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President’s Address

On behalf of the Executive Committee of the International Association for Pattern Recog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that we must thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for [ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPR Prize Lectures at ICPR 2024. This year we honor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of Pattern Recognition and whose past contributions,
current research activity and future potential may be regarded as a model to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in TAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer—Rao bound, and Fisher—
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IICPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image, Video, Speech, and Signal Analysis; Biometrics and Human-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2-5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in four meeting rooms with a total of 40 oral sessions. In total 24 workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork Al,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conference would not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, Rama Chellappa and Cheng-Lin Liu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-Marc Ogier and Prabir Bhattacharya) and Tutorial Chairs (B.B. Chaudhuri, Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium. We would like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the Track Chairs and the meta reviewers who devoted significant time to
the review process and preparation of the program. We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

We hope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler
Anil Jain
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Abstract. Ensemble pruning techniques are widely used to enhance a
set of classifiers’ efficiency and predictive performance by selecting a
subset of representative models, preventing redundancy, and ensuring
diversity in classification tasks. The Optimum-Path Forest (OPF), a sta-
ble and efficient graph-based framework, offers versatile supervised and
unsupervised capabilities in various machine-learning applications. The
supervised version provides remarkable results with a simple graph-based
structure produced by a training process conducted over a single dataset.
However, one can notice little effort in OPF-based ensemble learning.
This paper introduces an innovative approach to pruning OPF classifiers
using meta-descriptions learned by Graph-Matching Networks, which are
further employed to cluster similar OPF instances. The strategy selec-
tively chooses representative models that excel in predictive tasks from
groups generated by unsupervised OPF. Results demonstrate compet-
itive performance to state-of-the-art pruning algorithms, with experi-
ments conducted over fifteen public datasets, encouraging further explo-
ration of Graph Matching Networks applied to ensemble pruning.

Keywords: Graph Matching - Graph Matching Networks -
Optimum-Path Forest - Ensemble Pruning

1 Introduction

A graph is a mathematical tool that models the relationship of objects by rep-
resenting each instance as nodes or vertices whose connections are determined
through an adjacency relation. Its first use remits to the eighteenth century’s
topological problem of Konigsberg bridge [1], and has numerous applications on
today’s issues, ranging from routing [16], network flow [8], and social network
modelling [25] to machine learning [9,19,20].

Graph representations help encode complex and abstract structural informa-
tion, including DNA sequences, documents, and images. In this sense, a graph
represents general knowledge of a given domain. Finding similar graphs corre-
sponds to uncovering patterns in such complex structures. The area that studies
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such similarities is called graph matching (GM) and regards the problem of find-
ing correspondences between sets of nodes while preserving complex relational
information among them [2].

In the context of graph matching, one can find a broad spectrum of related
research involving robust and efficient approaches through spectral embed-
dings [14], Lagrangean relaxations optimized via sub-gradient and message pass-
ing mechanisms [24], and strategies based on non-convex and non-separable opti-
mization problems, employing matching constraint decomposition involving pair-
wise and higher-order constraints. Additionally, a Gromov-Wasserstein learning
framework has been proposed by Xu et al. [27] for joint graph matching and
embedding vector learning based on dissimilarity measurements between graph
pairs.

Usually, graph matching is conducted through embedding-based approaches
[26]. Nevertheless, recent works tackled the problem through a network-based
method, which employs a cross-graph attention mechanism to compute a simi-
larity score, namely Graph Matching Networks (GMNs) [12]. The method cal-
culates the similarity score jointly, producing more robust and accurate results.

Apart from GM, a graph-based framework for supervised and unsupervised
learning called Optimum-Path Forest [17,18,23] obtained notorious popularity
in past years due to its successful implementation over a wide range of appli-
cations. Among such implementations, Jodas et al. [10] recently proposed the
OPFsemble, an OPF-based mechanism to tackle ensemble pruning, with sig-
nificant results compared to state-of-the-art approaches. In such context, OPF
revealed itself as a feasible solution applied to the pruning of classifiers constitut-
ing an ensemble model, thus becoming an interesting and promising approach to
obtain a performance similar to that of the complete set when selecting a subset
of models.

Ensemble pruning techniques can be applied in several ways, such as in classi-
fier selection experiments. Approaches include Reduce-Error Pruning and Kappa
Pruning, Complementarity Measure, Margin Distance Minimization models, and
Orientation Ordering and Boosting-Based Ordering [15]. Besides, Zyblewski et
al. [28] tackled the problem via a clustering-based approach to capturing the
models with similar performance and selecting the ones from each produced
cluster. Apart from the well-known and established performance in grouping
similar data, most clustering algorithms still suffer from the need to define the
number of clusters while grouping the input data.

This paper offers a novel ensemble pruning strategy that combines the
strength of Optimum-Path Forest and Graph Matching Networks to create a
robust solution. Firstly, the method performs a weak classification of several data
subsets using an ensemble of supervised OPF-based classifiers whose predictive
performance similarities are computed by GMNs. Further, such graphs (classi-
fiers) are clustered according to their similarities using the unsupervised OPF,
and the well-known Gaussian Mixture Model learning algorithm determines the
importance of each group, which will be used in the prediction phase. Lastly, we
select the most representative model per cluster and prune the remaining ones
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with similar predictive capabilities. In short, the motivation behind this paper
lies in the successful application of three main concepts: (i) using the OPF frame-
work for ensemble and classification in general, (ii) the employment of GMN to
expose the similarity among graph-based models, and (iii) the performance of
ensemble pruning to extinguish redundancy and improve performance. In this
context, the main contributions of this paper are described as follows:

— To propose a novel ensemble pruning method combining Optimum-Path For-
est and Graph Matching Networks;

— To evaluate GMNs in the context of OPF graph similarities computation; and

— To foster the literature regarding graph-based approaches and ensemble prun-
ing.

The remainder of this paper is organized as follows. Section2 presents a
literature review concerning the topic of ensemble pruning, and Sect. 3 provides a
theoretical background concerning supervised and unsupervised OPF classifiers.
Section 4 describes the proposed approach, followed by the methodology provided
in Sect. 5. Last but no least, Sects.6 and 7 state the results and conclusions,
respectively.

2 Related Works

To our knowledge, no papers have modeled the problem of ensemble pruning
as a graph-matching task. This section briefly reviews some papers on graph
matching that we believe are interesting to this work.

In 2015, Lyzinski et al. [14] proposed a graph-matching approach efficient for
very large graphs that combine spectral graph embeddings with seeded graph
matching using a divide-and-conquer procedure. A couple of years later, a study
conducted by Swoboda et al. [24] obtained state-of-the-art results by introducing
several Lagrangean relaxations on the graph matching problem optimized using
sub-gradient and message passing (dual ascent) mechanisms.

Later on, Lé-Huu et al. [11] formulated the graph matching problem as a non-
convex non-separable optimization problem using decomposition of matching
constraints, providing a modular and scalable framework that can be instantiated
into different variants, namely pair-wise and higher-order constraints. Further,
Xu et al. [27] proposed a Gromov-Wasserstein learning framework to jointly
match graphs and learn embedding vectors by measuring dissimilarities between
pairs of graphs.

Yujia et al. [12] presented a cross-attention-based matching mechanism com-
posed of two main steps: training a Graph Neural Network to learn graph rep-
resentations in a vector space and using these representations to calculate the
similarity between pairs of graphs to detect software vulnerabilities. Similarly,
Fey et al. [5] provided a two-stage neural architecture for graph matching that
employs localized node embeddings to compute the correspondences between
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nodes and uses synchronous message-passing networks to iteratively reach a
matching consensus in such likenesses by the nodes’ local neighborhoods.

More recently, Guo et al. [7] proposed a semantic histogram-based graph
matching method to tackle the problem of visual multi-robot localization. In
contrast, Qu et al. [22] introduced the Edge Attention-adaptive Graph Match-
ing network to solve the problem of outliers in practical scenarios. Finally, Lin
et al. [13] presented a contrastive learning-based technique called Contrastive
Matching with Momentum Distillation to address the problem of noisy corre-
spondence in graphs.

To the best of our knowledge, no additional study has employed the concept
of graph-matching networks in the context of ensemble pruning applications. The
proposed method is inherently suited for graph-structured data, such as adja-
cency matrices, which are fundamental to the OPF model, thereby supporting
the proposed method. In addition, the method is scalable to larger datasets since
the OPF framework has been applied to a wide range of research comprising a
variety of data representations. A notable study by Papa et al. [17] revealed the
OPF capabilities in large datasets from different domains, including an image
dataset with magnetic resonance images of the human brain. This aspect demon-
strates the model’s ability to handle larger datasets effectively, thus showing the
adaptability of the proposed ensemble pruning to larger datasets.

3 Theoretical Background

This section provides the theoretical background regarding Optimum-Path For-
est and the main concepts related to graph matching and Graph Matching Net-
works.

3.1 Optimum-Path Forest

The Optimum-Path Forest framework [17,18,23] encodes input patterns as graph
nodes in a high-dimensional space and creates optimum-path trees over these
points, which are generated from the training instances and are built to optimize
the separation between classes/clusters. Further sections detail the supervised
and unsupervised OPF versions.

Supervised Learning with Complete Graph: Let G = (V,£,w) be a com-
plete and weighted graph where V = {1, @2,...,x,} corresponds to the set of
vertices (samples), such that x; € RP, and (z;,z;) € £ denotes an arc from
the set of edges &, such that i # j. Moreover, arcs are weighted by the function
w: & — NT, which can be a similarity, matching, or distance measure.

Let C' € R™*™ be a matrix such that C;; represents the cost of the optimum
path between x; and «;. The cost C;; is determined by function f(C;;), designed
to capture the expected separation between classes. Papa et al. [17,18,23] pro-
posed to use the maximum arc-weight along a path, but other functions can also
be employed, provided some restrictions are satisfied.
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The goal is to find the optimum path O;; between two training instances x;
and «; that minimizes the cost function f(C;;) as follows:

O*

ij

= argmin f(Cy;), Vi,j € {1,2,...,n}, (1)

where O;; represents a path between x; and ;. Notice that several approaches,
e.g., Dijkstra’s algorithm, dynamic programming, or branch and bound tech-
niques, can be used for this purpose. The optimum-path O* is selected based
on the algorithm and the defined cost function, representing the most efficient
route between the instances in terms of class separation. Costs are initialized
to 0 for the prototype samples, i.e., connected samples with different labels in
a Minimum Spanning Tree computed over V. A large cost is assigned to the
remaining samples.

Once the optimum paths are determined, an optimum-path forest is built
by finding the minimum-cost path between all pairs of instances within the
same class, thus forming trees in the forest. This structure provides an efficient
framework for classification purposes.

To classify a new pattern &,.,,, the distances between x,.,, and all training
instances are calculated. Let v; pew be a cost between samples x; and @ye. The
classification step aims at solving the following optimization problem:

¥ = argminy; pew, Vi,7 € {1,2,...,n}. (2)

T

In other words, * € V denotes the node that offered the minimum cost to @,c.,,
also assigning its label to the new sample.

Unsupervised Learning: OPF groups training samples in its unsupervised
form, connecting them to their k-nearest neighbors with weighted arcs. In this
version, nodes are also weighted by a probability density function (PDF) as
follows:

N 1 ex —dQ(QZi,CL‘j)
e = e, 2 p(~™)- ©)

V."L'j €A (.Z',

where Ay (x;) is the k-neighborhood of sample x;, ¢ = "3, and m,, is the
maximum weight among graph edges. The optimum number of nearest neigh-
bours, k¥, is determined by minimizing the graph cut over V within the range
1 < kmax < |V| [23]. The model elects prototypes P based on maxima of the
PDF, and each x; is assigned the path with the highest minimum density value

as follows:

Fmin({x5)) = {p(mj) ifx; €P

p(x;) — 6 otherwise,

fmin(<¢wi ’ <$i7mj>>) = min{fmiTL(¢wi)’p($j)}’ (4)
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where ¢, denotes a path starting from a prototype in P with terminus at sample
x;, and J is a small constant.

3.2 Graph Matching Network

Graph Matching is an existing graph theory and computer science issue. It
addresses the analysis and comparison of graphs to identify similarities or corre-
spondences between them. In short, GM aims to check the equivalence between
two graphs or discover correspondences between the vertices of different graphs.
According to Pavithra et al. [21], GM refers to the correspondence of a collection
of edges that do not share common vertices in a graph. this problem is tackled
by modelling a pair of input graphs in a vector embedding space that facilitates
the subsequent similarity assessment. Usually, such approaches involve taking
the graph embedding representations independently for the graphs’ equivalency
estimation. However, Li et al. [12] proposed graph-matching networks for simul-
taneous graph similarity learning, introducing a cross-graph attention mecha-
nism. The model takes pairs of graphs as input, using an encoder network with
a multilayer perceptron architecture to obtain initial embedding representations
for nodes and edges. Additionally, GMN adjusts the node update module in each
propagation layer, considering aggregated messages and a cross-graph correspon-
dence vector for enhanced node association between graphs. Unlike traditional
methods that compute similarity scores separately, their approach calculates
scores jointly for graph pairs, promoting robustness at a slightly higher compu-
tational cost.

Formally speaking, let (G1,G2) be the pair of two graphs G; and Go, and
hg, and hg, the graph-level representation after applying the propagation and
aggregation functions on both graphs. Both functions represent Multilayer Per-
ceptron (MLP) networks. Their purpose is to map the nodes and edges of the
graph into vector representations using the graph’s adjacency matrix. During the
learning process, the similarity for the graph pair is computed using a pairwise
loss function represented as follows:

Lypair = E(Gy,6,0[maz{0,y = t(1 — d(G1, G2))}], ()

where ¢t € {—1,1} represents the label indicating similar (1) or dissimilar (-1)
graphs, v is the margin parameter, and d(G1,G2) = |hg, — hG2||2, i.e., the
Fuclidean distance between the graphs in the vector space. This loss function
promotes d(G1, G2) < 1—y when the pair is similar (¢ = 1), and d(G1, G2) > 1+
when ¢ = —1. Subsequently, the loss is optimized using gradient descent-based
methods.

4 Proposed Approach

The proposed methodology addresses classifier pruning into an eight-step model,
illustrated in Fig. 1. The first five steps comprise the training phase, while the
remaining three compose the test (prediction) phase. Such steps are detailed
below:
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" Training | I I
- | ‘ Graph embeddings and
Subset 1 ’\ OPF 1 | similarities
- — Create graph
Training — 1, opF2 | embeddings with | __Sompute
5 Subset 2 | J similarity matrix
Ll oPFN |

Subset N | ]

Modelling each cluster as a
Gaussian distribution by using «———

the Gaussian Mixture Model v
Vi ‘
Test —
—> X
/" Test Vil ® vii Classification using
sample weighted soft voting

Fig. 1. Pipeline of the proposed ensemble pruning based on Graph Matching Networks
and Optimum-Path Forest.

I. The first step splits the training set into N subsets using bootstrap aggre-
gation (bagging) from random sampling with replacement. This approach
is similar to the one employed by the Random Forest model, i.e., it pro-
vides each classifier with a different subset of the training set to allow for
variation reduction, generalization, and robustness.

II. The second step trains N supervised OPF classifiers to initialize the ensem-
ble. In this stage, we allocate each training subset to its corresponding OPF
instance, setting the stage for the subsequent training process. This delib-
erate assignment ensures that each OPF instance receives the appropriate
training data, facilitating the development of distinct classifiers that col-
lectively contribute to the overall ensemble model diversity. The tailored
nature of this step emphasizes the precision and individualization in pro-
ducing each OPF classifier, an essential preparation for the subsequent
stages of our methodology.

ITI. The third step applies GMNs to compute the graph similarities among the
trained OPF instances within the ensemble model. The approach entails
creating a graph representation after training the OPF model with the
training data. First, we apply the supervised OPF to establish the graph
structure using the features of the training data. This process is an inherent
aspect of the OPF model, which produces a graph with the edges repre-
senting the distance of the adjacent training samples. Next, we create an
adjacency matrix based on this graph structure and then represent the
nodes and edges as feature vectors. Similar to the study of Li et al. [12],
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we set the corresponding nodes’ and edges’ features to a constant of 1s
so that we can represent only the graph’s adjacency structure and node
distribution. Then, the nodes and edges features are provided in pairs to
the GMN model to compute their embeddings and similarity. We create
a pair between each OPF classifier generated in the previous step to feed
a GMN model to capture their embedding representations. The processed
embeddings are then compared via a pairwise similarity function, produc-
ing a similarity value for the analyzed graph pair. Formally speaking, let
S be the set of supervised OPF instances composing the ensemble model.
The process to yield a set of graph pairs from S is achieved as follows:

gp:{(Gi,Gj)|G¢,GjGS/\i#ijI‘iZ].,Q,...,N}, (6)

where G, stands for the resulting set of graph pairs which is subsequently
fed into the GMN model. This process yields a similarity matrix M €
RVXN where a cell m,; corresponds to the similarity value between graphs
Gi and Gj.

This step involves clustering similar OPF instances based on the similar-
ities computed by GMN. We used the unsupervised OPF to group the
supervised OPF instances using the similarity matrix G, obtained in the
previous step.

. The contribution of each cluster is derived from a probability density func-

tion modeled from a Gaussian distribution computed from each group.
This process involves a Gaussian Mixture Model (GMM) initialized with
the mean vector and covariance matrix of the clusters calculated in the
previous step. The GMM is trained through an iterative process on the
initial mean and covariance matrix with a specified number of iterations to
find the weights of each distribution. As we have a reasonable estimative
of both the mean and covariance matrix, we modified the Expectation-
Maximization algorithm to learn the weights of each Gaussian distribution
only. Notice these weights are used in the prediction phase only.

As a critical measure to enhance diversity, refine generalization capabilities,
and facilitate accurate predictions during inference, the proposed pruning
strategy removes all classifiers from each group but the prototypes (nodes
marked with ‘X’ in Fig. 1). By isolating these representative instances, we
eliminate redundant or less informative classifiers.

In the prediction step, each individually selected model is presented with
a new test sample. This involves providing the input test data to each
supervised OPF model, allowing them to generate individual predictions
based on their learned patterns and characteristics. The prediction step not
only involves obtaining individual model predictions for a given test sample
but also considers the weight of each classifier (step V) in the ensemble,
resulting in a refined final prediction that leverages the strengths of each
model.
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VIII. The final step combines the provided individual predictions into a final clas-
sification result using soft voting. The weights associated with the selected
classifiers are assigned to the respective individual predictions, represent-
ing each classifier’s relative importance or contribution within the ensemble
model.

Let ¥ = {wi,wa,...,w.} be a set of labels and z be a test sample. Besides,
let A : 'V — Y be labeling function and P(z) = {pi1(2),p2(2),...,p:(2)} be
a set of class probabilities concerning z computed by the classifers comprising
the final ensemble, such that p;(z) € ®™ and m < N stands for the number
of selected classifiers after pruning. Our soft voting strategy calculates the class
probabilities assigned to sample x as follows:

pi(z):ijpij(z)vvz-e{1723"'7k}7 (7)
j=1

where w; stands for the weight of the j-th classifier (step V), and p;; denotes
the probability of the i-th class computed by the j-th supervised OPF classifier.

It is worth noting the standard OPF does not cope with soft classification.
Although past works attempted to deal with such a shortcoming [3,4], they
either work with binary classification problems or require fine-tuning additional
parameters. We propose the following strategy to compute the j-th classifier’s
probability concerning the i-th class:

pij(2) = softmaz{—¢(b, z)|b € Q(z) N A(b) = i}, (8)

where ¢(b, z) stands for the cost node b offered to testing sample z, Q(z) outputs
the training sample that conquered z. In a nutshell, p;;(z) stands for the set of
class probabilities assigned by a training sample b to z, which are computed
using a softmaz over the optimum-path costs assigned by a sample b.

Before applying the softmazx function, we first normalize all costs ¢(b, z)
using a minimum-maximum normalization to restrict them within the range of 0
and 1. Then, we take the negative of the normalized costs, for higher probabilities
encode smaller normalized costs. This procedure generates probabilities for each
class w; € Y while ensuring their sum equals 1,7 =1,2,...,c.

The final class prediction is formulated as follows:

Yy = argmax(p;(2)),Vi € {1,2, ..., c}, (9)

where y, represents the label for which the weighted probability is the highest.

We also employed two straightforward variants when applying the prediction
step by the supervised OPF classifiers selected from the pruning procedure. Such
additional strategies involve hard and soft voting computed by applying equal
weights to the class labels’ probabilities computed by Eq. 7. In the latter variant,
the classifiers’ weights are equally assigned by taking the ratio of the number of
classifiers selected after pruning, thus ensuring that each classifier contributes
similarly to the final prediction.
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5 Methodology

This section describes the methodology concerning the employed datasets and
experimental setup.

5.1 Dataset

The experiments were conducted over a set of 15 datasets available in the UCI
machine learning repository': Speaker Accent Recognition (D), Cervical Cancer
(D), Breast Cancer Wisconsin (Ds), Breast Cancer Wisconsin - Original (Dy),
Breast Cancer Wisconsin - Prognostic (Ds), Forest Type Mapping (Dg), Glass
Identification (D7), Indian Liver Patient Dataset (Dsg), Iris (Dg), Mammographic
Mass (D19), Diabetic Retinopathy Debrecen (D11), Primary Tumor (D;2), Seis-
mic Bumps (D;3), Statlog - Vehicle Silhouettes (D14), and Vertebral Column
(D15). The datasets include binary and multiclass labels, exhibiting diversity in
features. The datasets underwent a preprocessing step to address missing values,
with each feature’s missing data provided with the average value. Subsequently,
standardization was applied by scaling the data assuming a Gaussian distribution.

5.2 Experimental Setup

Each dataset was split into 20 folds by employing proportions of 70%, 15%, and
15% for training, validation, and testing of the models, respectively, assuming a
cross-validation strategy for performance assessment.

Unsupervised OPF for graph matching-based pruning was compared to sim-
ilar clustering-based algorithms, namely k-Means and agglomerative clustering,
and the example margin and ensemble diversity proposed by Guo et al. [6],
thus reaching a fair comparison with the state-of-the-art techniques for ensem-
ble pruning. The baseline algorithms employed in our study are provided by
PyPruning, a comprehensive framework offering diverse algorithms that serve
as foundational methods for our comparative and experimental analyses. The
framework is accessible through the GitHub repository?.

All pruning strategies, including our proposed method, were assessed across
three ensemble setups initialized with 10, 30, and 50 supervised OPF instances.
Such diversity assessment allowed for a detailed exploration of each prun-
ing method’s impact, enhancing the robustness of the comparative analysis.
Additionally, we limited the iterations to 100 concerning the Expectation-
Maximization approach to determine classifiers’ weights using the Gaussian Mix-
ture Model.

In the baseline setup, we used a pruning strategy from the PyPruning frame-
work, selecting a subset of representative classifiers based on each pruning algo-
rithm function. The chosen number of classifiers, denoted as r, follows the crite-
ria set by each baseline pruning algorithm. Table 1 outlines the selection criteria

! https://archive.ics.uci.edu.
2 https://github.com/sbuschjaeger /PyPruning.
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for each ensemble arrangement. The values of r increase proportionally but are
capped at half of the classifiers used to initialize the ensemble model.

Table 1. Selection criteria for each ensemble configuration.

Ensemble setup|Subset for r
10 classifiers |5
30 classifiers  |[5,10,15]

50 classifiers  {[10,15,25]

However, the above hyperparameter optimization is partially dispensable
when operating the unsupervised OPF classifier®. Nevertheless, as outlined in
Sect. 3.1, selecting the appropriate k-max value becomes essential to ensure the
accurate grouping of analogous samples when employing the unsupervised OPF
algorithm. Therefore, the k-max parameter was properly optimized to select
the best value whose F1-score is the highest when employing the validation set
through each clustering attempt using the unsupervised OPF algorithm. This
process is repeated in each of the 20 data split configurations.

GMN training followed Li et al.’s [12] setup using their GitHub code*. Ini-
tially, a synthetic training set with diverse graph setups was created. Each graph
was initialized with n = 20 nodes and edge probability p = 0.2. For each pro-
duced graph G, a positive sample G was then formed by replacing k,, edges with
new edges in GG, while a negative sample G2 was created by substituting k,, edges
from G, with k, < k,,. This resulted in pairs (G1,G2) and (G1, G3). Following
Li et al.’s strategy [12], k, and k,, were both set to 1 and 2, respectively. Sub-
sequently, the model underwent 500,000 training steps with a batch size of 20
samples and a learning rate set to 0.0001. In addition, a 128-sized vector for OPF
graph embedding was utilized. The learning process aimed to minimize graph
similarity errors using a pairwise loss function based on Euclidean distance in
the graph’s vector space.

Regarding the comparison analysis, we employed the F1-score to assess the
efficacy of each pruning method used in this work. In addition, we evaluated the
optimal value for 7, i.e., the number of selected classifiers that showed the highest
average Fl-score for each baseline pruning algorithm over the testing set. Fur-
thermore, we employed the Wilcoxon signed-rank test with a significance of 0.05
(5%) to inspect statistical differences between the proposed pruning strategy’s
outcomes and the ensemble model’s results obtained without applying any prun-
ing approach. Similarly, statistical differences among the pruning algorithms’
results were assessed using the Friedman test with the same significance level of

5%.

3 Although unsupervised OPF figures one hyperparameter only, i.e., k-max, it can
learn the number of clusters on-the-fly.
* https://github.com/Lin-Yijie/Graph-Matching-Networks.
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6 Results and Discussions

This section discusses the comparative analysis involving the Fl-score values
yielded by each pruning algorithm. The highest score values are presented in
bold, while statistical differences are underscored when assessing the comparative
analysis between the pruning results and the outcomes when no pruning strategy
is applied to the ensemble model.

Table 2 compares the GMN pruning’s results with those achieved when no
pruning strategy is applied to the ensemble model. Notice the statistically sim-
ilar scores yielded by most of the tested datasets, particularly for the 50 classi-
fiers configuration. Such comparative analysis implies that the proposed strategy
attained similar behavior as if the ensemble model were employed with all OPF
instances during the inference step.

Table 2. Average Fl-scores against the baseline, i.e., no pruning.

10 classifiers 30 classifiers 50 classifiers

No pruning |Pruning No pruning |Pruning No pruning |Pruning
0.806£0.0590.777+0.057 |0.8194+0.040(0.799+0.041 |0.819+0.041|0.811+0.043
D> |0.944+0.020/0.9364+0.026 |0.943+0.023 0.944+0.027/0.944+0.020/0.943+0.021
D3 0.9524+0.017 |0.954+0.015/0.954+0.018/0.947+0.021 |0.954+0.017/0.950-£0.020
Dy 0.8234+0.046 |0.823+0.049/0.824+0.0450.810+0.042 |0.827+0.044/0.816£0.046
Ds 0.6524+0.088 |0.664+0.102(/0.671-+£0.0890.660+0.093 |0.665+0.084/0.663+0.089
D¢ 0.673+0.047 |0.675+0.046/0.674-0.0450.669+0.058 |0.676+0.047/0.670-£0.047
D7 |0.937+0.050/0.9354+0.052 |0.941+0.046 0.946+0.0480.943+0.046 |0.946+0.043
Dg |0.762+0.038/0.73440.043 |0.772-+0.036/0.760+0.039 |0.773+0.034/0.766+0.037
Dy |0.600+0.028/0.5884+0.032 |0.606+0.0260.600+0.022 |0.607+0.028 |0.613+0.032
D10/0.949+0.021(0.946+0.020 |0.9514+0.017/0.949+0.018 0.951+0.018 |0.951+0.017
D11/0.312+0.052|0.3104+0.054 {0.320+0.0500.3064+-0.048 |0.328+0.060(0.325+0.053
D12/0.707+0.113/0.681+0.109 |0.721+0.111/0.7124+0.088 |0.722+0.108|0.704+0.099
D13/0.906+0.019/0.9004+0.016 {0.909+0.018/0.9034+0.015 |0.908+0.019(0.904+0.016
D140.694+0.036/0.6944+0.035 |0.696£0.041/0.6854+0.033 |0.697+0.043/0.693+0.034
D150.819£0.0460.8114+0.047 |0.827+0.044/0.820+0.040 |0.829-+0.044/0.816+0.039
Underscored values stand for statistical difference at p = 0.05.

S

Table 3 shows the average F1-score values computed from the 20 splits applied
to each dataset. The pruning strategy by the GMM version attained comparable
results with the counterpart versions applying hard voting (HV) and soft voting
(SV) with equally distributed weights. In most cases, the soft voting approach
improves the prediction capability by providing higher average scores than the
hard voting of the class label predictions. Notice the average scores provided
by the Accent, Forest types, and Iris datasets, to cite a few, which achieved
the highest average score values with the soft voting strategies compared to
the hard voting approach. Regarding the comparative analysis with the baseline
algorithms, one can notice the competitive results achieved by the proposed app-
roach regarding the comparative assessment with corresponding average values
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provided by k-Means, agglomerative clustering, and the pruning with the mar-
gin and diversity strategy. OPF-GMN-based pruning provided results similar to
those of the baseline algorithms, although the latter approaches outperformed
the OPF-GMN in most cases. However, since the pruning approach relies on the
prototype selection from the clusters produced by the unsupervised OPF algo-
rithm, it is worth noting that there is no need to determine the expected number
of classifiers after applying the pruning procedure with the proposed method.

In addition, we conducted a further analysis to determine the minimum num-
ber of OPF classifiers required to achieve maximum accuracy in specific classi-
fication scenarios. We assessed the minimum, maximum, and average amount
of OPF instances selected from running the 20 folds on each employed dataset.
Table4 provides such results for the pruning strategy harnessed by the GMN
model. Regarding the minimum selection, all ensemble configurations provided
a minimum set of one OPF instance for further inference of the sample class label.
Moreover, an interesting point pertains to the maximum number of classifiers
each ensemble configuration provides, constituting nearly half of the instances
initialized for the ensemble model.

Following the same analysis, we assessed the number of classifiers that show-
case the highest average scores for each baseline pruning algorithm across the
20-fold execution. Table 5 provides such comparative assessment. Similar to the
GMN-based pruning strategy, the methods lead to almost half the number of
OPF instances assembled for the ensemble setup. Regardless of which pruning
method is used, such results reveal the trend toward selecting more classifiers as
the number of models increases in the ensemble initialization.

The experiments conducted in this study utilized datasets from the UCI
repository, which are relatively small in size. While these datasets have demon-
strated our method’s effectiveness, the proposed ensemble pruning can be
adapted to larger, more structured datasets. Our method is inherently scal-
able and adaptable to larger datasets and structured data, such as those defined
by adjacency matrices, an intrinsic aspect of the OPF model, thus favoring the
proposed approach.

As a last discussion, the pruning technique is widely used in machine learning
applications with the main objective of reducing the computational cost of mod-
els, making them more efficient in processing time and resource use. It is worth
noting that in some cases, pruning offers statistically similar results with fewer
classifiers in the ensemble, as shown by our results. Although pruning may result
in better performance for specific techniques and methods, it is not guaranteed
in all cases. In fact, such a problem can occur when the underlying classifiers per-
form poorly during the classification process. However, this issue is not exclusive
to the OPF classifier; it can arise with any classifier. The source of this problem
lies in the pruning process itself, making it an inherent challenge across vari-
ous classification models, thus affecting the ensemble pruning performance. This
behavior can be explained by the particular nature of the data and models used,
where the additional complexity without the pruning technique allows for better
capture of the nuances present in the data, resulting in superior performance.
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Table 3. Average F1-Score provided by each baseline.

10 classifiers

Ours HV Ours SV Ours GMM  |k-Means Agglom. Rank I.M.
0.77540.058 |0.776+0.056 |0.777+0.057 |0.792+0.059/0.785+0.062 |0.775+0.046
0.93440.025 |0.937£0.027 0.93640.026 |0.94040.024 |0.941£0.025 |0.94240.023
0.9514+0.019 |0.954+0.016 |0.954+0.015/0.949+0.014 |0.949+0.014 0.951+£0.018
0.80040.046 |0.821+£0.049 0.82340.0490.8174+0.040 |0.822+0.045 |0.815+0.049
0.672+£0.098/0.662+0.099 |0.664+0.102 |0.641+0.083 |0.647+0.093 0.649+0.095
0.665+0.042 10.67540.043 |0.67540.046 |0.66940.052 |0.673+0.055 |0.677+0.049
0.93240.057 |0.935£0.050 |0.93540.052 |0.93740.048 |0.939+0.046/0.932+0.051
0.736+0.033 10.73740.045 |0.7344-0.043 |0.739+0.047|0.738+0.047 |0.723+0.041
0.58740.031 |0.589+0.029 0.58840.032 |0.604%0.026 |0.604+£0.028 0.604+0.030
0[{0.941+£0.020 |0.946+0.019 0.946-+0.020 0.947+0.019 |0.949+0.020/0.945+0.019
D11/0.293£0.055 |0.31440.057 |0.31040.054 |0.310£0.053 |0.31940.051/0.30240.050
D12(0.689+0.101 |0.684+0.112 |0.681£0.109 |0.696+0.110/0.690+0.109 |0.688+0.093
D13/0.902+0.016 |0.89940.017 |0.900+0.016 |0.904£0.019 |0.90540.019 |0.905+0.018
D14(0.694+0.038 |0.695+0.037/0.694-+0.035 0.693+0.037 |0.694+0.038 |0.691+0.038
D15/0.803£0.045 |0.81040.045 |0.811+0.047 |0.807+0.052 |0.81140.052 |0.817+0.052
30 classifiers
Ours HV Ours SV Ours GMM  k-Means Agglom. Rank I.M.

D [0.79740.041 |0.81040.042 |0.79940.041 |0.819-+0.041/0.809+0.043 |0.802+0.047
D3 {0.939+£0.021 |0.944+0.025 0.944+0.027 0.943+0.025 |0.944+0.022 |0.946+0.021
D3 (0.94440.021 |0.94540.020 |0.947+0.021 |0.955+0.018 |0.955+0.017 |0.956+0.014
D4 {0.799+£0.044 |0.810+0.042 |0.810£0.042 |0.823+0.044 |0.8261-0.039/0.813+0.048
D5 {0.654+0.079 |0.654+0.090 |0.660-+£0.093 0.667+0.086 |0.667+0.102/0.659+0.088
Ds 0.660£0.052 |0.67140.056 |0.66940.058 |0.676£0.047 |0.68110.044/0.67410.046
D7 {0.939+0.049 |0.946+0.048/0.946+0.048 0.939-+0.046 |0.941+0.046 |0.946+0.044
Dg 0.751£0.037 |0.75840.041 |0.76040.039 |0.763+0.033/0.760+0.035 |0.75740.032
Dy {0.592+0.028 |0.599+0.023 |0.600-+£0.022 0.604-+0.030 |0.608+0.031 |0.609+0.028
D10/0.944+0.019 |0.95040.017 |0.94940.018 |0.952+0.018 0.95240.019/0.948+0.019
D11/0.29240.050 |0.301+0.050 |0.306£0.048 |0.318+0.057 |0.322+0.050(0.312+0.050
D12(0.721+0.099(0.708+0.090 |0.7124+0.088 |0.716+0.105 |0.716+0.115 |0.693+0.096
D13(0.903£0.017 |0.903+0.016 0.903£0.015 |0.90940.017/0.907£0.019 |0.907+0.018
D14]0.69240.032 |0.684+0.034 |0.685+0.033 |0.700+0.042/0.699+0.032 |0.694+0.042
D15(0.806+0.038 |0.821+0.042 |0.820£0.040 |0.823+0.041 |0.823+0.042 |0.824+0.049
50 classifiers
Ours HV Ours SV Ours GMM  k-Means Agglom. Rank .M.
D |0.79840.051 |0.808+0.041 |0.811+0.043 |0.819-+0.045/0.817+0.046 |0.806=£0.045
D5 {0.936+0.023 |0.943+0.021 0.943-+0.021 |0.942+0.025 |0.945+0.025/0.945+0.020
D3 0.946£0.018 |0.95040.020 (0.95040.020 |0.954+0.017 0.956+0.015/0.95340.017
D4 {0.795+0.044 |0.817+0.039 |0.816+0.046 |0.826+0.040 |0.828+0.042/0.818+0.045
D5 0.67940.096|0.66610.088 |0.663+0.089 |0.663+£0.092 0.67140.095 |0.67240.105
Dg 0.6654+0.039 |0.672+0.044 |0.670+0.047 |0.678+0.052 |0.677+0.048 10.680+0.055
D7 10.93640.051 |0.94640.043 |0.946+0.043 |0.939+0.047 |0.943+0.046 |0.9504+0.040
Dsg {0.7484+0.030 |0.763+0.038 |0.766+0.037 |0.77040.039|0.768+0.031 |0.760+0.034
Dy (0.60240.041 |0.614+0.032/0.613+0.032 |0.610+0.032 |0.608+0.029 |0.611+0.029
D10[0.942+0.018 |0.951+0.017 0.951£0.017 |0.95240.018/0.952+0.018 |0.948+0.016
D11]0.304+0.052 |0.328+0.051/0.325+0.053 |0.325+0.052 |0.328+0.055 |0.326+0.054
D12/0.715£0.105 |0.70340.098 |0.70440.099 |0.709+£0.113 |0.72040.106/0.7094-0.095
D13(0.902+0.017 |0.904+0.017 0.904+0.016 |0.907+0.018 |0.908+0.018/0.908+0.019
D14/0.699£0.033 |0.69440.035 |0.693+0.034 |0.700£0.036 |0.70140.032(0.70040.041
D;15(0.810+0.038 |0.816+£0.039 0.816-+0.039 |0.829+0.038/0.824+0.038 |0.826+0.043

T Underscored values stand for statistical difference computed by the Friedman
test with p=0.05.

*HV = Hard Voting; SV =Soft Voting; GMM = Gaussian Mixture Model;
Agglom. = Agglomerative Clustering; I.M. = Individual Margin.
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Table 4. Minimum, maximum and average number of classifiers selected after the
pruning procedure.

10 classifiers 30 classifiers 50 classifiers

Min. Max./Avg. |Min.Max.|Avg. Min. Max.|Avg.
D1 6 3.7+£1.61 |15 |7.3+4.6 2 23 [12.3+7.2
Dy |1 5 2.7+1.5(1 15 16.54+5.0 |3 25 |16.4£8.1
Ds |1 6 3.4+1.7|1 16 |7.845.8 |1 24 |14.3£74
Ds1 6 3.5+1.61 |16 |[5.8+5.7 1 25 [12.248.8
Ds |1 6 3.1+1.6/1 15 [5.7+5.3 |1 26 |10.1£8.0
Dg |1 7 3.5+1.8|1 15 [5.54+4.4 |2 25 |12.7£9.0
D7 |1 6 3.6+1.2(1 18 10.7+5.0/1 25 |15.1+£8.4
Dg |1 6 3.8+1.4[1 15 [8.7+4.6 |1 26 |14.248.1
Dy |1 6 2.7+1.6/1 13 4.844.7 1 25 |11.4£8.2
Dip|l 5 3.0+1.6/1 16 8.64+5.5 |1 26 |13.7£8.5
D1 6 2.941.5(1 14 [7.04£4.9 |2 24 |12.8+£7.8
Dio|1 6 3.0£1.7|1 15 72448 |1 24 |11.0£8.8
D3|l 5 2.94+1.3[1 16 |5.844.5 |2 24 |8.2+6.8
Dyl 7 3.1+1.91 15 [6.2+4.7 1 25 |12.547.5
Dis|1 5 3.6+1.1/1 16 [8.845.2 |3 24 |15.4£8.2

Table 5. Number of estimators selected for each baseline.

10 classifiers 30 classifiers 50 classifiers
k-Means|Agglom. Rank I.M. k-Means/Agglom. Rank I.M. k-Means|Agglom. Rank I.M.
D; [(r=5) [(r=5) |(r=5) |(r=15)|(r=15)|(r =15) |(r =25)|(r = 25)|(r = 25)
Dy [(r=5) [(r=5) |(r=5) |(r=15)(r=25) |(r=15) |(r=25)|(r =10)|(r = 25)
D3 (r=5) |(r=5) (r=5) |(r=15)|(r=15)/(r =10) |(r=25) (r =15)|(r =10)
Dy (r=35) |(r=5) (r=5) |(r=15)|(r =10)/(r =15) |(r =25) (r =25)|(r = 25)
Ds [(r=5) ((r=5) [(r=5) |(r=15)|(r =10)|(r =15) |(r =10)|(r = 10)|(r = 15)
Ds (r=35) |(r=5) (r=5) |(r=15)|(r=5) |(r=15) |(r=10) (r =25)|(r =10)
D7 |(r=25) ((r=5) [(r=5) |(r=5) |(r=10)|(r =10) |(r =15)|(r =10)|(r = 10)
Dg [(r=25) ((r=5) [(r=5) |(r=15)|(r =15)|(r =15) |(r =15)|(r = 25)|(r = 25)
Dy (r=35) |(r=5) (r=5) |(r=5) |(r=15)|(r=5) |(r=15)(r=25)|(r=25)
Diol(r=5) [(r=5) |(r=5) |(r=10)((r =10)|(r =5) |(r =25)|(r = 10)|(r = 25)
Dyi\(r=25) |(r=5) (r=5) |(r=5) |(r=15)/(r=15) |(r=25)(r=25)|(r =15)
Di3[(r=5) [(r=5) |(r=5) |(r=15)|(r =15)|(r =10) |(r =25)|(r = 25)|(r = 25)
(r=5) |(r=5) |(r=5) |(r=15)|(r =10)|(r =15) |(r =25)|(r = 25)|(r = 25)
Disl(r=15) [(r=5) |(r=5) |(r=15)((r=25) |(r=10) |(r=25)|(r =10)|(r = 15)
(r=25) |(r=5) |(r (r=10)|(r =10) |(r =25)|(r = 15)|(r = 25)
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However, applying the pruning technique was mainly motivated by reducing the
computational cost and not necessarily by the expectation of achieving state-
of-the-art results (SOTA). Thus, the variation in observed results reflects the
complexity and adaptability of machine learning techniques to different scenar-
ios and data sets, highlighting that the decision to use pruning must be based
on a careful analysis of the specific needs of each application.
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7 Conclusions

This paper presented a novel ensemble pruning approach integrating Graph
Matching Networks and Optimum-Path Forest classifiers. Such a design allows a
suitable application to graph matching problems owing to the model’s intrinsic
graph-based structure. Combining a reduced and diverse ensemble of OPF clas-
sifiers was the initial hypothesis to achieve similar predictive performance with
comparable results to the entire ensemble model but with a lower computational
cost. In addition, the proposed method was designed to prevent the necessity of
specifying the required number of models to compose the final ensemble. The
results revealed comparable performance with statistical similarities when no
pruning is applied to the ensemble model and competitive predictive capabilities
with state-of-the-art ensemble pruning methods. Furthermore, it is important to
note that this work focuses only on classic machine learning models, particularly
the Optimal Path-Forest model, rather than deep learning techniques.

Regarding future work, we aim to extend this work by replacing the softmax-
based strategy used to perform the soft classification and evaluate the Proba-
bilistic OPF for the task. Although our study employed small datasets, which are
valuable for benchmarking and pose unique challenges like overfitting and data
sparsity, future work will involve extensive testing on larger datasets for further
validation and enhancing our method’s performance. In addition, OPF was not
designed for regression tasks, so we did not address regression in this study.
However, we plan to explore regression tasks once an OPF regressor becomes
available.
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Abstract. Graph Anomaly Detection (GAD) has attracted consider-
able attention for its potential in detecting anomalies. However, an over-
looked issue in prior research is the presence of extremely high-degree
node, which can introduce noise into GAD, escalate computational costs,
and intensify the problem of over-smoothing. To tackle this issue, this
paper first presents a novel graph anomaly dataset, NF'TGraph, charac-
terized by a notable presence of extremely high-degree nodes. A series
of experiments on this dataset sheds light on the influence of such nodes
on GAD. Moreover, we introduce a novel model, the Super Node-Aware
Graph Neural Network (SNGNN), designed to mitigate the noise ema-
nating from extremely high-degree nodes. Experimental results demon-
strate that SNGNN outperforms extant models, achieving an average
improvement of over 2% in the Area Under the ROC Curve (AUROC),
and effectively reducing noise.

Keywords: Graph Anomaly Detection + Extremely High-degree Nodes

1 Introduction

Graph, a data structure with nodes and edges, has been widely used to model
real-world scenarios, such as social networks [12], financial trading networks [30],
and paper citing networks [10]. Since graph structures can capture relationships
between entities, many anomaly detection methods are also based on graphs
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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[2,38], aiming to identify anomalies that are distinct from the majority in the
graph. Historically, numerous models for graph anomaly detection (GAD) have
been put forth, such as CONAD [38] and PCGNN [20]. These models have
contributed to the advancement of GAD.
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Fig. 1. The distribution of node degrees among the foremost 50 nodes.

However, a critical aspect overlooked by prior GAD studies pertains to the
presence of extremely high-degree nodes, which can influence GAD models sig-
nificantly. Firstly, since extreme high-degree nodes results in the formation of
a tightly connected component within the graph, anomalies may inadvertently
assimilate features from normal nodes through neighbor aggregation. This pro-
cess complicates the delineation of anomalous nodes, introducing noise into the
learning process. Moreover, the extensive connectivity associated with high-
degree nodes could lead to elevated computational costs and exacerbate the
issue of over-smoothing.

To elucidate the influence of extremely high-degree nodes, we first introduce a
novel graph anomaly dataset termed NFTGraph. As depicted through the yellow
and gray lines in Fig. 1, both NFTGraph and its variant, NFTGraph-Tiny, man-
ifest pronounced traits of extremely high-degree nodes. Additionally, utilizing
these datasets, we investigate the influence of such nodes, including their role in
introducing noise to GAD, amplifying computational costs, and intensifying the
issue of over-smoothing. In response, we propose the Super Node-Aware Graph
Neural Network (SNGNN), a novel GAD model that incorporates a Dummy
Node and Link Predictor to mitigate the noise stemming from extremely high-
degree nodes. Experimental results indicate that SNGNN surpasses current mod-
els, marked by an average increase of over 2% in the detection Area Under the
ROC Curve (AUROC), alongside a reduction in noise. In essence, our contribu-
tions are multifaceted:
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— We provide critical insights into the influence of extremely high-degree nodes,
emphasizing their potential to disrupt GAD, amplify computational costs,
and exacerbate the issue of over-smoothing.

— SNGNN is designed to mitigate the noise generated by extreme high-degree
nodes. Experimental results indicate that SNGNN surpasses current methods
across four datasets, registering an average enhancement of more than 2% in
detection AUROC, while effectively reducing noise.

Moreover, we make the dataset and code publicly available on Github to facilitate
further research.

2 Related Works

Graph Anomaly Datasets: Numerous graph anomaly datasets are widely
employed in previous studies. For example, Weibo [17] and Reddit [17] are
derived from social networks. Questions [26] is a question-answering dataset.
Moreover, Amazon [24], Yelpchi [27], Tolokers [26] and Elliptic [34] are also
famous GAD datasets. While these traditional datasets have played a pivotal role
in advancing GAD, they fall short in accurately representing real-world networks
by not encompassing the distinct attributes of extremely high-degree nodes.
They obstruct a comprehensive understanding of the influence of extremely high-
degree nodes on GAD.

Degree-Related GNNs: Historically, several GNNs with a focus on degree-
related considerations have been introduced to rectify node degree distribution
biases. Notable examples include DEMO-Net [36] and SL-DSGCN [31], which
implement degree-specific node transformations, and DegFairGNN [23] employs
a function for generating debiasing contexts. Other GNNs addressing degree-
related performance differences include Tail-GNN [22] and RawlsGCN [15], etc.
However, these models have primarily been explored within the context of node
or graph classification tasks. Thus far, a scarcity of research has addressed the
ramifications of extremely high-degree nodes in anomaly detection tasks.

3 Data Collection and Properties

To understand the influence of extremely high-degree nodes, we initially gather
data from NFT transactions on the blockchain and organize it into a graph
structure. (1) Raw data: We extract certain fields of ERC-1155 NFT transac-
tion on the Ethereum blockchain to compose the format of raw data. (Table1).
(2) Graph Structure: The From and To addresses, acting as the sending and
receiving parties of a transaction, serve as the source and target nodes in the
graph. An edge is established between the source and target nodes if tokens
are transferred between them. Each node possesses 50-dimensional attributes.
(3) Labeling Suspicious Node: We label nodes that exhibit interactions with
the ground-truth fraudulent nodes (encompassing Ponzi schemes [6] and phishing
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scams [5]) exceeding a count of three instances as suspicious nodes. Suspicious
nodes aim to alleviate the notable imbalance of ground-truth fraudulent nodes
aligning with the NFTGraph’s node set. (4) Variant Dataset: By extract-
ing 20,000 of the most active nodes while excluding isolated nodes, we form
NFTGraph-Tiny, leading to a substantial size reduction. This is executed with
the recognition that certain GNNs may encounter challenges in handling exten-
sive graphs within resource-constrained environments. More details are described
in the supplemental materials.

Table 1. Format of raw NFT transaction data.

TxHash  |From To Token Timestamp Amount Value($) TxFee($)
0xb5...b420/0x94...7293 |0x6e...b7d3/0xd0...2430[20220730055230,1 78.52  |2.23
0xab...aeea |0x00...0000 |0xd8...ac95|0xd0...2430/20220730055230/14 0.0 0.98
0xa2...bdfl |0x5b...1abb|0x4f...6580 0xd0...2430[20220730055138|1 0.0 0.33

Properties: Table?2 illustrates a comparison of statistical properties between
NFTGraph and several other graph anomaly datasets [29]. The anomaly ratio
of NFTGraph is only 0.39%, making it the lowest in the dataset. Moreover, in
NFTGraph, the highest degree (No.1 deg) is 789,782, significantly surpassing
No.2 deg. This pattern is consistent in NFTGraph-Tiny, but in other graph
datasets, the discrepancy between No.1 deg and No.2 deg is less pronounced.

Table 2. Statistics of NFTGraph and some common graph anomaly datasets.

Dataset #Nodes |[#Edges |Anomaly/Avg deg/No.1 degNo.2 deg|q1 q2
Weibo 8,405 416,368 110.3%  199.08  |4,447 2,769 44.88 27.95
Reddit 10,984 |168,016 |3.3% 30.59 5,112 3,134 167.10 102.44
Amazon 11,944  |8,847,096(9.5% 1481.43 [13,964 (13,874 (9.43 9.37
YelpChi 45,954 7,739,912(14.5%  [336.85 |1,004 996 2.98 2.96
Tolokers 11,758 530,758 [21.8% [90.28 (2,140 2,113 23.70 23.40
Questions 48,921 202,461 |3.0% 8.28 1,541 1,186 186.18 143.29
Elliptic 203,769 (438,124 19.8% 4.30 475 291 110.46 67.67
NFTGraph-Tiny|20,000 |245,221 |1.30% 24.52 18,104 |1,330 738.27 54.24
NFTGraph 1,161,8472,851,407/0.39%  |4.91 789,782 (20,000 [160904.054074.64

4 Exploring the Influence of Extremely High-Degree
Node

4.1 Definition of Extremely High-Degree Node

In the past, scholars have proposed the concepts of influential nodes and central
nodes [3,11], which differ from extremely high-degree nodes. While extremely
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high-degree nodes primarily focus on node degree, influential nodes and central
nodes can be defined in various ways, such as through K-shell value [14] or
betweenness centrality [3], among others.

Define a high-degree node in a graph as a node with a degree greater than or
equal to the average degree (avg_deg). An extremely high-degree node is defined
as a node whose degree/avg_deg> ¢ (¢ > 1), indicating that the node’s degree
exceeds the average degree by ¢ times. ¢ is a hyperparameter that varies depend-
ing on the dataset. Let ¢q; denote the hyperparameter selectively elevating No.
1 node to an extremely high-degree node, while g5 signifies the hyperparameter
concurrently elevating both No. 1 and No. 2 to extremely high-degree nodes.
As seen from Table 2, for NFTGraph, ¢; exceeds 16,0000, and ¢ also exceeds
4,000. Furthermore, there is a considerable discrepancy between the values of
q1 and g2, whereas for graph datasets including Weibo, Reddit, and Questions,
q1 and ¢o are closer. This demonstrates significant characteristics of extremely
high-degree nodes. NFTGraph-Tiny exhibits similar features. The threshold ¢
is determined through hyperparameter tuning on the dataset’s validation set to
optimize the detection AUROC. For simplicity and clarity in illustrating the
influence of extremely high-degree nodes, we set ¢ equal to ¢; in subsequent dis-
cussions. Therefore, only the node with the highest degree is considered as the
extremely high-degree node (abbreviated as SN).

4.2 Experimental Settings

Datasets: Due to the similarity properties between NFTGraph and NFTGraph-
Tiny, and the challenges faced by certain GNNs in handling large graphs, the
proposed NFTGraph-Tiny is chosen as the foundational dataset. To assess the
influence of SN, a variant dataset is introduced by removing SN and the edges
connected to it. These two graphs are respectively denoted as w/ SN and w/o
SN. From Table 3, it can be observed that without SN, No.l degree decreased
from 18,104 to 1,330, bringing it closer to the degrees of its immediate neighbors.
AnomalyAvgDeg represents the average degree of all abnormal nodes. The aver-
age abnormal node degree of NFTGraph-Tiny is 27.66, indicating that abnor-
mal nodes generally have lower degrees than SN. Moreover, to demonstrate the
advantage of the proposed dataset, several commonly used and well-known graph
anomaly datasets, namely Weibo [17,19], Reddit [19,39], and Questions [26], are
selected for comparison, as shown in Table 3.

Task Description: This section outlines a task aimed at identifying suspicious
nodes. Formally, the objective is to train a model f : f(u) — {0, 1}, where
Yu € V, V is node set, 1 denotes anomaly nodes and 0 denotes normal nodes.

Models and Evaluation Metrics: To comprehensively evaluate the influnce of
SN, this section selects 34 anomaly detection models, including both supervised
and unsupervised models, based on GNN and non-GNN models. Specifically,
the unsupervised and non-GNN models [40] include OCSVM, LOF, CBLOF,
COF, HBOS, SOD, COPOD, ECOD, LODA, and IForest; unsupervised and
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Table 3. Datases for exploring the influence of SN.

Datasets #Nodes #Edges #Feature/#Anomaly No.1-5 Deg AnomalyAvgDeg
NEFTGraph-Tiny w/ SN 20,000 [245,221 |50 259 [18104,1330,1212,1020,917](27.66
NFTGraph-Tiny w/o SN|19,999 |227,118 |50 259 [1330,1211,1020,916,793] |27.66
Weibo w/ SN 8,405 416,368 400 868 [4447,2769,2723,2558,2523]|54.82
Weibo w/o SN 8,404 411,922 400 868 [2767,2721,2556,2521,2376]/54.82
Reddit w/ SN 10,984 |168,016 64 366 [5112,3134,3106,2608,2518][24.75
Reddit w/o SN 10,983 [162,905 |64 366 [3134,3106,2608,741,2476] |24.75
Questions w/ SN 48,921 |202,461 (301 1460 [1541,1186,901,741,739]  |20.93
Questions w/o SN 48,920 200,921 301 1460 [1185,900,740,738,717] 20.93

GNN-based models [19] include ANOMALOUS [25], ONE [1], OCGNN [33],
CoLA [21], DONE [2], AnomalyDAE [8], CONAD ([38], and DOMINANT [7];
supervised and non-GNN models [30] include MLP, KNN, SVM, RF; supervised
and GNN-based models [30] include GCN [16], SGC [35], GIN [37], Graph-
SAGE [12], GAT [32], GT [28], GAS [18], BernNet [13], AMNet [4], GHRN [9],
GAT-Sep [42], PCGNN [20]. Due to the severe class imbalance between suspi-
cious and non-suspicious nodes, the Area Under the ROC Curve (AUROC) is
chosen for evaluation. Other settings are in the supplemental materials.

4.3 Influence of SN on GNN-Based and Non-GNN-Based Models

Table 4 presents the AUROC of models on NFTGraph-Tiny, Weibo, Reddit, and
Questions datasets, along with their corresponding graphs without SN. Refining
Table 4, the significant change rate is defined as the proportion of models with
AUROC changes exceeding 2% (4£2%) after removing SN, while the positive
significant change rate indicates an augmentation in AUROC (4+2%) after
SN removal.

Table 5 illustrates the significant change rates for both non-GNN and GNN
models. Remarkably, the significant change rate for NF'TGraph-Tiny surpasses
that of Weibo, Reddit, and Questions, with datasets such as Weibo and Ques-
tions showing a minimal 0% significant change rate. This highlights the distinct
advantage of employing NFTGraph-Tiny for exploring the influence of extremely
high-degree nodes, thereby suggesting the limited utility of other datasets in this
context.

Across the four datasets, the significant change rates of GNN-based mod-
els are substantially higher than those of non-GNN-based models. Specifically,
within the NFTGraph-Tiny dataset, GNN-based models show a remarkable sig-
nificant change rate of 70.00%, in contrast to the 50.00% observed for non-
GNN-based models. Furthermore, Table5 highlights that the positive signifi-
cant change rate for GNN-based models surpasses 50%. This outcome appears
counterintuitive since the inclusion of SN is theoretically expected to enhance
the informational content, suggesting that graphs incorporating SN should uni-
formly exhibit superior AUROC performance. Nonetheless, the empirical data
reveals that over half of the GNN-based models achieve higher AUROC scores
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Table 4. AUROC of anomaly detection models. Bold for significant change of AUROC
(Higher AUROC).

Models Datasets NFTGraph-Tiny Weibo Reddit Questions
w/ SN |w/o SN |w/ SN |w/o SNjw/ SN |w/o SNlw/ SN |w/o SN
Unsupervised & non-GNN-based OCSVM 0.4763 /0.5018 0.8001 0.8017 |0.5702 |0.5703 |0.5995 0.5995
LOF 0.56580.5332 |0.5756 0.5756 |0.5369 0.5372 |0.5680 0.5679
CBLOF 0.5134 10.5106 0.8003 |0.8084 10.5809 |0.5827 |0.6016 |0.6003
COF 0.56620.5430 0.4877 0.4885 |0.5755 0.5756 [0.5591 |0.5591
HBOS 0.4998 0.5041 0.4038 0.4034 |0.5338 0.5338 |0.5951 |0.5951
SOD 0.6590 0.6405 0.4258 |0.4249 10.5495 0.5402 |0.5526 0.5553
COPOD 0.5977 0.5977 10.4736 0.4738 10.4974 0.4975 |0.6059 0.6059
ECOD 0.5240 0.5241 10.4774 10.4775 10.4999 0.4999 |0.6015 0.6015
LODA 0.57490.5412 |0.7139 0.7096 10.5630 0.5633 |0.5745 0.5745
IForest 0.6016 |0.6009 0.5500 |0.5502 |0.5942(0.5514 |0.6057 |0.6020
Unsupervised GNN-based ANOMALOUS|0.6159 0.6818 |0.9876 0.9876 0.5688 |0.5629 |0.5527 |0.5530
ONE 0.5445/0.4992 0.6637 0.6518 |0.5356/0.5157 |0.4867 |0.5102
OCGNN 0.63270.5389 10.8251 |0.8257 |0.6308/0.6139 |0.5590 |0.5745
CoLA 0.4943/0.4021 |0.4254 |0.4464 0.4963 |0.5409 |0.5306 0.5465
DONE 0.5734 |0.5858 |0.5536 0.6569 0.5518 0.5556 |0.6644 0.6639
AnomalyDAE |0.5555 |0.5803 |0.8256 |0.8268 |0.5805 |0.5709 0.4771 0.4995
CONAD 0.5382 (0.5424 |0.6311 |0.70500.4680 0.5174|0.6019 |0.6021
DOMINANT |0.6026 0.6251 |0.7015|0.6290 [0.5129 |0.5138 |0.6036 |0.6028
Supervised non-GNN-based MLP 0.5645 |0.6730 0.9738 0.9669 |0.6771 |0.6765 |0.6753 0.6785
KNN 0.5994 |0.6204 0.9672 0.9674 |0.6067 |0.6301 |0.6760 0.6789
SVM 0.5756 0.5773 10.9536 0.9539 10.6622 0.6659 |0.6359 0.6410
RF 0.65390.6314 10.9864 0.9865 10.6290 0.6312 |0.5621 0.5512
Supervised GNN-based GCN 0.6580 0.6401 10.9830 |0.9867 |0.7172 0.7122 |0.7018 |0.7011
SGC 0.5968 0.6179 0.9892 0.9893 |0.6842 0.6885 |0.6911 0.6921
GIN 0.66880.6164 0.9881 0.9901 |0.7028/0.6574 |0.7185 0.7185
GraphSAGE  |0.5777 |0.6437 |0.9934 |0.9932 (0.6949 |0.7130 |0.7197 0.7179
GAT 0.6510 |0.6405 0.9800 0.9816 |0.6866 [0.6724 |0.7037 |0.7093
GT 0.6163 |0.6518 0.9899 0.9897 10.6444 |0.6682|0.6949 0.7134
GAS 0.6663 0.6636 0.9828 0.9824 |0.6858/0.6627 |0.7118/0.6913
BernNet 0.6230 |0.6628 |0.9783 |0.9853 |0.6868 |0.6763 |0.6951 |0.7095
AMNet 0.6970/0.6601 |0.9808 |0.9858 |0.6445 0.6371 |0.6990 |0.6989
GHRN 0.6734 0.6656 |0.9792 |0.9892 0.6894 0.7180|0.7204 |0.7210
GAT-Sep 0.6775/0.6534 0.9846 0.9863 10.6665 [0.6739 |0.6913 0.6892
PCGNN 0.68950.6377 0.9848 0.9846 |0.6779 0.6785 |0.6929/0.6692

upon the removal of SN, with some models registering a remarkable AUROC
increase of up to 7% (e.g., ANOMALOUS). This phenomenon indicates that SN
and its connected edges might introduce noise that, via neighbor aggregation,
obscures the distinction between normal and anomalous nodes, complicating
their differentiation.

4.4 TImpact of SN on Unsupervised and Supervised GADs

Given that GNN-based models generally exhibit higher significant change rates
compared to non-GNN-based models, the experimental results of GNN-based
models are further analyzed to assess the influence of SN on unsupervised and
supervised settings.

From Table 6, it can be observed that, regardless of the supervised or unsu-
pervised setting, the significant change rate of NF'TGraph-Tiny is not lower than
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Table 5. Significant change rate for non-GNN and GNN models.

NFTGraph-Tiny Weibo [Reddit Questions
non-GNN-based 50.00% 0.00% [14.29%/0.00%
GNN-based 70.00% 20.00%140.00%|25.00%
non-GNN-based w/o SN +42.86% - 50.00%)—
GNN-based w/o SN + 50.00% 75.00%|50.00%60.00%

that of the other three datasets, which also shows the advantages of NFTGraph-
Tiny. Additionally, the positive significant change rates of unsupervised GNN
models are higher than those of supervised GNN models across the four datasets.
This suggests that, after removing SN, unsupervised GNN models achieve a
higher proportion of models with increased AUROC. This phenomenon may be
attributed to the absence of training labels in unsupervised GNN models, mak-
ing the noise introduced by SN edges more impactful for anomaly detection.
Consequently, after removing SN, unsupervised GNN models may learn better,
highlighting the importance of considering the noise introduced by SN.

Table 6. Significant change rate for unsupervised and supervised GADs.

NFTGraph-Tiny Weibo [Reddit Questions
Unsupervised GAD 50.00% 50.00%|50.00%|37.50%
Supervised GAD 66.67% 0.00% [33.33%16.67%
Unsupervised GAD w/o SN +75.00% 75.00%)50.00%(100.00%
Supervised GAD w/o SN + 50.00% - 50.00%]0.00%

4.5 Computational Cost

Considering the highlighted benefits of NFTGraph-Tiny, it will be the primary
dataset employed for further investigation in subsequent sections. Additionally,
to more effectively demonstrate the impact on computational costs, this sub-
section will also incorporate NFTGraph to provide statistics on the average
number of node neighbors and the execution time for both 1-layer and 2-layer
Graph Attention Networks (GAT).

Table 7 shows the average number of 1-hop and 2-hop neighbors of GAT in
NFTGraph-Tiny is 11.26 and 2386.39. Upon removing SN, the average number
of 1-hop neighbors remains relatively unchanged, while the average number of
2-hop neighbors sharply decreases to 123.88. This is due to the fact that the
degree of SN in NFTGraph-Tiny is 18,104, indicating that the majority of the
whole 20,000 nodes in the graph are connected to SN. More pronounced dispar-
ities are observed in NFTGraph and NFTGraph w/o SN. Table 8 demonstrates
how the execution time of GAT varies with different numbers of layers. Notably,
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on NFTGraph-Tiny and NFTGraph, removing SN leads to a nonlinear decrease
in execution time, with a more significant reduction observed for 2-layer GAT
compared to a single layer. The presence of SN significantly impacts the com-
putational cost, leading to a substantial increase in both the average number of
node neighbors and the execution time.

Table 7. Average number of node neigh- Table 8. Execution time (s) of GAT
bors for GAT at different hops. with different numbers of layers.
Dataset/Hops 1-hop|2-hop Dataset/Layer Number |1-layer 2-layer
NFTGraph-Tiny 11.26 |2386.39 NFTGraph-Tiny 4.89 |5.84
NFTGraph-Tiny w/o SN|10.36 |123.88 NFEFTGraph-Tiny w/o SN|4.58 |5.31
NFTGraph 2.45 |27647.54 NFTGraph 49.26 91.06
NFTGraph w/o SN 1.86 |20.42 NFTGraph w/o SN 20.03 [33.73

4.6 Over-Smoothing

To investigate the influence of extremely high-degree nodes on the issue of over-
smoothing, we compute two over-smoothing metrics [41]: Instance Information
Gain (Grys) and Group Distance Ratio (Rgroup). These calculations are per-
formed across different layer numbers of GAT applied to both the NFTGraph-
Tiny dataset and its variant (w/o SN). Generally, lower values of these metrics
indicate a higher level of over-smoothing.

Figure2 illustrates the changes in the over-smoothing metrics Gr,s and
Raroup for different layer numbers of GAT. It is evident that, in the majority of
cases, as the number GAT’s layers increases, the metrics decrease, indicating a
progressive over-smoothing of node representations. Upon removal of SN, both
Grns and Rgroup metrics exhibit an increase compared to the original, thereby
alleviating the over-smoothing phenomenon. Therefore, the results demonstrate
that with the same layer number of GNN, the presence of extremely high-degree
nodes increases the likelihood of over-smoothing.

5 Method and Experiments

5.1 SNGNN

In this section, we introduce a novel graph anomaly detection model, named
Super Node-Aware Graph Neural Network (SNGNN), aimed at mitigating the
noise generated by nodes with extremely high degrees. The conceptual framework
of SNGNN is depicted in Fig. 3.

In SNGNN, we first introduce a dummy node (DN) as a new node, and
establish edges between DN and all anomaly nodes in G, as follows:

V=VU{DN},E=EU{}, (1)
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Fig. 2. Over-smoothing metrics Grns and Rgroup for different layer numbers of GAT on
NFTGraph-Tiny and NFTGraph-Tiny w/o SN. Lower values of these metrics indicate
a higher level of over-smoothing. On average, the presence of extremely high-degree
nodes increases the over-smoothing problem.

where,
e = (DN, S),VS S Nanomaly7 (2)

where V represents the set of nodes, and £ denotes the set of all edges. Edge
e = (u,v) connects u and v ({u,v} € V). Nanomaiy denotes the set of anomaly
nodes.

Subsequently, we undertake the task of link prediction for the SN. This com-
ponent inputs the SN and its neighboring nodes into a Link Predictor (LP),
yielding a probability vector (¢) that represents the likelihood of an edge exist-
ing between SN and its neighbors. Here, we employ a straightforward dot product
as the LP, which is articulated as follows:

cn, =< hSNa hn >, Vn € Nneigbhour (3)

where h,, is the hidden vector of node n, Nneighbom is the set of the original
neighbors of SN, and <, > indicates the dot product between two vectors. Then,
the py-quantile (¢p, ) and pa-quantile (cp, ) are derived from the probability vector
c. Nodes with probabilities below ¢,, are severed from SN, whereas those with
probabilities above ¢, are linked to SN. Formally:

0,c, <c
ASN,n = { o P ,Vn S Nneigbhoura (4)

where Agy,, = 0 signifies the absence of an edge between the SN and node n
in the adjacency matrix A.

Finally, we update the node representations by aggregating neighbor infor-
mation according to the updated graph topology at each iteration. Utilizing the
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Fig. 3. Schema of SNGNN.

node representations from the final layer, we then ascertain whether nodes are
anomalous.

The rationale behind the development of SNGNN encompasses several key
aspects: Firstly, considering the typically lower degree of anomalous nodes
themselves (as indicated by AnomalyAvgDeg in Table 3), the integration of a
dummy node (DN) connected to all identified anomalous nodes serves to mitigate
the imbalance between low-degree anomalous nodes and extremely high-degree
nodes to some extent. Moreover, the inclusion of DN facilitates the acquisition
of a more “pure” representation of anomalous nodes during the propagation pro-
cess. This is crucial as the connection of anomalous nodes to their normal coun-
terparts results in the amalgamation of information from normal nodes during
the neighbor aggregation phase by GNN, which is counterproductive for accu-
rately modeling the representations of anomalous nodes.

Secondly, the implementation of thresholds p; and po allows for the discon-
nection of edges with probabilities below p; and the maintenance or addition
of edges with probabilities above ps. This approach is designed to evaluate the
reliability of edges associated with the SN. By learning from anomaly labels,
the model is capable of autonomously determining the optimal thresholds to
either facilitate or inhibit message transmission, thereby diminishing noise in
the connections to SN and enhancing the model’s resilience.

5.2 Experiments

Setup: NFTGraph-Tiny, Weibo, Reddit, and Questions datasets are used, and
the task is anomaly detection. The baseline models include three basic GNNs:
GCN, GAT, and GraphSAGE, as well as several GNNs that achieve better per-
formance in Table4: PCGNN, GAS, GIN, AMNet and GHRN. Settings are dif-
ferent from Sect. 4.2, which can be found in the supplemental materials.

Results: Table9 shows the comparison of AUROC between SNGNN and
other GADs. Across all four datasets, SNGNN consistently achieves the highest
AUROC, with an average increase of over 2% compared to other models. Notably,
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on the NFTGraph-Tiny dataset, SNGNN achieves an AUROC of 0.6980, sur-
passing GHRN by 5%. Similarly, on the Weibo dataset, SNGNN’s AUROC is
0.9926, higher than the second-best model GraphSAGE. Likewise, on Reddit
and Questions, SNGNN outperforms GCN (0.7189) and GraphSAGE (0.7259)
models, resulting in a 1% AUROC improvement. It is noteworthy that SNGNN
exhibits at least a 5% AUROC improvement on NFTGraph-Tiny, significantly
higher than the approximately 1% improvement observed on other datasets. This
performance disparity stems from the notably higher degree values of social net-
works in NFTGraph-Tiny compared to Weibo, Reddit, and Questions, as evi-
denced in Table 3, underscoring SNGNN'’s superior efficacy in this context.

Table 9. Comparison of AUROC between SNGNN and other GADs. The best perfor-
mance is shown in bold, while the second-best performance is underlined.

Model/Dataset NFTGraph-Tiny|Weibo Reddit |Questions
GCN 0.5953 0.9875 |0.7189 0.6819
GAT 0.6226 0.9902 |0.6733 |0.7167
GraphSAGE |0.6428 0.9917 |0.6800 |0.7259
PCGNN 0.5832 0.9848 0.7079 0.6784
GAS 0.5552 0.9915 10.6996 0.7111
GIN 0.5929 0.9908 |0.6872 |0.7160
AMNet 0.6263 0.9764 10.6731 |0.7064
GHRN 0.6479 0.9860 |0.6963 |0.7164
SNGNN 0.6980 0.9926/0.7272/0.7325

5.3 Ablation Study

To validate the effectiveness of SNGNN, we design several ablation tests. Specif-
ically, while keeping the other parts and hyperparameters unchanged, Dummy
Node (referred to as w/o DN) and Link Predictor (referred to as w/o LP) are
removed separately, and then the performance is observed.

Table 10 shows the results of ablation tests. Notably, the removal of the
Dummy Node (DN) results in a diminished detection AUROC for SNGNN. This
effect is particularly pronounced on the NFTGraph-Tiny and Questions datasets,
where the AUROC for SNGNN drops by over 5% and 3%, respectively. Similarly,
the elimination of the Link Predictor (LP) also leads to a reduction in AUROC,
with a significant decrease of more than 6% on the NFTGraph-Tiny dataset.
Consequently, the incorporation of both Dummy Node and Link Predictor is
essential for the effectiveness of SNGNN.

In addition, we visualize the changes in the number of edges of graphs caused
by the LP of SNGNN in the training stage, and simultaneously match the
changes in the AUROC of the validation set, as shown in Fig. 4. As can be seen,
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Table 10. Results of ablation study for Table 11. Performance of noise reduc-

SNGNN. mng.

Dataset/Model |w/o DN|w/o LP SNGNN Dataset/Model |w/o DN&LP|SNGNN
NFTGraph-Tiny 0.6414 |0.6351 |0.6980 NFTGraph-Tiny|0.5807 1.9401

Weibo 0.9914 10.9919 |0.9926 ‘Weibo 1.6492 2.9917

Reddit 0.7188 10.7239 |0.7272 Reddit 0.8738 1.4031

Questions 0.7086 |0.727 |0.7325 Questions 1.1473 1.7393

on the four datasets, the operation of LP deleting edges is dominant, the total
number of edges in graphs is gradually decreasing, while the AUROC on the val-
idation set is generally increasing, which may be due to the noise caused by LP
eliminating SN connecting edges, thus improving the performance of SNGNN.
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Fig. 4. Changes in the number of edges caused by the Link Predictor of SNGNN and
changes in the AUROC on the validation set during training.

Additionally, we compute the average inter-group distance (DisInter) [41]
between anomalies and normal nodes. A higher DisInter metric indicates that
SNGNN more effectively distances the embeddings of anomalous nodes from
those of normal ones, signifying more precise outcomes. This metric serves as an
indicator of the model’s efficiency in noise reduction. In Table 11, the baseline
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represents the SNGNN model without the Dummy Node (DN) and Link Predic-
tor (LP), essentially constituting the GNN backbone of SNGNN (corresponding
to the Update stage in Fig.3). For the Reddit dataset, the baseline is GCN,
while for other datasets, it is GraphSAGE. Table 11 demonstrates that SNGNN
achieves a greater DisInter value compared to its baseline, indicating that the
incorporation of DN and LP enhances the model’s ability to reduce noise.

Furthermore, parameter sensitivity analysis of SNGNN is provided in the
supplemental materials.

6 Conclusion and Limitation

In this paper, our focus is on exploring the influence of extremely high-degree
nodes on graph anomaly detection (GAD). To address this objective, we first
introduce a novel graph dataset, NFTGraph, and conduct a comprehensive anal-
ysis of the influence, including the introduction of noise to GAD, the escalation
of computational costs, and the exacerbation of over-smoothing phenomena.
Additionally, we propose a novel model called Super Node-Aware Graph Neural
Network (SNGNN) to mitigate the noise introduced by extremely high-degree
nodes. SNGNN demonstrates superior performance compared to existing mod-
els, achieving an average improvement in detection AUROC of over 2% while
efficiently reducing noise.

Although SNGNN specifically targets the SN, it can be extended and applied
to all extremely high-degree nodes. In addition, in the future, we will further
analyze the relationships between SNGNN’s performance and other issues, such
as computational costs, over-smoothing and heterophily, and further improve
SNGNN to mitigate these influences. Additionally, extremely high-degree nodes
are prevalent in various real-world networks, such as influencers in social net-
works, banks in financial trading networks, and super-spreaders in disease trans-
mission networks. In the future, our aim is to investigate these aspects beyond
the scope of blockchain transaction networks.
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Protection and Intelligent Management, Ministry of Education, Sichuan University
and also the Fundamental Research Funds for the Central Universities under Grant
SCU2023D008.

References

1. Bandyopadhyay, S., Lokesh, N., Murty, M.N.: Outlier aware network embedding
for attributed networks. In: AAAI, vol. 33, pp. 12-19 (2019)

2. Bandyopadhyay, S., Vivek, S.V., Murty, M.: Outlier resistant unsupervised deep
architectures for attributed network embedding. In: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining, pp. 25-33 (2020)

3. Bhattacharya, R., Nagwani, N.K., Tripathi, S.: Detecting influential nodes with
topological structure via graph neural network approach in social networks. Int. J.
Inf. Technol. 15(4), 2233-2246 (2023)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Understanding the Influence of Extremely High-Degree Nodes on GAD 33

Chai, Z., et al.: Can abnormality be detected by graph neural networks? In: IJCAT
(2022)

Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in
ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1-16
(2020)

Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting ponzi
schemes on ethereum: towards healthier blockchain technology. In: WWW| pp.
1409-1418 (2018)

Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed
networks. In: STAM International Conference on Data Mining, pp. 594-602 (2019)
Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection
on attributed networks. In: ICASSP, pp. 5685-5689. IEEE (2020)

Gao, Y., Wang, X., He, X., Liu, Z., Feng, H., Zhang, Y.: Addressing heterophily
in graph anomaly detection: a perspective of graph spectrum. In: Proceedings of
the ACM Web Conference (2023)

Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic citation indexing
system. In: Proceedings of the Third Conference on Digital Libraries, pp. 89-98
(1998)

Hafiene, N., Karoui, W., Romdhane, L.B.: Influential nodes detection in dynamic
social networks: a survey. Expert Syst. Appl. 159, 113642 (2020)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, vol. 30 (2017)

He, M., Wei, Z., Huang, Z., Xu, H.: Bernnet: Learning arbitrary graph spectral
filters via bernstein approximation. NeurIPS (2021)

Hu, H., Sun, Z., Wang, F., Zhang, L., Wang, G.: Exploring influential nodes using
global and local information. Sci. Rep. 12(1), 22506 (2022)

Kang, J., Zhu, Y., Xia, Y., Luo, J., Tong, H.: Rawlsgcn: towards rawlsian difference
principle on graph convolutional network. In: WWW, pp. 1214-1225 (2022)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: 27th SIGKDD, pp. 1269-1278 (2019)

Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph con-
volutional networks. In: the 28th CIKM, pp. 2703-2711 (2019)

Liu, K., et al.: Bond: benchmarking unsupervised outlier node detection on static
attributed graphs. In: NeurIPS, vol. 35, pp. 27021-27035 (2022)

Liu, Y., et al.: Pick and choose: a gnn-based imbalanced learning approach for
fraud detection. In: WWW, pp. 3168-3177 (2021)

Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on
attributed networks via contrastive self-supervised learning. IEEE Trans. Neural
Netw. Learn. Syst. 33(6), 2378-2392 (2021)

Liu, Z., Nguyen, T.K., Fang, Y.: Tail-gnn: tail-node graph neural networks. In:
The 27th SIGKDD, pp. 1109-1119 (2021)

Liu, Z., Nguyen, T.K., Fang, Y.: On generalized degree fairness in graph neural
networks. In: 37th AAAI pp. 7-14 (2023)

McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In: Proceedings of the 22nd International
Conference on Blockchain, pp. 897-908 (2013)

Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q., et al.: Anomalous: a joint modeling
approach for anomaly detection on attributed networks. In: IJCAI, vol. 18, pp.
3513-3519 (2018)



34

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

X. Sun et al.

Platonov, O., Kuznedelev, D.; Diskin, M., Babenko, A., Prokhorenkova, L.: A
critical look at the evaluation of gnns under heterophily: are we really making
progress? arXiv preprint arXiv:2302.11640 (2023)

Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review net-
works and metadata. In: 21th SIGKDD, pp. 985-994 (2015)

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W.: Masked label prediction: unified
message passing model for semi-supervised classification. In: IJCAI (2021)

Tang, J., Hua, F., Gao, Z., Zhao, P., Li, J.: Gadbench: revisiting and benchmarking
supervised graph anomaly detection. In: NeurIPS, vol. 36 (2024)

Tang, J., Li, J., Gao, Z., Li, J.: Rethinking graph neural networks for anomaly
detection. In: ICML, pp. 21076-21089 (2022)

Tang, X., et al.: Investigating and mitigating degree-related biases in graph con-
volutional networks. In: the 29th CIKM, pp. 1435-1444 (2020)

Velickovic, P., et al.: Graph attention networks. arXiv preprint (2017)

Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural
networks for anomaly detection in attributed networks. Neural Comput. Appl.
33(18), 12073-12085 (2021)

Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph
convolutional networks for financial forensics. arXiv preprint (2019)

Wu, F., Jr., A.H.S., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying
graph convolutional networks. In: The 36th ICML, vol. 97, pp. 6861-6871 (2019)
Wu, J., He, J., Xu, J.: Demo-net: degree-specific graph neural networks for node
and graph classification. In: 25th SIGKDD, pp. 406-415 (2019)

Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: ICLR (2019)

Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J.: Contrastive attributed network
anomaly detection with data augmentation. In: Advances in Knowledge Discovery
and Data Mining: 26th Pacific-Asia Conference (PAKDD), pp. 444-457 (2022)
Zhao, T., Deng, C., Yu, K., Jiang, T., Wang, D., Jiang, M.: Error-bounded graph
anomaly loss for gnns. In: The 28th CIKM, pp. 1873-1882 (2020)

Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: a python toolbox for scalable outlier detec-
tion. JMLR 20(96), 1-7 (2019)

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R.: Towards deeper graph neural
networks with differentiable group normalization. In: NeurIPS, vol. 33, pp. 4917—
4928 (2020)

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L.: Beyond homophily in graph
neural networks: current limitations and effective designs. In: NeurIPS, vol. 33
(2020)


http://arxiv.org/abs/2302.11640

®

Check for
updates

Spatio-Temporal Heterogeneous Graph
Neural Network With Multi-view
Learning For Traffic Prediction

Liting Song'®, Qiangian Ren'®)®, and Ying Zhou?™)

! Department of Computer Science and Technology, Heilongjiang University,
Harbin 150080, China
rengiangian@hlju.edu.cn
2 Heilongjiang Network Space Research Center, Harbin 150090, China
zhouying9666@126.com

Abstract. Among various traffic data modeling and predicting meth-
ods, graph learning-based models attract more attention, because of
their powerful representation ability for modeling spatial and temporal
dependencies with graph neural networks. Despite their promising per-
formance, several key problems have not been well addressed: 1) Sensed
data are often noisy in many real transportation scenarios. 2) The spatio-
temporal correlations of traffic data are complex and dynamic, especially
for long-term modeling and predicting. In such cases, existing methods
may not lead to satisfactory prediction results. In this paper, we aim
at the above problems by exploring a Spatio-Temporal Heterogeneous
Graph Neural Network With Multi-View Learning Framework(MVJGL)
for traffic prediction. In particular, we first model different types of traffic
features and construct multiple graph structures. Then, we design two
parallel heterogeneous gated temporal convolution modules to extract
long and short-term temporal dependencies from different traffic fea-
tures, respectively. Moreover, we introduce parallel graph convolutions
to cross-characterize the time-varying spatial dependencies of each view.
Extensive experiment results on four real traffic datasets show the supe-
rior performance grain obtained by the proposed model.

Keywords: Traffic prediction - multi-view * graph convolution - graph
learning

1 Introduction

As an essential issue of intelligent transportation systems (ITS), traffic prediction
has attracted much attention in recent years [1]. Robust and accurate traffic
prediction helps improve the operational efficiency and reliability of the traffic
system, thus guiding traffic resource allocation, developing traffic routines, and
relieving traffic congestion. In addition, traffic prediction is also meaningful in
road safety assurance and traffic accident prevention [2]. However, the dynamic
and complex spatial-temporal traffic features propose challenges for accurate
traffic prediction.
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Many traffic forecasting approaches have been proposed. Deep learning-based
methods are efficient in improving forecasting accuracy via modeling the tempo-
ral and spatial correlations in traffic data [3]. In particular, convolution neural
networks are often utilized to model the spatial dependencies, recurrent neu-
ral networks (e.g., LSTM [4], GRU [5]) and temporal convolution networks
(TCN) [6] are employed to extract temporal dependencies. Recently, graph
convolution networks (GCNs) have been introduced in modeling spatial cor-
relations and graph representation. Among these methods, predefined static
graph-based methods construct graph structures by linking road networks, while
graph learning-based methods [7] automatically learn dynamic spatial dependen-
cies. Graph-WaveNet [8] modeled spatial dependencies by constructing an adap-
tive adjacency matrix, MTGNN [9] automatically extracted single dependencies
between variables to construct dynamic graphs. The dynamic graph construc-
tion method employed by DMSTGCN [10] learned the specific multiple spatial-
temporal correlations of road segments. PGCN [11] captured the spatial correla-
tions over time by generating progressive graph structures. The above methods
have effectively improved the accuracy of traffic forecasting, but it is far from
being well addressed, which faces the following challenges.

— Challenge 1: Data noise and incompleteness. As factors such as traffic
flow, traffic crowd, and weather conditions change, data noise and incomplete-
ness are inevitable in collected sensed data. Therefore, constructing a spatial
graph based on a single traffic feature may not reveal the real topology of the
road network. It motivates us to model spatial dependencies from multiple
traffic features.

— Challenge 2: Complexity and dynamicity. Traffic conditions are com-
plex and dynamic. The spatial correlations among different nodes of the road
network vary at different time steps, existing methods based on pre-defined or
stationary graphs may not obtain satisfactory forecasting results. Therefore,
it is important to model the varying spatial-temporal dependencies, especially
in the application of long-term prediction.

— Challenge 3: Multi-view fusion. Constructed multiple views are needed to
effectively fuse to comprehensively exploit the multiple aspects of the complex
spatial correlations. It is meaningful to enhance prediction performance.

In light of these challenges, we propose a Spatio-Temporal Heterogeneous Graph
Neural Network With Multi-View Learning For Traffic Prediction framework
(MVJGL) for improving traffic prediction accuracy. MVJGL aims to learn mul-
tiple continuous graph structures from multiple traffic features to characterize
complex spatial and temporal correlations. Specifically, we solve the first chal-
lenge by mining the potential correlations among multiple traffic features. In
response to the second challenge, we propose a dynamic graph learning mod-
ule for representing continuous long-range spatial dependencies between nodes
with multiple views that vary dynamically over time. Furthermore, two heteroge-
neous temporal convolution modules are proposed to jointly learn the temporal
correlations from historical observations. Finally, a multi-view fusion module is
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proposed to interact and integrate the multiple features. Our contributions are
highlighted as follows:

— In this paper, a novel Spatio-Temporal Heterogeneous Graph Neural Network
(MVJGL) framework for traffic prediction is proposed, which is featured by
the two streams of graph learning, temporal networks, and GCNs.

— The proposed MVJGL extracts the dynamic dependencies from multiple traf-
fic features, which contributes to exploit the complex latent relations of the
traffic system and reduce the influence of data noise.

— Extensive experiments are conducted on four real-world traffic datasets. The
experimental results demonstrate that MVJGL outperforms the state-of-the-
art baseline methods by up to 2.3% in forecasting accuracy.

The paper is organized as follows. In Sect.2 we summarise related work in the
field of traffic prediction, and in Sect.3 we formulate the research question. In
Sect. 4 we describe the model, in Sect.5 an extensive experimental evaluation is
performed and Sect. 6 concludes the paper.

2 Related Work

In this section, we summarize the related study in three aspects: traffic forecast-
ing, graph neural networks and dynamic graph learning approaches for traffic
forecasting.

2.1 Traffic Forecasting

Existing works address the problem of traffic prediction in the following cat-
egories: Traditional statistically based methods usually use historical data to
build models. Such methods use historical traffic data to analyze traffic states
and trends to predict future traffic speeds [12]. These methods have the advan-
tages of better explainability and easy implementation. Still, they cannot con-
sider complex traffic scenarios and changes in traffic mobility leading to poor
prediction results. Machine learning-based methods use historical traffic data
to train models that can forecast future traffic speeds by analyzing and learn-
ing the patterns of the data [13,14]. Machine learning methods are relatively
small in terms of data requirements, and the data needed mainly include his-
torical observation and traffic environment factors. For example, weather and
road conditions can be obtained using sensors, GPS and other devices. Machine
learning methods are less computationally complex, typically use fewer hardware
resource requirements and have relatively better predictive results, but they are
influenced by factors such as data attributes and model selection. Recently, deep
learning methods have obtained better performance in traffic speed forecasting,
especially for time series data of traffic speeds [9,15]. Deep learning methods
usually need to use a large amount of observations to train the model. The
computational complexity is higher and requires the use of higher-performance
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hardware resources to train deep neural networks. In terms of forecasting accu-
racy, deep learning methods can usually obtain better results, but over-fitting
may occur for smaller amounts of data. In general, all of the above methods can
be used for traffic prediction, and the model selection depends on the specific
application scenario and requirements. Machine learning methods can be chosen
if the data volume is small and the computation speed is fast. If the data volume
is large and high forecast accuracy is required, the deep learning method can be
chosen.

2.2 Graph Neural Networks

To extract the complex spatial correlations in road networks, recent studies have
used deep learning models integrated with graph neural networks. DCRNN [3]
used diffusion convolution to capture spatial-temporal features in spatial graphs
and temporal correlations are extracted by gated recurrent units to encode tem-
poral information. In addition, Graph-WaveNet [8] used adaptive graph convo-
lution to model spatial correlations to improve the limitations of spatial relation-
ships in predefined traffic networks. STSGCN [16] introduced a spatial-temporal
synchronous paradigm to model the spatial and temporal correlations. MRA-
BGCN [17] designed a two-component graph convolution method to represent
nodes and edges separately for learning complex nonlinear relationships. In sum-
mary, graph neural networks became a popular trend for the extraction of spatial-
temporal attributes.

2.3 Dynamic Graph Learning

To better describe complex traffic conditions, models used dynamic graph learn-
ing methods to represent the road space relationships. GMAN [18] used a
node2vec approach to learn node representations and the embedding of nodes
into vectors to preserve graph structure information. Graph-WaveNet [8] learned
spatial dependencies by constructing an adaptive adjacency matrix. AGCRN [19]
used an adaptive parametric learning (NAPL) module to capture node-specific
patterns. PGCN [11] captured spatial correlations over time by generating a pro-
gressive graph approach, which adapted to the data. MTGNN [9] automatically
extracted one-way relationships between variables to construct dynamic graphs.
Several recent studies have proved that the use of dynamic graphs showed great
effectiveness in the field of traffic prediction, and traditional predefined static
graph methods are no longer able to be satisfied with complex traffic prediction
needs.

3 Problem Definition

Definition 1 (Spatial-Temporal Graph). The traffic network is represented as
a graph Gy = (V, E, A;), where V. = {v1,vs, - ,un} represents the set of N
nodes, E is the set of edges among nodes, and A, € RV*N denotes the potential
correlations at a certain time step t.
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Fig. 1. The architecture of MVJGL. The model can be roughly divided into five parts:
the Gated Temporal Convolution Networks(Gated TCN), the Gated temporal recur-
rent unit(Gated TGRU), the Dynamic Graph Learning module, the Dynamic Graph
Convolution module, and the multi-view fusion module.
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Definition 2 (Multiple Traffic Features). X; € RN*Y represents the traffic
characteristics observed by all nodes at time ¢, such as traffic speed, traffic vol-
ume, etc. In this paper, we take two traffic features as an example. In particular,
traffic speed is treated as the primary feature, and traffic volume is treated as the
auxiliary feature. Traffic observations of the primary feature and auxiliary fea-
ture collected at time step ¢ by all nodes in Gy are denoted as X, X € RVN*C.

Problem Description (Traffic Prediction). Our objective is to learn a nonlinear
function, denoted as f(-), which can forecast the primary feature for the future
Q@ time steps Yt ++¢ based on historical primary feature and auxiliary features
for T' time steps. We formulate the problem as follows:

f() >
[XSt—T+1:t;XOt—T+1:t] [st f+Q] (1)

4 Methodology

Our model learns graph structure from multiple traffic features followed by
dynamic graph convolution modules and temporal convolution modules, which
jointly exploit the spatial and temporal dependencies for long and short-term
traffic prediction. The overall model architecture is illustrated in Fig. 1, which
stacks L layers. Each layer consists of the following four components:

— A dynamic graph learning module that learns multiple views from different
traffic features. The learned views are fed into the consequent graph convolu-
tion modules to extract the dynamic spatial dependencies. In this paper, we
consider traffic features including traffic speed and traffic volume.

— Two heterogeneous temporal convolution modules, Gated Temporal Convo-
lution Network (GTCN) and Gated Temporal Recurrent Unit (TGRU) cap-
ture multiple temporal correlations from the patterns of two traffic features,
respectively.
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— Two dynamic graph convolution modules are used to cross-model the spatial
dependencies of multiple features, one for the primary traffic feature view and
the other for the auxiliary traffic feature view.

— A multi-view fusion module weights the spatio-temporal dependencies of mul-
tiple features.

4.1 Heterogeneous Temporal Convolution Module

To comprehensively model the temporal dependencies from multiple features,
such as traffic speed and traffic volume, we correspondingly design two hetero-
geneous temporal convolution networks to model each traffic feature. In partic-
ular, we integrate the gated mechanism with the temporal convolution network
(GTCN) to extract the temporal correlations from the primary feature, while
the gated temporal recurrent unit (TGRU) to extract correlations from the aux-
iliary feature. Inspired by the gating mechanism such as GRU, we integrate gate
structure with temporal convolution networks to adjust the flow of information
passing to the next module.

Gated Temporal Convolution Networks. We design gated temporal con-
volution networks (GTCN) to capture dynamic behaviors of primary features
in the temporal dimension. As shown in Fig.2(a), GTCN is composed of two
temporal convolution layers and a gated mechanism.

We will next describe the details of GTCN. The input is X° =
{x7, 25, 2%}, where ¥ € RVN*C(C=1 for GTCN). Next, the input is passed
through two dilated convolution modules separately for the convolutional results
Zy and Z,. Then, sigmoid and tanh function are used to Z; and Z,, respectively.
They map the outputs of the first TCN to (0,1) and the results of the second
TCN to the interval (-1,1). Finally, the element-wise product of tanh(Zy) and
o(Zs) is output.

In particular, GTCN is composed of two dilated convolution modules to
exploit the multiple features, and the dilation factor is introduced to process
long-term traffic data. Thus, GTCN is defined as follows:

HU = tanh(6; x X51) 0 g(6y x X5(-1) (2)

where X501 ¢ RNXTXC denotes the input sequence from the primary feature
at I-th layer (I € [1,2,..., L]), HS® € RN*TXC represents the output of GTCN
module. @1 and @, are two convolution kernels parameters. x denotes the dilated
convolution, and ® denotes the element-wise multiplication operation.

Gated Temporal Recurrent Unit. The gated temporal recurrent unit
(TGRU) module aims to extract temporal dependencies from the auxiliary fea-
ture. Given the input patterns X© = {20, 29, .-+, 2Q}, where ¢ € RN*¢(C=1
for TGRU) at the I-th layer. Gated TGRU is mathematically defined as follows:

HOO = tanh(65 « X°-1) 0 o(g°¢1) (3)



Spatio-Temporal Heterogeneous Graph Neural Network 41

where HO(® is the hidden state at the [— th layer, and g?¢~1 denotes the
output of GRU unit. @3 represents the convolution kernel parameter. Formally,
¢°® is updated as:

ZO(Z) _ O'(leXO(l_l) + Umlho(l_l)))

TO(l) — O'(Wrc2XO(l71) 4 szho(lfl)))

EO([) _ tanh(WhXO(l_l) + Uh(’l"l ® hO(l—l)))

gO(l) _ (ZO(l) ®'fLO(l) + (1 N ZO(l)) o hO(lfl))
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Fig. 2. The detail of our proposed heterogeneous temporal convolutional networks. (a)
GTCN for primary feature extraction. (b) TGRU for auxiliary feature extraction.

The GRU method merges the information transmitted from the previous
layer with the input of the subsequent layer and dynamically updates the input
data weights. It filters and prioritizes key information within patterns, which
facilitates the learning of vital dependencies between various time steps in the
pattern. Regarding traffic speed attributes, gated TCN enhances the model’s
capability to capture long-distance dependencies and dynamically adjust the
information flow. For traffic volume attributes, considering the characteristics of
time series data, we combine the short-term information processing advantages of
recurrent neural networks (GRU) with the long-term dependent capture capabil-
ity of TCN. The gating mechanism further enhances the flexibility and efficiency
of the model.

4.2 Dynamic Graph Learning Module

We solve the spatial features from two aspects, namely primary feature and
auxiliary feature to enhance the graph learning results. The spatial correlations
between nodes in the graphs are constantly changing due to the complexity and
dynamics of traffic observations. The methods based on pre-defined graphs or
static graphs cannot capture dynamically varying spatial dependencies, which
influences prediction results. To address this problem, we present a dynamic
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graph learning module for modeling dynamic and continuous spatial dependen-
cies from multiple traffic features. For each iteration, two feature matrices AS®
and A°® are generated at the same time step, which is fed into the two dynamic
graph convolution modules. In this paper, the design for the primary feature is
taken as an example, and the generated tensor AS() represents the neighbor-
hood relationship between the source node and the target node at the time step
t, which is represented by the following formula:

d d
Ay =000 Mg My Mi
i=1 j—1
! d l 1 (5)
Ay = ZA1M3<T>
=1

ASD = ReLU (tanh(AL (AL)T — AL(AHTY)

Time nodes are data points with different time steps, and each time node repre-
sents the traffic state with a specific time step. MVJGL uses learnable parame-
ters to generate a dynamic spatial dependency tensor and constructs a dynamic
graph by randomly initializing the node embeddings, i.e., initializing at the
beginning of the training period by random values to generate three learnable
matrices M{, M}, and M}, and a core tensor M to represent the relationship
between different nodes and the relationships between time steps. As the model
is trained, these matrices and tensors are continuously updated and optimized
by a back-propagation algorithm to capture the dynamics of the traffic network.
M! € RM>*d yepresents the matrix of embedded time nodes, M! € RN2*4 rep-
resents the matrix of embedded source nodes, and M} € RNs*4 represents the
matrix of embedded target nodes. The core tensor M}L € R4xdxd i intended
to represent the dynamics in the graph, which captures the complex relation-
ships between nodes and time steps. N1, No, N3 represent the number of time
intervals, the number of source nodes, and the number of target nodes, respec-
tively, and d is the dimension of node-embedding. Through the above meth-
ods, MVJGL captures the heterogeneous relationship between source and target
nodes by transposing the source and target node matrices at moment t, strength-
ens the difference signals between source and target nodes, helps the model learn
and capture the complex relationship between source and target nodes at the
same time flexibly and generates the dynamic neighborhood tensor A5®) | which
improves the prediction performance and the dynamic response to the changes
of the traffic network.

4.3 Dynamic Graph Convolution Module

Taking into account the interactions between multiple traffic features and the
spatial interactions between neighboring nodes, we use dynamic graph convo-
lutional crossover to extract spatial features in the road network. The dynamic
graph convolution module can update the node features by aggregating the infor-
mation between each node and its neighboring nodes to efficiently process data
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Fig. 3. The detailed architecture of dynamic graph convolution module.

with a dynamic graph structure. In our model, we design two parallel GCNs to
process primary and auxiliary features, respectively, after a feature complemen-
tation strategy to enhance the accuracy of traffic prediction. This cross-strategy
approach not only reveals the potential correlation between speed and volume
but also increases the model’s knowledge of complex traffic patterns, especially
during peak hours and traffic congestion. Figure 3 shows the architecture of this
module. We cross-pass H® and HC outputs from the temporal convolutional
network and AS® and A9® generated by the dynamical graph learning module
into the two dynamical graph convolutional modules. The GCNs are defined as
follows: s o) 50

Zy, =A"DZ,7, (k> 0) (©)

x50 = concat(ZOS(l), Zf(l)7 e 7Z[S((l))
where k € [0, K], Zg(l) = H%® _ and X°® is the output of the GCN for the pri-
mary feature. Specifically, the outputs of the dynamic graph convolution modules
for the primary feature and auxiliary feature are denoted as X5 and X°®,
which will be fed into the multi-view fusion module.

4.4 Multi-view Fusion Module

To realize the interaction between the spatiotemporal correlation of different
features and enhance the global correlation of a single node in the network, a
multi-view weight fusion module is proposed to fuse the traffic feature informa-
tion extracted from two dynamic graph convolution modules. By marking differ-
ent weights on various features, highlighting the importance of primary features
and the auxiliary role of auxiliary features, and improving the utilization rate of
various data. The operation [—th layer is formulated as follows:

XL=x0oa+x%Vop (7)

where «, and (3 are the corresponding weights for the primary feature and auxil-
iary feature. a+ 3 = 1. The weight fusion module fuses multiple spatial-temporal
features to get the final result.
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4.5 Output Module

Our output module consists of two standard 1 x 1 convolution layers. The skip
connection layer is partly a 1 x L; convolution that connects the hidden states of
the primary feature of each module after the temporal convolution module. L;
is the length of the input sequence corresponding to i-th jump-connected layer,
which normalizes the feature to have the same sequence length 1.

X = concat(X3, X&,--- ,Xé:) (8)

Mean absolute error (MAE) is used to train the model:

N
HOEES SRR A )
n=1

where 6 denotes all learnable parameters in MVJGL, N is the number of samples,
Y, and Y,, are predicted values and ground truth of the n-th sample.

5 Experimental Studies

We conduct extensive experiments on four real work traffic datasets described
in detail in Table.l. We aim to validate the performance of MVJGL against
baseline methods toward answering the following questions:

— RQ1. Does the proposed MVJGL outperform existing baseline methods on
traffic prediction problems?

— RQ2. Do all modules of the model benefit the overall performance of
MVJGL? How does each module affect the model performance?

— RQ3. Does the proposed multiple-view scheme contribute to graph learning
and improving prediction accuracy?

5.1 Datasets and Evaluation Metrics

Table1 reports the detailed information of four datasets, PEMS-BAY [§],
METR-LA [8], PEMSD4 [20] and PEMSDS [20]. In particular, we choose traffic
speed as the primary feature and traffic volume as the auxiliary feature. For
PEMS-BAY and METR-LA datasets, 70% of data are set for training, 20% of
data are used for testing, and 10% are used for validation. For PEMSD4 and
PEMSDS, 60% of data are selected for training, 20% of data are used for testing,
and the rest 20% are used for validation.

In the experiments, we adopt Absolute error (MAE), mean absolute per-
centage error (MAPE), and root mean square error (RMSE) to evaluate the
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performance, which is formulated as follows:

N

n=1

Y, — Yy
MAPE(Y,Y) Z' A | x 100%, (10)

N
RMSE(Y,Y) = % > (Vu-Y

where Y and Y denote the predicted value and ground truth,respectively.

Table 1. Statistics of Datasets.

Dataset #Nodes #Time Steps/#Time Span
METR-LA 207 34272 4 months
PEMS-BAY 325 52116 5 months
PEMSD4 307 16969 2 months
PEMSD8 [170 17833 2 months

5.2 Experimental Settings

The number of stacked layers L is 4, and the dilated rates of the temporal con-
volution at each layer are [1,2,1,2,1,2,1,2] The maximum depth of the dynamic
graph convolution module is k = 2. We set weights in the fusion model as
a = 0.7, 8 = 0.3. The dimension of node-embedding d = 32. The channel size of
the temporal dilated convolution is set to 32, and the hidden dimension of the
graph learning module is set to 16. The Batch size is set to 64. Epochs are set to
200, early-stop scheme with a patience of 30 is adopted. Our MVJGL is trained
by Adam optimizer with a learning rate of 0.001.

5.3 Baselines

To provide a comprehensive evaluation of the MVJGL method, we compare the
performance with many representative baseline methods. We carefully choose
the compared statistic approaches, and the representative and deep learning
approaches.

— HA: It refers to the historical average approach.

— FC-LSTM [21]: Tt integrates fully connected and LSTM structures.

— ASTGCOCN [20]: It is a model that combines attention mechanisms with con-
volutions.
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— STFGNN [22]: Tt designs a spatial-temporal fusion graph by introducing
a gated convolutional neural network module in order to capture local and
global spatial and temporal correlations simultaneously.

— AGCRN [19]: Tt designs a powerful method for traffic prediction that
employs graph convolution networks and recurrent networks to adaptively
learn the graph structure and capture temporal dependencies in dynamic
spatial-temporal data.

— STGODE [23]: It employs continuous graph neural network for traffic pre-
diction.

— DMSTGCN [10]: Tt designs a multiple features-based graph convolution
neural network for traffic forecasting.

— DCRNN [3]: It utilizes diffusion graph convolution and recursive neural
networks.

— GMAN [18]: It adopts attention mechanism and transformer for prediction.

— Graph WaveNet [8]: It introduces a generation adaptive graph method and
diffusion graph convolution.

— MTGNN [9]: It leverages graph neural networks to forecast multivariate
time series.

— STDGCN [24]: It combines new graph generation methods and fusion strate-
gies in spatial-temporal network architecture to capture the deep dynamic
dependencies in the historical information of dynamic graphs.

— ST-LGSL [25]: Tt utilizes multi-layer perceptron and KNN graph generator
to explore spatial-temporal features, a prediction module combining gated
temporal convolution and diffusion graph convolution to optimize traffic pre-
diction performance.
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Fig. 5. Performance comparing of baselines on the PEMSDS8 dataset.
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5.4 Comparison Results

Table 2 report the prediction results of MVJGL against multiple baseline meth-
ods for 15, 30, and 60-min traffic forecasting. We observe that our MVJGL
obtains the best results in terms of MAE, RMSE, and MAPE, respectively. This
significant performance improvement validates the effectiveness of our model in
addressing challenges posed by traffic prediction problems. Based on the exper-
imental results, the following observations are obtained.

(1)

(2)

Deep learning-based models perform better than traditional methods
because they can exploit complex and non-linear traffic features. As FC-
LSTM is a recurrent neural network, it only takes temporal correlations and
ignores spatial dependencies resulting in worse performance.

Gnn-based models such as ASTGCN, AGCRN, STFGNN and DMSTGCN
use graph neural networks to extract temporal and spatial dependencies in
road networks, thus achieving better prediction performance. However, since
the convolution operations of these models only aggregate the information
of the adjacent nodes of each layer, they are not good at extracting the
spatial-temporal dependencies of remote changes.

STGODE combines graph embedding with ordinary differential equation
method to improve the prediction accuracy. Both AGCRN and DMSTGCN
make significant improvements when trying to learn dynamic graphs. How-
ever, because they rely on the global shared graph structure, none of them
achieves satisfactory results.

Our proposed model consistently outperforms all baselines on different
datasets. For example, for the METR-LA, the best MAE of baselines is

Table 2. The comparative results on METR-LA and PEMS-BAY.

15min 30min 60min
MAEMAPE(%) RMSE MAEMAPE(%) RMSE MAE MAPE(%) RMSE

METR-LA

HA 4.16 |13.00%  |7.80 [4.16 |13.00% |7.80 |4.16 |13.00%  |7.80
FC-LSTM 3.44 19.60% 6.30 [3.77 [10.09% [7.23 |4.37 [13.20%  |8.69
ASTGCN 4.86 |7.81% 9.27 |5.43 [10.13% 10.61 6.51 [11.64% 12.52
STFGNN 3.26 8.04% 7.43  4.03 10.22%  9.44 [5.02 113.03% 11.62
AGCRN 2.87 |7.70% 5.58 3.23 9.00% 6.58 3.62 |10.38%  [7.51
STGODE 3.47 8.76% 6.76 4.36 [11.14%  8.47 [5.50 [14.32% 10.33

DMSTGCN 2.85 |7.54% 5.54 [3.26 9.19% 6.56 |3.72 10.96% 7.55
MVJIGL(ours)|2.80 7.40% 5.41 |3.16 8.92% 6.42 |3.53 10.21% 7.37

PEMS-BAY

HA 2.88 16.80% 5.59 [2.88 6.80% 5.59 [2.88 6.80% 5.59
FC-LSTM 2.05 4.80% 4.19 2.20 5.20% 4.55 2.37 5.70% 4.96
ASTGCN 1.52 [3.22% 3.13  [2.01 4.28% 4.27 [2.61 [6.00% 5.42
STFGNN 1.36 [2.83% 2.81 |1.67 3.78% 3.79 |1.97 4.64% 4.52
AGCRN 1.35 [2.87% 2.83 |1.69 |3.84% 3.81 [1.96 [4.67% 4.52
STGODE 1.43 [2.99% 2.88 |1.84 3.84% 3.90 [2.30 4.61% 4.89

DMSTGCN 1.33 2.80% 2.83 |1.67 [3.81% 3.79 1.99 4.78% 4.54
MVJIGL(ours)|1.30 2.80% 2.76 |1.63 3.79% 3.70 |1.92 4.55% 4.40
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3.62 while MVJGL is 3.53 for 60-minute prediction results, the improve-
ment is up to 2.48%. Our approach achieves these results as it concerns both
primary feature and auxiliary features, and learns multiple views for cap-
turing spatial-temporal dependencies. Furthermore, heterogeneous temporal
convolution networks model multiple temporal dependencies from different
features, which can be susceptible to data noise existing in sensed data and
achieve the best performance. MVJGL further improves the prediction per-
formance by learning dynamic graphs at different time steps, generating a
continuous sequence of graphs.

Figures4 and 5 visually show the comparison of different methods at different
prediction intervals across the four publicly available data sets. We observe that
when the prediction intervals increase, traffic forecasting tasks become more
difficult, and thus the prediction accuracy of all models decreases. While the
accuracy of MVJGL decreases the least in most cases, it implies that MVJGL
gets the advantage of solving long-term forecast tasks. On the PEMSDS8 dataset,
the ST-LGSL model has a better long-term prediction effect than our model, but
the ST-LGSL model is weaker than the MVJGL model in short and medium-
term prediction tasks and is limited by the dataset. Furthermore, the prediction
results of dynamic graph-based methods are significantly better than that of
predefined graph-based ones (e.g., DCRNN, ASTGCN; etc.). Our model adopts
multi-view-based dynamic graphs learning, its performance is significantly better
than that of other global shared graphs-based models. We conclude that the use
of a multi-view module is meaningful for improving traffic prediction results.

5.5 Ablation Study

Table 3. Ablation Study on METR-LA Dataset

Dataset  |Models (15 min/30 min/60 min)

MAEMAPERMSEMAEMAPE RMSEMAEMAPE RMSE
METR-LAMVIJGL-HT [3.08 |8.36% 6.00 [3.73 |10.72%|7.46 |4.75 |14.54% (9.26
MVJGL-GT [2.86 |7.59% [5.55 [3.28 9.20% 6.61 [3.72 |10.85% |7.63
MVJGL-TG [2.81 [7.56% [5.47 (3.19 9.10% 6.53 [3.58 [10.55% |7.47
MVJGL-M  [2.83 [7.66% 5.561 (3.21 9.10% 6.54 [3.60 [10.50% |7.45
MVJGL-A  3.00 [8.09% [5.87 [3.62 |10.42%7.24 |4.53 [13.97% |8.93
MVIJGL-G 2.98 |7.90% 5.89 [3.59 |10.22%|7.27 |4.44 |13.71% [8.97
MVIJGL-F 2.82 |7.42% 5.46 |3.20 8.95% 6.46 |3.59 |10.24% |7.39
MVJGL(ours)2.80 (7.40%5.41 (3.16 8.92%6.42 (3.53 |10.21%7.37

This section validates the effectiveness of the key components in MVJGL and
implements ablation experiments on the METR-LA dataset. We conduct the
ablation study from two aspects, temporal dimension and spatial dimension.
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Temporal Dimension. For the temporal dimension, three variants of MVJGL
are introduced.

— MVJGL-HT: It removes the temporal convolution module.
— MVJGL-GT: It removes the gated temporal convolution module.
— MVJGL-TG: It removes the gated temporal recurrent unit module.

Spatial Dimension. For the spatial dimension, four variants of MVJGL are
presented

- MVJGL-M: It removes the multi-view learning module and uses a global
shared graph.

— MVJGL-A: It removes the auxiliary feature module.

MVJGL-G: It removes the dynamic graph convolution module.

— MVJGL-F: It removes the fusion module and adds the outputs of two GCNs.

All the variant models adopt the same settings as MVJGL except for the dif-
ferences introduced above. The MAE, RMSE, and MAPE results for the METR-
LA are presented in Table 3. The results demonstrate that all key components of
MVJGL contribute significantly to traffic prediction. In particular, the temporal
convolution module(MVJGL-HT) has the greatest influence on the results, it is
because the parallel heterogeneous convolution structure is efficient in capturing
multiple-scale temporal dependencies, especially for long-term prediction. The
design of the auxiliary feature (MVJGL-A) in the model also has a great influ-
ence on the prediction performance. This is because the function of solving the
data noise problem through multiple features fails. It is found that the multi-view
dynamic convolution module design (MVJGL-G) also has a significant impact
on the model performance, especially on the medium and long-term prediction
results. This verifies the effectiveness of multiple views in spatial dependency
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Fig. 6. Visualization of the graph structure for the first 30 nodes.
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extraction. The fusion module fuses the primary and auxiliary features with
different weights to improve the utilization of various data and improve the per-
formance of the model.

5.6 Effects of Multi-view and Dynamic Graph Learning

We further investigate the robustness of multi-view design in improving predic-
tion results. MVJGL can effectively extract spatial features from noisy traffic
data even if it only relies on the primary features. The heatmap analysis of
dynamic adjacency matrices from Fig. 6 further indicates that the graph learning
module proficiently captures spatial dependencies sensitive to temporal changes,
thereby improving graph representation. Figure7 shows the variation of the
hyperparameter, with a convolution kernel size of 2 producing the best per-
formance, deviations from this value can lead to reduced accuracy and excessive
smoothing problems.

I MAE =e= RMSE B MAE == RMSE

3.25 6.55 3.65 7.55

7.45 B
2 3.55 2

35

MAE
RMSE

N
:

3.15 6.45

k=1 =2 k=3 k=4 k=1 =2 k=3 k=4
(a) 30 min (b) 60 min

Fig. 7. Hyperparameter effects of graph convolution sizes K on METR-LA dataset.

6 Conclusion

This paper introduces a spatio-temporal heterogeneous graph neural network
with multi-view learning for traffic prediction. Unlike traditional approaches
based on predefined graphs or models built on globally shared graphs, we uti-
lize multiple traffic features to learn multiple continuous dynamic graphs for the
complex spatial correlation representation. Meanwhile, MVJGL models and fuses
information from multiple traffic features to capture potential hidden connec-
tions among nodes of traffic networks, thus further improving the performance
of the traffic prediction task. Extensive experimental results on various traffic
datasets demonstrate the superior prediction results of our proposed model.
In our future work, we will focus on the following two aspects:
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Apply our model to solve spatio-temporal prediction problems in other
domains such as energy, stock market, etc.

Consider incorporating more traffic features (e.g., pedestrian flow, traffic sig-
nals, major festivals, traffic accidents, etc.) into the model to further improve
the accuracy of the model’s prediction results.
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Abstract. Detecting social bots, which continuously evolve, presents
an escalating challenge. Although graph-based detection techniques uti-
lize various relationships within social networks to model node behavior,
they often fail to account for inherent heterophily—connections between
different types of accounts. When message passing occurs across het-
erophilous edges, it can cause feature blending between bots and legiti-
mate users, leading to indistinct representations. To address this issue,
we propose BotSCL, a contrastive learning framework that is aware of
heterophily. BotSCL adapts by differentiating between representations
of heterophilous neighbors while aligning representations of homophilous
ones. Our approach employs two graph augmentation strategies to create
varied graph views and introduces a channel-wise, attention-free encoder
to address the limitations of traditional neighbor information aggrega-
tion. Supervised contrastive learning then helps the encoder focus on
aggregating information specific to each class. Extensive experiments on
two real-world social bot detection datasets reveal that BotSCL outper-
forms existing baseline models, including advanced bot detection meth-
ods, as well as techniques based on partial heterophily and graph con-
trastive learning.

Keywords: homophily and heterophily - social bot detection -
supervised contrastive learning

1 Introduction

Social bots, which are automated accounts often used for malicious activities
like spreading misinformation [9], promoting extremism [16], and interfering in
elections [10], continue to present a major challenge on social networks. These
bots are highly adaptable, constantly evolving to bypass new detection methods.
In response, numerous bot detection technologies have been developed.

Twitter account analysis typically involves gathering a wide range of data
types, such as tweet text [19], metadata [3,34], and temporal activity pat-
terns [6]. This holistic approach provides a comprehensive understanding of
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account behavior. The extracted features are then integrated into various clas-
sifiers, utilizing deep neural networks with different architectures to enhance
model generalization [32]. Recent advancements in graph neural network-based
methods [2,11] have driven progress in understanding semantic relationships by
constructing heterogeneous graphs and employing relational graph transformers
that aggregate insights from both intra-relational and inter-relational contexts.
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Fig. 1. Illustration of heterophily influence. Message passing on heterophilous edges
leads to feature mixing and classification boundary shift in social bot detection.

Despite the success of graph-based detection methods, many fail to account
for heterophily, which refers to connections between different classes of accounts.
Recent studies [23,31] show that Twitter bots often engage with human users
more frequently, challenging the conventional view that bots primarily interact
with each other to boost their influence [9]. As illustrated in Fig. 1, when both
homophilous and heterophilous interactions are present, message passing along
heterophilous edges can cause node representations to blend with those of the
opposite class. Therefore, an effective graph-based detection approach should
prevent inter-class feature blending to produce more distinct representations.
Our method’s key insight is to use supervised contrastive learning [17] to improve
inter-class discrimination. By treating nodes of the same class as positive pairs
and those of different classes as negative pairs, we can promote the aggregation
of class-specific information while avoiding feature mixing.

Building on these insights, we present a novel framework called Social Bot
Detection with Supervised Contrastive Learning (BotSCL). First, we develop
two graph augmentation strategies—feature augmentation and topological struc-
ture augmentation—to create different graph views. Then, we design an encoder
to aggregate similar and distinct information across feature channels. Finally,
supervised contrastive learning is applied in a cross-view manner to generate
class-consistent representations.
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This paper makes the following key contributions:

— We introduce and analyze the negative impact of heterophily on social bot
detection, supported by experimental data.

— We propose the BotSCL framework, which mitigates the effects of heterophily
on social bots in the feature space through supervised contrastive learning.

— Extensive experiments on two real-world datasets demonstrate that BotSCL
consistently outperforms all baseline methods.

2 Related Work

In this section, we will explore related research in three key areas: graph-based
social bot detection, graph neural networks (GNNs) for heterophilous graphs,
and contrastive learning.

2.1 Graph-Based Social Bot Detection

Graph-based techniques for social bot detection have gained significant trac-
tion in recent research. [2] pioneered the use of graph convolutional networks
(GCN), combining account features with the structural properties of relation
graphs to enhance detection. Satar [13] further refined this approach by employ-
ing GCNs for feature engineering and integrating self-supervision to detect bots.
Building on this, Relational Graph Convolutional Networks (R-GCNs) [26] were
adopted by [15] to aggregate information from multiple relationships, and this was
later enhanced by [11], who introduced additional relations and applied graph
transformers for more adaptive neighbor aggregation. RoSGAS [36] leverages
heterogeneous information networks to model diverse entities and relationships
in social networks effectively, using adaptive reinforcement learning to improve
performance. These methods generally assume that bots and humans interact
more within their respective classes, and the smoothing of node representations
is advantageous for classification. However, in reality, advanced bots can evade
detection by actively engaging with human users, making this assumption less
reliable.

2.2 GNNs for Graphs with Heterophily

Given the widespread presence of heterophily, GNNs designed for heterophilous
graphs have become a significant focus of research. Broadly, there are two pri-
mary approaches: Aggregation of non-local neighbor information: Techniques
in this category gather information from higher-order neighbors [1,38] or from
potential same-class neighbors [25,30] to enhance intra-class information aggre-
gation. Adaptive Message Passing: Approaches like FAGCN [5] combine high-
and low-frequency information, while GPRGNN [8] utilizes learnable weights
to aggregate information from different hop distances. In social bot detection,
bots tend to display more heterophilous behavior, while humans generally exhibit
homophilous tendencies. Consequently, directly applying GNNs designed for het-
erophilous graphs to bot detection may not deliver optimal outcomes due to the
differing behaviors of bots and humans.
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2.3 Contrastive Learning

Contrastive learning focuses on training an encoder that produces consistent
representations across different views of the data. Graph contrastive learning
(GCL) extends this approach to the graph domain, allowing nodes to learn rep-
resentations in a self-supervised manner. For instance, GRACE [39] generates
augmented graph views by removing edges and masking features, treating the
same node in different views as a positive pair. DGI [29] optimizes node represen-
tations by maximizing mutual information between local and global embeddings.
Supervised contrastive learning, first applied in the field of computer vision [17],
treats instances of the same class as positive pairs and those of different classes
as negative pairs. This approach ensures that embeddings from the same class
are pulled closer together while those from different classes are pushed apart.

3 Methodology

The complete pipeline of BotSCL is illustrated in Fig. 2. The process begins with
the application of two graph augmentation techniques to produce two distinct
graph views. Next, nodes aggregate similar information from their homophilous
neighbors while adaptively distinguishing the representations of heterophilous
neighbors for each relation. Finally, node representations are optimized through
supervised contrastive learning.
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Fig. 2. The proposed BotSCL framework.

3.1 Graph Augmentation

Graph contrastive learning (GCL) leverages various graph augmentation tech-
niques, such as edge addition, feature masking, and personalized PageRank dif-
fusion, to create diverse graph views [37]. However, it’s important to recognize
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that not all augmentation methods are suitable for graphs with heterophily. For
instance, [35] utilizes low-pass and high-pass filters to generate graph views for
self-supervised contrastive learning, while [21] classifies edges as either within-
class or between-class, then constructs homophilous and heterophilous views
accordingly. Despite their effectiveness, both methods face challenges, including
potential information loss and the introduction of noise.

To address these limitations and enable the simultaneous handling of both
homophilous and heterophilous edges without the need for explicit differentia-
tion, we propose a new graph augmentation technique called class-aware node
shuffling (CNS). This method involves randomly swapping nodes within the same
class. By doing so, we can obtain representations that remain stable despite
changes in the neighborhood, without significantly disrupting the underlying
graph structure. This is achieved through intra-class feature swapping:

X = C(X, Yirain)- (1)

Additionally, we employed a traditional graph augmentation method, edge
removing (ER), to augment the graph structure. The edge removal method can
be formulated as follows:

E=E0 MF, (2)

where & is total edge set, each element of M¢, mfj

of edge e;; and mfj ~ B(1 — pe), pe is the probability to be removed. Through
the aforementioned two graph augmentation methods, both the features and
topological structure of the original graph are augmented. Note that graph aug-
mentation is optional for BotSCL, as supervised contrastive learning can be
employed in a single-pass manner.

stands for the mask value

3.2 Aggregation Strategy

Multi Modal Feature Fusion. Multiple modalities, such as tweets, metadata,
and account descriptions, have been shown to significantly improve social bot
detection [11,15]. Unlike traditional node classification tasks, social bot detec-
tion relies on features that span diverse types and dimensions of social content.
Therefore, it is essential to use a multi-layer perceptron (MLP) to align the
dimensions of these heterogeneous feature vectors. Following prior work [11,15],
we first extract numerical features 2¢** and boolean features 22°°! for each node
v;. Additionally, RoOBERTa [20] is employed to extract descriptive features xfes
from the account descriptions. Furthermore, RoBERTa is also used to obtain
average feature representations x!**¢* from up to 20 tweets per account.

In this study, we further use TransformerEncoder [27] for feature fusion adap-
tively by treating the feature vectors of different types as token embeddings:

cat
7

bool
[

des
A

29 = Trans former Encoder([x$®, 220!, pdes plweet]), (3)

where ¥ is the concatenation of the TransformerEnocder outputs. In this way,
benefiting from the self-attention and residual mechanisms within Transformer,
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a better fusion of information from different modalities is achieved, effectively
countering feature camouflage of social bots. On top of that, we apply another

MLP to z and obtain the input of the graph convolutional layer hl{o}:

% = o(Wra? +by), (4)

where Wi, by are learnable parameters and o(-) is a nonlinear activation function.

Information Aggregation Beyond Homophily. After generating aug-
mented views, BotSCL employs an encoder capable of aggregating information
from both similar and dissimilar neighbors in a distinguishable way to pro-
duce effective node representations. In the spectral domain, GNNs that operate
under the homophily assumption function as low-pass filters. However, previ-
ous research on graphs with heterophily [22] has demonstrated that high-pass
filters, which capture differential information, are more suitable for modeling
heterophilous connections.

In the spatial domain, low-pass filtering is achieved by aggregating informa-
tion from neighboring nodes, while high-pass filtering is performed by distin-
guishing between the representations of different neighbors. These two filtering
operations can be mathematically formulated as follows:

(n"), =wi je;m (nf s nlH),

(hz{l})mgh _ W{l}jg,‘:w (h;_{lfl} _ h;{_l—l}) .

()

In addition to these two, there are other filters that retain different frequency
band information, such as band-pass filters. Although [22] employs a channel-
wise attention mechanism to fuse low-pass, high-pass filters, and self-information,
there still exists information loss from other frequencies. Inspired by the above,
we design a channel-wise frequency-adaptive mechanism to aggregate similar
information from homophilous neighbors and differential information from het-
erophilous neighbors. Specifically, given a central node v; € V' and its arbitrary
neighbor v; € N, (v;), we first use a linear transformation and a separate element-
wise multiplication across channels to obtain the query and key:

g = w1 g gty

(6)
{1 _ Aty {i-13 l

ki =wiohi T o K1,
where Wil} € Ré-1xdi-1 ig the weight martix of layer [, QI K1} ¢ R1xdi
are weight vectors for query and key and ® denotes the Hadamard product

operation. q;‘l} and kl{l} can also be calculated in the same way.
{1}

Then we calculate the channel-wise and pass-free attention coefficient a;;
for edge e;:
{1} {1} {1} {1}
Y oEY 4 ¢V ok
ag} = tanh(ql 1 5 9 ). (7)
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It is worth noting that the obtained ag-} using the above calculation method is
direction- and relation-agnostic and can be also seen as the embedding of edge
e;j. Furthermore, due to the use of the tanh activation function, any element in
;{l} is in the range of [-1, 1], which breaks the previous restriction on the sum
of neighbor information.
Finally, we aggregate information from the neighbors using the generated

channel-wise weights a{ } to obtain layer node representation h{ 5

e — w BRI
JEN(3)

l r{l
B Zh{} (9)

where W'} € Ré-1xd! s the weight matrix for relation r, and [N, (v;)| is the
number of neighbor nodes on relation r. Following the graph filter proposed
by [5], we apply a hyperparameter At} to preserve the information of the node
itself. RGT [11] uses an attention mechanism to fuse information from different
relations, but here we trivially take the average of information from different
relations to avoid information missing.

o O )

3.3 Supervised Contrastive Optimization

Following the previous contrastive learning framework [29,37], we use a projec-
tion head consisting of two MLP layers to obtain z;:

= Wao(Wih™ +by) + by, (10)

where h;-{L} is the output of last layer L. Thus, we can obtain projections z{* and
zf of node v; in two graph views G and G? in respect.

Next, we employ supervised contrastive learning as the loss function for train-
ing. However, because this approach considers all nodes of the same class across
different views as positive pairs, it can lead to overfitting. In this case, the rep-
resentations of nodes from the same class become overly similar, impairing the
model’s ability to generalize to unseen nodes. To mitigate overfitting, we imple-
ment supervised contrastive learning in a cross-view manner. For a randomly
chosen set of N samples from the training nodes, we first project each node
through the graph augmentation, encoder, and projection head described ear-
lier. Taking node v; from graph view G as an example, we consider its projection
and the projections of same-class nodes from other views as positive pairs, while
projections from different-class nodes are treated as negative pairs, to compute
the contrastive loss.

N 1 N eco‘s(z1 7zﬁ)/r
£ =y oy )
Yi j=1 E cos(zg ,Zk)/T
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Algorithm 1: The first training process of BotSCL

Input : a directed and multi-relation graph G = {V, &, X'}, the labels of train
nodes Yirain, Training epochs Nepochs, the number of layers in the

encoder L
Output: node representations H

1 initialization;

2 generate two graph views G and G° — Eq. (1-2);
3 fore=1, -, Nepochs do

4 | obtain H® — Eq.(3-4);

5 for each graph view do

6 for!=1,---,L do

7 ai",qf" k{9 KT — Eq. (6);
8 ai{;} — Eq.(7);

9 forr=1,--- ,Rdo
10 h:’{l} — Eq. (8);
11 end
12 hi — Eq. (9);
13 end
14 obtain node representations H{L};
15 end

16 zf‘,zf — Eq. (10);

17 L — Eq. (11-12);

18 update parameters through backpropagation;
19 end

20 return H = [H{O}HH{L}]

where Ny, represents the number of samples in the same class as node v; among
N samples, cos(-, -) function is used to calculate the cosine similarity, and 7 is the
temperature coefficient which can regulate the degree of distribution uniformity.

Finally, we calculate the loss for all nodes in the sampled set of two views in
the same way, and take the average:

N

1 [0
L=5v oLy + 7). (12)

i=1

Training Strategy. In this study, we adopt a two-stage training approach
similar to previous contrastive methods [29,37,39]. In the first stage, we use
the previously described method to generate node representations and update
the model parameters by minimizing £. Given that the original features preserve
important class information [7], we proceed to the second stage by concatenating
the encoder input H®} with the output H{LH: H = [HIO |HILY] € R (dotdr),
In this stage, we utilize a straightforward machine learning classifier, namely
Logistic Regression (LR), for both training and evaluation using H.
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4 Experiments

4.1 Experiment Setup

Datasets. TwiBot-20 [14] and TwiBot-22 [12], which include user followers
and following relations, are well-suited for our method and subsequent experi-
ments. TwiBot-20 consists of 229,580 nodes and 227,979 edges, while TwiBot-22
includes one million nodes and 3,743,634 edges. We partition the datasets into
training, validation, and test sets using a 7:2:1 ratio.

Baselines. To evaluate the effectiveness of BotSCL, we compare it with several
different methods, described briefly below:

Homophilous GNNs: GCN [18] and GAT [28] are representative GNNs
based on the homophily assumption, where information is aggregated by sum-
ming up neighbor representations.

Heterophilous GNNs: H2GCN [38], FAGCN 5], and GPRGNN [8] are
models specifically designed to address heterophilous edges by employing various
information aggregation techniques.

Graph-Based Social Bot Detection: Alhosseini et al. [2], EvolveBot [33],
Moghaddam et al. [24], BotRGCN [15], and RGT [11] leverage graph struc-
tures to improve social bot detection.

Graph Contrastive Learning: DGI [29], GRACE [39], and GBT [4] are
prominent self-supervised graph contrastive learning frameworks that learn node
representations without labels. SupCon [17] refers to supervised contrastive loss,
which we implement by adapting the loss function of GRACE.

Hyperparameter Setting. We use a GNN with two layers, each having a
hidden dimension of 32. To mitigate overfitting, we apply a dropout mechanism
with a rate of 0.5. The temperature coefficient is set to 0.07 to enhance the
distribution of the representation space.

4.2 Heterophily Evidence and Influence

Before investigating the impact of heterophily on social bot detection, we first
analyze the levels of homophily and heterophily in the datasets. In the TwiBot-
22 dataset, the homophily ratios for follower and following relationships among
human nodes are 88.05% and 96.20%, respectively, whereas for bot nodes, these
ratios are 16.55% and 6.25%, respectively. This disparity suggests a clear pattern
where social bots are more inclined to interact with human nodes.



62 Q. Wu et al.

0841 GCN

GAT
0.82 | =+ BOtRGCN
B B
8 g
-
g 3 0.80
Q Q
< <
0.800 — & ... B.rGCN 0.78
0775 | T pre ROT
00 02 04 06 08 10 00 02 04 06 08 10
Mask Heterophily Rate Mask Heterophily Rate
(a) Mask heterophily on TwiBot-20 (b) Mask heterophily on TwiBot-22

Fig. 3. Heterophily influence on previous graph-based methods.

To illustrate the adverse effects of heterophily, we plot the accuracy changes
as heterophilous edges are progressively removed in increments of 0.1, as shown
in Fig. 3. We evaluate four different models: GCN, GAT, BotRGCN, and RGT.
The results demonstrate a significant increase in accuracy for all models as
heterophily decreases. This underscores the importance of considering both
homophilous and heterophilous edges in graph-based social bot detection.

4.3 Performance Comparison

Table1l provides a summary of the detection results for all baselines and
BotSCL on the TwiBot-20 and TwiBot-22 datasets. The performance metrics for
homophilous GNNs and graph-based social bot detection methods are derived
from an empirical survey of social bot detection [12] and additional experiments
conducted by us. BotSCL outperforms all 14 baseline methods in terms of both
Accuracy and Fl-score.

As shown in Table 1, heterophilous GNNs generally outperform homophilous
GNNs, suggesting that accounting for heterophilous edges can help iden-
tify sophisticated bots with extensive human connections. Compared to het-
erophilous GNNs, BotSCL not only incorporates various types of relations but
also employs supervised contrastive loss as the optimization objective, result-
ing in improvements in both Accuracy and F1l-score across both datasets. Self-
supervised contrastive learning methods perform less effectively on TwiBot-
20, which has a large number of unlabeled nodes, but show better results on
TwiBot-22. This discrepancy is likely due to uneven training distributions, as
fewer training nodes are used for TwiBot-20 in the second training stage. Our
method significantly outperforms these self-supervised approaches, highlighting
the crucial role of supervised signals in effectively handling both homophilous
and heterophilous edges.
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Table 1. Performance comparison on TwiBot-20 and TwiBot-22 in terms of accu-
racy and Fl-score. The best and second-best results are highlighted with bold and
underline.

Methods TwiBot-20 TwiBot-22
Accuracy F1l-score Accuracy F1l-score

GCN 77.53+1.73 |80.86+£0.86 (80.07+0.77 |51.71+£4.05
GAT 83.27+£0.56 85.254+0.38 [85.07+1.19 69.32+£4.02
FAGCN 85.434+0.40 87.36+0.32 |88.11+1.43 |77.43£3.20
H2GCN 85.84£0.34 87.57+0.15 [89.09+1.16 [79.99+1.53
GPRGNN 86.054+0.34 87.50£0.30 [89.07£1.20 [80.48+1.62
Alhosseini et al.  [59.88+0.59 [72.07+0.48 |47.72+8.71 [38.10+5.93
EvolveBot 65.83£0.64 69.75+0.51 [71.09+0.04 [14.09+£0.09
Moghaddam et al.[74.05+£0.80 |77.87+£0.71 (73.78 £0.01 [32.07+£0.03
BotRGCN 85.75+£0.69 87.254+0.74 [79.66+0.14 |57.50 £ 1.42
RGT 86.574+0.42 88.01+0.42 |76.47£0.45 |42.944+0.49
DGI 84.93+0.31 87.09+0.36 |79.61£0.13 |44.06 £1.52
GRACE 84.74+0.88 186.90+0.84 |80.02+0.91 |46.17£4.48
GBT 84.74+£0.92 86.87+0.79 [79.75+0.76 |47.27+£3.08
SupCon 86.10£0.14 87.674+0.16 [80.00+0.24 |44.41 +3.83
BotSCL 87.26 £ 0.31 88.79+0.27/82.39 £ 0.5061.53+1.45

4.4 Ablation Study

We conduct an ablation study to assess the effects of various modules and graph
augmentation techniques on social bot detection. We develop three ablation
models: one without self-supervised learning (w/o Sup), one lacking negative
information aggregation (w/o Neg), and one utilizing cross-entropy loss. The
results of these ablation models on TwiBot-20 and TwiBot-22 are summarized
in Table 2.

The results indicate a significant decline in performance when self-supervised
learning is omitted, highlighting its essential role in effective information aggre-
gation during the message-passing process. Although the model without nega-
tive information aggregation still performs relatively well due to the strength
of supervised contrastive learning, its effectiveness is reduced compared to the
full model. In contrast, the model using cross-entropy loss performs noticeably
worse, as it mainly focuses on the commonalities among training samples while
neglecting exceptional cases.

Additionally, different graph augmentation methods affect model perfor-
mance in varying degrees. Notably, CNS and edge removal have substantial
impacts, with CNS being crucial for generating category-invariant representa-
tions. On the other hand, augmentation methods such as feature masking and
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Table 2. Ablation Study in terms of Different Modules and Graph Augmentation

Methods.
Settings TwiBot-20 TwiBot-22
Accuracy F1-score Accuracy F1-score

full model 87.26 £0.3188.79+0.2782.39+0.5061.53 +1.45
w/o Sup 86.45+0.21 |88.454+0.19 82.004+0.61 |56.2042.88
w/o Neg 86.90 £0.45 |88.48 £0.35 |82.12+0.46 |[53.43+1.16
cross entropy 84.50+0.53 [87.194+0.36 |80.13+0.86 [46.59+0.89
CNS 87.13+0.17 |88.70+0.20 |81.90+0.26 |58.78 +0.84
edge adding 86.96+0.14 |88.55+0.11 |82.024+0.64 |58.93+2.17
edge removing  [87.114+0.15 |88.67+0.14 (82.17+0.37 |61.46+1.46
featuren masking86.81+0.21 [88.50£0.14 [81.99+0.40 |61.78 £1.29

edge addition have minimal effects or can introduce noise, potentially disrupting
node feature information.
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Fig. 4. Sensitive analysis of hyperparameter A and A?? on two datasets.

4.5 Sensitive Analysis

We assess the performance of BotSCL with respect to the hyperparameters A1}
and M2} as our model incorporates two layers of information aggregation. We
vary these parameters from 0.1 to 1.0 in increments of 0.1, keeping all other model
parameters constant. The results on TwiBot-20 and TwiBot-22 are presented in
Fig. 4a and Fig. 4b, respectively.

Figure 4 shows that increasing the hyperparameters M} and A2} leads to
a gradual improvement in accuracy for both TwiBot-20 and TwiBot-22. Specif-
ically, when both hyperparameters are set to 1, the model achieves its highest
classification performance. This highlights the importance of preserving self-
information. Figure4b reveals a noticeable accuracy drop for TwiBot-22 when
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the hyperparameter is reduced to 0.8. In contrast, for TwiBot-20, the accuracy
decline is more gradual, with a sharp drop occurring only when the hyperpa-
rameter approaches 0.4. This discrepancy can be attributed to TwiBot-22 hav-
ing labels for all nodes and facing class imbalance issues. When the weights for
original information are too low, the representation of the central node can be
dominated by neighboring information.

Overall, despite variations in hyperparameters, the accuracy changes are
within 0.04 for TwiBot-20 and within 0.01 for TwiBot-22. This indicates that
while the hyperparameters At} and A2} do influence the performance of
BotSCL, the model is not highly sensitive to their values.

(a) GCN  (b) FAGCN (c) BotRGCN  (d) RGT (e) DGI  (f) BotSCL

Fig. 5. User representations visualization. Red represents bots, while blue represents
humans. (Color figure online)

4.6 Visualization

We visualize node representations obtained from six different models—GCN,
FAGCN, BotRGCN, RGT, DGI, and our method BotSCL—on the TwiBot-22
dataset. Node representations from each model are first computed and then
reduced to 2D using t-SNE for visualization. For clarity, we randomly select
1000 humans and 1000 bots from the test set for this visualization.

As shown in Fig. 5, node representations from homophilous GNNs are more
scattered compared to those from FAGCN. These homophilous models, which
operate on the assumption of homophily, tend to smoothen the representations
of neighboring nodes without distinguishing between them, resulting in a distri-
bution that is heavily influenced by local information. In contrast, the represen-
tations produced by BotSCL exhibit more pronounced clustering with fewer local
clusters. While FAGCN accounts for both homophilous and heterophilous edges,
its use of cross-entropy loss may overlook samples from less frequent distribu-
tions, leading to less distinct clustering. DGI, which lacks supervised signals dur-
ing training, shows poor discriminative power and exhibits significant class over-
lap, where the representations of bots and humans are nearly indistinguishable.

5 Conclusion

In this paper, we reveal that social bots can evade graph-based detection meth-
ods by actively engaging with human users. To counter this, we propose BotSCL,
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which incorporates both homophilous and heterophilous edges into the detection
framework. The core of BotSCL is its encoder, which leverages supervised con-
trastive learning to integrate or differentiate neighbor representations effectively.
Our extensive experiments on two real-world social bot datasets highlight the
detrimental effect of heterophily on detection performance and demonstrate the
superior effectiveness of the proposed BotSCL method.
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Abstract. Recently, graph neural networks have achieved impressive
results in areas like graph representation learning. However, as the num-
ber of layers in graph neural networks continues to increase, the per-
formance of the network does not improve as expected. The primary
obstacle to building deep graph neural networks is considered to be the
over-smoothing problem. In this paper, we first theoretically analyze the
relationship between over-smoothing problem and the algebraic connec-
tivity of graphs, and establish the relationship between algebraic connec-
tivity and edge dropping operations based on the degrees of nodes in the
graph. We propose SimDrop, it consists of two parts: a sampler based
on algebraic connectivity, and a sampler based on node feature similar-
ity. Our method can perceive both the structural information and node
feature information of the graph, aiming to alleviate the over-smoothing
problem in deep graph neural networks. Experimental evaluations on var-
ious datasets demonstrate that our method achieves better performance
in both full-supervised and semi-supervised tasks.

Keywords: graph convolutional networks - over smoothing - algebraic
connectivity

1 Introducation

Graph neural networks [10,16,27,29,30,36] have been shown to be quite suc-
cessful in learning representations of nodes and graphs on graph structured data
[1,7,11], as well as in downstream tasks such as node classification [10,16,29],
graph classification [35], and link prediction [18]. However, most graph neu-
ral networks are designed with only one or two layers. This is different from
convolutional neural networks [20], where stacking more layers can learn more
features of samples and improve the network’s expressive power. Stacking layers
on graph neural networks [16] fails to learn the rich topological information and
node features in graph data [15,36] because these models suffer from severe over-
smoothing [23]. As the number of layers in a graph neural network approaches
infinity, the output will exponentially approach a certain subspace. Regardless
of the input node features, deep graph neural networks can only learn the degree
information of nodes and information about the connected components. They
cannot leverage higher-order topological information [36] and the original node
features [15] from graph data.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 69-84, 2025.
https://doi.org/10.1007/978-3-031-78183-4_5
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On aware of this, several studies have focused on addressing the over-
smoothing issue. The residual connection inspired by deep CNNs [17,29,31] from
the computer vision domain is shown to be an effective strategy for addressing the
over-smoothing issue for various graph convolution networks. Recently, data aug-
mentation strategies proposed from works likes DropEdge, PTDNet [22], DSpar
[19] and NeuralSparse [37] from the perspectives of graph structure and expres-
sive power can be used as general techniques for improving robustness and GNN
training. DSpar [19] sparsify the graph before training using node degree infor-
mation to train more efficiently. NeuralSparse [37] remove task-irrelevant edges
and simultaneously optimize graph sparsification and representation for more
robust performence. However, these models achieve their best results in training
and robustness tasks, but they cannot solve over-smoothing problem and make
networks become deeper. Among the various methods proposed so far, Dropedge
[24] involves randomly dropping a portion of the graph edges with a probabil-
ity p at each layer of network training. This method has been theoretically and
experimentally proven to effectively alleviate over-smoothing and can improve
the performance of various deep graph neural networks.

However, Dropedge cannot fully exploit the higher-order structural informa-
tion and node feature information in graph within network design. And previous
works based on subgraph sampling and edge-dropping methods can be associ-
ated with the simple node-level random walk on unweighted graphs, hence they
are only able to learn pure structure information but no feature information.

In this paper, we advance this by introducing SimDrop, an improved version
of DropEdge. SimDrop consists of two components: a sampler based on algebraic
connectivity [5], and a sampler based on node feature similarity [15]. Unlike pre-
vious approaches that analyze the eigenvalues of the adjacency matrix to improve
network expressive power, we introduce algebraic connectivity from the Lapla-
cian matrix to measure over-smoothing through changes in algebraic connectivity
and design a better dropping method to reduce the convergence speed of over-
smoothing. According to the variation of algebraic connectivity and the close
relationship with node degrees, we assigned different weights to the adjacency
matrix based on node degrees. Secondly we introduce a node feature sampling
method, using cosine similarity as a distance measure between node features to
adjust the edge dropping probability. Our node feature sampling method not
only leverages all the benefits of DropEdge in mitigating over-smoothing but
also jointly learns feature and structure information from the input graph data.

In summary, this paper contributes the following:

1. We theoretically analyzed the relationship between over-smoothing and the
algebraic connectivity of the graph Laplacian matrix. To our knowledge, this
is the first study to incorporate algebraic connectivity into deep GCNs to
address the over-smoothing problem.

2. Unlike the unbiased sampling approach in DropEdge, we propose SimDrop
including an edge sampling method based on node degrees and node fea-
ture sampling method to learn the feature and structural information from
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graph data, that directly alleviates over-smoothing and enhances the expres-
sive power of graph neural networks.

3. Our method SimDrop can be incorporated into various existing graph neu-
ral network frameworks. Experimental results show that SimDrop exceeds
DropEdge and the vanilla graph neural network without sampling in mitigat-
ing over-smoothing problem.

2 Related Work

Graph Neural Network. Inspired by the extensive application of convolu-
tional neural networks [12,20] in computer vision, [30] begins exploring the use
of convolutional neural networks for non-Euclidean data, like graphs. Bruna et
al. [2] builds upon the theoretical foundation of graph signals by introducing the
Laplacian matrix and Fourier transform. They incorporate convolution opera-
tions from signal processing into tasks involving graph data. Then [16] based
on the theory of first-order Chebyshev polynomials and Laplacian regularization
matrices, they propose the graph convolutional neural network with first-order
local features. This laid the foundation for various graph convolutional neural
network models [7,10,11,27,29]. SimP-GCN [15] discovers that the information
aggregation process of graph neural networks can disrupt node similarity in
the original feature space, limiting model performance. An adaptive aggregation
method is proposed to combine graph structure with node features, preserv-
ing feature similarity. Although SimP-GCN also focuses on the representation
capability of nodes on graphs, our method SimDrop applies node similarity as a
measure to alleviate over-smoothing in deep GNNss.

Methods to Alleviate over-Smoothing. Recently, some work have demon-
strated the effectiveness of training graph convolutional networks with an
increasing number of layers. We categorize existing methods into two types.
The first kind of solutions is motivated by the deep CNN strategy in the area
of computer vision research, such as Skip connection [12], DenseNet [14], and
dilated aggregation [32]. DeepGCN [17] analogizes optimization methods from
CNN, employing three modules: GCN, ResGCN, and DenseGCN. These mod-
els use different ways to incorporate skip connections. JKNet [31] based on the
random walk extension connects the hidden embeddings of each layer output
to the final layer. DRGCN [34] uses a dynamic block for each node to adap-
tively extract information from its initial representation and an evolving block
to capture developing residual patterns.

The second kind of solution originates from the perspective of the graph struc-
ture, combining deep aggregation strategies with shallow graph neural networks.
GDC [6] extends personalized PageRank to graph diffusion processes. DropEdge
[24] implicitly increases graph diversity and reduces message passing by using a
stochastic edge dropout strategy. DropMessage [4] introduces a message matrix
to delete propagated messages instead of the adjacency matrix, allowing a node
to send different messages to different neighbors. pathGCN [3] develop expressive
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spatial operators for GCNs by learning from random paths within the graph. A-
DGN [8] stemming from an ODE formulation preserves long-term dependencies
between nodes and prevents gradient explosion or vanishing.

Unfortunately, these methods do not focus on the real causes of over-
smoothing and can only mitigate a portion of the model degradation from a
graph data input perspective and cannot theoretically justify the effectiveness
of the methods. By exploiting our method SimDrop, we are able to alleviate
over-smoothing and boost the expressive power of GNNs on node classification
tasks.

f m—

hidden
layers

.- el

== output

\ A A J

Input layer GCN Backbone block Output layer GCN

Fig. 1. Illustrations of SimDrop,backbone can be ResGCN,DenseGCN,IncepGCN.

3 Preliminaries

Notations. Considering a connected undirected graph G = (V, £) with n nodes
and m edges. V = {v1,va,...,,} denotes the group of nodes, where n denotes
the number of nodes. £ is the set of connected edges, where the connection
between v; and v; is e;;. We use A to denote the adjacency matrix of the graph
G, let D denote the degree of node in the degree matrix of the graph G. We use
X to denote the features of the graph G, with z; being the feature of node 1.
The symbol “~” denotes random sampling.

GCN. Let A = A+1, let D denote the degree matrix corresponding to A. The
feature propagation formula for adding hidden layers and weight matrices is as

follows:
H(l+1) _ U(]j_l/QA]j_l/2HlWl> (1)

where HHD = {h1,ha,..., hy,} are the node features of the I-th layer, with
H©® = X as the initial feature matrix. f)_l/zAf)_l/QHl belongs to the fea-

ture propagation process. W' are trainable parameters optimized by the loss
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function, and o denotes the activation function which constitute the feature
transformation process. In vanilla GCN, nodes collect feature vectors from their
neighbors and combine them with their own features to update their represen-
tations, resulting in interacted nodes having very similar representations.

Over-Smoothing. The following is a definition of over-smoothing from [23,24]
slet w; < wsy < --- < wpy be the eigenvalues of A. Assume the set of eigenvalues
in A are sorted in ascending order, let the count of the largest eigenvalue wy
being M. i.e. (wn—p) < Wn—pm+41) = -+ = wn). The eigenvalue which is the
second largest in the adjacency matrix A is defined as w := maxﬁiz_lM |wy,|. Let
O € RV*M he the feature space associated with WN—M+1, WN, and let s; denote
the maximum value in Wl7 then we have wy_y < wy_p41 = =wy =1
and

dM(Hl) < Slde(H(l_l)) (2)

where M := {OC|C € R®*Y} and d is Frobenius-norminduced distance. This
inequality indicates that as the number of network layers [ tends to infinity, the
output of the graph neural network on graph G will approach a low-dimensional
subspace M at an exponential rate. This subspace is independent of the node
features X of the network input, leading to the problem of over-smoothing. This
equation indicates that the eigenvalues of the modified adjacency matrix A have
a crucial impact on the over-smoothing problem. It is easy to see that increasing
the eigenvalue of the adjacency matrix that is second in magnitude can alleviate
over-smoothing, which is the aim of the DropEdge method.

Dropedge. [24] have analyzed from both theoretical and experimental perspec-
tives that randomly dropping a fixed number of edges from graph can increase
the value of w, reducing the speed of node feature information propagation and
alleviating over-smoothing problem. Additionally, the randomly dropping can
increase the diversity of graph, preventing the occurrence of overfitting. At each
training epoch, DropEdge uniformly drops a certain number of edges from the
graph. From the perspective of the adjacency matrix, this means converting a
fixed portion of positive values in the adjacency matrix to 0. It can be expressed
in formula as follows: R

Adrop =A-A (3)

Algebraic Connectivity. The algebraic connectivity [5] Ay of graph G is the
second smallest eigenvalue in the Laplacian matrix of G. The magnitude of alge-
braic connectivity reflects the overall connectivity of the entire graph. In addition
to being related to the number of nodes in the graph, the value of algebraic con-
nectivity also depends on the way nodes are connected to each other. For random
graphs, the algebraic connectivity decreases as the number of nodes increases and
increases with the increase of the average degrees. The importance of algebraic
connectivity [21] lies in: 1. Measuring the robustness of a graph. 2. Being closely
related to random walks on the graph.
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4 Method

Relationship Between Algebraic Connectivity and over-Smoothing.
[23,24] have shown that many methods for mitigating over-smoothing can slow
down the convergence speed of node feature similarity to 0. However, employ-
ing these methods fails to improve the expressive power of deep graph neural
network. In many tasks, there is not much difference in performance between
these deep models and shallow models, which means they fail to fully exploit
the advantages of deep graph neural networks.

From previous analysis [21,31], The over-smoothing in graph neural networks
is equivalent to node-level lazy random walk on the graph. So we can analyze
over-smoothing from the perspective of random walk. And the convergence rate
of the lazy random walk to the stationary distribution is determined by the
second smallest eigenvalue of the adjacency matrix: a smaller one implies faster
convergence. The relationship between the eigenvalues of the adjacency matrix
and the Laplacian matrix is as follows: \; = 2—2w,;. We analyze the relationship
between oversmoothing and algebraic connectivity using the eigenvalues Ao and
the corresponding eigenvectors of the Laplacian matrix. We need to adopt some
concepts from [9,21]. If a random walk mixes in one step, then for any node

g and h, we have |p; (h) — 7 (h)] < %wg, where p; (h) is the probability
that the random walk of node h at time ¢. 7 (h) is the long-term probability of
being at node & in the stationary distribution. The degree vector d is the Perron
vector in the graph adjacency matrix. w} denotes the second smallest eigenvalue
of the graph’s Laplacian matrix used for the random walk in the ¢ step. Using

1 — x =~ exp(—x), we can prove the following.

lpe (h) — 7 (h)] < Zig (1 — ;)\2) o
d (h) 1.\" _ d(n)
(9 (1 - 2&) = 24(V) @
1.\ _ VAR d(g)
(1-3%) <oy =
tAa d(h)d(g)
P (‘2) =) e
tAo d(h) d(g)
T <In <2d(v)> -

d(h)d(g)

where V' is the number of nodes in graph. For all graphs with approximately
constant degrees, the upper bound on the mixing time is In(n)/A\2, which means
that the smaller the algebraic connectivity, the slower the convergence speed of
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over-smoothing. To slow down the speed, we first analyze the impact of edge
dropping [9] on algebraic connectivity from a theoretical perspective. Dropping
an edge in a given undirected graph does not increase any of its eigenvalues.
The eigenvalues before and after the topological change satisfy the following
interlacing Lemma 1 [9].

Lemma 1. Assuming G is an undirected graph with n vertices, and v;,v; are
two vertices of graph G. e;; C E(G). Let Garop = G — €;5. We have A (Garop) <
/\1(g) S Al(gdrop) S e S )\n(g)

N

The trace of the Laplacian matrix tr(L) = > ;_; A\i(G) = 2E, where E is the
number of edges. Lemma 1 implies that there is at least one strict inequality:
0 < X2(9) — A2(Garop) < 2. The inequality indicates that reducing the edges will
decrease the algebraic connectivity.

To demonstrate the impact of different edge dropping strategies on algebraic
connectivity, we first consider adding an edge e;; to the graph, where e;; ¢ £. Let
q; be a one-hot vector with the ¢-th position as 1 and all other positions as 0. We
obtain the Laplacian matrix L,qq after adding an edge. We have L,qq = L+ AL
and AL = AD — AA, where AD is the augmented degree matrix and AA is the
adjacency matrix. We have AD = ¢;q] + ¢;q] and AA = qiq] + q;q]. Then we
obtain Laaqa = L+ (¢; — ¢;)(¢; — ¢;)7 which indicates that after adding an edge,
L.qq is composed of the original Laplacian matrix L and a rank one matrix.
Similarly, we can obtain that after dropping an edge, the Laplacian matrix of
graph G becomes Lyemove = L — (¢; — ¢;)(¢; — ¢;)T. By combining the above
equation [21] with the previous part A2(G) = min||w\|2:1xTLx and letting u
represent the eigenvector corresponding to the algebraic connectivity of L, we
can compute the upper bound of the algebraic connectivity after dropping an
edge. A2(Garop) < 2T Lz = X2(G) — (ui — u;)% When we drop a set of edges
Em C &, the upper bound of the algebraic connectivity becomes A2(Garop) <
e La = Xa(G) — Xop—i jyes,, (ui — uj)®. It can be observed that dropping the
top edges m based on the eigenvector corresponding to the algebraic connectivity
result in the most significant decrease in algebraic connectivity and slowing the
convergence speed of over-smoothing.

Degree-Based Sampling. Following Wang et al. [28], we propose a simple and
computationally less complex strategy to reduce algebraic connectivity: remov-
ing edges connected to high degrees. This results in a larger change in \2(G).
Calculating eigenvector corresponding to algebraic connectivity and finding the
optimal edge dropping strategy computationally is infeasible. Balancing between
not disrupting important substructures in the graph during the edge dropping,
which can lead to a decrease in the performance of graph neural networks, and
slowing down the convergence rate of over-smoothing as much as possible is
desirable. Meanwhile, nodes with low degrees or nodes connected to nodes with
high degrees can only receive limited information or receive a lot of mislead-
ing information. Therefore, we use node degree as a metric to drop edges. We
perform node-degree-based sampling on the adjacency matrix, where edges are
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randomly dropped based on the size of node degrees. The higher the degree of a
node, the greater the probability that the edges connected to it will be dropped.
The formula for node degree-based sampling is as follows:

Afit) ~ DegreeSample(A, D, p) @

Here, p denotes the dropping probability, which varies with the change in graph
neural network layers.

cos(H®), H(T)

ﬁ E normalize

Fig. 2. Using cosine similarity to calculate node feature similarity.

Node Feature Similarity Sampling. We propose a method of edge drop
based on node feature similarity, called node feature similarity sampling. It uses
cosine similarity as the distance metric for node features between layers of the
network to dynamically adjust the probability of dropping edges, thus learning
both feature and structural information from the original graph data. We define
the feature vectors of node i and node j as hz(-k) and hg-k). The cosine similar-
ity of node features is linearly correlated with message passing between nodes.
The more dissimilar the feature similarity, the lower the probability of exchang-
ing information between them. The similarity calculation schematic diagram is
depicted in Fig. 2. We define the similarity of the no%e)s between node i and node
k

j in the k-th layer of the graph neural network as 8j

k k
o _ Y mg)

R e S L 5
R R “

In homogeneous graphs, it can measure the similarity between node fea-
tures. Nodes with more similar features are more likely to belong to the same
category. To facilitate subsequent network processing, we normalize the node
feature similarity. After passing the normalized node feature similarity matrix
and the adjacency matrix sampled based on node degrees obtained in the previ-

(k)

ous section are passed through an indicator function I (sij > 7). The adjacency

matrix obtained after sampling with our node feature similarity is

A®

e o (F)
k 1, ifs;.” >~ and Agegij) >0
drop(i,j) I(S( ) >7) = { ’ des(i:d) (6)

* 0, otherwise
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Here, v is a threshold value varying from datasets. This equation implies that
edges between nodes with different characteristics are more likely to be removed.

The node feature sampling method can alleviate the over-smoothing problem
by slowing the rate of information exchange between nodes of different types.
Compared to graph neural networks using subgraph sampling [36], our node fea-
ture sampling can enhance the expressive power of graph neural networks while
reducing computational complexity. It also does not require manual construc-
tion of the corresponding subgraphs, which offers better versatility. Compared
to DropEdge, our method not only mitigates the over-smoothing problem but
also further slows down the convergence speed of over-smoothing. Furthermore,
it retains more information on the characteristics of the input layer nodes, thus
enhancing the performance of graph neural networks.

In terms of heterogeneous graphs, when the adjacent nodes belong to dif-
ferent types, the features of the two nodes propagate misleading information,
which makes the nodes cannot distinguish between them. In graph representa-
tion learning, the meaning of node representations in each dataset is different,
and there are no unified tokens similar to those in computer vision and natural
language processing. Our node feature sampling method can still enhance the
performance of graph neural networks.

Overall Framework. After the analysis of the three parts above, the final ver-
sion of SimDrop is the integration of the Degree-based sampling and Node feature
similarity sampling. The detailed algorithm design is shown in Algorithm 1.

Algorithm 1 SimDrop

Input: The adjacency matrix A;The degree matrix D;The feature matrix H;The num-
ber of layers K;The drop rate p,the threshold ~;

Output: The set of Dropped adjacency matrices A = {A

: Initialize A = {};

: for layer K=1,2,--- ,k do

Compute S®) = cos(H® HPT);

Agg ~ DegreeSample(A, D, p);

() Ak

drop * drop};

Aoy = 1(8™, AL );
AUALL;
end for

P> gk Wy

return A
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5 Experiment

5.1 Experiment Setting

In this section, we apply our SimDrop on node classification tasks using five
datasets [13,25,33], including supervised and semi-supervised learning tasks.
Additionally, we perform an ablation study to examine the different components
of our method and analyze the loss throughout the training process.

Table 1. Datasets Statistics.

Dataset Node | Edge Feature | Class | Training/Validation/Testing
Cora(full) 2708 | 5429 1433 7 1624 /542 /542

Citeseer(full) |3327 4732 3703 6 1995/666/666

Pubmed(full) |19717 |44338 | 500 3 11829/3944/3944
Cora(semi) 2708 | 5429 1433 7 140/500/1000

Citeseer(semi) | 3327 | 4732 3703 6 120/500,/1000
Pubmed(semi) | 19717 | 44338 | 500 3 60/500/1000

ogbn-arxiv 169343 | 1166243 | 128 40 90941,/29799/48603

Flickr 89250 | 899756 | 500 7 50%/25%/25%

Dataset. First, we use three publicly available datasets: three standard citation
network datasets, Cora, CiteSeer, and PubMed. For fully supervised datasets,
we divide the dataset into training, validation, and testing sets at a ratio of 60%,
20%, and 20%. Then, we conduct the experiments on the Node Property Predic-
tion of Open Graph Benchmark and Flickr. In semi-supervised experiments, for
Cora, Citeseer, Pubmed and ogbn-arxiv, we evaluate the performance with accu-
racy, and for Flickr, we evaluate with micro-F1 scores. The statistics of overall
datasets are summarized in Table 1.

Configurations. In our experiments, the standard GCN model is combined
with backbone layers to construct our architecture. The overall experimental
design diagram is depicted in Fig. 1. Batch normalization and /5 normalization
are applied in the training process. Additionally, we use ReLU as the activation
function, and the proposed architecture is optimized using the Adam algorithm.
For every dataset and different layers, the number of learning rate, dropout
rate and the number of epochs is selected based on the highest cross-validation
accuracy.
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Baseline Methods. We compare our method SimDrop with other alleviat-
ing over-smoothing methods, including GCN [16], Dropedge [24], Jknet [31],
ResGCN [17], DenseGCN [17], Inception GCN [26]. We apply these methods to
various GCNs as baseline models and compare their performance across different
datasets in both fully-supervised and semi-supervised tasks.

Backbone Models. We apply the SimDrop method to three popular network
architectures: ResGCN, Inception GCN, and DenseGCN. For ResGCN, resid-
ual connections at each layer are used to capture effective information from the
early layers of the network. For DenseGCN, dense connectivity between layers is
leveraged to improve information flow in the network and capture node feature
information effectively. For InceptionGCN, an Inception structure is employed
to decompose convolutional layers and regularize to enhance computational effi-
ciency. We adopt the DropEdge method and our SimDrop method to three net-
work architectures: ResGCN, Inception GCN, and DenseGCN. And we compare
and analyze their performance with GCN and JKnet.

5.2 Experimental Results and Analysis

A Node Classification Analysis. Table 2 summarizes the results for the deep
models with varying layer counts in fully-supervised tasks. For the node classifi-
cation task, performance is evaluated by accuracy on three public datasets: Cora,
CiteSeer, and PubMed. We can see that the impact of SimDrop methods varies
across different datasets, backbone models, and layer configurations. For exam-
ple, SimDrop methods on DenseGCN obtain an average accuracy improvement
of 1.9% on Pubmed in 32 layers, while 0.1% on Citeseer in 32 layers. It is evi-
dent that SimDrop consistently outperforms NoDrop and DropEdge in enhanc-
ing performance across all backbones and varying layer configurations. When
using DenseGCN or IncepGCN as the backbone, SimDrop generally maintains
stability with increasing layers and nearly achieves the best performance.

Table 3 summarizes the results in semi-supervised tasks. We can see the clas-
sification performances of our SimDrop method outperform the baseline methods
on semi-supervised tasks. Especially with a 1% improvement on the Cora dataset
comparing with NoDrop method and DropEdge. A reasonable explanation is
that our SimDrop method can learn more feature and structural information
from graph data and slow down the convergence speed of over-smoothing.

B Training Process Analysis. We conduct experiments on various graph
neural networks to analyze the loss throughout the training process. Figure 3
illustrates the variation of loss throughout the training process of using different
graph neural network strategies in Cora, Citeseer, and Pubmed dataset. The
experimental results indicate that our SimDrop strategy achieves the fastest
convergence and the most stable performance among all methods.
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Table 2. Testing accuracy(%) on full-supervised tasks.

Dataset | Model 2 layers | 4 layers | 8 layers | 16 layers | 32 layers | 64 layers
Cora GCN 85.6 85.1 78.6 82.4 72.5 51.6
ResGCN - 84.3 84.6 84.2 85.5 66.8
DenseGCN - 85.6 84.2 85.4 84.3 84.2
Incep GCN - 82.6 83.0 84.4 84.1 84.3
ResGCN Drop | — 86.1 86.6 84.1 61.9 31.8
DenseGCN Drop | — 87.2 86.6 86.2 87.6 86.8
incep Drop - 86.7 85.9 87.6 86.3 87.2
JKNet - 84.3 83.5 84.1 84.2 85.2
Res SimDrop - 86.8 87.1 85.0 62.2 31.9
Dense SimDrop | — 87.6 86 86.2 87.1 87
Incep SimDrop |— 87.1 86.6 87.6 86.9 87.8
Citeseer | GCN 75.8 76.2 74.8 65.3 58.4 43.2
ResGCN — 75.1 74.4 74.7 75.8 70.9
DenseGCN — 75.6 76.1 76.1 74.8 76.2
Incep GCN - 75.7 75.5 74.7 75.3 75.2
ResGCN Drop | — 7 76.9 78.7 60.9 23.1
DenseGCN Drop | — 77.6 7.4 78.2 77.4 78.2
Incep Drop - 76.5 777 77.5 77.6 78.6
JKNet - 72.3 73.4 72.2 72.4 72.3
Res SimDrop - 77.1 7T 78.1 61.9 23.4
Dense SimDrop | — 76.8 78.4 78.4 77.5 78.9
Incep SimDrop |— 77.4 77.4 77.5 77.8 78.0
Pubmed | GCN 86.5 86.8 85.4 85.2 85.3 78.4
ResGCN - 85.9 86.8 87.1 85.5 84.6
DenseGCN - 86.6 86.5 86.5 86.6 OOM
Incep GCN - 86.2 86.7 86.9 86.6 OOM
ResGCN Drop | — 87.4 87 87.1 82.6 50.6
DenseGCN Drop | — 87.5 86.6 87.5 85.3 OOM
Incep Drop — 87.1 87.2 87.6 86.3 OOM
JKNet — 87.5 86.6 86.4 86.6 86.5
Res SimDrop - 87.6 87.1 87 83.2 69.1
Dense SimDrop | — 87.5 87.5 87.7 87.2 OOM
Incep SimDrop |- 86.9 88.0 87.8 86.7 OOM

C Ablation Study. In this section, we explore different components of our
SimDrop. Figure4 presents the results of an ablation study that assesses the
contributions of our two techniques based on the ResGCN model: degree-based
sampling and node feature similarity sampling. The ND results indicate that
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Table 3. Testing accuracy(%) on semi-supervised tasks. micro-F1 scores for Flickr
dataset.

Model Dataset

Cora | Citeseer | Pubmed | ogbn-arxiv | Flickr
GCN 80.7 | 69.6 77.5 70.46 50.10
ResGCN 78.7 164.3 75.2 70.55 50.09
DenseGCN 78.9 |66.4 76.2 70.93 50.07
IncepGCN 68.2 | 66.3 76.4 70.74 51.64
ResGCN Drop 79.4 | 69.5 76.2 70.66 51.78
DenseGCN Drop 81.4 |66.9 76.4 70.83 51.66
Incep Drop 80.4 |67.7 68.3 70.77 51.65
ResGCN SimDrop |81.1 | 70.0 7.2 70.89 51.90
DenseGCN SimDrop | 82.4 | 69.1 76.7 71.01 52.07
Incep SimDrop 81.9 |68.3 78.0 71.23 51.94

Fig. 3. Training loss on different datasets. Left: Cora; Middle: Citeseer; Right: Pubmed.

ResGCN helps mitigate the over-smoothing issue. However, compared to ND,
the DD results reveal that degree-based sampling benefits shallow layers but
falls short for deeper layers. Additionally, when combined with node feature
similarity sampling, the model shows significant improvement, highlighting the
importance of learning node feature information for deep GCNs.

Fig. 4. Accuracy comparison of different components. Left: Cora; Right: Citseer (ND:
NoDrop. DD: Degree Drop. FD: Feature Drop. SD: SimDrop).
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6 Conclusion

In this paper, we theoretically analyse the impact of algebraic connectivity and
edge dropping on alleviating the over-smoothing problem and propose two effec-
tive edge dropping methods inspired by theoretical analysis: edge dropping based
on node degree and edge dropping based on node feature similarity. Edge drop-
ping based on node degree can slow down the convergence rate of over-smoothing,
while edge dropping based on node feature similarity can enhance the expressive-
ness of deep graph neural networks. Our overall framework, SimDrop, combines
these two methods and applies them to node classification tasks in both full-
supervised and semi-supervised learning settings. Experimental results demon-
strate that our method achieves better performance in both shallow and deep
models.
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Abstract. Quantum mechanics emerge as a promise for the future of
computing, broadening the horizons for solutions concerning complex
tasks, e.g., NP-hard problems. Alongside quantum computing, machine
learning has become indispensable. This paper explores the potential
integration of quantum computing principles into the Optimum-Path
Forest (OPF), a graph-based framework comprised of solutions for
machine learning, optimization, and image processing. We are partic-
ularly interested in the supervised OPF approach, which elects the most
representative samples for each class, aka prototypes, as the connected
samples from different classes in a minimum spanning tree (MST) com-
puted over the training set. By harnessing quantum parallelism and
superposition, this paper introduces a new approach to identifying pro-
totypes employing a quantum-based Traveler Salesman Problem (TSP)
algorithm, which provides an alternative to computing MSTs and yields
a hybrid version of the OPF classifier. The experiments on established
datasets demonstrated the promising potential of this approach while
also underscoring the necessity for further research in this field.

Keywords: Quantum Computing - Machine Learning - Quantum
Optimization - Optimum-Path Forest.

1 Introduction

The functioning of the human brain has intrigued many scientists since ancient
times. The study and replication of cognition for the computational environ-
ment begin with modeling the first artificial neuron by Warren McCulloch et
al. [16]. From this point on, the field of artificial intelligence and machine learn-
ing (ML) gained strength and prominence until becoming fundamental in today’s

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15307, pp. 85-98, 2025.
https://doi.org/10.1007/978-3-031-78183-4_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78183-4_6&domain=pdf
http://orcid.org/0009-0003-7811-9116
http://orcid.org/0000-0003-3297-905X
http://orcid.org/0000-0003-3529-3109
http://orcid.org/0000-0003-0594-3764
http://orcid.org/0000-0001-5458-3908
http://orcid.org/0000-0001-9592-262X
https://doi.org/10.1007/978-3-031-78183-4_6

86 M. A. K. Miranda et al.

activities. However, although artificial intelligence has broad applicability, it is
constrained to highly complex problems on traditional computers and issues
involving the manipulation of large volumes of data, which impose a challenging
task even for the supercomputers available today.

Parallel to ML, quantum computing has recently received attention follow-
ing the introduction of the first quantum computers, which are now a subject of
interest for businesses and academics alike, with significant investments in this
field. Quantum computers leverage fundamental principles of quantum mechan-
ics, such as superposition and entanglement of states, which are crucial for mod-
eling physical phenomena observed in quantum mechanics [4]. Theoretically, this
paradigm could help solve problems that traditional computers cannot tackle in
a feasible amount of time, e.g., large number decomposition into prime factors,
searching for elements in unordered lists, and optimization problems. Such cir-
cumstances have encouraged huge and increasing investments from big compa-
nies in developing and advancing this technology.

Recent research indicates that quantum computing may address certain
obstacles faced in machine learning [1,8,26], giving rise to a new study area
known as Quantum Machine Learning (QML). By integrating concepts from
physics, mathematics, and computing, QML broadens the scope of challenges
that can be tackled by machine learning. It also has the potential to decrease
computational load, enhance classification rates, and significantly improve the
efficiency of these algorithms.

While quantum computing holds great promise in theory, its practical appli-
cation in complex scenarios is hampered by the instability of its atomic units
(qubits) and the high resource demand for information representation. Fortu-
nately, researchers have developed hybrid machine learning models that blend
quantum and classical algorithms to overcome these limitations. By harnessing
the power of quantum concepts, these models can significantly improve the per-
formance of machine learning. Ongoing efforts to adapt conventional ML tech-
niques to the quantum realm and develop hybrid models hold great potential for
expanding the field in novel and exciting directions.

This work proposes a hybrid version of the Optimum-Path Forest (OPF),
a framework for designing pattern classifiers based on graphs. We are particu-
larly interested in the supervised OPF with a complete graph [19,20], which has
been applied to various applications. Some of them include the description of
textures in images [18], diagnosis of laryngeal diseases [21], and classification of
fingerprints [17], among others [22,23,28].

In short, it implements a novel OPF version that replaces the standard pro-
cedure of computing the prototypes, i.e., the nodes representing each class from
the training set, by a quantum implementation of the Traveling Salesman Prob-
lem (TSP) algorithm. Experiments conducted over a limited! amount of samples
from the Boat dataset shows that the hybrid approach can obtain similar results

1 A restricted number of samples is imposed due to the limitation of actual quantum
computers.
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under a quantum environment. Therefore, the main contributions of this paper
are described as follows:

OPF-based algorithms perform pattern classification through a reward-
competition process, in which key nodes called prototypes compete among them-
selves to conquer the remaining samples. What differentiates one OPF from
another concerns the amount of labeled data and the problem itself. Regarding
supervised learning, the OPF with a complete graph is the most used approach
due to its straightforward formulation. The prototypes found by a minimum
spanning tree (MST) over the training set are the nearest samples from different
classes, further used to start the competition process.

The fundamental idea involves a quantum-inspired TSP algorithm to
encounter the OPF prototypes during the training phase, i.e., the most repre-
sentative samples belonging to distinct classes. Since TSP is NP-hard, quantum
computing can solve it by taking advantage of parallelism and processing multi-
ple possibilities simultaneously. Experiments conducted on a limited number of
samples? from well-known datasets showed that the proposed hybrid approach
could achieve similar or superior results in a quantum environment.

The main contributions of this article are described below:

— To introduce a hybrid version of the Optimum-Path Forest classifier that
figures prototype computation using quantum computing;

— To implement a novel approach to compute OPF prototypes using Traveling
Salesman Problem algorithm; and

— To introduce a hybrid OPF classifier that combines traditional and quantum
computing elements.

The remainder of this paper is organized as follows. Section 2 provides the
theoretical background concerning the supervised OPF and quantum machine
learning, while Section 3 describes the proposed approach. Following, Section 4
describes the datasets and experimental setup. Finally, Sections 5 and 6 state

the experimental results and conclusions, respectively.

2 Theoretical Background

2.1 Optimum-Path Forest

Optimum Path Forest is a graph-based framework for machine learning that
models dataset samples as the nodes of a graph whose arcs describe the rela-
tionship between each pair of instances. The supervised version proposed by
Papa et al. [19,20] arranges the training instances as a fully connected graph
whose edges are weighted by the distance between pairs of vertices. Further, the
model computes an MST by adapting Prim’s algorithm, and the nodes connect-
ing samples from distinct classes are marked as prototypes inserted into a set P.
Finally, the prototypes compete among themselves in a conquering-like fashion

2 A restricted number of samples are imposed due to the limitation of real quantum
computers.
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to offer each remaining vertices an optimum cost computed through the f,q.
function:

Fmaa((8)) = {3—00 i(ftlslefvv?ias’e
Jmaz(¢s - (8, 2)) = max{ fraz(ds),d(s, 2)}, (1)

where s and z are arbitrary nodes, ¢ stands for a path rooted in P and the ter-
minus at sample s, and ¢; - (s, z) stands for the concatenation between the path
¢s and the edge (s, z). Moreover, d(s, z) represents the distance between sam-
ples s and z. Finally, fi,4.(¢s) denotes the maximum distance among adjacent
samples in the path ¢;.

The training step is then performed by assigning an optimum cost C(z) to
each sample z in the training set D:

C(2) = iy {max{C(s), d(s, 2)}}, (2)

where s represents the instance that conquered z.

The classification step computes the distances between each test instance
and every training node for further computing the minimum cost, similarly to
Equation 2. Finally, the test sample is labeled with the same label as the proto-
type associated with the path that offered the optimum cost. This procedure is
repeated until the entire test set is covered.

2.2 Quantum Machine Learning

Quantum Machine Learning regards distinct research areas dependent on the
combination of resources it consumes, i.e., classical and quantum data and com-
puting strategy [25]. The most explored area uses classical data and quantum
computing, namely the classical-quantum approach, which is usually employed
to encompass optimization problems. Such a procedure usually employs quan-
tum annealing, i.e., a method that considers intrinsic quantum properties to
solve optimization and probabilistic sampling problems.

Quantum annealing [5] is a process that models a problem as an energy land-
scape and prepares a ground state composed of n qubits. Further, it employs the
qubits’ superposition and entanglement properties to simulate different energy
states through the natural evolution of quantum physics and find the configu-
ration whose system’s energy is the lowest. The technique represents the input
data using Hamiltonians, a mathematical tool capable of describing the total
energy of a physical system.

Hamiltonians can be computed through the Quadratic Unconstrained Binary
Optimization (QUBO) [13], a problem whose solution is given by a binary vector
x € R" that optimizes the following function:

min 2! Qz, (3)

where @Q is a square symmetric matrix of order n of coefficients.
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Most machine learning techniques are based on optimization problems, i.e.,
such algorithms are designed to minimize an objective (cost) function. In graph-
based ML models, it is feasible to express the nodes’ connectivity using qubits
|0) and |1) through a binary sequence optimized by QUBO to represent the
presence or absence of each edge. QUBO is also helpful in solving traditional
graph problems like maximum cut, binary linear programming, graph coloring,
backpack problems, and traveling salesman problems.

Usually, QUBO problems can be solved using the Quantum Approximate
Optimization Algorithm (QAOA) 3], a hybrid variational algorithm developed
to cope with combinatorial optimization algorithms. However, a more recent
method called Feedback-Based Quantum Optimization (FALQON) [15] shows
itself more favorable for the task due to its advantages regarding the guaran-
tee of convergence by avoiding possible crashes in local minima. The algorithm
implemented using variational quantum circuits is based on optimal path theory
and the Trotter-Suzuki Theorem [12].

3 Quantum-inspired Prototype Computation

This paper discusses the challenge of prototype selection in quantum computing.
The conventional method of selecting prototypes in the OPF classifier involves
the MST. However, adapting it to the quantum context can be challenging since
it requires graph optimization. We are unaware of any paper that presents an
efficient approach to computing an MST in the quantum domain. The paper
proposes a novel approach to solving TSP using quantum algorithms, leveraging
that a TSP visiting all nodes once creates a Hamiltonian cycle that includes
all edges of an MST. Hence, one can simulate the TSP graph into an MST by
eliminating one edge from each cycle.

The TSP models a graph whose nodes represent cities and whose edges denote
the distance between each pair of nodes. Given an origin and a destination, the
method’s objective is to find the lowest-cost route that visits all cities exactly
once and returns to the origin. Regarding computational complexity, it is classi-
fied as an NP-hard problem, which means no known algorithm can provide the
global best solution in polynomial time.

Let G = (V,E) be a graph where V and E denote the set of vertices and
edges, respectively, and each edge (v;,v;) € E has an associated weight w;;, i.e., a
distance between its corresponding vertices v;, v; € V. The TSP can be described
using a binary sequence that indicates whether the edge (v;, v;) is present (e;; =
1) or not (e;; = 0) in the problem solution. One can mathematically formulate
this problem through the minization of the following cost function:

2
C(z) = Zzwijeij + ZZeij -n

i g>i i j>i

' 2 (4)
+ DY D e -2 ;

i\ j#i
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where the first term concerns the lowest-cost path, the second ensures that the
number of edges must equal the number of nodes n, and the third guarantees
that each vertex must contain two edges.

The TSP can be adapted to the quantum computing domain by adjusting
the cost function presented in Equation 4 in Hamiltonian terms and representing
the variable e;; as Zij, described as follows:

2

chzzwijzij+P1 Zzzij_n

i j>i i j>i

+ P Z ZZij—Q )

% Jj#i

where P; and P, are ad-hoc parameters (weights for each restriction), and Z is
an operator that plays the role of the quantum computing®. The Hamiltonian
H_. describes all graph configurations and those that do not meet the above
restrictions will be penalized so that they are not considered possible solutions
when searching for the lowest energy state [10].

4 Methodology

This section describes the datasets and experimental setup employed to evaluate
the proposed approach.

4.1 Datasets

1. Boat [14]: a synthetic dataset that comprises 100 samples distributed into
three classes, each represented by two variables. The choice is motivated by
the ease of manipulation and visualization.

2. Breast Tissue [24]: a small real-world dataset containing 106 breast tissue
instances represented by nine features distributed into six irregular pattern
classes, i.e., carcinoma, fibro-adenoma, mastopathy, glandular, connective,
and adipose.

3. Heart [7]: a real dataset containing 303 samples represented by 13 features
and distributed across two classes.

4. Diabetes [11]: areal dataset containing 768 samples represented by 8 features
and distributed over two classes.

5. Ionosphere [27]: a real dataset containing 351 samples represented by 35
features and distributed over two classes

3 Due to the lack of space, we did not detail the formalism concerning quantum oper-
ators.
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6. LungCancer [6]: a real dataset with 59 samples represented by 6 features
across two classes.

Processing large matrices poses hardware limitations, limiting the usage of the
complete datasets. We randomly selected eight samples from each dataset only,
respecting the label proportions. Four were used to compose the training set,
and the remaining were part of the test set.

4.2 Experimental Setup

This work employs the OPFython [2], a Python-based library that implements
the OPF framework. The supervised OPF addressed in this manuscript models
the training set as a complete graph whose adjacency relationship is established
by the Euclidean distance between the vertices. Afterward, the graph nodes
are normalized to assemble the Hamiltonian described in Equation 5, which is
further minimized using FALQON [29]. The prototypes (connected samples in
the TSP graph solution with different labels) are then selected, and the standard
(classifical) OPF training procedure is performed. Figure 1 depicts the proposed
approach.

After the dataset is partitioned into four samples for training and four for
testing purposes, the Quantum TSP replaces the standard procedure to gen-
erate the prototypes. The method employs the QuTip [9] library to assemble
the matrix operations and the Hamiltonian, whose weights P, = 9 and P, =7
(Equation 5) were selected through a grid search in the range {2, 3, ...,30}. Fur-
ther, the FALQON algorithm is performed during 10, 000 iterations to optimize
the Hamiltonian, i.e., to minimize the system’s energy state.

Finally, the prototypes are derived from the closed Hamiltonian cycle
obtained in the previous step. This selection process is akin to the standard
OPF, whereby nodes connected to samples from distinct classes are designated
prototypes. The algorithm then proceeds to the subsequent training phase, which
assembles the forest of optimum paths.

The procedure was constructed using Python 3.11 with the support of the
OPFython libraries in version 1.0.12, Qiskit 0.43.0, and Qutip 4.7.1. Further-
more, the Pipenv virtual environment manager was used to control the project’s
dependencies. The experiments were conducted using a Windows 10 system run-
ning on an AMD® Ryzen 5 3500U processor with 16 GB of memory and a
Radeon® 540X Series GPU.
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Fig. 1. The pipeline describes the OPF training using the TSP to find prototypes
where the light green module runs in a quantum computer.

5 Experiments and Results

The experiments involved two scenarios: (i) the first evaluates FALQON’s con-
vergence to the minimum energy state and its compatibility with the TSP graph
solution, and (ii) the second scenario assesses the model’s effectiveness.

5.1 Convergence Analysis

The main focus of these experiments is to verify whether the FALQON algorithm
converges to the lowest energy state and whether this state adequately represents
the solution graph of the TSP problem. Due to the extensive computational
complexity demanded by large matrix computations in a quantum context, the
experiments were repeated 100 times per dataset using a considerably reduced
number of randomly selected balanced instances per execution, i.e., four samples
for training and four for testing purposes.

In the first experiment, we considered the Boat dataset under two scenarios:
eight and ten samples. Figure 2a depicts the convergence curve, i.e., the system’s
energy is minimized throughout the iterations. Furthermore, Figure 2b indicates
the probability associated with each graph model. Since we have a graph with
four nodes, the total number of edges is six for a complete graph. Considering
QUBO formulation assigns a binary value to each edge, i.e., it will compose the
solution or not, we have 26 possible solutions (states). The one with the highest
probability is the solution that minimizes the system’s energy. It is worth noting
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that both the classical and the quantum models achieved accuracy of 100%.
While classical OPF took an average training time of 0.5 seconds, its counterpart
quantum version required 27 seconds.
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Fig. 2. (a) Convergence analysis and (b) the probability associated to each possible
solution (state) for the first scenario.

An additional experiment considered the Boat dataset with ten samples,
i.e., five for training and five for testing purposes. Figures 3a and 3e illustrate
the convergence curve and the probability associated with each state (now we
have 210 possible solutions). Both models achieved an accuracy of 50%. Training
averaged 0.96 seconds for the classical OPF and 5 hours for the quantum version.
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Fig. 3. (a) Convergence analysis and (b) the probability associated to each possible
solution (state) for the second scenario.

The second experiment considers all datasets mentioned earlier to evaluate
the efficiency of quantum TSP algorithms. Table 1 presents the averaged accu-
racy obtained for each dataset, and Table 2 shows the training time for each
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OPF version. It is essential to highlight that the number of executions for the
quantum algorithms was 5,000, and each model was trained 25 times on each
dataset to calculate the averaged accuracy.

Table 1. Average accuracies for each dataset and algorithm

Traditional OPF Quantum OPF (TSP) )

Boat 0.85 0.79
Breast Tissue 0.75 0.76
Heart 0.58 0.53
Diabetes 0.63 0.56
Tonosphere 0.62 0.54
LungCancer 0.83 0.7
Average 0.6866 0.6466

Table 2. Average training time for each dataset

Traditional OPF Quantum OPF (TSP)

Boat 0.01592 19.55148
Breast Tissue 0.01826 25.65221
Heart 0.01989 15.63850
Diabetes 0.02731 24.67932
Tonosphere 0.02542 24.30720
LungCancer 0.02202 25.43112
Average 0.02147 22.543305

Although the classical version of OPF achieved the best accuracy and training
times, the quantum model also presented similar accuracy. However, in terms
of execution time, quantum algorithms exhibited longer average times due to
the need to simulate the algorithm on a conventional machine. It is important
to note that implementing the TSP algorithm requires controlling the collapse
of the quantum state after the simulation, which can be challenging and time-
consuming. We also highlight the main idea of this manuscript is not (yet) to
present a quantum-based approach that can be more efficient than classical OPF
but to show its viability instead. We expect these results to be more efficient
when more robust quantum computers are available.

5.2 Discussion

One can observe that classical and TSP-based OPF versions achieved similar
results in the first set of experiments, and quantum TSP was able to find the
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minimum energy solution. Although the classical and quantum models did not
reach 100% accuracy in the second scenario, i.e., the Boat dataset with five sam-
ples for training, they exhibited similar behavior. Concerning the entire dataset
experiment, both versions achieved close effectiveness, with classical OPF being
much faster. Again, we have no access to native quantum computers, i.e., all
experiments were simulated in a classical computer, affecting TSP-based OPF
efficiency.

Extensive research efforts are dedicated to optimizing algorithms and increas-
ing their efficiency. Quantum searches, such as Grover’s algorithm, have been a
particular area of focus, as they can significantly accelerate search processes in
some instances. This method could enhance the performance of MST algorithms.
However, perfecting its practical application remains challenging, as current out-
comes are less satisfactory than those produced by classical computing. More-
over, quantum computing technology is still in its early stages, which means
that even promising theories may need more practical implementation due to
technological constraints. Despite these challenges, the FALQON algorithm has
consistently achieved optimal results for the TSP in various test scenarios. Its
reliability makes it a valuable tool for finding optimal solutions.

Furthermore, the reliable results from these experiments underscore the prac-
tical and valuable applications of quantum modules in optimization problems,
especially as quantum technology becomes more readily available. This research
implies that the quantum method exhibits excellent potential despite the con-
straints of present simulation technology. As quantum technologies progress, the
integration of algorithms such as FALQON holds even greater promise, given
the possibility of its full deployment instead of the simplified approach.

Regarding the computation burden, training models using the quantum mod-
ule take considerably longer than the classical module, mainly when dealing with
the five-vertex graph. This is because the module is ran and simulated on a clas-
sical computer rather than being implemented through quantum circuits that
are parameterized on quantum hardware computers.

6 Conclusions

This study has demonstrated that it is feasible to integrate quantum imple-
mentation elements into machine learning models. Although access to quantum
computers is still limited, adapting these models to the quantum context can
significantly enhance performance and pave the way for promising future appli-
cations, thereby advancing research at the intersection of quantum computing
and machine learning.

Upon careful analysis, this work successfully achieves its intended purpose by
exploring the fundamental principles of quantum computing and optimization
and utilizing the OPF classifier, which boasts a multitude of practical applica-
tions. The outcomes of this research establish a robust groundwork for further
investigation and demonstrate the potential of quantum techniques in augment-
ing conventional machine learning models. These findings imply that leveraging
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quantum methodologies to enhance the OPF classifier can lead to significant
progress at the intersection of quantum computing and classical machine learn-
ing.

6.1 Challenges

During the preparation of the quantum module, several challenges were faced.
The first challenge involved working with large-scale matrices, which presented
a significant technical difficulty. The second challenge related to the FALQON
algorithm simulation using the Qiskit library required additional efforts to handle
this resource effectively.

Moreover, when solving the Traveling Salesman Problem using the QUBO
formulation, each edge in the graph is represented as a qubit, meaning that a
graph with n edges will need n qubits to be properly represented in a quantum
context. However, this approach presents computational challenges, especially
when determining the size of matrices used to describe the operators in the
Hamiltonian. To represent these operators, n matrices of order 2" are required
for every m number of edges in the graph. For instance, a complete graph model
with four samples is formed by six edges, resulting in an operator with dimensions
of 6 x 64 x 64 (six quadratic matrices of order 64). As the number of edges grows,
so does the memory needed to store these matrices, making it challenging to train
models with large datasets.

6.2 Future Works

Based on the study’s results and analysis, several promising directions for future
research can improve the algorithm’s efficiency. Initially, deep research in quan-
tum optimization is essential to enhance the FALQON algorithm so that quan-
tum simulations can be carried out through the Qiskit library and experiments
using real quantum hardware.

Additionally, investigating techniques for manipulating large matrices and
modeling quantum graphs can expand the training set, enabling the analysis
of the quantum solution’s advantage in larger datasets compared to classical
models.
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Abstract. Facial super-resolution/hallucination is an important area of research
that seeks to enhance low-resolution facial images for a variety of applica-
tions. While Generative Adversarial Networks (GANs) have shown promise
in this area, their ability to adapt to new, unseen data remains a challenge.
This paper addresses this problem by proposing an incremental super-resolution
using GANs with knowledge distillation (ISR-KD) for face to cartoon. Previous
research in this area has not investigated incremental learning, which is critical
for real-world applications where new data is continually being generated. The
proposed ISR-KD aims to develop a novel unified framework for facial super-
resolution that can handle different settings, including different types of faces
such as cartoon face and various levels of detail. To achieve this, a GAN-based
super-resolution network was pre-trained on the CelebA dataset and then incre-
mentally trained on the iCartoonFace dataset, using knowledge distillation to
retain performance on the CelebA test set while improving the performance on
iCartoonFace test set. Our experiments demonstrate the effectiveness of knowl-
edge distillation in incrementally adding capability to the model for cartoon
face super-resolution while retaining the learned knowledge for facial halluci-
nation tasks in GANs. The code is released at https://github.com/TRINETRA-
DEVKATTE/ISR-KD-Network.

Keywords: Knowledge Distillation + Incremental Learning - Face to Cartoon
Super-Resolution

1 Introduction

Facial super-resolution/hallucination is a crucial field of research that aims to enhance
the quality of low-resolution facial images for various applications, including security
systems, medical imaging, and entertainment [24]. Generative Adversarial Networks
(GANS) [7] have shown promising results in facial super-resolution tasks [31]. How-
ever, one of the challenges faced by GANs is with their limited ability to adapt to
new and unseen data. This limitation becomes particularly critical in real-world sce-
narios where new facial data is continuously generated, such as in surveillance systems
or video streaming platforms.
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In this work, we address this challenge by exploring the potential of incremen-
tal learning in the context of GAN-based facial super-resolution. Incremental learning
enables the model to continually learn and adapt to new data while retaining knowl-
edge acquired from previous training stages [27]. The proposed Incremental Super-
Resolution with Knowledge Distillation (ISR-KD) aims to develop a unified frame-
work for facial hallucination that can handle various settings, including different types
of faces and different levels of detail. The proposed ISR-KD leverages the benefits of
knowledge distillation [10] to retain the performance of the pre-trained GAN-based
super-resolution network while incrementally learning from new data.

To evaluate the effectiveness of our approach, we consider a pre-trained GAN-based
super-resolution network on the CelebA dataset, which consists of a large collection of
celebrity faces, and then incrementally train the network on the iCartoonFace dataset
for super-resolution, which contains cartoon-style images. The knowledge distillation
loss is utilized for training. The experimental results demonstrate the effectiveness of
knowledge distillation in incrementally expanding the model’s capability for facial hal-
lucination tasks within the GAN framework. The ability to incrementally adapt to new
data and retain previously learned knowledge makes the proposed approach highly suit-
able for real-world applications where the facial data distribution evolves over time. The
major contributions of this paper are as follows:

— This paper proposes an Incremental Super-Resolution technique using Knowledge
Distillation (ISR-KD) for exploiting the existing knowledge for super-resolution on
new types of images without training from scratch.

— The proposed model is originally developed and trained for face super-resolution
and incrementally trained for cartoon face super-resolution.

— The proposed model is able to improve the cartoon face super-resolution perfor-
mance with negligible performance drop for original face super-resolution.

In the remainder of this paper, Sect.2 provides a comprehensive review of litera-
ture while Sect. 3 presents the proposed ISR-KD framework. Sections 4 and 5 describe
the experimental setup and the experimental results, respectively. Finally, concluding
remarks are drawn in Sect. 6.

2 Related Work

2.1 Incremental Learning and Knowledge Distillation

Incremental learning has been widely exploited in computer vision for different appli-
cations to incrementally add new classes to a trained model [30]. Knowledge distillation
is also heavily utilized to transfer the gained knowledge from one model to other model
or one type of data to other type of data [8,21]. Welling et al. [25] proposed herding
selection criterion to choose samples from the previous dataset. The incremental Clas-
sifier and Representation Learning (iCaRL) was proposed by Rebuffi et al. [20] which
first extracts features using new data and then performs classification using nearest mean
of exemplars rule, after that it combines the classification and distillation loss to adjust
the exemplar. End-to-End Incremental Learning (EEIL) was proposed by Castro et al.
[2] to perform feature extraction and classification. EEIL uses a joint loss function for
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classification and distillation. The problem of class imbalance was addressed by Hou
et al. [11] by proposing a unified classifier and incremental learning. Bias Correction
Layer (BiC) was introduced by Wu et al. [27] to handle the last fully connected layer
being biased towards new classes.

Chenshen et al. [26] proposed memory replay GANs which combats catastrophic
forgetting problems by joint retraining and aligning replays. Mengyao et al. proposed
Lifelong GAN [29] which used knowledge distillation to combat catastrophic forgetting
by encouraging the model to produce visually similar results to a pre-trained model.
The Learning without Forgetting (LwF) [15] method proposed by Li and Hoiem in
2017 prevents catastrophic forgetting by adding task-specific parameters to the original
model when learning a new task. However, LWF requires storing parameters for each
learned task and is dependent on the correlation between the tasks. Dhar et al. (2019)
proposed Learning without Memorizing (LwM) [4] that allows a model to learn new
classes incrementally without requiring data from base classes. This is achieved by
restricting the divergence between student and teacher models using attention maps
generated from the gradient flow information.

Though incremental learning is widely used to add new classes and knowledge dis-
tillation is heavily utilized for light-weight models, they are not well explored for super-
resolution over new type of images. In this paper, the incremental learning facilitated by
knowledge distillation is exploited for face to cartoon incremental super-resolution.

2.2 Face Super-Resolution

In recent years, deep learning models have shown outstanding performance for Face
Super-Resolution (FSR) [13]. Hao et al. [5] proposed PCA-SRGAN which pays atten-
tion to the cumulative discrimination in the orthogonal projection space spanned by a
PCA projection matrix of face data to improve the performance of GAN-based mod-
els on super-resolving face images. The Edge and Identity Preserving Network (EIP-
Net) [14] addresses the distortion of facial components by providing edge information
and data distributions. A generative and controllable face super-resolution (GCFSR)
framework is introduced in [9] that reconstructs high-resolution images while preserv-
ing identity information without additional priors. A deep FSR method with iterative
collaboration between two recurrent networks is proposed in [19] by leveraging the
facial landmarks for image recovery and accurate landmark estimation. A supervised
pixel-wise GAN (SPGAN) is investigated in [32] that performs the super-resolution at
different scales while considering face identity. The denoising diffusion probabilistic
models are combined with image-to-image translation to perform super-resolution via
repeated refinement [23].

A pre-prior guided approach is exploited in [18] that extracts facial prior infor-
mation from high-resolution images and embeds them into low-resolution images to
improve face reconstruction performance. Shuang et al. [16] uses a multi-scale deep
network that incorporates both global and local facial priors to generate high-quality
super-resolved face images. First, the feature extraction module extracts multi-scale
features of the input image, then the super-resolution module utilizes these features
along with the facial parsing prior to generate high-quality super-resolved face images.
The 3D facial priors are incorporated into face super-resolution in [12] by exploiting
the facial structures and identity information for improved performance.
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Fig. 1. Proposed face to cartoon incremental super-resolution method using knowledge distilla-
tion. Conv, ReL U, and T_conv represent Convolution Layer, ReLU Layer, and Transpose Con-
volution Layer, respectively. Pre-trained FSR Generator is trained on CelebA Dataset. The incre-
mental FSR Generator is initialized with weights of Pre-trained FSR Generator and trained on
combined CelebA and iCartoonFace images using the proposed method.

A SPARNet architecture is proposed in [3] for face super-resolution by leverag-
ing spatial attention mechanisms to capture key face structures effectively. SPARNet
achieves promising performance, even for very low-resolution faces. A self-attention
learning network (SLNet) is proposed in [28] for three-stage face hallucination. SLNet
leverages the interdependence of low and high-level spaces to achieve better recon-
struction. A CNN-Transformer Cooperation Network (CTCNet) is investigated in [6]
for face hallucination by incorporating a local-global feature cooperation module and a
feature refinement module to enhance the local facial details and global facial structure
restoration.

From the above, it appears that all existing works do not address the face super-
resolution with incremental learning, where the network is trained on one type of faces
and extended to other type of faces. This paper proposes the hallucination for face to
cartoon incremental learning scenario.
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3 Proposed Methodology

3.1 Problem Description

We tackle the problem of incremental super-resolution, where we consider a trained
model to perform super-resolution in source domain, i.e., I LS r — I g r» and incre-
mentally train it to perform super-resolution in target domain, i.e. I7, — Iy, while
retaining the performance for super-resolution in source domain. In the experiments,
the source and target domains are considered as human faces from CelebA dataset and
cartoon faces from iCartoonFace dataset, respectively.

Let Iyr € RMBEXWHRXC be the high resolution image data, and I p €
RILrXwLEXC be the corresponding low resolution image data, where hyr and wy  are
height and width of high resolution images, hy g and wr g are height and width of low
resolution images, and c is the number of channels. The image degradation function ¢
can be described as,

Itr = ¢(Iur,9),

where 6 represents the choice of kernel for down-sampling the image, and the random
noise is added to the image to account for random variations during the down-sampling.

Face super-resolution (FSR) is the inverse process of image degradation for down-
sampling a high resolution image. Mathematically, it is expressed as,

Isp = ¢ '(ILR,6) = GILR,9),

where G is the FSR generator network with parameters 9, and the super-resolved image
is represented by Ispg.

To update the FSR generator using incremental learning, we use a pre-trained FSR
generator Gg trained on the source domain images (I7 , I5, ) as a starting point. Then,
we train our Incremental FSR generator G on a new dataset which is created using a
combination of source domain and target domain images. Using images from a source
domain while incrementally training for a target domain allows us to use knowledge
distillation. This helps us in combatting catastrophic forgetting problem. Knowledge
distillation is achieved by feeding the low resolution images from source domain 17
as input to the pre-trained FSR generator G5 as well as the incremental FSR generator
G, simultaneously and comparing their outputs, i.e., IgR,S = GS(IER) and IgRT =
Gr(IZR), using L2 loss. It Incentivizes the incremental FSR generator G to maintain
its performance on the source domain task. The proposed method is illustrated in Fig. 1.

The incremental learning process combined with knowledge distillation can be for-
malized as follows,

| Lr(Tfg, Gr(If g, 67))+
6optimal = argmin

, (1
o0 | AMra(Gr(IZR,01), Gs(IT R, 0s))

where Lr is the loss function measuring the difference between the super-resolved
images I§p » = Gr(I}g,0r) and the high-resolution images I} in the target
domain. Ly is the knowledge distillation loss function, which measures the differ-
ence between the outputs of the incremental FSR generator G and the pre-trained
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FSR generator G's when fed with low-resolution images 17, from the source domain.
0g represents the parameters of the pre-trained FSR generator Gg which are obtained
by training from scratch on source domain. 1 represents the parameters of the incre-
mental FSR generator G that are first initialized as g and then updated to minimize
the combined loss.

The goal of the above objective is to update the parameters d1 of the incremental
FSR generator G in a way that minimizes the loss functions for target domain images,
while also ensuring that the knowledge distillation loss between G and Gg is min-
imized. It should be noted that dg is kept frozen while we train the incremental FSR
generator Gp in an incremental fashion. The regularization coefficient A balances the
importance of knowledge distillation loss in the overall objective.

3.2 Knowledge Distillation

The proposed method utilizes a pre-trained Facial Super-Resolution (FSR) generator
G's, as depicted in Fig. 1, which has been trained on source domain images from the
CelebA dataset. To ensure the stability of G's during the training process, all layers of
Gs are frozen. This pre-trained FSR generator is then employed for knowledge dis-
tillation to mitigate the issue of catastrophic forgetting. Another generator, denoted as
Gr (Incremental FSR generator), as shown in Fig. 1, is initialised using weights of
(s and incrementally trained on target domain images from the iCartoonFace dataset
and a small subset of images from the source domain CelebA dataset. Low resolution
images from source domain 17 , are given as input to G g and G'r, the generated super-
resolved images I3 R and I s g, are then used for knowledge distillation. Specifi-
cally, knowledge distillation is performed by computing the L2 loss between 1 g r.s and
1 g .- Basically, this loss encourages the generator Gt to match the output of generator
G's for the source domain images, thereby preventing the forgetting of source domain
knowledge by the network Gr.

Moreover, the outputs from bottleneck layers of Gs and G for low-resolution
images from source domain [ f r are also compared using the L2 loss. This compari-
son ensures that the bottleneck representation of G, which is actively being trained on
inputs from the target domain, does not deviate significantly from the bottleneck repre-
sentation of G, which was trained on inputs from the source domain. The knowledge
distillation loss is expressed as follows,

Lra=Lr(I§ps.15p 1) + Lr(he, hs), (2)

where g r,s and [ g r,7 tepresent the outputs of the G's and G, respectively, while
and h; indicate the hidden layer responses from the G'r and Gg, respectively for the
source domain images. L represents the response-based loss, computed on the output
logits, and L denotes the feature loss, computed from the hidden layer.

3.3 Edge Block

Traditional generative networks can lead to blurry images as high-frequency edge infor-
mation is often lost during image resizing and re-scaling. Edge information can be used
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Fig. 2. (left) Edge block having an edge extraction layer. Here, B is the batch size, H is the
height of tensor, W is the width of tensor, c is the number of channels in tensor,  is the scaling
factor and s is the stride variable. (right) A schematic diagram of Discriminator architecture.
Here, s indicates the stride and the list of numbers adjacent to s indicates the stride of convolution
layers grouped with the same number of output channels.

to improve the quality of images generated by face-generative networks by providing
additional guidance to the generator during training. The edge block allows the gener-
ator to better preserve the fine details of the input images, by capturing the structural
differences between two images rather than individual pixels. In addition, incorporat-
ing edge information can help to combat the disadvantages of using L2 loss, which is
sensitive to changes in individual pixels and causes the blurry generated images.

The edge block, as depicted in Fig. 2(left), plays a key role in leveraging edge infor-
mation within the facial resolution network. This block is designed to be computation-
ally efficient and consists of a low-pass filter constructed using an average pooling layer.
The edge block uses a variable kernel size with stride 1 and “SAME” padding to retain
the spatial resolution. The kernel size used during the average pool step depends on the
size of input image, i.e., kernel size as (5, 7, 10) is used for input tensor of size (32 x 32,
64 x 64, 128 x 128), respectively. By applying the low-pass filter, a blurred version of
the original image is obtained. The difference between the blurred image and the orig-
inal image yields the edge map, which highlights the edges present in the image. The
edge map is then concatenated with the original image and propagated to the subsequent
layer. To reduce the number of edge maps to a single-channel representation, a point-
wise convolution operation is employed. This single-channel edge map is subsequently
compared with the edge map of the high-resolution image, which is obtained using the
Canny edge detector [1] by applying adaptive threshold selection [22].

Let Errr be the edge map of the high-resolution image and Fgpr be the edge map
of the generated super-resolved image. The edge loss (Lcqq¢) is computed by compar-
ing the generated edge map (Esg) with the ground truth edge map (£ r). Therefore,
the edge loss (Leqqe) can be defined as:

H W
1 . . N2
Ledge = H<W ;;(ESR(%J) - EHR(ZJ)) ) 3
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where H and W represent the height and width of the edge maps, respectively. Min-
imizing the edge loss encourages the generated image to have similar edge structures
as the high-resolution ground truth image, leading to enhanced sharpness and preserva-
tion of fine details.

3.4 Generator Architecture

The generator network consists of three similar modules with a convolution layer at the
beginning and at the end. Each module is made up of a residual block, transpose convo-
lution layer, ReLU activation function and an edge block. The edge block is shown in
Fig. 2(left). The residual block is made up of two convolution layers, each followed
by a ReLU activation function. The transpose convolution performs a 2x up-sampling.
Overall, the network performs 8x up-sampling. In Fig. 1, refer to Incremental FSR
Generator for detailed visualization. The generator is trained with adversarial loss and
other losses described in this paper.

3.5 Discriminator Architecture

The discriminator is a CNN used to distinguish between real and generated images. It is
illustrated in Fig. 2(right). The network consists of seven convolution layers with leaky
ReLU activation in the first six layers and two fully-connected layers. The input to the
network is a super-resolution image which is passed through the network to determine
if it is a real or a generated image. Initially, the input image passes through the first
convolution layer, which has a kernel size of 3x 3, a stride of 1, and 128 output channels.
The output of this layer is then passed through another convolution layer, which has a
kernel size of 3 x 3, a stride of 2, and 128 output channels. The same process is repeated
for two more convolution layers, each with 256 output channels. After these layers,
the image is passed through two more convolution layers, with 256 and 512 output
channels, respectively. Finally, the image is passed through one last convolution layer,
with 512 output channels. The output of this layer is then flattened and passed through
two fully-connected layers to determine whether the input image is a real or a generated
high-resolution image. The leaky ReLU activation function is used for all convolution
layers with a slope of 0.2 for negative activations. The generator and discriminator are
trained with an adversarial loss function to classify real and generated images.

3.6 Objective Function

The objective function for Face to Cartoon Incremental Super-Resolution using Knowl-
edge Distillation task is given by loss L;sr—k p as,

L1sr—KkD = AdLrkd + AedgeLedge + AadLlad

4)
+>\lce£lce + )\id»cid + Arlﬁrla

where L4, Ledges Lads Lices Lig and L, are knowledge distillation loss, edge loss,
adversarial loss, luminance-chrominance error, identity loss and reconstruction loss,
respectively. Aq represents the combined effect of L and Ly on L4 as shown in Eq.
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(2). X’s are the hyper parameters used as the weights for different loss functions. L¢qge
loss is defined in Eq. (3), respectively. Lqq, Lice, L4 and L, losses are described in
the rest of this subsection.

Adversarial Loss. The adversarial loss function is defined as,
Lad = EINP(I[ER) [10g DT(.r)]
FE.pzllog(l = Dr(Gr(2)))]-

The aim of the Generator is to minimize the second term of equation L,4 as it wants
to fool the discriminator by predicting the generated samples as real. The aim of the
Discriminator is to maximize L,q4 to make sure that the discriminator can accurately
distinguish between samples coming from the probability distribution of high resolution
images p(I% ) and the probability distribution of hallucination images p(IbTRT).

®)

Luminance-Chrominance Error. Luminance-chrominance error occurs in image
super-resolution tasks due to the mismatch between luminance (brightness) and chromi-
nance (color) components.

The difference between two images in the Luminance-chrominance space (i.e.,
YCbCr) is calculated as,

Lice = VAYZ + ACH? + AC?2, (6)

where AY, ACbH and ACr are the difference between super-resolution and high-
resolution images in Y, C'b and Cr channels, respectively. Minimizing £;.. improves
the Luminance-chrominance preservation in the super-resolution images.

Identity Loss. We use the identity loss as the JS divergence which measures the sim-
ilarity between two probability distributions. The generated and ground truth images
are passed through a pre-trained Inception-V1 network to extract 512-class encoded
vectors, denoted as Vgr and Vi g, respectively. The identity loss is calculated as,

1 1
Liqg = iKL(VSR|M) + iKL(VHR|M)a (7

where K L is the Kullback-Leibler divergence and M is the average distribution of Vgg
and Vi i givenas, M = (Vsr+Vur)/2. The identity loss as JS divergence assesses the
similarity between high-level features of generated and ground truth images, measuring
how closely the generated output aligns with the high-resolution images.

Reconstruction Loss. The reconstruction loss is computed as mean squared
error (MSE) between the pixel values of the generated image and the corresponding
pixel values of the ground truth image. Mathematically, it can be expressed as,

1 N

Lni =+ ;(Ism — Inr,)% (8)

where NV represents the total number of pixels in the images, and Isr, and Iy r, denote
the pixel values for the i*" pixel in the generated and ground truth images, respectively.
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Table 1. The Experimental results of the proposed ISR-KD model on different dataset settings.
The % change is obtained by comparing with the model on CelebA dataset trained from scratch.

Dataset ISR-KD Setting Test Dataset [PSNR SSIM FID

CelebA NA CelebA 24.2420 0.7097 44.3340

(From Scratch) iCartoonFace|20.5817 0.5781 113.3130

Cartoon-CelebA-1|0 CelebA and CelebA 23.5397 (12.90%)(0.6817 (13.95%)|74.3212 (] 67.64%)
20,000 Cartoon images|iCartoonFace|20.6933 (10.54%)|0.5991 (13.63%) 98.8749 (112.74%)

Cartoon-CelebA-2(10,000 CelebA and ~ |CelebA 23.9387 (11.25%)|0.7007 (11.27%)|59.3153 (]33.79%)

20,000 Cartoon images

iCartoonFace

20.7170 (10.66%)

0.6007 (13.91%)

98.0944 (113.43%)

Cartoon-CelebA-3

20,000 CelebA and
20,000 Cartoon images

CelebA

23.9526 (] 1.19%)

0.7005 (] 1.30%)

61.3342 (138.35%)

iCartoonFace

20.7170 (10.66%)

0.5998 (13.75%)

99.3709 (112.30%)

Cartoon-CelebA-4

10,000 CelebA and
50,000 Cartoon images

CelebA

24.0124 (10.95%)

0.7047 (10.70%)

57.2367 (129.10%)

iCartoonFace

20.8310 (T1.21%)

0.6092 (75.38%)

87.6397 (122.66%)

Cartoon-CelebA-5

20,000 CelebA and
50,000 Cartoon images

CelebA

24.1403 (10.42%)

0.7096 (10.01%)

58.1901 (]31.25%)

iCartoonFace

20.8387 (11.25%)

0.6072 (75.03%)

91.8344 (T 18.96%)

4 Experimental Settings

Datasets: For experimental analysis, CelebA [17] and iCartoonFace [33] datasets are
used in this paper. The CelebA dataset contains 202,599 face images from 10,177
identities. Whereas, the iCartoonFace dataset contains 389,678 cartoon face images
from 5,013 identities. The CelebA dataset is used as the source domain and iCar-
toonFace dataset is used as the target domain. In this paper, we experiment with five
different combinations (i.e., Cartoon-CelebA-1, Cartoon-CelebA-2, Cartoon-CelebA-
3, Cartoon-CelebA-4 and Cartoon-CelebA-5) by considering varying number of images
randomly from CelebA and iCartoonFace datasets as detailed in Table 1.

Experimental Setup: The data augmentation is performed by center cropping to a
size of 178 x 178 pixels, resizing to a size of 128 x 128 pixels, horizontal flipping with
a probability of 0.5, and rotating with 90 and 270°. The generator and discriminator are
trained using the Adam optimizer with learning rate 1le — 4 and Epsilon le — 8. Betal
and Beta2 for Generator are 0.9 and 0.999, respectively. However, for Discrimina-
tor they are 0.5 and 0.9, respectively. The model is trained for 100 epochs. The model
is trained and tested on an Nvidia Quadro RTX 6000 GPU using the TensorFlow frame-
work. The values of Lr, Lr, and Acqqe hyperparameters are 5, 0.01, and 0.3. However,
Aads> Alces Aid, and A, are set to 1.

5 Experimental Results and Discussion

5.1 Quantitative Results

Table 1 presents the performance of the proposed ISR-KD network. In case of Cartoon-
CelebA-1 dataset combination, where knowledge distillation is not employed as this
dataset does not contain any CelebA face images, we observe an increase in the per-
formance on the iCartoonFace test set, but a significant drop in the performance on the
CelebA dataset. This decline can be attributed to the catastrophic forgetting problem,
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CelebA Dataset (Network was pre-trained on CelebA Dataset) iCartoonFace Dataset (Network was Incrementally trained on iCartoonFace Dataset)
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LR wlo Incremental Learning_with Incremental Learning HR R wilo Incremental Learning_with Incremental Learning HR

Fig. 3. The generated samples depicting the visual effects of using incremental learning in com-
bination with knowledge distillation for facial super-resolution task. The left half of the image
contains the results for CelebA dataset (Source Domain). The right half shows the results after
incrementally training on the iCartoonFace dataset (Target Domain).

which occurs when a model forgets previously learned knowledge while training on new
data. To mitigate this problem, we introduced incremental hallucination using knowl-
edge distillation by re-feeding some images from the source domain (i.e., CelebA face
images) to a pre-trained generator as shown for Cartoon-CelebA-2, Cartoon-CelebA-
3, Cartoon-CelebA-4, and Cartoon-CelebA-5 datasets. This additional step introduces
a knowledge distillation loss, which helps to overcome catastrophic forgetting. As a
result, the performance on the CelebA test set is almost retained, while simultaneously
improving the performance on the iCartoonFace test set. An improvement of 5.03%
on iCartoonFace dataset and a drop of only 0.01% on CelebA dataset is observed in
Table 1 in terms of SSIM on Cartoon-CelebA-5 training dataset setting, which has
20,000 images from CelebA and 50,000 images from iCartoonFace. We note that the
number of samples from Cartoon images also plays an important role as the results
using Cartoon-CelebA-5 setting are better than the Cartoon-CelebA-3 setting, in spite
of having the same number of CelebA samples. Hence, the proposed approach can
effectively deal with the catastrophic forgetting issue in the context of super-resolution.
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Table 2. Similarity between the samples generated without and with incremental learning using
the proposed approach.

Test Results ImagesPSNR  |SSIM |FID
CelebA Test Set  |33.2640/0.9425/18.7007
iCartoon Test Set |28.8210/0.8850/25.3614

5.2 Qualitative Results

Figure 3 illustrates the visual results achieved by combining Incremental training and
knowledge distillation. The ISR-KD model was first trained on the entire CelebA train-
ing set before undergoing incremental training on a small subset of the iCartoonFace
dataset. The left portion of the image displays results for the CelebA dataset. Given that
the model was initially trained on the CelebA dataset and subsequently incrementally
trained on the iCartoonFace dataset, one might anticipate a substantial decline in the
quality of super-resolved (SR) images after incremental training on the iCartoonFace
dataset, an occurrence referred to as catastrophic forgetting. However, by employing
knowledge distillation, we were able to counteract these effects, and the results clearly
indicate that the images with and without incremental learning are nearly indistinguish-
able. The quality of images super-resolved from the iCartoonFace dataset improved after
incremental training. In order to show the degree of degradation on source images and
degree of improvement on target images, we compute the average similarity between the
generated samples without and with incremental learning on both CelebA and iCartoon
test sets in terms of PSNR, SSIM and FID in Table 2. The higher PSNR & SSIM and
smaller FID on CelebA test set shows higher similarity between the generated images
using without and with incremental learning, which means low degradation. The vice-
versa is observed on iCartoon test set which shows more dissimilarity means high
improvement in the generated samples after applying the incremental learning.

5.3 Ablation Study on Loss Hyperparameters

Table 3 presents the results of different loss hyperparameter settings on the Cartoon-
CelebA-2 dataset. We focus on adjusting L and L values in Eq. (2), while keeping
Aedge fixed at 0.3 and other hyperparameters set to 1. The Lz =5 and Ly = 0.01 are
used in other experiments as this setting yields the best performance on the iCartoon-
Face dataset. This choice of hyperparameters shows a good trade-off between maintain-
ing high performance on the CelebA dataset while enhancing the performance on the
iCartoonFace dataset.

5.4 Cross-Dataset Analysis

We also perform the cross-dataset analysis by first training the model from scratch on
50,000 Cartoon images and then applying incremental learning using the proposed
approach on a dataset consisting of 20, 000 Cartoon images from source domain and
20,000 CelebA face images from the target domain. The results reported in Table 4
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Table 3. Performance comparison of various Lz and Lr loss hyperparameter settings in Eq. (2)
on the Cartoon-CelebA-2 dataset with Acqge fixed at 0.3 and all other hyperparameters set to 1.

Hyper-parameters |CelebA Test Dataset  [iCartoonFace Test Dataset
PSNR SSIM FID  [PSNR |SSIM [FID

Lr =15, Lr =0.0424.0721/0.7086|58.051420.6202|0.5920/108.8132
Lr =10, LF =0.0824.1119/0.7082/57.1407120.7152/0.5962(103.8281
Lr=5,Lr=0.08 24.0707/0.7070/57.726220.7109/0.5982/100.7698
Lr=5,Lr=0.04 {24.0941/0.7069/58.028620.7397/0.5991/100.931
Lr=5,Lr=0.01 {23.9387/0.7007/59.315320.717 |0.6007(98.0944

Table 4. Cross-dataset analysis by first training on Cartoon images from scratch and then incre-
mentally learn on CelebA images using the proposed method.

Train Dataset iCartoonFace Test Dataset/CelebA Test Dataset
PSNR |SSIM [FID PSNR [SSIM [FID
Cartoon (From Scratch)20.8648|0.6055/94.0667 {23.6665|0.6834/75.2700
Incremental Learning [20.8364/0.6061/90.7447 24.1532/0.7074/56.3191

Table 5. Comparison of proposed method with joint training approach.

Training Type DataSet PSNR [SSIM [FID

Incremental |CelebA 24.1403/0.7096 [58.1901
iCartoonFace 20.8387/0..6072/91.8344
Joint CelebA 24.2541/0.7197 |59.2465
iCartoonFace 20.7822/0.6049 |97.8604

confirm that the proposed ISR-KD improves the performance on CelebA while main-
taining the similar performance on iCartoon dataset. This analysis also points out that
performing super-resolution on cartoon face images is a difficult problem as compared
to normal face images.

5.5 Comparsion with Joint Training Approach

As shown in the Table 5, the incremental learning approach using ISR-KD achieves
comparable performance on the source dataset (CelebA) compared to the joint train-
ing approach. This is important because it demonstrates that our method can effec-
tively retain knowledge from the original training data. However, on the target dataset
(iCartoonFace), the joint training approach shows slightly better performance metrics
(PSNR, SSIM). However, it’s important to consider the context of our proposed method.
ISR-KD is specifically designed for scenarios where the target data is not readily avail-
able but becomes accessible over time. In such situations, joint training is not feasi-
ble. Our approach offers a solution by allowing for incremental training on the target



112 T. Devkatte et al.

Table 6. Results of Extended ISR-KD model when trained on Cartoon-CelebA-2 dataset setting.

Test Dataset [PSNR SSIM FID
CelebA 24.19 (0.23 |)0.71 (0.31 1) 58.42 (31.76 1)
iCartoonFace|20.74 (0.77 1)/0.60 (3.94 1)/98.02 (13.49 1)

data while minimizing performance degradation on the source data. This is particu-
larly valuable for applications where the model needs to continuously adapt to new data
streams while maintaining performance on previously learned tasks.

5.6 Performance on Extended Network

In this experiment, the incremental FSR generator network is extended by adding six
convolution layers with padding set as SAME to the rear end of the network. The newly
added layers are initialized with random weights. The weights of the other layers are
initialized from the pre-trained FSR generator (Fig. 1). The extended model is trained on
the Cartoon-CelebA-2 dataset. Table 6 shows that increasing the depth of incremental
FSR generator leads to better results for source (CelebA) as well as incremental target
(iCartoonFace) facial hallucination tasks.

6 Conclusion

In this research paper, we addressed the problem of adapting GANs to new and
unseen data in the context of facial hallucination. We combine the incremental learn-
ing and knowledge distillation in the proposed ISR-KD framework. The incorpora-
tion of knowledge distillation allows the model to retain the performance on previous
dataset while enhancing its capability on new dataset. We used the pre-trained GAN-
based super-resolution network on the CelebA dataset and incrementally trained it on
the combined CelebA and iCartoonFace dataset using our proposed framework. We
achieved superior performance on target Cartoon dataset while maintaining the perfor-
mance on the source CelebA dataset, mitigating the issue of catastrophic forgetting.
Future research directions include investigating different knowledge distillation meth-
ods, different networks, and evaluating on larger and more diverse datasets.
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Abstract. The task of deducing the causal network from time series data and
identifying relationships among multiple series is increasingly vital across various
sectors such as industry, medicine, and finance. Despite numerous algorithms
being proposed for this purpose, the majority are predicated on the stationarity
assumption. However, in disciplines like climatology and neuroscience, time series
often exhibit non-stationarity, characterized by a data distribution that shifts over
time. In this paper, we introduce an innovative algorithm designed to discern causal
relationships from non-stationary time series. Our approach unfolds in three key
steps: Initially, we harness the concept of copula entropy to estimate the conditional
transfer entropy, offering a streamlined method for non-parametric conditional
independence testing. Subsequently, we introduce the time index, which influences
other variables at specific time lags, and by integrating the conditional transfer
entropy, we execute the independence tests. This leads us to propose the CE-
CDN (Copula Entropy-based Causal Discovery from Non-stationary time series),
a two-stage algorithm tailored for learning the causal network and identifying
change modules. Finally, through comparative analysis with existing algorithms,
our experimental findings indicate that CE-CDN not only excels in managing
non-stationary time series but also boasts commendable time efficiency.

Keywords: Causal Discovery - Non-stationarity - Copula Entropy - Time Series

1 Introduction

Time series represent a sequence of data points recorded over time. Analyzing the rela-
tionships between these observations at various moments is crucial for enhancing pre-
dictive accuracy and informing decision-making processes. However, this analysis is
often fraught with challenges, particularly the issue of non-stationarity. In numerous
disciplines—ranging from economics [1] to climate research [2] and biological analy-
sis [3]—the time series frequently exhibit non-stationarity. This characteristic indicates
a shift in the data distribution over time. As a result, the analysis of causality within
non-stationary time series gets extensive attention.
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Traditional causality methods for time series assume data stability, which can mislead
when applied to non-stationary series that change over time. Recent approaches to non-
stationary causality are split into two: one [4—6] tracks changes in causal strength, while
the other [3] also detects shifts in causal directions. For the latter, it can be further lead
to the problem of stationary state detection. We focus on the former as a foundational
step for the latter.

In addressing the challenge of non-stationarity, Huang et al. [4] proposed temporal
linear causal and nonlinear noise models, yet failed to locate the changing causal module.
In a subsequent effort, the same team [5] developed a state-space model that accommo-
dates temporal variations in causal intensity and noise, yet this model is predicated on
linearity. Zhang et al. [6] incorporated time or domain indices to delineate the evolving
causal modules and to ascertain instantaneous causal relationships. Kang et al. [7] offered
a high-order causal entropy for distributed network analysis, though at a high computa-
tional cost. Building upon these contributions, we introduce a novel two-stage algorithm,
CE-CDN, designed to identify lagged change modules and discern causal relationships
that encompass nonlinear. Furthermore, CE-CDN offers a streamlined approach for
non-parametric conditional independence testing.

The work of this paper is organized as follows:

(1) We begin by introducing the relationship between mutual information and copula
entropy [8]. We then reformulate the conditional transfer entropy as the sum of four
distinct copula entropy components. Finally, we estimate the copula entropy using
an entropy estimator. This transformation is demonstrated to offer a more effective
approach to measuring independence;

(2) At the maximum time delay, we introduce a smoothly varying time-related vari-
able that laggingly affects others to represent the non-stationary mechanism. Sub-
sequently, under the additive noise model and by integrating the conditional trans-
fer entropy with a constraint-based method, we propose the CE-CDN algorithm.
This algorithm is designed to learn the relationships among variables and between
variables and the time index;

(3) We compare CE-CDN with other causal discovery algorithms for time series, includ-
ing CCM, HCE, NAVAR, DYNOTEARS, VarLiNGAM and PCMCI(cmiknn and
gpdc). Experiments demonstrate that CE-CDN achieves good results on non-linear
and non-stationary data, with superior time performance. Furthermore, the algorithm
is applied to a real dataset to identify causal connections.

Sections are organized as follows: Sect. 2 introduces related work; Sect. 3 describes
preliminary knowledge; Sect. 4 details the CE-CDN; Sect. 5 and 6 analyses the
experimental results; Sect. 7 concludes the work of this paper.

2 Related Work

Traditional causal network learning methods for time series fall into three categories:
Constraint-based: tsFCI by Entner and Hoyer et al. [9] and PCMCI by Runge et al. [10],
which combines PC and MCI. Functional Causal Models: Hyvarinen et al. [11] fused
LiNGAM with VAR, and Peter et al. [12] introduced models with independent noise.
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Score-based: Pamfil et al. [13] extended NOTEARS to DYNOTEARS, and Sun et al.
[14] used convolutional neural networks for time series analysis.

The above algorithms are under the assumption of stationary time series. We now
turn to the discussion of non-stationary causal discovery works, which encompass both
instantaneous and time-delayed relationships.

For the instantaneous causal discovery, Huang et al. [5] introduced a state-space
model where the causal coefficients and noise variance are permitted to vary over time.
These parameters are estimated using the SAEM algorithm, albeit under the assumption
of linear causality, which may not be universally applicable. Zhang et al. [6] proposed
CD-NOD, which utilizes a proxy variable to account for confounding factors, followed
by the application of traditional constraint-based methods combined with non-parametric
conditional independence tests to learn the causal structure. Fujiwara et al. [15], building
on the linear non-Gaussian-acyclic model and the just-in-time framework, introduced
JIT-LiNGAM. This model estimates the local linear causal structure from past data upon
receiving a new input sample, demonstrating robust nonlinear detection capabilities.
However, it has not yet been adapted for time-delay embedding scenarios.

We concentrate on time-delayed causal relationships, where the causality is inher-
ently from the past to the present. To address this, Xing et al. [16] proposed Time-
Varying Dynamic Bayesian Networks (TV-DBNs) to model the directed dependence
and structural changes in non-stationary entities such as organisms or neural time series.
Huang et al. [4] suggested exploiting smooth changes to estimate a time-varying causal
model, using temporal information as a common cause and applying Gaussian process
regression for estimation. However, this method lacks a clear mechanism for positioning
changing modules. Kang et al. [7] introduced the High-Order Causal Entropy (HCE)
algorithm, which identifies network structures in a distributed manner. Yet, it struggles
with high-dimensional challenges and suffers from high time complexity.

In order to identify lagged change modules and provide a simple method for the
non-parameter conditional independence test in causal learning processes, this paper
proposes a causal structure learning algorithm CE-CDN that can effectively deal with
nonlinear and non-stationary time series.

3 Preliminary Knowledge

3.1 Mutual Information and Transfer Entropy

Mutual information is an important measure in information theory, widely used to quan-
tify the correlation between random variables. The mutual information between two
variables, symbolized here as I, can be described by Eq. (1).

1(x1,x2) :H(X2> —H(X2|X1) :H(Xl) +H(X2> —HXLXYH )

The following H represents the differential entropy. When extended to high-
dimensional continuous observation variables, the multivariate mutual information of
the generalized redundant [17] can be calculated by Eq. (2).

1(x‘,x2,...,X") = H(X‘) +H<X2) o H(X") —HXL X2 XM (@)
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Transfer entropy is essentially conditional mutual information, under which the
dynamic process is considered simultaneously. Specifically, it measures how the past of
X decreases the uncertainty of Y, given the past of Y. When considering the conditional
set Z, it is called the conditional transfer entropy, as shown in Eq. (3).

CTEx »yiz(t) = 1Yy, Xe—11Y—1, Z—1) = HY | Y—1, Z,—1) — H(Y | X—1, Vi1, Zi—)
= I(Yt, X1, Yt—l,Zt—l) - I(Yls Yt—let—l) - I(Xz—ly Yt—l,Zt—l) + I(Yt—l’Zt—l)s
(3)

where the subscript 7-1 denotes the embedded history length of the variables.

3.2 Conditional Transfer Entropy Estimation

As shown in Eq. (3), the calculation of conditional transfer entropy (CTE) can be
expressed as the sum of four terms, each representing multivariate mutual informa-
tion. Subsequently, we will elucidate the relationship between mutual information and
copula entropy [8]. Following this, we will demonstrate how the computation of CTE
can be reformulated in terms of a sum of copula entropies.

Definition 1 (Copula entropy [8]): let X € R" be a set of random variables, its marginal
function u = [F1, ..., Fn] and copula density function is c(u), then the copula entropy
expression of X is shown in Eq. (4).

H.(X)=— / c(u)loge(u)du, 4
where c(u) represents the Nth order derivative of copula distribution function C(u).

Theorem 1 (Sklar’s theorem): If T is a joint distribution, F and G are its marginal
distribution, then there is a copula function C for all x and y belong to R, satisfying
T(x,y) =CFX),G(®)).If F and G are continuous, then C is unique.

Theorem 2: The mutual information of random variables is the opposite number of
their joint copula entropy.

Proof of Theorem 2: Take two variables as example, follow Theorem 1, then the
joint cumulative distribution function of x and y can be expressed as Eq. (5).

Pxy(x,y) = C(Px (x), Py (y)), (&)

let u = Px (x),v = Py(y), c(u, v) can be expressed as the Eq. (6).

G v) = 32C(u,v) _ 3% Pxy (x,) __pxr(xy) ©
’ udv  px@oxxprmMdy  px () xpr(y)’

we can obtain the relationship between I and the copula entropy, as shown in Eq. (7).

1X,Y) = //pxy(x Viog———— pxy (x,7) dxdy = //c(u, v)logc(u, v)dudv
Px (x) *py (y)
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= // c(u, v)px )py (Nloge(u, vydxdy = —H(u, v), (7

similarly, multivariate mutual information shares the same conclusion.
As described in Theorem 2, the conditional transfer entropy in Eq. (3) can finally be
composed of four-term copula entropy, as shown in Eq. (8).

CTEx yiz(t) = —Hc(Vy, Ur—1, Vi1, W) + He (Ve Vi1, W)
+ He(Ui—1, Vie1, Wi) = He(Vi—y, Wioy), 3

where U, V, W separately denotes the marginal distribution of X, Y, Z. Consequently, the
calculation of CTE can ultimately be reduced to the problem of estimating information
entropy.

KNN estimation [17] is usually used to calculate the entropy value of continuous
random variables, whose calculation formula is shown in Eq. (9).

ﬁ(xl,xz, . .,Xd) = (k) + U (N) + logeq + 1iv ZL loge(i), (9

where the digamma function v (x) = I'’(x)/ ' (x) denotes the digamma function, d and
N are separately mean the dimensions and the number of observation variables, ¢y is
equal to 1 when adopt the maximum norm, £ (i) denotes twice the amount of distance
from the ith observation of [X Lx2 . xd ] to its kth neighbor.

3.3 Definitions and Assumptions in Non-stationary Time Series Causal Discovery

To obtain causal relationships from observed time series data, several assumptions are
necessary, including sufficiency, the Markov condition, and faithfulness. Additionally,
building upon the CD-NOD [6], we introduce the concept of changing causal modules.
These modules may be associated with changes that could be explained by certain
confounders. Subsequently, these confounders could exert influence on other variables
at specific time lags, leading to distribution shifts. The following presents definitions
and assumptions essential to this paper.

Definition 2 (Time series data): Time-series data is a collection of data recorded in
order. For the observed data that include d variables at ¢ time, it can be written as
X, = {X,l, Xt2, . ,X[d}. And the X,;_; means the past of the data (t denotes the lag
time delay).

Definition 3 (Conditional independence): For the set of observed variables X, =
x!,x2,.... X%}, and condition set Z C X,_; \ {X/__}. if CMI(xi N X,f|z) <a,

t—t

then the X/, conditional independent to X/, denoted as X/ | 1 X/|Z.

Definition 4 (Causal link): For the set of past observations X;_, if X,i_T L th |Z not

ture, then there is a causal link from X,i_f to th , its representation is shown in Fig. 1(a):
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Fig. 1. (a) Causal link. (b) Pseudo confounder.

Assumption 1 (Pseudo causal sufficiency [6]): Assuming the existence of pseudo con-
founders, a time proxy variable C is introduced, as shown in Fig. 1(b). This variable can
be written as a smooth function of time. At each time instance, the values of these con-
founders are fixed. Therefore, the pseudo causal sufficiency assumption is introduced,
considering the causal adequacy of the model in the presence of potential confounding
factors.

Assumption 2 (Lagged causal effects [18]): We assume that causality operates in a
lagged manner, implying that there is no instantaneous causality at time ¢. This assump-
tion also ensures that the lagging parent variable is sufficient to satisfy the Markov
condition.

4 Algorithm Introduction

In this section, we first introduce and analyze the framework of CE-CDN, which is
presented in two parts. The first part concerns the two-stage algorithm for learning the
causal network structure. The second part focuses on the independence test method,
specifically the conditional transfer entropy calculation process required in the first part.
Finally, we analyze the time complexity of these two components.

4.1 Causal Structure Learning of the Non-stationary Time Series

The process of learning the causal network from non-stationary time series data can be
divided into two stages.

The first stage involves causal connection discovery, where we calculate the condi-
tional transfer entropy between variables and between variables and time exponents. This
involves assessing the conditional mutual information at different time delays, denoted
by t. If the calculated value exceeds a specified threshold, it is added to the correspond-
ing parent node set. As a result, this stage allows us to identify the lagged parent nodes
for each variable at time ¢.

For temporal datasets containing d-dimensional variables and a time index variable,
we consider the maximum time delay condition T,,,,. The condition set comprises the
delays t for each variable. Steps 6 and 7 involve calculating the conditional mutual
information between each node and its lagged nodes. If this value exceeds a threshold,
the lagged node is added to the parent node set. Consequently, by step 8, we have
obtained the lagged parent node set for each variable at time ¢. Additionally, steps 9



Copula Entropy Based Causal Network Discovery 121

and 10 account for non-stationary factors, specifically detecting causal links between
the time index variable C and other variables. This allows us to identify modules that
change and affect the nodes at time 7 in a lagged manner.

After the first stage, we obtain the parent node set Pa (X,J ) for variables at time .

However, there may still be incorrect parent nodes present. To ensure that the results
converge to the true causal diagram under an infinite sample size, redundancy removal
is necessary. Consequently, the second stage involves the false positive removal phase.
For the parent set of each variable, the conditional independence test method is the same
as in the first stage. The difference lies in the constraint applied to the condition set. In
step 15, we test the independence between X, _, C Pa(X]) and X/ . Step 16 evaluates the
calculated value. If the value is less than the threshold, step 17 removes the node from
its parent set. Thus, we can eliminate incorrect parent nodes at this stage and obtain the
final parent set for the nodes at the last time 7. The framework encompassing the two
stages is illustrated in Algorithm 1.

Alg.1l Causal discovery from non-stationary time series

Input: Dataset X ={X1,X?% .., X% Tpax; @1, ay; Time index X€.
Output: Parent nodes Pa(X,) of feature nodes at time t.
Initialization: Set of parents Pa(th) =¢

1. /* Stage 1: Constraint stage */

2. for j =1 to d do

3 for 1=1 to Ty do

4 Cond = (X}, X2, ... X%, X5 .}

5. for 1 = 1 to d do

6 calculate CMI(Xg_T—>th|C0nd\Xf_T)
7 if CMI(X[_, - X]|Cond\X[_,) > a;

8 append X/_, into Pa(th)

9. calculate CMI(X{_, - th|C0nd\Xf_T)
10. if CMI(X{, - X!|Cond\X{_,) > a;
11. append X{_, into Pa(X})

12. /* Stage 2: Error parent nodes removing stage */
13. for 7 = 1 to d do

14. for X!_,in Pa(th) with i=1,..d,c;T=1,..Tpe do
15. calculate CMI(X{_, - X]/|Pa(X])\Xi_,)

16. if CMI(X{, - X[|Pa(X])\X{_) <

17. remove X/_, from Pa(th)

18. return Pa(X,)




122 J. Yang and X. Rao

4.2 Estimation of the Conditional Transfer Entropy

This subsection outlines the estimation process of conditional transfer entropy, which is
anecessary component of the two-stage algorithm described above. The process consists
of two main steps, both aimed at preparing for the calculation of copula entropy.

The first step involves obtaining the marginal probability distribution of each vari-
able within the set X, which contains m-dimensional variables. This distribution can be
estimated using rank statistics, specifically by sorting the time series data.

In the second step, leveraging the relationship between copula entropy and mutual
information, the conditional transfer entropy—essentially a form of conditional mutual
information—is converted into the sum of four copula entropies. For the estimation
of copula entropy, we employ the k-nearest neighbor entropy estimator proposed by
Kraskov et al. As shown in Eq. (10), we set k to 3. d corresponds to the number of
variables in H, at step 23, and N represents the number of samples. ¢4 is equal to 1
when adopt the maximum norm. For the first term, £(i) denotes twice the amount of

distance from the ith observation of [M Mtj 1,Mtk 1’Mz211’ ... ] to its kth neighbor.

N d
H(Xl,Xz, Xd) =~y () + ¥ (V) +logea + Zi\]:l loge()  (10)

Consequently, the final result can be derived by estimating the sum of these four
copula entropies. The framework of the overall process is depicted in Algorithm 2.

Alg.2 Conditional transfer entropy estimation

Input: Temporal data set X ={X!,X? .., X™};Samples N.

Output: CTE(X/ - X¥|X7',X?2,X?®..), mark it as CTE

19. /* Step 1: estimate marginal distribution */

20. for i = 1 to m do

21. M§=%Z§V=1I{Xti$xti} (I: Indicator function)

22. /* Step 2: CTE estimation */

23. CTE = —H (M;‘, - o ME L MEY, L) + Ho (ME, ME  MEY, ) +
H(Mt 1’ tl' tl") H(Mt 1 tlr'")

24. calculate each of four terms by entropy estimator

25. return CTE

4.3 Time Complexity Analysis

In this section, we focus on discussing the time complexity of the CE-CDN algorithm.
We denote the dimension by 7, the number of samples by n, and the maximum time delay
by k. The first part of the algorithm, which estimates the conditional transfer entropy, has
a time complexity that primarily consists of two stages: the rank stage and the k-nearest
neighbor estimation stage.
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During the rank stage, according to Eq. (8), the maximum dimensions for ranking
would be m + 1. By applying a rank sorting algorithm to these dimensions, the time
complexity is O (mnlogn). In the entropy estimation stage, the time complexity of cal-
culating the distance between each pair of samples is O (n?). To obtain the distance
from the i-th observation to its k-th nearest neighbor, a sorting algorithm is applied to
a two-dimensional array. The time complexity for this operation under n samples is O
(n*logn). Thus, the total time complexity for this part is O (mnlogn + n*logn).

For the second part of the algorithm, its time complexity mainly includes the con-
straint stage and the error parent nodes removal stage. According to the framework of
Algorithm 2, the total time complexity for this part is O (m”k). Therefore, combining this
with the first part, the overall time complexity of the CE-CDN algorithm is O (m3knlogn
+ m%kn®logn).

5 Experimental Results and Analysis

5.1 Experiment 1

To verify the effectiveness of our algorithm, we compared it with NAVAR [19], PCMCI
[10], HCE [7], DYNOTEARS [13], VarLiNGAM [11] and CCM [20]. The synthesized
non-stationary time-series dataset was generated by Eq. (10).

X :ag‘,-(Pa(X,’)) Y big(t— 1)+ €l (11

where f; represents the dependent function, which can have either a linear or nonlinear
relationship with its lagged causes, denoted by Pa(X"). Under the maximum time delay
Tmax, the lag of causes can range from 1 to 7,,,y. g is a smooth time-varying function
with a time lag of 7. The coefficients a; and b; modify the function’s response. The final
term, 55, represents Gaussian noise.

In this simulation, we defined the time function g(#) = cos(t/50), and randomly
generated time series networks based on functional dependencies, including both linear
and nonlinear causal relationships. The network size was varied to include 5, 10, 15, and
20 dimensions, with the maximum time delay set to 7,5 = 5. Furthermore, to test the
algorithm’s performance with different sample sizes, we applied it to datasets containing
1000, 2000, and 3000 samples. In each dataset, we identified nodes directly affected by
the time index as non-stationary, leading to two scenarios: (1) For a given ratio of non-
stationary nodes r,,,, the number of non-stationary nodes across various dimensions d
would be 7., * d; (2) With a fixed dimension, the proportion of non-stationary nodes
was set to 0.1, 0.2, 0.3, 0.4, and 0.5.

Figure 2 and Fig. 3, which correspond to these two cases, illustrate the performance
of different algorithms in reconstructing the causal network with sample sizes of 1000,
2000, and 3000. Additionally, due to the high time complexity of the independence test
algorithm in PCMCI using cmiknn, we limited our comparison to the 1000-sample case.

5.2 Experiment 2

To further verify the effectiveness of the algorithm, we conducted Experiment 2. In this
experiment, the time function was set to g(#) = ¢, and the data was regenerated using
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Fig. 2. The F1-score and FPR of the algorithms at the same ratio of non-stationary nodes, with
the time function g(¢) = cos(t/50).
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Fig. 3. The Fl-score and FPR of the algorithms at different ratios of non-stationary nodes, with
the time function g(t) = cos(t/50).

the same experimental setup as described in Experiment 1.

= qa;f; (Pa( )) + big(t — 1) + st

12)

The experimental setup is the same as in Experiment 1. The performance of different
algorithms is depicted in Fig. 4 and 5.
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Furthermore, we conducted a non-stationarity test on the variables directly influenced
by the time index. The time series and ADF test results are presented in Fig. 6. By
comparing the ADF statistic with the critical values, it can be observed that if the ADF
statistic is greater than the critical values and the p-value is greater than the level of
significance, then we accept the null hypothesis that the time series data has a unit root,
meaning the time series is non-stationary.

ADF Statistic: -1.760542 p-value: 0.400220
Critical Value: [1%: -3.437 5%: -2.864 10%: -2.568

0 Time Steps 1000

Fig. 6. Non-stationary time series.

5.3 Experiment 3

To compare the performance of algorithms at different maximum time delays, we also
conducted Experiment 3. The performance metrics for models with 5, 10, 15, and 20
variables are reported in Table 1.

5.4 Experimental Analysis

The performance of each algorithm at the same non-stationary rate is shown in Fig. 2
and 4, which respectively represent different time functions.

In Fig. 2, it can be observed that our algorithm’s False Positive Rate (FPR) is essen-
tially lower than other algorithms, regardless of whether the sample size is 1000, 2000,
or 3000. In term