that emphasizes learning inter-class and intra-class relation-
ships while broadening decision boundaries. ProFONet integrates vari-
ance, invariance, and covariance regularization techniques to optimize
feature space, resulting in more discriminative prototype clusters and
robust representations. The proposed method exhibits adaptability to
inductive FSL architectures and demonstrates superior performance on
imbalanced datasets. By preventing collapse and reducing false positives,
ProFONet outperforms state-of-the-art methods on CUB benchmark
and a newly curated long-tailed medical imaging dataset GIF. The source
code of ProFONet can be found at https://github.com/aj-das-research/
ProFONet.

Keywords: Few Shot Classification · Prototypical Networks · Feature
Space Optimization · Distance Function

1 Introduction

To address issues related to expensive manual annotation and the prevalence
of highly imbalanced datasets, few-shot learning has emerged as a promising
approach [8,26,27,29,30]. In few-shot classification, a classifier is designed to
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accommodate unseen classes with limited data [32]. Few-shot Matching Net-
works [29], employs an attention mechanism [6] over a learned embedding space
of the support set to predict classes for unlabeled query sets like a weighted
nearest-neighbor classifier [29]. Limited data can hinder conventional learning
algorithms from grasping underlying patterns effectively, potentially causing
overfitting where the model memorizes examples rather than learning general-
ized representations [26]. Ravi and Larochelle introduced a meta-learning strat-
egy [22], employing LSTM [12] trained in episodes to enhance generalization.
Existing methods are susceptible to intensified overfitting when classes demon-
strate highly variable characteristics [26]. This can force the model to learn
spurious correlations from the training data. To tackle the earlier challenges,
Prototypical Networks employ a non-linear mapping of input data into an embed-
ding space, relying on computing class prototypes as the mean of support set
embeddings [26]. However, in high-dimensional spaces, the discriminative power
of distances between points may diminish, rendering the notion of prototype
centroids less meaningful [24]. This issue can arise if the training process fails
to effectively optimize the embedding for discriminative clustering [23]. More-
over, in class-imbalanced datasets, prototypes of underrepresented classes may be
unreliable due to limited support examples, resulting in biased classification deci-
sions [18,21]. To overcome the problem of unstable representation and poor gen-
eralizability techniques like MAML (Model-Agnostic Meta-Learning) [8], triplet
network [14], and several regularization techniques [4,15,17] are proposed. How-
ever, they may struggle to capture higher-order relationships in the data, leading
to representation collapse, particularly evident in structured data, where exces-
sive shrinkage during the learning process can occur [34].

Moreover, methods like Zbontar et al. [33], Ermolov et al. [7] maximize the
information content of the embedding; prevent informational collapse by decorre-
lating every pair of embedding vectors [2]. The Barlow Twins method drives the
normalized cross-correlation matrix of the two embeddings towards the iden-
tity Zbontar et al. [33], while the Whitening-MSE method whitens and spreads
out the embedding vectors on the unit sphere Ermolov et al. [7], signifying the
impact of regularization to obtain a discriminative representation of classes in
feature space [2,3].

2 ProFONet: Intuition

To address the challenges of overfitting and representation collapse, we intro-
duce ProFONet , a few-shot classification network designed to train prototypi-
cal networks by emphasizing the learning of inter-class and intra-class relation-
ships [10]. The core principles are: Variance regularization minimizes the spread
of embeddings within the same class, promoting consistent representations and
closely clustered embeddings. Invariance regularization facilitates the learning of
robust representations that capture essential data characteristics while remaining
invariant to irrelevant variations, enhancing the discriminative nature of proto-
type clusters. Additionally, covariance regularization captures inter-class corre-
lations and penalizes deviations from the desired covariance structure, guiding



394 A. Das et al.

the model to learn embeddings reflecting underlying relationships that optimize
the feature space.

Contribution. The main contribution of this work is the variance-invariance-
covariance (VIC) injected feature optimization. Utilizing a weighted loss func-
tion VIC Injected ProtoLoss Lθ, ProFONet maintains information content
within each embedding level. Variance, managed by a hinge loss, preserves the
standard deviation across the support set, while invariance, enforced through the
mean square distance between class embedding vectors, enhances robustness.
Inspired by Barlow Twins [33], covariance regularization combats representa-
tion collapse due to embedding redundancy. Recent work such as MLVICX [25]
has also demonstrated the benefits of VIC regularization for SSL. Nonetheless,
with fewer architectural constraints, ProFONet offers a unified framework. To
be more precise ProFONet :

– Yields compact clusters and encourages separation among class prototypes.
– does not depend on the type of feature extractor.

We demonstrate the effectiveness of feature space optimization by evaluating the
representations learned with ProFONet on CUB dataset. Furthermore, we also
present GI-Findings (GIF), a curated dataset for a few shot classifications on
gastro-intestinal findings that can support a 5 way- 5 shot scenario.

3 ProFONet: Detailed Description

ProFONet aligns with contemporary few-shot learning trends, focusing on metric
space learning where classification relies on distances to prototype representa-
tions for each class concerning a given query. Unlike recent methods, ProFONet
adopts a simpler inductive bias suitable for limited and highly imbalanced data
scenarios. Additionally, our analysis demonstrates that straightforward design
choices in distance calculation can lead to significant enhancements.

Pipeline. For a given support set S = {(xi, yi) | xi, yi}, where each xi ∈ R
d

is the d-dimensional feature vector of an example and yi ∈ {1, . . . , K} is the
corresponding label; ProFONet computes a m-dimensional prototype Pk of class
k through an embedding function E , followed by a distance function D between
the prototypes and a query point Q, as shown in Fig. 1. ProFONet learns the
distribution over all the K classes and VIC injected feature optimization algo-
rithm back-propagates the weighted loss L, assigning the query Q to the nearest
prototype Pn during each episode.

In Feature Optimization (O), the objective is two-fold: first, to eliminate
differences between representations of a single class prototype; second, to non-
linearly expand dimensions to reduce dependencies among embedding variables.
The loss function L incorporates a term I for learning invariance to data trans-
formations, regularized by a variance term V to prevent norm collapse, and
a covariance term C to prevent informational collapse by decorrelating vector
dimensions. This optimization felicitates accurate assignment of queries Q to
prototypes Pn.
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Fig. 1. ProFONet architecture. At the start of each episode of prototypical training,
images from Support set S and Query set Q goes through the shared encoder Eθ and
produces embedding points. Distance function learns the prototypes (Pk) and forms
the clusters from initial embedding. Proposed Feature Optimization(O) generates
denser and well separated clusters of prototypes in Poptimized by inter-class repulsion
and intra-class condensation using proposed VIC Injected ProtoLoss Lθ. On the top
row, the effect of covariance regularization is shown where embedded points
are aligned diagonally after feature optimization (Three classes are selected randomly
from a novel set).

3.1 Method

In ProFONet the embedding function Eθ : Rd → R
m maps each feature vector x

in the feature space R
d to a point in the latent space R

m, parameterized by θ:

Eθ : Rd → R
m, x �→ Eθ(x) (1)

Given support set Sk for class k, the prototype Pk is computed as the mean
vector of embeddings of all support points in Sk:

Pk =
1

|Sk|
∑

(xi,yi)∈Sk

Eθ(xi) (2)

where, |Sk| denotes the cardinality of Sk. This is followed by the distance function
D : Rm × R

m → [0,+∞) that quantifies the dissimilarity between two points in
the latent space R

m.

ProFONet produces a distribution over all the K classes for a query point
Q. The probability of Q belonging to k is determined by a softmax applied to
the negative distances between its embedding Eθ(Q) and the prototypes Pk:
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pθ(y = k|Q) =
exp(−D(Eθ(Q),Pk))

∑K
k′=1 exp(−D(Eθ(Q),Pk′))

(3)

The objective during training is to minimize the negative log-probability of the
true class k for the query Q, expressed as the cross-entropy loss:

I = − log pθ(y = k|Q) (4)

This ensures the invariance regularization I. Additionally, ProFONet utilizes the
variance and covariance regularization terms to optimize the embedding space
R

m while calculating the prototypes P for the support set S.

For a m-dimensional support set embedding Ek = Eθ(x) and the correspond-
ing prototype Pk, we define the variance regularization term V as a hinge func-
tion on the standard deviation of the embeddings:

V(E) =
1
m

m∑

j=1

max(0, γ − σ(Ej , ε)) (5)

where, E represents the concatenated support set embedding Ek and prototype
embedding Pk, Ej represents each dimension in E, and σ is the regularized
standard deviation σ(Ej , ε) =

√
Var(Ej) + ε. γ is a constant target value (fixed

to 1 in our experiments), ε is a small scalar preventing numerical instabilities.
To prevent collapse with all the support set embeddings Ek mapped on the same
vector Pk, we enforce all the classes to be equal to γ along each dimension. If
we take V(E) = Var(E) instead of using σ, the gradient of V with respect to E
becomes close to 0 when E is close to Ē. Therefore, the gradient becomes close
to 0, resulting in representation collapse.

Inspired by Barlow Twins, we define the covariance regularization term C as
the sum of the squared off-diagonal coefficients of C(E), with a factor 1

m that
scales the criterion as a function of the support set embedding dimension:

C(E) =
1

m − 1

m∑

j=1

(Ej − Ē)(Ej − Ē)T , where Ē =
1
m

K∑

i=1

Ej (6)

This term encourages the off-diagonal coefficients of C(E) to be close to 0,
decorrelating the different dimensions of the embeddings and preventing them
from encoding similar information. This ensures decision boundaries are well
distinguishable and distinct for each query point Qk in the training of ProFONet.

Loss Function. The overall loss function for ProFONet is a weighted and bal-
anced average of all the regularization terms (V, I, and C):

L(θ) = λV · V(E) + λI · (− log pθ(y = k|Q)) + λC · C(E) (7)

where λV , λI , and λC are hyper-parameters controlling the importance of each
term in the loss optimization and embedding space refinement.
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During each training episode, a subset of classes is randomly chosen from
the training set. Within each class, a subset of examples forms the support set
S = {(xi, yi) | xi, yi} and the remaining as query. The model parameters θ are
updated iteratively using Stochastic Gradient Descent (SGD) to minimize the
loss function L(θ):

θ ← θ − α · ∇L(θ) (8)

where, α is the learning rate and ∇L(θ) is the gradient of loss with respect to θ.

3.2 Implementation Details

Datasets. We evaluate our proposed method on standard benchmark Caltech-
UCSD Birds 200 (CUB) dataset [31]. Furthermore, we curated a new medical
imaging dataset GI-Findings dataset1 (GIF), for few shot classification that can
support a 5 way- 5 shot scenario. The CUB dataset includes 200 classes of bird
species and has 11,788 images in total. We followed the split suggested in [22] into
100 base classes, 50 validation classes and 50 novel classes. In the GIF dataset,
there are a total of 27 classes representing anatomical landmarks, pathological
findings, and therapeutic interventions obtained from the gastrointestinal tract,
showing distinct findings from the upper and lower GI tract. Images are col-
lected from four open-source datasets GastroVision [16], CVC-ColonDB [28], and
PolypGen [1]. We have kept the 4 classes of pathological findings in our novel
classes while the other 5 classes are in the validation classes, and in the base class,
we have only used anatomical landmarks and therapeutic interventions. This pro-
duces a challenging scenario for few shot classification where the model needs to
map a novel class and validation class based on representations learned from a
different data distribution.

GIF Dataset: Detailed Description. Primarily, the Gastrovision dataset
contains only a few images in classes like Angiectasia (17 images), Ulcer
(6 images), Esophageal Varices (7 images), and Erythema (15 images). The
authors also reported the results in supervised classification tasks by dropping
these classes during training, and they have suggested that future researchers
solve this classification problem in a few-shot framework. However, the scarcity
of data in these aforementioned classes does not support a mere 5-way- 5-
shot classification configuration. To ensure that this gastro-intestinal findings
dataset is well curated to support standard experiments in few-shot learning, we
have included images to GastroVision for the classes that are common in CVC-
ColonDB and PolypGen. During curation the images are kept as it is without
any resizing. Later preprocessed and formatted as per the standard few shot
classification tasks. Curated dataset Gastro Intestinal Findings (GIF) contains
Angiectasia (517 images), Ulcer (806 images), Esophageal Varices (30 images),
and Erythema (18 images). And this is suitable for a 5 way-5 shot classification
experiment. Few examples from GIF dataset are shown in Fig. 2.

1 Curated samples at https://www.kaggle.com/datasets/ad21research/gif-dataset..

https://www.kaggle.com/datasets/ad21research/gif-dataset.
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Fig. 2. Examples of the images added to the GastroVision dataset from CVC-ColonDB
and PolypGen datasets. (A) Angiectasia, (B) Ulcer, (C) Esophageal Varices and (D)
Erythema.

Network Configuration. ProFONet uses a FeatResNet12 encoder as a feature
extractor. Hyperparameters λV , λI , and λC are set to 0.5, 9 and 0.5, respectively
in Eq. 7. At the start of the training, α (Eq. 8) is set to 0.0001, and the K way- N
shot training was performed for 200 episodes for all the experiments. A total of
10 query points are used during each training episode. We have used Mahalanobis
distance metric in our distance function D in ProFONet.

Techniques of Comparison. We have compared ProFONet with 5 SOTA
inductive few shot classification methods including MatchingNet [29], Relation-
Net [18] and ProtoNet [26]. ProFONet is primarily designed as an inductive
few-shot learning method, meaning it learns a model from a limited labeled
training set and makes predictions on unseen test instances. Whereas, transduc-
tive few-shot classifiers like LaplacianShot [34] or TIM [5] leverage information
from both the labeled training set and the unlabeled test set during inference.
This gives a fair platform to evaluate the efficiency of the proposed ProFONet
against SOTA methodologies.

4 Results

In this section, we present the quantitative and qualitative results of different
algorithms on the CUB and GIF benchmarks.
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Table 1. Comparative results of ProFONet against existing SOTA inductive few shot
methods. Purple: Second best. Green: Gain over the baseline ProtoNet.

Method CUB GIF

5w-5s 5w-3s 5w-1s 5w-5s 5w-3s 5w-1s

SimpleShot [30] 80.42±0.26 68.64±0.22 58.02±0.24 50.86±0.23 45.74±0.64 39.44±0.91

MatchingNet [29] 82.01±0.36 70.25±0.22 58.40±0.24 52.10±0.23 46.12±0.64 40.00±0.91

RelationNet [27] 82.56±0.32 70.00±0.22 59.29±0.24 54.12±0.23 47.02±0.64 40.97±0.91

FEAT [32] 83.20±0.41 71.44±0.22 61.53±0.24 54.06±0.23 47.33±0.64 41.21±0.91

ProtoNet [26] 84.45±0.42 72.50±0.85 62.65±0.92 56.12±0.23 48.86±0.64 42.17±0.91

ProFONet 88.39±0.38 75.46±0.76 66.02±0.90 63.96±0.32 55.82±0.81 46.42±0.93

03.94 ↑ 02.96 ↑ 3.37 ↑ 07.84 ↑ 06.96 ↑ 04.35 ↑

Fig. 3. 2D TSNE plot of SOTA methods vs ProFONet on CUB dataset.

4.1 Evaluation on CUB

On the CUB dataset, ProFONet achieves an accuracy of 88.39%, 75.46%, 66.02%,
respectively, for 5 shot, 3 shot, and 1 shot scenarios. As listed in Table 1, the
proposed method gains a maximum of 3.94% accuracy in 5 way- 5 shot setting.
While all the baselines showcase competitive performance, baselines like Pro-
toNet and FEAT achieves better results in 1-shot classification. In both FEAT
and ProtoNet, there are no explicit matching step or relation score, unlike in
MatchingNet and RelationNet. Instead, they utilize feature embeddings or pro-
totype representations to classify query examples. This also identifies prototype
based networks as a superior architecture among these inductive few shot meth-
ods. As shown in Fig. 3, in case of ProFONet we can observe denser clusters,
separable decision boundary and diagonally aligned embedding space.

4.2 Evaluation on GI-Findings

ProFONet achieves an accuracy of 63.96%, 55.82%, 46.42%, respectively, for 5
shot, 3 shot and 1 shot scenarios, on the GIF dataset. In Table 1, it is evi-
dent that the proposed architecture gains 7.84%, 6.96%, 4.35% accuracy. Notably,
ResNet18 [13] and ResNet50 [13] only achieve 17% and 19% accuracy in super-
vised classification setup, whereas ProFONet achieves superior performance



400 A. Das et al.

Fig. 4. 2D TSNE plot of SOTA methods vs ProFONet on GIF dataset.

using few shot learning. The difficult task setup of classifying novel pathological
findings given anatomical and therapeutic interventions makes our experimental
results more effective. As shown in Fig. 4, ProFONet outperforms other methods
by optimizing the embedding space using VIC injected ProtoLoss. ProtoNet and
FEAT produce a competitive performance, but the decision boundaries between
pylorus and small bowel terminal are not easily separable. Also, ProtoNet pro-
duces a sparse cluster for resection margin class.

5 Analysis

5.1 Effectiveness of VIC Based Feature Optimization

In Table 2, we can see the improvements achieved by utilizing ProtoLoss and
feature space optimization on inductive few shot SOTA methods. SimpleShot
employs a nearest-neighbor classifier without meta learning. VIC improves per-
formance by making the decision boundaries among the clusters broader and
separable. It’s worth mentioning that bidirectional LSTM based MatchingNet
learns the dependence of each embedding with the rest. Here, VIC regularization
detangles the class embeddings and helps to capture the inter-class relationship
well. Moreover, feature optimization leverages classification accuracy for Rela-
tionNet and FEAT by a significant margin in both 5 shot and 1 shot settings
with 5 query samples per episode. For ProtoNet and FEAT the implementa-
tion of VIC ProtoLoss remains identical to what we have done in ProFONet2. In
MatchingNet, the objective is to minimize the discrepancy between the matching
scores and class probabilities. Here, VIC regularization penalizes the divergence
between the predicted class distribution and a prior distribution, leading to more
robust representations.

2 Pseudo code implementation is given in supplementary.
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Table 2. Effectiveness of feature optimization on different few shot inductive methods.

Method CUB GIF

w/o VIC w/ VIC w/o VIC w/ VIC

5w-5s 5w-1s 5w-5s 5w-1s 5w-5s 5w-1s 5w-5s 5w-1s

SimpleShot [30] 80.42 58.02 82.79 59.92 50.86 39.44 54.23 41.89

02.37 ↑ 01.90 ↑ 03.37 ↑ 02.45 ↑
MatchingNet [29] 82.01 58.40 83.97 60.41 52.10 40.00 56.78 43.33

01.96 ↑ 02.01 ↑ 04.68 ↑ 03.33 ↑
RelationNet [27] 82.56 59.29 85.97 61.84 54.12 40.97 57.82 43.62

03.41 ↑ 02.55 ↑ 03.70 ↑ 02.65 ↑
FEAT [32] 83.20 61.53 86.26 64.51 54.06 41.21 58.94 45.07

03.06 ↑ 02.98 ↑ 04.92 ↑ 03.86 ↑

5.2 Ablation Study with Different Backbones

As shown in Fig. 5, for both the datasets CUB and GIF FeatResNet is outper-
forming ResNet12 and ResNet18. FeatResNet is a ResNet12 alike implementa-
tion of FEAT model [32] with set-to-set function instantiated with Transformer
blocks. FeatResNet learns more task specific and discriminative representations.
It is notable that we avoid using heavier and deeper encoders like ResNet50 to
keep the computational cost in mind.

Fig. 5. Ablation with different backbones.

5.3 Ablation Study with Different Distance Functions

In this section, we conduct an ablation study to investigate the impact of differ-
ent distance functions on the performance of Few-Shot Prototypical Networks.
Seven different distance functions mentioned in Fig. 6 are considered. The abla-
tion study reveals that the choice of distance metric significantly influences
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the performance of Prototypical Networks on both datasets and across differ-
ent shot configurations. Notably, the Mahalanobis distance [19] function consis-
tently outperforms other metrics, achieving the highest accuracy across most
experimental settings. To be precise 88.39%, 75.46%, 66.02% (for CUB) and
63.96%, 55.82%, 46.42% (for GIF) in 5-shots, 3-shots and 1-shot configurations
respectively. Conversely, the Hamming distance [20] metric exhibits lower per-
formance compared to other metrics, particularly on the GIF dataset. Unlike
Euclidean distance, which treats all dimensions equally, Mahalanobis distance
considers the covariance structure of the data. For non-spherical clusters,
Euclidean (used in Prototypical Networks) [26] distance may not accurately
capture the true distance between points. For datasets like GIF where the data
distribution is highly skewed or non-Gaussian, Mahalanobis distance provides a
more accurate measure of distance compared to other distance functions that
assume a uniform distribution inherently.3

Fig. 6. Radar chat showing the ablation of different distance functions. Pro-
FONet achieves best performance using Mahalanobis distance function with
88.39%, 75.46%, 66.02% (for CUB) and 63.96%, 55.82%, 46.42% (for GIF) accuracy in
5-shots, 3-shots and 1-shot configurations respectively.

5.4 Effects of Deep Supervision (DS) and VIC Injected ProtoLoss

In this study, we investigate the efficacy of deep supervision (DS) in the context of
ProFONet. By providing additional supervision signals during training, we aim
to study the impact of DS on feature representation optimization, particularly in
tasks with complex decision boundaries. We also ablated with different weighted
combinations of loss from the intermediate layers of the encoder and the last

3 Intuitions of the distance functions used here are discussed in supplementary.
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encoder layer. As shown in Figs. 7 and 8, with only Cross Entropy loss in Pro-
FONet, network with no DS outperforms DS enabled settings. This is because
the features learned by intermediate layers may not be effectively updated to
optimize the task-specific objectives, potentially leading to exploding gradients.
With VIC injected ProtoLoss ProFONet reflects the same limitation showing
poor performance, as illustrated in Figs. 7 and 8. Deep supervision introduces
additional regularization through the auxiliary classification heads, which may
conflict with or overshadow the regularization provided by VIC injected Pro-
toLoss, leading to gradient misalignment.

Fig. 7. CUB dataset: Deep supervision vs. VIC Injected ProtoLoss. The ratios
inside the deep supervision (DS) section represents the importance given to the inter-
mediate layer loss and the last layer loss while calculating the total loss. And the
ratio presented in the ‘No DS’ section represents the importance of λV , λI , and λC ,
respectively.

Fig. 8. GIF Dataset: Deep supervision vs. VIC Injected ProtoLoss.

In this study, we also evaluated the performance of ProFONet with dif-
ferent hyperparameters in VIC ProtoLoss. As shown in Figs. 7 and 8 in the
right most part we have evaluated with combinations of λV , λI , and λC and
the best combination turns out to be 0.5 : 9 : 0.5. This signifies that exces-
sive regularization can suppress the model’s flexibility and hinder its ability to
adapt to task-specific characteristics present in the data. However, the optimal
choice of weights may vary depending on the specific characteristics of the task,
dataset, and encoder architecture.
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6 Conclusion

We introduce ProFONet, a novel prototypical network for few shot classification
by optimizing feature space for discriminative prototype formation. Learning the
inter-class and intra-class relationship produces more distinct and dense embed-
ding for each prototype using variance-invariance-covariance regularization. Pro-
FONet mitigates the representation collapse and provides better generalizability
for unseen test classes. Extensive experiments and analysis on natural vision and
medical imaging datasets demonstrate ProFONet’s superiority, achieving signif-
icant improvements. Our work emphasizes the importance of feature space opti-
mization in few shot learning. In the future, we will explore ProFONet’s efficacy
to enhance model generalization and robustness in various downstream tasks
like object detection and segmentation. Also, we will incorporate the concept of
learning features in complementary spaces (discrete and continuous) [9,11] for
more robust and generalized learning.

Acknowledgment. This project is supported by NIH funding: R01-CA246704, R01-
CA240639, U01-DK127384-02S1, and U01-CA268808.
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Abstract. Many companies have developed Convolutional Neural Net-
works (CNNs) models as a product to offer through APIs to solve various
problems. Therefore, the protection of the Intellectual Property of these
models from potential attacks is a critical concern for these entities.
Regarding these threats, several studies have identified vulnerabilities in
these systems, such as model extraction, where the adversary uses Prob-
lem Domain (PD) and Non-Problem Domain (NPD) data to generate
an imitation of the target model (Oracle). An example of this attack
is the Copycat CNN method, where the adversary uses NPD images
to train a surrogate model with the Oracle’s hard-labels. The surrogate
model is then fine-tuned with PD images labeled by the Oracle, signifi-
cantly improving performance and reducing Oracle queries. However, PD
images are generally expensive and scarce on the Internet. In this study,
we introduce Few-Shot Copycat, a novel approach to improve Copycat
CNN. With just a few PD images from each class of the target problem,
our approach improves the performance of the method based on NPD
images only. This method requires much fewer queries to copy the target
model exposing even more of this threat to companies. The proposed
method was evaluated in five real classification problems (Facial Expres-
sion Recognition, General Object, Street View House Number, Traffic
Sign, and Fashion Image). Results showed that the Few-Shot Copycat
can reduce at least 6× the number of images required for extraction (i.e.,
reducing the number of queries).

Keywords: Deep learning · CNN · Model extraction

1 Introduction

Machine Learning (ML) encompasses a variety of methods that empower com-
puters to find optimal or semi-optimal solutions without being explicitly pro-
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grammed to do so. ML includes different methods, such as Convolutional Neural
Networks (CNNs), to solve a variety of problems including object recognition [7]
and disease diagnosis from medical images [32].

As a result, CNNs began to be explored to solve a wide range of problems.
Taking advantage of their impressive performance, companies have offered these
models as products as Machine Learning as a Service (MLaaS), i.e., already
trained models provided to users through Application Programming Interfaces
(APIs), like Azure Cognitive Service for Vision and Google Cloud Vision AI.
Nevertheless, studies have exposed some vulnerabilities in these models that
allow the extraction of their knowledge through techniques called model extrac-
tion [4,5,11,24,34]. This approach consists of generating surrogate models with
the same or similar performance as the target model (Oracle) [1].

Many studies have delved into exploiting vulnerabilities in black-box models.
They exposed the ability to generate surrogate models using only Non-Problem
Domain (NPD) images and their corresponding hard-labels [2,5,27,30] or soft-
labels [9,14,28,29]. This highlights that the vulnerabilities of CNN models allow
different types of attacks.

In a prior study, the authors, in [5] and extended in [4], proposed a method
(named Copycat CNN and referred here as Original Copycat Network) capable
of creating a surrogate model with a similar performance of a black-box Oracle
model by querying for predicted hard-labels using a dataset composed of NPD
images. One highlight of their method is the use of public Internet images (i.e.,
random images representing natural and real human environments) not related
to the problem domain to perform the attack. The authors also showed that
the performance could be improved (therefore reducing the number of required
queries) by incorporating Problem Domain (PD) images in the fine-tuning pro-
cess. However, the fine-tuning process requires a good amount (not as much as
training the original model, but still a good amount) of problem domain data.
The issue is that PD images are often difficult to find on the Internet or expensive
to produce.

In this study, we introduce a novel approach (named Few-Shot Copycat)
to improve the Original Copycat Network. Instead of initially using only NPD
images to attack the oracle and then fine-tuning the surrogate model with PD
images, we build upon an assumption tested by [21]. Their model extraction
method uses a large attack dataset composed of blended NPD images, which
allowed the adversary to explore the Oracle’s space better. However, we investi-
gated how to more effectively explore this space using images with characteristics
similar to those of Oracle’s domain, i.e., PD images. We also added the constraint
of using only a small number of PD images in the process. The procedure con-
sists of generating images by blending just a few PD images into every image in
the NPD dataset to compose a unique attack dataset that requires no additional
fine-tuning with PD.

This work diverges from the original study [5] in the following aspects: (i) it
requires only a few samples of the PD images (less than 0.3% of the images used
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in [5]) for the attack and (ii) it reduces the number of queries to the Oracle by
improving the performance of the attack using the same number of images.

The effectiveness of our approach was demonstrated through a comprehen-
sive set of experiments conducted on five use case problems: Facial Expression
Recognition (FER7), General Object Classification (GOC9), Street View House
Number Classification (SHN10), Traffic Sign Classification (SIG30), and Fash-
ion Image classification (FIC10). Results showed that the Few-Shot Copycat can
reduce at least 6× the number of images required for extraction (i.e., reducing
also the number of queries) and that only 1 image per class is already enough
to improve the performance of the Original Copycat. Therefore, the Few-Shot
Copycat could use fewer queries to generate a surrogate model with the same
performance as the Original Copycat Network.

2 Related Works

This section presents some of the related works of the literature, grouping them
by model extraction attacks with (i) general classifiers, (ii) CNN black-box mod-
els with soft-labels, and (iii) CNN black-box models with hard-labels.

Concerning general classifiers, [30] proposed an extraction in a black-box
scenario using Logistic Regression, Support Vector Machine (SVM), Multilayer
Perceptron (MLP), and Decision Trees. In [27], the authors explored a model
extraction using Naive Bayes and SVM classifiers. The data used for extraction
was from the problem domain. Different from the method proposed in this work,
the works mentioned above assume a large amount of data from the problem
domain in order to perform the copy.

Another less strict scenario relies on the soft-labels of the target model pre-
diction (i.e., the probabilities of the images obtained from an Oracle) to label
the fake dataset. Therefore, this type of attack is restricted to APIs or models
that give access to the classification probabilities or, in some cases, access to
the output layer before performing the softmax to compute the probabilities.
Examples of this approach can be seen in [6,9,23].

Although effective, this type of attack imposes an additional constraint (the
access to the Oracle’s probabilities), which is alleviated in the method proposed
in this work.

Using the hard labels to conduct attacks on black box models defines a sce-
nario more aligned with our study. In this line, the pioneer methods [4,5] were
already discussed in the introduction.

Following the Original Copycat idea, the authors in [20,21] proposed a simi-
lar approach but using mentor/student network training. During every epoch of
the training process, NPD images are blended together to better map the fea-
ture space and avoid overfitting. The mentor network performs the Oracle role,
whereas the student is the copied model. Diverging from our proposed method,
these previous works either require a large set of NPD images (ImageNet images
augmentation in [20,21]) to realize the attack or a decent amount of PD images
[4,5], which consequently leads to many more queries to the Oracle.
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Our blending approach enhances the performance of a pure NPD attack,
thereby reducing the number of queries by adding just a few samples per class
from the problem domain to better guide the mapping of the feature space.

3 Few-Shot Copycat

In the scenario addressed in this work, the Oracle model is the target model
trained by a company and provided as a black-box service. The user only has
access to the hard-label predictions of the Oracle (i.e., the predicted class but not
their probabilities). In this context, an adversary (or attacker) can easily acquire
thousands of NPD images from the Internet that do not belong to the problem
domain. In addition, he can also easily search for a few public PD images (one
to ten images per class) belonging to the problem domain and use them all to
attack the Oracle.

Fig. 1. The left part of the cloud illustrates the company API, which comprises an
Oracle with original data. This API receives an image and returns the output. The
right part of the cloud shows the adversary using the proposed Few-Shot Copycat.
The images from the problem domain and the non-problem domain are blended to
generate the images of the Few-Shot Dataset. Subsequently, these blended images are
submitted to Oracle to acquire all corresponding labels, which are then employed to
train the Few-Shot Copycat.

In summary, the proposed Few-Shot Copycat blends a few PD images repre-
senting each target model class with the NPD images (natural images collected
from the Internet) to generate a larger dataset that more closely resembles the
problem domain but with the random features from the Internet images. An
overview is illustrated in Fig. 1. With the new blended dataset, the adversary
can query the Oracle for hard-labels of those images, creating a fake dataset
for training the Copycat model (called here Few-Shot Copycat since the fake
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dataset uses a few images of the problem domain). Finally, the goal is to train
the Few-Shot Copycat model with this fake dataset to achieve similar results
(F1-Score) as the original Oracle model.

3.1 Few-Shot Fake Dataset Generation

The proposed method blends each PD image with every NPD image to generate
a larger dataset containing features of the problem domain. The blended image
IB is the weighted average of a PD image IPD and a NPD image INPD, as shown
in the following equation:

IB = (IPD × α) + (INPD × (1 − α)) (1)

where α represents a weight to vary the strength of each domain in the final
blended image. Each NPD image is blended to one of the PD images using a
predetermined weight and respecting the balance between the number of PD
classes. Examples of the images generated through this process are illustrated in
Fig. 2. The purpose of the blending process was to incorporate more information
from the problem domain into the attack dataset, allowing better exploration
of the Oracle’s space while using only a few PD images. The weight α is a
predefined decimal value that can range between 0 and 1. Therefore, the blended
fake dataset comprises the same amount as the original NPD. Once the blended
images are generated, the Oracle is used to label them, creating the blended fake
dataset. Finally, this dataset is employed to train the Few-Shot Copycat model.

Fig. 2. Examples of images generated through the blending process with weight α set
to 0.5 for the SIG30, SHN10 and GOC9 problems. For each problem, the image on the
right, preceding the directional arrow, corresponds to the PD image, whereas the image
on the left corresponds to the NPD image. The image subsequent to the directional
arrow represents the outcome of the blending process with those images.
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4 Experimental Methodology

This section outlines the experimental methodology employed to generate the
Few-Shot Copycat. The proposed method is compared against two baselines: the
Oracle and the Original Copycat Network (i.e., a surrogate model trained only
with NPD images). The experiments are conducted across five problem domains:
Facial Expression Recognition (FER7), Fashion Image Classification (FIC10),
General Object Classification (GOC9), Traffic Sign Classification (SIG30), and
Street View House Number Classification (SHN10). Except FIC10, the datasets
used for the problems are the same as those employed in [4].

For each investigated problem, it is assumed that there is a private dataset
composed of images from the problem domain, named Original Domain (OD).
A part of the OD dataset is separated for test purposes (testing performance of
the oracle and the copycats) and is referred to Test Data (TD). Therefore, the
OD dataset represents the part used for training. In addition to the OD dataset,
each of the investigated problems has an additional dataset comprising images
from the same domain as the OD to assume the role of the PD dataset. The OD
and PD configuration follows those defined in [4,5].

The remainder of this section details the baseline methods, the use case
problems, the evaluation metrics, the performed experiments, and the general
setup.

4.1 Baselines

Oracle Network. The Oracle Network is a model trained with the OD dataset
that can be used as an API service. Therefore, when performing predictions with
the Oracle, adversaries have access to the images’ hard-labels only. This network
is used as an upper bound baseline since the attack aims to have a model that
performs as well as the Oracle.

Original Copycat Network. This is the Original Copycat model trained with
NPD images only, as proposed in [4,5]. This network is used as a lower bound
baseline since the proposed blend aims to improve the Original Copycat’s per-
formance, which does not rely on problem domain images.

4.2 Use Case Problems

The five problems referred at the beginning of this section are described here.

Facial Expression Recognition (FER7). This problem encompasses seven
distinct classes: fear, sad, angry, disgust, surprise, happy, and neutral. The
dataset was created using the Extended Cohn-Kanade Database (CK+) [16]
as the Test Data (TD). The AR Face [19], Binghamton University 3D Facial
Expression (BU3DFE) [33], The Japanese Female Facial Expression (JAFFE)
[18], MMI [25] and Radboud Faces Database (RaFD) [13] as original domain
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dataset, OD dataset, and Karolinska Directed Emotional Faces (KDEF) [17] as
problem domain dataset, PD dataset. In contrast to the Original Copycat work,
the NPD dataset retains its original color configuration, and data augmentation
is not employed in the PD dataset.

Fashion Image Classification (FIC10). The goal of this problem is to clas-
sify fashion images using the Fashion MNIST (FMNIST) [31] with 10 distinct
classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag and
ankle boot. The dataset was divided according to the suggested training and
testing sets, which were used respectively as the OD dataset and Test Data
(TD). Due to the absence of a similar dataset for the PD dataset, 10 random
images of each class were extracted from the OD to compose the PD dataset
and were not included in the training process.

General Object Classification (GOC9). This problem involves classify-
ing different types of objects. The dataset is composed of CIFAR-10 [12] and
STL-10 [3], with each dataset having 10 classes. However, each dataset includes
one unique class (‘monkey’ in STL-10 and ‘frog’ in CIFAR-10). Consequently,
these unique classes were excluded, resulting in datasets with 9 classes only. The
CIFAR-10 dataset was partitioned into two segments based on the recommended
training and testing sets, following [4]. The first subset was designated as the
OD dataset, whereas the other served as the Test Data (TD). Meanwhile, the
STL-10 dataset was defined as the PD dataset.

Street View House Number Classification (SHN10). The objective of
this problem is to classify images of house numbers using the SVHN [22] as
dataset, which includes 10 classes(numbers ranging from 0 to 9). The dataset
was divided according to the suggested training, validation, and test sets, used
respectively as OD dataset, Test Data (TD), and PD dataset (as also performed
in [4]).

Traffic Sign Classification (SIG30). This problem concerns the classification
of the traffic signs that are present in the images. This dataset comprises the
TT100k [15] and the TSRD [10] datasets. Since the labels of these datasets are
not synchronized, they were firstly preprocessed to remove specific categories
(with less than 26 images in the TT100k) and to synchronize the labels in both
datasets (as also performed in [4]) using the code provided by the authors1.
This resulted in 30 retained categories. The suggested training and testing of
the TT100k dataset were defined respectively as the OD dataset and Test Data
(TD), whereas the TSRD was defined as the PD dataset.

1 The dataset generation tool used for this purpose is available at: https://github.
com/jeiks/Stealing DL Models/tree/master/Copycat CNN-Expansion/data/
SIG30/dataset creation.

https://github.com/jeiks/Stealing_DL_Models/tree/master/Copycat_CNN-Expansion/data/SIG30/dataset_creation
https://github.com/jeiks/Stealing_DL_Models/tree/master/Copycat_CNN-Expansion/data/SIG30/dataset_creation
https://github.com/jeiks/Stealing_DL_Models/tree/master/Copycat_CNN-Expansion/data/SIG30/dataset_creation
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4.3 Metrics

Each model was evaluated based on F1-Score using the TD dataset for the given
problem. The F1-Score was chosen as it provides a balanced measure between
precision and recall, making it particularly useful in scenarios where there is an
uneven class distribution or when the cost of false positives and false negatives
is high. After training and evaluating each surrogate model (Original Copycat
Network and Few-Shot Copycat) for each problem, performance metrics were
determined by calculating the ratio of the surrogate model’s F1-score to the
F1-score of the upper bound Oracle Network. Given that each surrogate model
experiment was performed three times (three runs), the mean performance along
with the standard deviation was calculated for each set of experiments.

4.4 Experiment

The objective of this experiment is to show that the blending process with a few
samples of the problem domain improves the performance of the lower bound
baseline, i.e., the Original Copycat Network trained with NPD images only.
Therefore, five scenarios are explored for each problem, in which the adversary
applies Few-Shot Copycat with 1, 2, 3, 5, and 10 randomly selected PD images
per class. The generated models are called Few-Shotλ, where λ represents the
number of images the adversary has for each class of that problem.

The experiment was performed considering an NPD dataset with 100k images
obtained from ImageNet [26] and using the framework2 provided in [5]. The
whole setup was performed 3 times to see the effect of random factors. For
each run, the NPD images and the network parameters were randomly changed.
However, within the same run, efforts were made to mitigate the effect of ran-
domness across the different models in terms of the impact of PD image selection
and the impact of NPD image class association. This effect may interfere with
the interpretation of the experiment results. After conducting several prelimi-
nary tests, we observed that high values of α (Eq. 1) result in images that are
too similar due to the low number of PD images. In contrast, low values of α
generate images that fail to extract as many desired features from the Oracle.
Therefore, although the weight α can vary between 0 and 1, we set α = 0.5 in
all experiments. Moreover, a binary search was conducted on Original Copycat
to find the number of NPD images needed to achieve performance equivalent
to our proposed technique with 100k blended images. This search started with
300k and extended up to 1.2M images.

Regarding the impact of PD image selection, after randomly selecting λ
images from the PD, the Few-Shotλ models with fewer images (i.e., smaller
λ) are randomly chosen from this previously selected set of images. To clar-
ify, let’s consider that λ = 10 images are initially selected at random from the
PD. Thus, Few-Shot10 comprises the subset S10 (i.e., Sλ where λ = 10). Subse-
quently, each new subset of images is randomly selected from the larger subset,
i.e., S1 ⊂ S2 ⊂ S3 ⊂ S5 ⊂ S10.
2 https://github.com/jeiks/copycat framework.

https://github.com/jeiks/copycat_framework


Few-Shot Copycat 415

After each run with each λ, the histogram of the image labels from the
few-shot fake datasets and the NPD datasets was analyzed to check the label
distribution over the classes. This analysis was conducted to determine whether
the proposed technique can alter the label of the NPD image based on the label
of the blended PD image, thus improving the balance of the attack dataset. Since
the Original Copycat [4] truncates the histogram to balance the data prior to
training3, the analysis was performed in the truncated histogram. The truncate
threshold value is the number of images equally distributed over the classes (total
number of images divided by the number of classes of the respective problem).
The analysis was performed by comparing the standard deviation calculated
again over the ideal mean (total number of images divided by the number of
classes of the respective problem) of the normalized truncated histogram, see an
example in Fig. 3 for the FER problem with 10 images per class. It is expected
that the better balanced method (with proposed blending) presents a smaller
standard deviation of the expected mean than the less balanced method (with
random NPD without blending).

Fig. 3. An example of a normalized truncated histogram for the FER7, FIC10 and
SHN10 problems with λ = 10, illustrating the distribution of labels across the classes
relative to the ideal mean. Since the number of images is normalized, the standard

deviation is calculated as σ =
√∑C

i=1

(
ci
N

− μ
)2

, where C is the number of classes, ci

is the number of labels for the i-th class, N is the total number of images, and μ = 1
C

is the ideal mean.

Due to the potential impact of associating a domain class with an NPD
image, it is undesirable for the same NPD image to be blended with different
classes within the same set of experiments with varying values of λ. Therefore,
to mitigate this effect, the NPD dataset was first shuffled and divided into sub-
groups with an equal number of images for each class of the target problem. Each

3 In the Original Copycat approach, a threshold is determined based on the mean
number of images per class. Images exceeding this threshold are randomly discarded,
while those falling below it are randomly replicated.
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subgroup was then associated with PD images of a respective class (Fig. 4). Fur-
thermore, in the experiments, each subgroup was divided into 10 parts, which
allows equal numbers of NPD images to be blended with each PD image when
λ = 10. For smaller λ values, the segment of unused PD images is blended with
those in use.

Fig. 4. Illustration of the process of distribution of the NPD images for blending with
the PD images. The figure presents an illustrative example where NPD images are
allocated for blending with PD images (1, 2, or 3 images per class, as shown in the
illustration) within a problem involving 2 classes, each represented by a distinct color
(red and green). Each PD image is represented by a square with a border colored
according to its respective class. The process ensures a minimum variation with higher
λ values being subset of the smaller values. For example, the first NPD is consistently
paired with class 1 image 1 across all three λ values. (Color figure online)

4.5 General Setup

This work adopts the same architecture (Resnet-18 [8]) for both Oracle and the
surrogate models. This choice aligns with the original research [4], which showed
that the architecture does not substantially affect Copycat performance, as the
method remains effective even with differing architectures for the Oracle and sur-
rogate models. The training of all models used the Stochastic Gradient Descent
(SGD) optimization algorithm with a Step-Down policy to adjust the learning
rate. The epoch limit was determined through empirical experimentation, where
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convergence in accuracy was consistently achieved within this specified range.
The experimental setup included an Intel Core i7-10700 processor, 32 GB RAM,
and an NVIDIA GeForce RTX 3060 with 12 GB memory, Ubuntu 22.04.3, CUDA
12.2, and cuDNN 8.9. The source code used was provided by the authors of the
Original Copycat framework4.

5 Experimental Results

The experimental results for each problem are shown in Table 1 and detailed in
the following subsections, followed by a comprehensive discussion. For simplicity,
the Few-Shot Copycat model will be referred to as the Few-Shot model through-
out this section. The results are discussed in terms of average and standard
deviation calculated over the three runs of each experiment combination.

The FER7 results are illustrated in Fig. 5. The Few-Shot models outper-
formed the Copycat baseline for all λ values. Even when using only 1 PD image
per class (λ = 1), there was an improvement of 5.1%. The Copycat baseline
achieved a performance of 71.5% ± 2.9 over the Oracle, whereas the Few-Shot
models exhibited performances of up to 87.0%±2.8 over the Oracle. As presented
in Fig. 6, much more than 600K NPD images (i.e., more than 6× the number of
queries) are required in the Original Copycat to achieve the Few-Shot Copycat
performance.

The FIC10 results are illustrated in Fig. 5. Similarly to the FER7 results,
the Few-Shot models outperformed the Copycat baseline for all λ values. There
was an average improvement of 11.1% when using only 1 PD image per class
(λ = 1). The Copycat baseline achieved performance of 79.2% ± 3.1 over the
Oracle, whereas the Few-Shot models exhibited performance of up to 92.6%±0.2
over the Oracle. As presented in Fig. 6, around 1.2M NPD images (i.e., almost
12× the number of queries) are required in the Original Copycat to achieve the
Few-Shot Copycat performance.

The GOC9 results are illustrated in the Fig. 5. In contrast to the preceding
results, the Few-Shot models did not improve the Copycat baseline. The Copycat
baseline achieved a performance of 92.0%±0.4 over the Oracle, whereas the best
Few-Shot model achieved a performance of 90.3%±0.6 with 10 images per class.
One possible explanation is that the GOC9 is already close enough to the domain
of ImageNet dataset used as NPD dataset, which would already result in good
extraction performance with NPD.

The SHN10 results are illustrated in the Fig. 5. Similarly to the FER7 and
FIC10 results, the Few-Shot models outperformed the Copycat baseline for all λ
values. There was an average improvement of 2.4% when using only 1 PD image
per class (λ = 1). The Copycat baseline achieved a performance of 93.4% ± 0.4
over the Oracle, whereas the Few-Shot models exhibited performances of up to
97.3% ± 0.2 over the Oracle. As presented in Fig. 6, around 600K NPD images
(i.e., almost 6× the number of queries) are required in the Original Copycat to
achieve the Few-Shot Copycat performance.
4 https://github.com/jeiks/Stealing DL Models.

https://github.com/jeiks/Stealing_DL_Models
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The SIG30 results are illustrated in the Fig. 5. Similarly to the previous
results (except for GOC9), the Few-Shot models outperformed the Copycat base-
line for all λ values. There was an average improvement of 1.9% when using only
1 PD image per class (λ = 1). The Copycat baseline achieved a performance
of 91.6% ± 2.1 over the Oracle, whereas the Few-Shot models exhibited perfor-
mances exceeding 98.1% ± 0.9 over the Oracle. As presented in Fig. 6, around
1.2M NPD images (i.e., almost 12× the number of queries) are required in the
Original Copycat to achieve the Few-Shot Copycat performance.

Fig. 5. Average extraction performance for the baseline and Few-Shot Copycat involved
the utilization of 1, 2, 3, 5, and 10 images per class over the target network designed
for the FER, FIC, GOC, SHN, and SIG problem.

5.1 Discussion

The general results are summarized in Table 1. There was an average improve-
ment (considering all use case problems) over the baseline of 3.4 percentage point
when adding 1 PD image per class only. This improvement can go up to 7.3 per-
centage point when adding 10 PD images per class. One possible reason for the
improvement is that the blending process can alter the label of the NPD image,
thus enhancing the balance of the dataset. As seen for all problems in Table 2,
every standard deviation with the blending is smaller than its corresponding
Original Copycat, showing a gain in the class balance. Moreover, there appears
to be a pattern of improvement as more images from the problem domain are
added to the extraction process, showing that the proposed Few-Shot Copycat
is effective.

It is important to note that the Original Copycat already investigated using
PD images to improve model extraction through fine-tuning. However, fine-
tuning a CNN requires a decent number of images, much more than the few-
shot proposed here. Preliminary results showed that fine-tuning with just a few
images worsen the results. The results show that the proposed approach not only
reduces the necessary number of images of the problem domain, but also avoids
dealing with additional fine-tuning setup and training.
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Fig. 6. Data curve performance of Original Copycat in a binary search starting with
300k images and going up to 1.2M to determine the number of NPD images required to
achieve performance equivalent or better to the Few-Shot Copycat with 100k images.
The vertical axis represents the network performance over the Oracle, and the hori-
zontal axis represents the NPD dataset size.

Table 1. Summary of Experiment Averages and Standard Deviations.

Problem Copycat Few-Shot1 Few-Shot2 Few-Shot3 Few-Shot5 Few-Shot10

FER7 71.5% ± 2.9 76.6% ± 4.4 80.7% ± 2.6 85.1% ± 1.0 87.0% ± 2.8 85.5% ± 6.5

FIC10 79.2% ± 3.1 90.3% ± 0.2 89.7% ± 1.5 91.0% ± 0.3 91.9% ± 0.4 92.6% ± 0.2

GOC9 92.0% ± 0.4 88.4% ± 0.3 88.9% ± 0.6 90.2% ± 1.8 89.4% ± 0.9 90.3% ± 0.6

SHN10 93.4% ± 0.4 95.9% ± 0.3 96.8% ± 0.1 96.9% ± 0.2 97.2% ± 0.2 97.3% ± 0.2

SIG30 91.6% ± 2.1 93.5% ± 1.2 97.1% ± 0.6 97.4% ± 1.37 97.6% ± 0.4 98.1% ± 0.9

Average 85.5% ± 9.7 88.9% ± 7.4 90.6% ± 6.7 92.1% ± 5.1 92.6% ± 4.6 92.8% ± 5.2

Table 2. Standard deviation calculated over the ideal mean considering the normalized
truncated histogram of the attack dataset (NPD or few-shot dataset).

Problem Copycat Few-Shot1 Few-Shot2 Few-Shot3 Few-Shot5 Few-Shot10

FER7 0.13 0.10 0.10 0.10 0.10 0.10

FIC10 0.09 0.05 0.05 0.05 0.05 0.05

GOC9 0.06 0.05 0.05 0.05 0.05 0.05

SHN10 0.06 0.03 0.02 0.03 0.03 0.04

SIG30 0.02 0.01 0.01 0.01 0.01 0.01
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6 Conclusion

This paper introduced a novel Few-Shot Copycat approach to improve the Orig-
inal Copycat Network by adding just a few samples of images of the problem
domain in the model extraction process. The additional images are blended with
NPD images so that the class space of the target problem is better sampled. With
this, the proposed method can better copy blackbox models by only querying
for hard-labels (i.e., the predicted class).

The results showed that our approach, Few-Shot Copycat, improved the aver-
age performance of the Copycat model from 85.5% to 92.8% with the addition
of up to 10 problem domain images per class. Even with the addition of just
1 image per class, the performance jumps in average to 88.9%. Furthermore,
it was demonstrated that the blending process can alter the class of the NPD,
thereby improving class balance, as evidenced by the reduction in the standard
deviation.

These numbers show the proposed approach is practical, reducing the num-
ber of queries needed to steal the knowledge of a model. For example, using
this technique, an adversary performing 100K queries could copy (with 90% of
performance) a model trained for facial expression recognition instead of per-
forming around 600K queries with the Original Copycat Network. Considering
this, companies offering their models as a service should prioritize robust mea-
sures to protect their models before making them available to users.

Future research should extend the applicability to different problem domains.
The investigation should also bring insights about the necessary minimum num-
ber of images for performing the attack.
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Abstract. Learning Using Privileged Information is a particular type
of knowledge distillation where the teacher model benefits from an addi-
tional data representation during training, called privileged information,
improving the student model, which does not see the extra representa-
tion. However, privileged information is rarely available in practice. To
this end, we propose a text classification framework that harnesses text-
to-image diffusion models to generate artificial privileged information.
The generated images and the original text samples are further used to
train multimodal teacher models based on state-of-the-art transformer-
based architectures. Finally, the knowledge from multimodal teachers
is distilled into a text-based (unimodal) student. Hence, by employing a
generative model to produce synthetic data as privileged information, we
guide the training of the student model. Our framework, called Learn-
ing Using Generated Privileged Information (LUGPI), yields noticeable
performance gains on four text classification data sets, demonstrating its
potential in text classification without any additional cost during infer-
ence.

Keywords: Learning Using Privileged Information · Knowledge
Distillation · Text Classification · Diffusion Models · Data
Augmentation

1 Introduction

In the quest of developing effective and efficient machine learning models,
researchers developed the knowledge distillation framework [5,21], in which the
outputs of one [5,31] or more [21,46,47] typically heavy models, called teach-
ers, are used as target for a typically lightweight model, called student. This
framework is primarily used to compress very deep models into shallower, yet
effective models [12,27,31,44,46,47]. A secondary use of knowledge distillation
is to leverage additional data representations, available only at training time,
to improve the performance of a model which does not have access to the extra
representation. This latter framework, called Learning Using Privileged Informa-
tion (LUPI) [42], was introduced well before the era of deep learning, but it was
later shown [27] that it represents a particular kind of knowledge distillation.
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Fig. 1. An illustration of our Learning Using Generated Privileged Information
(LUGPI) framework. For each text sample, a diffusion model generates an image. The
original text sample and the generated image are used to train a multimodal teacher
model. Then, a text-based student model is trained via knowledge distillation from the
teacher. The distillation is carried out at two levels.

Although LUPI is an interesting and useful framework, it has rarely been
applied in solving mainstream machine learning problems [1,16,17,23,42,50],
since finding additional modalities to represent the training data is not an easy
task. With the advent of diffusion models [6,22,40,41], which demonstrated
impressive capabilities in generating realistic and diverse images based on text
prompts [3,20,34,35], we can now automatically generate image representations
of text samples without much effort. To this end, we propose a novel framework
called Learning Using Generated Privileged Information (LUGPI), which har-
nesses a state-of-the-art text-to-image diffusion model to generate the privileged
information, namely Stable Diffusion v2 [34]. Our framework is applied on text
classification tasks, where the original modality is represented by text samples
and the additional modality is represented by images. Next, we train multimodal
teacher models based on combining state-of-the-art transformer-based architec-
tures, such as Distilled Bidirectional Encoder Representations from Transform-
ers (DistilBERT) [37], Vision Transformer (ViT) [11] and Contrastive Language-
Image Pre-Training (CLIP) [33]. Remarkably, we find that our multimodal teach-
ers outperform the standalone text-based (unimodal) model. However, employ-
ing the multimodal teachers during inference would inherently imply the use
of the diffusion model to generate the images. This greatly impacts the infer-
ence time of the whole framework, since diffusion models are notoriously known
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for being computationally expensive [6]. For instance, Stable Diffusion v2 [34]
comprises about 865 million learnable parameters, requiring about 17 seconds
to generate a single image on an NVIDIA GeForce RTX 3090 24GB GPU. To
address this limitation, we distill the knowledge from a multimodal teacher into
a text-based student model, as shown in Figure 1. This completely eliminates
the need to generate images during inference. Thus, LUGPI does not increase
the computational cost at test time.

We carry out experiments on four text classification data sets to evaluate
the proposed framework and compare it with the conventional training app-
roach based on pre-training and fine-tuning, while preserving the underlying
DistilBERT architecture [37]. Our empirical results indicate that LUGPI brings
significant performance gains on all four data sets.

In summary, our contribution is threefold:

– We propose to harness diffusion models in order to artificially generate an
extra data modality in the form of images, complementing the text modality,
which enables us to train more powerful multimodal neural models.

– We introduce the novel Learning Using Generated Privileged Information
framework to distill knowledge from our multimodal teachers into text-based
(unimodal) students.

– We conduct experiments on four benchmarks, showing that the proposed
framework improves the accuracy rates of text-based models by noticeable
margins, without any extra cost during inference.

2 Related Work

Learning Using Privileged Information. There are two types of knowl-
edge distillation frameworks, which were independently introduced in literature,
namely model compression [5,21] and learning using privileged information [42].
In 2016, Lopez-Paz et al. [27] unified the model compression and learning under
privilege information paradigms into the knowledge distillation framework.

The model compression technique [5,21] is mainly aimed at training a shallow
and efficient student architecture using one or more deeper and powerful teach-
ers. In this way, a shallow student could benefit from the knowledge gained by
a deep teacher, while having less parameters, and consequently, a lower running
time during inference.

The learning using privileged information paradigm [42] was introduced to
transfer the knowledge from a teacher model, which is trained with privileged
information, to a student model, which does not have access to the privileged
data. In this scenario, the teacher and the student can share the same archi-
tecture, the main difference being the data used to train the two models. Many
recent works [1,14–17,25,26,48] applied the LUPI framework to improve the
performance of the student without using additional information at test time.
For example, Yuan et al. [48] trained a student to estimate the 3D hand pose
using only the RGB image at test time. The knowledge about the depth chan-
nel was transferred from the teacher during the knowledge distillation process.
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Alehdaghi et al. [1] decreased the gap between RGB and infrared images used
in the person re-identification task by applying the LUPI framework. They pro-
posed to create an intermediate virtual domain that acts as a bridge between
the two image modalities. The intermediate virtual domain was used as privi-
leged information for the student model during training. Georgescu et al. [17]
applied LUPI for facial expression recognition under strong occlusion, where
the teacher learns from completely visible faces, but the student can only use
occluded faces as input. They later extended their approach to age estimation
and gender prediction from faces [16].

Similar to the aforementioned works [1,14–17,25,26,48], we use extra data
as privileged information during training. Different from the related studies on
LUPI, our method does not require the existence of additional representations,
since it generates the privileged data using a generative diffusion model. Hence,
our framework broadens the applicability of LUPI to text-based corpora that do
not have additional representations of the data samples.

Data augmentation. Our approach can also be seen as a rather unconventional
data augmentation technique. However, data augmentation is usually employed
to improve the robustness to data variation [9,49], while in our case, we employ it
to obtain privileged information. In general, data augmentation plays an impor-
tant role in increasing the performance of deep learning architectures [9,49],
especially when the available training data is limited. The most common data
augmentation methods used in computer vision are methods based on rotating,
cropping and flipping the images [7]. Although techniques like these can offer
better performance than just training on the original data, they lack the capabil-
ity of creating a completely different data point, instead relying on the existing
data and manipulating it just enough to have a variety within the training data.

In recent years, we have seen generative models, such as Generative Adver-
sarial Networks (GANs) [19] and diffusion models, that have been used to suc-
cessfully augment data and improve the accuracy of various models [2,4,32,36].
Generative models can create new data points that closely resemble the training
data distribution, often being mistaken with natural data points. Therefore, clas-
sification models can leverage this new data variety to offer high performance
without having to gather any new data points. Furthermore, there are some
examples that successfully use generative models when conventional techniques
fall short [39,43]. Yang et al. [43] proposed to use diffusion models to generate
images illustrating human-object interactions, conditioned by prompts explain-
ing the interactions. Shivashankar et al. [39] trained a GAN model to generate
images along with their segmentation label for medical and face segmentation
data sets. In these cases, conventional data augmentation methods provide sub-
optimal results when compared with generative models. This is because the
latter models can generate new data points that resemble the training data dis-
tribution, aside from being able to generate variations of existing data points
conditioned by some specific features that need to be present in the generated
output.
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Unlike other data augmentation techniques, we propose to generate image-
based representations from text samples, essentially obtaining a new modality.
Thus, our technique requires employing multimodal models to benefit from the
extra data representation. To return to using a unimodal input while keeping
the benefits of the multimodal data, we employ knowledge distillation.

3 Method

Overview and motivation. Learning Using Privileged Information [42] is suit-
able for machine learning tasks where the training data is represented by multiple
modalities. However, the majority of machine learning problems only involve a
single modality, rendering LUPI inapplicable. To overcome this challenge in the
area of natural language processing and text classification, we propose to uti-
lize a text-to-image diffusion model to generate privileged information in the
form of images, in order to solve text classification problems where privileged
information is not typically available.

We believe that our proposal is grounded in how the human mind works.
For instance, humans use their imagination to mentally visualize objects, colors,
textures or other visual aspects evoked in a text. This process helps humans
in reaching a better and deeper text comprehension [13]. In a similar way, we
conjecture that imaginary pictures can boost the performance of neural mod-
els such as BERT [8] or DistilBERT [37], provided that the visualizations are
sufficiently representative. To increase the chances of successfully implementing
our proposal, we make use of diffusion models, which are considered by many
researchers as state-of-the-art text-to-image generators [10], surpassing previous
models based on GANs.

To harness the generated images, a straightforward approach is to employ
models on both text and image modalities in order to improve text classification
performance. However, this approach is suboptimal in terms of speed, requiring
additional time to generate and process images during inference. Our framework
addresses this issue through knowledge distillation, i.e. the knowledge learned by
the multimodal model, called teacher, is distilled into a text-based model, called
student. At test time, we employ the student model to make predictions, thus
eliminating the need to generate and process images. Our training framework is
formally introduced in Algorithm 1. We first introduce the notations, then con-
tinue by presenting the three stages of our algorithm, namely image generation,
teacher model training and knowledge distillation.

Notations. Let D = (X,Y ) = {(x1, y1), (x2, y2), ..., (xn, yn)} represent a train-
ing set of text samples, where n is the number of samples in the data set, and
yi is the ground-truth label associated with text sample xi. Let T and θT rep-
resent the multimodal teacher model and its weights, respectively. Similarly, let
S and θS represent the text-based student model and its weights. The weights
of the teacher and student models are updated using the learning rates ηT and
ηS , respectively. Let X ′ = {x′

1, x
′
2, ..., x

′
n} represent the set of images generated

by a diffusion model G with the weights θG. Let N (μ, σ2) represent the normal
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Algorithm 1: Learning Using Generated Privileged Information
Input: D - the training set of labeled text samples, G - the text-conditional

diffusion model, θG - the weights of the diffusion model, T - the
multimodal teacher model, S - the student model, θ∗

T - (optional)
pre-trained weights for the teacher, θ∗

S - (optional) pre-trained weights
for the student, ηT - the teacher’s learning rate, ηS - the student’s
learning rate, α - the importance of the cross-entropy between the
teacher and the student, β - the importance of the mean squared error
between the teacher and student embeddings.

Output: θS - the trained weights of the student model.
1 n ← |D|; � get the number of training samples
2 X ′ ← ∅; � initialize the set of generated images
3 foreach i ∈ {1, 2, ..., n} do
4 x′

i ← G(xi, θG); � generate an image for the text sample xi

5 X ′ ← X ′ ∪ {x′
i}; � add the generated image to the set X ′

6 if θ∗
T �= ∅ then

7 θT ← θ∗
T ; � initialize weights of teacher using pre-trained weights

8 else

9 θT ∼ N
(
0, 2

din+dout

)
; � initialize weights of teacher using Xavier init [18]

10 repeat
11 foreach i ∈ {1, 2, ..., n} do
12 ti ← T (xi, x

′
i, θT ); � get class probabilities predicted by the teacher

13 θT ← θT − ηT · ∇LCE(yi, ti); � train the teacher using cross-entropy

14 until convergence;
15 if θ∗

S �= ∅ then
16 θS ← θ∗

S ; � initialize weights of student using pre-trained weights

17 else

18 θS ∼ N
(
0, 2

din+dout

)
; � initialize weights of student using Xavier init [18]

19 repeat
20 foreach i ∈ {1, 2, ..., n} do
21 ti, e

T
i ← T (xi, x

′
i, θT ); � get probabilities and embedding from teacher

22 si, e
S
i ← S(xi, θS); � get probabilities and embedding from student

23 LKD ← LCE(yi, si) + α · LT
CE(ti, si) + β · LT

l2(e
T
i , eSi ); � apply Eq. (2)

24 θS ← θS − ηS · ∇LKD; � train the student using the joint loss

25 until convergence;

distribution of mean μ and standard deviation σ. Let eTi and eSi denote the
embedding vectors produced by the teacher and the student for the i-th data
sample, respectively. The embedding vectors are taken just before the classifica-
tion layer of each model.

Image generation. In steps 2-5 of Algorithm 1, we utilize a pre-trained text-to-
image diffusion model to generate privileged information in the form of images.
In step 4, the generator G generates an image denoted by x′

i conditioned on the
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text sample xi. In step 5, the generated image is added to the set X ′. Steps 4
and 5 are repeated until all training examples are passed through G.

We choose the Stable Diffusion v2 [34] model trained on the LAION-5B
[38] data set as our generator G. The use of this model is chosen in favor of
another open-source diffusion model, namely GLIDE [30]. To decide on which
generator to use, we visually inspected their outputs on a subset of 100 prompts
from the chosen data sets. We observed that Stable Diffusion v2 is usually bet-
ter aligned with the provided text prompts than GLIDE. This influenced our
decision towards using the former model.

Teacher training. The second stage of our pipeline is dedicated to training
the teacher model. This stage corresponds to steps 6-14 of Algorithm 1. The
teacher model is a multimodal architecture comprising three transformer-based
encoders: a text encoder, an image encoder, and a multimodal encoder. As illus-
trated in Figure 1, the tokens produced by the text encoder are concatenated
with the tokens given by the image encoder. The concatenated set of tokens
is further passed through the multimodal encoder, which comprises a vanilla
transformer block based on multi-head attention, having 8 attention heads. The
multimodal encoder learns to perform cross-modal attention, strengthening rela-
tions across the text and image modalities. From the resulting set of multimodal
tokens, we keep the classification token UCLS from the text modality and the
classification token VCLS from the image modality, discarding the other tokens.
This is a conventional procedure when transformers are applied to downstream
classification tasks [8,11]. Next, the classification tokens are concatenated and
given as input to a multi-layer perceptron (MLP) with two layers, where the first
layer comprises 786 neurons and the second one comprises k neurons, where k
is the number of classes. A softmax function computes the output probabilities.

In order to make the prediction ti, the teacher model T takes the text sample
xi and the generated image x′

i as input, according to step 12 of Algorithm 1.
In step 13, the weights of the teacher θT are updated using gradient descent,
where the gradient is computed with respect to the cross-entropy loss. For the
vector of predicted class probabilities ti and the one-hot label encoding yi, the
cross-entropy loss is given by:

LCE(yi, ti) = −
k∑

j=1

yij · log(tij),∀i ∈ {1, 2, ..., n}, (1)

where k is the number of classes.
In our implementation, we choose to use pre-trained architectures for the

text and image encoders. For a fair and representative evaluation, we use the
same text encoder as the baseline and the student models, namely DistilBERT
[37]. This is to ensure that the observed performance gains are not due to the
use of a more powerful text encoder for the teacher model, but rather due to
the extra image modality. For the image encoder, we consider two alternative
architectures, namely ViT [11] and CLIP Image [33].
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Knowledge distillation. After training the teacher, we apply the knowledge
distillation procedure to transfer the knowledge from the multimodal teacher to
the student. This stage corresponds to steps 15-25 of Algorithm 1. According
to steps 15-18, the student can optionally be pre-trained in a standard fashion,
prior to the knowledge distillation procedure. We utilize this option to ensure
a fair comparison with the baseline model. More precisely, both the baseline
DistilBERT and our student DistilBERT are pre-trained. In general, when there
are no pre-trained weights for the student, we can simply initialize the model
using a conventional approach (step 18), such as Xavier initialization [18].

The student model is jointly optimizing three objectives. On the one hand,
the student has to minimize the cross-entropy loss with respect to the ground-
truth (hard) labels, to ensure that its predictions are correct. On the other hand,
the student has to optimize the cross-entropy with respect to the probabilities
(soft labels) predicted by the teacher, as well as minimize the mean squared
error between the corresponding embeddings produced by the teacher and the
student, which enables the student to learn knowledge from the teacher model.
Formally, for the i-th data sample, the joint objective is computed as follows:

LKD = LCE(yi, si) + α · LT
CE(ti, si) + β · LT

l2(e
T
i , eSi )

=−
k∑

j=1

yij ·log(sij)−α·
k∑

j=1

tij ·log(sij)+β ·‖eTi − eSi ‖22,∀i ∈ {1, ..., n},
(2)

where α, β ≥ 0 are two hyperparameters that control the importance of the
knowledge distillation objectives. Note that the distillation is carried out at two
levels, namely with respect to the embedding space and the output space. Our
ablation study shows the importance of distilling knowledge at both levels.

4 Experiments

We conduct experiments on four data sets covering three tasks: opinion mining,
text categorization by topic, and complex word identification. The data sets are
chosen to provide a comprehensive evaluation of image generation and privileged
information in different target tasks.

4.1 Data Sets

IMDB Large Movie Review. The IMDB Large Movie Review data set [29] is
a well-known benchmark for polarity classification, which is composed of 50,000
movie reviews separated into 25,000 for training and 25,000 for testing. We keep
10% of the training set for validation purposes. The scope of this data set is to
predict the polarity of the sentiment (positive or negative).

20 Newsgroups. The 20 Newsgroups data set [24] is a popular benchmark for
text categorization by topic. It comprises 18,828 documents that are assigned to
one of 20 different categories, ranging from technology to sports and religion. In
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our experiments, we divide the data set into 11,353 training documents, 1,261
validation documents and 6,214 test documents.

English News. The English News corpus [45] comprises 17,861 sentences with
marked words or multi-word phrases that are annotated with complexity levels
by native and non-native English speakers. The task is to determine if the target
words or multi-word phrases are complex or not. The corpus is divided into
14,002 training sentences, 1,764 validation sentences and 2,095 test sentences.

English WikiNews. Another corpus for complex word identification introduced
by Yimam et al. [45] is English WikiNews. It has a similar format to English
News. The English WikiNews data set is divided into 7,746 training sentences,
870 validation sentences and 1,287 test sentences.

Table 1. Accuracy rates on IMDB Large Movie Review [29], 20 Newsgroups [24],
English News [45] and English WikiNews [45] data sets. Our teacher and student models
are compared with the fine-tuned vanilla DistilBERT [37]. For reference, we report
results with the independent image encoders, namely ViT [11] and CLIP [33]. The
best accuracy on each corpus is highlighted in bold. Significantly better results (at a
p-value of 0.001) based on McNemar / Cochran Q testing are marked with ‡.

Model Modality IMDB 20 News English English

Text Image Reviews groups News WikiNews

DistilBERT [37] 3 0.919 0.918 0.861 0.842

ViT [11] 3 0.559 0.137 0.832 0.754

CLIP Image [33] 3 0.549 0.523 0.822 0.746

DistilBERT+ViT (Teacher 1) 3 3 0.920 0.919 0.867‡ 0.843

DistilBERT+CLIP (Teacher 2) 3 3 0.931‡ 0.926‡ 0.868‡ 0.846

DistilBERT (Student 1) 3 0.930‡ 0.928‡ 0.869‡ 0.843

DistilBERT (Student 2) 3 0.931‡ 0.929‡ 0.871‡ 0.848‡

4.2 Experimental Setup

Baselines and backbones. As baseline, we choose the DistilBERT model [37],
a variant of BERT [8] that exhibits good performance with a reasonable number
of learnable parameters. For a fair comparison with the baseline, we employ the
DistilBERT architecture for our students as well. Moreover, the text encoder
inside the multimodal teachers is also based on DistilBERT. To encode the gen-
erated images, we alternatively employ the pre-trained image encoder of the
CLIP architecture [33], or the pre-trained ViT [11] model. We thus obtain a
teacher based on DistilBERT+ViT (Teacher 1), and a teacher based on Dis-
tilBERT+CLIP (Teacher 2). We distill the knowledge from Teacher 1 into a
student based on DistilBERT (Student 1), and the knowledge from Teacher 2
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into a different student (Student 2), which is also based on DistilBERT. We
underline that the two students have the same architecture, but they differ in
terms of the source providing the privileged information.

Hyperparameters. We train the models with the AdamW [28] optimizer using
a learning rate of 5·10−5 with linear decay, which converges to good optima across
all our experiments. The baseline DistilBERT, the teachers and the students are
each trained for 100 epochs on an Nvidia GeForce GTX 1080Ti GPU with 11
GB of VRAM. In all the experiments, we use a mini-batch size of 14 samples.
Following previous works on knowledge distillation [5,27], we soften the output
of the teacher using the temperature τ . We validate this hyperparameter in the
range 1-10, achieving optimal results with τ = 8. The hyperparameters α and
β from Eq. (2) are validated in the range from 0.1 to 5. The optimal values are
α = 3 and β = 1.

Data preprocessing. Before generating images with Stable Diffusion v2 [34],
we perform some preprocessing steps to clean up the text samples. For the
IMDB data set, we remove the HTML tags that are sometimes present in movie
reviews. For the 20 Newsgroups data set, we discard email addresses and sub-
jects, using the remaining content as text prompt. For the English News and
English WikiNews data sets, we provide the target word or multi-word phrase in
each sentence as input for the text-conditional diffusion model. This is because
the task is to identify the complexity of the target words, not of the whole
sentences.

To process the examples from the English News and English WikiNews cor-
pora with DistilBERT, we modify each sentence by marking the target words or
multi-word phrases with the [SEP] token. No further preprocessing is required
for the other data sets.

4.3 Results

We present the results obtained on the IMDB, 20 Newsgroups, English News
and English WikiNews data sets in Table 1.

IMDB. The baseline DistilBERT model [37], which is trained using only text
data, reaches an accuracy of 91.9%, while the image encoders barely surpass
the random chance baseline. The best multimodal teacher employing the CLIP
image encoder reaches an accuracy of 93.1%. Our first student outperforms its
teacher by 1%, while our second student is on par with its teacher. Notably, both
students surpass the baseline model by more than 1.1%.

20 Newsgroups. The baseline DistilBERT [37] obtains a performance of 91.8%,
while the individual image encoders lag far behind. Since ViT is much worse
than CLIP, the corresponding teacher (DistilBERT+ViT) barely surpasses the
baseline model, while DistilBERT+CLIP (Teacher 2) reaches an accuracy of
92.6%. Meanwhile, our students based on privileged information surpass their
teachers, showing considerable performance gains over the baseline DistilBERT.
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English News. On the English News corpus, the baseline DistilBERT obtains
an accuracy of 86.1%. The ViT and CLIP image encoders obtain competitive
results, being less than 4% behind DistilBERT [37]. Both multimodal teachers
outperform the baseline DistilBERT. Moreover, our student models surpass their
teachers. The best student outperforms the baseline DistilBERT by 1%, reaching
an accuracy of 87.1% in complex word identification.

English WikiNews. The results on the English WikiNews corpus are consis-
tent with those on the English News corpus. Indeed, the independent image
encoders obtain fairly good results, given that they only take generated images
as input. The multimodal teachers outperform the baseline DistilBERT, while
the students yield even better results.

Fig. 2. Text samples and generated images that are correctly classified by the mul-
timodal teacher based on DistilBERT+CLIP. The target label is displayed on top of
each sample. The examples on top belong to the 20 Newsgroups [24] data set, while
the examples below are taken from English News [45] and English WikiNews [45].
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Overall. We notice that the text modality leads to better results than the image
modality, regardless of the data set. This is a natural consequence of the fact that
the images are generated by a diffusion model, which can produce images that do
not reflect the label. Another generic observation is that the multimodal teacher
based on the CLIP image encoder (Teacher 2) is generally better than the other
teacher. This leads to a better DistilBERT student (Student 2). Furthermore,
we observe that the students generally surpass their teachers. We explain this
observation through the fact that the multimodal teachers assign equal impor-
tance to the text and image modalities, although the image modality is naturally
inferior. In contrast, the students focus on the original text modality, obtaining
information about the image modality only through knowledge distillation.

Since both students surpass the baseline DistilBERT in each and every case,
we conclude that our LUGPI framework is beneficial in various text classification
tasks, such as polarity classification, text categorization by topic, and complex
word identification.

Qualitative results. In Figure 2, we illustrate some examples which are incor-
rectly classified by the baseline DistilBERT, but are correctly classified by our
second teacher model (DistilBERT+CLIP). Remarkably, we observe that the
images generated by Stable Diffusion v2 contain important clues. For instance,
a car is generated when the prompt is about cars, even though the word “car”
is never mentioned inside the prompt. For the complex word identification task,
we observe that the images generated for simple (non-complex) words tend to be
less abstract, while those generated for complex words tend to be more abstract.
In summary, the illustrated examples show that the generated images can com-
plement the corresponding text samples. Although our students do not see these
images at test time, our quantitative results presented in Table 1 show that
the students clearly benefit from the privileged information transferred from the
multimodal teachers.

Ablation study. Our LUGPI framework performs the distillation at two net-
work levels, via two distinct loss terms. To demonstrate the utility of both terms,
we perform an ablation study of the knowledge distillation loss terms LT

CE and
LT
l2

from Eq. (2). We present the corresponding results in Table 2. Distilling
knowledge at the output level via LT

CE is not beneficial for the first student. In
contrast, distilling knowledge at the embedding level via LT

l2
helps both students

on three data sets (except IMDB). In summary, the ablation study shows that
both distillation losses are required to obtain consistent improvements.

Training and inference time. The inference time of our final model is identical
to that of the vanilla DistilBERT. However, the training time of our pipeline is
between 2.3× and 2.8× higher (depending on the dataset and the vision model)
than that of the student. This includes the time for generating the images with
the pre-trained Stable Diffusion model. Note that Stable Diffusion is kept frozen
in our pipeline.
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Table 2. Accuracy rates on IMDB Large Movie Review [29], 20 Newsgroups [24],
English News [45] and English WikiNews [45] data sets, while ablating the knowledge
distillation components of our loss defined in Eq. (2). The best accuracy on each corpus
is highlighted in bold.

Model Loss Terms IMDB 20 News English English

LT
CE LT

l2 Reviews groups News WikiNews

DistilBERT (Student 1) 0.919 0.918 0.861 0.842

DistilBERT (Student 2) 0.919 0.918 0.861 0.842

DistilBERT (Student 1) 3 0.913 0.922 0.765 0.842

DistilBERT (Student 2) 3 0.923 0.926 0.870 0.844

DistilBERT (Student 1) 3 0.911 0.926 0.869 0.840

DistilBERT (Student 2) 3 0.919 0.925 0.865 0.843

DistilBERT (Student 1) 3 3 0.930 0.928 0.869 0.843

DistilBERT (Student 2) 3 3 0.931 0.929 0.871 0.848

5 Conclusion

In this work, we proposed the Learning Using Generated Privileged Information
framework, which employs a diffusion model to generate privileged images, which
were further used to train a multimodal teacher taking both text and image
data as input. A unimodal student was subsequently trained by distilling priv-
ileged information from the multimodal teacher. We performed experiments on
four text classification data sets, namely IMDB Movie Reviews, 20 Newsgroups,
English News and English WikiNews. We alternatively employed two different
image encoders to extract image features, demonstrating accuracy gains in both
cases. All our distilled students outperformed the baseline model and even the
multimodal teachers, without any extra cost during inference. In future work,
we aim to extend our framework to more NLP tasks.
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Abstract. Multimodal image segmentation utilizes a variety of modal-
ity images with RGB, infrared, polarization, etc. Unfortunately, the
mainstream focus on digital modality fusion leads to the cost of com-
puting abundant information and increased model size. To selectively
capture meaningful information and compress model size, we introduce
a novel framework for hardware level modality fusion (Our code is avail-
able at https://github.com/eki-1996/Deep Hardware Modality Fusion.
Our hardware modality fusion module simulates a captured image with
fused modality on hardware in two strategies: frame coding and pixel
coding. It also enables a single encoder model structure and significantly
reduces model size. This modality fused image makes the encoder elim-
inate redundant information to extract the necessary information for
downstream tasks. We evaluated our methods on two multimodal seg-
mentation datasets that contain different modalities and got compara-
ble performance on both datasets compared to baseline methods, which
explore different digital modality fusion strategies. Our proposed method
outperforms baseline methods on evaluated datasets and tasks with com-
pressed information passed to the segmentation model.

Keywords: Image segmentation · Multimodal image segmentation ·
Hardware modality fusion

1 Introduction

Semantic segmentation of digital images is classifying regions of pixels that
belong to semantically meaningful areas or objects [14]. It is an important pre-
processing step for various computer vision applications such as autonomous
driving [3], robotics [16], and medical diagnosis [13,25]. In recent years, with
the popularity of deep learning and the availability of good computing power,
many state-of-the-art segmentation methods have been proposed with promising
results. Interestingly, an important feature common among most of these meth-
ods is their reliance on the object’s shape [1,18,20] for learning segmentation
maps, which can be done efficiently using RGB images. However, object shapes
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Fig. 1. Digital modality fusion and hardware modality fusion. (a) Digital modality
fusion. It extracts features from different encoders and fuses them before the decoder.
Normally, model size increases M times compared to a single encoder structure. (b)
Hardware modality fusion. It fuses all modalities at hardware level and leads to a
smaller model size, which enables the possibility of implementation on limited compu-
tational power devices.

can be ambiguous in the real world, and RGB images may not be enough to
discriminate between objects with different materials. For example, a real apple
and a plastic apple have similar shapes, and a shape-based segmentation model
may not be able to discriminate between them. Another example is a ceramic
cup and a glass cup.

To tackle this problem in an image segmentation task, various works propose
using multi-modal inputs instead of RGB alone. For example, Zhang et al. [24]
used polarization and RGB images to segment road scene images and showed
that polarization can significantly enhance model ability for segmentation. Sim-
ilarly, Sun et al. [23] used RGB and thermal images and proposed RTFNet
for the semantic segmentation of urban day and night scenes. Recently, Liang
et al. [10] used three modalities - RGB, Near Infrared (NIR), and polarization to
propose MCubeSNet for segmenting road scene images into real-world material
labels such as asphalt, concrete, metal, and water. Fig. 1 (a) provides a general
illustration of the above methods. Note that a common characteristic of these
methods is that they fuse information from different modalities in the model’s
feature (digital) space. However, such an approach has various disadvantages.
First, all input modalities must be captured, which may lead to high data redun-
dancy and storage costs. Second, each modality requires its encoder, which leads
to a high cost of feature extraction in terms of computation and memory.

One way to solve the above issues associated with fusing multi-modal infor-
mation in digital space is to fuse this information in the camera/hardware space
during acquisition. This approach not only helps reduce the redundancy in cap-
tured data but also develops lightweight encoders for feature extraction. Many
works have studied fusing modalities at the hardware level for specific tasks. For
example, Nie et al. [17] optimized to design the three-spectrum filter combina-
tion for reconstructing hyper-spectrum images. Monno et al. [15] proposed an
RGB-NIR mosaic filter for embedding four color channels into a single image.
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Kurita et al. [9] proposed an RGB-polarization mosaic filter to reconstruct the
full resolution of RGB-polarized images. Note that most of the above works limit
their focus on fusing modalities for improving the quality of the reconstructed
multimodal images and do not explore complex downstream computer vision
tasks such as image segmentation.

This work introduces a framework for jointly training a hardware modality
fusion and image segmentation model. Hardware modality fusion differs from
early fusion as it fuses modality on the sensor, while early fusion fuses modality
after the sensor. After the training, we can get an optimal filter design and an
optimal model for the target segmentation task. The hardware modality fusion
module simulates filter design for fusing multiple optical modalities into a single
image, including spectrum and polarization. The single image generated by the
hardware modality fusion module enables a single encoder network design, sig-
nificantly reducing model size. Furthermore, the optimized hardware modality
fusion module focuses on extracting the necessary information for the follow-
ing image segmentation model. It makes the computation more efficient. We
introduce two different strategies for the hardware modality fusion module to
simulate hardware modality fusion as frame coding and pixel coding, respec-
tively. Frame coding has the advantage of full spatial resolution but needs more
time to capture enough information for a segmentation task. On the other hand,
pixel coding eliminates the time-consuming limitation of frame coding with the
cost of lower spatial resolution. We conducted frame coding and pixel coding
experiments on two datasets, MCubeS and RGB-Thermal datasets, that target
different segmentation tasks with different modalities. We compared the results
with baseline methods, MCubeSNet and RTFNet, on these two datasets. The
results show that the optimized segmentation model achieves comparable accu-
racy to the competitive methods, while it has compressed image data as input
and a smaller model with lower computation compared to baseline methods.

Briefly, our contributions are:

– Proposing a novel framework for hardware modality fusion and training with
subsequent segmentation model in an end-to-end manner.

– Verified that our methods get comparable results on two different multimodal
segmentation datasets with their baseline methods.

2 Related Work

RGB Image Segmentation. In the field of computer vision, different from an
image classification task, image segmentation is a more complicated task since
it does pixel-wise classification for the whole image. Thanks to the introduced
end-to-end trainable deep convolutional neural network (CNN) structure [11,22],
the performance of deep learning models for semantic segmentation has been
significantly improved. Mask R-CNN [6] adds a branch to Faster R-CNN for
object mask prediction parallel with bounding box recognition. DeepLab [3]
uses atrous convolution and atrous spatial pyramid pooling (ASPP) to enlarge
the field of view and extract feature maps at multiple scales. Based on Deeplab,



442 Y. Liu et al.

Deeplab v3 [4] and Deeplab v3+ [5] achieved state-of-the-art performance in
PASCAL VOC 2012 and Cityscapes datasets benefit from atrous convolution
with multiple atrous rates, augment ASPP with image-level features encoding
global context and implement a decoder to refine segmentation results.

Multimodal Image Segmentation. Multimodal image segmentation uses a
variety of modalities to get more accurate and robust performance. In the case
of RGB, it only captures visible light and drops all other information, each Red,
Green, and Blue filter covers different light wavelength ranges in visible light
and these covered ranges overlap each other in a small amount. To comple-
ment RGB, infrared sensor and polarization sensor can be used; infrared sensor
is sensitive to light in the infrared wavelength range 780 nm to 50 μm, and
polarization sensor captures light polarization information. Instead of trying to
capture different light, the other direction is to narrow the light wavelength
range captured by the sensor even though this wavelength range is still inside
the RGB wavelength range, called hyperspectral images. Liang et al. [10] intro-
duced a multimodal material segmentation dataset, the MCubeS dataset. Their
proposed MCubeSNet uses four encoders for extracting RGB, Polarization, and
NIR features and fuses these features after the encoder, as well as a region-
guided filter selection layer to select the best combination of these modalities
for material segmentation tasks. Sun et al. [23] evaluated their RTFNet method
on a RGB-Thermal dataset. RTFNet uses two encoders, one for RGB and one
for thermal, fusing extracted features from encoders after each skip connection
layer block.

Multimodal Image Acquisition and Fusion. The camera has optical fil-
ters to obtain different modalities since an image sensor does not have color or
polarization sensitivities. Multi-spectrum images are classically captured by a
grayscale CMOS sensor with mechanically rotating filter wheels, liquid crystal
tunable filter (LCTF), and acousto-optic tunable filters. The systems synchro-
nize the filter responses and the sensor shutter to capture the multi-spectrum
images frame-by-frame. Jeon et al. [8] combine to use an LCTF and polariza-
tion filter to get multi-spectrum and polarization modalities at the same time.
However, these capturing systems have long scanning times since the number of
modalities is the same as the number of images, and one modality is captured
by a frame at once.

The current color sensor has filters on the sensor pixels and embeds RGB
colors into a single image. Bayer filter array is the most popular color array on
a sensor, and it embeds RGB channels of the modality into the single sensor
of the image. A polarization sensor was also developed using a polarized filter
on the sensor pixels. However, these filter assignments are not optimized for the
downstream tasks.

Chakrabarti et al. [2] optimized RGB color filter arrangement instead of Bayer
pattern and reconstructed the better-demosaiced color image. Nie et al. [17] pro-
posed optimizing spectrum filters for reconstructing hyper-spectrum reconstruc-
tion from three filtered image channels as input. Monno et al. [15] developed a
high-quality system design with a different filter array with conventional RGB-
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Fig. 2. Structure of proposed framework. It mainly contains a trainable hardware
modality fusion module and a segmentation model, which consists of an encoder and
a decoder. The encoder takes the modality fused image from the hardware modality
fusion module as input to extract essential features. The decoder takes these features
to predict segmentation results.

NIR filter array for single-sensor RGB-NIR imaging by considering sensor char-
acteristics and imaging pipeline. Kurita et al. [9] proposed a sparse polarization
sensor for capturing high-quality RGB images and polarization simultaneously.
However, there is still no research on hardware modality fusion and optimizing
the fusion with subsequent deep neural networks for various image segmentation
tasks.

3 Method

We propose a novel framework that leverages a hardware modality fusion mod-
ule for fusing modalities at hardware level and achieves comparable results
with baseline methods in multimodal image segmentation. Fig. 2 shows the
overall structure. The segmentation model is inspired by Deeplab v3+ [5] and
MCubeSNet [10]. Our framework exploits a trainable hardware modality fusion
module to integrate modalities at hardware level and then pass the modality
fused image to a single branch of a normal segmentation network. The encoder
loads an ImageNet [19] pretrained ResNet-101 [7] model, which takes a three-
channel input. To fully utilize this pretrained ResNet-101, our hardware modality
fusion module fuses modalities into a single three-channel modality fused image
and feeds them to the segmentation model.

3.1 Hardware Modality Fusion

The structure of a modality fusion camera is shown in Fig. 3. The camera has
a tunable filter, lens, and programmable exposure sensor. The tunable filter is
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Fig. 3. How to modulate the modalities by modality fusion camera. (a) Structure of
modality fusion camera. It consists of a tunable filter (rotating filter wheel in this
example), lens, and programmable exposure sensor. (b) The modalities are fused into
a frame by synchronizing the filters and shutter. The filter 0 is aligned to the sensor
during t0 to t1, and the shutter opens and closes within the duration to control the
exposure time and weight of the modality.

temporally changing the modality. It can be implemented by a mechanically
rotating filter as shown in Fig. 3 (a), or Liquid crystal tunable filter (LCTF),
acousto-optic tunable filters, etc. The programmable exposure sensor [12,21] can
control that the shutter temporally opens or closes during the single frame acqui-
sition. We temporally synchronize the filter and shutter timings to modulate the
multiple modalities into a single image and obtain the modality fused image by
the modality fusion camera as shown in Fig. 3 (b). The figure shows the timing
charts of the modality selection by the filter and exposure patterns of an arbi-
trary pixel. The filter passes through the modality m from the time tm to tm+1.
Binary exposure function δ(t) ∈ {0, 1} can be controlled by the programmable
exposure sensor. Hence, a weight km for each modality can be expressed by:

km =
tm+1∑

tm

δ(t), (1)

Although the shutter patterns are binary, we can get the continuous weight for
the exposure duration control. We also introduce two modulation schemes, frame
coding and pixel coding, for modulating the exposure timing in frame-wise and
pixel-wise manners. We explain the details below and illustrate in Fig. 4 (a) and
(b), respectively.
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Fig. 4. (a) Frame coding. All pixels in a frame have the same weights of modalities.
The different frames n have different weights. (b) Pixel coding. Each pixel has different
weights for different modalities.

Frame Coding. Figure 4 (a) shows the frame coding, which modulates the
modality fusion in a frame-by-frame manner. The modality weights are the same
for the whole of the pixels in the image by broadcasting km,n to all pixels for
frame n, and the modality weights are different for the consecutive frame n + 1.
Hence, the modality fusion by frame coding is expressed as:

If
n =

∑m
m=0 km,n · Im

m + 1
, (2)

where Im is the m-th modality of multimodal input, km,n is the weight of m-th
modality in n-th frame for all pixels and If

n is the fused n-th frame.
Frame coding has the advantage of full spatial resolution but needs more

time to capture information on different weighted modalities.

Pixel Coding. Figure 4 (b) shows pixel coding scheme that embeds different
modality fusion weights in a pixel-by-pixel manner similar to the Bayer color
filter. The pixel coding can embed the different fusion modalities into a single
image while the spatial resolution would be sacrificed. We assume that the coding
block is a p × p pixels block, and the m-th modality fusion weight is described
as km,p,p. The modality weights differ with neighboring pixels according to the
pixel position (p, p). Hence, the pixel block coding pattern for m-th modality is
expressed as:

Bm =

⎡

⎢⎢⎢⎣

km,1,1 km,1,2 · · · km,1,p

km,2,1 km,2,2 · · · km,2,p

...
...

. . .
...

km,p,1 km,p,2 · · · km,p,p

⎤

⎥⎥⎥⎦ . (3)

Like the regular Bayer-like filter, the block pattern recursively repeats to the
whole image with w × h pixels. The mosaic-like coding pattern for the whole of
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the image is expressed as:

Km =

⎡

⎢⎢⎢⎣

Bm Bm · · · Bm

Bm Bm · · · Bm

...
...

. . .
...

Bm Bm · · · Bm

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
w/p columns

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
h/p rows. (4)

The modality fused image If by pixel coding is expressed by:

If =
∑m

m=0 Km � Im

m + 1
. (5)

Pixel coding eliminates the time-consuming limitation of frame coding with
the cost of lower spatial resolution, as different pixels contain different contribu-
tions for each modality.

3.2 Segmentation Model

Our segmentation model takes the same structure with DeepLab v3+ [5]. The
segmentation model contains an encoder and a decoder. The encoder consists of
an ImageNet pretrained ResNet-101 and an ASPP module. The encoder extracts
low-level features from the first layer block of ResNet-101 and high-level features
from ResNet-101 and ASPP module. The ASPP module captures contextual
information with different scales via different atrous convolution rates. Since
the input image for the encoder will be in the value range of [0, 1], we need
to constrain the weight of the hardware modality fusion module in [0, 1] to
guarantee that the pixel value of the modality fused image falls in the same
range. Because of this reason, the sigmoid function is applied to the weight
of the hardware modality fusion module. The decoder leverages these low-level
features and high-level features to predict segmentation results.

3.3 Training and Inference

The hardware modality fusion module and the segmentation model are trained
in an end-to-end manner. During training, frame coding km,n or pixel coding
Km and the following segmentation model are optimized through the backprop-
agation algorithm. The frame coding km,n or pixel coding Km will be optimized
to generate a modality fused image by taking the optimal weight of different
modalities. The encoder and decoder will be guided to estimate corresponding
segmentation results by leveraging the modality fused image. After training,
the optimized hardware modality fusion module will be implemented into the
modality fusion camera. For inference, we can directly capture the modality
fused images via this camera and pass these modality fused images to the opti-
mized segmentation model to make segmentation predictions. This means only
the segmentation model will be used during inference.
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4 Experiments

We carried out the experiment results by using MCubeS dataset and RGB-
Thermal dataset. We compared our proposed framework with MCubeSNet and
RTFNet to show the advantage of realizing similar segmentation accuracy with
a modality fused image as the input. We compared some cases: frame coding
with single and three frames and pixel coding with a block size of 2 × 2, 4 × 4,
and 8 × 8 pixels.

4.1 Datasets

MCubeS dataset [10] consists of RGB, polarization, and NIR images of road
scenes using a pair of RGB polarization cameras and an NIR camera with a
LiDAR to assist annotation. They convert RGB polarization images to RGB
images, Degree of Linear Polarization (Dolp), and Angle of Linear Polarization
(Aolp) numpy files with a resolution of 1224x1024 pixels. MCubeS dataset is
annotated pixel-wise in 20 material classes, such as asphalt, concrete, and metal,
and contains 500 annotated images, which are divided into 302, 96, and 102
images for training, validation, and testing, respectively.

Our modality fusion camera assumes switching the optical filters to obtain
multimodal fused image intensity. The dataset [10] captures polarization images
by linear polarization filters and then calculates Dolp and Aolp images. The
calculated Dolp and Aolp are not image intensity, but the polarization images are
image intensity. The dataset does not release the captured polarization images
to the public. Hence, we reconstructed the four captured polarization images:
I0, Iπ/4, Iπ/2 and I3π/4 from the RGB, Dolp and Aolp images.

The conversion from RGB, Dolp, and Aolp to the polarization images Iφ is
formulated by:

Iφ = Igray(1 + Dolp × cos 2(φ − Aolp)), (6)

where Igray is the grayscale image calculated by RGB image IR, IG and IB .
We used eight modalities, RGB images IR, IG, IB , NIR image INIR, and

four linear polarization images I0, Iπ/4, Iπ/2 and I3π/4 instead of Aolp and Dolp
images for generating fusion images in the experiment on MCubeS dataset.

RGB-Thermal dataset recorded RGB and thermal images of urban scenes
using an InfRec R500 RGB IR camera. RGB-Thermal dataset combines thermal
images with RGB images along channel dimensions to form a four-channel image
dataset. RGB-Thermal dataset is annotated pixel-wise in 8 obstacle classes com-
mon in driving, such as car, person, and color cone. RGB-Thermal dataset con-
tains 820 daytime images and 749 nighttime images, totaling 1569 images with a
resolution of 480x640. RGB-Thermal dataset is separated into three parts: 50%
of daytime images and nighttime images for the training set, 25% of daytime
images and nighttime images for the validation set, and 25% of daytime images
and nighttime images for the test set. We used four modalities, RGB images
IR, IG, IB , NIR image INIR for generating fusion images in the experiment on
RGB-Thermal dataset.
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4.2 Training Details

Our experiments are conducted on a single NVIDIA RTX 6000 Ada Generation
GPU. We keep almost the same training setting with the baseline methods.

For MCubeS dataset, we flip training images and labels horizontally with
a 50% chance. We randomly crop training sets. Furthermore, Gaussian blur is
added to training sets with 50% chance, and normalization by mean=(0.485,
0.456, 0.406) and standard deviation=(0.229, 0.224, 0.225) calculated in the
ImageNet dataset is applied. As our hardware modality fusion module fuses
all modalities to generate a modality fused image, we place data normalization
just after the hardware modality fusion module. For RGB-Thermal dataset, the
training dataset gets flipped horizontally with a 50% chance and is cropped with
a 0.1 crop ratio. Cross entropy loss and stochastic gradient descent optimizer are
used to guide training. Referring to Deeplab v3+ [5], we set the initial learning
rate as 0.007 with polynomial decay from 0.05 with 0.9 power during 500 epochs.
We set the initial learning rate as the learning rate of pretrained ResNet-101. The
learning rate of the other layers, such as the hardware modality fusion module,
ASPP module, and decoder, is set to 10 times the initial learning rate as these
layers are trained from scratch. Class mean Intersection over Union (mIoU) is
used as the evaluation matrix for model performance.

Fig. 5. Results on MCubeS dataset. Each row shows a different sample from MCubeS
dataset. Here, we visualize the results of our frame coding with 3 frames and pixel
coding with a 2 × 2 pixel block along with the baseline method, MCubeSNet.
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4.3 Comparison with Multimodal Methods in Digital Domain

We implement the proposed methods to two datasets and compare our methods
with their baseline methods. The results show our methods achieve comparable
results with baseline methods. We take the mean and standard deviation of our
methods for three independent runs.

Comparison with MCubeSNet on MCubeS Dataset. Table 1 shows a
detailed quantitative comparison of model size and cost. Since the introduced
strategies, frame coding and pixel coding, have similar properties on these com-
pared aspects, we combine them as “Ours”. Our methods get a better score on
all measured matrices according to the quantitative results. Regarding model
size, our methods have 59.3 million parameters and occupy 226.8MB of memory
space, which is less than a quarter of MCubeSNet. Our methods take 88.9G
flops, while MCubeSNet needs 401.0G flops, which is over 4.5 times of ours in
terms of computational cost. Furthermore, our methods have a 2.1-second faster
inference time than MCubeSNet concerning the whole test set. We believe this
inference time difference will become obvious when executed on computational
power-limited devices, such as autonomous vehicles and IoT devices.

Table 2 shows the results of our methods with MCubeSNet. Our methods
get comparable performance with the baseline method. Frame coding with three
frames achieves 43.8 mIoU, surpassing the baseline method with a margin of 0.9
mIoU. Overall, pixel coding performs poorly compared to the baseline method,
but it has acceptable performance when the pixel block is 2 × 2 pixels. Our
methods improve performance in some classes but decrease performance in other
classes compared to the baseline method. For example, our methods significantly
increase the performance of road marking, plastic, rubber, and water classes
while decreasing the performance of plaster, sand, gravel, and cobbles.

Figure 5 shows segmentation results of our methods and baseline method,
MCubeSNet. In the first row, our methods perform better in road marking than
MCubeSNet. In the second row, our methods make a better prediction about
bricks and perform better on rubber but make some wrong predictions about the
left center glass. In the third row, our methods’ and MCubeSNet’s performance
are similar, but our methods do better in the left water region.

Table 1. Model quantitative comparison. Inference time is measured on the whole test
set, a total of 102 images.

Model Parameters Model size flops Inference time

(M) (MB) (G) (whole test set) (s)

MCubeSNet 240.0 917.9 401.0 10.7

Ours 59.3 226.8 88.9 8.6
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Fig. 6. Results on RGB-Thermal dataset. Each row shows a different sample from
RGB-Thermal dataset. Here, we visualize the results of our frame coding with 3 frames
and pixel coding with a 2 × 2 pixel block along with baseline methods, RTFNet, and
*Deeplab v3+ that has two encoders for RGB and thermal data.

Comparison with RTFNet on RGB-Thermal Dataset. We also conduct
experiments on another RGB-Thermal semantic segmentation dataset. Table 3
shows the results of our methods with two baseline methods, RTFNet, and
another method as *Deeplab v3+ that is similar to Deeplab v3+ while has
two encoders, one for RGB and one for thermal.

The results show our methods can still get comparable results with baseline
methods on RGB-Thermal dataset. Similar to MCubeS dataset, frame coding
with three frames achieves 53.8 mIoU, surpassing the baseline methods with a
margin of 0.6 mIoU and 1.5 mIoU, respectively. The pixel coding with 2×2 pixels
also has acceptable performance, but other pixel block sizes perform relatively
poorly. Our methods get a similar class-wise performance on RGB-Thermal
dataset with MCubeS dataset. Our methods significantly increase the perfor-
mance of guardrail and color cone with the cost of decreasing bump classes’
performance compared to RTFNet. Our methods are able to increase the per-
formance of curve compared to *Deeplab v3+.

Figure 6 shows segmentation results of our methods and baseline method,
RTFNet, and *Deeplav v3+. In the first row, our methods perform better in
guardrail and person than RTFNet and Deeplab v3+. In the second row, our
methods perform better for color cone than RTFNet and Deeplab v3+. In the
third row, the performance between our methods and baseline methods is similar,
but our methods do a better job on bike.

4.4 Discussion on Frame Coding and Pixel Coding

Regarding overall performance, mIoU, in the case of frame coding, increasing
frame number increases overall performance, while increasing pixel blocking size
decreases overall performance in the case of pixel coding, according to the results
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Table 2. Performance comparison with our methods and MCubeSNet on MCubeS
dataset.

Class Method

Frame coding Pixel coding (pixels) Baseline

1 frame 3 frames 2 × 2 4 × 4 8 × 8 MCubeSNet [10]

asphalt 81.5±2.0 84.3±1.9 85.4±0.9 82.7±1.1 84.0±1.1 85.7

concrete 41.4±1.4 44.8±1.3 44.3±2.0 43.7±0.7 41.8±1.1 42.6

metal 43.9±2.0 47.8±0.3 45.3±1.7 45.0±0.4 44.2±0.9 47.0

road marking 64.8±0.6 67.5±1.0 66.5±0.9 64.9±0.4 65.7±1.3 59.2

fabric 11.4±0.4 16.3±1.4 11.8±1.3 15.9±3.2 12.3±3.0 12.5

glass 42.1±1.8 44.9±0.3 42.9±0.8 44.3±1.5 42.3±2.3 44.3

plaster 2.3±2.0 0.8±0.3 1.1±0.5 1.0±0.9 0.7±0.4 3.0

plastic 18.5±3.5 23.6±2.2 22.1±2.2 19.2±0.9 17.6±4.3 10.6

rubber 17.6±1.3 17.9±1.0 17.9±1.0 18.4±0.5 17.4±1.8 12.7

sand 60.5±2.9 58.0±0.8 59.7±0.6 59.4±2.1 58.0±2.0 66.8

gravel 29.0±13.3 36.6±11.5 46.3±10.1 25.0±11.9 39.5±4.9 67.1

ceramic 22.6±0.4 23.8±0.4 21.6±0.2 22.4±0.2 21.9±2.8 27.8

cobbles 61.2±2.5 58.3±2.5 58.9±6.2 55.8±1.0 60.1±2.5 65.8

brick 30.7±1.6 37.0±0.2 34.4±2.4 35.3±0.9 30.8±2.4 36.8

grass 46.5±2.3 59.7±0.1 56.5±0.5 54.7±0.8 49.3±0.6 54.8

wood 36.7±0.7 40.5±0.8 39.7±0.7 38.2±0.9 36.0±1.8 39.4

leaf 69.7±0.9 74.2±0.5 73.1±0.6 72.0±0.1 70.7±0.1 73.0

water 27.5±6.4 44.5±2.0 34.2±1.2 37.4±1.2 38.8±1.5 13.3

sky 95.3±0.1 95.5±0.0 95.4±0.0 95.4±0.1 95.4±0.0 94.8

mIoU 40.2±0.7 43.8±0.8 42.9±0.5 41.5±0.6 41.3±0.7 42.9

of Tables. 2 and 3. Respecting class-wise performance, in the case of frame cod-
ing, increasing frame number increases most classes’ performance except plaster,
sand, cobbles, and grass. However, the impact of increasing pixel coding block
size varies for different classes.

Although the 3-frame case of frame coding always performs better than pixel
coding, it needs more time to capture 3 frames. Conversely, pixel coding performs
worse than frame coding with 3 frames but still gets comparable results on
specific block sizes with the advantage of shorter capturing time. The 2 × 2
pixel coding performs better than single-channel frame coding in both datasets,
verifying that the 2 × 2 pixel coding indeed contains more information than
single-channel frame coding. However, the results that 2×2 pixel coding does not
achieve the performance of frame coding with three frames mean the lower spatial
resolution and mosaicked input image harm the performance of the segmentation
model since pixel coding sacrifices spatial resolution and generates a mosaicked
image.



452 Y. Liu et al.

Table 3. Performance comparison with RTFNet on RGB-Thermal dataset.

Class Method

Frame coding Pixel coding (pixels) Baseline

1 frame 3 frames 2 × 2 4 × 4 8 × 8 *Deeplab v3+ RTFNet [23]

car 84.5±0.1 86.3±0.5 85.0±0.4 84.7±0.2 84.0±0.4 85.3±0.5 87.4

person 63.7±0.5 70.0±1.3 68.7±0.6 66.6±1.2 66.0±0.4 65.2±0.6 70.3

bike 60.3±0.8 60.7±1.1 61.0±0.1 60.7±0.3 59.5±0.6 61.3±0.5 62.7

curve 40.4±0.6 44.6±0.8 42.2±0.2 39.5±2.3 39.1±0.8 38.7±1.3 45.3

car stop 25.1±2.5 27.7±1.1 26.3±1.8 29.3±0.3 21.8±3.3 24.8±2.3 29.8

guardrail 5.2±1.3 7.9±0.5 6.3±0.5 4.7±1.4 6.9±1.3 6.0±0.8 0.0

color cone 43.0±1.0 44.1±2.2 44.3±0.6 41.3±1.7 41.6±1.2 45.3±2.5 29.1

bump 44.3±1.1 45.3±1.2 42.3±3.3 41.2±2.6 42.2±1.2 46.4±2.0 55.7

mIoU 51.6±0.4 53.8±0.2 52.7±0.7 51.8±0.3 51.0±0.7 52.3±0.9 53.2

Table 4. Ablation study on active function of frame coding with three frames hardware
modality fusion module on MCubeS dataset.

None Sigmoid Softmax Relu

mIoU 41.6 44.4 43.2 42.9

4.5 Ablation Study

We also investigate the influence of different active functions of the hardware
modality fusion module on MCubeS dataset. We conducted experiments on
four conditions for frame coding with three frames: None active function, Sig-
moid function, Softmax function, and Relu function. Table 4 shows the results.
Results show that the sigmoid function achieves the best performance, and the
performance of none active function is worse than cases with an active function.
However, with active function, different active functions have different effects on
performance with small mIoU differences.

5 Conclusion

In this work, we target hardware modality fusion for multimodal segmentation
tasks. We propose a novel framework for hardware modality fusion with the
advantage of reduced model size and maintained performance. We evaluate our
methods on two different segmentation datasets, MCubeS dataset and RGB-
Thermal dataset, and get comparable results with baseline methods. We believe
our work could provide some new hints on task-oriented hardware design and
deep neural network model design.

As our methods fuse modalities at the hardware level, which means accumu-
lating pixel intensity of different modalities, it might hinder our methods from
deploying in dynamic scenes. Our future work is to alleviate this problem and
implement our methods into a prototype camera for real-world experiments.
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Abstract. Recent advancements in Multimodal Large Language Mod-
els (MLLMs) have enabled to process diverse input modalities, leading
to significantly better understanding of multimedia contents. However,
understanding videos is still difficult and even the latest models often
create hallucinations. This study introduces a novel method to address
event-level hallucinations in MLLMs with a special focus on inferring
temporal information of events occurring in an input video. It targets
event-related information from both the text query and the video content
to enhance MLLMs’ response. Specifically, our method first decomposes
these event queries into iconic actions, and then identifies the times-
tamps of these actions by utilizing external multi-modal models such
as CLIP and BLIP2. Experiments using the Charades-STA dataset show
that the method decreases the number of hallucinations and improves the
MLLM’s responses. We also introduce a quantifiable approach to access
these models’ performance in understanding and responding to time-
related queries. We designed two question-and-answer tasks to measure
response hallucinations in terms of detailed timestamps and the order
of time events, respectively. After using our method, the error rates of
MLLM’s responses in these two tasks decreased by 39.7% and 36.1%,
respectively.

Keywords: Multimodal language model · Temporal hallucination ·
Correction · Iconic Action

1 Introduction

The advent of large-scale foundational models [4,13,14,18,19] is enabling
machines to understand multimodal data at an unprecedented level. The emer-
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gence of open-source LLMs [7,23,24] have facilitated the development of Multi-
modal Large Language Models (MLLMs), which can take images in addition to
text as inputs. MLLMs [5,16,17,28,32] enable interactions with users in natu-
ral language about the input images etc. in the format of Q&A. Subsequently,
MLLMs capable of handling not only still images but also videos have emerged.

Fig. 1. Examples illustrating hallucination generated by MLLMs in predicting event
occurrence timestamps and sequencing.

These MLLMs are adept at crafting engaging descriptions in their text out-
puts, yet they often struggle with visual inference, resulting in the creation of
hallucinations — incorrect perceptions or interpretations of visual contents, as
noted in recent surveys and studies [21,27,29]. When dealing only with still
images, the primary type of hallucinations is object-level, i.e., incorrect recogni-
tion of objects [15,27]. However, when dealing with videos, there is an additional
type of hallucinations, i.e., event-level hallucinations, which refers to the incor-
rect recognition of events occurring within the video. The precise understanding
of various video events is the cornerstone for MLLMs to become real multimodal
world models. Currently, MLLMs still exhibit many hallucinations at the event
level, which severely hinders their applications. On the other hand, obtaining
high-quality video annotations is difficult, and improving the performance of
MLLMs at the video event level through iterative training is costly and pro-
gresses slowly. Therefore, this paper proposes a novel and efficient method using
external tools and low-cost language models to correct event hallucinations in
video MLLMs.

The most common queries from users about videos involve seeking temporal
information on specific events within the video, such as when a particular event
happens or the order in which multiple events occur. Users specify an event or
multiple events using natural language text. For MLLMs to correctly answer
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this type of queries with a diverse set of events, they must perform thorough
analysis and understanding of the input video contents to ensure not missing
the occurrence/ending of a specified event. However, the inherent constraint of
context size in the original LLMs poses a barrier. Just like text and images,
video inputs also need to be converted into a sequence of tokens. If each frame
constituting a video is tokenized in the same manner as still images, the number
of tokens would exponentially exceed that of still images.

Figure 1 demonstrates how Video-LLaMA [28] struggles with accurately pre-
dicting the timing of events and their sequence in videos, a problem highlighted
by the presence of temporal hallucinations when using raw video inputs. Due
to the limitation of the context window size and the need to manage training
costs, Video-LLaMA adopts a strategy of uniformly sampling videos at a fixed
frequency. This strategy inevitably results in loss of information.

Fig. 2. Framework overview of our temporal hallucination mitigating method.

To tackle the challenge of information loss that the user desires to query in
videos causing event-level hallucinations, we pose the following questions related
to MLLM’s event-level hallucinations: What types of hallucinations do MLLLMs
output? How can we correct them?

Regarding the first question, we focus on MLLMs’ limitations in predicting
the temporal location of events, designing two tasks for quantitative evalua-
tion. One involves predicting the precise timestamp of an event occurring in an
input video, and the other task involves predicting the order of multiple events.
Then, our empirical investigation highlights that MLLMs are prone to temporal
hallucinations. Specifically, MLLMs exhibit subpar performance in accurately
predicting the temporal location of queried events, consequently limiting their
ability to predict the temporal order of multiple queried events.

To mitigate temporal hallucinations, we propose a novel method to produce
accurate claims about the timing of events; see Fig. 2. The claim, which our
method produces, is a structured assertion or conclusion that incorporates or
is based on the temporal and event-related information extracted from video
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content. We employ external tools, specifically CLIP [19] and BLIP2 [13],
to extract precise temporal information from video frames corresponding to
the events of interest. By aligning the temporal information from the frames
accurately matched with the event queries, our method reduces the creation of
hallucinations, particularly in responses related to the event timing and order
predictions.

The study makes following contributions:

– We introduce a novel framework to alleviate temporal hallucinations in
MLLMs when they process queries related to the timing of events. This frame-
work leverages event-specific information to enhance the accuracy of MLLMs’
responses to queries regarding temporal information about events. It does not
need additional training, providing an accessible and straightforward solution
for improving MLLMs’ handling of temporal information, without the need
for extensive resources or complex modifications.

– We develop a quantitative evaluation method that allows for a more precise
assessment of MLLMs’ performance in addressing questions related to the
timing and order of events.

2 Research Background

2.1 MLLMs

MLLMs are advanced AI models that integrate and process information from
multiple modalities, such as text, images, and videos, to perform a variety of
tasks. Unlike language models which primarily focus on text-based inputs and
outputs, MLLMs are designed to understand and generate content that involves
both language and other forms of data, such as visual or auditory inputs [26].
Currently, most MLLMs that support visual modality only accept image inputs
[5,16,17,32]. We choose Video-LLaMA [28] for our baseline model as it can
supports images, videos and audios as its inputs.

2.2 Hallucination in MLLMs

With the increasing uses of LLMs/MLLMs, the issues with hallucinations has
gradually gained attention. For MLLMs and LLMs, hallucination refers to the
model erroneously perceiving its output as correct [21,27,29]. In the context of
MLLMs, hallucination can be categorized, based on its content, into object-level
and event-level, and, based on the reasons for hallucination, into knowledge-
deficiency and inductive-bias types.

Object-level hallucination. Object-level hallucination refers to a phe-
nomenon in which machine learning models, particularly MLLMs and LLMs,
generate incorrect or distorted outputs related to object recognition. In this
context, hallucination occurs when the model mistakenly perceives or includes
objects in its generated outputs that do not exist in the input data or misinter-
prets their characteristics.
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Here are some common object-level hallucinations:
Attribute hallucinations. The model thinks an object is pink when it is actu-

ally red in the input image or video.
Number hallucinations: The model reports four cars when there are only

three in the input image or video.
Relative position hallucinations: The model thinks a dog is on the right side

of a person when it is actually on the left side in the input image or video.
Liu et al. introduced an evaluation and correction method to address object-
level hallucination [15]. Additionally, Yin et al. proposed a train-free method
specifically designed for object-level hallucination, as detailed in their work [27].

Event-level hallucination. Currently, there is a gap in research regarding
event-level hallucination. To the best of our knowledge, this paper is the first to
specifically address event-level hallucination in MLLMs. Fig. 1 illustrates typical
examples of the event-level hallucination. There are two events mentioned in this
figure. One is the boy put the shoes under the table and the other one is the boy
ran out of the room. The MLLM believes that the event the boy put the shoes
under the table occurred at the beginning of the video. This is not true; it is a
hallucination. In fact, as shown by the blue ground-truth bounding box in the
image, this event happens in the middle of the video. On the other hand, the
MLLM thinks the event the boy ran out of the room occurred before the event
the boy put the shoes under the table. This is also a hallucination. The green
GT-bbox indicates when the event the boy ran out of the room occurs, and it is
clear that it happens after the event represented by the blue bounding box.

Our work concentrates on events within videos, specifically examining hallu-
cinations that arise when posing temporal-related queries. We have defined two
tasks–event occurrence time and the order of occurrences for multiple events–to
evaluate event-level temporal hallucination.

2.3 Hallucination Correction

Some studies indicate that erroneous outputs and misinformation from LLMs
negatively impact the development of artificial intelligence, particularly the user
experience of AI products [1,2]. Therefore, hallucination correction is crucial for
LLMs/MLLMs. Dhuliawala et al. [8] divides hallucination correction methods
into three categories: training-time correction, generation-time correction, and
correction based on external tools.

Typical methods for addressing hallucinations with external tools include
retrieval augmented generation (RAG) [22], fact tool (FacTool) [6], chain-of-
thought verification [30] and correction during decoding procedure [11,12].

RAG is an advanced technique in the field of NLP that combines information
retrieval with text generation [20]. The development of LLMs has made RAG a
crucial technique for addressing knowledge deficiencies of LLMs. Beyond LLMs,
there is also research on vision-language models with RAG. Yang et al. [25] intro-
duces Re-ViLM, a Retrieval-augmented Visual Language Model that extends
Flamingo. It incorporates an external database for knowledge retrieval, result-
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ing in enhanced image-to-text generation performance, particularly in zero-shot
and few-shot scenarios. MLLMs are also well-suited for RAG scenarios.

Methods that use external tools [6] assume the availability of tools that are
expected to be consistently correct in all possible cases. While it is challenging
to find a perfect tool, we can rely on the results from a tool whose accuracy is
higher than that of the model to be corrected, i.e. MLLMs in this study.

Recently, some methods try to correct the hallucination during decoding pro-
cedure. OPERA [11] , points out that hallucinations in LLMs are related to sum-
mary tokens such as periods, which lead to partial over-trust phenomena, mean-
ing that hallucinations are more likely to occur after summary tokens. Therefore,
the article corrects hallucinations by detecting and eliminating the probability
of summary tokens during the decoding phase. OPERA mainly addresses hal-
lucinations in image LLMs and aims to solve hallucination problems caused by
the biases inherent in LLMs, which is different from the focus of this paper. This
paper aims to solve hallucinations caused by the loss of temporal information
due to insufficient video sampling. In the responses within the two tasks set
in this paper, summary tokens are rarely produced, so OPERA’s effectiveness
in correcting temporal hallucinations is very limited. Leng et. al. [12] propose
a method using visual contrast (comparing normal visual input with distorted
visual input) to obtain the uncertainty of target predictions under different visual
conditions. Then, it corrects object-level hallucinations by retaining target cate-
gory outputs with more consistent predictions and eliminating those with higher
uncertainty. However, this article does not specifically address temporal halluci-
nations, so it cannot effectively solve hallucination problems in temporal-related
responses in video Q&A.

Our approach is similar to RAG and FacTool, involving the extraction of
queried event information through external tools to improve the performance of
MLLMs in addressing temporal-related questions about video events. CLIP and
BLIP2 are used as external tools for understanding the various events in videos.
They both have good generalization capabilities, allowing them to understand a
substantial portion of real-world concepts and recognize open-world video events
effectively. However, their limitations and potential drawbacks are quite appar-
ent. Despite having a very extensive training dataset, there are still some things
that are not included in their training data, leading to poor recognition perfor-
mance for these unseen items.

3 Method

We employ Video-LLaMA [28] for our base MLLM, which extends a standard
LLM, LLaMA [23,24], to deal with multimodal inputs, such as image, video,
and audio. To comprehend both visual and auditory elements in videos, Video-
LLaMA has two branches in its architecture: the Vision-Language branch for
dealing with input video frames, and the Audio-Language branch for handling
input audio signals. Furthermore, it employs position embedding techniques to
incorporate temporal information into these inputs, thereby enabling the model
to accurately recognize/identify the timing of events in videos.
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The rest of this section is organized as follows. Section 3.1 first introduces
two tasks to quantitatively evaluate temporal hallucinations created by MLLMs.
In Sec. 3.2, we explain a general method for event temporal hallucination cor-
rection. Finally, a method for response correction will be described in Sec. 3.3.

3.1 Two Tasks for Temporal Hallucination Evaluation

We introduce two tasks here to understand MLLMs’ vulnerability to temporal
hallucination. The tasks are defined in the form of Video Question Answering
(VQA). The first task, which we will refer to as Task 1, involves predicting
the timestamp of event occurrences, with typical query questions such as When
does/did the event ... occur? The second task, called Task 2, involves predicting
the order of occurrences for two events, with typical questions like Did event
A occur before/after event B? Details of how such questions are created and
evaluation methods will be explained below.

Fig. 3. Illustration of Task 1. The Q&A pairs are created from existing video datasets.

Timestamp Prediction of Event Occurrences. Task 1 requests an MLLM
to correctly answer a question as to when a specific event occurs in an input
video, e.g., When does the person open the pantry door? as shown in Fig. 3.

To create such a question and its corresponding answer, we utilize existing
video datasets that provide captions of events occurring in the videos, as shown
in Fig. 3. Specifically, for a video from the datasets, we first select a specific
event in the video and identify its temporal duration, i.e., the timestamps for
the start and end of the event. To convert the caption of the selected event into
the form of a question, we use GPT-3.5-turbo with a prompt, detailed in Sec.
1.1 of Supplementary.

At the subsequent evaluation phase, we input each of the generated questions
into the MLLM and perform a thorough evaluation of its answers. It is notewor-
thy that MLLMs answer the questions in diverse forms. They may output one or
more timestamps, a time duration, or even vague answers like at the beginning
or the end.; see Table 1. To handle this diversity without manual judgment, we
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convert the diverse responses about time into a numerical time list or interval.
We use GPT-3.5-turbo to parse these descriptive responses into a time list or
interval for evaluation; see prompt in Sec. 1.2 in Supplementary. Some exam-
ples from the MLLM’s responses and the the corresponding parsed time lists or
intervals are shown in Table 1.

Table 1. Examples of response transformation for the evaluation of Task 1.

Response example Parsed time set

Person opens the door at 3.2 second, 4.5 second. t ∈ [3.2, 4.5]

Person opens the door from 3.2 second to 4.5 second. 3.2 ≤ t ≤ 4.5

Person opens the door in the beginning of the video 0.0 ≤ t ≤ 1
3
L

Person opens the door in the middle of the video 1
3
L ≤ t ≤ 2

3
L

Person opens the door in the end of the video 2
3
L ≤ t ≤ L

Person opens the door throughout the video 0.0 ≤ t ≤ L

No information mentioned. t ∈ ∅

Order Prediction of Event Occurrences. Task 2 requests MLLMs to predict
orders of two event A and B specified in an input question; see Fig. 4. As in Task
1, we utilize existing video datasets to create the task. Specifically, we randomly
select two temporally different events with captions from an video, each with its
own set of start and end time annotations. We shuffle their order, and utilize
GPT-3.5-turbo to create a question such as Did event A occur before/after event
B?. The prompt used for generating the event order questions is provided in Sec.
1.3 in Supplementary.

Fig. 4. Illustration of Task 2.

At the evaluation phase, we input each of the generated questions into an
MLLM and assess its answers based on the ground-truth annotations of the two
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events. Using in-context learning, we allow MLLMs to generate three types of
answers: Yes, No, and No relevant information. The correct answers for the
event orders can only be either Yes or No.

3.2 Event Temporal Hallucination Correction

To address the event-level temporal hallucinations of MLLMs demonstrated in
Section 3.1, we propose to use external tools. We utilize them to infer tempo-
ral information about events more accurately and reliably, thereby correcting
the time-related hallucination in MLLM’s responses. Such corrected, accurate
temporal statements or assertions are referred to as “claims” in the previous
studies of hallucination correction and fact verification on LLMs. The process of
utilizing claims for this purpose generally encompasses three phases:

– Claim Activation, which involves determining whether time-related halluci-
nation correction is necessary;

– Claim Generation, i.e., the creation of structured assertions that incorporate
or are based on the precise temporal and event-related information extracted
from video content;

– Claim Integration, i.e., the incorporation of these claims to amend MLLM’s
output.

For each MLLM’s response, we conduct these three phases, aiming to mitigate
potential temporal hallucination.

Fig. 5. Illustration of event temporal hallucination correction.

Figure 5 illustrates the first two correction phases. In the initial correction
step, the Claim Activation phase takes the user’s query as input and utilizes
GPT-3.5-turbo to determine if the query requires temporal information support.
Additionally, it detects the events in the query, and the identified event text
serves as input for the Claim Generation module.

In second phase, the Claim Generation module generates a claim for correct-
ing temporal hallucinations based on the inputted events. We have designed an
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external tool using CLIP and BLIP2 to obtain specific event temporal informa-
tion. After filling in the template with this information, the Claim is generated.
This phase ensures that the correction process is informed by accurate tempo-
ral details that have been queried, mitigating the temporal hallucination in the
MLLM’s responses.

Fig. 6. Illustration of timestamp identification for iconic actions.

In Fig. 5, the text enclosed by dotted lines represents the claim template,
and the portions with underlines indicate the corresponding event information
to be filled in based on external tools.

The whole Claim Generation module can be organized as two steps:

1. Decompose the given event description to several iconic actions. This step is to
improve the event prediction precision via CLIP-like external tools. We thus
decompose the original event query to multiple “Iconic Actions”, which refer
to actions with visual representations that are easily recognized by image-
based vision language models such as CLIP.

2. Provide the frame when the iconic event most likely occurred. In this step
we find the frame when the iconic event most likely occurred leverage CLIP
and BLIP2. Then we can predict the timestamp of the frame as the specific
occurrence time of the give event. The timestamps we predict will be utilized
as factual evidence to populate the claim template.

Decompose Event to Iconic Actions. To improve the event prediction pre-
cision through CLIP-like external tools, our method decomposes the provided
event description into distinct “Iconic Actions”. “Iconic Action” refers to dis-
tinctive, easily recognizable actions or events within a video that are emblematic
of the content or narrative, aiding in quick comprehension and contextual under-
standing for viewers.

For example, in a video of a football match, iconic actions might be captioned
as follows:
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The player kicks the ball, it sails past the goalkeeper, and lands in the net,
followed by the crowd’s loud cheers.
This description involves four iconic actions:

1. The player kicks the ball.
2. The ball sails past the goalkeeper.
3. The ball lands in the net.
4. The crowd’s loud cheers.

With human common sense, we can easily envision stereotypical images of
these four iconic actions. It is also easy to visually separate each action by
observing dynamic changes such as the position of the player’s foot, the location
of the ball, and the state of the audience.

We employ GPT-3.5-turbo to obtain such iconic actions from the input event
descriptions using a prompt given in Sec. 2.1 of Supplementary. The resulting
iconic actions lay the groundwork for a more nuanced understanding of the event.

Timestamp Identification for Iconic Actions. To identify the timestamps
of iconic actions, our method finds the frame when the iconic action most likely
occurred using external tools, i.e., CLIP and BLIP2, as illustrated in Fig. 6.
CLIP and BLIP2 calculate the matching score between each frame and the text
of each iconic event, providing the frames with the highest scores. Let N be the
number of frames, Ik be the kth frame, and Qj be the text of the jth iconic
action. Denoting the CLIP’s image and text matching score by cosCLIP and
BLIP2’s by cosBLIP2, we select the most representative timestamp Tτ for the jth

iconic action as

Tτ = argmax
k=1,...,N

(cosCLIP(Ik, Qj) + cosBLIP2(Ik, Qj)). (1)

Fig. 7. Illustration of Claim Integration for response correction.

To further improve frame matching performance, we employ the test-time dis-
tribution normalization method [31] to enhance CLIP’s matching performance.
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Specifically, we normalize the text and image feature of the current Qj and all
frames Ik, k = 1, 2, ..., N . The new matching score is computed as:

SDN = cosCLIP(Ik − λμI , Qj − λμQj
), (2)

where μ is the mean value; λ is set to 0.25, as in [31]. The timestamp Tτ∗ is
predicted by the updated matching score as

Tτ∗ = argmax
k=1,...,N

(cosCLIP(Ik, Qj) + cosBLIP2(Ik, Qj) + SDN ). (3)

Both Qj and Tτ∗ will be filled into the claim template.

3.3 Claim Integration for Response Correction.

The user’s query, MLLM’s response, and the generated claim are integrated
to derive the new corrected response in the claim integration phase. Figure 7
illustrates the procedure of correcting the MLLM’s response using the generated
claim. A corrective prompt (see Fig. 7), comprising the user’s query, MLLM’s
response, the generated claim, and GPT-3.5-turbo, is utilized to integrate the
correct response.

4 Experiment

4.1 Experimental Setting

Dataset. We employ Charades-STA [10], which is a widely used temporal activ-
ity dataset in the field of moment retrieval and temporal sentence grounding. In
Sec. 3.1, we explain how we use videos with captions and temporal annotations
to create our specific evaluation tasks. For Task 1 (i.e., timestamp prediction),
we evaluate using all sentences in the test set (3,720 sentences from 1,334 videos)
of Charades-STA. For Task 2 (i.e., order prediction), we initially filter 637 videos
and then randomly generate 1272 questions containing before or after. The tem-
poral overlap between each pair of events in these questions is less than 0.5.

Baseline model. Video-LLaMA [28] with Llama-2-7B-Chat as language
decoder is used as the baseline MLLM for it supports video and image input.
GPT-3.5-turbo is used as the LLM. CLIP ViT-L/14 336px [19] and BLIP2 [14]
are used as external tools to get relevant frames’ timestamps.

Implementation details. Video-LLaMA’s number of beam search is set as
1. The temperature is set as 0.1 and 1.0 for different experiments. The beam
search number in experiments is set as 1.0. We use 1 FPS for extracting frames
from video.

Evaluation metrics. In Task 1, a relaxed metric is used to evaluate MLLM’s
various responses. If the extracted timestamps set from the MLLM’s response is
represented as {t}, and the annotated start and end timestamps of the event are
denoted as Ts and Te respectively, the response is deemed correct if the condition
∃t ∈ {t} : Ts ≤ t ≤ Te is satisfied; otherwise, it is considered incorrect. We use
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R@1 and R@5 as the evaluation metric of random experiment and corrected
responses. R@1 means only the frame timestamp with largest score in Equation
3 will be used for evaluation while R@5 means the top 5 frame timestamps will
be used for evaluation. In Task 2, the MLLM’s response is considered correct
only if its categorized results match the ground truth class (Yes / No).

4.2 Temporal Hallucination Evaluation and Correction Result

We evaluate and correct the temporal hallucination on Task 1 and 2.
Results on timestamp prediction of event occurrences. The results

for timestamp prediction of event occurrences are presented in Table 2. Results
marked with an asterisk in the Video-LLaMA column were obtained without
restricting the output format of Video-LLaMA.

Even with the relaxed evaluation criteria for Video-LLaMA, it can be
observed that Video-LLaMA only marginally outperforms random temporal pre-
dictions. In contrast, our method significantly outperforms both random pre-
dictions and the original Video-LLaMA. The result shows that our temporal
hallucination method can reduce 39.7% event timestamps prediction errors. An
intuition example that can the temporal hallucination is corrected is shown in
Fig. 8(a). This video is about a car crash. If we only use the original video
MLLM, such as video-LLaMA, the car crash event may be lost because it occurs
in a very short duration for the key car crash frame might not be sampled by the
video MLLM. However, by using frame-based external tools like CLIP and BLIP,
these tools can find the precise timestamp of the event at the frame level. By
obtaining accurate timestamps with CLIP and BLIP, we successfully corrected
the output of the original MLLM.

In this experiment, we also comparing the influence of different MLLM’s
parameter. The performance of MLLM under different temperatures is very close.

Table 2. Results on timestamp prediction

Method R@1 Acc R@5 Acc

Random 25.59 52.63

Video-LLaMA [28] (temp = 0.1) 29.57

Video-LLaMA [28] (temp = 1.0) 29.81

Hallucination-reduced MLLM (ours) 57.66 85.29

Results on order prediction of event occurrences. The results are
shown in Table 3. In terms of answer range, predicting the sequence of events is
relatively easier. As shown in the table, the results indicate a clear improvement
with our method compared to both random predictions and Video-LLaMA.

The results show that our temporal hallucination method can reduce 36.1%
event occurrence order prediction errors. An intuition example that can the
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temporal hallucination is corrected is shown in Fig. 8(b). This video is about
a woman playing with dogs. There are several fine-grained action events in the
video. The two events shown in the figure are The woman is patting the dogs
and The woman walks towards the dogs. Due to the same sampling problem,
some temporal frames will be lost, making it difficult to recognize these detailed
action events or determine their sequence accurately. However, our frame-based
external tools, CLIP and BLIP, can identify these fine-grained actions, thereby
improving the accuracy of action sequence determination.

Table 3. Results on order prediction

Method Acc

Random 24.20

Original Video-LLaMA [28] 49.21

Hallucination-reduced MLLM (ours) 67.53

4.3 Ablation Experiment for External Tools

We compared the performances of different tools–CLIP, BLIP2, and CLIP with
subtracted mean values for both image and text–in determining timestamps (see
Table 4). The experimental results indicate that ensembling these models can
effectively enhance timestamp prediction performance.

The performance improvement with different embedding methods for
retrieval is not significant. This is because the two foundation models used,
CLIP and BLIP2, are highly homogeneous. In other words, both models per-
form well on certain events and poorly on others. This behavior is related to the
similar nature of the training data used for both models, leading to homogeneous
training-induced biases in their performance.

Table 4. Ensemble Tool Results Comparison

Model R@1 Acc R@5 Acc

Original CLIP 56.59 84.89

BLIP2 54.67 83.49

CLIPwithDN 56.56 85.00

CLIP + BLIP2 57.31 84.62

CLIP + CLIPwithDN 56.53 84.92

CLIP + BLIP2 + CLIPwithDN 57.66 85.29
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4.4 Different Prompt Instruction for Response

In Task 1, we attempt to include prompts in the final query that explicitly guide
the MLLM to predict specific time points, facilitating a more precise response
in terms of timestamps rather than broad temporal information. We compare
the results of MLLM under two conditions: with added timestamp prompts and
without prompts. The results in Table 5 show that questions asking for times-
tamp responses obtain better performance.

Table 5. Results of different prompt instructions

Question Acc

When the event occur? 27.84

When the event occur? Please answer the
timestamp when you think the event is most
likely to occur. Only return the timestamp.

29.81

5 Discussion

This section aims to discuss the strengths and weaknesses of our solution com-
pared to the fine-tuning approach for MLLMs. It also explores whether the
performance of the large pre-trained model and the external tools we rely on
would impact the mitigation of temporal hallucination.

5.1 Advantages Over Fine-Tuning MLLM Solution

The concept scope of user-queried events is extensive. Enhancing the MLLMs’
comprehension of time-related event information through fine-tuning necessi-
tates a substantial amount of annotation, resulting in high training costs. The
method proposed in this paper utilizes a widely-used zero-shot vision concept
identifier model. This approach not only accommodates various real-time event
queries from users but also eliminates the need for training, providing significant
cost advantages.

5.2 Performance Impact of LLMs and External Tools

Our method relies on external tools such as CLIP and BLIP2 to provide tem-
poral event information, while also utilizing large language models to process
textual event information. Contrasting the results of Video-LLaMA in Table 2
and Table 3 with those of external tools in Table 4, it’s evident that exter-
nal tools significantly outperform Video-LLaMA in temporal event localization.
Therefore, employing CLIP and BLIP2 to correct temporal hallucinations is
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reasonable. They excel in generalizing to many real-world concepts and effec-
tively recognizing open-world video events. However, they struggle to recognize
items not covered in their training data, resulting in poor performance for these
unseen elements. While it is challenging to find an external tool that consistently
achieves 100% accuracy in temporal event localization, we can easily find zero-
cost, zero-shot external tools like CLIP and BLIP2, which outperform them and
can help improve the performance of MLLM in certain aspects.

In this paper, we employed the GPT-3.5-turbo, a moderately intelligent LLM.
Experimental results demonstrate its capability in handling text-related tasks
proficiently. Currently, there are many open-source LLMs that rival the perfor-
mance of GPT-3.5-turbo. By utilizing such LLMs, the cost of our method is
further reduced without compromising performance.

5.3 Choice of Evaluation Metrics

According to introduction in Section 4.1, R@1 and R@5 are used as the eval-
uation metrics for random experiments and corrected responses. These metrics
are widely used in retrieval tasks, such as moment retrieval tasks. In moment
retrieval tasks, top-1 or top-5 predicted moment candidates are selected to eval-
uate moment localization accuracy. The difference between our method and the
metric for moment retrieval tasks lies in how we determine whether a prediction
is correct.

In moment retrieval tasks, a predicted moment is considered correct if its
overlap with the ground-truth moment exceeds a set threshold (e.g., 0.3, 0.5,
0.7). Otherwise, it is considered incorrect. However, current video MLLMs can-
not predict precise moments but rather generate free text containing temporal
information. Therefore, our method first parses the temporal information from
the free text into a numerical set. We then relax the correctness condition to
consider a prediction correct if the parsed numerical set has any intersection
with the ground-truth event duration.

5.4 Scalability and Generalization

The temporal hallucination mitigating method we propose has excellent scala-
bility and generalization. This method utilizes external tools to supplement the
temporal event information lost due to sampling limitations in video MLLMs,
and then uses the RAG mechanism to correct temporal hallucinations in MLLM
responses. The RAG mechanism we employ is highly scalable and generalizable,
not being constrained by the architecture of video MLLMs, and can provide
temporal hallucination correction for different video MLLMs.

Regarding the type of input video, the scalability and generalization of our
method strongly depend on the external tools used. In our experiments, we use
CLIP and BLIP2, vision-language (VL) foundation models trained on millions
of image-text pairs. These models have considerable cognitive abilities for var-
ious open-world concepts and generalize well to concepts involved in various
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video events. To apply this method to other specific domains, specialized VL
foundation models and domain-specific models can be used as external tools.

In Figure 8, we illustrate two typical examples from two domains that may
cause temporal hallucinations due to sampling issues. The first is instantaneous
events, such as car crashes, which occur in a very short duration. These events
can easily lose information due to sampling limitations, as they happen almost
instantaneously. The second type is fine-grained action events, where sparse sam-
pling can cause temporal action frames to change. This alteration in the temporal
sequence can lead to failures in the video MLLM’s ability to accurately recog-
nize and interpret such action sequences. Our proposed framework offers poten-
tial improvements by reducing temporal hallucinations when querying instanta-
neous events and fine-grained action events in long videos. Furthermore, when
combined with specialized and powerful external tools, it can further enhance
accuracy in addressing these issues.

Fig. 8. Events that may be affected by sampling need temporal hallucination correc-
tion. (a) is from [3]. (b) is from [9].

6 Conclusion

In this study, we address a significant challenge in the field of Multi-Modal
Language Models (MLLMs): event-level hallucinations during video input pro-
cessing. We tackle this issue by breaking down input event queries into their con-
stituent iconic actions. Utilizing models such as CLIP and BLIP2 for frame iden-
tification with the decomposed iconic actions, our method significantly enhances
the accuracy of pinpointing specific events and understanding their temporal
sequences. Our evaluation using the Charades-STA dataset has demonstrated
a substantial reduction in temporal hallucinations, boosting the accuracy and
reliability of MLLMs in processing video content. These confirm the effectiveness
of our method. We hope the qualitative advancements will lay a solid foundation
for further research in this area.
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Abstract. Recent advancements in multi-modal artificial intelligence
(AI) have revolutionized the fields of stock market forecasting and heart
rate monitoring. Utilizing diverse data sources can substantially improve
prediction accuracy. Nonetheless, additional data may not always align
with the original dataset. Interpolation methods are commonly utilized
for handling missing values in modal data, though they may exhibit lim-
itations in the context of sparse information. Addressing this challenge,
we propose a Modality Completion Deep Belief Network-Based Model
(MC-DBN). This approach utilizes implicit features of complete data
to compensate for gaps between itself and additional incomplete data.
It ensures that the enhanced multi-modal data closely aligns with the
dynamic nature of the real world to enhance the effectiveness of the
model. We conduct evaluations of the MC-DBN model in two datasets
from the stock market forecasting and heart rate monitoring domains.
Comprehensive experiments showcase the model’s capacity to bridge the
semantic divide present in multi-modal data, subsequently enhancing its
performance. The source code is available at: https://github.com/logan-
0623/DBN-generate/.

Keywords: Multi-Modal · DBN Network · Stock Market Forecasting ·
Heart Rate Monitoring

1 Introduction

In the field of stock market predictive analysis and heart rate monitoring,
recent advancements in artificial intelligence (AI) and multimodal methodolo-
gies have become indispensable for informed decision-making. These innovative
approaches amalgamate various forms of data, including numerical, textual, and
visual inputs, providing a holistic view of both market dynamics [1] and physio-
logical health indicators. For stock market forecasting, this includes integrating
intermittent and non-sequential multimodal data like erratic financial news and
policy updates. In heart rate monitoring, it involves synthesizing diverse phys-
iological and environmental data to predict health outcomes accurately. Tradi-
tional methods, including linear interpolation techniques[2], have been used to
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address the discontinuities and intermittencies inherent in such multimodal data.
However, these conventional methods often fail to capture the true trends and
variability present in real-world data, leading to incomplete or imprecise models
for both stock market trends and heart rate patterns.

The significant advancements in artificial intelligence and multi-modal tech-
nologies have profoundly impacted the fields of stock market prediction and
heart rate monitoring. These advanced methodologies integrate various data
types[1], including numerical, textual, and visual inputs, to provide comprehen-
sive insights into market trends and physiological health indicators. In stock
market prediction, the inclusion of intermittent and non-sequential data, such
as financial news and policy updates, is crucial. However, these data types are
likely to face the risk of incomplete modalities due to missing data. Similarly,
heart rate monitoring necessitates the combination of different physiological and
environmental data for accurate health predictions, where missing modalities
also present challenges. Traditional modal completion techniques, such as linear
interpolation methods[2], often fail to capture the true trends and variances in
such multi-modal data, leading to suboptimal modelling outcomes. Thus, both
fields confront the common issue of potential modality incompleteness in their
predictive analyses.

To overcome these limitations, our research introduces the MC-DBN model,
an innovative solution designed to intelligently impute missing data, capturing
the inherent temporal volatility and patterns in both stock market and heart rate
data. This approach not only fills gaps in multi-modal datasets but effectively
addresses gaps in multi-modal datasets in alignment with the temporal dynamics
of the data, enhancing the robustness and reliability of predictive models. Our
work significantly contributes to the fields of stock market forecasting and heart
rate monitoring in the following three aspects:

– Innovative Multimodal Data Integration Framework
In constructing our framework, we carefully consider the unique characteris-
tics of different data types and strategically employ Transformer architectures
to process sequential data. This approach is combined with the LSTM model
to capture extended dependencies in news or physiological data. Further-
more, in the design of the feature fusion module, we meticulously implement
attention mechanisms to ensure the precise capture and integration of data.

– Enhanced Multi-modal Data Completion Model:
This study proposes an innovative encoder model that combines Deep Belief
Networks (DBN) with attention mechanisms, specifically designed for process-
ing multimodal data. The model capitalizes on the hierarchical structure of
DBN and the global perception capabilities of attention mechanisms to effec-
tively extract complex data features, surpassing traditional linear interpola-
tion methods. The unique architecture of DBN facilitates the reconstruction
or completion of partially lost visible layer data after training, by activating
hidden layers, thus efficiently addressing the modal completion challenge. The
model demonstrates exceptional performance in applications such as heart
rate detection and stock market prediction.



476 Z. Luo et al.

– Innovative Modality Completion Loss Functions:
During the training process of our model, we introduce three cooperative
loss functions. Two of these functions utilize Mean Squared Error (MSE)
loss to compare the data generated by modal completion with the original
information, thereby optimizing the quality of the DBN modal-completed
data. By combining specific loss for downstream tasks, we construct a global
loss function for the overall network framework, thereby optimizing the overall
network performance.

2 Related Work

2.1 Multi-modal Data Integration

Multimodal data refers to data that comes from different sources or modalities,
such as numerical, categorical, and textual data[3]. In finance, multimodal data
can be used for risk classification, accident detection, and stock price prediction,
among others[4,5]. For instance, a study used a Multimodal Transformer for
risk classification and investigated the use of data augmentation for risk data
through automated retrieval of news articles[3]. Similarly, heart rate monitoring,
involves combining physiological data with environmental and behavioral factors
for comprehensive health analysis. The study found that the inclusion of numer-
ical and categorical data improves the performance of the model, particularly for
risks that are difficult to classify based on textual data alone[3]. The inclusion
of diverse data types enhances model performance in both domains, especially
for scenarios where single-modality data is insufficient. Another study proposed
a hybrid information mixing module using BERT and BiLSTM for finance [5].
This methodology is equally applicable in heart rate monitoring, where it can
facilitate the extraction of multimodal interactions between physiological time
series and contextual health information.

2.2 Stock Market Forecasting and Heart Rate Monitoring

The convergence of stock market forecasting and heart rate monitoring in the
field of multi-modal data analysis has opened new avenues in both the financial
and healthcare sectors.

In stock market forecasting, AI and machine learning algorithms have been
increasingly employed to predict market trends and movements. A notable exam-
ple is the use of Deep Learning models, such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), to analyze historical price data
and market sentiment extracted from news articles and social media. The work
of Mogharet al. (2020) demonstrates the effectiveness of using LSTM networks
for predicting stock prices based on historical data [6]. Additionally, the inte-
gration of sentiment analysis from financial news, as explored by Agarwal et al.
(2020), provides a more holistic approach to forecasting [7].

Concurrently, heart rate monitoring has seen significant advancements with
the application of AI. Heart rate data, collected through wearable devices, is
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analyzed using sophisticated algorithms to detect anomalies and predict poten-
tial health risks. A study by Bertsimas et al. (2021) highlights the use of machine
learning techniques for real-time heart rate monitoring and anomaly detection
[8]. Moreover, the combination of heart rate data with other physiological param-
eters for comprehensive health assessment is explored in the research by Hussain
and colleagues (2020) [9].

2.3 Methods for Handling Missing Values

Handling missing values is essential in financial analysis and heart rate moni-
toring. Missing data, which can result from various causes like incomplete data
entry or equipment malfunctions, leads to biases and reduced statistical power,
affecting the validity of conclusions [10,11]. The three primary types of missing
data are missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR) [11].

Addressing missing data involves methods such as imputation or data
removal [12]. Traditional imputation techniques include the Last Observation
Carried Forward (LOCF) and the Next Observation Carried Backward (NOCB),
which may introduce biases [13,14]. Advanced techniques like rolling statistics
and interpolation methods offer more sophistication but can struggle with irreg-
ular patterns in financial and heart rate data [15,16].

PCA-based methods like bPCA and llsPCA have been effective in financial
time series and can be adapted for heart rate data [17,18]. Deep learning-based
imputation, including Multi-Layer Perceptrons (MLP), is emerging for long-term
missing value estimation in both fields [19].

3 Methodology

3.1 RBM-Based Latent Representation Learning

To enhance and elaborate on our methodology described, it’s essential to give
a comprehensible explanation of how Restricted Boltzmann Machines (RBMs)
work and then discuss how they are applied in the given context.

RBMs play a crucial role in unsupervised learning by identifying the proba-
bilistic characteristics of input data. They form a bipartite graph consisting of
visible units (representing input data) and hidden units (capturing latent fea-
tures). The ’restricted’ nature of RBMs means that there are no connections
within either the visible or hidden layers, only between them.

The learning process in RBMs involves adjusting the weights and biases to
minimize the reconstruction error of the input data. This is typically achieved
using training algorithms like Contrastive Divergence, which approximates the
gradient of the log-likelihood.

p(h|v) =
∏

j

p(hj |v), p(v|h) =
∏

i

p(vi|h) (1)
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Fig. 1. The network comprises three main components. Initially, the modality comple-
tion module, leveraging a Deep Belief Network (DBN), identifies and fills absent modal
data. Secondly, the modality feature extraction module employs Transformer[20] and
LSTM architectures[21] for proficient feature extraction. Lastly, a fusion module with
an attention mechanism integrates these features. Subsequently, the downstream net-
work generates tailored predictions for multi-modal sequence data. This framework
adeptly manages scenarios involving incomplete multi-modal data, which is a common
situation in datasets like stock or heart rate data.

In this context, h and v represent the hidden and visible units, respectively.
In our proposed method, we start by inputting data into the RBM, a type

of unsupervised learning algorithm adept at discovering probabilistic features
in input data. An RBM is a bipartite graph consisting of visible units (corre-
sponding to input data) and hidden units (representing latent features). The
’restricted’ aspect in RBM comes from the fact that there are no intra-layer
connections within visible or hidden units, only inter-layer connections.

The process can be mathematically described as follows:

h = σ(W · v + bh) (2)

Here, v represents the visible units (input data), h the hidden units, W the
weights of the inter-layer connections, and bh the bias of the hidden units. σ is
the sigmoid activation function.

The integration of RBM in this manner allows the model to capture and uti-
lize deep non-linear relationships within the data, enhancing feature represen-
tation and supporting the generation of new synthetic data samples consistent
with the learned distribution.

Deep Belief Network (DBN) is a sophisticated deep learning architecture
featuring an input layer, numerous stacked layers housing random variables, and
an output layer. The optimization process initiates with a meticulous layer-by-
layer training approach for each Restricted Boltzmann Machine (RBM) network,
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advancing systematically from the lowermost layer to the uppermost. Following
this, the entire network undergoes refinement through fine-tuning, a process
facilitated by the backpropagation algorithm. The fundamental structure of a
Restricted Boltzmann Machine (RBM) is depicted in Fig. 2.

Fig. 2. Deep Belief Network (DBN) is a sophisticated deep learning architecture fea-
turing an input layer, numerous stacked layers housing random variables, and an out-
put layer. The optimization process initiates with a meticulous layer-by-layer training
approach for each Restricted Boltzmann Machine (RBM) network, advancing system-
atically from the lowermost layer to the uppermost. Following this, the entire network
undergoes refinement through fine-tuning, a process facilitated by the backpropagation
algorithm.

3.2 Modal Completion Encoder-Decoder Framework

Tackling the challenge of incomplete data across various modalities, our approach
leverages hidden features from an available modality to infer and regenerate
missing data from another. This process, known as reverse sampling, backtracks
from known to unknown modality data. It ensures comprehensive restoration of
bimodal information, crucial in complex datasets where complete information is
vital for accurate analysis.

We utilize Deep Belief Networks (DBNs) to construct the modality generation
model. DBNs are generative models built by stacking multiple Restricted Boltz-
mann Machines (RBMs), allowing them to generate new data samples based
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on learned representations. Their multi-layer architecture captures high-level
abstract features, providing strong representation capabilities for complex data
structures. We propose a modal completion framework based on an encoder-
decoder structure designed to effectively address missing modality information
(shown in Fig. 1). Employing a reverse sampling approach, we leverage the hid-
den features of a known modality to infer and reconstruct missing data in another
modality. This innovative method not only fills gaps in the dataset but also
significantly enhances the model’s multimodal processing capabilities. Further-
more, we introduce an attention mechanism to perceptually complete modality
information from a global perspective. The detailed schematic diagram of the
modal completion structure is illustrated in Fig. 3.2. The workflow of the modal
completion framework is outlined in Algorithm 3.2.

Algorithm 1. Modal Completion Encoder-Decoder Module
Require: Data of different modalities Ix, Iy

Modal Completion Encoder:
Wattn = Self-Attention(Ix,y)
Attnx,y = Softmax (Ix,y � Wattn)
Ĥx,y = MC-RBMhidden(Ix,y, Attnx, y)
Modal Completion Decoder:
if Ix is incomplete then

Gx = MC-RBMx-complete(Ĥy) → Lmodal x(Ix, Gx)
else if Iy is incomplete then

Gy = MC-RBMy-complete(Ĥx) → Lmodal y(Iy, Gy)
end if
MCx = Decoder Transformer(Gx)
MCy = Decoder LSTM(Gy)
return MCx, MCy

In the modal completion encoder sub-module, we employ an attention mech-
anism to process two modal data, denoted as Ix and Iy, obtaining correspond-
ing attention weights Wattn. By appropriately balancing and weighting these
attention-weighted representations with the original modal inputs, we obtain a
novel attentional input Attnx,y. This ensures a global awareness of the under-
lying modal information. By transforming the attention input into the form of
a Modal Completion Restricted Boltzmann Machine (MC-RBM), we obtain the
initial hidden state h. This transformation is achieved using a weight matrix
W and a bias vector bh, with the Sigmoid function σ serving as the non-linear
transformation.

The hidden state h undergoes a further Bernoulli sampling process, yielding a
set of sampled binary hidden states hsampled. This step introduces randomness,
simulating the probabilistic nature of the hidden layer in the MC-RBM. The
state of each hidden unit is determined by the corresponding unit’s probability
distribution, and it is barbarized through Bernoulli sampling, forming the final
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hidden state.

hsampled = Bernoulli
(

σ(W � Attnx,y + bh)
)

(3)

Finally, through the process of MC-RBM on the hidden layer information, a re-
modelling of the latent representation of multi-modal data is achieved to capture
latent patterns and correlations within the data. In this process, a supplemen-
tary operation of cross-modal data mapping is introduced to ensure effective
information completion in case of missing data in any modality. Through this
transformation, the model can effectively fill in missing modality information,
enhancing the overall data integrity and information representation capability.

In selecting the decoder for our framework, we opted for a combination of
Long Short-Term Memory (LSTM)[21] and Transformer networks[20], recogniz-
ing their distinct strengths in handling sequential data and long-term depen-
dencies. LSTM excels at capturing temporal relationships in data, while the
Transformer, with its self-attention mechanism, performs exceptionally well in
scenarios where input data has complex interdependencies. The combination of
these two network structures is particularly suitable for applications like stock
prediction and heart rate monitoring, which require handling complex data with
long-term dependencies.

3.3 Attention Fusion Module

The outputs from independently processed modalities are integrated into the
fusion module, which transforms raw data from each modality into a compre-
hensive and nuanced representation. This fusion module is composed of atten-
tion layers, mapping layers, and normalization mechanisms. The key component,
Attentiondbn, globally assesses attention weights across both complete and miss-
ing data modalities.

The multi-head attention mechanism in this module selectively concentrates
on information from various representation subspaces. It utilizes query (Q) and
key (K) matrices for complete modality information, and a value (V ) matrix
for missing modality data. These matrices are represented as Q,K ∈ R

dq×k

and V ∈ R
dv×k, respectively. The embedding matrices WQ,K,V

i correspond to
K,Q, V , enhancing the fusion module’s capacity to utilize both complete and
missing modality information effectively.

The attention mechanism is mathematically represented as:

Attentiondbn = Softmax
(

QKT

√
dk

)
× Norm(V ) (4)

For each head i in the multi-head attention mechanism, the process is:

Multi attni = Concat
[
Attentiondbn(Qi,Ki, Vi) × WQ,K,V

i

]
(5)

The fusion of feature information is further refined through mapping and
normalization layers, forming the Fusion output. Notably, a decoder supple-
ments this process with a stochastic mechanism, integrating both complete and
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Fig. 3. For our modality completion mechanism, the algorithm employs MC-RBMs as
probabilistic generative models to capture the latent representations of input data. The
quality of the completed modality is optimized using Mean Squared Error (MSE) loss
concerning the original modality features, enhancing the effectiveness of modal gener-
ation. The features sampled post-completion are then subject to a residual connection
with the original features undergoing convolution operations, facilitating further pro-
cessing and analysis.

missing information. This integration significantly enriches the fusion feature’s
informational depth and relevance.

Fusion = Map
(

Norm(Multi attn)
)

⊕ decoder(MCx,y) (6)

3.4 Multiple Loss Function Design

Our model employs two Mean Squared Error-based loss functions to optimize
and enhance performance. One is a modality completion loss function specifi-
cally designed for MC-DBN to accurately complete multi-modal data. The other
is tailored for different downstream tasks. These loss functions address different
aspects and components of the model, ensuring accuracy and efficiency in han-
dling multi-modal data.

Loss Function for Modality Completion. The first loss function is dedicated
to optimizing the generated modality of a specific data type, referred to as
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Modality A. This function computes the MSE between the generated data of
Modality A and the original input data of the same modality.

Lmodal x,y =
1
n

n∑

i=1

(
G

(i)
modal x,y − I

(i)
modal x,y

)2

(7)

where G
(i)
modal x,y represents the i-th complete data point for different modalities,

and I
(i)
model x,y is the corresponding original data point.

Loss Function for Specific Downstream Task. The second loss function is
tailored for specific downstream tasks, such as classification, regression, or other
predictive modelling tasks. This function is designed to optimize the model’s
performance in these tasks and is chosen based on the specific requirements of
the application.

Ltask = − 1
N

N∑

i=1

C∑

j=1

yij log(pij) or
1
N

N∑

i=1

(
Yactual − Ypredict

)2

(8)

The first part corresponds to the loss function for a classification task, while
the second part represents to the loss function for a regression task. yij represents
the true label for class j of sample i. pij is the model’s predicted probability for
class j of sample i.

Ltotal = Lmodal x + Lmodal y + Ltask (9)

The overall loss function of the model combines these three losses, aiding in
simultaneously optimizing the accuracy of completed modalities and the perfor-
mance in the specific downstream task.

3.5 Model Training and Evaluation

We trained an LSTM-based network on datasets completed using different meth-
ods, including traditional interpolation, mean imputation, and our proposed MC-
DBN. The performance was evaluated using RMSE, F1, and MAPE scores to
assess the accuracy and predictive capability of each method.

4 Experiment

In this section, we elaborate on our experimental setup, comparing our MC-
DBN methodology with other established approaches and conducting ablation
experiments.
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4.1 Data Preparation

Our study encompasses two primary datasets: a financial market dataset and the
esteemed MIT-BIH Arrhythmia Database. The financial market dataset com-
prises a collection of stock opening prices and associated discrete news events,
covering the period from January 1, 2020, to January 1, 2023. This dataset
has been meticulously preprocessed to meet the input criteria of our analytical
models. A visualization of this stock data is provided in Fig. 4.

In the realm of cardiac research, the MIT-BIH Arrhythmia Database holds
a distinguished position as a comprehensive repository for electrocardiogram
(ECG) signals, instrumental in the development and validation of ECG heart-
beat classification algorithms [22]. Curated jointly by the Massachusetts Insti-
tute of Technology and Beth Israel Hospital (now known as Beth Israel Dea-
coness Medical Center) in Boston, this dataset has been employed extensively
for investigating cardiac arrhythmia detection and diagnostic methodologies. A
visualization of the arrhythmia dataset is presented in Fig. 5.

Fig. 4. Combined Visualizations of NEWMONT (NEM.N) Stock Data

4.2 Comparative Experiment

In our research, we integrated two diverse datasets: our unique stock data and the
publicly available MIT-BIH arrhythmia dataset. This integration was essential to
test the effectiveness and general applicability of our Deep Belief Network-based
multimodal data completion method (MC-DBN).
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Fig. 5. Combined Visualizations of MIT-BIH ECG Data

This phase of our experiment focused on using various methods to complete a
multimodal dataset. The dataset comprised two types of data: the opening prices
of stocks in the medical sector and discontinuous news data, both covering the
period from January 1, 2020, to January 1, 2023. The discontinuous news data
were the primary target for completion using different methods. Subsequently,
these datasets were utilized to train an LSTM-based network for predicting stock
opening prices. We evaluated the network’s performance using RMSE, MAPE,
F1, and Accuracy Scores. RMSE and MAPE measured the model’s error mag-
nitude, whereas the F1 score assessed the model’s accuracy in predicting price
movements. The network’s performance provided insights into the effectiveness
of the multimodal data completion methods. To minimize error, we averaged the
results from tests on ten different stocks.

As Table 1 illustrates, the single-modal data, being dependent on one data
type for prediction, showed the highest RMSE and MAPE values, indicating
larger prediction errors. In contrast, the use of multimodal data reduced these
errors and improved price movement prediction accuracy. Notably, the MC-DBN
processed multimodal data exhibited superior performance across all metrics,
attributed to its ability to learn nonlinear features and ensure that the supple-
mented news data reflected actual news trends and variability.

The second Table 2 presents a similar comparison but focuses on the MIT-
BIH dataset. As well, the MC-DBN method outperforms other approaches, rein-
forcing its efficacy in dealing with multimodal data for accurate predictions
(Table 3).

4.3 Ablation Experiment

In our ablation experiments, focusing on stock opening price prediction, we
analyzed the roles of the decoder and two loss functions within the MC-DBN.
Table 4 demonstrates that Lmodal x and Lmodal y complement each other, thereby
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Table 1. Comparison of other data completion methods on Stock dataset

Method RMSE ↓MAPE ↓ F1 ↑ Accuracy ↑
Single modal data 0.341 0.391 0.824 0.845

Multimodal data with Zero Filling 0.295 0.387 0.792 0.798

Multimodal data with Forward Fill 0.286 0.365 0.832 0.852

Multimodal data with Mean Imputation0.279 0.361 0.856 0.870

MC-DBN (ours) 0.268 0.346 0.874 0.913

Table 2. Comparison of other data completion methods on MIT-BIH dataset

Method F1 ↑ Accuracy ↑
Single modal data 0.852 0.874

Multimodal data with Zero Filling 0.867 0.886

Multimodal data with Forward Fill 0.876 0.892

Multimodal data with Mean Imputation0.893 0.914

MC-DBN(ours) 0.964 0.982

Table 3. Comparison with previous state-of-the-art methods on MIT-BIH Arrhythmia
test dataset.

Method Accuracy ↑ F1 ↑
SR-based[23] 0.947 0.786

1D-CNN[24] 0.959 0.864

GANs[25] 0.987 0.929

MC-DBN(our) 0.982 0.964

enhancing the completion capability of the MC-DBN. Furthermore, Lmodal x

is crucial in guiding new data completion during model training, significantly
improving model accuracy and consistency. Table 5 underscores the importance
of employing LSTM for decoding news data and Transformers for sequential
data decoding, highlighting their superior performance over traditional linear
decoding methods.

Table 4. Ablation Experiment about Loss

RMSE ↓MAPE ↓ F1 ↑ Accuracy ↑
Lmodal y 0.282 0.358 0.853 0.869

Lmodal x 0.271 0.349 0.872 0.873

Lmodal x + Lmodal y 0.268 0.346 0.874 0.913



MC-DBN: A Deep Belief Network-Based Model for Modality Completion 487

Table 5. Ablation Experiment about core components of decoder

RMSE ↓MAPE ↓ F1 ↑ Accuracy ↑
Both Linear 0.276 0.358 0.854 0.862

Only Transformer 0.274 0.352 0.859 0.875

Only LSTM 0.272 0.349 0.867 0.874

LSTM + Transformer 0.268 0.346 0.874 0.913

5 Conclusion

This study marks a significant leap in multi-modal data analysis, especially
in stock market forecasting. By integrating Deep Belief Networks (DBNs) and
Restricted Boltzmann Machines (RBMs), our methodology offers a novel app-
roach to handle the inherent complexities and missing modalities in financial
datasets. The use of RBMs for latent representation learning enables the extrac-
tion of deep, non-linear relationships within the data, thus enhancing the feature
representation and reliability of the predictive models. Furthermore, our app-
roach addresses the critical challenge of incomplete data by innovatively employ-
ing reverse sampling techniques. This not only ensures comprehensive bimodal
information restoration but also significantly bolsters the resilience and versatil-
ity of our model in complex data environments. Empirical tests show our model’s
superior accuracy and predictive performance, notably in synthesizing data that
closely mirrors real-world financial markets. This research not only advances
AI’s theoretical framework in multi-modal data analysis but also offers practical
tools for financial forecasting. As we look to the future, the potential applica-
tions of this methodology extend beyond stock market forecasting, promising
advancements in other domains where multi-modal data plays a crucial role.
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3. N. Holtz, J. M. Gómez, https://api.semanticscholar.org/CorpusID:259255
231 Multimodal transformer for risk classification: Analyzing the impact of differ-
ent data modalities, Natural Language Processing and Machine Learning (2023).
URL https://api.semanticscholar.org/CorpusID:259255231

4. H. Hozhabr Pour, F. Li, L. Wegmeth, C. Trense, R. Doniec, M. Grzegorzek,
R. Wismüller, A machine learning framework for automated accident detection
based on multimodal sensors in cars, Sensors 22 (10) (2022) 3634

5. A. Buche, M. B. Chandak, https://api.semanticscholar.org/CorpusID:261654967
Enhancing predictive modeling for indian banking stock trends: A fusion of bert
and attention-based bilstm approach, Journal of Intelligent & Fuzzy Systems
(2023). URL https://api.semanticscholar.org/CorpusID:261654967

https://api.semanticscholar.org/CorpusID:259255231
https://api.semanticscholar.org/CorpusID:259255231
https://api.semanticscholar.org/CorpusID:259255231
https://api.semanticscholar.org/CorpusID:261654967


488 Z. Luo et al.

6. Moghar, A., Hamiche, M.: Stock market prediction using lstm recurrent neural
network. Procedia Computer Science 170, 1168–1173 (2020)

7. A. Agarwal, Sentiment analysis of financial news, in: 2020 12th International
Conference on Computational Intelligence and Communication Networks (CICN),
IEEE, 2020, pp. 312–315

8. Bertsimas, D., Mingardi, L., Stellato, B.: Machine learning for real-time heart
disease prediction. IEEE J. Biomed. Health Inform. 25(9), 3627–3637 (2021)

9. L. Hussain, I. A. Awan, W. Aziz, S. Saeed, A. Ali, F. Zeeshan, K. S. Kwak, et al.,
Detecting congestive heart failure by extracting multimodal features and employing
machine learning techniques, BioMed research international 2020 (2020)

10. Kang, H.: The prevention and handling of the missing data. Korean J. Anesthesiol.
64(5), 402–406 (2013)

11. Donders, A.R.T., Van Der Heijden, G.J., Stijnen, T., Moons, K.G.: A gentle intro-
duction to imputation of missing values. J. Clin. Epidemiol. 59(10), 1087–1091
(2006)

12. Bennett, D.A.: How can i deal with missing data in my study? Aust. N. Z. J. Public
Health 25(5), 464–469 (2001)

13. Lachin, J.M.: Fallacies of last observation carried forward analyses. Clin. Trials
13(2), 161–168 (2016)

14. Engels, J.M., Diehr, P.: Imputation of missing longitudinal data: a comparison of
methods. J. Clin. Epidemiol. 56(10), 968–976 (2003)

15. Broadstock, D.C., Li, R., Wang, L.: Integration reforms in the european natural gas
market: A rolling-window spillover analysis. Energy Economics 92, 104939 (2020)

16. Arun, P.V.: A comparative analysis of different dem interpolation methods. The
Egyptian Journal of Remote Sensing and Space Science 16(2), 133–139 (2013)

17. Schneider, M.P., Hilf, M., Vogt, U.F., Schmidt, M.W.: The benzene polycarboxylic
acid (bpca) pattern of wood pyrolyzed between 200 c and 1000 c. Org. Geochem.
41(10), 1082–1088 (2010)

18. C. John, E. J. Ekpenyong, C. C. Nworu, Imputation of missing values in economic
and financial time series data using five principal component analysis approaches,
CBN Journal of Applied Statistics (JAS) 10 (1) (2019) 3

19. R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, M. Steinbrecher, Multi-layer per-
ceptrons, in: Computational intelligence: a methodological introduction, Springer,
2022, pp. 53–124

20. T. Lin, Y. Wang, X. Liu, X. Qiu, A survey of transformers, AI Open (2022)
21. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: Lstm cells

and network architectures. Neural Comput. 31(7), 1235–1270 (2019)
22. Moody, G., Mark, R.: The impact of the mit-bih arrhythmia database. IEEE Eng.

Med. Biol. Mag. 20(3), 45–50 (2001). https://doi.org/10.1109/51.932724
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