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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. The quadratic complexity of the attention mechanism repre-
sents one of the biggest hurdles for processing long sequences using Trans-
formers. Current methods, relying on sparse representations or stateful
recurrence, sacrifice token-to-token interactions, which ultimately leads to
compromises in performance. This paper introduces TaylorShift, a novel
reformulation of the Taylor softmax that enables computing full token-
to-token interactions in linear time and space. We analytically determine
the crossover points where employing TaylorShift becomes more efficient
than traditional attention, aligning closely with empirical measurements.
Specifically, our findings demonstrate that TaylorShift enhances memory
efficiency for sequences as short as 800 tokens and accelerates inference for
inputs of approximately 1700 tokens and beyond. For shorter sequences,
TaylorShift scales comparably with the vanilla attention. Furthermore, a
classification benchmark across five tasks involving long sequences reveals
no degradation in accuracy when employing Transformers equipped with
TaylorShift. For reproducibility, we provide access to our code under
https://github.com/tobna/TaylorShift.

Keywords: Efficient Attention · Transformer · Machine Learning

1 Introduction

Ever since their introduction by Vaswani et al. [25], Transformers have revolu-
tionized numerous domains of deep learning, from Natural Language Processing
to Computer Vision, while also underpinning the emergence of novel applications
such as Large Language Models. This success stems largely from their ability to
capture intricate dependencies and token-to-token interactions.

To extend the utility of Transformers to more complex tasks, they need to
be able to process long sequences. However, the computational complexity of
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the attention mechanism scales quadratically in the length of the input sequence
O(N2). Therefore, computing twice as many sequence elements requires four
times the number of computations, which hinders scaling to very long context
windows. This makes some practitioners turn to approaches like compressing
portions of the input into single states [3,5], which reduces the amount of infor-
mation available at each step. Despite this progress, exploiting long context
windows to significantly improve performance and incorporate new information
without retraining remains challenging. Current Transformers encounter limita-
tions when processing long documents, high-resolution images, or a combination
of data from multiple domains and modalities. Especially, considering the limited
resources of smaller enterprises or individual consumers.

While linearly scaling Transformers have been proposed, these often experi-
ence compromised accuracy [19], specialize in a particular domain, like language
[30] or images [14], or only convey averaged global information across tokens,
neglecting individual token-to-token interactions [1,8]. These models end up being
ill-suited for handling longer sequences, leaving the standard Transformer as the
preferred choice due to its large capacity and established performance [13].

In this work, we approach this bottleneck of the Transformer by reformulat-
ing the softmax function in the attention mechanism after introducing the Taylor
approximation of the exponential. While some methods alter the softmax, their
goal is to split interactions of queries and keys, computing global average interac-
tions only [1,4]. In contrast, our proposed approach, TaylorShift, preserves indi-
vidual token-to-token interactions. Combining a tensor-product-based operator
with the Taylor approximation of the exponential function allows us to compute
full token-to-token interactions in linear time. Moreover, this approach has the
added benefit of adhering to concrete error bounds when viewed as an approx-
imation of vanilla attention [11]. We show that a naive implementation of this
linearization is numerically unstable and propose a novel normalization scheme
that enables its practical implementation. For short sequences, TaylorShift can
default back to quadratic scaling to preserve efficiency. We apply TaylorShift to
a diverse set of tasks on images, text, and mathematical operations.

Our paper starts with the related work (Sect. 2), providing context for our
contributions. In Sect. 3, we introduce two implementations of TaylorShift, effi-
cient for short and long sequences, respectively, and our novel normalization
scheme. Beyond the O-notation, we delve into the efficiency analysis of Taylor-
Shift, identifying specific conditions where it excels, both theoretically (Sect. 4)
and empirically (Sect. 5). Finally, we conclude in Sect. 6.

2 Related Work

To contextualize TaylorShift, we review work on efficient attention, how Taylor
approximations are used in ML, and their application for attention specifically.
Linear Complexity Attention. Various strategies have been proposed to devise
attention mechanisms with linear complexity. Sparse attention mechanisms,
like Swin [14] (images) or BigBird [30] (text), only selectively enable token-to-
token interactions and their effectiveness heavily depends on the input modality.
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Kernel-attention methods [1,4], decouple the influence of queries and keys, lead-
ing to a global average transformation instead of individual token-to-token inter-
actions. Mechanisms like Linformer [27] apply transformations on the sequence
direction, restricting them to a specific input size. For a comprehensive explo-
ration of this topic, readers are referred to [9,19]. While these linear attention
mechanisms offer innovative solutions to computational challenges, their perfor-
mance nuances and lack of adaptability compared to TaylorShift warrant further
exploration.
Taylor Approximation in ML. Applying Taylor approximations has proven to
be a powerful technique in deep learning. In Explainable AI, the Deep Taylor
Decomposition [17] employs a linear Taylor decomposition of individual neurons
to propagate the relevancy of each part of the input. Linear Taylor approxima-
tions also are utilized in network pruning, where they are leveraged to quantify
the influence of individual neurons on a loss value [10,16]. TE-CSR [28] directly
utilizes a Taylor series to gather multivariate features in the domain of image
fusion. Recently, TaylorNet [31] and Taylorformer [20] treat the factors of a
Taylor series, as learnable parameters. The Taylor softmax [26], introduced to
enable efficient calculation of loss values, outperformed the traditional softmax
in image classification [2]. In this work, we leverage insights from these diverse
applications of Taylor series to enable the efficient calculation of attention.
Taylor Approximation in Attention. Recently, [22] adopt the first order Taylor
softmax in the attention mechanism. However, this is limited to linear token-
interactions. To emphasize local interactions, they add a convolution operation.
In contrast, we compute individual non-linear interactions in linear time.

[11], an analysis of efficient attention mechanisms, mentions the theoretical
possibility of leveraging higher order Taylor softmax to approximate the atten-
tion mechanism in linear time, but with exponential complexity in the order of
the Taylor approximation. In this work, we draw inspiration from this theoretical
analysis and develop a viable, working implementation based on Taylor series.
We analyze the efficiency gains beyond the O-notation, estimating transition
points where it outperforms standard attention.

3 TaylorShift

This section describes the formal derivation of TaylorShift and its algorithmic
implementation. Starting from a direct, non-efficient formulation, we proceed
to mathematically derive a provably efficient alternative. An investigation into
scaling behaviors will lead to the incorporation of a novel normalization scheme.

3.1 Direct TaylorShift

Taylor-Softmax approximates the softmax’s exponential function by its k-th
order Taylor approximation:

exp(x) ≈
k∑

n=0

xn

n!
.
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For a vector x ∈ R
d, with Hadamard powers x�n:

softmax(x) = normalize(expx) ≈ normalize

(
k∑

n=0

x�n

n!

)
=: T-SM(k)(x)

Here, the normalize operation is division by the �1-norm: x �→ x∑
i|xi| . For even

k, Taylor-Softmax generates a probability distribution, since it is positive and
its terms sum to one. k = 2 balances computational cost and expressivity [2].

By using Taylor-Softmax, the attention mechanism for the query, key, and
value matrices Q,K, V ∈ R

N×d, where N is the length of the sequence and d is
the internal dimension, takes the form

Y = T-SM
(
QK�)

V (1)

with row-wise Taylor-Softmax. We refer to the direct implementation of Eq. (1),
which calculates the large N × N attention matrix T-SM

(
QK�)

of token-to-
token interactions before multiplying it by V , as direct-TaylorShift.

3.2 Efficient TaylorShift

Since direct-TaylorShift does not scale well, we derive a more efficient implemen-
tation. We can achieve this, by splitting the influence of the taylor approximation
of the exponential function among the matrices Q and K and pushing the nor-
malization operation to the end, after multiplying by V . Mathematically the
result will still be the same, but by switching up the order of operations, the
computational complexity can be reduced from O(N2d) to O(Nd3).

First, we rewrite the normalization operation by splitting it into nominator
and denominator:

Ynom = [1 + QK� +
1
2
(QK�)�2]V,

Ydenom = [1 + QK� +
1
2
(QK�)�2]1N ,

⇒ Y = Ynom � Ydenom,

where 1N ∈ R
N is the vector of ones and �2 and � are the Hadamard power and

division. This representation allows us to disentangle the influence of the linear,
squared, and constant terms of the Taylor approximation into their influence on
Q and K, respectively.

The constant and linear influence [1 + QK�]V = Q(K�V ) + ΣcolV can
trivially be computed in O(Nd2), leaving us with (QK�)�2V . To handle this
term efficiently, we define a tensor product on the internal dimension d:

� : RN×d × R
N×d → R

N×d2

[A � B]n = ι(An ⊗ Bn) ∈ R
d2 ∀n = 1, ..., N
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Here, An, Bn ∈ R
d, and [A�B]n are the n-th entries of A,B, and A�B respec-

tively, ⊗ is the outer product of vectors1, and ι : Rd×d ∼−→ R
d2

is the canonical
isomorphism of reordering the entries of a matrix into a vector. This reorder-
ing operation can be described by a bijective map π : {1, ..., d} × {1, ..., d} →
{1, ..., d2}. We define A�2 := A � A. Then we have [A�2]n,π(k,�) = An,kAn,�.
This lets us linearize (QK�)�2 by using the tensor operator � to unroll the
square of a d-element sum along a sum of d2 elements. At position ij, we have

[(QK�)�2]ij =

(
d∑

k=1

QikKjk

)2

=
d∑

k,�=1

QikQi�KjkKj�

=
d∑

k,�=1

[Qi ⊗ Qi]k,�[Kj ⊗ Kj ]k,� =
d∑

k,�=1

[Q�2]i,π(k,�)[K�2]j,π(k,�)

= [Q�2]i[K�2]�j .

for i, j = 1, ..., N . And therefore

⇒ Ysqu := (QK�)�2V = Q�2

︸︷︷︸
N×d2

(K�2)�V︸ ︷︷ ︸
=:Amod

(2)

This can be calculated in linear time in N by multiplying from right to left.
Adding both the linear and the constant terms to the square-term gives:

Ynom =
1
2
Q�2

(
(K�2)�V

)
+ Q(K�V ) + ΣcolV. (3)

We calculate the nominator Ynom and denominator Ydenom simultaneously using
Eq. (3) by setting V ← (1N ◦ V ) ∈ R

N×(d+1), where ◦ is the concatenation
operation. The result Ŷ ∈ R

N×(d+1) can then be split back into Ydenom ∈ R
N

and Ynom ∈ R
N×d to get the final output:

Y =
[

[Ynom]1:
[Ydenom]1

, ...,
[Ynom]N :

[Ydenom]N

]
∈ R

N×d. (4)

We refer to the result of Eq. (4) when calculating Ŷ = Ydenom ◦ Ynom using
Eq. (3) as efficient-TaylorShift. Figure 1 visualizes the differences between direct-
and efficient-TaylorShift. The output of direct- and efficient-TaylorShift is the
same mathematically, but the later scales linearly in N .

3.3 Normalization

Empirical evaluations reveal the presence of intermediate values with large
norms, which ultimately leads to failure to converge during training2. Track-
ing the scaling behaviors (Table 1) of intermediate results in TaylorShift3 lets us
1 We identify the basis {ei ⊗ ej}ij of tensor space with the canonical basis {eij} ⊂
R

d×d of matrix space, viewed as a vector space. {ei}i is the canonical basis of Rd.
2 See Appendix B.1 for further details.
3 For more details see Appendix B.2.
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Fig. 1. Order of operations in softmax attention, direct-, and efficient-TaylorShift.
Multi-paths for efficient-TaylorShift show squared, linear, and constant influence.

Table 1. Mean size of intermediate expressions in efficient-TaylorShift, when rows of
Q, K, and V are sampled uniformly from the unit sphere.

Expr. (K�2)�V = Amod (QKT )2V QK�V Ydenom Y

Size N+1√
d

N
d

√
N 4d+1

4d
N d+2

2d

√
d
N

define a normalization scheme that keeps these results from growing uncontrol-
lably.

We first normalize the queries and keys and additionally introduce a per-head
temperature parameter τ ∈ R

4, which ensures a constant input size:

qi ← τqi

‖qi‖2
, ki ← ki

‖ki‖2
for i = 1, ..., N.

Then, we counteract the scaling behaviors in Table 1 by multiplying Q and K by
4
√

d and V by 1
N . To obtain the same output, we need to scale the factors of the

Taylor series accordingly5. To ensure a consistent mean size of the output Y of
TaylorShift, independent of N and d, we additionally multiply by

√
N
d

6. We add
the same normalization of the input and output to direct-TaylorShift to keep
both implementations interchangeable. Algorithm 1 shows the full procedure to
calculate efficient-TaylorShift with normalization.

4 Analysis of Efficiency Transition Points

We have seen that efficient-TaylorShift has a complexity of O(Nd3), while its
direct version stands at O(N2d). Therefore, the efficient implementation will be
faster and more memory efficient for sufficiently large sequence lengths N � d.

4 More details on the effect of normalizing compared to dividing by d− 1
2 (standard

softmax attention does this) in Appendix B.3.
5 From 1

2
, 1, 1 to 1

2
,
√

d, d ( 1
2
, α2, α4 in Line 9 of Algorithm 1), to counteract the factors

of 4
√

d.
6 To save on computations, we scale the denominator by

√
d
N

in Line 5 of Algorithm 1.
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Algorithm 1. Efficient-TaylorShift with normalization
Require: Queries, Keys and Values Q, K, V ∈ R

N×d

1: def (A � B): {A and B are of shape N × d}
2: C ← A.reshape(N×d×1)�B.reshape(N×1×d) {� is the broadcasted Hadamard

product. C has shape N × d × d.}
3: return C.reshape(N × d2)
4: α ← 4

√
d

5: V ← 1
N

((√
d
N
1N

)
◦ V

)
∈ R

N×d+1

6: Q, K ← ατQ
‖Q‖2,dim=−1

, αK
‖K‖2,dim=−1

7: Amod ← (K � K)�V
8: Ŷ ← (Q � Q)Amod

9: Ŷ ← 1
2
Ŷ + α2Q(K�V ) + α4 ∑N

i=1 Vi,:

10: Ydenom, Y ← Ŷ:,:1, Ŷ:,1:

11: Y ← Y 	 Ydenom {	 is the Hadamard division.}
12: return Y

However, determining the exact value of N where this transition occurs is crucial
for practical scenarios. This section analyzes the theoretical speed characteristics
and memory requirements of both implementations to identify the specific point
at which one outperforms the other independent of hardware considerations.
Furthermore, we analyze additional factors influencing the efficiency of both
implementations, providing a deeper understanding of their performance.

4.1 On the Floating-Point Operations

To identify the critical sequence length N0 at which the efficient implementation
surpasses the direct one in a hardware- and implementation-agnostic way, we
inspect the number of floating-point operations involved. Starting with direct-
TaylorShift, we follow Eq. (1) step by step. We need 2N2d operations to multiply
QK�, 4N2 operations to apply x �→ 1

2x2 + x + 1 element-wise to this N × N
matrix, 2N2 operations for normalization, and 2N2d operations for the final
multiplication by V . The total FLOPS of direct-TaylorShift thus are

opstriv[Y ] = 2N2d + 4N2 + 2N2 + 2N2d = 4N2d + 6N2. (5)

As the only difference between direct-TaylorShift and the standard attention
mechanism is the choice of exp or its Taylor approximation, the number of
operations needed for calculation of standard attention is slightly higher.

In contrast, for efficient-TaylorShift (Eq. (3)), the primary computation cen-
ters around the squared influence Ysqu. For Amod ∈ R

d2×(d+1) (Eq. (2)) the ten-
sor operation has Nd2 FLOPS and the subsequent matrix multiplication needs
2Nd2(d + 1). Factoring in the operations for the tensor operation on Q and the
second matrix multiplication, the total FLOPS for calculating Ysqu are

ops[Ysqu] = 4Nd2(d + 1) + 2Nd2.
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Table 2. Influence of the hidden dimension d on the transitional points N0 (speed)
and N1 (memory) based on Eq. (7) and (9) for typical d.

d 8 16 32 64 128

N 0 73 273 1057 4161 16513
N 1 47 159 574 2174 8446

Given the 4Nd(d+1) operations required to compute the linear influence QK�V ,
the N(d + 1) for summing up the columns of V , and the 3N(d + 1) FLOPS for
the sums and scalar multiplication, the total for calculating Ŷ is

opseff[Ŷ ] = ops[Ysqu] + ops[QK�V ] + ops[ΣcolV ] + 3N(d + 1)

= 4Nd2(d + 1) + 2Nd2 + 4Nd(d + 1) + N(d + 1) + 3N(d + 1).

Including the Nd operations for normalization, the total number of operations
for efficient-TaylorShift is

opseff[Y ] = N(4d3 + 10d2 + 9d + 4). (6)

Comparing Eqs. (5) and (6) shows that for N → ∞, efficient-TaylorShift
outperforms direct-TaylorShift, but for N �� d the latter will still be faster. Let
N0 = N0(d) be the critical point, where opstriv[Y ] = opseff[Y ]. We calculate

N0 =
4d3 + 10d2 + 9d + 4

4d + 6
≤ d2 + d +

3
4
. (7)

For details on the derivation of N0, see Appendix A.1. Since the value of d
is typically fixed, we can easily compute the transitional input length N0 for
common choices of d. The values for typical d can be found in Table 2.

4.2 On Memory

In addition to the number of operations, the memory footprint plays an impor-
tant role as excessive memory needs can result in the inability to run a model
altogether. To assess it, we examine the largest tensors that have to be stored
simultaneously, omitting memory needed for model parameters.

For direct-TaylorShift, maximum memory usage occurs when calculating the
attention matrix T-SM

(
QK�)

from QK�. Here, we store matrices QK� and
V , as well as space for the output7 resulting in a total of

entriestriv[Y ] = dN︸︷︷︸
for V

+ 2N2
︸︷︷︸

for QK� and result

.

7 Calculating the sum in 1
2
x2 + x requires saving the original value.
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Conversely, the efficient version requires maximum memory during the cal-
culation of Amod (Eq. (2)). Here, the matrices (K�2)�, V , and space for the
result are needed, along with Q and K for later calculations for a total of

entrieseff[Y ] = d2(d + 1)︸ ︷︷ ︸
for Amod

+ 2dN︸︷︷︸
for Q,K

+ (d + 1)N︸ ︷︷ ︸
for V

+ d2 N︸︷︷︸
for K�2

(8)

matrix entries. It is evident that entriestriv[Y ] > entrieseff[Y ] for all N bigger
than some constant N1 = N1(d). This marks the transitional point beyond which
efficient-TaylorShift becomes more memory efficient than direct-TaylorShift. By
setting entriestriv[Y ] = entrieseff[Y ] for N = N1, we find

N1 =
1
4

[
d2 + 2d + 1 +

√
d4 + 12d3 + 14d2 + 4d + 1

]
≤ 1

2
d2 + 2d +

1
2
. (9)

Refer to Appendix A.4 for a detailed derivation. Notably, from Table 2, we
observe that N1 is considerably smaller than N0 highlighting the extra mem-
ory efficiency of efficient-TaylorShift.

4.3 Changing the Number of Attention Heads h

In an effort to reduce the number of operations while retaining the ability to
process the same number of tokens N , one might opt to reduce the internal
dimension d. However, this might come at the cost of expressiveness. Given
that efficient-TaylorShift has a cubed complexity in d, an alternative strategy
involves increasing the number of attention heads in the multi-head-attention
mechanism. Let each token be demb ∈ N dimensional and let h ∈ N be the
number of attention heads (with h|demb). Then, in each head, the queries, keys,
and values are d = demb

h -dimensional, with the computational cost of the multi-
head self-attention (MHSA) mechanism being h times that of a single attention
head. For direct-TaylorShift (Eq. (5)), the cost becomes

opstriv[MHSA] = h opstriv[Y ] = h(4N2d + 6N2) = 4N2demb + 6hN2,

which strictly increases in h. In contrast, using efficient-TaylorShift, we obtain

opseff[MHSA] = h opseff[Y ] = hN(4d3 + 10d2 + 9d + 4)

= N

(
4
d3emb
h2

+ 10
d2emb

h
+ 9demb + 4h

)
.

Given that opseff[MHSA] diverges for h → 0,∞, there exists an optimal ĥ0 =
ĥ0(demb) that minimizes the number of operations. Setting the derivative of
opseff[MHSA] with respect to h to zero, we find

0 =
∂

∂h
opseff[MHSA] = N

(
4 − 9

d3emb
h3

− 10
d2emb
h2

)
N>0⇔ 4 = 9d3 + 10d2. (10)
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This has a single positive solution of d ≈ 0.52, minimizing the number of oper-
ations at ĥ0 ≈ 1

0.52demb. For a detailed derivation refer to Appendix A.2. In
particular, the number of operations of efficient-TaylorShift decreases when h
increases in the range of possible values {1, 2, ..., demb} (divisors of demb).

Examining memory costs provides another perspective on the impact of
attention heads. On one hand, for direct-TaylorShift the number of simultaneous
entries strictly increases with the number of attention heads h, when calculating
heads in parallel:

entriestriv[MHSA] = h entriestriv[Y ] = dembN + 2N2 h

On the other, for efficient-TaylorShift, the number of entries is

entrieseff[MHSA] = h entrieseff[Y ] = h(d3 + (N + 1)d2 + 3Nd + N)

=
d3emb
h2

+ (N + 1)
d2emb

h
+ 3Ndemb + Nh.

This expression again diverges as h → 0,∞ and therefore an optimum ĥ1 exists.
Setting the derivative to zero gives

0 =
∂

∂h
entrieseff[MHSA] = −2d3 − (N + 1)d2 + N, (11)

which implies d < 1 and therefore ĥ1 > demb. Refer to Appendix A.3 for the
detailed derivation. In particular, the memory cost also decreases with increas-
ing h in the allowed range {1, ..., demb}. The same holds true when calculating
the attention heads in sequence (Eq. (8) is strictly increasing in d). Our analysis
provides insight into the dynamic efficiency interplay between the two imple-
mentations and the number of attention heads.

5 Empirical Evaluation

We run a number of experiments that provide an empirical verification of our
theoretical analysis of the transitional bounds, scalability, and required compu-
tational resources, as well as of the effective capacity of our proposed mechanism.

5.1 Efficiency of the TaylorShift Module

To validate our theoretical analysis of the critical points N0 and N1 from Sect. 4,
we compare the speed and memory usage of TaylorShift and softmax atten-
tion [25] using simulated data. For multiple internal dimensions d and sequence
lengths N , we measure inference time and memory consumption of a single atten-
tion head on an NVIDIA A100 GPU. For comparison, applications like GPT-2
[23] or ViT [7], use a per-head dimension of d = 64.

In Fig. 2 (top), we contrast the speed of TaylorShift and softmax atten-
tion. The quadratic growth of softmax attention and direct-TaylorShift and
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Fig. 2. Inference time in seconds per input (top) and inference memory in MiB (bot-
tom) of the attention mechanism (with h = 1) vs. sequence length for both imple-
mentations of TaylorShift and softmax attention. Each column uses a different internal
dimension d. We mark the theoretical N0 and N1 and empirical intersections N̂0 and
N̂1. Dotted lines extrapolate values by fitting a parabola.

the linear growth of efficient-TaylorShift are evident. As noted in Sect. 4.1, we
observe a slightly higher number of FLOPS for softmax attention than for direct-
TaylorShift. Note that the difference between the theoretical N0 and empirical
N̂0 transition points N̂0 − N0 ≈ 18d is approximately proportional to d. We
hypothesize that the more sequential nature of efficient-TaylorShift results in
more, costly reads and writes in GPU memory. This indicates possible efficiency
gains for eff. TaylorShift from a low-level IO-efficient implementation.8

Due to increasing memory requirements for direct-TaylorShift and softmax
attention, plotted in the second row, we need to extrapolate the plots for d = 64
and d = 128 by fitting a parabola (dotted lines) to the data In the regimen of
memory (second row of Fig. 2), the theoretical and empirical intersections align
closely N̂1 ≈ N1, with an error of at most 0.6%. Comparing both rows shows
efficient-TaylorShift becoming memory efficient earlier than it becomes efficient
in terms of speed, highlighting its usefulness in low-memory environments, in
alignment with our theoretical results from Table 2.

5.2 Efficiency of a Transformer with TaylorShift

We show the efficiency of a full-scale9 Transformer encoder equipped with Tay-
lorShift in Fig. 3.10 At a sequence length of 900 tokens efficient-TaylorShift needs
less memory and at 1800 tokens it surpasses the standard Transformer in speed.

8 For more details, see Appendix D.2.
9 Here, we use the hyperparameters for ListOps from Appendix C, but with 16 heads.

10 The extended Fig. 3 in Appendix D.4 includes different numbers of heads.
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Fig. 3. Memory and inference time of a transformer with efficient- and direct-
TaylorShift and the standard softmax, using d = 32.

Table 3. Accuracy in percent for models on datasets of different modalities. For the
first three datasets, we closely adhere to the setup of [24]. Models with � had to be
trained with full instead of mixed precision.

Model CIFAR (Pixel) IMDB (Byte) ListOps ImageNet (Ti) ImageNet (S) Average

Linformer [27] 29.2 58.1 – 64.3 76.3 (57.0)
RFA [21] 44.9 65.8 – – – (55.4)
Performer [4] 34.2� 65.6� 35.4� 62.0� 67.1� 52.9
Reformer [12] 44.8 63.9 47.6 73.6 76.2� 61.2
Nystromformer [29] 49.4 65.6 44.5 75.0 78.3� 62.6
EVA [32] 46.1 64.0 45.3 73.4 78.2 61.4
Transformer [25] 44.7 65.8 46.0 75.6 79.1 62.2
Ours 47.6 66.2 46.1 75.0 79.3 62.8

Note that at 1500 tokens it only needs half and at 2000 tokens only 35% of the
Transformer’s memory. For shorter sequence length, direct-TaylorShift remains
competitive with a standard Transformer in terms of speed and memory.

5.3 Performance of a Transformer with TaylorShift

To assess the effectiveness of TaylorShift, we evaluate it using a Transformer-
encoder across various datasets representing different modalities. We track the
classification accuracy of a TaylorShift-equipped Transformer across five tasks.

Tasks. We train on three datasets introduced by [24], specially designed to
assess performance on long sequences with long-range dependencies. The first
is a pixel-level CIFAR10 task, where 8-bit intensity values of grayscale images
from CIFAR10 are encoded into a sequence of length 1024. In the domain of
text, IMDB Byte [15], is a classification task for text encoded at the character
level, resulting in sequences of 4000 tokens. Thirdly, we employ the Long ListOps
dataset of mathematical operations [18] of length 500 to 2000 tokens encoded at
the character level. Beyond these synthetic tasks, we train for classification on
ImageNet [6] at two sizes (Ti & S) to additionally evaluate the scaling behavior of
TaylorShift. Refer to Appendix C for model sizes and training hyperparameters.
We utilize mixed-precision calculations whenever possible.
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Table 4. Accuracy on the CIFAR Pixel task when ablating our novel normalization
introduced in Sect. 3.3.

Model direct efficient

Plain impl. 47.1 –
impl. +norm. 46.8 46.8
impl. +norm. +output norm. 47.5 47.6

Table 3 shows our method’s consistent performance across all datasets. It
surpasses all other linear scaling Transformers on a minimum of four out of five
datasets. Note, that those models marked with � only work using full precision,
slowing down training considerably. TaylorShift also outperforms the standard
Transformer on four out of five tasks, remains competitive on the last one. We
observe a notable increase of 4.3% when transitioning from size Ti to S on
ImageNet, in contrast to 3.5% for the Transformer. These findings highlight
the robustness and competitiveness of TaylorShift across diverse datasets and
modalities. This demonstrates TaylorShift’s usefulness when dealing with very
long sequences.

5.4 Ablations

We conduct an ablation analysis, systematically dissecting two key components
to establish their impact on the performance of TaylorShift.
Normalization. We train a Transformer equipped with TaylorShift at different
stages of normalization to track the impact of our normalization scheme. Table 4
shows that without normalization, direct-TaylorShift demonstrates acceptable
performance, while the efficient version fails to converge during training. We
attribute this to numerical overflow in intermediate results11. Upon introducing
input normalization to the attention mechanism, efficient-TaylorShift becomes
stable, and both implementations achieve an accuracy of 46.8%, a slight decrease
for direct-TaylorShift. Additionally, normalizing the output to a mean size of 1,
results in a performance boost for both implementations, bringing them to the
accuracy level observed for the direct version before.
Number of Attention Heads h. Finally, we validate our insights from Sect. 4.3 by
training a TaylorShift-equipped encoder with varying numbers of attention heads
h while maintaining the embedding dimension dembed. Note that the number of
parameters stays almost exactly constant, with only the shape of the attention
temperature per head (τ) changing. The results in Table 5 align with our theo-
retical analysis, demonstrating an acceleration and less memory demands as the
number of heads increases. Notably, increasing the number of heads often leads
to increased accuracy while concurrently speeding up calculations and reducing
memory. These efficiency gains will become more significant for sequences longer
than the 1024 tokens we tested with. Beyond the point where accuracy increases,
11 See also Appendix B.1.
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Table 5. Accuracy, throughput (TB), and VRAM (Mem) usage of TaylorShift on
the CIFAR Pixel task with different number of attention heads h. All models have
dembed = 256 with d = dembed

h
in the attention mechanism.

h dAcc [%] direct efficient
TP [ims/s]Mem [MiB@16]TP [ims/s]Mem [MiB@16]

4 64 47.1 12 060 596 2 975 840
8 32 47.5 7 657 1 111 5 749 585

16 16 47.3 4 341 2 135 9 713 459
32 8 46.9 2 528 4 187 14 087 397
64 5 45.9 1 235 8 291 13 480 125

we can still leverage additional heads to trade off accuracy against speed and
memory, particularly advantageous for processing longer sequences.

6 Conclusion

We present TaylorShift, an efficient attention mechanism that computes token-
to-token interactions in linear time and memory. We lay the theoretical ground-
work for using TaylorShift by studying the exact threshold values where it
becomes efficient. Empirical validation of our analysis through classification
experiments confirms the performance benefits of TaylorShift for long sequences.
TaylorShift even outperforms a standard Transformer across diverse datasets and
modalities by 0.6% on average, while being faster and using less than half the
memory for sequences longer than 2000 tokens. Furthermore, our results on the
number of attention heads reaffirm the efficiency gains predicted theoretically.
The number of heads can be tuned to improve the model’s effective capacity, its
speed, and reduce memory requirements, all at once. While efficient-TaylorShift
is faster than a standard Transformer for long sequences, we can swap back to the
interchangeable direct-TaylorShift variant to keep the model efficient for short
sequences. This can be useful when dealing with datasets containing sequences
of vastly different length, like text or time-series, or when using a curriculum to
build up to very long sequence tasks. By adopting TaylorShift, it will be possible
to tackle tasks featuring long sequences such as high-resolution image classifica-
tion and segmentation, processing long documents, integrating data from mul-
tiple modalities, and dynamically encoding lengthy documents into a prompt-
specific context for Large Language Models. Overall, our findings underscore
the efficiency and versatility of TaylorShift, positioning it as a competitive and
scalable option in the landscape of efficient attention-based models.
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Abstract. This paper presents an Early Exit Neural Network (EENN)
architecture, which enables budgeted classification by dynamically select-
ing the most relevant exit point for each input sample of a dataset to
achieve the best performance while adhering to a pre-defined compu-
tational budget. The key contribution of this work is a novel method
that jointly learns the classifier model and the sample exiting policy, in
contrast to prior approaches that treated these components separately.
Specifically, the paper introduces a bi-level optimization framework that
simultaneously optimizes the cross-entropy loss of the classifier and the
probabilities of each sample exiting at different stages of the network.
This joint learning approach allows the classifier parameters and the
sample-dependent exiting policy to be mutually optimized, leading to
improved classification accuracy under computational constraints. The
proposed EENN method is evaluated on three computer vision bench-
marks - CIFAR-10, CIFAR-100, and ImageNet - and demonstrates state-
of-the-art results in budgeted classification compared to existing early
exit strategies. The code for this work will be made publicly available
upon acceptance of the paper.

Keywords: Computer Vision · Dynamic Neural Network · Weighting
Sample · Early Exit

1 Introduction

Recent image classification algorithms have achieved impressive results on bench-
marks such as the Large Scale Visual Recognition Challenge (LSVRC) [20].
However, this progress has come at the cost of increasingly large and computa-
tionally intensive models. In traditional deep learning architectures, each input
sample follows a fixed path through the entire network, regardless of its inherent
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difficulty. This approach introduces unnecessary computational overhead, espe-
cially when dealing with datasets that contain a mix of easy and challenging
samples. This limitation makes real-time inference on resource-constrained plat-
forms, such as smartphones, wearable devices, robotics, and other edge devices,
almost unattainable.

To address this issue, researchers have explored various approaches to
improve the inference efficiency of deep convolutional neural networks (CNNs).
These include efficient architecture design [7,14,36], network pruning [11,34],
weight quantization [17,18], knowledge distillation [13,21], adaptive inference
[10,15,25,32,33], and efficient deployment on hardware [5,30].

Dynamic early-exiting networks, a type of adaptive inference, address the
inefficiencies of traditional deep learning architectures by introducing branch
points at different depths within the network [29]. The key idea is to intelligently
select network segments to execute based on the input sample: easy-to-classify
inputs can exit the network earlier, reducing computation, while complex inputs
pass through deeper layers. This adaptive decision-making allows dynamic early-
exiting networks to balance computational efficiency and predictive accuracy.
By selectively executing only necessary segments, these models can significantly
reduce computational cost while maintaining overall performance.

Furthermore, dynamic early-exiting networks can tailor the inference process
to available resources and latency requirements. In time-constrained scenarios,
the model can prioritize early exits for faster predictions; in resource-rich set-
tings, it can explore deeper branches to improve accuracy. This flexibility makes
dynamic early-exiting networks compelling for deployment across devices, from
resource-constrained edge to powerful server systems. By intelligently allocating
resources based on input, these networks can deliver efficient, high-performing
inference for diverse real-world applications.

The importance of dynamic early-exiting networks has driven substantial
research into improving their mechanisms. Key advancements in this active
area include maximizing reuse of computations between classifiers [15], lever-
aging self-distillation techniques to efficiently transfer knowledge between net-
work exits [9,23,25], and processing of successive small input regions to enable
more dynamic exiting decisions [32]. Researchers have also explored resolution-
adaptive network architectures [33,37] and developed calibration and sample
weighting methods to improve the early exit decisions [10,26]. Furthermore, the
field has seen exploration of transformer-based models as an alternative to con-
volutional networks for dynamic early-exiting [4,9,31]. This steady stream of
innovations has led to ever-increasing sophistication in dynamic early-exiting
network mechanisms, further enhancing their efficiency and effectiveness.

The fundamental challenge in this domain stems from the inherent train-test
mismatch [8]. The classification network is typically trained without considering
the constraints of a limited inference budget. Each exit classifier is optimized
across the entire training dataset, without accounting for the fact that during
inference, not all classifiers may encounter all types of testing data. In scenarios
with resource limitations or easily manageable inputs, only the shallow layers and
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classifiers are activated, leading to a disparity in the data distribution between
training and testing. While “easy” examples may contribute to regularizing deep
classifiers during training, overemphasizing these samples can exacerbate the
distribution mismatch issue.

In this work, we assume that the inference budget will be allocated by spec-
ifying the ratio of samples that must exit at each checkpoint. This means the
classifiers must not only infer the correct classes but also rank the samples appro-
priately to meet the specified exit criteria within the given overall budget. This
requirement calls for a specialized training procedure, which we address by intro-
ducing a novel gater network that is independent of both the backbone and the
classifiers. The gater network takes various confidence measures as input and
generates probabilities for selecting the best exit. These probabilities are then
transformed into sample weights. Since the predictor network and gater network
operate independently, we propose a bi-level optimization approach to co-train
them.

The contributions outlined in this paper can be summarized as follows:

• We propose a novel gater network that takes multiple confidence measures as
input and produces probabilities for selecting the optimal exit point during
training.

• We introduce an alternative approach to modeling the likelihood of early
exiting, which plays a crucial role in achieving the desired balance between
accuracy and computational efficiency.

• We formulate the training process as a bi-level optimization problem, enabling
the simultaneous training of the predictor network and the gater network.
This optimization scheme evaluates both the accuracy and the inference cost
during the training phase.

• We conduct extensive experiments on three widely-used datasets: CIFAR-10,
CIFAR-100, and ImageNet. These comprehensive evaluations demonstrate
the effectiveness of our proposed approach in delivering efficient and high-
performing dynamic early-exiting inference.

2 Related Work

Dynamic Early Exiting is an emerging technique in deep learning that focuses
on improving inference efficiency [9,10,15,25,32,33]. It allows models to exit
prediction early for certain input instances, reducing unnecessary computation
without significant loss of accuracy. Dynamic Early Exiting uses adaptive cri-
teria, such as confidence thresholds [29] or uncertainty measures [26], to decide
whether to exit the inference process early for an input. This approach has sev-
eral advantages, including reduced inference time [15], improved scalability [8] for
resource-constrained environments [22], and potential energy savings [22]. While
dynamic early exit has attracted attention for its benefits, challenges remain in
finding the right criteria to balance computational gains and accuracy preserva-
tion. However, recent research [9,10,15,31] has shown promising results and has



20 Y. Addad et al.

been applied to several domains, including computer vision [3], natural language
processing [12] and speech recognition [27]. Some authors have attempted to
deviate from the multi-exit framework, for example in [35], where the authors
proposed a boosting-like neural architecture, but the performance is comparable
to multi-exit approaches such as MSDNet [15].

The best performing approaches in multi-exit architectures are based on
BranchyNet [29], which was one of the first papers to propose such an efficient
architecture, improved later by MSDNet [15], which introduced the concepts
of anytime classification and budgeted batch classification with multiple classi-
fiers applied adaptively during test time. Building on the foundations of this
architecture, [1] has proposed a more appropriate way of fusing the network’s
intermediary outputs. In [33], the Resolution Adaptive Network (RANet) intro-
duced the idea of performing resolution adaptive learning in deep CNNs within
this multi-exit framework. In contrast, in L2W [10] the authors observed that
MSDNet treats all samples for all exists during training, ignoring the early-
exit behaviour that occurs during testing, and proposed to compensate for this
by weighting training samples according to their difficulty. In the very recent
paper [26], the authors proposed a novel method for estimating uncertainty in
dynamic neural networks, which allows to better distinguish between easy and
hard examples. This question was also investigated in [2]. It is also worth men-
tioning the approach presented in [24], which proposes an online knowledge dis-
tillation mechanism for multi-exit networks. Another approach using attention
is the Dynamic Vision Transformer (DVT) [31] and the Coarse-to-Fine Vision
Transformer (CF-ViT) [4]. Both methods share a common principle, emphasis-
ing that it is suboptimal to process all samples with the same number of tokens.
The most recent model, Dynamic Perceiver (Dyn-Perceiver) [9], advocates dis-
entangling the feature extractor and classifier branches due to the problem of
classifier interference.

One limitation of these existing methods is that they do not specifically
optimize the backbone network for budgeted inference. In contrast, our approach
directly addresses this by jointly training the backbone and gating mechanisms
to make efficient early-exiting decisions under resource constraints.

3 Presentation of the Contributions

As mentioned earlier, the key idea of our approach is to jointly train the classi-
fication network and the early exits. However, this presents a challenge, as the
two components are interdependent: the performance of the early exits depends
on the parameters of the classification network, and vice versa. This mutual
dependence complicates the optimization process, as the optimal solution for
one component cannot be determined independently of the other. Figure 1 pro-
vides an illustration of the overall training procedure.

Early Exiting at Inference Time. Once the multi-exit neural network is
trained, early exit is performed during inference by defining thresholds η(k),
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Fig. 1. Our Training Method: An Overview. The yellow arrow in the architecture
represents the gradient utilized to update the entire backbone and exits. On the other
hand, the red arrow signifies the gradient employed for updating the MLP scorer. The
values of AK are determined using the formula provided in Eq. (5). It’s worth noting
that the cost can be viewed as a scalar regularization term. (Color figure online)

where k refers to the k-th exit. When processing input examples xi, the exam-
ples are sequentially passed through each classifier exit fk until the maximum
predicted class probability, denoted as maxc softmax

(
fk(xi)

)
, exceeds the cor-

responding threshold η(k). At this point, the network returns the predicted
class c.

The threshold values η(k) are usually determined using validation data, with
the goal of ensuring that the overall processing remains within the specified
computation budget. The typical approach, which we also employ in this work, is
to set the thresholds such that a fixed fraction q, with 0 < q ≤ 1, of the samples
reaching a classifier will obtain a confident enough classification to exit. This
fixed probability q is applied consistently across all exits. Effectively, setting q is
equivalent to defining the desired computation budget, as it directly determines
the expected number of samples that will exit at each stage of the network. The
key point is that the classification network should be trained to provide higher
classification scores for the examples that should be the first to exit.

Training Multi-exit Networks. We have established that the classification
scores provided by the network should be higher for examples that are intended
to exit the network earlier. This can be the case for examples that are easier to
classify or examples where further propagation through the network would not
yield significant performance gains given the computational budget. This means
the classification network needs to be trained with the understanding that some
examples will be prioritized for earlier exit.

Let D be a set of training samples (xi, yi) for i ranging from 1 to N , where xi

denotes the input features (e.g., images) and yi ∈ C represents the correspond-
ing class labels. The set C = {1, 2, . . . , C} encompasses all potential classes. The
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objective is to train the Multi-Exit Neural Network (MENN) model f parame-
terized by θ.

Let k ∈ [0,K] be the index of each exit, where fk (parameterized by θk)
represents a sub-network responsible for generating the k-th output and aiming
to predict the target using different computational resources. In practice, fk

often shares layers with lower-cost networks, allowing for partial reuse of com-
putations. This design choice enables the network to efficiently allocate compu-
tational resources based on the requirements of each input sample.

The objective stated above translates into the loss:

L(θ;D) = Ex∼Pr(x)

[
Ek∼Pr(k|x)

(
�CE(ŷk, y)

)]
, (1)

where ŷk is the label predicted by fk, LCE(θ;D) = Ex∼Pr(x)

[
�CE(ŷk, y)

]
is the

standard cross-entropy loss where �CE(ŷk, y) = − log Prŷ=y(x; θ), and Pr(k|x)
represents the probability for the input x to exit at the k-th exit.

Traditionally, Early Exit Neural Network (EENN) methods have assumed a
fixed probability of exiting at each layer, i.e., Pr(k|x) = 1

K . This simplifies the
loss function to the average of the cross-entropies at each output. We relax this
assumption of a fixed exit probability. Instead, we consider a sample-dependent
probability of exiting, Pr(k|x), which can vary across samples. This sample-
dependent exit probability is important because it allows the network to adapt
its computational budget more flexibly to each input, while still maintaining the
overall budget constraint, at train time.

Addressing Early Exit During Training. As mentioned in the previous
section, we want the classification network to be learned by taking into account
the fact that not all samples have an equal probability of exiting at each exit
and must respect a given budget. Leveraging the work in [16], we integrate the
probability of exiting in the loss, which also leads to the introduction of a per-exit
cost function, as the early exiting probabilities depends on the overall budget.
We propose to translate this into the following loss:

L(θ;D) = Ex∼Pr(x)

(
Ek∼Pr(k|x)

(
�CE(ŷk, y) + λCostk

))
. (2)

where λ is a hyperparameter that determines the weight given to additional
costs associated with the model’s predictions. It controls the emphasis placed
on these costs compared to the cross-entropy loss. We will show later how to
compute Pr(k|x), which is not a constant here.

Regularizing the Loss. We observed that using the loss given in Eq. 2, the
model frequently favors a single output based on cost considerations. This ten-
dency limits the model’s capacity to generalize effectively due to the lack of
diversity in output selection. To address this limitation, we introduce an addi-
tional term in the loss function, which is the unweighted cross-entropy, as follows:

L(θ;D) = Ex∼Pr(x)

(
Ek∼Pr(k|x)

(
�
CE

(ŷ
k
, y) + λCost

k
)
+ KEk∼Uniform(K)

(
�
CE

(ŷ
k
, y)

) )
. (3)
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Given that Costk is a scalar value independent of the training parameters,
the loss can be written as:

L =
1
N

N∑

i=1

K∑

k=1

(Pr(k|x) + 1)
(
�CE(ŷk

i , yi) + λCostk
)
. (4)

Computing the Probability of Early Stopping. As discussed before, once
the network achieves sufficient confidence, it may no longer require further con-
sideration of subsequent exits. This rationale underlies our modeling of Pr(k|xi),
which is the likelihood for the sample xi of exiting at exit k:

Pr(k|xi) =

⎧
⎪⎨

⎪⎩

P k
i if k = 1

P k
i

∏k−1
j=1 (1 − P j

i ) if 1 < k < K
∏K−1

j=1 (1 − P j
i ) if k = K

. (5)

where P k
i is the probability that p

(k)
i is greater than the exit threshold.

Equation (5) defines this probability differently for three cases: the first exit
(k = 1), the last exit (k = K), and all other exits in between. The probability
of an input exiting at the first exit, denoted as Pr(k = 1|x), is equivalent to
the probability of the input being correctly confident at that exit. Conversely,
for the final output, the input will only exit if it has not exit at any of the
preceding output. This scenario is captured by multiplying the probabilities of
not exiting at each of the previous output. For all intermediate exits, the input
will exit if two conditions are met: first, it must be correctly confident at the
current exit, and second, it must not have been correctly confident at any of the
preceding outputs. This situation is represented by the product of the probability
of correct confident at the current exit and the probabilities of not exiting at
each of the previous exits. In summary, this equation serves as a probabilistic
decision-making framework, determining the optimal exit point for an input.
It strikes a balance between the goal of achieving a correct confident and the
objective of minimising the computational expense associated with processing
the input.

Note that it can be readily confirmed that the summation
∑K

k=1 Pr(k|x) = 1.

Estimating the Probability of Early Stopping at Train Time. Since we
cannot know the values of the thresholds η(k) during training, it is not possible
to calculate the probabilities P k

i directly. We propose to replace this term by an
action function Ak

i , which selects the outputs according to the multiple confi-
dence scores sk

i;θ and the backbone parameters represented by θ. This function,
parameterised by φ, dictates the response of the model to the multiple confi-
dence scores. This is achieved by employing a Multi-Layer Perceptron (MLP) on
an aggregated confidence score, represented as sk

i;θ. Therefore, the probability

P k
i;φ = σ

(
MLP(sk

i;θ)
)
, given the aggregated confidence score. σ is the sigmoid

function.
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The aggregation sk
i;θ, serves as a comprehensive measure of the model’s cer-

tainty across various aspects, thereby providing a more robust estimate of the
probability P k

i . This approach allows for a more nuanced understanding of the
model’s performance, as it takes into account a variety of confidence scores,
rather than relying on a single one. To accomplish this, we established an aggre-
gation of confidence measures, which encompasses maximum confidence, max-
imum merging, and entropy. The formulation of these concepts is as follows
(inspired by the work of Ilhan et al. [16]):

sl,max
i;θ = p

(k)
i , (6)

sl,entropy
i;θ =

C∑

c′=0

softmaxc′
(
fk(xi)

)
log(softmaxc′

(
fk(xi)

)
), (7)

sl,margin
i;θ = p

(k)
i − max

c′�=c
softmaxc′

(
fk(xi)

)
. (8)

In our practical implementation, we utilize Eq. (9) to regulate the smooth-
ness of probability distributions within our model. This equation embodies the
softmax operation with a modification introduced by the temperature parameter
(T ). Integrating T into the equation provides us with precise control over how
probabilities are distributed among the exits, leveraging the input data xi. The
normalization step within the equation guarantees that the resulting probabili-
ties sum up to 1, ensuring a valid probability distribution. In our experimental
setup, we set the temperature parameter to T = 0.5. We find this temperature
value works well through a grid search.

Ak
i;φ =

Pr(k|xi)1/T

∑K
j=1 Pr(j|xi)1/T

(9)

Optimizing Φ and θ
The training of the multi-exit network involves optimizing two sets of parameters:
θ, which are the parameters of the classification networks, and Φ, which are the
parameters of the action function that estimates the probability for a sample to
exit at a particular exit of the network. This constitutes a bi-level optimization
problem, where we have two interconnected optimization problems, with one
nested within the other.

In this bi-level optimization setup, the solution to the outer problem depends
on the resolution of the inner problem. The process of minimizing the bi-level
optimization can be described as follows:

min
φ

1
N

N∑

i=1

K∑

k=1

(
�CE
θ∗ (ŷk

i , yi) + λCostk
)
(Ak

i;φ(s
k
i;θ∗))

s.t.min
θ

1
N

N∑

i=1

K∑

k=1

(
�CE
θ (ŷk

i , yi) + λCostk
)
(Ak

i;φ(s
k
i;θ) + 1)

(10)

Our approach to bi-level optimization differs from that of [10], as we optimize
the same loss function in both the inner and outer optimization stages, with
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only the parameters varying. Now, directing attention to the derivatives of the
objectives concerning the parameters θ, and φ, the derivatives are as follows:

∂Linner

∂θ
=

N∑

i=1

K∑

k=1

(
Ak

i;φ(s
k
i;θ) + 1

) ∂�CE
θ (ŷk

i , yi)
∂θ

+
(
�CE
θ (ŷk

i , yi)) + λCostk
) ∂Ak

i;φ(s
k
i;θ)

∂θ
, (11)

∂Louter

∂φ
=

N∑

i=1

K∑

k=1

(�CE
θ∗ (ŷk

i , yi) + λCostk)
∂Ak

i;φ(s
k
i;θ∗)

∂φ
. (12)

4 Experiments

This section presents the experimental validation of the proposed method on
CIFAR-10/100 [19] and ImageNet [6] datasets, and provides comparisons with
recent methods in the literature. Inline with the literature on the domain, we
experiment our approach in the budgeted batch classification mode as well as in
the anytime classification mode (see definitions in [15]).

On the Influence of λ. The classification network is trained using a cost
function that manages a trade-off between budget and classification performance.
Ideally, we would need to train a different network for each value of λ, i.e., for
each level of budget allocated, which would require training and storing numerous
networks to cover all the possible trade-offs. However, we have observed that
it is possible to find a single value of λ that offers an acceptable compromise,
regardless of the budget allocated for inference. This value, λ = 2, was estimated
empirically through a performance analysis on the CIFAR-100 database. All the
following experiments have been conducted using a single classification network
learned with λ = 2.

On the Importance of Training the Classification Network with
Budget-Aware Constraints. The main idea of this paper is that it is impor-
tant to train the classification network while considering budget constraints, as
opposed to methods that first train the classifier and then add techniques to
refine the output rules. To validate this hypothesis, we conducted an experiment
on the CIFAR databases, the results of which are part of Fig. 3. This figure com-
pares the performance of our proposed method (called “MSDNet+Ours”) with
the same method when the classification network is first learned and then frozen
(called “MSDNet frozen+Ours”). We observe that the gain is significant, on the
order of +2% on CIFAR 100, across various budget levels.

On the Features Used for Estimating the Probability of Early Stop-
ping at Train Time. As discussed in the previous section, during training
we cannot know which example will output on which layer during inference.
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Instead, we infer this information from certain features that we believe correlate
with the early stopping probability, namely: ‘confidence’, ‘margin’, and ‘entropy’
(as described in Sect. 3). Table 1 shows the performance of the classifier for dif-
ferent budgets as a function of the information used to infer the probability of
exiting. The best model across all budgets is obtained by using both the ‘confi-
dence’ score and ‘entropy’ as inputs. In general, incorporating entropy into the
input results in the highest score compared to using other features alone. This
is the setting used in the following experiments.

Table 1. Accuracy on CIFAR-100 in budgeted batch classification, comparing different
combinations of features used to determine the probability of exiting the network:
‘confidence’, ‘margin’, and ‘entropy’ (as described in Sect. 3).

Input Top-1 Acc (%)
30M 50M 70M 90M

Confidence Only 70.84 76.39 79.32 80.08

Margin Only 71.49 76.07 78.73 79.6

Entropy Only 71.55 76.84 79.43 80.37

Confidence and Margin 71.63 76.48 78.91 79.73

Confidence and Entropy72.28 76.81 79.53 80.41

Margin and Entropy 71.67 76.56 78.79 79.7

All 71.57 76.89 79.19 79.7

Fig. 2. Accuracy (top-1) of anytime prediction models as a function of computational
budget on CIFAR-10 (top) and CIFAR-100 (bottom). Higher is better.
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Fig. 3. Accuracy (top-1) of budgeted batch classification models as a function of aver-
age computational budget per image on CIFAR-10 (left) and CIFAR-100 (right).

Comparisons with State-of-the-Art Multi-exit Architectures. We com-
pare our model to the best performing related works, namely MSDNet [15],
RANet [33], BoostNet [35], L2W [10], and JEI-DNN [28]. In addition, we com-
pare our results with those of post-hoc methods, specifically Calibrated-DNN
proposed by Meronen et al. [26] and EENet proposed by Ilhan et al. [16].

For Anytime Prediction, our proposed training method coupled with MSD-
Net [15] surpasses the previous state-of-the-art for both CIFAR-10 and CIFAR-
100 datasets, even for the first exits. The only exception is exit 3 on CIFAR-10,
where RANet performs slightly better. Our method is depicted by the black
curve in Fig. 2 entitled ‘MDSNet+Ours’. On CIFAR-10, our method achieves
an accuracy of 96.13% for its last exit with 137M FLOPs. For a budget of
27M FLOPs, we achieve an accuracy of 90.80% compared to RANet’s 90.96%
with a similar number of FLOPs. In comparison to JEI-DNN [28] trained under
the same conditions, we achieve an improvement of approximately 2% to 3%
in accuracy across all exits. On CIFAR-100, our method attains an accuracy of
80.43% with 137M FLOPs. Compared to the traditional training of MSDNet,
our proposed method achieves an improvement of approximately 1% to 1.5% in
accuracy, depending on the exit.

In the context of budgeted batch classification, our proposed method demon-
strates superior performance compared to all other methods for both CIFAR-10
and CIFAR-100 datasets. For CIFAR-10, our method achieves a classification
rate of 95.03% with a budget of only 25M FLOPs, which is significantly more
efficient than MSDNet, requiring twice as many FLOPs to achieve the same
level of performance. Furthermore, RANet and BoostNet require approximately
75M FLOPs to attain the same performance level as our method. To reach the
same accuracy as JEI-DNN, which is approximately 93.4%, our method requires
only 28M FLOPs, which is about 3× fewer FLOPs. For CIFAR-100, our method
requires only 90M FLOPs to attain an accuracy of 80.43%, and only 58M FLOPs
to achieve the same level of performance as MSDNet, which takes approximately
1.5× more FLOPs.



28 Y. Addad et al.

Fig. 4. Compare MSDNet and RANet using both the post-hoc method and our training
approach on CIFAR 100 dataset. Higher is better.

Fig. 5. Top-1 accuracy on ImageNet, plotted as a function of computational budget.

In addition to comparing our method with other approaches, we have also
evaluated it against post-hoc methods, which involve applying post calibration
on the scores. Figure 4 illustrates the comparison with two such methods, namely
Calibrated-DNN [26] and EENet [16]. The figure presents two models, with
MSDNet [15] on the left and RANet [33] on the right. Our proposed method
demonstrates significant improvement in the performance of both architectures
and surpasses the current state-of-the-art methods in both cases. In the scenario
of MSDNet [15], Calibrated-DNN noticeably improves inference performance,
particularly in budgets exceeding 60M Flops, although still falling short of our
method’s enhancement. When MSDNet [15] is combined with EENet [16], the
resulting method exhibits inferior performance compared to the classic approach.
As for RANet [33], our approach enhances its performance by a margin of 0.5%
to 1.5% across all budgets. Notably, Calibrated-DNN achieves nearly equivalent
performance to traditional training. Similarly, applying EENet [16] to RANet
[33] yields poor result as classical training.
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Finally, Fig. 5 reports the performance of the proposed method on the Ima-
geNet dataset. Once again, our proposed method demonstrates superior per-
formance compared to other state-of-the-art approaches, whether for Anytime
Prediction or Budgeted Batch Classification. In Anytime Prediction, our method
outperforms L2W-MSDNet and BoostNet, two approaches that bear the closest
resemblance to ours. In the realm of Budgeted Batch Classification, our primary
focus, our approach achieves a slightly higher accuracy of around 0.5% to 1%
compared to alternative methods. Noteworthy is our method’s efficiency, requir-
ing only 1.95×109 Flops to achieve peak accuracy, representing a 25% reduction
in Flops compared to L2W-MSDNet. Regarding BoostNet, our method achieves
the maximum performance reached by BoostNet, approximately 78.54%, with
only 1.87 × 109 Flops, marking a reduction of approximately 30% in Flops.

5 Conclusions

This paper introduces a training approach for Early Exit Neural Networks
(EENN) specifically designed for budgeted classification tasks. The primary goal
of our method is to align the behavior of the training and inference steps. By
enhancing traditional Early Exit models with the integration of the forward cost
and a network that calibrates sample difficulty, we achieve improved classifi-
cation accuracy while respecting computational constraints. Extensive evalua-
tions on CIFAR-10, CIFAR-100, and ImageNet benchmarks demonstrate that
our approach sets a new state-of-the-art for budgeted classification, consistently
outperforming existing early exit strategies.
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Abstract. The deployment of deep neural network (DNN) models on
various devices presents a significant challenge due to the diverse charac-
teristics of deployment environments. Operator fusion, which enhances
DNN model inference efficiency by combining multiple operators into a
single one, is critical in this context. However, most deep learning compil-
ers use a uniform fusion scheme, failing to consider environment-specific
optimizations.

We propose a novel approach to determine optimal operator fusion
schemes tailored to different deployment environments. By represent-
ing fusion schemes with fixed-length binary sequences and using model
inference time as feedback, we apply an evolutionary search strategy to
identify effective fusion schemes. Our experiments with multiple DNN
models across diverse environments show substantial performance gains
over static fusion schemes used by TVM and DNNFusion. Specifically, we
observed an average performance improvement of 17% on the NVIDIA
Tesla V100 GPU, with a maximum improvement of 79%. On the NVIDIA
Orin NX GPU, our method achieved an average improvement of 13%.
On CPUs, the average performance increase was 25%, peaking at 44%.
These results underscore the effectiveness of our method in enhancing
DNN model inference across various deployment environments.

Keywords: Operator Fusion · Evolutionary Search · Deep Learning
Compilation

1 Introduction

Deep learning, a specialized branch of machine learning, has experienced swift
progress with the integration of multi-layer neural networks and large-scale
datasets. This area of research has not only driven progress in established fields
like computer vision and natural language processing but has also achieved
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notable advancements in emerging domains such as model interpretability
[12,25], compression [7,24], and the prevention of technology misuse [23]. As
deep learning models grow in complexity and performance, they require increas-
ingly more computational resources. This surge in demand poses a substantial
challenge for both research and practical applications, particularly in terms of
efficient deployment.

Operator fusion [4,5] is a crucial technique for accelerating model inference.
It merges multiple operators into a single equivalent operator, thereby reducing
the number of memory reads and writes for intermediate results and enhancing
the execution efficiency of DNN models [11]. Since operator fusion does not alter
the parameters of the DNN model, the output remains consistent before and
after optimization, ensuring that the model’s accuracy is not compromised. In
the deep learning compiler optimization process, the operator fusion scheme is
first determined at the graph level, followed by the operator level generating
tensor programs for each fused operator, tailored to various devices. Therefore,
the optimization effect of operator fusion is not only influenced by the fusion
scheme but also closely related to the deployment environments [28].

Synergistic optimization that combines operator fusion schemes with tensor
program generation holds the key to maximizing the benefits of operator fusion,
thus boosting the inference efficiency of DNN models. While certain frameworks
rely on traditional algorithms for devising fusion schemes. This reliance, however,
often results in settling for local optima, which means the full optimization
potential of operator fusion is not realized. Exploring innovative strategies that
circumvent these drawbacks is essential for enhancing optimization.

We introduce a novel method to identify the optimal operator fusion scheme
for various deployment environments. Initially, we represent operator fusion
schemes as fixed-length binary sequences using a DAG Analyzer module. This
setup enables the application of evolutionary algorithms to match the most suit-
able fusion schemes with specific deployment environments, using the model’s
inference time as a fitness measure. For broader compatibility with other opti-
mization techniques, the Sequence Decoder transforms these binary sequences
into a more universally applicable format during the compilation phase.

Experimental results indicate that our approach yields a performance
improvement ranging from 7% to 44% on server-level CPU, averaging 25%, when
compared to the static fusion schemes of TVM and DNNFusion. For NVIDIA
Tesla V100 GPU [16], we observed improvements between 7% and 79%, with an
average of 17%. On NVIDIA Orin NX GPU [17], improvements varied from 5%
to 34%, with an average of 13%.

This paper makes the following contributions:

1. We represent the operator fusion scheme of DNN models as fixed-length
binary sequences. This novel representation creates an extensive solution
space for operator fusion, simplifying the identification of invalid schemes
and allowing for easy shifts among different fusion strategies.
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2. We employ an evolutionary search strategy to identify the optimal operator
fusion schemes, specifically tailored to each deployment environment. This
approach effectively avoids the pitfalls of local optima.

3. Through evaluations conducted on a diverse array of models and comput-
ing platforms, we have demonstrated that our approach significantly boosts
the inference performance of DNN models. This evidence underscores our
method’s ability to enhance computational efficiency across various deploy-
ment environments.

2 Related Works

Research on operator fusion schemes is currently divided into two distinct
approaches: classification-based and algorithm generation-based.

The classification-based approach organizes operators based on specific crite-
ria and outlines rules for their fusion. For example, TVM [3] categorizes operators
into four types: injective, reduction, complex-out-fusable, and opaque, and then
identifies three scenarios where these can be combined through computation
graph traversal. DNNFusion [14] takes a different angle by classifying operators
into five categories based on the relationship between their input and output
tensors, allowing for more versatile fusion rules. This approach facilitates both
forward and backward fusion from simple operators within the computation
graph. The Apollo [26] system advances this concept further by implementing
a dynamic rule-updating mechanism to better match the nuances of different
hardware platforms, thus optimizing fusion strategy effectiveness and adaptabil-
ity.

Conversely, the algorithm generation-based approach employs models and
algorithmic optimizations to pinpoint the most effective fusion strategy. Fusion-
Stitching [29] assesses fusion strategy benefits through metrics like decreased
memory access volume and reduced CPU-GPU context switching, utilizing a
beam search algorithm to identify the optimal fusion scheme. Optimus [2], on
the other hand, creates a memory access cost model and applies dynamic pro-
gramming to discover fusion strategies that lower memory access volume the
most.

These studies typically employ static fusion schemes or conduct searches
within constrained solution spaces, often leading to local optima. To address
this issue, we construct a comprehensive solution space and employ evolutionary
search methods to enhance search efficiency and avoid the pitfall of local optima.

3 Background

Operator fusion focuses on optimizing the computational graph G = (V,E),
derived from deep learning models. This graph is a Directed Acyclic Graph
(DAG) consisting of nodes V and directed edges E. In this context, each node
represents a tensor operation, and the directed edges represent the data depen-
dencies between operators. The process of operator fusion involves combining
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multiple operators into a singular new fused operator, similar to partitioning
the graph. This optimization technique maintains the correctness of data depen-
dencies, guaranteeing that the modified, fused graph is functionally equivalent
to the original.

Traditionally, operator fusion schemes are considered as a series of disjoint
node sets F = {V1, V2, . . . , Vk}, satisfying specific conditions to ensure that
there are direct or indirect data dependency relationships among nodes within
each fused operator, and collectively covering all nodes in the original compu-
tational graph. However, as illustrated in Fig. 1, this representation introduces
dual uncertainties in the number of node sets and the size of each set. This
complexity hinders the fluidity of transitions between different fusion schemes,
due to the need of multiple operations on sets and nodes, such as moving nodes
between sets or merging and splitting sets. Such constraints limit the application
of effective search algorithms within the operator fusion solution space.

Fig. 1. The transition between fusion schemes lacks flexibility, involving three distinct
operations: Move, Merge, and Split.

Therefore, seeking a more efficient representation and search method for oper-
ator fusion schemes, to overcome the shortcomings of existing methods, holds
significant research significance and practical value for the optimization of deep
learning compilers.

4 Method

4.1 Overview

As shown in Fig. 2, our methodology consists of two primary components: the
DAG Analyzer and the Sequence Decoder. The DAG Analyzer examines the
computational graph to identify information pertinent to the fusion scheme’s
fixed-length binary sequence representation. Utilizing this data, an evolution-
ary search explores the solution space. For every fusion scheme, the Sequence
Decoder module adjusts and interprets it, leading to the creation of a respec-
tive tensor program. With the aim of reducing inference time, we evaluate the
efficiency of fusion schemes by the execution time of the tensor programs.
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Fig. 2. Overview. The green part represents our proposed approach’s composition,
yellow highlights the fusion schemes identified during the evolutionary search, and
blue marks the final fusion scheme derived by the evolutionary algorithm. (Color figure
online)

4.2 DAG Analyzer

Key Insight. In deep learning computational graphs, directed edges serve a
dual purpose: depicting data flow paths between operators and revealing depen-
dencies where the output tensor of one operator becomes the input for another.
We categorize these dependencies into two main types: intra-fusion (within the
same fused operator) and inter-fusion (across different fused operators), as illus-
trated in Fig. 3. This bifurcation is crucial for the construction of operator fusion
schemes, essentially requiring a clear classification of each directed edge’s depen-
dency type within the graph.

In exploring operator fusion schemes within a computation graph G = (V,E),
we employ a representation that precisely captures the type of dependency rela-
tionships. We associates each edge ei ∈ E with a binary value bi, where bi = 1
denotes intra-fusion dependencies and bi = 0 signifies inter-fusion dependen-
cies. Consequently, the entire fusion scheme is encoded as a binary sequence
S = b1b2...b|E|, where the length of the sequence is equal to the number of edges.
This representation not only simplifies the depiction of fusion schemes but also
significantly facilitates their comparison, optimization, and automation.
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Fig. 3. Dependency categories in operator fusion.

The completeness and uniqueness of this representation are based on the
following considerations:

For any computation graph G = (V,E) and its operator fusion scheme P =
{G1, G2, ..., Gn}, each edge ei ∈ E can be denoted as (vx, vy). That is, vx and
vy either reside within the same subgraph Gk (i.e., vx, vy ∈ Gk, where bi = 1) or
in distinct subgraphs (i.e., vx ∈ Gp, vy ∈ Gq, and p �= q, with bi = 0). Hence, a
unique binary bit bi corresponds to each edge in E, forming the binary sequence
S = b1b2...b|E| that is uniquely associated with P .

Conversely, for any given binary sequence S of length |E|, the association of
nodes to each edge ei is determined by the bit bi in S. Specifically, if bi = 0,
the nodes of ei belong to different subgraphs. If bi = 1, they are part of the
same subgraph. Given that the edge set E defines all node connections in G,
this method enables the unique reconstruction of the operator fusion scheme P .

By distinctly classifying each edge’s dependency type as either intra-fusion
or inter-fusion and using a binary sequence to uniquely represent these relation-
ships, we not only streamline the visualization and handling of fusion schemes,
but also ensure the representation’s completeness and uniqueness. This provides
a solid foundation for further research into operator fusion.

Search Space Pruning. In the construction of current deep learning models,
operators performing simple logical operations, such as addition and ReLU, play
a crucial role. These operators are characterized by their one-to-one mapping
between the output tensor and input elements, executing a simple operation on
each input element independently and preserving the tensor shape. Due to this
characteristic, such operators do not require complex optimization techniques
(e.g., tiling) and can be fused with other operators with data dependencies,
leading to performance improvements.

By fusing simple operators directly with their producer operators, we fix these
direct dependencies in the computation graph and eliminate these dependency
bits from the binary sequence representation, effectively pruning the solution
space. Taking the common structure in YOLOv4 [1] as an example, as shown in
Fig. 4, pruning reduces the solution space from 26 to 23, focusing on fusion scenar-
ios with significant potential for performance improvement, instead of exploring
all possible fusions.
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Fig. 4. Pruning demo in YOLOv4. Pruning reduces the search space from 26 to 23.

Subsequence Sharing. Deep learning architectures often feature the use of
repeated modular units, such as the residual blocks found in ResNet-18 [6].
These modules are arranged in a deliberate sequence to facilitate complex data
processing. However, when these architectural structures are encoded into fixed-
length binary sequences for operator fusion, redundancy becomes a significant
issue due to the repetition of these modules. This is particularly true when
identical modules at different positions in the model lead to longer than necessary
sequences, compromising the efficiency of representation.

Recognizing the need for a more efficient method that accounts for the rep-
etition of modules under identical execution conditions, we present a sequence
sharing strategy based on subgraph isomorphism. This method seeks to detect
and assign functionally identical modules within the computational graph to
identical segments of the binary sequence, thereby enhancing representation effi-
ciency.

4.3 Sequence Decoder

Sequence Repair. As shown in Fig. 5, the solution space contains many illegal
solutions, which result in loop data dependency within the computation graph.
Our analysis under the binary sequence representation reveals that the reason of
these illegal solutions leading to data loops is the presence of both “reachable”
paths (where all edges along the path have a value of 1, indicating intra-fusion
dependency) and “unreachable” paths (where there is at least one edge with
a value of 0, indicating inter-fusion dependency) between a node and its post-
dominator.

Based on this analysis, we verify the legality of each fusion scheme encoun-
tered during evolution search. For nodes that cause a fusion scheme to be illegal,
we transform the scheme into a legal, executable one by setting the values of all
incoming edges to their post-dominators to 0.
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Fig. 5. Loop data dependency.

Sequence Decode. To be compatible with specific tensor program genera-
tion methods, we convert the binary sequence representation of a fusion scheme
into a traditional form. As described in Algorithm 1, it iteratively propagates
through each node in the computation graph based on the fusion relationships
with producers and consumers. Each node propagates only once until it reaches
the boundary of the fusion operators. Ultimately, each fusion operator is repre-
sented as a set of nodes, constituting the traditional representation.

Algorithm 1. Decode fusion scheme into node sets.
Input: G = (V,E), computation graph.
Input: S, a fusion scheme represented by binary sequence.
Input: Mapper, a function mapping each edge e ∈ E to an index of S.
Output: V s, a fusion scheme represented by node sets.

Initialize V s as an empty dictionary.
Initialize visited as an empty set.
for each node n in V do

tempV ← V s[n] if n in V s else initialize ∅ for V s[n]
Initialize queue q with n.
while q is not empty do

v ← q.pop()
if v in visited then

Continue to the next iteration of the loop.
end if
Add v to visited.
fusedProducers ← getFusedProducers(G, S, Mapper, v)
fusedConsumers ← getFusedConsumers(G, S, Mapper, v)
for each fusedNode in fusedProducers + fusedConsumers do

V s[fusedNode] ← tempV
Insert fusedNode into tempV .
q.push(fusedNode) if fusedNode not in visited.

end for
end while

end for
return V s
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4.4 Evolutionary Search

Fixed-length binary sequences are used to represent operator fusion schemes in
deep learning models, enabling the definition of a comprehensive solution space.
We utilize evolutionary search to efficiently explore this space. For fitness eval-
uation, all operator fusion schemes in the population, encoded as fixed-length
binary sequences, are decoded through the Sequence Decoder module. Each indi-
vidual generates a tensor program, whose performance is tested in a specified
deployment environment, with inference time serving as the fitness value.

We employ a tournament selection strategy to choose a subset of individuals
for the next generation, followed by crossover and mutation operations. The
individual with the minimum fitness value wins the tournament. Additionally,
we implement an elite selection strategy, where the individual with the smallest
fitness value is directly transferred to the next generation without selection,
crossover, or mutation, enhancing convergence speed. If the inference time of
the optimal individual remains unchanged after 20 iterations, we consider the
search process converged.

5 Experiments

5.1 Experimental Settings

Models. In addressing the diverse requirements of deep learning tasks, we
adopted a comprehensive selection strategy for model evaluation. Initially, for
image classification, we chose a range of representative models known for their
outstanding performance in image recognition. This set includes DenseNet
[8], GoogleLeNet [20], InceptionV2 [10], and members of the ResNet series,
specifically ResNet-18 and ResNet-152. Recognizing scenarios where computa-
tional resources are limited, we also included a selection of lightweight models
designed for efficiency without significantly compromising performance. These
models include EfficientNet-lite4 [21], MobileNetV2 [19], ShuffleNetV2 [13], and
SqueezeNet [9], all of which offer reduced computational demands. For object
detection, we chose the YOLOv4 model due to its effectiveness. Finally, in the
realm of Natural Language Processing (NLP), we selected BERT-Small [22] and
GPT-2 [18].

Tensor Program Generation. We employed the Ansor [27] auto-tuning
framework to generate tensor programs for fused operators. Ansor is an advanced
auto-tuning system capable of optimizing a diverse range of fused operators.
Moreover, its integration with the deep learning compiler TVM is very tight,
providing a set of user-friendly interfaces.

Environment Setup. We evaluated our approach on server-level CPUs and
GPUs, as well as on GPUs in edge device. The configurations of the experimental
environment are shown in Table 1.
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Table 1. Experimental Environment Setup.

Metric Cloud Server Edge Device

CPU Intel Xeon Gold 6248R ARMv8 Processor rev 1 (v8l)

GPU NVIDIA Tesla V100 NVIDIA Orin NX GPU

CUDA Driver 11.4 11.4

LLVM Version 15.0.5 16.0.0

Operating System Ubuntu 18.04.06 LTS Ubuntu 20.04

Implementation Details. We have integrated our methodology into TVM. In
setting up the evolutionary algorithm, we start with a randomly initialized pop-
ulation. Fusion schemes that encounter execution failures for unspecified reasons
are assigned a significantly high inference time, allowing for their exclusion via
the selection. For models characterized by lengthy binary sequences, we improve
search efficiency by implementing a multi-point crossover technique. To guaran-
tee the search’s eventual convergence, we employ an elitist reservation strategy.
Furthermore, to reduce resource waste, an early stopping mechanism is activated.

5.2 End-to-End Model Performance

We evaluated our approach across various computing platforms. Our goal was
to measure the improvements in end-to-end model inference performance rela-
tive to TVM’s default strategy. For further comparison, we also considered the
DNNFusion, specifically focusing on its fusion scheme rather than the entire
framework. The results of these evaluations are illustrated in Fig. 6 and Fig. 7
for the CPU and GPU on cloud server, respectively, and in Fig. 8 for the GPU
on edge device (In the results, the vertical axis “Relative Performance” refers to
the relative improvement in inference efficiency compared to the TVM).

Fig. 6. Performance of different DNN models on CPU (y-axis: relative performance
compared to TVM).

The horizontal axis represents various DNN models, and the vertical axis
illustrates the performance improvements relative to TVM’s fusion scheme. Our
method outperformed the strategies of both TVM and DNNFusion in all tests on
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Fig. 7. Performance of different DNN models on NVIDIA Tesla V100 GPU (y-axis:
relative performance compared to TVM).

Fig. 8. Performance of different DNN models on NVIDIA Orin NX GPU (y-axis: rel-
ative performance compared to TVM).

the NVIDIA Tesla V100 GPU, achieving an average efficiency improvement of
17% and peaking at 79%. On the NVIDIA Orin NX GPU, our approach realized
a 13% average efficiency improvement over TVM. Similarly, on CPUs, it achieved
an average efficiency gain of 25%. These results affirm the broad applicability
and superior effectiveness of our approach.

5.3 Memory Analysis

To delve deeper into the efficacy of our approach on computing platforms, we
utilized the ResNet-18 model as our primary neural network architecture. We
employed NVIDIA Nsight Compute [15] for a detailed assessment of GPU mem-
ory bandwidth utilization, comparing our approach against the fusion schemes
of TVM and DNNFusion. Figure 9 highlights our findings, showing that our
approach enhances memory bandwidth utilization by 13% over TVM and 20%
over DNNFusion. This increase in memory bandwidth utilization significantly
cuts down on data transfer overhead, leading to greater efficiency in compute
core performance (In the results, the vertical axis “Relative Performance” refers
to the relative improvement in memory bandwidth utilization compared to the
TVM).

5.4 Compilation Time

Our approach, based on evolutionary search, led to significantly longer search
times within the solution space compared to the static fusion schemes used by
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Fig. 9. Memory bandwidth utilization of different DNN models on NVIDIA Tesla V100
GPU (y-axis: relative performance compared to TVM).

TVM. During testing on an NVIDIA Tesla V100 GPU, our method’s average
compilation time was 17.3 times that of TVM. On CPU, the compilation time
increased to 27.1 times, and on the NVIDIA Orin NX GPU, it extended to 19.7
times longer. The increased compilation times are mainly due to the necessity
of evaluating various fusion schemes during the evolutionary search. Despite
the extended compilation duration, the time investment is justified, as DNN
model deployment is generally a “once-for-all” process (In the results, the vertical
axis “Relative Performance” refers to the relative improvement in compilation
efficiency compared to the TVM).

5.5 Case Study

In this study, we illustrate the variation in the inference time of EfficientNet-lite4
on NVIDIA Tesla V100 GPU through the iterative process of evolution search.
As shown in Fig. 10, the performance of the initial population was inferior to
the fusion schemes of TVM and DNNFusion. However, a significant and rapid
decline in inference time was observed in the first 7 generations, with a superior
fusion scheme emerging after the 5th iteration that surpassed those of TVM
and DNNFusion. From the 7th to the 24th generation, the performance saw a

Fig. 10. EfficientNet-lite4 inference time reduction with evolutionary algorithm itera-
tions.
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gradual, stepwise improvement and ultimately converged in the 25th generation,
achieving a 16% performance increase compared to TVM.

6 Conclusion

Our approach utilizes evolutionary search to identify superior operator fusion
schemes tailored to specific deployment environments. To overcome the inflexibil-
ity of traditional representations of fusion schemes, we adopt fixed-length binary
sequences to depict operator fusion schemes, thereby delineating the entire solu-
tion space. Experimental validation has shown that our method significantly
enhances inference speeds across a variety of DNN models compared to static
fusion schemes. Notably, we achieved an average inference acceleration of 17%
on server-level CPU and 25% on NVIDIA Tesla V100 GPU. Additionally, a
13% increase in inference speed was observed on NVIDIA Orin NX GPU. These
results highlight the effectiveness of our methodology in boosting model inference
speeds across different computing platforms.
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Abstract. Despite multiple view consistency offered by 3D-aware GAN
techniques, the resulting images often lack the capacity for localized
editing. In response, generative radiance manifolds emerge as an effi-
cient approach for constrained point sampling within volumes, effec-
tively reducing computational demands and enabling the learning of fine
details. This work introduces SemFaceEdit, a novel method that stream-
lines the appearance and geometric editing process by generating seman-
tic fields on generative radiance manifolds. Utilizing latent codes, our
method effectively disentangles the geometry and appearance associated
with different facial semantics within the generated image. In contrast to
existing methods that can change the appearance of the entire radiance
field, our method enables the precise editing of particular facial seman-
tics while preserving the integrity of other regions. Our network com-
prises two key modules: the Geometry module, which generates seman-
tic radiance and occupancy fields, and the Appearance module, which is
responsible for predicting RGB radiance. We jointly train both modules
in adversarial settings to learn semantic-aware geometry and appear-
ance descriptors. The appearance descriptors are then conditioned on
their respective semantic latent codes by the Appearance Module, facili-
tating disentanglement and enhanced control. Our experiments highlight
SemFaceEdit’s superior performance in semantic field-based editing, par-
ticularly in achieving improved radiance field disentanglement.

Keywords: Neural Radiance Fields · Neural Rendering · 3D-aware
GANs

1 Introduction

In recent years, there has been significant interest in vision and graphics in gen-
erating visually captivating and photo-realistic images. Notably, 3D aware Gen-
erative Adversarial Networks incorporating adversarial learning [11] and Neural
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Radiance Fields [25] have made remarkable progress in producing multiple-view
images that closely resemble real photographs. Despite advancements, 3D aware
Generative Adversarial Networks (GANs) [6,12,28] still struggle to match the
resolution of state-of-the-art 2D GAN models. This limitation arises from the
high computational demands of learning volumetric representations. Recently
proposed methods [5,8] try to efficiently learn radiance fields by a tri-plane rep-
resentation and learnable radiance manifolds, respectively. Nevertheless, these
methods lack control over learned geometry, thus posing challenges in decou-
pling appearance from geometry.

To decouple facial geometric and appearance attributes, FENeRF [35] adopts
π-GAN [6] and learns facial semantic volume aligned with geometry. The learned
facial semantics act as an intermediary, offering control over geometry and
appearance. However, implementing local editing with FENeRF necessitates
time-consuming and resource-intensive retraining. Addressing this limitation,
[15] proposes an AdaIN-based Controllable Appearance Module (CAM) and a
geometry decoder. This approach allows for independent control of appearance
from geometry. Unlike FENeRF, this approach requires training a geometry
decoder on learned tri-plane representations from [5] to obtain the semantic
volume for editing. Consequently, the CAM module in [15] grants control over
the appearance of the entire generated portrait. While introducing the geometry
decoder branch facilitates disentangled face editing, it does not provide semantic
control over appearance.

In this work, we introduce SemFaceEdit, building upon efficient Generative
Radiance Manifolds (GRAM) [8]. GRAM employs 2D manifolds to constrain
point sampling and radiance field learning, jointly trained with GAN. This con-
strained approach reduces the computational workload and enables fine detail
learning by confining point sampling and radiance learning within a reduced
space. In contrast to GRAM, our approach learns both semantically disentangled
geometry and appearance in a unified manner. We introduce two modules: the
Geometry Module and the Appearance Module. The Geometry Module predicts
the semantic radiance field within a volume, which the Appearance Module sub-
sequently uses to condition the appearance semantically. Unlike existing methods
that can entirely change the appearance or geometry of a radiance field, our pro-
posed approach enables semantic-specific editing while preserving the integrity
of other semantic information in terms of geometry or appearance. Our method
facilitates changes in geometry and appearance within a single photograph and
enables seamless transfer of hairstyle or other semantic facial attributes from
one source reference to another.

The main contributions of this work are summarized as follows.

– We present a novel framework based on generative radiance manifolds, allow-
ing for semantic control over the geometry and appearance by manipulating
latent spaces specific to each semantic attribute.

– We design a differentiable Semantic Volume masking layer, which learns to
segregate each point in radiance volume into semantic groups. This layer
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enables targeted appearance transfer concerning aspects like colours and hues
and selective geometry transfer for various semantic regions.

– Our method excels in geometry and appearance control, allowing for the
seamless transfer of geometry or appearance associated with one semantic
label in a radiance field to another.

Fig. 1. An overview of our proposed framework. We sample points in volume by deter-
mining intersections of casted rays with isosurfaces predicted by Manifold Predictor [8].
Subsequently, the Geometry Module conditions these points using a latent vector sam-
pled from a Gaussian distribution, resulting in diverse predictions for occupancy (σ),
semantic radiance, and Appearance Descriptor F . To segregate points and their appear-
ance descriptors based on semantic classes, we employ the Semantic Volume Masking
layer, which relies on semantic radiance information. The Appearance Module then
utilizes different latent codes to condition each set of points and predicts RGB Radi-
ance. Selectively conditioning Appearance Descriptors F based on semantics enables
the Appearance Module to independently modify a specific semantic appearance.

2 Related Works

Neural Implicit Representations. Neural Implicit functions have been widely
applied to various vision problems such as novel view synthesis [32,36], and
image manipulations [1,40]. Furthermore, they have gained significant traction in
diverse 3D-related tasks, including 3D scene reconstruction [25], and occupancy
field or signed distance function estimation [24,28]. Recent works have explored
alternative representations of implicit functions, such as octrees and tri-planes
[5,37], for faster inference and improved expressive power. Additionally, GRAM
[8] introduces an effective point sampling method and radiance field learning
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Fig. 2. The network architecture of Geometry Module and Appearance Module.

Fig. 3. Renderings of Semantic-radiance and RGB-radiance on image space generated
by our approach by random latent code z ∈ Rd and zi ∈ Rd.

on 2D manifolds, enabling fine detailed learning with reduced computational
complexity. This paper emphasizes learning semantic information on 2D mani-
folds through a geometry module rather than directly learning about the image
space. However, learning the semantic field alone encounters challenges due to
the absence of depth information in the semantic mask data. To address this, the
learning of the semantic field is further supervised by an additional appearance
module. Unlike [15,35], our appearance module uses the semantic information
from the geometry module to control the appearance of each semantic point on
these manifolds in the volume.

3D-Aware Neural Face Image Synthesis. The combination of Generative
Adversarial Networks (GANs), as originally proposed [11], and neural implicit
radiance fields (NeRF) [25], has been widely explored for the generation of 3D-
consistent faces. Despite utilizing 3D aware features and 2D CNN-based ren-
derers to generate synthetic images, several methods such as [6,12,22,26] face
challenges in accurately representing geometry, resulting in lower quality repre-
sentations. Recent studies [2,5,8,28] investigate novel representations and mod-
els, enabling the synthesis of geometrically consistent fine details.

Editing Faces with 2D GANs and DDPMs. Generative adversarial net-
works (GANs), and more recently, Denoising Diffusion Probabilistic Models
(DDPMs) have widely been applied for generating realistic images, with face
editing as a prominent area of research in this context. Various methods have



50 S. Verma and S. Raman

been proposed for face editing using semantic maps. These approaches lever-
age conditional 2D GANs [7,20,29,42], and DDPMs [14,17,33] which are con-
ditioned on semantic masks. Unlike explicit field/occupancy-based neural scene
representations, SofGAN [7] utilizes implicit fields for semantic occupancy gen-
eration. However, SofGAN relies on semantically labelled 3D scans for training
and involves a separate process to synthesize images through 2D projections of
semantic labels. Diffusion-Rig [9] first learn facial priors by fitting a morphable
face model for conditioning diffusion model to generate view-consistent 2D facial
images. In contrast, our proposed framework directly modifies appearance in the
generated implicit neural representation without the need for 2D projections or
facial priors, and is trained on a collection of 2D images instead of 3D scans.

Editing Faces in Neural Radiance Fields. To enable control over the geome-
try and appearance of synthesized images by 3D-aware GANs, subsequent works
employ the embedding of explicit control into the generation process. Certain
methods, including [3,39,43], condition radiance fields with information from 3D
Morphable models (3DMM) [21,30] to exert control over the generated fields.
This conditioning is achieved through embeddings of latent spaces represent-
ing pose, shape, and expression parameters of the 3DMM models. FENeRF [35]
utilizes semantic masks for geometry control and a separate latent vector for
appearance control in synthesized images. CG-NeRF [16] introduces soft condi-
tions, including sketches as external inputs, to influence radiance field genera-
tion. Following [5], IDE-3D [34] enables editing on tri-plane representations while
NeRFFaceEditing [15] disentangles geometry and appearance using pre-trained
tri-plane representations, eliminating the need for retraining.

While the aforementioned methods provide control over the geometry and
appearance of synthesized images, they fall short in offering semantic-specific
control. Our proposed method provides seamless semantic-specific control over
geometry and appearance attributes in facial images, as shown in Fig. 6. This
allows for effortlessly transferring specific facial attributes to other images,
including overall geometry and appearance.

3 Methodology

Our primary objective is to learn semantic information, occupancy, and colour
attributes for points sampled on 2D Manifolds. The Manifold Predictor model
predicts these manifolds [8]. To separate the representation of geometry and
texture during the image generation process, we introduce two distinct mod-
ules: the Geometry module and the Appearance module, as illustrated in Fig. 1.
The Geometry module employs a shape latent code for each point on the man-
ifolds, influencing occupancy and semantic information. Simultaneously, it pre-
dicts high-dimensional Appearance Descriptors F for each point. These descrip-
tors are segregated based on semantic information using the Semantic Volume
Masking Layer. The Appearance module then conditions points belonging to a
specific semantic with different appearance latent codes and predicts colour infor-
mation. The entire method is trained in two stages using adversarial learning.
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Initially, we train the entire network end-to-end, simultaneously learning weights
for the Geometry and Appearance modules. Later, we freeze the weights of the
Geometry module and fine-tune the Appearance module to achieve high-quality
volumetric renderings of generated images.

3.1 Network Architecture

Our generator consists of the Geometry Module and the Appearance Module, as
illustrated in Fig. 1. Both modules are implemented as Multi-Layer Perceptrons
(MLPs) to produce occupancy σ, semantic radiance s, and colour c = (r, g, b)
values for a given point x ∈ R3 with view direction d ∈ R3.

Ψg : (z,x,d) �→ (σ, s), Ψa : ({zi}l
i=0,x,d, s) �→ (c) (1)

where, z ∈ Rd ∼ pz represents the geometric latent code and zi ∈ Rd ∼ pz

represents the appearance latent code for each semantic labels l.

Manifold Predictor. We sample N points along each ray cast in the direction
d, given a camera pose θ ∈ R3 ∼ pθ. The Manifold Predictor M is implemented
as a scalar field function using light-weight MLPs, predicting a scalar value s for
the sampled points. From the predicted scalar field, we extract K iso-surfaces
with different levels li and perform final point sampling by finding the nearest
point of intersection on these iso-surfaces, following [8].

Fig. 4. Latent space disentanglement and interpolations. In (a), linear interpolation is
performed on the geometric latent space z while keeping all appearance latent zi fixed.
(b–d) demonstrate changes in appearance latent variables corresponding to hair, face,
and background semantics. All latent codes are linearly interpolated for (e) and (f).
Additionally, (f) showcases the change in the appearance of garment semantics from
the source to the target.



52 S. Verma and S. Raman

Geometry Module. Given a latent code z, the Geometry module Ψg generates
the radiance for each point on the predicted 2D manifolds in volume. The archi-
tecture of Ψg consists of FiLM SIREN backbone, inspired from [6] with some
modifications, as presented in Fig. 2. Instead of directly synthesizing images as
in [8], our geometric module first learns to predict occupancy σ and semantic
radiance field, s. Our primary goal is to disentangle geometry from appearance
by learning geometry independently of image synthesis. However, attempting to
learn semantic radiance solely using semantic masks in an adversarial setting
is bound to fail, as the perceptual appearance of a semantic mask lacks depth
information present in images due to the absence of shading effects caused by
varying shades of light.

To address this limitation, we additionally predict high-dimensional feature
descriptors F for each point, which is then conditioned by the Appearance
module for image synthesis. By backpropagating gradients through F from the
appearance module into the geometry module, we ensure the correct learning
of the occupancy field σ. This approach helps in better disentangling geometry
and appearance, leading to improved results in our framework.

Semantic Volume Masking Layer. Given Semantic radiance field s and occu-
pancy field σ, we perform volumetric rendering [27,41] on all 2D manifolds. When
a ray r is cast and intersects K surface manifolds at points xj sorted by prox-
imity, we can describe the semantics of a point on the k-th manifold out of the
total K manifold:

Sk(r) = argmax
K∑

j=k

T (xj)σ(xj)s(xj ,d), for k ≤ K (2)

Here, T (xj) =
∏

i<j;i≥k(1− σ(xj)), and Eq. 2 allows us to classify each sampled
point to the semantic class it belongs to. After obtaining the semantic labels, we
segregate the points and their corresponding appearance descriptors F based on
their specific semantic categories. Using the Appearance module, this segregation
allows us to condition them on respective semantic-specific latent codes.

Let there be n semantic classes, and the Semantic Volume Masking layer
segregates all sampled points in the volume into n collections, denoted by xi
along with their corresponding casted direction di and appearance descriptor
Fi. These collections are created such that every point x ∈ xi belongs to a
specific semantic category i, defined among the n available semantic classes.

Appearance Module. The architecture of our appearance module closely
resembles that of the Geometry Module, as depicted in Fig. 2. However, it is
distinguished by the presence of n mapping networks, each responsible for condi-
tioning the i-th collection obtained from the Volume Masking layer. These map-
ping networks are utilized to condition the Appearance Descriptors Fi, which
then pass through a SIREN-based neural network for RGB radiance prediction.
As a result, our appearance module Ψa generates a radiance field c, where the i-
th latent code controls the appearance of the i-th semantic among all n semantic
classes. Importantly, it should be noted that while different mapping networks
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Fig. 5. Appearance Latent Codes (zi) influence on Geometric Shapes. The image (i,
j) in grid (a), (b), and (c) are generated with same zi’s, highlighting resemblance in
appearance across hair, background, and facial regions with (i, j)th image in each grid.

are used for conditioning the collections, the weights of the SIREN backbone in
the appearance module remain consistent across all collections. In the Results
Section, we present exhaustive ablation studies conducted on the Appearance
Module to identify the optimal network architecture. The Appearance Module
takes segregated Appearance Descriptors from the geometry module and a latent
code for each semantic as input, producing the final RGB radiance. Subsequently,
we perform volumetric radiance integration with the occupancy field σ, obtained
from the Geometry Module, following a similar approach as in [8,27], to obtain
the final image.

4 Experiments and Results

4.1 Training

We train SemFaceEdit on the CelebAMask-HQ [19] dataset. The dataset con-
tains 30K high-resolution face images and annotated masks in N = 19 classes.
In our experiments, we club N classes in 4 semantics, denoted as n: hairs, face
(containing eyes, nose, mouth, neck, and ears), garment, and background. We
train our network in two stages in an adversarial learning setting, using non-
saturating GAN loss with R1 regularization [23]. During training, we randomly
sample geometric latent code z, n appearance latent codes zi and pose θ from
Gaussian distributions pg

z, p
a
zi

, and pθ, respectively. The generator, consisting of
Ψg and Ψa, produces semantic s, occupancy σ, and RGB c, radiance fields. In the
first stage, we jointly train Ψg and Ψa with two discriminators, Semantic map dis-
criminator Ds and Facial image discriminator Dc. We provide further details on
data preprocessing, discriminator architecture and loss functions in Suppl. mate-
rial. In Fig. 3, We present multi-view images generated from randomly sampled
latent codes after training the model.
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Implementation Details. Our experiments utilize the Adam Optimizer [18]
with learning rates of 2×10−5 for the generator and 2×10−4 for the discriminator.
Utilizing 2 NVIDIA GeForce RTX 4090 GPUs, each with 24 GB of memory, the
model is trained for 120K iterations (3 epochs) during the first stage, followed
by 30K iterations (1 epoch) in the second stage. To generate neural rendering
of radiance field on to image space I ∈ RW×H×3, we cast W × H rays from
the camera and sample K number of points along each ray, where K = 24 is
number of iso-surfaces on manifolds. Specifically, we sample radiance values of
3.14 million (256 × 256 × 24 × 2) points in total from semantic-radiance field
s and rgb-radiance field c. To overcome computational challenges, we utilize
PyTorch’s Automatic Mixed Precision (AMP) to reduce memory cost. During
inference, our approach generates 2562 and 1282 image in 0.86 and 0.15 s with
peak GPU memory usage of approx. 15GB and 6GB, respectively.

Fig. 6. (a–f) displays two smaller images, with the top image representing the
source attribute and the bottom image representing the target attribute of appear-
ance/geometry. Appearance Transfer: In (a), we present three different views of the
source image showcasing the transferred hairstyle appearance from the target to the
source image. Additionally, we present a single view of a converse transfer of appear-
ance, i.e. from the source to the target image. Similarly, in (b), we showcase the trans-
ferred facial appearance. Geometry Transfer: (c) and (d) demonstrate the transfer of
target hair geometry to the source image. In contrast, (e) and (f) showcase the smile and
nose geometry transfer from the target to the source image. Note that in (c) and (d),
alterations in attributes at regions other than hair semantics are minimal. In contrast,
the transferred hair adopts the appearance style of the target image through manipu-
lation of the latent code governing hair semantics. The focus is solely on transferring
geometry for finer semantics like the nose or smile in (e, f). Therefore, we constrain
appearance transfer by maintaining the unchanged state of appearance latents. Geom-
etry Manipulation: (g) Shows the effect of manipulation in the semantic mask by
expanding the hair region semantics and the effect of shrinking at the mouth region.

4.2 Editing Faces in Radiance Fields

To edit an input image obtained either from I ∼ prim (real images) or syn-
thetically generated using Generators Ψg and Ψa, we perform image inversion
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into the W space, represented as w, utilizing pivotal tuning inversion [31]. To
enable image editing based on semantic mask manipulations, we require the
original mask S and the user-edited mask S′. For real face images, we utilize
the method proposed by [38] to obtain semantic mask S. On the other hand,
for synthetic images generated through our pipeline, the Geometry module Ψg

naturally provides us with the required semantic mask. Our experiments utilize
trained mapping networks to obtain the average frequency and phase shifts over
10k sampled latent codes for geometry z and appearance zi. For brevity, we
denote these averaged frequencies and phase shifts as a latent code w ∈ W and
wi ∈ Wi for geometry and appearance, respectively. To achieve editing, we opti-
mize an editing offset vector δw+ ∈ W such that the generated semantic mask
S′ from Ψg approximates the original mask S. During optimization, we keep wi

for Ψa fixed while optimizing for the geometric latent δw+. We directly employ
the corresponding zi’s for the appearance of synthetically generated images. For
real images, we further optimize for δw+

i to make the appearance resemble the
given image I. Figure 6 showcases editing in geometry based on semantic masks,
and Fig. 7(b, d) demonstrates inversion and latent code manipulations on real
images from CelebAMask-HQ Dataset.

Fig. 7. Comparison of pivotal inversion results between our proposed approach (b, e)
and FE-NerF [35] (a, d). Our method achieves rapid convergence within 500 iterations,
contrasting with FE-NerF’s 5K iterations. Additionally, we compare with Diffusion-
Rig [9] (c, f), which first estimate facial prior by fitting a Deca model [10] on given
image. Subsequently it employs a diffusion-based approach to generate view consistent
facial images. (g) demonstrates semantic appearance variation achieved by modifying
latent codes specific to distinct semantic regions zi while maintaining geometry latent
z of (d). Green outline signifies full appearance alteration; blue outlines indicate facial
appearance changes and red outlines represent hair appearance modifications. Real
images for inversion are taken from CelebAMask-HQ Dataset [19].
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Geometry and Appearance Transfer. We can directly synthesize appearance
manipulations targeting a specific semantic k ∈ n using Ψa. Unlike [15], Ψa

controls the change in appearance of regions corresponding only to the k-th
semantic. We illustrate these results qualitatively in Figs. 5 and 4. However, as
discussed previously, image inversion for Geometry transfer into the W space
is required. Given images I1 and I2 with semantics S1 and S2, respectively, let
(w1,w2) represent geometric latents and (w1

i ,w2
i ) be appearance latent codes.

We want to transfer the semantic region k ∈ n, represented by Mk, from image
I2 to I1. For appearance transfer, we directly interchange the k-th appearance
semantic latent code in w1

i with w2
k, and then optimize for δw+, such that Ψg(w1+

δw+, θ) approximates the target semantic S1�(1−Mk)+S2�Mk, and Ψa(w1
i , θ)

approximates the target image I1�(1−Mk)+I2�Mk. Though w1
i for appearance

is fixed, inversion requires a backward pass through the Ψg and Ψa to update
δw+. This is because Ψg depends on Ψa for the correct estimation of appearance
feature descriptors F and occupancy σ. In Fig. 6 (c–g), we show the geometry
transfer from target to source of various semantics. More details can be found
in the Suppl. Material.

Fig. 8. Qualitative comparison of SemFaceEdit with Co-Diff [14], Diff-Rig [9], SofGAN
[7], GRAM [8], and FE-NerF [35]. � represents that the respective approach don’t
support or yield the required result. Input mask in [14] and image in [9] are taken from
CelebAMask-HQ Dataset [19].

4.3 Results

We conduct a comparative analysis of SemFaceEdit against five state-of-the-art
techniques: Co-Diff [14], Diff-Rig [9], GRAM [8], FE-NerF [35], and SofGAN [7].
GRAM and FE-NerF are oriented towards generating 3D-aware images, while
SofGAN employs a 2D projection of the 3D semantic occupancy field for dynamic
styling through a 2D GAN methodology. In contrast to SofGAN, Diff-Rig [9]
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employs a diffusion-based approach for view-consistent 2D image generation.
This method lacks semantic-guided editing capability, instead utilises expression
basis and priors from a morphable face model for appearance changes. We also
include Co-Diff [14], a 2D facial image generation approach, which generates
realistic facial images given a semantic map but lacks multiple view generation.

Qualitative Comparison. Our framework estimates semantic radiance in addi-
tion to the occupancy field and RGB radiance. In Fig. 8 we showcase the gener-
ated semantic maps and multi-view images produced by our method compared
to the aforementioned approaches. Additionally, on the right, we display the
appearance manipulation achieved by our method in comparison with the other
techniques. Co-Diff takes a semantic map as input and generates a facial image
that fits the provided map, but it cannot generate multi-view images. Diff-Rig
first estimates facial priors by fitting Deca model [10] on the given image, then
employs a diffusion-based approach to generate view-consistent facial images in
2D space. Changing these buffers along with diffusion noise allows for appearance
manipulation and editing, but this methodology lacks semantic-guided editing by
design. Sof-GAN produces high-resolution, multi-view facial appearances using a
2D GAN approach, but its training relies on semantically labeled 3D scans. How-
ever, the use of 2D GANs prevents it from achieving 3D interpretability. The
method presented in GRAM introduces an effective point sampling technique
on learnable 2D manifolds. Nonetheless, it falls short in estimating semantic
radiance and achieving disentanglement between geometry and appearance. FE-
NerF predicts the semantic field but falls short in terms of disentanglement and
control over semantic appearance.

Our 3D inversion outcomes, showcased in Fig. 7(b, e), are compared against
FE-NerF depicted in Fig. 7(a, d), respectively. Notably, the semantic inversion
by FE-NerF struggles with intricate semantics and produces noisy results, as
demonstrated in Fig. 7(a). In contrast, our method achieves successful 3D inver-
sion for such cases. Our approach further enables semantic appearance control on
the generated RGB-radiance fields. After obtaining optimized geometry latent z
and appearance latents zi through inversion process, we can directly manipulate
appearances by changing latent codes zi corresponding to a semantic region i,
as demonstrated in Fig. 7(g). In contrast to our approach which relies on pivotal
inversion, Diff-Rig generate the images, shown in Fig. 7(c, f) by first estimating
facial priors by fitting Deca face model [10] on the input image. Note that for
Diff-Rig, we only present the output generated after Stage-1 in Fig. 7. More accu-
rate results can be obtained by fine-tuning the model on a personalized album,
however, this requires multi-view and diverse images of the same face.

Quantitative Comparison. Table 1 presents the assessment of image quality
using the Frechet Inception Distance (FID) [13] and Kernel Inception Distance
(KID) [4]. This evaluation is performed between 10K generated images from
randomly sampled latent codes and an equal number of randomly selected real
images. We significantly improve the neural rgb-radiance generation compared
to that of FE-NerF, as evident in Table 1 while jointly predicting the semantic
radiance field. For Diffusion-Rig, we use 10K real images from the CelebAMask-
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Table 1. Comparing FID and KID between 10K generated and 10K real CelebA-
MaskHQ [19] Dataset images with GRAM [8], FE-NerF [35], SofGAN [7], Diffusion-
Rig [9], and Co-Diff [14]. Lower values (↓) indicate better performance. Superfixes ∗

and † indicates that methods do not generate neural rgb-radiance fields but employ
2-dimensional deep neural networks (GANs/DDPMs) to synthesize multi-view consis-
tent images (∗) or only a single view image (†). Abbreviations used: GAC - Global
Appearance Control, LAC - Local Appearance Control, and SGE - Semantic Guided
Editing. Note that Diffusion-Rig do not support SGE but can perform editing utilizing
expression basis and physical buffers of fitted morphable DECA model.

Methods 3D RGB Radiance 3D Semantic Radiance GAC LAC SGE FID ↓ (2562)KID (×103) ↓ (2562)#Pars

GRAM � ✗ ✗ ✗ ✗ 17.36 30.82 1.95 M
FE-NerF � � � ✗ � 28.97 39.33 31.09 M
SemFaceEdit (Ours) � � � � � 19.81 32.81 8.78 M
SemFaceEdit (Ours) (Single Stage) � � � � � 21.27 34.73 8.78 M
SofGAN* ✗ � � � � 25.72 30.86 30.68 M
Diffusion-Rig* ✗ ✗ � ✗ ✗ 16.84 30.64 144.6 M
Co-Diff† ✗ ✗ � ✗ � 14.63 27.43 459.6 M

HQ dataset. We estimate buffers (pose, normal, and albedo) by fitting the Deca
Model [10] and generate outputs from stage-1, as proposed by [9]. In contrast,
for Co-Diff, we input 10K semantic masks from the CelebAMask-HQ dataset for
facial image generation to calculate metrics. To assess the 3D inversion capability
of SemFaceEdit, we perform inversions on 1K images from the CelebAMask-HQ
Dataset, calculating the mean Intersection over Union (mIoU) for all n seman-
tics. Across all inverted images, our approach converges to 0.85 mIoU within 50
iterations. The per-iteration mIoU and semantic class-wise mIoU progressions
are depicted in Fig. 9.

Fig. 9. During the optimization process for 3D inversion on 1000 CelebAMask-HQ
Dataset images, we track the Mean Intersection over Union (mIoU). Embedded images
qualitatively illustrate the inversion progression of an image in a challenging pose.
Furthermore, we track the Mean Intersection over Union (mIoU) of all n = 4 semantics,
namely: Hairs, Face, Garments, and Background.

Ablation Studies. We conducted several ablation studies to determine the
optimal choice for SemFaceEdit architecture. In Table 1, we show improved gen-
erated image metrics after second-stage training. This process involves refining
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Appearance Module weights while keeping Geometry module weights frozen.
The Suppl. Material contains extra ablation studies examining (1) the impact
of shared Appearance Modules and (2) Depth Ablation.

Limitations. Our appearance module uses the generated semantic radiance
from the geometry module through a semantic volume masking layer. The gen-
eration of RGB-radiance is constrained to adhere to the densities of the semantic
radiance, which limits the creation of detailed and fine-grained geometry. Addi-
tionally, any discrepancies in the semantic geometry propagates to final facial
appearance. We include illustrations of such cases in supp. material. The high
computational requirements for training generative NeRFs limit the proposed
method’s ability to generate high-quality images, resulting in image quality that
lags behind traditional methods using 2D GANs and DDPMs. In the future,
more efficient point sampling and implicit representations could be explored to
reduce computational overhead and achieve higher quality radiances.

5 Conclusion

This work introduces a novel approach for semantic face editing on generative
radiance manifolds. We enable effective editing capabilities by simultaneously
estimating each point’s semantic information and RGB radiance. The key to our
approach lies in utilizing a differentiable Semantic Volume Masking layer, which
effectively partitions points according to their predicted semantics. This parti-
tioning allows us to condition the RGB radiance with latent codes, resulting in
a finely tuned level of control over the editing process. With SemFaceEdit, we
successfully attain comprehensive control over geometry and appearance, includ-
ing transferring distinct facial attributes between images. Through experiments,
we demonstrate the capability of our method to effectively control the visual
attributes of distinct semantics while preserving other regions by manipulat-
ing latent codes. Moreover, SemFaceEdit achieves enhanced GAN inversion and
faster convergence compared to existing state-of-the-art methods.
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Abstract. In image processing, one of the most challenging tasks is to
render an image’s semantic meaning using a variety of artistic approaches.
Existing techniques for arbitrary style transfer (AST) frequently expe-
rience mode-collapse, over-stylization, or under-stylization due to a dis-
parity between the style and content images. We propose a novel frame-
work called D2Styler (Discrete Diffusion Styler) that leverages the dis-
crete representational capability of VQ-GANs and the advantages of dis-
crete diffusion, including stable training and avoidance of mode collapse.
Our method uses Adaptive Instance Normalization (AdaIN) features as
a context guide for the reverse diffusion process. This makes it easy to
move features from the style image to the content image without bias.
The proposed method substantially enhances the visual quality of style-
transferred images, allowing the combination of content and style in a visu-
ally appealing manner. Experimental results demonstrate that D2Styler
produces high-quality style-transferred images and outperforms twelve
existing methods on nearly all the metrics. The qualitative results and
ablation studies provide further insights into the efficacy of our technique.
The code is available at https://github.com/Onkarsus13/D2Styler.

Keywords: Neural Style Transfer · Vector Quantization · Latent
Diffusion

1 Introduction

Given a content image and a style image, Style transfer (ST) synthesizes a new
image by transferring the style from the style image while preserving the sub-
stance from the content image. Neural style transfer (NST) has been studied
extensively in recent years [14]. NST seeks to learn how humans perceive images,
as transferring style without significantly altering the semantic content in the
target image requires a single network to disentangle the style and the content.
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Fig. 1. Results from D2Styler, our proposed method. The content image (the one on
the top of the tree) is converted to different stylized versions based on the corresponding
style image (shown in the inset).

After the introduction of pioneering work by Gatys et al. [14], many works have
proposed improvements in use of a single feed-forward method [21], loss function,
use of regularization, and normalization techniques.

While GANs have been used to perform NST [23], GANs are challenging
to train and offer no control over the style and content of the output image.
Researchers have used standalone flow-based models and GAN plus flow-based
models for image generation. These models allow control over the output image
attributes [2,13]. Recently, diffusion models have become popular for image gen-
eration [33,36,37]. These models allow generating new images based on text
prompts, image in-painting, and conditional image-to-image translation. These
models also allow arbitrary style transfer by giving an image and a text prompt
specifying the style we need to transfer. However, these models face a strict
trade-off between style transfer and content preservation.

We present D2Styler, a technique to perform arbitrary style transfer for a
given content image and a style image. Figure 1 illustrates D2Styler output.
D2Styler uses a pretrained VQ-GAN encoder [11] to encode the content and style
images. Then, it models their combined latent space by a conditional diffusion
model. This diffusion model is conditioned on the features extracted by matching
the statistics of the content and style images. To achieve this, an AdaIN [20] layer
with a pre-trained convolutional encoder network is used. Our key idea is that
this approach provides a context for the diffusion decoder to predict the masked
inputs correctly. The resultant learned latent code is passed through the VQ-
GAN decoder to obtain the style-transferred image. Our key contributions are:

1. We introduce a pioneering approach that combines discrete diffusion with
AdaIN, uniquely addressing the prevalent issues of mode-collapse and over-
stylization in existing style transfer methods. This integration not only sta-
bilizes the training process but also ensures the preservation of content
integrity while applying diverse artistic styles, a critical improvement over
prior methodologies.

2. We propose using AdaIN [20] features to guide the diffusion decoder, condi-
tioning the model on matched statistics between style and content features.
This approach enables more precise control over the style transfer process,
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ensuring that the output closely aligns with the desired stylistic attributes
while maintaining the integrity of the content.

3. We propose a new loss function (Lfeature) that drives the output image to
match the features from the AdaIN [20] layer. This loss, coupled with style
and content losses, makes the model generate plausible stylized images.

4. A rigorous evaluation on multiple benchmarks show that D2Styler outper-
forms twelve established style transfer techniques [6,13,14,25,28,32,34,36,
44–46] on key metrics such as SSIM and LPIPS. This not only demonstrates
the effectiveness of our method but also highlights its robustness across vari-
ous artistic and content scenarios. D2Styler has 78M parameters.

5. We have shown that D2Styler can effectively apply multiple styles to a single
content image (Sect. 4.3). This capability significantly expands artistic pos-
sibilities, allowing for the creative blending of diverse styles within a single
output, which is especially valuable in complex digital art and design projects.

6. D2Styler is designed to achieve high-quality results in fewer diffusion steps
than conventional diffusion architectures and auto-regressive methods [18]
(Sect. 5). This significantly reduces computational costs and improves the
feasibility of deploying style transfer in real-time scenarios, thus addressing a
major bottleneck in the adoption of NST technologies.

7. Ablation studies illustrate the contributions of each component of D2Styler,
providing clear evidence to the community on the effectiveness of methodol-
ogy.

2 Related Work

Neural Style Transfer (NST): NST has been extensively studied in non-
photorealistic rendering and texture generation [10]. Gatys et al. [14] employ
a Gram matrix to extract features from a pre-trained DNN with an iterative
optimization network to produce stylized images using multi-level feature corre-
lations. Since then, many works have addressed key NST issues, including speed,
control, quality, photorealism and temporal style transfer.

As a workaround for slow iterative optimization strategies in NST, feed-
forward networks are trained to minimize the same losses based on Gram matri-
ces [14]. These feed-forward frameworks are faster than iterative optimization
and appropriate for real-time deployment [21]. Ulyanov et al. [40] propose feed-
forward network enhancements to improve example quality and variety. However,
these techniques can transfer a limited number of styles because of their training
process. To overcome this constraint, Dumoulin et al. [9] suggest a framework
based on a conditional instance normalization layer that can transfer 32 styles.
Li et al. [31] propose a framework that can transfer 300 styles. However, these
methods cannot transfer arbitrary styles.

AdaIN [20] uses a feed-forward network to match style and content feature
statistics in an intermediate layer. However, AdaIN does not generalize well
and faces mode collapse. The WCT technique [30] matches content and style
covariance utilizing whitening and color transform. AdaAttN [32] considers both
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high-level and low-level features through adaptive attention normalization. The
AST methods involving encoder-decoder architectures are prone to information
loss due to pooling layers of the encoder network. This causes deformation of
the output content.

Generative Models: The Variational Auto-encoder (VAE) [24] proposes maxi-
mizing a lower bound on data probability to learn latent space representation. It
learns the manifold representation of the input data distribution and generates
new samples from the learned continuous latent space. Despite the impressive
results of GANs in image-to-image translation and style transfer, they still suf-
fer from mode collapse, complicated training, and instability. To overcome these
problems, VQ-VAE [41] learns a discrete latent space instead of a continuous
one. This inspired the development of VQ-GAN [11], which uses transformers
and discrete latents. Other works, such as DALL.E [35] and Cogview [8], have
also leveraged discrete latent and auto-regressive methods to achieve remarkable
results in image generation. However, models based on discrete representations
face challenges, such as increased accumulated errors, decreased speed for high-
resolution images, and directional bias.

Diffusion Models: The denoising diffusion probabilistic model is a generative
model inspired by thermodynamics’s “diffusion” process. Discrete diffusion has
been applied to text-generation [19] and image-generation [3], however, these
models were restricted to generating 32 × 32 images. The recently proposed VQ-
diffusion [15] technique enables efficient text-to-image generation and provides
results comparable with the continuous paradigm.

Kwon et al. [27] propose utilizing style and structure losses to direct the
sampling process for text-guided image translation. Wang et al. [43] fine-tune
diffusion models by integrating CLIP, enabling them to learn style references
through text prompts. Everaert et al. [12] recommend fine-tuning Stable Diffu-
sion with a new noise distribution that mimics the style images’ distribution.
Diffusion-Enhanced PatchMatch [16] incorporates patch-based techniques with
whitening and coloring transformations in the latent space. StyleDrop [39] model,
which is based on the generative vision transformer Muse [5] rather than text-
to-image diffusion models, produces content in diverse visual styles. Models like
DreamStyler [1] exhibit advanced textual inversion, utilizing techniques such as
BLIP-2 [29] and an image encoder to generate content by inverting text and
content images while associating style with text. Kim et al. [22] fine-tune a pre-
trained DDIM to generate images based on text descriptions, introducing a local
directional CLIP loss that ensures the direction between the generated image and
the original image closely matches the direction between the reference (original
domain) and target text (target domain). Chandramouli et al. [4] employ a deter-
ministic forward diffusion approach, achieving the desired manipulation by using
the target text to condition the reverse diffusion process. Prompt-to-Prompt [17]
aims to preserve some original image content by modifying the cross-attention
maps.
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3 D2Styler: A Novel AST Framework

D2Styler harnesses the power of discrete diffusion and AdaIN to address the
inherent challenges of style transfer. Building upon the discrete representational
capabilities of VQ-GANs, D2Styler pioneers a unique approach to arbitrary
style transfer that promises enhanced visual quality and reduced mode col-
lapse by intelligently navigating the latent space of content and style images.
Unlike traditional feed-forward methods, D2Styler uses the high-fidelity image
generation powers of diffusion models and the fine-tuned control provided by
Vector-Quantized feature spaces introduced by VQ-GAN [15]. Figure 2 shows
the architecture of D2Styler. This architecture functions in two distinct stages:
stage 1 and stage 2. During stage 1, the style and content images are taken as
inputs and turned into condensed features using latent discrete diffusion. Stage
2 leverages these condensed features to generate the final stylized image.

Fig. 2. The architecture of the proposed method. The content and style images are
encoded using a pretrained VQ-GAN encoder. The encoded input is passed through
the diffusion prior conditioned on the AdaIN [20] features. VQ-GAN decoder is then
used to obtain the resultant image. The dotted line indicates that the diffusion prior
is trained separately from the decoder.

Stage 1: In stage 1, both style and content images are encoded into continu-
ous latent vectors using a VQ-GAN encoder trained on the OpenImages dataset
[26]. These vectors are then projected to the closest codebook item in the dis-
crete latent space. This mapping of continuous vectors to the adjacent discrete
codebook vectors is known as quantization (illustrated as Q(.) in Fig. 2). The
discretized nature of these vectors facilitates the grouping of similar data points,
enhancing the subsequent diffusion sampling within a confined vector space.
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Once quantized, vectors are then flattened, concatenated, and sent to the Trans-
Diffuser (Sect. 3.1). Inside the TransDiffuser, these discrete vectors go through
the diffusion process, which is influenced by AdaIN features (Sect. 3.2). The out-
come of this process is refined denoised features. These features proceed to the
next stage (stage 2), where they play a pivotal role in reconstructing the final
stylized image.

Stage 2: It uses a pre-trained VQ-GAN decoder trained on OpenImages. This
decoder takes improved discrete features from the TransDiffuser as input and
creates a stylized picture as output. In particular, when the Stage 2 decoder is
being fine-tuned, gradients from Stage 1 are blocked. This is shown in Fig. 2 by
the blue arrow. The Stage-2 decoder incorporates a perceptual loss mechanism.
This involves calculating the L1 distance between the hidden representation of
the ground truth image and the image generated by the decoder. To do this, a
pre-trained VGG model is used to derive these hidden representations for both
the ground truth and the generated image. A perceptual loss term, denoted as
Lstyle, is computed between a style image and the generated image. Similarly,
another term, Lcontent, is computed between a content image and the generated
image. Together, these losses ensure that small differences at the pixel level have
less effect on the network. This strikes a balance between keeping the information
and sharing the desired style. This method avoids excessive stylization or under-
stylization in the final image. We also compute a Lfeature loss between AdaIN
features and the generated image. This loss ensures that the stylized image
retains its original content while adding flair. Formulation of these losses is given
in Sect. 3.3

Fig. 3. (a) The proposed TransDiffuser architecture consists of transformer blocks
stacked on each other. The attention query is obtained from the AdaIN block (Sect. 3.2).
(b) Transformer blocks follow the traditional architecture [42] except for the querying
of the AdaIN features.
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3.1 TransDiffuser

Figure 3 shows the architecture of TransDiffuser. It is designed to model discrete
diffusion processes on quantized vectors. Gu et al. [15] propose use of diffusion
to model the discrete vector-quantized latent space of VQ-GAN. We extend this
to style transfer. In TransDiffuser, we take a quantized vector (Qcs) as input.

During forward diffusion, this input vector (Qcs) undergoes a gradual corrup-
tion process orchestrated by Markov chain p(zt−1|zt−2). To achieve this, tokens in
zt−2 are randomly masked. This iterative process unfolds across a fixed number
of time steps (t), generating a sequence of latents (z1, ..., zt) that progressively
accumulate noise. After the forward process, as visualized in Fig. 2, the reverse
process comes into play, starting with the noisy latent variable zt. This reverse
process sequentially removes noise from the latent variables, eventually recon-
structing the original data (z0). Throughout this reverse process, AdaIN features
(A(Xc,Xs)) are injected into each network block (pθ(zt−2|zt−1, A(Xc,Xs))).
These AdaIN features act as conditional cues for the diffusion process, effec-
tively managing the equilibrium between content and style.

To train TransDiffuser, we utilize the MLM and ELBO loss functions [7,
15]. The MLM loss facilitates the reconstruction of masked tokens, while the
ELBO loss captures the probabilistic nature of content and style representations.
This dual-loss approach ensures that the generated images exhibit a diverse
and meaningful range of possible outcomes, striking a balance between style
and content features. The resulting images maintain their original content while
adopting the desired style.

3.2 AdaIN Feature Extraction

Within the context of our approach to reverse diffusion, we establish the nec-
essary conditions by harnessing both the input style image (xs) and content
image (xc). A pivotal step involves crafting a feature map that amalgamates
insights from both the style and content images. This is achieved through the
utilization of pretrained CNN encoders, VGG-16, in our case. To extract relevant
content information, we subject the content image to the VGG encoder, extract-
ing feature maps from specific layers such as ‘conv1_2’, ‘conv2_2’, ‘conv3_2’,
and ‘conv4_2’. We employ a multiscale extractor to adapt these extracted fea-
ture maps for compatibility with the subsequent AdaIN block. This selection
of layers is particularly significant due to their ability to encapsulate high-level
content details within the image [14]. Likewise, the style image is also processed
through the VGG encoder to extract feature maps from its final layer. These
extracted feature maps from both the content and style images are then input
into the AdaIN block. AdaIN aligns the statistical characteristics of the style and
content features. These processed features are subsequently utilized during the
reverse process in the TransDiffuser decoder, as detailed in Sect. 3.1. Notably, the
introduction of a parameter α, in combination with the AdaIN features, enables
precise control over the infusion of style into the resulting stylized image. The
influence of using alternative style-content CNN encoders, besides VGG-16, is
explored in Sect. 5.
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3.3 Loss Functions

We optimized our network using a combination of four loss functions as follows.
1. Diffusion Loss (Ldiff ): The diffusion loss measures the ability of the model

to reverse the diffusion process and generate a realistic quantized vector from
noise. This loss is often implemented as a denoising score matching or noise
prediction loss. During the forward diffusion process, we diffuse the quantized
vector from VQ-GAN to get p(xt|x0). This vector is passed through the Trans-
Diffuser module (Pθ), which is conditioned on the AdaIN features obtained from
A(Xse,Xce). Here, Xse and Xce are the representations from the pre-trained
CNN model when we pass the style Is and content Ic images, respectively. At
stage 1, we compute the diffusion loss as follows:
Ldiff = − log(Pθ(p(xt|X0), t, A(Xse,Xce)))

In stage 2, the predicted quantized vector from Pθ is passed to the VQ-GAN
decoder D to get the final stylized image (x̂). During this training stage, we
block the gradient from Stage 2 to Stage 1 and only train the decoder (D(.))
using the following losses:

2. Style Loss (Lstyle): Measures the difference between the style represen-
tations of the style image and the representations from the generated image
through pretrained vgg-network. This ensures the output image adopts the stylis-
tic elements (e.g., textures, colors, patterns) of the style image.
Lstyle = ‖vgg(Is) − vgg(x̂)‖

3. Content Loss (Lcont): Measures the difference between the feature repre-
sentations of the content image and the generated image.
Lcont = ‖vgg(Ic) − vgg(x̂)‖

4. Feature Loss (Lfeat): Computes the L1 loss between the AdaIN features
and the VGG representations of the generated image. AdaIN dynamically adjusts
the normalization parameters (mean and variance) of the feature maps based on
the statistics of the input image. This ensures that the normalization process is
tailored to the specific content and style images used. This dynamic adjustment
helps better align the feature statistics of the generated image with those of the
style image, leading to a more faithful style transfer.
Lfeat = ‖A(Xse,Xce) − vgg(x̂)‖

During the training stage 2, we freeze the VGG encoder and AdaIN A(.)
encoder is unfrozen.

4 Experiments and Results

Dataset: We select 100,000 images from the COCO dataset as content images
and 78,669 images from the WikiArt dataset [38] as style images. We employ a
many-to-many strategy to create 1 million content and style image pairs. From
these pairs, we randomly select 900,000 pairs for training and use 20,000 and
80,000 pairs for validation and testing, respectively. We employed following met-
rics: (1) GM for faithful style adoption (2) SSIM for image similarity (3) LPIPS
for perceptual resemblance and (4) PD for measuring perceptual dissimilarity.
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Experimental Settings: We trained stage-1 and stage-2 models separately on
two NVIDIA A100 GPUs with 40GB VRAM each. The stage-1 is trained using
the AdamW optimizer with a learning rate of 1e−5. Stage-2 is trained using
the Adam optimizer with a learning rate of 1e−4. The stage-1 TransDiffuser
utilizes 25 diffusion steps. The network uses six TransDiffuser blocks. Training
is conducted for 140,000 steps with a batch size of 32 for both the stage-1 and
stage-2. Inference latency is reported on RTX 3080 Ti GPU.

4.1 Quantitative Results

As shown in Table 1, D2Styler method outperforms all previous techniques on
nearly all the metrics, demonstrating its robust capability in style transfer tasks.
D2Styler also shows relatively small inference time. D2Styler successfully com-
bines effectiveness and efficiency, making it a leading solution in style transfer.

The DiT method, while slightly lagging behind D2Styler in most metrics,
achieves a slightly better performance in the Gram Matrix metric. This might be
due to its training on a larger and more diverse dataset and its greater complexity
in terms of model parameters. We have taken a pretrained DiT and finetuned
it on our dataset. D2Styler uses a pretrained VQ-GAN, however, the dataset on
which DiT has been pretrained is larger than the one on which VQ-GAN has
been pretrained.

Table 1. Quantitative results

Methods SSIM ↑ PD ↓ GM ↑ LPIPS ↓ Inference Time (Sec) ↓
CVPR’16 [14] 0.5412 21.22 13.21 0.34 13.56
CVPR’21 [25] 0.6702 19.97 14.09 0.29 1.72
StyleFlow [13] 0.7211 18.76 15.66 0.27 1.12
ACM MM’21 [44] 0.7376 19.09 15.98 0.21 1.42
Cartoon-Flow (MM’22 [28]) 0.7422 17.48 16.07 0.18 1.37
StyTr2 (CVPR’22 [6]) 0.7778 16.32 17.46 0.19 0.93
SIGGRAPH’22 [45] 0.7501 17.37 16.01 0.17 1.19
InST (CVPR’23) [46] 0.7347 18.09 15.21 0.10 1.72
AdaAttN (ICCV’21) [32] 0.7656 16.77 17.21 0.09 0.88
ArtFlow (CVPR’21) [2] 0.7512 16.91 17.29 0.13 1.18
Stable-Diffusion (CVPR’22) [36] 0.7789 17.77 18.21 0.07 4.21
DiT (ICCV’23) [34] 0.7801 17.87 18.98 0.06 5.78
Ours w/o Encoder (Fig. 8(d)) 0.7757 17.82 16.98 0.14 2.85
Ours w/o AdaIN features (Fig. 8(e)) 0.7592 19.92 14.21 0.21 2.54
Ours (Fig. 8(c)) 0.7886 15.66 18.89 0.04 2.92

4.2 Qualitative Results

As depicted in Fig. 4, D2Styler effectively preserves the original content of
the images while imbuing them with the desired artistic styles from the style
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images. The method maintains the original image’s underlying structure and
details while adopting the reference image’s style, producing high-quality, visu-
ally appealing images. This capability is evident across various examples shown,
where the essence and details of the original images are preserved, yet the style is
convincingly and beautifully applied. This includes maintaining structural infor-
mation without sacrificing the tiny details found in the style images.

StyTr2 is limited in accurately mapping the reference image’s style onto the
content image, producing unsatisfactory results. Cartoon-Flow, while excelling at
maintaining the visual integrity of the content image, occasionally fails to adapt
the reference image’s aesthetic to the output image. For instance, Cartoon-Flow
can preserve the facial structure of Brad Pitt (content image) in the output
image, but it cannot account for the sketch style present in the style image,
hence its output image is devoid of the desired artistic effect.

Both Cartoon-Flow and StyTr2 struggle to incorporate the color information
present in the style image, as demonstrated in the third and fourth rows of Fig. 4.
They are unable to generate the color information of the lion images in the style
image. Similarly, for the images in the fifth row, both models produce an image

Fig. 4. Qualitative results. The numbers below images show GM (↑) and SSIM (↑).
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with the same structural quality as the content image but fail to produce the
yellow box texture present in the style image on the output image.

AdaAttN provides the cross attention between the style and the content fea-
tures, however, it cannot properly retain similar content due to feature collapse.
The use of AdaIN features as a condition to the Transdiffuser block helps in a
significant boost in performance. AdaIN features are crucial for the effectiveness
of style transfer methods because they separate content and style by adjusting
the mean and variance of content features to match those of style features. This
dynamic adjustment allows the network to adapt to a wide range of styles effi-
ciently, enhancing the quality and visual appeal of the transfer. AdaIN simplifies
the training process by focusing on normalization parameters rather than com-
plex style representations, providing better control over the degree of stylization.
Without AdaIN, style transfer methods would struggle to achieve the same level
of performance, flexibility, and scalability. From Fig. 4, we note that for most
images, AdaAttN cannot preserve the content features. In contrast, D2Styler
proves to be superior at capturing tiny details in the style image and accurately
transferring them to the content image without sacrificing the structural infor-
mation of the original image. Additionally, D2Styler can robustly handle a wide
range of styles and produce high-quality outputs that accurately represent the
style of the reference image. Our method achieves comparable text alignment
to the Diffusion-based methods for generating content images, i.e., StyTr2. This
indicates that our method does not compromise the original style control capa-
bilities of SD while learning the style of the reference images. The substantial
advantage reflected in the image quality metric compared to all other methods
corroborates the practicality of our approach. In summary, D2Styler achieves an
optimal balance between style image fidelity and content image similarity with
the most pleasing image quality.

Figure 5 presents the qualitative results of D2Styler on the COCO dataset,
effectively demonstrating the capabilities of D2Styler. For instance, the second
row illustrates the application of a classical painting style, which imparts a rustic,
textured effect reminiscent of brushstrokes and the color palette of the original
artwork. Similarly, the pencil sketch style, shown in another row, transforms
content images into monochromatic drawings, emphasizing lines and shading to
create a hand-drawn appearance. These results underscore the versatility and
robustness of D2Styler in blending various artistic styles with diverse content
images, while preserving the essential characteristics of both. The model’s ability
to maintain the structural integrity of the content while accurately reflecting the
stylistic nuances of the artistic images demonstrates its potential applications in
artistic creation and advanced image processing.
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Fig. 5. Qualitative results of D2Styler on COCO dataset

Figure 6 further compares qualitative results of various techniques. InST (col-
umn #3) [46] often lacks coherence in preserving the content structure. It fails
to semantically transfer the color in a one-to-one correspondence. They used an
additional tone transfer module [20] to align the color of the content and refer-
ence images. Different methods have different preferences for retaining the colors
of the content image.

StyleTr2 (column #5) provides reasonable style transfer results but some-
times over-emphasizes the style, leading to over-stylization. This happens
because of an imbalance of content loss and style loss. If the weighting for the
style loss is too high relative to the content loss, the model might prioritize trans-
ferring stylistic elements over preserving the original content structure, resulting
in over-stylization. On the other hand, AdaAttN utilizes cross-attention mecha-
nisms for style transfer but occasionally suffers from feature collapse, affecting
content preservation (e.g., column #6 row #8). The per-point basis of AdaAttN
leads to style degeneration, thus the stylized output is not consistent with the
input reference. The content leak issue usually occurs in the stylization process
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Fig. 6. Qualitative comparison

because CNN-based feature representation may not sufficiently capture details
in the image content.

Furthermore, the robustness and generated visual effects of CartoonFlow
(column #4) [28] may degrade due to the limited capability of the feature rep-
resentation. By contrast, D2Styler leverages the capability of transformer-based
architecture to capture long-range dependencies, hence, it significantly alleviates
the content leak issue. The flow-based model has limited capability of feature
representation, hence, the ArtFlow (column #7) [2] results generally suffer from
insufficient or inaccurate style. The border of stylized images may present unde-
sirable patterns due to numerical overflow.
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Stable Diffusion (column #8) generates high-quality images, albeit with
increased computational time (Table 1), due to the significant effort required
to interpolate style and content features in its latent space to achieve perfect
stylization. In contrast, D2Styler demonstrates superior performance in both
style fidelity and content preservation. This superiority stems from our use of
diffusion in the Vector Quantized (VQ) space, where content and style features
are more easily searchable and can be interpolated more effectively. By leverag-
ing the VQ space, D2Styler efficiently balances style and content, resulting in
high-quality images with reduced computational complexity.

4.3 Versatility of D2Styler

Controlling the Style. To control the amount of style output, D2Styler intro-
duces a weight parameter named α (α ∈ [0, 1]) for the AdaIN context features.
As shown in Fig. 7, the amount of style in the image is proportional to the value
of the α parameter.

Fig. 7. D2Styler has a parameter α. By changing α, the AdaIN context features can
be varied to control the output image style, as shown in this image. The style image is
in the inset.

Use of the VQ-GAN Encoder at Inference. At inference, we can use either
(1) the samples from the diffusion mask prior or (2) the VQ-GAN encoded
version of the input content and style image. The former gives more priority
to the style texture, whereas the latter retains more content, leading to more
visually pleasing images, as shown in Fig. 8.

Fig. 8. Input (a) style and (b) content images. D2Styler results (c) on using the encoder
during inference. (d) on starting from the noise distribution during inference. (e) with-
out using the AdaIN features as a context to the TransDiffuser.
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Using the encoder also results in a slightly higher (i.e., better) SSIM metric
as opposed to starting from the diffusion mask prior. Using the encoder gives a
head start to the denoising process, as it contains some prior information about
the content. By contrast, this prior information is absent when we start from the
mask tokens themselves. Table 1 reports GM and SSIM scores for both types of
inference strategies.

Multi-style Transfer: We realize multi-style transfer by passing a linear com-
bination of AdaIN features for each style-content combination. Each image’s
contribution can be controlled by using a weight for each style-content feature
being combined. An example generation is shown in Fig. 9. Evidently, the AdaIN
layer serves as a context for the diffusion model, and its features can be used to
control the generation of a stylized output image.

Fig. 9. Transferring the style of a single image and multiple images while preserving
the content of a single content image.

5 Ablation Study

1. Effect of CNN Encoders: Table 2 shows the results with different CNN
encoders in D2Styler. Notice that using CNN encoders such as VGG, ResNet and
EfficientNet leads to better results than use of transformers. NST transfers the
style of a style image to a content image while keeping its spatial information.
Since transformers do not incorporate locality bias inherently, they often fail to
learn hierarchical representations from an input image effectively. Due to this,
the model faces challenges in decoupling style and content information from an
image, leading to poor performance in NST.
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Table 2. Ablation based on CNN Encoder

SSIM ↑ GM ↑ LPIPS ↓
VGG-16 0.7886 18.89 0.04
Resnet-32 0.7721 16.32 0.08
EfficientNet-B0 0.751 17.01 0.08
ViT 0.7631 15.21 0.09
PVT 0.7419 16.98 0.12

2. Effect of Loss Functions: Table 3 shows the impact of various loss func-
tions. The best scores are obtained by using a combination of Lfeature, Lstyle,
and Lcontent losses, because this combined loss considers both style data from
the encoder model and high-level features of the content. In contrast, using only
Lstyle (style loss) neglects content preservation, and using only Lcontent (con-
tent loss) overlooks style consistency. Adding Lfeature (feature loss) to Lstyle

and Lcontent makes the results even better by forcing a close match between the
output features and the normalization data of the Adaptive Instance Normalisa-
tion (AdaIN) layer. Notably, using only Lfeature loss leads to better performance
than most previous techniques [13,14,25,28,44,45]. This validates the efficacy
of our feature-matching approach. The above insights can be confirmed from
Fig. 10, which illustrates the output images with various loss functions.

Table 3. Ablation based on loss functions

SSIM ↑ GM ↑ LPIPS ↓
Lfeature + Lstyle + Lcontent 0.7886 18.89 0.04
Lstyle + Lcontent 0.7677 17.23 0.07
Lcontent 0.7501 16.09 0.09
Lstyle 0.7421 17.11 0.10
Lfeature 0.7709 17.32 0.12
Lstyle + Lfeature 0.7732 18.00 0.08
Lcontent + Lfeature 0.7821 17.67 0.08
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Fig. 10. (a) Input style and content images. D2Styler results on using (b) only content
loss (c) only style loss (d) only the proposed feature loss. (e) all three losses.

3. Effect of the number of TransDiffuser Blocks: We evaluate three ver-
sions of D2Styler, namely small, medium, and large, which utilize two, four and
six TransDiffuser blocks, respectively. With the increasing number of blocks, the
network can more accurately model the style transfer process, which improves
the scores (Table 4). Interestingly, even small and medium versions of D2Styler
can outperform most previous techniques (refer Table 1). This proves the efficacy
of our technique.

Table 4. Effect of changing the number of TransDiffuser blocks

SSIM ↑ GM ↑ LPIPS ↓
N = 6 0.7886 18.89 0.04
N = 4 0.7798 18.32 0.06
N = 2 0.7762 17.66 0.07

4. Effect of Changing the Number of Diffusion Steps: Table 5 shows the
results with different numbers of diffusion steps. Clearly, increasing the number
of diffusion steps consistently improves image quality and structural similarity,
although the returns become marginal after 25 steps. Our method demonstrates
that with just 5 diffusion steps, it matches the inference times of GAN and flow-
based baselines (refer to Table 1), and also outperforms them in all quantitative
metrics. This indicates our method’s robustness and superior performance com-
pared to previous baselines. Figure 11 shows the output images with different
numbers of diffusion steps.
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Table 5. Ablation Based on Diffusion Steps

#Steps SSIM ↑ GM ↑ LPIPS ↓ Inference Time (sec) ↓
5 0.7441 17.02 0.07 1.93
10 0.7512 17.78 0.06 2.31
15 0.7663 18.00 0.06 2.54
20 0.7702 18.88 0.05 2.74
25 0.7886 18.89 0.04 2.92
50 0.7891 18.89 0.04 3.28

Fig. 11. (a) Input style and content images. D2Styler results with (b) 5, (c) 15 and
(d) 25 diffusion steps.

6 Conclusion

We propose a novel AST technique, named D2Styler, by combining the benefits
of discrete diffusion with discrete representational capacity of VQ-GANs. We
propose a novel way of guiding the diffusion process by incorporating Adap-
tive Instance Normalisation (AdaIN) features. This allows transferring features
from the style image to the content image without bias. D2Styler produces style-
transferred images that are both visually appealing and accurate to the original
content image in terms of their semantic significance. D2Styler outperforms pre-
vious techniques and solves the problems of mode collapse, over-stylization, and
under-stylization. Future work will focus on generalizing our technique to a wide
range of image-processing tasks, e.g., editing and synthesis.
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Abstract. Text-to-image generation has witnessed great progress, espe-
cially with the recent advancements in diffusion models. Since texts can-
not provide detailed conditions like object appearance, reference images
are usually leveraged for the control of objects in the generated images.
However, existing methods still suffer limited accuracy when the relation-
ship between the foreground and background is complicated. To address
this issue, we developed a framework termed Mask-ControlNet by intro-
ducing an additional mask prompt. Specifically, we first employ large
vision models to obtain masks to segment the objects of interest in the
reference image. Then, the object images are employed as additional
prompts to facilitate the diffusion model to better understand the rela-
tionship between foreground and background regions during image gen-
eration. Experiments show that the mask prompts enhance the control-
lability of the diffusion model to maintain higher fidelity to the reference
image while achieving better image quality. Comparison with previous
text-to-image generation methods demonstrates our method’s superior
quantitative and qualitative performance on the benchmark datasets.

Keywords: Image Generation · Diffusion Model · Object
Reconstruction

1 Introduction

Recently, text-to-image generation has achieved remarkable progress with
numerous models being developed, ranging from GAN [9], VQGAN [7] and
DALL-E [31] to current diffusion models [29,35]. Despite their promising results,
text-to-image models still suffer limited capability in fine-grained control of the
synthetic images since text prompts cannot provide details like the object’s
appearance and spatial layout. To remedy this, extensive studies have been con-
ducted to control text-to-image models using additional prompts like spatial
masks [1,13], image editing instructions [3,17,22], and other formats [8,25,46].
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In numerous real-world applications, mimicking the appearance of objects in
a reference image while changing the composition and contexts is under great
demand. To tame text-to-image models to meet this requirement, a reference
image is provided as an additional prompt [33]. Despite the synthetic images
can fit the provided prompts, they still suffer from three major limitations. (i)
Object distortion. The object in the reference image may not be faithfully
transferred to the synthetic image and usually suffers detail losses (the first row
of Fig. 1). (ii) Background overfitting. The concurrence of the foreground
object and its background in the training set (e.g., the table in the second row of
Fig. 1) may be overfitted. As a result, the background may also be synthesized
in the generated images. (iii) Foreground-background inharmony. Despite
high object fidelity, the generated image may suffer inharmonious foreground and
background (the third row of Fig. 1). Overall, these limitations are attributed to
the complicated relationship between the foreground and background, which is
not well modeled by the generative model.

Fig. 1. Limitations of existing image generation methods. The synthetic images suffer
from object distortion (the first row), background overfitting (the second row) and
foreground-background inharmony (the last row).

Intuitively, the foreground and background in the prompt image play dif-
ferent roles during image synthesis. The foreground provides the appearance
details of the object while the background helps the network to understand the
context of the object and produce harmonious ones in the synthetic image. To
better model the relationship between foreground and background, we propose
to decouple these two components using an additional mask prompt. With the
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great advancements of recent large vision models like SAM [20], the foreground
object mask can be easily obtained. Specifically, the reference image is first fed
to SAM to produce a mask to segment the object region. Then, the resultant
image is concatenated with the reference image as the conditional information for
image synthesis. The additional mask prompt facilitates the network to better
maintain the object details and model the foreground-background relationship,
resulting in higher-quality synthetic images.

The main contributions are summarized as below:

1) We propose a framework termed Mask-ControlNet to achieve higher-quality
image generation by introducing an additional mask prompt. With the help
of this mask prompt, the foreground and background in the reference image
can be decoupled and well-modeled to improve the quality of the synthetic
image.

2) We conduct extensive experiments to study our framework. Quantitative and
qualitative results show that our framework is able to generate high-quality
images with fewer artifacts.

2 Related Work

In this section, we briefly review recent advances in text-to-image generative
models and controllable generative models.

Text-to-Image Generative Models. Text-to-image generative models have
been studied for decades, with diverse networks being developed, including
VAE [18], PixelCNN [28,38], Glow [19], and GAN [9]. Among these methods,
GAN stands out as one of the most popular models. Over the past five years,
GANs have witnessed substantial progress and are capable of generating high-
resolution images up to 1024× 1024 pixels or higher [2,15,16]. Despite the the-
oretical equilibrium, GAN’s training is still faced with challenges like instability
and mode collapse.

The advent of diffusion models [29,35] offers a stable, high-quality, and con-
trollable solution. DDPM [10] surpassed GAN using a U-net denoising autoen-
coder. DDIM [36] further improves image synthesis with implicit probabilistic
models and continuous-time dynamics. Recently, stable diffusion model further
outperforms DDIM by introducing a latent diffusion model [32] to replace pixel-
level diffusion models and using an autoregressive flow model to realize the prior
distribution of the latent space.

Diffusion models usually introduce interfaces when conducting fine-grained
image editing such as color and texture details [17,21,22]. To remedy this, Tex-
tual Inversion [8] personalizes the generated content using a small set of images
under the same overarching theme. DreamBooth [33] associates target themes
with unique identifiers, enabling these identifiers to be embedded in the model’s
output domain, which synthesizes realistic images of specific themes in differen-
tiated scenarios.
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Controllable Generative Models. Despite high quality, diffusion models
commonly suffer inferior fidelity to the conditional image. To improve the con-
trollability of diffusion models, more complicated texts are employed to provide
detailed descriptions of the image. Liu et al. [25] proposed a semantic diffusion-
guided framework that utilizes CLIP [30] or other image-matching models to
compute the similarity between the text prompt and the generated images to
guide the diffusion model in generating images that better match the semantic
requirements. Avrahami et al. [1] introduced a text-driven image editing method
that allows the modification of specific shards in an image according to user-
provided text.

As the text cannot provide fine-grained control (e.g., object appearance) to
the generated images, the results may not meet the requirements of users. To
address this issue, ControlNet [43] extends text-to-image diffusion models with
conditional control [12,14,24,27,39,45], allowing the generation of images that
match diverse types of user-specified prompts. Inpainting is proposed to preserve
the essential components in a reference image while extending or enhancing the
background. Subsequent methods [4,6,26,41] use a pre-trained unconditional
diffusion model as a generative prior, and then achieve conditional generation
by sampling randomly shaped unmasked regions during the reverse diffusion
process. While these methods perform well on simple objects, they cannot well
handle complicated scenes and encounter challenges including object distortion,
background overfitting, and foreground-background inharmony.

3 Methodology

Given a reference image of a specific object, our objective is to generate images
that maintain high detail fidelity of the object while synthesizing diverse contexts
and compositions conditioned on the text prompts.

3.1 Training-Time Framework

As shown in Fig. 2, our framework is built on top of a diffusion model and is
trained in a self-supervised manner. First, the input image is fed to the VAE
encoder to obtain feature maps F and then the noise is progressively added,
resulting in Ft. Here, t represents the number of times noise is added. Afterward,
the noisy feature maps Ft are passed to the diffusion model to predict the noise
and reconstruct the input image.

In parallel to the main path, our framework has an image branch and a text
branch to provide additional conditions for the diffusion model. In the image
branch, the input image is first fed to SAM [20] to produce the object mask.
Then, the resultant mask is used to segment the object in the image. Next, the
concatenation of the object image and the image is passed to an adapter layer.
Afterward, a VAE encoder and ControlNet are employed to control the diffusion
model to reconstruct the input image. In the text branch, BLIP [23] is adopted to
extract textual descriptions of the input image. Then, the extracted text prompt
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is fed to CLIP to provide additional control to the diffusion model. Following
[43], the features extracted from the text and image prompts are connected to
the diffusion model with zero convolution layers.

During optimization, only the adapter layer and the ControlNet are trainable
while the diffusion model is frozen. The loss function used is defined as:

L = Ez0,t,ct,cf ,ε∼N(0,1)||ε − εθ(zt, t, ct, cf )||22, (1)

where z0 represents the data in the latent space, ct and cf are the text condition
and the latent condition, respectively.

Fig. 2. An illustration of our framework during the training phase.

3.2 Inference-Time Framework

Our framework during inference time is illustrated in Fig. 3. First, the reference
image is fed to SAM to produce a mask to segment the object. Then, the con-
catenation of the object image and the reference image is passed to the VAE
encoder. Meanwhile, the text that describes the context of the generated image
is fed to CLIP. Next, the features extracted from the image and the text prompt
are passed through ControlNet and used as conditions for the diffusion model to
synthesize an image from a noise image.

4 Experiments

In this section, we first introduce the experimental setup. Then, we conduct
experiments to compare our method with previous approaches. Next, we conduct
several ablation studies to demonstrate the effectiveness and robustness of the
mask.



88 Z. Huang et al.

Fig. 3. An illustration of our framework during the inference phase.

4.1 Experimental Setup

During the training phase, we collected 100,000 images from numerous websites
using keywords such as people, food, animals, furniture, cosmetics, automobiles,
and clothing. In addition, we selected 100,000 images from the SA1B and COCO
datasets. After data cleaning and annotation, a total of 130,000 valid images and
approximately 300,000 valid masks are obtained as the training set.

During the test phase, the DreamBooth dataset is included for evaluation,
which comprises 30 categories like backpacks, toys, dogs, cats, and sunglasses.
Each category has about 5–8 images. FID [34], PSNR [37], SSIM [40] and
LPIPS [44] are employed to evaluate the generated images. In addition, to mea-
sure the object grounding accuracy from the reference image and the text to the
generated image, we adopt the CLIP score [30] and DINO score [5].

4.2 Performance Evaluation

(1) Quantitative Results
We compare our method with three representative methods, including

DreamBooth [33], ControlNet [43]+LoRA [11], and Inpainting-Anything [42].
These methods are capable of generating images with different backgrounds for
specified objects. DINO and CLIP-I are used to evaluate the object fidelity
while CLIP-T is employed to calculate prompt fidelity. As shown in Table 1,
our method is more faithful to the text prompts with higher CLIP-T scores.
Additionally, our method outperforms other methods except ControlNet+LoRA
in terms of both CLIP-I and DINO. It should be noted that ControlNet+LoRA
requires partial input images for fine-tuning. Although our method does not con-
duct this fine-tuning process, competitive results are produced, which demon-
strates the effectiveness of our method. As compared to DreamBooth, our
method achieves much better performance in terms of all metrics.

Then, we compare the quality of images synthesized by different methods in
Table 2. As we can see, our Mask-ControlNet surpasses ControlNet+LoRA by
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Table 1. Prompt fidelity comparison of images produced by different methods.

Method CLIP-T↑ CLIP-I↑ DINO↑
DreamBooth [33] 0.171 0.828 0.527
ControlNet [43]+LoRA [11] 0.173 0.873 0.607
Inpainting-Anything [42] 0.166 0.849 0.423
Mask-ControlNet 0.175 0.858 0.593
Real Images 0.176 0.885 0.774

Table 2. Quantitative results achieved by ControlNet+LoRA and Mask-ControlNet.

Method FID↓ PSNR↑ SSIM↑ LPIPS↓
ControlNet [43]+LoRA [11] 6.161 28.06 0.957 0.031
Mask-ControlNet 5.172 30.67 0.958 0.022
Real Images 0.000 INF 1.0 0.00

notable margins on all metrics. Specifically, our Mask-ControlNet demonstrates
superior performance in terms of FID and PSNR (5.172 and 30.67, respectively)
as compared to ControlNet+LoRA (6.161 and 28.06). This indicates that our
method generates images that closely match the distribution of real images and
better match the ground truths in terms of pixel-level fidelity.
(2) User Study

We further invited users to evaluate the aesthetics, grounding accuracy, and
the realness of the images generated by different methods. Average Human Rank-
ing (AHR) is employed to rank each result on a scale of 1 to 5 (the higher the
better). We asked 524 users to answer questionnaires of 20 comparative ques-
tions. They were rated for a set of images of the same item generated by different
methods. Total 9,212 answers were collected and 37.5% of users had no under-
standing of image generation models. The results are presented in Table 3.

Table 3. Average User Ranking (AUR) of image quality in terms of aesthetics, accuracy
and realness. 1 to 5 indicates worst to best.

Method Aesthetics↑ Accuracy↑ Realness(%)↑
DreamBooth [33] 3.874 3.217 13.65
ControlNet [43]+LoRA [11] 3.467 3.868 35.53
Inpainting-Anything [42] 3.584 3.508 20.48
Mask-ControlNet 4.252 4.320 61.85

As we can see, our method outperforms other methods by notable mar-
gins in terms of all metrics. Particularly, the results synthesized by our method



90 Z. Huang et al.

achieve significantly higher accuracy (4.330 vs. 3.888). This demonstrates that
our method can better maintain the object details in the reference images with
higher fidelity. In addition, 61.04% of the users cannot distinguish between our
results and real images. This further validates the effectiveness of our method
to produce images high in realness.
(3) Qualitative Analysis

We further compare the visual quality of the images produced by different
methods. We focus on the three challenges as presented in Sect. 1.
(i) Object Distortions

In Fig. 4, it is evident that the results produced by other methods suffer
object distortions. For example, in the second row, DreamBooth and Control-
Net+LoRA generate incorrect text on the can, while Outpainting produces a dis-
torted bottom. In contrast, our method maintains higher fidelity of the objects
and better preserves their details in the generated images.

Fig. 4. Synthetic images produced by different methods under the same prompt. From
the perspectives of object edges, texture, text, color, etc., our method generates images
that are more lossless and closer to reality.
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Fig. 5. Background contrast generated under the same prompt. From the figure, it can
be seen that our method can generate more diverse backgrounds.

(ii) Background Overfitting
In Fig. 5, we can see that other methods are prone to introducing the back-

ground of the object in the reference image to the synthetic images, such as
the riverbank in the third row. In contrast, our method can better understand
the relationship between foreground and background, thereby generating images
with diverse contexts.
(iii) Foreground-background Inharmony

In Fig. 6, we can observe that the foreground and background are more har-
monious in our results as compared to other methods. For example, in the first
scene (a cat is playing basketball), the inpainting method cannot well understand
the text and generates a ball behind the cat. In contrast, our method can better
understand the text and synthesize a ball under the foot. For other challenging
conditions like occlusions, reflections, and shadows, the relationship between the
foreground and the background can also be well handled. These results validate
the superiority of the proposed method.

4.3 Model Analyses

(1) Effectiveness of Mask Prompts. To demonstrate the effectiveness of
masks, ablation experiments are conducted. Specifically, we develop a variant
that directly uses the reference image as the prompt without leveraging the mask
to segment the objects. As shown in Table 4, the mask prompt facilitates our
method to better maintain the object details in the reference image to achieve
higher fidelity scores in terms of both CLIP-I and DINO. Qualitatively, as shown
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Fig. 6. Comparison of foreground-background harmony in different scenarios. The
images from upper left to lower right present six different interaction scenarios, includ-
ing contact, refraction, shadow, obstruction, reflection, and dynamic effects.

in Fig. 7, the model without mask exhibits relatively low quality. In contrast, by
incorporating a mask as an additional prompt, our method is able to generate
images that are more faithful to the reference image (e.g., the T-shirt of the girl
in the first row) with higher perceptual quality.

Table 4. Ablation results on mask prompts.

Method CLIP-I↑ DINO↑
w/ mask 0.858 0.593
w/o mask 0.812 0.386

(2) Flexibility of Mask Prompts
We further test the flexibility of the mask prompts in our framework. When

an image containing multiple objects is employed as the reference image, our
framework can flexibly transfer objects of interest to the generated images using
different masks, as shown in Fig. 8. It can be observed that our method produces
visually promising images using the same reference image with different masks
as conditions. Without our mask prompt, the same reference image is used as
a condition. As a result, the diffusion model may be confused and cannot well
understand the text prompts.
(3) Potential Applications

Mask-ControlNet can be flexibly applied to a variety of scenarios, including
but not limited to the following ones:

(1) Data augmentation. As shown in Fig. 9, we can employ our Mask-
ControlNet to synthesize additional images for data augmentation. These images
are of high quality and realness, which can better improve the data diversity as
compared with simple cropping or mixup techniques.
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Fig. 7. Images synthesized by our method with and without masks.

Fig. 8. Images generated using the same reference but different masks.

(2) Virtual try-on. As shown in Fig. 10, our Mask-ControlNet can be adopted
for virtual try-on by changing the clothes, hairstyle, and facial accessories in the
image while maintaining face fidelity using masks.
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Fig. 9. Augmented images synthesized from samples in the COCO dataset.

(3) Image editing. As shown in Fig. 11, our Mask-ControlNet can be used as
a powerful interactive editing tool. With our method, fine-grained image editing
can be achieved by using the mask prompt to maintain the fidelity of corre-
sponding regions.

Fig. 10. Virtual try-on results.
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Fig. 11. Image editing results.

5 Conclusion

In this paper, we present a simple yet effective framework to synthesize high-
quality images with an additional mask prompt. To better model the relationship
between foreground and background, we use SAM to obtain the object mask to
provide additional cues. With this addition of conditional information, the net-
work can well capture the foreground-background correlation and generate visu-
ally more pleasing results. Extensive experiments demonstrate the effectiveness
of our method and the superiority of our generated images.
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Abstract. Efficiently generating a freestyle 3D portrait with high qual-
ity and 3D-consistency is a promising yet challenging task. The por-
trait styles generated by most existing methods are usually restricted by
their 3D generators, which are learned in specific facial datasets, such as
FFHQ. To get the diverse 3D portraits, one can build a large-scale multi-
style database to retrain a 3D-aware generator, or use a off-the-shelf
tool to do the style translation. However, the former is time-consuming
due to data collection and training process, the latter may destroy the
multi-view consistency. To tackle this problem, we propose a novel text-
driven 3D-aware portrait synthesis framework that can generate out-of-
distribution portrait styles. Specifically, for a given portrait style prompt,
we first composite two generative priors, a 3D-aware GAN generator and
a text-guided image editor, to quickly construct a few-shot stylized por-
trait set. Then we map the special style domain of this set to our proposed
3D latent feature generator and obtain a 3D representation containing
the given style information. Finally we use a pre-trained 3D renderer to
generate view-consistent stylized portraits from the 3D representation.
Extensive experimental results show that our method is capable of syn-
thesizing high-quality 3D portraits with specified styles in a few minutes,
outperforming the state-of-the-art.
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1 Introduction

Portrait synthesis [6,13,20,21] is a promising yet challenging research topic for its
wide range of application potential, e.g. game character production, Metaverse
avatars and digital human. With the rapid development of generative models
such as generative adversarial models [11], 2D portrait synthesis has achieved
remarkable success. After that, many methods [19–21] are proposed to improve
the generation quality to photo-realistic level.
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Fig. 1. Our freestyle 3D-aware portrait synthesis results. The first row shows man
with different styles, the second row shows various characters, and the last two rows
show diverse identities with different styles from varied viewpoints. Zoom in for better
viewing.

Recently, 3D portrait synthesis has attracted more and more attention, espe-
cially with the emergence of Neural Radiance Field (NeRF) [29]. As the repre-
sentatives among them, 3D-aware GAN methods [6,13,33] combine NeRF with
StyleGANs [21] to ensure 3D consistency synthesis. By mapping an image to the
3D GAN latent space, 3D GAN inversion approaches [23,24,45] can generate
or edit a specific 3D portrait. However, both of them fail to create a freestyle
3D portrait, e.g., a style defined by user’s text prompt, since their generators
are usually trained on a dataset that follows a particular style distribution, such
as the realism style in FFHQ [20], which raises a question: how to generate a
freestyle 3D portrait at a low cost? One may collect a large number of portrait
images with different styles to retrain their 3D generative models, but the data
preparing and training process are usually time-consuming. Another potential
solution is that synthesizing a dataset-based 3D portrait first, then transferring
each portrait view to other styles with a off-the-shelf 2D style transfer tool.
Unfortunately, the 3D consistency will be difficult to be maintained.

To this end, we propose an efficient framework to achieve freestyle 3D-aware
portrait synthesis in this paper. At first, we composite the knowledge of two
pre-trained generative priors, EG3D [6] and Instruct-pix2pix (Ip2p) [3] we used
in this paper, to construct a few-shot stylized portrait dataset with a given
style prompt, avoiding dirty data collection and cleaning. The former generates
a multi-view 3D portrait, and the latter performs text-guided style editing in
each viewpoint. We empirically find the editing results of Ip2p vary significantly
along viewpoints for some given style, resulting in the issue of multi-view mis-
alignment. To alleviate this problem, some optimization strategies are introduced
into the inference stage of Ip2p. Secondly, we propose a 3D latent feature gener-
ator model, which can map the style information from stylized portrait dataset
to 3D latent representation. This generator is first pre-trained with large amount
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of generative data from EG3D, so that it can learn 3D latent representation well
from multi-view portraits. Our 3D latent feature generator enables fast fine-
tuning with few-shot stylized portrait dataset, and generates out-of-distribution
stylized 3D representation. Finally, we utilize the pre-trained EG3D neural ren-
derer and super-res generator as our 3D Renderer, and we find that this model
does not need to be fine-tuned to generate 3D-consistent portrait with a speci-
fied style when we have learned a well-stylized 3D implicit representation. Our
high-quality stylized 3D-aware portrait synthesis results are shown in Fig. 1,
each style is specified by a text prompt, and each 3D portrait model can be
fine-tuned in 3min. Our main contributions can be summarized as follows:

– We propose a 3D-aware portrait synthesis framework based on compositional
generative priors that can be text-driven to generate freestyle 3D avatar.

– We further propose a 3D latent feature generator, which allows for quick
fine-tuning to map out-of-distribution style to 3D representation.

– Compared with stylized 3D portrait synthesis baselines, our approach has
clear advantages in performance and efficiency.

2 Related Work

2.1 3D-Aware GAN

With the development of neural implicit representation (NIR) represented by
neural radiance fields (NeRF) [29], more and more methods [1,5,9,10,12,17,28,
31] are focusing on learning 3D scenes and 3D object representation using neural
networks. NeRF represents the 3D scene as a series of neural radiance and density
fields, and uses volume rendering [18] technique for 3D reconstruction. Similarly,
some methods [32,39] learn neural implicit representation using multi-view 2D
images without 3D data supervision. However, even multi-view data is usually
expensive to construct in some scenes, such as portraits, so many approaches
gradually migrate to learn 3D-aware GAN using unstructured data, i.e., single-
view portraits, based on the idea of adversarial training. PiGAN [7] proposes a
siren-based neural radiance field and uses global latent code to control the gen-
eration of shapes and textures. GIRAFFE [30] proposes a two-stage rendering
process, which first generates the low-resolution features with a volume renderer,
and then learns to upsample the features with a 2D CNN network. Some meth-
ods introduce StyleGAN structures into the 3D-aware GAN. StyleNeRF [13]
integrates NeRF into a style-based generator to improve rendering efficiency
and 3D-consistency of high-resolution image generation. StyleSDF [33] merges
a Signed Distance Fields representation with a style-based 2D generator. EG3D
[6] proposes a triplane 3D representation method to improve rendering compu-
tational efficiency and generation quality. Some approaches have also started to
focus on the control and editing of 3D-aware GANs. FENeRF [42] and Sem2nerf
[8] introduce semantic segmentation into the generative network, and learn a
whole neural radiance field with semantic information. CNeRF [26] proposes a
compositional neural radiance field to split the portrait into multiple semantic
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regions, and learns semantic synthesis separately with a local neural radiance
field, and finally fuses them into a complete 3D representation of the portrait.
Next3D [41] learns a face-driven method based on EG3D, which can generate
3D-consistent facial avatars. Along with the development of 3D-aware GAN,
3D GAN Inversion methods [23,24,45] have appeared. They learn to map real
images to the latent space of 3DGAN for image inversion and editing. How-
ever, such methods face a problem that they cannot jump out of the pre-trained
3DGAN prior and cannot synthesize out-of-distribution portraits. In this paper,
we propose a new framework that can synthesize stylized 3D portraits freely,
which is not restricted by the 3D generative prior and can generate 3D portraits
of specific styles based on text prompts.

2.2 Text-Guided Image Editing

There are numerous image editing methods, and the performance of text-guided
image editing methods [2,3,14,15,22,25] has been qualitatively improved thanks
to the advancement of pre-trained image generation large models [36–38] based
on the Diffusion model. Ip2p [3] is a SOTA text-guided image editing method,
which uses two generative priors, GPT-3 [4] and Stable Diffusion [38], to syn-
thesize a large number of paired images and then train a conditional diffusion
model on them. This model allows the users to provide a relatively free text
instruction to edit a given image, including stylistic transfer. Some Ip2p-based
methods [14,43] have also verified its application potential in image stylization
tasks. Therefore, Ip2p is well suitable as a text-guided image editing prior for
this paper to perform text-guided style transfer on portraits from different view-
points. However, the model also has problems, such as poor generation with some
simple text prompts and generating portraits with large stylistic variations for
different views of the same portrait. We introduce some optimization strategies
to alleviate these problems in this paper.

3 Methodology

In this section, we detail our freestyle 3D-aware portrait synthesis framework, as
shown in Fig. 2. We first briefly introduce two generative priors, EG3D and Ip2p,
and composite them to build a few-shot dataset with a given style. To describe
styles more freely, we optimize the inference of Ip2p to make it more stable
for stylizing portraits from different perspectives (Sect. 3.1). We then use the
few-shot dataset to quickly fine-tune our proposed 3D latent feature generator,
which is equipped with a pre-trained 3D renderer to generate 3D-consistent
stylized portraits (Sect. 3.2).

3.1 Few-Shot Stylized Portrait Dataset Construction

3D-Aware GAN Prior. As a state-of-the-art 3D-aware GAN method, EG3D
[6] can be expressed as G(θ,w,v), where θ is the model parameters, w is a
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Fig. 2. The framework of our method. We composite two generative priors EG3D and
Ip2p, a 3D-aware GAN generator and a text-guided image editor, to quickly build a
few-shot stylized portrait dataset Ds, whose style is specified by the text prompt. Ip2p
is optimized to produce more stable and consistent text-guided stylization results. With
the constructed few-shot dataset, we quickly fine-tune a 3D latent feature generator to
map the style information from the dataset into 3D representation, and then utilize a
pre-trained 3D renderer to generate the stylized 3D-consistent portraits.

sampling vector in the W latent space, and v is the view direction to be rendered.
We randomly sample a w vector, and set v as follows: assuming pitch and yaw
angles of front view portrait are zero, v is uniformly sampled i times within
both pitch and yaw range of −30◦ to 30◦. We denote the candidate set of v as
(P, Y ), which contains i2 sampling results (i pitch× i yaw). Then G can output
i2 portrait images along each v. Note that these portraits keep the same identity
since w is only sampled once.

Text-Guided Image Editing Prior. Next, we employ Instruct-pix2pix (Ip2p)
[3] to perform the style editing on the portraits generated above. Ip2p implements
conditional image editing based on Stable Diffusion [38], which can be denoted
as T (φ, I ,n, t), where φ is the model parameters, I is the input portrait, n
is the Gaussian noise used in the denoising process, and t is the text prompt
that guides the editing direction. Considering different input noise will generate
different results, we fix n to keep the identity unchanged. Then we let I be the
multi-view portraits that are produced by EG3D, and use T to generate stylized
portraits.

Optimizing Instruct-pix2pix Inference. As mentioned above, some t will
cause Ip2p to generate unsatisfactory stylized portraits. For example, the style
“Na’vi from Avatar” will make the portrait style vary greatly from one viewpoint
to another. More samples are listed in Sect. 4.4. Therefore, we want to optimize
Ip2p to make it generate stable results for different t. Inspired by SDEdit [27],
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we replace the original Gaussian noise n with a new noise n∗ during the inference
stage of Ip2p:

n∗ = Add(E(I),n, τ), (1)

where E(I) denotes the latent features obtained from the Stable Diffusion
encoder of I, τ is the degree of noise addition, and Add represents the stan-
dard DDPM [16] noise addition operation. In addition, we design an enhanced
prompt to further improve the quality of synthesized portraits: t∗ = {t, td, tn},
where td and tn mean decorative and negative prompts, respectively. Conse-
quently, our stylized portrait generation can be rewritten as:

Is = T (φ,G(θ,w,v),n∗, t∗), (2)

where Is is one stylized portrait. We construct a few-shot stylized portrait dataset
Ds using different view v from (P, Y ), so Ds contains i2 stylized portraits. The
construction pipeline is summarized in Algorithm 1.

3.2 3D Latent Feature Generator

Considering the ability in generating high quality and 3D consistency image, we
also utilize EG3D baseline to synthesize stylized 3D portrait. In the experiment,
we find that if we have learned a well-stylized 3D implicit representation, the
EG3D neural renderer and super-res generator do not need to be fine-tuned to
generate 3D-consistent portrait with an out-of-distribution style. Therefore, we
utilize the pre-trained EG3D neural renderer and super-res generator as our 3D
renderer, and just need to learn a 3D latent feature generator to map the style
information from Ds to the 3D implicit representation.

There are two other solutions that need to be discussed: 1) Directly fine-
tuning the whole EG3D on Ds, which is very inefficient compared to our method
and generates somewhat blurred images. 2) Inverting the images from Ds to
the W latent space of EG3D with GAN inversion methods, which will limit the
portrait style within the scope of training set that EG3D is pre-trained, since
the triplane feature generator is not changed.

We design the 3D latent feature generator as shown in the Fig. 2. An Encoder
is used to learn the modulation latent feature ws from different viewpoints, we
expand the latent code ws along spatial dimension (from c to c×k×k) to enrich
it with style and structural information. Then we propose the SMLs consisting of
multiple Stylized modulation layers, which can learn to generate stylized triplane
implicit representation. For a particular modulation layer in SMLs, we have the
following formula:

F i
c,h,w = γi

h,w(ws) × F i
c,h,w − μi

h,w

σi
h,w

+ βi
h,w(ws), (3)

where μi
h,w and σi

h,w represent the calculated mean and standard deviation across
channel dimension, respectively. γi

h,w and βi
h,w are learnable weight networks.

The last layer of SMLs outputs the stylized triplane representation.
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Algorithm 1 . Few-shot dataset con-
struction
1: Input: w ∼ W, n ∼

N (0, 1), t, Ds = ∅
2: for v in (P, Y ) do
3: I = G(θ,w,v)

4: n∗ = Add(E(I),n, τ)

5: Is = T (φ, I,n∗, t∗)

6: Ds = Ds ∪ Is
7: end for

Algorithm 2. The 3D latent feature
generator fine-tuning
1: Input: Ds, Pre-trained 3D latent

feature generator
2: Init 3D generator net using the pre-

trained model
3: repeat
4: Randomly select I 1v , I 2v from Ds

5: Fine-tuning 3D latent feature gen-
erator using loss:

6: Ltotal = λrecLrec + λdrLdr
7: until end of iterations

Although the 3D latent feature generator can be trained on Ds, it still suf-
fers from two challenges: First, Ds is a few-shot dataset, it has no more than
100 images for a style in practice. Second, the portraits in Ds have more or less
differences in details, resulting in 3D inconsistency. We solve this problem by pre-
training the 3D latent feature generator on the large number of portraits gener-
ated by EG3D prior, which can help to build accurate 3D implicit representation
from multi-view portraits. In particular, in each iteration of the pre-training, we
randomly sample to generate an arbitrary viewpoint portrait Iv ∈ R

512×512×3

from EG3D, and record its triplane representation as p ∈ R
256×256×96, Then the

pre-training process is constrained by the following loss function:

Lpre = EIv ,p[‖H (Iv ) − p‖1], (4)

where H represents our 3D latent feature generator.

Training. After being pre-trained, the 3D latent feature generator can be quickly
fine-tuned on the few-shot stylized portrait dataset Ds. We use a multi-view
cross-construction strategy for learning a more robust 3D implicit representation.
For two arbitrary viewpoint portraits I 1v and I 2v in Ds, we use the following
reconstruction loss:

Lrec = EI 1
v ,I 2

v ∈Ds
[
∥
∥G∗(I 1v ,v2) − I 2v

∥
∥
1

+ lpips(G∗(I 1v ,v2), I 2v )],
(5)

where ‖·‖1 is the L1 reconstruction loss, G∗ represents the whole model with 3D
latent feature generator and 3D renderer, and the parameters are input image
and the rendering viewpoint, respectively. lpips(·, ·) is the Learned Perceptual
Image Patch Similarity [46] loss, which calculates the distance of the latent
features extracted from the VGG network. In addition to the reconstruction loss,
we add the density regularization, which encourages smoothness of the density
field rendered by triplane and prevents sharp or hollow portrait shapes during
fine-tuning. The density regularization loss is shown as follows,

Ldr = Ex,δ[‖σ(x) − σ(x+ δ · x)‖1], (6)



Freestyle3D 105

Fig. 3. Multi-style and Multi-identity 3D portrait synthesis results. Zoom in for better
viewing.

where x are the random sampling points in the volume rendering, δ is a small
Gaussian noise, and σ(x) denotes the density rendering process. Thus the final
loss function is:

Ltotal = λrecLrec + λdrLdr, (7)

where λrec and λdr are loss weights. The fine-tuning process is listed in
Algorithm 2.

4 Experiments

4.1 Implementation Detail

Our method is implemented in PyTorch using an NVIDIA A100. We use Adam
optimizer with learning rate of 0.002 and β1 = 0, β2 = 0.99. The number of
samples i in few-shot dataset construction is 10. Other parameters, such as
camera focal length, use the EG3D default settings. In Ip2p inference, we set
the number of time step s in DDIM [40] to 20. The degree of noise addition τ is
0.9, and the image guide and text guide weight parameters of Ip2p are set to 1.5
and 20.0. The decorative prompt td is “realistic, detail, 8k, photorealistic”, then
the positive prompt input for Ip2p is “turn the head into t, td”. The negative
prompt tn is “unclear facial features, non-face objects, ugly, bad”. Note that we
fix td and tn, and only change t in all following experiments. Fine-tuning td
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Fig. 4. The outputs of different stages in our method.

Fig. 5. Visualization of 3D geometry from different stylized generation results.

or tn will polish the generated results, but it’s not the scope of this paper. For
each text prompt t we randomly sample a w and construct the few-shot dataset
according to Algorithm 1. In 3D latent feature generator, The spatial dimension
k of ws is 32. SMLs consists of 7 modulation layers. The 3D generator is pre-
trained on EG3D randomly sampled data for 100k iterations. When fine-tuning
the model on the few-shot dataset Ds, the loss weights are set as λrec = 10.0
and λdr = 0.2.

4.2 Freestyle 3D Portrait Synthesis

In this section, we show the 3D portrait synthesis results of our approach. As
shown in Fig. 3, our method can generate diverse style 3D portrait, and the
synthesized portraits are high quality and 3D consistent, proving our ability of
freestyle generation. Then, we display the outputs of different stage (i.e., EG3D,
IP2P and final output) in Fig. 4, it can be seen EG3D outputs the original
3D portrait, IP2P will add the style into the portrait images (the facial details
and consistency can not be guaranteed), our method will generate the final high
quality and 3D-consistency results. In addition, we generate the 3D geometry
results of different style in Fig. 5, which can accurately reflect the given style.
Last but not least, Fig. 6 shows the smooth style mixing results of our method.
We interpolate the encoded features of two different style in the ws latent space,
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Fig. 6. The 3D portrait results synthesized by mixing different styles in the ws latent
space.

Table 1. User Study, quantitative evaluation and running time of different methods.

Method TIS IQ 3DC CLIP ScoreAverage Time
DreamFusion [34] 2.82 2.24 3.18 0.304 ∼40 min
3DGAN-Inv [23] 2.04 1.90 2.59 0.229 ∼4 min
HFGI3D [44] 3.40 3.54 3.67 0.310 ∼10 min
Ours 4.054.274.340.332 ∼3 min

and use the new triplane implicit representation to synthesize 3D portraits. The
results reveal the controllability and potential style editing ability of our model.

4.3 Comparison Experiments

Baselines. We divide the baselines into two categories. 1) Text-to-3D. Dream-
Fusion1 [34] is a representative method that generates 3D images based on the
text prompts. 2) Image style transfer + 3D GAN Inversion. 3DGAN-Inv [23]
and HFGI3D [44] are two SOTA methods of 3D GAN inversion. We use them
with Instruct-pix2pix as the baselines.

The results of our method compared with baselines are shown in Fig. 7.
DreamFusion, the representative of the Text-to-3D method, is able to optimize
the model to synthesize 3D portraits based on text prompts, such as “A Disney
style Elf”, but the generated results have low quality, while for more specific por-
trait styles, such as “sand painting style”, no results can be synthesized. What’s
more, the portraits with large stylistic variations cannot be inverted well using
the 3DGAN-Inv, because the 3D portraits synthesized by this method cannot
escape from the domain of the pre-trained 3D-aware GAN model. The results of
HFGI3D are better, but the 3D shape is destroyed after inversion, as shown in the
Elf’s face. At the same time, for some more difficult samples, this method cannot
produce effective results, such as the last two lines. In contrast, our method is
able to synthesize high quality 3D portraits that satisfy both 3D consistency and
stylization.
1 https://github.com/ashawkey/stable-dreamfusion.

https://github.com/ashawkey/stable-dreamfusion
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Fig. 7. Qualitative comparison results between our method and baselines. Reference
image represents the result after Ip2p style transformation, which is used as the input
of the 3D GAN Inversion methods. The part with no result means that the method is
unable to generate a image.

For quantitative evaluation, we conduct a user study. We invite 30 volunteers
to evaluate each method from three perspectives, namely the Text-image Simi-
larity (TIS), Image Quality (IQ), and 3D Consistency of different views (3DC).
Each item is scored on a 5-point scale, and the average is calculated as the
final result. As shown in Table 1, our approach achieves the best scores under
each dimension. We also calculate the CLIP Score for each method shown in
Table 1, which uses the CLIP [35] model to extract features and calculate cosine
similarity between input text and generated image. Our method also achieves
optimal result. In addition, our method also has a significant advantage in run-
ning time, as shown in Table 1. Our method is able to fine-tune model on the
given text prompt in about 3min, while other approaches require more time.
Although 3DGAN-Inv costs comparable running time to ours, its portrait gen-
eration quality is poor and fails to generate freestyle portraits.

4.4 Ablation Study

We conduct the ablation studies of our method from three aspects, which are
shown in Fig. 8. First, when we do not optimize the Ip2p inference, some charac-
ter prompts generate poor results, such as the example in (a) of Fig. 8). Second,
we perform the ablation of the 3D latent feature generator in (b) of Fig. 8. 1)
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Fig. 8. The ablation studies of our approach. (a) Ip2p generated results w/ or w/o
inference optimization. (b) Different ablation experiments on the 3D Latent Feature
Generator (3DLFG). (c) 3D shape outputs w/ or w/o dr loss.

Table 2. Quantitative ablation results on 3D latent feature generator.

Method CLIP Score
w/o 3D generator 0.251
w/o pre-training 0.113
w/o ws spatial dimension 0.282
Ours 0.332

When we remove the 3D latent feature generator and directly fine-tuning the
whole EG3D, we can achieve some stylization effect. However, the generation
quality is somewhat poor, and this fine-tuning is inefficient, taking dozens of
minutes. 2) When using our 3D latent feature generator without pre-training,
training from scratch on the few-shot dataset will not be able to learn the cor-
rect 3D implicit representation. Because it is difficult to establish the mapping
from the image to the triplane representation only using 3D inconsistent data. 3)
When the ws code of our 3D latent feature generator is a vector without spatial
dimension, the learned 3D portrait is blurred and lacks details. Furthermore, we
calculate the CLIP Score of different ablation models in Table 2, and our method
achieves the best result. In addition, we ablate the density regularization (dr) loss
used in model training, shown in (c) of Fig. 8. When the density regularization
is not used, the synthesized portrait shape will have rough surfaces.

5 Limitations

Our approach is based on two powerful pre-trained generative priors, which are
the basis of our method’s ability to synthesize high-quality stylized 3D por-
traits. At the same time, our method is limited by both priors, especially Ip2p,
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Fig. 9. Some bad cases.

which is unable to achieve perfect 3D-consistent
portrait stylization in different viewpoints, so
the final synthesized 3D portrait of our method
differs slightly from the style generated by Ip2p.
Meanwhile, some stylistic changes that differ
significantly from the human portrait shape,
such as “Iron Man” and “Stormtrooper” ’ in
Fig. 9, result in poorer quality 3D portraits
compared to human portraits. Because when
Ip2p generates this type of style, the stylization effect will be more different
under different views.

6 Conclusions

This paper proposes a novel freestyle 3D-aware portrait synthesis framework
based on compositional generative priors. We combine two pre-trained genera-
tive priors, EG3D and Ip2p, to quickly construct the out-of-distribution stylized
multi-view portraits. We optimize Ip2p inference in order to stylize portraits at
different views more freely and stable. We propose a 3D latent feature generator,
which learns to map the style information from few-shot stylized portrait dataset
to the 3D implicit representation. Equipping the generator with a pre-trained
3D renderer, we can generate 3D-consistent stylized portraits. A large number
of high-quality 3D portrait synthesis results and comparison experiments with
baselines show the superiority of our method.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China under Grant No. 2021YFC3320103.
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the field of computer vision. This innovative technique is widely employed
for generating concealed facial features from given noise. It proves partic-
ularly useful in reconstructing obscured facial regions covered by masks.
The underlying technology at the core of this method is the Generative
Adversarial Network (GAN). The primary mechanism of GAN-based
neural networks relies on an encoder-decoder structure combined with
a discriminator network. The discriminator plays a crucial role in train-
ing the network to distinguish between authentic and generated images.
FUGAN, a novel approach in this domain, incorporates a self-attention
block and has demonstrated superior performance to other models. With
an impressive SSIM and BRISQUE score of 0.928 and 27.990, respec-
tively, FUGAN is at the forefront of achieving state-of-the-art results.
The architecture of the FUGAN neural network is built upon the UNET
framework, with modifications to enhance its effectiveness. These mod-
ifications involve increasing the network depth and incorporating batch
instance normalization as a regularizer to achieve the desired outcomes.
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well-suited for deploying low-resource Internet of Things (IoT) devices.
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masks and reconstructing their facial details. Github link (FUGAN:
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1 Introduction

In the field of computer science, experts have made significant contributions
to enhancing security systems for detecting intruders or monitoring suspicious
activities, particularly in scenarios where external oversight is limited. They
have introduced a variety of tools and techniques, ranging from object detec-
tion to segmentation and the sophisticated method of regeneration in com-
puter vision, which enables the generation of images from a single reference
image with added noise. While face masks serve as a defense against viruses,
some individuals misuse them for criminal activities, concealing their identi-
ties in places like malls or hotels to evade surveillance cameras. Researchers
have taken on this challenge by employing image inpainting methods to reveal
the facial areas obscured by masks. Techniques such as pix2pix, cycle genera-
tive adversarial networks (CGAN), image-to-image translation, conditional GAN
(C-GAN), encoder-decoder architectures, unpaired image-to-image translation,
autoencoders and UNET architectures have been used for this purpose. Despite
the substantial research efforts in face identification, the issue of occluded face
images, including those obscured by masks, remains unresolved due to factors
such as the lack of comprehensive masked face datasets, the intricate nature
and variability of masks, and the variability in facial features. Therefore, the
recognition and authentication of individuals wearing masks continue to be a
longstanding research area focusing on visual improvements of facial images
and necessitating more efficient methods for realtime face recognition. In this
study, we aim to address the challenge of removing face masks from facial images
using Generative Adversarial Networks (GANs). This problem can be framed as
image-to-image translation, involving the conversion of images from one domain
to another. The contribution of this work is to propose a GAN model that
automatically removes mask objects from the face and reconstructs the affected
region with delicate details irrespective of color and lighting conditions. More-
over, it can be deployed in IOT devices for real-time testing and performance
measurement in a natural environment.

The rest of this paper is organized as follows. In sect 2, the motivation of the
work is given. Section 3 presents related studies. Novelty of the work is given in
sect 4. The contribution of our work is presented in sect 5. The proposed model
with methodology is detailed in sect 6. Section 7 describes the experimental
setup and results. Future work and conclusion are described in Sect 8 and sect
9, respectively.

2 Motivation

Intruder detection has become increasingly crucial in malls, offices, hospitals, and
other public and private places following and after COVID-19, as some individ-
uals use face masks to conceal their identities and engage in malicious activities.
Ensuring the security of individuals in public spaces like roads, tourist attrac-
tions, and religious places has also become crucial, as some people hide their
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faces with masks or cloths to harm them, making identification challenging. This
situation underscores the need for a face-unmasking system that can segment
masks from faces, regenerate the occluded parts guided by this segmented binary
mask, and subsequently use these images to identify culprits. In response to this
need, we have proposed a face-unmasking system called “FUGAN,” which can
accurately regenerate realistic facial parts from still images.

3 Literature Survey

The key concept of occlusion removal from faces relies on two things: 1) Detec-
tion of occlusion (face mask) from faces with an accurate segmentation map
and 2) Generation of facial parts from a segmented map starting from noise.
The regeneration of facial part can be possible using different supervised and
unsupervised methods in field of Machine learning and deep learning. Below a
detailed analysis of different SOTA model is given.

Conventional methods such as interpolation, patch-based approaches, and
diffusion-based techniques have historically been extensively employed for auto-
mated image inpainting. In the interpolation-based technique, nearest neighbor
interpolation, bilinear interpolation, and bicubic interpolation are used to esti-
mate missing and corrupted pixels. Alsalamah et al. [1] proposed a radial basis
function (RBF) based interpolation technique for image inpainting, demonstrat-
ing high accuracy in restoring damaged images. Patch-based methods [16] involve
segmenting the image into small patches and using similar patches from known
areas to deduce the missing parts. Lin Liang et al. [10] introduced a patch-
sampling-based texture synthesis algorithm that generates high-quality textures
from an input sample. Bertalmio et al. [3] developed an algorithm inspired by
professional restorers that can simultaneously fill multiple regions with different
structures without constraints on the inpainting areas. Biradar et al. [4] applied
the median filter as a nonlinear filter for inpainting, diffusing the median pixel
from the exterior to the interior. They used the PSNR metric to compare their
method with other image inpainting techniques.

In the realm of deep learning, there exist cutting-edge models proficient in
effectively reconstructing obscured facial features through GAN-based image
inpainting techniques, facilitated by precise occlusion segmentation maps gen-
erated from segmentation models. Delving deeper into this domain reveals a
plethora of GAN models fashioned on UNET architecture, aimed at attain-
ing heightened accuracy in producing lifelike images. Several notable models
are discussed herein: NIZAM UD DIN et al. [17] introduced a pioneering GAN
model by adapting the UNET architecture, incorporating Leaky relu activation
functions and instance normalization layers after each convolutional block. This
model, trained with two discriminator networks and a custom loss function,
demonstrates proficiency in generating authentic images and is further applied
for face mask segmentation, yielding an SSIM score of 0.864 and a commendable
PSNR value of 26.19 dB. Divyam Gupta et al. [8] present an innovative app-
roach, UNET++, which modifies the UNET architecture by integrating dense
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blocks between different encoder and decoder blocks, within the CoGAN-based
Pix2Pix GAN framework. This adaptation achieves an SSIM value of 0.85752
and a PSNR of 24.998 dB. Farnaz Farahanipad et al. [5] employ the CycleGAN
model, based on ResNET blocks, trained with a 70× 70 patch GAN-based dis-
criminator to compute cycle loss for enhanced training refinement, resulting in
an SSIM value of 0.89. Yefan Jiang et al. [7] propose a novel mask removal
inpainting network, employing face attributes such as nose, chubby, and beard
in a two-staged GAN model. They utilize PRNet for face pose estimation and
alignment to generate binary masks, achieving accuracy metrics of 0.9180 for
SSIM and 3.7065 for FID. Akhil Kumar et al. [9] introduce the SAM C-GAN
method for face reconstruction, employing a conditional generative adversarial
network with a spatial attention module to aid in discerning between real and
synthetic images of masked faces. Utilizing binary cross-entropy loss for the GAN
method and Poisson loss and mean absolute error for the discriminator module,
they achieve an SSIM of 0.91231 and a PSNR of 30.9879. Hitoshi Yoshihashi et
al. [19] utilize the pix2pix model as a foundation, enhancing it with pixel error
and feature point comparison alongside a custom loss function for training on
face-masked image datasets, achieving an SSIM value of 0.926 and a PSNR of
28.789. K. Nazeri et al. [14] proposed EdgeConnect method to regenerate the
missing area of an image. It is based on two steps: one is an edge generator, and
the other is an image completion network. Edge generator predicts the miss-
ing edges of an image, then completion networks fill the missing regions guided
by regenerated edges. J. Yu et al. [20] proposed a generative image inpainting
method with a novel contextual attention mechanism, which effectively borrows
and utilizes contextual information from the known regions of an image to infer
the missing parts. This method leverages the power of both deep learning and
traditional techniques to improve the quality and coherence of the inpainted
images.

4 Novelty

In the previous section, it is clear that substantial advancements have been made
in the face unmasking method from 2020 to the present, achieving a 90% sim-
ilarity between original and fake images. Researchers have primarily employed
a modified UNET architecture, along with a custom discriminator and complex
loss function, to improve the accuracy of GAN models. Synthetic datasets have
been used for training as well as testing. However, current literature lacks a com-
prehensive approach to address the challenge of regenerating facial images with
different mask types during the training and testing phases and varying face tilt-
ing positions. Furthermore, the literature review reveals that various proposed
SOTA models have not achieved high SSIM and PSNR values. This suggests
that the images lack realism regarding natural color compression and structural
similarity that can not deceive face recognition systems. To fill this gap, a novel
GAN based neural network called “FUGAN” has been developed based on a
UNET architecture. The modified UNET architecture with one discriminator
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and simple loss function can achieve nearly 93% SSIM value in training and
testing. The deployment of the model in an IOT device (Jetson Xavier NX)
with a minimum number of resources for testing is another novel contribution of
the proposed work and can be readily implementable in any real-world situation.

5 Contribution

The FUGAN model enhances the UNET architecture, created by researchers,
for segmentation purposes. We customized this architecture to meet our require-
ments. Firstly, a modified UNET model is used as a segmentation network to
extract face masks from faces. Then, it is utilized as a GAN network to regener-
ate facial parts, guided by the segmentation map. Later, the models are deployed
in an IOT device for testing. The main contributions of this work include:

– Development of a modified UNET architecture, FUGAN, with a discriminator
to regenerate the facial region.

– Integration of attention blocks within the deeper layers of the model to handle
various scenarios and effectively regenerate faces even for unknown types of
face masks.

– Creation of a custom loss function tailored to train the face generator effi-
ciently.

– Utilization of the SegUnet model to generate binary face masks for the facial
region.

– Develop an improved UNET model to learn facial features in a few iterations.
So that it can be further fine-tuned in an unknown face mask dataset.

– Deployment feasibility on edge devices due to the model’s compact size,
enabling for testing the facial regeneration with minimal resources.

6 Methodology

This section outlines the comprehensive methodology of the proposed model.
Figure 1 illustrates the proposed architecture, comprising two main stages: the
Segmentation and Regeneration modules. The Segmentation module employs
the SegUnet model to precisely segment occlusions from the face. Following this,
the Regeneration module utilizes the GAN-based FUGAN model to reconstruct
the facial parts obscured by these occlusions. Subsequent subsections provide
an in-depth description of the model, including its architecture and training
strategy.

6.1 Dataset Creation

A GAN-based model necessitates an extensive dataset for effective training. How-
ever, since there is a lack of publicly available datasets suitable for training, a
solution to this challenge involved generating a synthetic dataset. This synthetic
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Fig. 1. Proposed architecture of our model

dataset was constructed using the CelebFaces [11] Attributes dataset, employ-
ing various types of masks placed over the mouth area. Face landmark detection
facilitated the precise positioning of these masks, determining both their key
positions and tilt angles, which were then overlaid onto the faces. Approximately
20,000 face images were gathered from the CelebA dataset for this purpose. In
the creation of the synthetic dataset, a binary map representing occlusions was
generated. The entire dataset was then divided into 70% for training and 30%
for testing and validation purposes. This division enabled effective training on
one portion while assessing performance on the other.

6.2 Architecture of Proposed GAN Model

The GAN model comprises of two main components: the generative model and
the discriminator model. In the generative model, a modified U-Net architecture
is used, drawing inspiration from the base U-Net model [15]. The ability of the
suggested architecture to integrate multi-scale contextual information through
its downsampling and upsampling paths enables a thorough understanding of
the input image. It combines low-level spatial information from the encoder
with high-level features from the decoder, allowing for precise localization and
detailed output generation. Additionally, the skip connections in U-Net facil-
itate the flow of gradients during backpropagation, aiding in the training of
deeper networks. In our scenario, since the mask detail is crucial and diverse
complex information related to the face mask needs to be captured for precise
facial part reconstruction, we have customized the encoder part. It comprises
five blocks of convolution layers, with two blocks allocated for the bottleneck,
while in the decoder, we also utilize five blocks. We have selected five blocks for
both the encoder and decoder because, in the future, we plan to use the model
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for real-time face unmasking. Faces from CCTV footage or live video are usu-
ally not high resolution, and the face images from each frame similarly lack high
resolution. To make the model effective, we avoided excessive depth, starting with
image dimensions of 128× 128 and gradually decreasing to 4× 4 to capture core
pixel information. In the contracting path, each encoder block typically includes
two convolutional layers followed by downsampling operations like max pooling
to reduce feature map dimensions. Spectral normalization, Batch-Instance Nor-
malization, and Leaky ReLU are applied to each convolutional block. The last
two encoder blocks have slight modifications, incorporating self-attention-based
convolutional layers [2] instead of the first convolutional layer. Self-attention
blocks allow the network to accurately infer missing parts by utilizing infor-
mation from all regions, ensuring consistency and coherence in the synthesized
textures and patterns by effectively capturing long-range dependencies. This
makes them especially useful for tasks such as image inpainting. In the expand-
ing path, the decoder architecture mirrors the encoder blocks, except for the last
two encoder blocks, where convolutional layers are replaced by upsampling oper-
ations. The bottleneck block serves as a bridge between the encoder and decoder
paths, capturing essential image features. It typically consists of two convolu-
tional layers, each paired with spectral normalization, Batch-Instance Normal-
ization, and Leaky ReLU. The output layer employs one convolutional layer
with a tanh activation function and three color channels for facial part regen-
eration. The segmentation architecture mirrors the generative model, except for
the last layer, which uses a sigmoid activation function with one color channel
for generating segmentation maps. One discriminator is employed, following the
architecture in pix2pix, which penalizes dissimilar structures at a patch scale of
70 × 70. The discriminator’s role is to compel the editing generator to produce
visually plausible and semantically consistent images. Training of the discrimi-
nator and face generator modules occurs simultaneously. In Table 1, a detailed
architecture of the proposed GAN model is described.

6.3 Training Strategy

In order to effectively train the regenerative module, a variety of loss functions
are employed, and each output is combined with a multiplicative factor to aid in
the convergence of the neural network, resulting in optimal performance across
diverse real-world scenarios. When training the GAN model with face images
containing masks positioned according to corresponding segmented masks, these
images are fused and manipulated to introduce noise in the masked regions.
The resulting images are then fed into the GAN network as input, generating
synthesized images. In Fig. 2 some example of fuse images are given. To compel
the editing generator to produce realistic missing content, a reconstruction loss
is utilized, which is a combination of L1 loss with a fixed value of λrc = 100 [17],
alongside structural similarity loss (SSIM). The equation of Ltotal combination
of l1 and SSIM loss is given below.

Ltotal = λrcLl1 + LSSIM (1)
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Table 1. Different Blocks Of FUGAN

Encoder Block Name of Components Input Channel (C)

EN1, Convolutional layer with spectral normalization, Batch Instance
Normalization, Leaky relu and maxpooling layer

1282 × 3 32

EN2, 642 × 32 64

EN3 322 × 64 128

EN4, self attention block, Convolutional layer with, spectral normalization,
Batch Instance Normalization Leaky relu and maxpooling layer

162× 128 256

EN5 82× 256 512

Decoder Block Name of Components Input Channel (C)

DEC5, upsampling layer, concatenation layer, Convolutional layer with
spectral normalization, Batch Instance Normalization, Leaky relu

42× 512 256

DEC4, 82× 256 128

DEC3, 162× 128 64

DEC2, 322× 64 32

DEC1 642× 32 32

Bottleneck Block Name of Components Input Channel (C)

BN1, Convolutional layer with spectral normalization, Batch-Instance
Normalization, Leaky relu

42× 512 512

BN2 42× 512 512

Output Block Name of Components Input Channel (C)

Output Convolutional layer with 3 color channel with tanh activation 1282× 32 3

Here Ll1 loss is defined as pixel difference between original (Igt) and generated
(Igenerate) images. In the below equation, the calculation of the l1 loss is pre-
sented.

Ll1 = |Igenerate − Igt| (2)

SSIM loss can be obtained by difference between 1 and SSIM value between
original and generated fake image. More minimal SSIM loss more the image is
accurate to near. This can be written a in below equation.

LSSIM = 1 − SSIM(Igenerate, Igt) (3)

To train the discriminator Dwhole region, we use loss function Lwhole region
D . This

assists in ensuring that the generator generates counterfeit images that are struc-

Fig. 2. Fused Images
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turally similar to the original image. This loss function can be expressed as below:

Lwhole region
D = −EIgtεO log Dwhole region(Igenerate, Igt) (4)

+ EIgenerateεS log(1 − Dwhole region(Igenerate))

Here O and S denote real and synthesized image sets, respectively. In order to
train the GAN setup the generator tries to fool the discriminator by minimizing
the Ltotal and Lwhole region

D loss function. However, the Ltotal loss function alone
does not effectively produce realistic content in the deep pixels of the missing
region; instead, it primarily contributes to generating structural similarities. To
address this limitation, a modified loss function, denoted as Lmodified

total , is intro-
duced. This modified loss function incorporates perceptual and adversarial loss
into the final formula. The GAN model is then fine-tuned using this updated loss
function, allowing it to generate pixel information without starting from scratch.
To ensure that the generator’s output closely resembles the features of the ground
truth, a pre-trained VGG-19 network is employed as a fixed perceptual network.
This network penalizes outputs that lack perceptual reasonability by calculat-
ing a feature-level distance measure between the intermediate feature maps of
the original image and those generated by the model, based on the pre-trained
network. To ensure the modified total loss function (Lmodified

total ) effectively trains
the neural network, we have assigned equal weights to the L1 loss, SSIM loss,
and perceptual loss. This approach allows the model to reduce pixel error (L1
loss), enhance perceptual similarity by preserving structural information (SSIM
loss), and maintain high-level feature consistency for better semantic similarity
(perceptual loss) in a balanced way during the training phase, so that, each loss
function can contribute their features equally, to generate images that are both
visually and semantically coherent. Perceptual loss can be defined as:

Lperc =
∑

j

||Vj(ŷ) − Vj(y)|| (5)

Here Vj(ŷ) represents the activation’s of the jth layer of the VGG network when
processing the image Y generated from Generative module. And Vj(y) repre-
sents the activation’s of the jth layer of the VGG network when processing
the ground truth or original image Y. We calculate another loss value from
Lwhole region

adv defined as binary crossentropy loss between image structure and
generated image. It can be mathematically expressed as:

Lwhole region
adv = −EIgenerateεS log Dwhole region(Igenerate) (6)

Final loss function Lmodified
total can be expressed as follows:

Lmodified
total = λrc((Ll1 + LSSIM ) + Lperc) + Lwhole region

adv (7)

We have implemented the model in TensorFlow and taken 128× 128 image
dimension for training and testing of FUGAN model. For training the model
effectively kaggle notebook is used with T4 GPU.



A GAN Based Facial Reconstructor FUGAN 123

7 Result and Discussion

In this section, we have analyzed results, generated by our FUGAN model and
compare with other state-of-the art image editing methods by quantitatively
and qualitatively. For comparison we used several key metrices such as SSIM
(Structural similarity index measure) [18], PSNR (Peak signal to noise ration)
[6], FID (Frechet Inception Distance) [12] and BRISQUE (Blind or Referenceless
Image spatial Quality Evaluator) [13]. In the below subsection a detail analysis
of different result is given with some experimental image result.

7.1 Quantitative Analysis

Various metrics are utilized for quantitative assessment, including PSNR, SSIM,
FID, and BRISQUE, to gauge the quality of generated images. PSNR, a
full-reference metric, measures pixel-level differences for image reconstruction,
expressed noise or distortion in decibels as a ratio of the pixel value of the
generated and original image. SSIM evaluates the perceptual and structural
similarity between two images, considering texture, edges, and contrast. FID
assesses the similarity between generated and real images using a pre-trained
InceptionV3 network, with lower scores indicating higher quality. BRISQUE,
a non-reference metric, evaluates spatial image quality on a scale of 0 to 100,
with lower scores indicating higher quality. These metrics quantitatively assess
how faithfully unmasked images resemble their originals, aiding in model eval-
uation. Table 2 presents scores of different metrics comparing our model with
state-of-the-art counterparts. Noteworthy models for comparison include those
proposed by NIZAM UD DIN et al. [17], Akhil Kumar et al. [9], Farnaz Fara-
hanipad et al. [5], Hitoshi Yoshihashi et al. [19], and Divyam Gupta et al. [8].
The results demonstrate that the self-attention-based block facilitates the gen-
eration of realistic images with minimal iterations, surpassing other models in
SSIM, PSNR, and BRISQUE metrics. From the Table 2, it is observed that the
model proposed by Hitoshi Yoshihashi et al. [19] has an SSIM score of 0.926,
which is nearly equal to ours, but the BRISQUE score of that model far behind
from our’s model score 27.990. In the PSNR metric section, our model achieved
31.748, which is the best among all. However, our model falls short in FID,
as FID emphasizes image quality measured by InceptionV3, capturing detailed
pixel accuracy, and our model does not generate detailed in depth pixel infor-
mation but focuses on overall realism in facial images. Nonetheless, besides FID,
our model outperforms others overall. In the qualitative analysis section below,
some regenerated images are presented alongside those from other models for
further examination.

7.2 Qualitative Analysis

To qualitatively analyze the FUGAN model, our proposed model was trained
for up to 300 iterations to generate realistic images efficiently. In the figures
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Table 2. Quantitative Analysis

Proposed Model SSIM PSNR(dB) FID BRISQUE

NIZAM UD DIN et al.
[17]

0.864 26.19 3.548 37.85

Akhil Kumar et al. [9] 0.91231 30.9879 6.8 35.644

Farnaz Farahanipad et
al. [5]

0.89 28.65 13.63 36.52

Hitoshi Yoshihashi et al.
[19]

0.926 28.789 9.4 29.547

Divyam Gupta et al. [8] 0.85752 24.998 5.64 39.77

FUGAN 0.928 31.748 4.4 27.990

denoted as Fig. 3, we’ve displayed the training result of the generator and dis-
criminator loss function with Ltotal generator loss (sub-figure a and b) and with
modified generator loss function Lmodified

total (sub-figure c and d). The visual data
illustrates a notable trend: as the iteration count increases, the generator loss
decreases, indicating an enhancement in the realism of the generated facial fea-
tures. Concurrently, when the regenerated image closely resembles the ground
truth image, there’s a gradual decline in the discriminator loss over time. These
observations are clearly depicted in Fig. 3. Additionally, as depicted in sub-figure
c, it is evident that the generator loss experiences a significant decrease up to
epoch 138, followed by a sharp increase. Despite subsequent attempts to min-
imize the loss, they prove unsuccessful. Therefore, the model state closest to
epoch 138, which exhibits the best performance, is selected as the final model
for further testing. In Fig. 4, we have presented some images generated in dif-
ferent training iterations to visualize how the facial parts are reconstructed in
a step-by-step manner by learning from ground truth images. Images generated
by FUGAN model trained with Ltotal and Lmodified

total loss function is presented
in Fig. 5. From the figure it has been observed that Figs. 5(a) and 5(a) gener-
ated by FUGAN model trained with Ltotal loss function and Figs. 5(b) and 5(b)
generated by FUGAN model fine tuned using modified loss function Lmodified

total .
From these figures it can be observed that modified loss function helps the model
to generate the deep pixel information means skin color texture related to orig-
inal face image color. A comparison of image generation is given in Fig. 6. The
sequence in the figure displays masked face images, ground truth, images regen-
erated by the FUGAN model, and images generated by various state-of-the-art
models such as those proposed by NIZAM UD DIN et al. [17], Divyam Gupta et
al. [8], and Hitoshi Yoshihashi et al. [19]. Here, we introduced only three SOTA
models for qualitative analysis as other models lag from our result in quantita-
tive section. Another set of images is presented in Fig. 7, comprising unknown
images sent to the FUGAN model for testing purposes. Comparing the results in
Fig. 6, it is evident that our model outperforms others in regeneration even with
a shorter training duration. This regeneration capability of the FUGAN model is
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attributed to its self-attention block, which reconstructs structural information
swiftly. However, it’s noted that images produced by FUGAN may lack some
pixel-level information, resulting in a higher FID score as detailed in Sect. 7.1.
Some distortion may be observed in pixel-level accuracy, but overall, the images
appear realistic, making the model suitable for face unmasking tasks. Examining
the generated images reveals that our model consistently maintains the original
color composition during training phases across different lighting conditions,
particularly regarding facial regeneration. Additionally, our model demonstrates
the capability to accurately regenerate the bread of facial features for train-
ing images. For testing purposes, we have used the Jetson Xavier Nx module.
This helps us identify our proposed model’s capability in small factors with-
out quantization and serialization techniques. Figure 7 shows that the FUGAN
model can recover faces with hidden facial expressions. However, sometimes,
there might be a mismatch in facial color in the regenerated part only, which is
not critical for unmasking purposes. The proper reconstruction of facial struc-
ture, regardless of face color, aids in identifying individuals, which is valuable for
our objectives. While the FUGAN model generally outperforms other models,
it occasionally struggles to reconstruct facial features accurately in certain sce-
narios within the testing dataset, which is given in Fig. 8. From the experiment,
we have found that instances arise where the model fails to adequately regen-
erate facial components when the facial mask size surpasses that of the actual
facial area artificially applied to faces. Furthermore, discrepancies occur when
individuals possess larger-than-average facial structures, causing the FUGAN

Fig. 3. Figure a and b describe FUGAN model’s training generator loss and discrimina-
tor loss with respect of number of epoch. On contrary figure c and d describe FUGAN
model’s training generator loss and discriminator loss with respect of number of epoch
with modified generator loss function.
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Fig. 4. Image produced by our FUGAN model during training iteration.

Fig. 5. Image produced by our FUGAN model trained with different loss functions.

model to inadequately align regenerated features like the nose and mouth, albeit
maintaining coherence with the overall facial structure. Challenges emerge when
images contain more than two faces with facial masks, resulting in the model’s
inability to regenerate all faces. These identified shortcomings or limitations sur-
faced during the rigorous testing phase of our model. Based on this analysis, it
can be concluded that our model surpasses other state-of-the-art models both
quantitatively and qualitatively.
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Fig. 6. Comparison of generated face images. In the figure from left to right, images
are masked face image, Ground Truth, Generated Face Image(ours), NIZAM UD DIN
et al. [17], Divyam Gupta et al. [8], Hitoshi Yoshihashi et al. [19].

Fig. 7. More example of generated Images produced by our FUGAN model.

Fig. 8. Shortcomings of regenerate of facial part.
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8 Future Work

Looking ahead, there are promising avenues for further research and advance-
ments in face mask removal. This includes enhancing our model’s effectiveness
in handling complex scenarios, such as significant occlusion or intricate mask
designs. In the future, we aim to expand this work by refining the facial color
and texture using the generated facial components. We also explore the possi-
bility of inferring facial expressions from facial structure and eye expressions. In
the future, we will try to enhance our model more effectively, which can handle
live images captured by webcam or CCTV footage in the natural environment
and unmask the faces covered with masks.

9 Conclusion

In this study, we have introduced an innovative technique for removing large
objects, specifically masks, from facial images without the need for user interac-
tion and to fill the removed portions of the image a GAN-based image-inpainting
method FUGAN is utilized for generating realistic face images. Our proposed
training approach, utilized one discriminator and simple loss function, allowing
for the gradual learning of global coherence and deep missing regions, resulting
in realistic and structurally consistent outputs. Through both qualitative and
quantitative evaluations, we have demonstrated that our model can produce
facial images with high perceptual quality, particularly when addressing large
missing areas, outperforming other cutting-edge image editing techniques.
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Abstract. Text-to-image generation has made remarkable progress
with the emergence of diffusion models. However, it is still a difficult
task to generate images for street views based on text, mainly because
the road topology of street scenes is complex, the traffic status is diverse
and the weather condition is various, which makes conventional text-to-
image models difficult to deal with. To address these challenges, we pro-
pose a novel controllable text-to-image framework, named Text2Street.
In the framework, we first introduce the lane-aware road topology gen-
erator, which achieves text-to-map generation with the accurate road
structure and lane lines armed with the counting adapter, realizing the
controllable road topology generation. Then, the position-based object
layout generator is proposed to obtain text-to-layout generation through
an object-level bounding box diffusion strategy, realizing the controllable
traffic object layout generation. Finally, the multiple control image gener-
ator is designed to integrate the road topology, object layout and weather
description to realize controllable street-view image generation. Exten-
sive experiments show that the proposed approach achieves controllable
street-view text-to-image generation and validates the effectiveness of
the Text2Street framework for street views.

Keywords: Text-to-image generation · Diffusion model · Multi-modal

1 Introduction

Text-to-image generation [10,18,27], as an essential task of computer vision that
aims to coherent images solely based on textual descriptions. In recent years,
great efforts [25,26] have been dedicated to text-to-image generation for common
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Fig. 1. Challenges of text-to-image generation for street views. There are three pri-
mary challenges: (1) complex road topology, including road structure in the first row
and topological marks in the second row, (2) diverse traffic status, e.g., varying traf-
fic objects in the third row, and (3) various weather conditions like the rainy day in
the last row. Note that Reference are original images from nuScenes [3], Stable Dif-
fusion [28]/Midjourney [20]/DALLE3 [2] are tested on their official APIs, and Stable
Diffusion∗ and Ours are finetuned on nuScenes.

scenarios, such as people and objects. Remarkable progress has been achieved,
especially with the advent of diffusion models [14,28]. However, it is equally
valuable to generate images in specialized domains, including autonomous driv-
ing [19], medical image analysis [4], robot perception [31], among others. Text-to-
image generation for street views holds particular importance for data generation
in the context of autonomous driving perception and map construction, yet it
remains relatively unexplored.

Street-view text-to-image generation, as an underdeveloped task, faces sev-
eral serious challenges, which can be categorized into three main aspects. Firstly,
generating road topologies that adhere to traffic regulations presents a chal-
lenge. On one hand, as depicted in Fig. 1 (a), learning the road structure from
text-image pairs is hindered by incomplete road structure information in the
image, arising from limited imaging angles and frequent occlusions. This com-
plexity makes it challenging for Stable Diffusion∗ [28], fine-tuned on nuScenes
dataset [3], to generate expected images. On the other hand, as illustrated in
Fig. 1 (b), generating lane lines that both comply with traffic regulations and
match the count specified in the text poses a formidable challenge. Secondly,
the representation of traffic status, a crucial element in street-view images, is
often achieved through the number of traffic objects present. However, gener-
ating a specified number of traffic objects while adhering to motion rules using
current models frequently falls short of expectations. As demonstrated in Fig. 1
(c), existing methods tend to lack sensitivity to precise numerical requirements.
For instance, while our goal is to generate a road scene with two cars, the actual
output from Stable Diffusion∗ often includes a significantly higher number of
cars. Lastly, weather conditions are typically contingent upon the scene content,
and direct image generation based on these conditions often yields vague or sub-
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optimal outcomes, as depicted in Fig. 1 (d). Due to the presence of these three
challenges, street-view text-to-image generation is a demanding task in computer
vision.

To address previously mentioned challenges, we propose a novel controllable
text-to-image framework for street views termed as Text2Street, illustrated in
Fig. 2. Within this framework, we first introduce the lane-aware road topology
generator, which utilizes text descriptions to create a local semantic map rep-
resenting the intricate road topology. This generator also produces lane lines
within the semantic map that conform to specified quantities and traffic regula-
tions through a counting adapter. Subsequently, we introduce the position-based
object layout generator to capture the diverse traffic status. By employing an
object-level bounding box diffusion strategy, it generates the traffic object lay-
out based on textual descriptions that adhere to specified quantities and traffic
rules. Finally, the road topology and object layout are projected into the cam-
era’s imaging perspective through pose sampling. The projected road topology,
object layout, and textual weather description are then integrated using the mul-
tiple control image generator to produce the final street-view image. Experimen-
tal validation confirms the effectiveness of our proposed method in generating
street-view images from textual inputs.

The main contributions of this paper are as follows: 1) We propose a novel
controllable text-to-image framework for street views, enabling the controls of
road topology, traffic status, and weather conditions based solely on text descrip-
tions. 2) We introduce the lane-aware road topology generator that generates
specific road structures as well as lane topologies. 3) We propose the position-
based object layout generator, capable of generating a specific number of traffic
objects that comply with traffic rules. 4) We propose the multiple control image
generator that can integrate road topology, traffic status, and weather conditions
to achieve multi-condition image generation.

2 Related Work

In this section, we review related works in two aspects.

2.1 Text-to-Image Generation

In recent years, many methods [2,7,14,18,25–28,30,39] have been dedicated to
dealing with the task of general text-to-image generation. For example, Align-
DRAW [18] iteratively draws patches on a canvas, while attending to the rele-
vant words in the description. GAWWN [27] synthesizes images given instruc-
tions describing what content to draw in which location based on generative
adversarial networks [9]. DALLE [26] describes a simple approach for this text-
to-image task based on a transformer that autoregressively models the text and
image tokens as a single stream of data. DALLE2 [25] proposes a two-stage
model: a prior that generates a CLIP [24] image embedding given a text cap-
tion, and a decoder that generates an image conditioned on the image embed-
ding. DDPM [14] presents high-quality image synthesis results using diffusion
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Fig. 2. Framework of Text2Street. We begin by introducing the lane-aware road
topology generator, which utilizes textual input to create a local semantic map repre-
senting the intricate road topology with lane information. Next, we present the position-
based object layout generator, which captures the diversity of traffic status and gen-
erates the traffic object layout. Subsequently, the road topology and object layout are
projected into the camera’s perspective through pose sampling. Finally, the projected
road topology, object layout, and textual weather description are integrated through
the multiple control image generator to produce the ultimate street-view image.

models [33], a class of latent variable models inspired by considerations from
nonequilibrium thermodynamics. Stable Diffusion [28] applies diffusion models
training in the latent space of pretrained autoencoders, and turns diffusion mod-
els into powerful and flexible generators for general conditioning inputs by intro-
ducing cross-attention layers into the model architecture. GLIDE [22] explores
diffusion models for text-conditional image synthesis, comparing CLIP guidance
and classifier-free guidance, and finds the latter preferable for photorealism and
caption similarity. Imagen [30] employs a pretrained language model for encod-
ing text, similar to GLIDE [22]. These methods have garnered remarkable results
in general text-to-image generation. However, their effects in street-view text-
to-image tasks are not as commendable.

Some works try to introduce fine-grained control to text-to-image genera-
tion models for better custom results. ControlNet [37] demonstrates the inte-
gration of spatial conditioning controls into pretrained text-to-image diffusion
models leveraging zero convolutions. T2I-Adapter [21] proposes using lightweight
adapters to align the internal knowledge of large-scale text-to-image models with
external control signals. Uni-ControlNet [38] proposes a unified framework allow-
ing for the use of multiple local and global controls in text-to-image diffusion
models. However, using these methods relies on the condition image as input,
which is hard to obtain during large-scale data generation. On the other hand,
they still face the challenge of losing control when dealing with sophisticated
condition cases (human skeletion [16] or complex bounding boxes [32]). In our
work, we extend these control methods by incorporating condition generation
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and introducing fine-grained controls, such as multi-control and an object posi-
tion encoder.

2.2 Street-View Image Generation

There has been a recent surge in the study of methods for street-view image
generation. For example, SDM [35] processes semantic layout and noisy image
differently. It feeds noisy image to the encoder of the U-Net [29] structure while
the semantic layout to the decoder by multi-layer spatially-adaptive normal-
ization operators. BEVGen [34] synthesizes a set of realistic and spatially con-
sistent surrounding images that match the birds-eye view (BEV) layout of a
traffic scenario. BEVGen incorporates a novel cross-view transformation with
spatial attention design which learns the relationship between cameras and map
views to ensure their consistency. GeoDiffusion [6] translates various geometric
conditions into text prompts and empower pre-trained text-to-image diffusion
models for high-quality detection data generation and is able to encode not only
the bounding boxes but also extra geometric conditions such as camera views
in self-driving scenes. BEVControl [36] proposes a two-stage generative method
that can generate accurate foreground and background contents. These methods
typically require the input of BEV maps, object bounding boxes, or semantic
masks to generate images. However, there is almost no research on generating
street-view images relying solely on text. In this paper, we primarily focus on
resolving the issue of street-view text-to-image generation.

3 The Proposed Approach

To address these challenges (i.e., complex road topology, diverse traffic status,
various weather conditions) in street-view text-to-image generation, we intro-
duce Text2Street, a novel controllable framework illustrated in Fig. 2. In this
section, details of the approach are described as follows.

3.1 Overview

Text2Street takes a street-view description prompt (e.g., “a street-view image
with the crossing, 3 lanes, 4 cars and 1 truck driving on a sunny day”) as input
and generates a corresponding street-view image. Prior to the main process, the
input prompt is parsed by a large language model (e.g., GPT-4 [23]) to extract
descriptions of road topology, traffic status, and weather conditions, which are
then fed into three main components. The first component is the lane-aware
road topology generator, which takes the road topology description (“crossing,
3 lanes”) as input and produces a local semantic map. The second component is
the position-based object layout generator, which takes the traffic object descrip-
tion from the traffic status (“4 cars and 1 truck”) as input and generates traf-
fic object layout. The third component is the multiple control image generator,
which takes road topology, object layout, and weather condition descriptions (“a
sunny day”) as input, and outputs an image that matches the original street-view
description prompt.
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Fig. 3. Architecture of the lane-aware road topology generator. The generation part is
similar to Stable Diffusion [28]. When generating, a noised latent is gradually denoised
and sent to the image decoder to be decoded into a BEV image. In addition to text
embedding as a condition, we utilize a counting adaptor, which is a shallow CNN that
learns to regress the line count from an attention map.

3.2 Lane-Aware Road Topology Generator

For Stable Diffusion [28], directly generating images that comply with road topol-
ogy, including road structure and lane topologies, is difficult. To address this, we
introduce the lane-aware road topology generator (LRTG), as shown in Fig. 3.
This generator does not directly produce road images; instead, it first creates
a local semantic map describing the road structure, representing a complete
regional-level road structure, including drivable areas, intersections, sidewalks,
zebra crossings, etc. Simultaneously, to ensure the generated lane lines adhere to
traffic regulations (i.e., equidistant and parallel lanes), we characterize and gen-
erate lane lines on the semantic map, which is easier and more controllable than
generating lane lines directly on perspective-view images. Furthermore, to ensure
the number of lane lines aligns with the provided text, we incorporate a counting
adapter for the precise generation of a specified number of lane lines. In LRTG,
we only generate the semantic map, which serves as a crucial intermediary for
street-view images, as further detailed in Sect. 3.4.

When generating local semantic maps, we utilize Stable Diffusion to encode
road topology descriptions based on the CLIP [24] text encoder. Subsequently,
the encoded input is then fed into cross-attention layers of U-Net [29] to denoise
image latents, ultimately outputting the corresponding semantic map. Consis-
tent with Stable Diffusion, the learning objective is as follows:

LSD = EE(x),y,ε∼N (0,1),t

[
‖ε − εθ(zt, t, τ(y))‖22

]
, (1)

where x ∈ R
H×W×3 is the given images cropped from labeled semantic maps

in RGB space, E(·) refers to the encoder of pretrained autoencoders [8] and
z = E(x) represents encoded image latents, zt is from the forward diffusion
process at the timestep t, y is the text prompt and τ(·) represents the pretrained
CLIP text encoder, the term ε denotes the target noise, and εθ(·) signifies the
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time-conditional U-Net used for predicting the noise. This manner ensures the
reasonable generation of road structures and lane line shapes within the semantic
map.

For achieving precise control over the number of lane lines, the counting
adapter fCA gathers attention maps from all cross-attention layers of the U-Net.
These scores are subsequently reshaped to match the same resolution and then
averaged to yield attention features for all tokens. From these attention features,
the ones corresponding to tokens “lane lines” are selected, which highlight where
visual tokens correspond to lane lines. These selected features Fl, undergo further
processing through a shallow CNN with two convolutional layers with the kernel
of 3×3, followed by one fully connected layer, which serves to regress the number
of lane lines Nl. The learning objective for achieving precise control over the
number of lane lines is as follows:

LCA = ‖Nl − fCA(Fl)‖22 . (2)

Based on Eq. 1 and 2, LRTG can be jointly optimized to generate the local
semantic map, encompassing both road structure and lane lines as required.

3.3 Position-Based Object Layout Generator

To ensure that generated images can depict diverse traffic conditions, we utilize
the large language model to convert traffic status into the number of traffic
objects (e.g., car, truck, pedestrian, etc.). The full prompt used in large language
model appears below:

You are a keyword extractor, your job is to extract object
information (eg. <N> cars, <N> trucks, etc) and return them
in JSON style. now the input is <fill in>

Fig. 4. Architecture of the position-based
object layout generator. Note ⊕ means
element-wise addition.

Then, the position-based object
layout generator (POLG) is proposed
to create an object layout based
on the text description of object
quantity, as demonstrated in Fig. 4.
To guarantee a specified number of
objects are generated, we incorpo-
rate an object-level bounding box dif-
fusion strategy to generate positions
of object bounding boxes. Simultane-
ously, to ensure the generated traffic
objects comply with traffic rules, we
incorporate the local semantic map
from the LRTG into the box diffu-
sion process. With POLG, we gen-
erate layout information for traffic
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Fig. 5. Architecture of the multiple control image generator. Note ⊗, ⊕ means the
concatenation and element-wise addition.

objects, which also serves as an intermediary for generating the final street-view
images, as introduced in Sect. 3.4.

In the bounding box diffusion strategy, we first represent traffic objects as
position vectors Oi = [xi, yi, zi, li, wi, hi, ζi, ci] (i = 1, 2, ..., No, No is the number
of objects), where xi, yi, zi denote the coordinate of object position, li, wi, hi

represent the object’s size with length/width/height, ζi signifies the object’s
yaw angle, and ci indicates the object’s category. Subsequently, the position
vector is diffused based on diffusion models DDPM [14]. Furthermore, to ensure
objects adhere to traffic regulations (e.g., cars must be driven on the road and
not against traffic), we use ControlNet [37], incorporating the local semantic
map from LRTG as a control into the POLG. Ultimately, the learning objective
is as follows:

LPOLG = Eo,m,ε,t

[
‖ε − εθ(ot, t, C(m))‖22

]
, (3)

where o represents the position vectors of the objects, ot is from the forward
diffusion process at the timestep t, m denotes the local semantic map, and C(·)
signifies the ControlNet. And other symbols are consistent with those in Eq. 1.

Based on Eq. 3, the layout information of traffic objects that meet the traffic
status can be optimized and generated through POLG based on textual descrip-
tions.

3.4 Multiple Control Image Generator

To produce images with realistic weather that align with road topology and
traffic status, we introduce the multiple control image generator (MCIG), as
depicted in Fig. 5.
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To effectively utilize the previously generated local semantic map and traffic
object layout, camera pose sampling and image projection are conducted before
these two pieces of information enter MCIG. This results in a 2D road semantic
mask Mr and traffic object layout map Mo from a perspective view, as shown in
Fig. 2. The 2D traffic object layout maps are also represented as 2D traffic object
position vectors P = {Pi}No

i=1 = {
[
x1

i , y
1
i , x2

i , y
2
i , ci

]
}No

i=1. The projection uses a
conventional method based on intrinsic and extrinsic transformation, where the
intrinsic parameters use fixed camera parameters, and the extrinsic parameters
are sampled near the prior camera height.

As depicted in Fig. 5, MCIG comprises five modules: object-level position
encoder, text encoder, semantic mask ControlNet, object layout ControlNet,
and naive Stable Diffusion. The first four modules control image generation
based on four different types of information, i.e., 2D traffic position vectors, text
describing the weather, 2D road semantic masks, and 2D traffic object layout
maps.

The object-level position encoder encodes the 2D traffic object position vec-
tors, including 2D bounding boxes and object categories, represented as:

PE(P) = fPE(BE ⊗ CE). (4)

The box encoder maps object bounding boxes to a higher-dimensional space,
ensuring that the network can learn higher-frequency mapping functions and
focus on the positions of each object. Specifically, the box encoder is an encod-
ing function based on sine and cosine. The mathematical form of the encoding
function is as follows:

BE(p) =
[
· · · , sin(2lπp), cos(2lπp), · · ·

]L−1

l=0
, (5)

where BE(·) is applied to each component of the box (i.e., x1
i , y

1
i , x2

i , y
2
i ) of each

object Pi, and L is empirically set to 10. Simultaneously, the category encoder
CE employs the CLIP text encoder to encode the object category (e.g., “car”).
Subsequently, the box encoding and category encoding are concatenated at the
feature embedding dimension of each object. The concatenated features are then
mapped to features with the same dimension as the original text encoder’s
embedding through a two-layer fully connected network fPE(·), serving as posi-
tion embeddings. The text encoder, based on the CLIP text encoder, encodes
the weather description text T , resulting in text embeddings.

The object position encodings and weather text embeddings, upon concate-
nation at the token dimension, are fed into the cross-attention layer of Stable
Diffusion, individually controlling the object position and weather during the
image generation. Simultaneously, the semantic mask ControlNet and object lay-
out ControlNet employ two similar ControlNets, utilizing images (i.e., semantic
masks and layout maps) as inputs to control the road topology and object lay-
out during the street-view image generation. The learning objective function of
MCIG is as follows:

LMCIG = EP

[
‖ε − εθ(zt, t,PE(P), τ(T ), C(Mr), C(Mo))‖22

]
, (6)
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Table 1. Comparisons with state-of-the-art methods on nuScenes validation dataset.
The best result is in bold fonts.

SFID ↓ SCLIP ↑ Sroad ↑ Slane ↑ Sobj ↑ Swea ↑
Reference 0 18.00 89.67 48.30 52.33 97.00

Stable Diffusion [28] 67.91 16.38 83.50 21.33 29.83 98.50

Stable Diffusion 2.1 [1] 63.83 16.40 83.57 29.81 31.42 98.55

Attend-and-Excite [5] 69.63 16.40 83.00 30.67 31.00 98.83

Text2Street (Ours) 53.92 17.81 84.17 35.17 46.33 99.67

where P is the set of {E(x),P, T ,Mr,Mo, ε, t} for convenience of presentation.
Through the optimization of MCIG using Eq. 6, we obtain street-view images

that conform to the initial prompt about road topology, traffic status, and
weather conditions.

4 Experiments and Results

4.1 Experimental Setup

Datasets.To validate the performance of the proposed approach, we con-
duct all experiments on the public autonomous driving dataset nuScenes [3].
nuScenes dataset contains 1,000 street-view scenes (700/150/150 for train-
ing/validation/testing, respectively). Each scene comprises approximately 40
frames, with each frame encompassing six RGB images captured by six cam-
eras mounted for panoramic view on the ego vehicle. Additionally, each frame
is with a labeled semantic map with 32 semantic categories. For the sake of
simplicity and clarity, we solely use images captured by the FRONT camera in all
experiments.

Evaluation Metrics. To comprehensively evaluate the text-to-image genera-
tion for street views, we assess the generation results from the image level and
attribute level.

For image-level evaluation, we use Fréchet Inception Distance (FID) SFID [13]
to measure image fidelity, and CLIP score SCLIP [12] to image-text alignment.
Please refer to related works [12,13] for computation details.

In the attribute-level evaluation, we primarily measure the accuracy of text-
to-image street-view generation in four aspects: road structure, lane line count-
ing, traffic object counting, and weather conditions. For these four metrics, we
train four neural networks on nuScenes dataset to evaluate scores of generated
images. Specifically, a two-class classifier based on ResNet-50 [11] is trained for
road structure accuracy Sroad to distinguish whether the road structure in street-
view RGB images is an “intersection” or “non-intersection”. For the accuracy
of lane line counting Slane, a six-class classifier is similarly trained on ResNet-50
to distinguish whether the number of lane lines in street-view RGB images is
equal to 0, 1, 2, 3, 4, or ≥ 5. For the accuracy of traffic object counting Sobj, an



140 S. Gu et al.

object detector based on YOLOv5 [15] is trained to evaluate the number of traf-
fic objects in street-view RGB images. For the accuracy of weather conditions
Swea, a four-class classifier is also trained on ResNet-50 to distinguish whether
the weather conditions in street-view RGB images are sunny day, sunny night,
rainy day, or rainy night. All models are trained on nuScenes training dataset
and used as evaluation metrics for attribute-level evaluation of street-view image
generation.

Training and Inference. During the training phase, we separately train three
generators, i.e., lane-aware road topology generator (LRTG), position-based
object layout generator (POLG) and multiple control image generator (MCIG).
LRTG and MCIG are initialized with Stable Diffusion1 [28], POLG is random
initialized based on DDPM2 [14] modified with ControlNet [37], and CLIP [24]
text encoder are fixed with pretrained weights. For these three generators, we
train them with AdamW [17] optimizer for 10 epochs with a learning rate 1e−4, a
batch size of 32. In addition, semantic maps in LRTG are resized to the resolution
of 512×512, and RGB images in MCIG are resized to the resolution of 895×512.
In the inference phase, the three generators perform inference sequentially, with
the denoising iterations all set to 30 times.

4.2 Comparisons with State-of-the-Art Methods

We compare our approach with several state-of-the-art algorithms in text-to-
image generation, including Stable Diffusion [28], Stable Diffusion 2.1 [1] and
Attend-and-Excite [5] on nuScenes validation dataset, as listed in Table 1. These
methods are all finetuned on nuScenes training dataset. Note that we have also
listed the performance on the nuScenes validation dataset as the “Reference”.

Comparing the proposed method with state-of-the-art methods, we can see
that our method consistently outperforms other methods across almost all met-
rics from Table 1. Significantly, our method outperforms all others on attribute-
level metrics (i.e., Sroad, Slane, Sobj and Swea), demonstrating its superior con-
trollability for fine-grained text-to-image street-view image generation. Specifi-
cally, our method shows a obviously 4.50%, 14.91% improvement on metric Slane

and Sobj compared to the second best performance. Additionally, our method
also performs better on image-level metrics (i.e., SFID and SCLIP), reflecting
its superior overall generation quality and image-text consistency. Overall, these
observations validate the effectiveness of our proposed method for controllable
image generation for street views.

Visual examples generated by our method are illustrated in Fig. 6. From
Fig. 6, it is evident that our method yields superior results in dealing with vary-
ing road structures (1st and 4th rows), different numbers of lane lines (1st and
3rd rows), diverse numbers of traffic objects (1st and 2nd rows), and various
weather conditions (2nd and 3rd rows) compared to other methods. This indi-
cates that our method can effectively generate street-view images only based on
1 https://huggingface.co/runwayml/stable-diffusion-v1-5.
2 https://huggingface.co/docs/diffusers/api/pipelines/ddpm.

https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/docs/diffusers/api/pipelines/ddpm
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Fig. 6. Qualitative comparisons of Stable Diffusion [28] and our approach
Text2Street. These two methods are finetuned on nuScenes [3] dataset. Note that
in nuScenes, the double yellow/white lane line counts as one lane line, not two lane
lines.

text, and also implies its controllability and superiority in street-view text-to-
image generation.

4.3 Ablation Analysis

To assess the effectiveness of individual components, we carry out ablation exper-
iments on nuScenes validation dataset, comparing the performance variations
within the proposed approach.

Firstly, to validate the effectiveness of the lane-aware road topology generator
(LRTG), we introduced three models for ablation comparison. The first model,
termed as “Baseline”, is a naive multiple control image generator (MCIG) with
only the text encoder, which actually is a Stable Diffusion model. The second
model, named “A1”, is based on the “Baseline” with the addition of LRTG
excluding lane line control. The third model, “A2”, adds LRTG with lane line
control to the first model. The comparison of these three models is presented in
the first three rows of Table 2. It can be observed that the introduction of road
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Fig. 7. Examples of different image editing operations by our approach.

structure control (“A1”) significantly improves the Sroad metric, and the addition
of both road structure and lane lines (“A2”) controls further enhances both Sroad

and Slane metrics. This confirms the effectiveness of LRTG in controlling road
topology.

Secondly, to validate the effectiveness of the position-based object layout
generator (POLG), we add POLG to “Baseline”, termed as “B”. Comparing
the first and fourth rows of Table 2, it is evident that the inclusion of POLG
significantly improves the metric Sobj, demonstrating the control capability of
POLG in traffic object generation.

Thirdly, to verify the compatibility of different modules, we also list the model
“C” (i.e., Text2Street), which combines all three modules. As can be seen from
the last row of Table 2, “C” achieves the best performance across all metrics,
confirming the compatibility among different modules.

Table 2. Performance of different settings of the proposed method on nuScenes vali-
dation dataset.

LRTG POLG MCIG SFID ↓ SCLIP ↑ Sroad ↑ Slane ↑ Sobj ↑ Swea ↑
Baseline � 67.91 16.38 83.50 21.33 29.83 98.50

A1 � � 60.45 17.82 85.17 33.16 30.00 98.50

A2 � � 59.85 17.82 84.67 34.01 31.50 98.53

B � � 59.60 17.81 84.40 29.33 41.50 98.67

C (Text2Street) � � � 53.92 17.81 84.17 35.17 46.33 99.67
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Table 3. Performance of YOLOv5 without/with the data augmentation of our method
on nuScenes validation dataset.

mAP ↑ Precision ↑ Recall ↑
YOLOv5 46.30 81.77 70.91

YOLOv5 with Text2Street 47.83 84.45 72.37

4.4 Text-to-Image Generation for Object Detection

To demonstrate the utility of street-view text-to-image generation for down-
stream tasks, we select object detection as a representative task. We use the
proposed Text2Street to generate 30,000 images based on random prompts as
a supplement to the original training data to train YOLOv5 on the nuScenes
dataset, as listed in Table 3. The results indicate that the images generated by
our method are beneficial for downstream street-view tasks, highlighting the
potential of the street-view text-to-image generation.

4.5 Image Editing

In addition to street-view text-to-image generation, our approach also allows
for modifications to local semantic maps, object layouts, or text, enabling the
editing of road structures, lane lines, object layouts, and weather conditions in
the originally generated RGB images, as depicted in Fig. 7.

5 Conclusion

In this paper, we propose a novel controllable text-to-image generation frame-
work for street views. In this framework, we design the lane-aware road topology
generator to exert control over the road topology in a text-to-map manner. Addi-
tionally, the position-based object layout generator is proposed to control the
layout of traffic objects through a text-to-layout manner. Moreover, the multiple
control image generator is built to integrate multiple controls to generate street-
view images. Empirical results substantiate the effectiveness of our proposed
approach.
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Abstract. The recent surge in interest surrounding text-to-video diffu-
sion models highlights their capability to generate videos with both con-
sistency and diversity. Current methods focus on leveraging large-scale
datasets to align with training videos, while certain approaches explore
the potential of zero-shot generation. Few-shot generative models adapt
text-to-image model with temporal layers. They can capture the tem-
poral motion and appearance with acceptable computational resources.
However, the prevalent few-shot based approaches, which employ a sin-
gular prompt for training videos, typically result in inadequate control
over complex backgrounds and multiple objects. To overcome this limi-
tation, we introduce a novel component: the dual cross-attention layer.
This component leverages CLIP for image feature extraction. The image
feature and text feature will be processed independently in dual cross-
attention layer, aiming to achieve image reference and enrich the training
videos with additional information. This dual cross-attention mechanism
empowers the diffusion model to learn both image and text information
effectively, facilitating the generation of higher quality videos. Further-
more, we propose an innovative sampling method to enhance temporal
consistency and stability of generative videos. Compared to other text-
to-video generative models, our framework demonstrates superior effi-
ciency in generating high quality videos with diverse styles. The code is
available at https://github.com/FatLong666/MAIM.
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1 Introduction

In recent years, generative text-to-image (T2I) diffusion models, such as Sta-
ble Diffusion [3] have demonstrated remarkable capability in generating a wide
range of diverse images from textual prompts. Moreover, methods like Con-
trolNet [1], IP-adaptor [2] have further enhanced these models by introducing
additional conditioning during inference, which called text-to-image synthesis.
Recent works have increasingly focused on text-to-video(T2V) generation [4–
6], which utilize textual prompts to generate videos that exhibit both content
diversity and temporal consistency.

Fig. 1. Our text-to-video generation model results. MAIM is trained on few videos
and generate videos on different style images. We have trained the model on four
distinct types of motion videos, producing a unique video for each specific motion.

Current advancements in T2V generation have been marked by significant
breakthroughs, notably by studies such as CogVideo [7] and Gen-1 [8], which
have leveraged large-scale multimodal datasets for training. Although these mod-
els are capable of producing diverse, high quality videos from textual prompts,
creating videos with specific custom motions and styles continues to be challeng-
ing. Several studies [9,10,27], extending the idea in zero-shot manner to balance
the computational resources and generative quality. Nevertheless, transferring
knowledge from the T2I domain to the T2V domain poses significant challenges
in video consistency and stability. Few-shot generation models can overcome
those weakness. Our work takes the study of few-shot generation further.

Tune-A-Video [11] employs a single video as training video and modifies
the attention layers in the Latent Diffusion Model (LDM) [3], facilitating the
generation of content and motion that closely mimics the original video. It’s an
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amazing work in video editing and generation. However, its efficacy is markedly
dependent on the original video for reference, with the generated content being
predominantly influenced by the referenced video. LAMP [12] takes one step
forward in few-shot method, using a limited number of videos for training. It
learns motion patterns from these videos based on a textual prompt and leverages
the initial condition image to generate diverse array of videos.

LAMP significantly narrows the gap between the constraints of training
resources and the capability to produce varied video content. Nevertheless, the
fine-tuning process in LAMP is limited by its reliance on a simple textual prompt
to guide the LDM in learning motion patterns and object information from the
videos. This approach may exhibit limited control over the prompt and video con-
tent during inference, especially when the background of the image is complex,
encompassing diverse styles and containing multiple objects. In [2], it proposes
to utilize image features other than text features as the image reference. Drawing
inspiration from this, we redesign it in LAMP and employ CLIP [13] to improve
performance in generating consistency and diversity videos. It is significant to
maintain the latent diffusion model’s ability to learn motion patterns from the
input video datasets and to ensure the temporal consistency of generative videos.
There are two issues need to be solved. Firstly, the fine-tuning process which
relies solely on a simple prompt to describe every frame of the training videos,
may lead to over-fitting in the T2V diffusion model. During the inference pro-
cess, T2V model may lack control over the prompt conditions and the object will
be blurred or missing in subsequent generative video frames. Secondly, existing
few-shot methods [11,12], constrained by their incomplete capture of image fea-
tures, face challenges in generating videos that are with complex backgrounds
or exhibit diverse styles.

Hence, We introduce MAIM (Make An Image Move), a few-shot based
text-to-video generation model, which is guided by CLIP and utilizes the novel
dual cross-attention layer to enhance the interaction between text features and
image features. To improve efficiency and reduce computational overhead, we
extract image and text features from CLIP image encoder and its text encoder,
process them independently and subsequently integrate them in a feed forward
network, representing the innovation of our method compared to previous meth-
ods. Furthermore, our method includes a unique sampling technique, latent-
time-shift sampling, which aims to construct the original noise from the latent
space of the first frame with a shared noise. Figure 1 showcases the results of
our T2V diffusion model, illustrating enhancements in both the quality and sta-
bility of the generative videos with two novel components. In summary, our key
contributions are as follows:

– We introduce MAIM, a novel few-shot based text-to-video generation frame-
work. Our method is capable of generating videos with complex backgrounds
and multiple objects, demonstrating greater generalization capabilities com-
pared to other approaches.

– We propose the dual cross-attention layer to decouple image and text fea-
tures. The textual prompt is no longer the sole reference. Complementally,
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we incorporate image features extracted by the CLIP image encoder to enrich
the reference information.

– During the inference stage, We propose a latent-time-shift sampling method
to guarantee both the flexibility and stability of the generated videos.

2 Related Work

2.1 Text-to-Image Diffusion Models

Lately, the domain of T2I generation has garnered considerable attention. The
diffusion model [14] outperforms alternatives like GANs [13,15,16], VAEs [17,18].
Diffusion models and it’s variant DDIM [19] are the foundation of the T2I gen-
eration task. Several works have been proposed recently, GLIDE [20] leverages
classifier-free guidance to significantly advance image quality within diffusion
framework. Simultaneously, DALL-E2 [21] employs the feature space of CLIP
model to achieve substantial improvements in text-to-image alignment. It facili-
ties a more nuanced and coherent generation of images from textual descriptions.
Furthermore, Imagen [22] introduces a novel solution by employing cascaded dif-
fusion models to create high-definition images which shows the versatility of dif-
fusion models in handling complex T2I generation task. VQ-diffusion [23], LDM
[3] explores the operating within the latent spaces of autoencoders. The latent
space, being of a lower dimension, offers a more efficient approach for noise addi-
tion and denoising compared to working directly with pixel images. Our work is
based on the LDM to decouple the attention layer and inject the image features.

2.2 Text-to-Video Diffusion Models

Text-to-video diffusion models have been proposed recently. T2V generative dif-
fusion models can be mainly divided into three categories: large-scale models,
zero-shot generative models, and few-shot generative models.

Large-Scale Models. Training large-scale models on extensive text-video pairs
datasets, necessitates substantial computational resources. Such models, capable
of generating diverse videos, exhibit impressive generalization capabilities. Ima-
gen Video [24] and Make-A-Video [25] propose hierarchical structures, includ-
ing separate key frames, interpolation and super-resolution models for sampling
high fidelity video generation. Magic-video [26] advances the field by training
a novel auto-encoder designed to address pixel jitter in generative videos. Sim-
ilarly, AnimateDiff [5] also employs a cascading model approach, which is the
same paradigm. Show-1 [6] combines pixel-based and latent-based video diffusion
models for T2V generation. The implementation of these methodologies are sup-
ported by extensive video datasets like webVid-10M [27] and HD-VILA-100M
[29], which present a substantial challenge for most researchers.
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Zero-Shot Generative Models. Zero-shot text-to-video generation refers to
a “training-free” approach, requiring no optimization or fine-tuning of the T2I
pretrained model. T2V-Zero [9] syntheses a video with a simple textual prompt.
It utilizes motion flow to modify the original latent and the frame cross-attention
layer to ensure the temporal consistency. Furthermore, Free-bloom [10] and
DirectT2V [27] attempt to leverage the capabilities of Large Language Model
to generate a series of continues descriptions to guide the diffusion model to
generate consistent video frames. Although zero-shot generation can relieve the
computational cost, the motion pattern and detail of object still hard to maintain
the temporal consistency.

Few-Shot Generative Models. Recent advancements in few-shot generation
task, such as Tune-A-Video [11] and LAMP [12], training T2I diffusion model
and incorporating novel temporal layers. These layers are designed to capture
both appearance and motion information from the training data. Tune-A-Video
[11] utilizes a reference video and employs diverse prompts to generate various
videos, while maintaining the original motion patterns. However, Tune-A-Video
is based on the template video and edits it with different content prompts. These
template based methods [11,29,30] will restrict the freedom of generative video.
LAMP proposes a motion learning model to capture the motion pattern from the
training data and utilizes about 8∼16 videos to tune the pretrained T2I model.
Unlike existing few-shot based methods, our framework aims to achieve image
reference by incorporating image features extracted by CLIP image encoder.

3 Method

In this section, particularly in Subsect. 3.1, we provide fundamental knowledge
about diffusion models. This is followed by Subsects. 3.2 and 3.3, which detail
our methodology, describing the dual cross-attention layer and the latent-time-
shift sampling module, respectively. An overview of our approach (MAIM) is
shown in Fig. 2. Our work emphasizes cost-effective computational consumption.
We aims to leverage the CLIP to extract image features and combine them with
text prompts to enhance the consistency and diversity of the generative videos.

3.1 Preliminaries

In this section, we present to introduce the foundational concepts related to
the diffusion model. The Denoising Diffusion Probabilistic Model (DDPM) [14]
functions as a probabilistic model, while its variant, the Denoising Diffusion
Implicit Model (DDIM) [19], which employs a deterministic sampling process to
expedite sampling. DDIM follows a Markov chain structure and diffusion forward
process incrementally introduces Gaussian noise into the initial data x0:

q(xt|xt−1) = N
(
xt;

√
1 − βtxt−1, βtI

)
, t = 1, . . . , T. (1)
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Fig. 2. The framework of MAIM. For the training stage, MAIM learns motion pattern
and object information from the textual prompt and image features extracted by CLIP
respectively. For the Inference stage, MAIM advances an image for the first frame and
the framework will predict the subsequent frames.

q {xt|xt−1} is the Markov transition, it can be conceptualized as a Gaussian
distribution with βt ∈ (0, 1). βt is a hyperparameter. t = 1, ..., T is the total
time step of forward process. Forward process will destroy the initial data x0

into xt ∈ (0, I). Diffusion model’s goal is to learn the Gaussian transition in
backward process:

pθ(xt−1|xt) = N (xt−1;μθ(xt, t),Σθ(xt, t)), t = T, . . . , 1. (2)

For t = T, ..., 1 represents a backward process, which denoises the standard Gaus-
sian noise xt to x0 that is a valid signal. The learnable parameters, denoted by θ,
are optimized to ensure that the generative reverse process closely approximates
the forward process.

3.2 Dual Cross-Attention Layer

Existing few-shot generation methods, such as LAMP and Tune-A-Video, uti-
lize a sample prompt to characterize the training video. However, this approach
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Fig. 3. Dual Cross-Attention Layer, Image features are extracted by CLIP image
encoders and text features are encoded by CLIP text encoder. We train part of the
parameters of the Text-CA layer while training the Image-CA layer.

inevitably omits some visual concepts presenting in the video frames. Conse-
quently, we incorporate image features extracted by the CLIP to enhance image
referencing capabilities, thereby improving generalization and semantic align-
ment between text and image. As illustrated in Fig. 3, we have extended the
cross-attention layer to more effectively accommodate image and text features.
The dual cross-attention layer is structured into two branches: one for process-
ing image information and the other for processing text information. Given the
query features Z and the text features ct, the output of the text cross-attention
Zt can be defined as:

Zt = Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
· V, (3)

where Q = ZWq,K = ctWk, V = ctWv are the query, key and values matrices
of the attention operation respectively, and Wq,Wk,Wv are the weight matrices
of the trainable linear projection layers.

The image branch incorporates image features with the objective of mit-
igating the over-fitting issue in the fine-tuned model. Consequently, the image
features are adjusted to match the dimensions of the text features, allowing them
to be integrated into the image cross-attention layer. Given the query features
Z and the image features ci, the output of the image cross-attention Zi can be
computed as follows:

Zi = Attention(Q,K ′, V ′) = Softmax

(
QK ′T
√

d

)
· V ′, (4)

where Q = ZWq,K
′ = ctW

′
k, V ′ = ctW

′
v are the query, key and values matrices

associated with image features. W ′
k,W ′

v are the weight matrices, and Wq share
the same weight with text cross-attention layer.
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Finally, the output of the image branch and the text branch will be merged
and processed through the Feed Forward Network (FFN). The final output of
dual cross-attention mechanism can be obtained as follows:

Zfinal = FFN(Zt + Zi). (5)

3.3 Latent-Time-Shift Sampling

The inference stage is an essential part of generating videos. LAMP proposes
a first frame conditioned pipeline, which divides video generation into two key
parts: the first frame condition and shared noise sampling. Although the first
frame conditioned pipeline can determine the main content, subsequent frames
are prone to missing multiple objects or producing blurred content. In addition,
shared noise sampling struggles to keep the consistency of video frames.

Inspired by LAMP, we propose a latent-time-shift sampling strategy, in which
the first frame image is encoded into the latent space Zf and the DDPM process
will add the noise to disrupt Zf . Specifically, we will sample a standard Gaussian
latent noise εs ∼ N (0, I) as xbase and a latent noise sequence xrest ∈ (ε2, ..., εl)
with the same distribution as xbase. Basically, xbase will be added to the latent
noise sequence xrest, which decreases with the length of the video frames, thereby
allowing for greater freedom in the video. At the same time, Zf will be added
into each latent noise to maintain the temporal consistency and image style. The
final formulation can be written as:

z = α · xbase + (1 − α) · xrest + β · Zf , (6)

where α and β are coefficients. We set β = 0.1 in our experiment. α is used to
control the degree of sharing and decreases with the length of the video f as:

α = 0.1 + 0.1 ∗ exp(−0.1 ∗ f). (7)

4 Experiments

We utilize stable diffusion v-1.5 with its pretrained weight as the backbone to
implement the framework. In our experiment, we generate f = 16 frames with
320 ∗ 512 resolution. In the inference stage, we first employ stable diffusion to
generate an image with prompts or select an image as the first frame condition,
then predict the subsequent frames. For the training stage, we utilize about 8∼16
videos and sample 16 frames randomly per video. We employ the CLIP image
encoder to extract image features. All the sample frames will be resized in a
resolution of 320∗512. The dual attention layers and the temporal layers will be
trained with a learning rate of 3.0 ∗ 10−6. All the experiments are implemented
on a single RTX 3090 GPU.
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4.1 Comparison Baselines

We compare our method with three baselines: 1) Show-1 [6], a T2V model trained
on WebVid-10M [27] dataset, which can generate videos in various prompts. 2)
T2V-Zero [9] introduces a zero-shot video generation approach that operates
without any training. 3) LAMP [12] represents a few-shot generation model that
is tuned with a few videos to learn the motion pattern from video frames. In
our work, we trained MAIM on four types of dynamic scenarios, including
the blooming of flower, volcano eruptions, horse running, and helicopter flying.
We collect training video datasets from the internet. During the inference, we
apply the same prompts across all comparison methods, aiming to facilitate both
objective and subjective evaluations in our experiments.

4.2 Qualitative Results

We showcase several generation results from different methods in Fig. 4. We note
that while LAMP can learn motion patterns from videos, its inability to integrate
the reference image features complicates maintaining consistency between the
content and textual prompts. Show-1 is capable of generating frames consistent
with the given prompt, but it fails to produce the desired style given by prompts
and user description. T2V-Zero encounters difficulties in generating detailed and
coherent motion patterns, potentially attributable to an insufficiency in learning
motion information from the training videos. In contrast, our method utilizes
image features from the reference images and combines them with text features.
Leading to generate videos with complex background and multiple objects. As
shown in Fig. 4, MAIM can accurately maintain multiple objects in complex
backgrounds, e.g. the four helicopters, and satisfactorily handle the video gen-
eration with different image styles, e.g. the oil painting. In the following, we
further utilize objective metrics and user study to evaluate the performance
comprehensively. More visual results are demonstrated in Appendix.

Objective Metrics. Following the protocol utilized in [11,12]. We apply Align-
ment, Consistency, and Diversity to get the quantitative comparison. Forty
videos exhibiting four different motion patterns have been selected for compari-
son. To calculate alignment, we compute the average of the CLIP image embed-
dings across all frames within a video, and subsequently calculate the cosine
similarity between the mean image embedding and the CLIP text embedding
extracted from the provided text prompt. Consistency is assessed by comput-
ing the average cosine distance across all video frames. For diversity, we refer
to LAMP and represent each video with the average CLIP image embedding,
and compute the cosine distance between the average embedding and each video
frame embedding. Table 1 shows that our method exhibits superior performance
compared to other methods.
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Fig. 4. The qualitative comparison between MAIMand three baselines. We generate
videos encompassing three distinct styles and types of motion. Zoom in for best view.
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Table 1. The quantitative comparison with three baselines.

Method Alignment ↑ Consistency ↑ Diversity ↓
LAMP 31.3547 97.4123 71.6535

Show-1 29.4571 97.3422 75.6172

T2V-Z 26.9424 91.4713 73.0136

MAIM(Ours) 32.1347 98.3125 71.8813

User Study. To further subjectively evaluate the quality of generated contents,
we conduct a questionnaire survey upon human observers as done in [10]. Fifty
participants are instructed to rate the visual quality, textual alignment, and
temporal consistency of the videos on a scale from 1 to 5. We sum up the rate
scores for three items separately over all the generated videos, the results of
which are in Table 2 for comparison methods. Although our method may not
perform as well as large-scale models (e.g., Show-1) for certain prompts, most
participants prefer our generated videos and consider them better than other
baselines among all the three measurements.

Table 2. The user study result.

Method Visual Quality ↑ Alignment ↑ Consistency ↑
MAIM(Ours) 4.32 4.42 4.15

LAMP 4.06 3.91 3.79

Show-1 3.82 3.31 4.18

T2V-Z 3.32 3.16 3.27

4.3 Ablation Study

We construct an ablation study to verify the efficacy of two modules, dual cross-
attention layer and latent-time-shift sampling, in our proposed method. Figure 5
shows the result of the ablation study. We note that without dual cross-attention
layer, significant content discrepancy among frames in the sequence emerge. E.g.,
one of the two helicopters become blurred or disappear in subsequent frames,
and the dynamic blooming of one flower could not manifest itself at all. This defi-
ciency makes it difficult to maintain complex backgrounds or multiple objects in
the generative frames. Without the application of latent-time-shift sampling, the
consistency across subsequent frames would be compromised. E.g., the detail of
helicopters will be lost and the bud is missing. Our sampling method leverages
the first frame latent, injecting it into each original latent noise to facilitate to
maintain object detail. As shown in Fig. 5, with those two modules, our method
is capable of generating video frames with temporal consistency and content
stability. Furthermore, we generate around 40 videos with a distinct prompt per
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video, and assess the video content quality with two objective metrics, alignment
and consistency. As demonstrated in Table 3, the absence of these two compo-
nents results in the generative videos underperforming in comparison to MAIM
with respect to textual alignment and frame consistency. These results confirm
the significant contributions of each modules to the overall efficacy of MAIM.

Fig. 5. Visual ablation results upon dual cross-attention layer and latent-time-shift
sampling. The first prompt: Two helicopters fly on the desert. The second prompt:
A pink rose and a bud are in bloom. (Color figure online)

Table 3. The ablation results with two objective metrics.

Component Alignment ↑ Consistency ↑
MAIM(full model) 32.1762 98.1547

w/o dual cross-attention layer 30.8942 97.2531

w/o latent-time-shift sampling 30.3512 97.1045

5 Conclusion

In this paper, we introduce a new framework for few-shot Text-to-Video gen-
eration. We utilize CLIP to extract the image features and decouple image-
text features in dual cross-attention layer module. To improve the consistency
and stability of video generation, we propose latent-time-shift sampling method.
Compared to other methods, our framework enhances the quality of generative
videos in multiple objects or complex background across various image styles.
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A Appendix

See Figs. 6 and 7.

Fig. 6. More visual results generated by MAIM
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Fig. 7. User study format
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Abstract. Text-to-image (T2I) generation aims at producing realistic
images corresponding to text descriptions. Generative Adversarial Net-
work (GAN) has proven to be successful in this task. Typical T2I GANs
are 2-phase methods that first pre-train an inter-modal representation
from aligned image-text pairs and then use GAN to train image genera-
tor on that basis. However, such representation ignores the inner-modal
semantic correspondence, e.g. the images with same label. The semantic
label in priory describes the inherent distribution pattern with underly-
ing cross-image relationships, which is supplement to the text descrip-
tion for understanding the full characteristics of image. In this paper,
we propose a framework leveraging both inter- and inner-modal corre-
spondence by label guided supervised contrastive learning. We extend
the T2I GANs to two parameter-sharing contrast branches in both pre-
training and generation phases. This integration effectively clusters the
semantically similar image-text pair representations, thereby fostering
the generation of higher-quality images. We demonstrate our framework
on four novel T2I GANs by both single-object dataset CUB and multi-
object dataset COCO, achieving significant improvements in the Incep-
tion Score (IS) and Fréchet Inception Distance (FID) metrics of image
generation evaluation. Notably, on more complex multi-object COCO,
our framework improves FID by 30.1%, 27.3%, 16.2% and 17.1% for
AttnGAN, DM-GAN, SSA-GAN and GALIP, respectively. We also val-
idate our superiority by comparing with other label guided T2I GANs.
The results affirm the effectiveness and competitiveness of our approach
in advancing the state-of-the-art GAN for T2I generation.

Keywords: Text-to-image generation · GAN · Contrastive Learning

1 Introduction

Text-to-image (T2I) generation targets on generating realistic images that match
the corresponding text description. This captivating task has gained widespread
attention and popularity owing to its vast creative potentials in art generation,
image manipulation, virtual reality and computer-aided design.
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T2I generation methods based on Generative Adversarial Network (GAN) [3]
have shown promising results. The typical approach can be decomposed the pre-
training phase and GAN phase. They first pre-train the image and text features
into a joint representation space, which provides effective understanding of the
relationship between text descriptions and visual contents, and then use noval
GAN to training the image generator on basis of joint representation. Since the
introduction of notable AttnGAN [25], many subsequent works have utilized the
Deep Attentional Multimodal Similarity Model (DAMSM) which employs con-
trastive learning to pull the paired image and text representations close while
pushing away the unpaired ones. Consequently, DAMSM improve the consis-
tency between image and text representations, resulting in effective downstream
generation [9,14,25,32]. Despite contrasting on the inter-modal text-image pair,
each image sample may have specific category of similar samples that being
ignored or pushed away, resulting in scrapping the underlying inner-modal dis-
tribution. Moreover, a brief textual description is usually insufficient to describe
all the characteristics of an image. UniCL [26] proposes a unified contrastive
loss in image-text-label space to leverage label information during representa-
tion learning. However, UniCL does not consider the rareness of samples with
the same label in a batch, and is only applicable to single-label datasets.

Taking the inner-modal semantic into consideration, we introduce supervised
contrastive learning into T2I GAN by referring to the categorical information of
images, which enhances both the representation encoders and GAN generator,
thereby improving the quality of image generation. For single-object image gener-
ation, we incorporate single-label supervised contrastive learning [6]. During the
pre-training phase, our proposed supervised contrastive loss leverages additional
image labels to group the representations for image and text of the same class
while distinguishing images of different classes. During the GAN phase, we also
employ the supervised contrastive loss to simultaneously increase the synthetic
images’ similarities of same class and the matching degree to their text pair.
For multi-object image generation, we leverage same approach on single-object
scenario by changing the supervised contrastive loss to multi-label case [12]. We
evaluate our method on datasets CUB [24] and COCO [11]. By comparing to
four base models: AttnGAN [25], DM-GAN [32] SSA-GAN [9] and GALIP [21],
our experiments show that our method is capable of improving the quality of
generated images measured by common metrics: the Inception Score (IS) [18]
and Fréchet Inception Distance (FID) [23].

The contributions of our work can be summarized as follows:

– We incorporate supervised contrastive learning to T2I generation which
encourages the inherent data distribution patterns delineated by semantic
labels, thereby enhancing the generation of coherent and faithful images.

– Our framework employs two symmetric parameter-sharing branches in the
pre-training and GAN phase of T2I generation, which is compatible for single-
and multi-object contrastive learning by corresponding loss. Such extension
converges image representations carrying same semantics within proximity in
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the pre-training phase, which enables the GAN generator to glean insights
from a broader spectrum of related data instances.

– Our framework can improve famous T2I GANs’ generation quality on both
single-object CUB and multi-object COCO dataset. Most notably, on more
complex COCO dataset, our framework improves the FID of AttnGAN, DM-
GAN, SSA-GAN and GALIP by 30.1%, 27.3%, 16.2% and 17.1%, respectively.
We also demonstrate the superiority of our framework comparing with other
label guidance options.

2 Related Work

2.1 Contrastive Learning

Contrastive learning is a self-supervised method which has been successful in rep-
resentation learning. It plays a crucial role in serving computer vision tasks and
extends influence to other research field like natural language processing. Con-
trastive learning follows the intuition that similar data samples should be closer
in the representation space, while dissimilar samples should be far apart. Typi-
cal contrastive learning setting SimCLR [1] augments image into two randomly
warped views and extracts their representations through twin encoders. The two
branches of representation are then projected to same feature space to apply con-
trastive loss [13], where the paired view of image is considered as positive sample
and vice verca. Other variants of contrastive learning mainly differ in the for-
mulation of negative samples [5], the asymmetric design of twin encoders [4], or
contrastive loss definition [29]. All these methods have either comparable results
or exceed supervised methods on many representation learning benchmarks [2].
In addition to construct the positive and negative samples by self supervision,
researchers [6,12] also utilize image classification labels to formulate single- and
multi-label contrastive loss, the former achieves high accuracy in image classifi-
cation while the latter succeeds in visual reasoning. Contrastive learning has also
been explored to bridge the modality gap and create unified representation for
multi-modal pre-training. Trained by fine-curated large scale image text pairs,
CLIP [15] has demonstrated great zero-shot capability for dozens of visual and
image-text downstream tasks.

These contrastive learning progresses proves the feasibility of aligning differ-
ent feature views at low annotation cost. We adopt the intuition that any data
representation can be improved by referencing similar semantic concepts from
both inter- and inner-modal data, therefore our framework designs multiple ways
of feature alignment which will be detailed in Sect. 3.

2.2 GAN for Text-to-Image Generation

In recent years, image generation has experienced rapid development starting
from the remarkable success of Generative Adversarial Network (GAN) which
trains a generative model by adversarial discrimination [9,14,22,25,30–32]. Reed
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et al. [16] were the first to employ GAN to generate images from text descrip-
tions. To synthesize higher resolution images, Zhang et al. propose the Stack-
GAN [30] and StackGAN++ [31] employing a multi-generator strategy that
first generates a low-resolution image and then finetunes followup generators
to produce high resolution realistic images. Many works follow this multi-stage
stack structure [14,17,25,28,32] to improve image generation quality. On basis
of StackGAN++, AttnGAN [25] introduced attention mechanism to refine the
process of generating images from fine-grained textual descriptions at different
stages of image generation. In addition, AttnGAN proposed the Deep Attentional
Multi-modal Similarity Model (DAMSM) to improve multi-granular consistency
between image and text. DM-GAN [32] proposed dynamic memory to store the
intermediate generated images and retrieve the most relevant textual informa-
tion with gated attention to update the image representation accordingly.

Although the multi-stage GAN is designate for high-resolution progressive
image generation, its training complexity grows as the stage stacking. To over-
come this, DF-GAN [22] proposed single-stage generation, whose generator uses
a series of UPBlock specially designed for high resolution feature upsampling.
DF-GAN further used Matching-Aware Gradient Penalty and hinge loss to train
the UPBlocks. Followup SSA-GAN [9] used a Semantic Spatial Aware Convo-
lution Network (SSACN) block to predict text aware mask maps based on the
current generated image features, which facilitates the fusion and consistency
between image and text. These conventionally designed single-stage methods
greatly reduce the complexity of T2I generation, meanwhile others seek for uti-
lizing famous visual-language pre-training techniques to bridge the inter-modal
gap. GALIP [21] directly integrates CLIP [15] to harness the well-aligned image-
text representation and extend GAN’s ability to synthesize complex images. Hui
et al. [27] propose a framework leveraging contrastive learning to enhance the
consistency between caption generated images and the originals. All these T2I
GANs focus on the inter-modal image text alignment without considering inner-
modal association, which in some extent leads to flaws in the generation results.
Our framework instead encourages both inter- and inner-modal association.

3 Method

In this section, we introduce a simple effective framework which integrates
supervised contrastive learning to leverage the inner-modal association, thereby
enhancing the generation quality of T2I GANs. Like novel contrastive learn-
ing approach, we adopt the dual tower structure and create two symmetric
branches of contrast opponents for both pre-training and GAN phases. In pre-
training phase, the supervised contrastive learning encourages the representation
coherency for image-text pairs sharing same semantics. In favor of the coherent
representation, in the GAN phase, the supervised contrastive learning establishes
additional guidance for the semantic consistency of the generated images. We
detail our framework adaptation and enhanced T2I GAN learning objectives for
the two phases in the following respective sections.
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Fig. 1. Pre-training phase. Our data sampling strategy initiates two contrast branches
with shared parameters to separately encode the image-text pairs of same label. The
original Loss is consistent to the method our framework applied on. The supervised con-
trastive loss works on quadruple of image and text representations from both branches.

3.1 Supervised Contrastive Learning for Pre-training

Typical T2I GANs pre-train the image and text encoders by maximizing the
paired image-text representation similarity and the unpaired dissimilarity. To
enhance this learning process, we extend the pre-training by supervised con-
trastive learning on the image-text pair with shared label. The extension has
three components shown in Fig. 1.

Data Sampling Strategy. At each training step, we randomly sample a batch
of N examples which consist of N captions t, corresponding images x and label
set Y . To construct contrastive pair, we ensure that each sample has reference
example with the same labels: for each sample (ti, xi, Yi), we select a sample
(t′i, x′

i, Y ′
i ) as its pair where Yi ∩ Y ′

i �= ∅.

Image Encoder g And Text Encoder f . In pre-training phase, the encoder
extracted representations usually have multi-granular features to encourage the
deep fusion, e.g., the global/local views of image, and the sentence/word level of
text. Our methods do not change the functionalities but extend them by applying
shared image and text encoders g, f to extract contrastive pair image representa-
tions v = g(x),v′ = g(x′) and text representations e = f(t),e′ = f(t′). Our
framework is indifferent for the type of encoders, where we keep them consis-
tent to the baseline methods our framework applied to. Specifically, for AttnGAN
[25], DM-GAN [32] and SSA-GAN [9], we use Inception-v3 [20] as image encoder
g and Bi-LSTM [19] as text encoder f . For GALIP [21], we use transformer-
based CLIP image and text encoders. The weights of the text encoder and image
encoder are frozen during the training phase of the GAN.
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Learning Objective. With the data sampling strategy, we define the objective
for training. For image-text matching using Inception-v3 and Bi-LSTM, we con-
sider (ti, xi) and (t′i, x′

i) as positive image-text pairs to calculate DAMSM loss
same as AttnGAN [25]. As for CLIP encoder, we use symmetric cross entropy
loss [15]. To apply supervised contrastive loss, we formulate positive pairs from
sampling strategy for image-image, image-text and text-text associations. Specif-
ically, (ti, t′i), (ti, tj) and (ti, t′j) are considered as positive text-text pairs where
Yi ∩ Yj �= ∅. It is worth noting that in single-object dataset CUB, each corre-
sponding image-text sample only has one label, while in complex multi-object
dataset COCO, it has multiple labels. Therefore, we use different supervised
contrastive loss functions to deal with different label sharing.

For one label scenario, we treat sample pairs with the same label as positive
pairs and apply single-label supervised contrastive loss. Given a random batch
of N instances, we pick 2N instances after data sampling stategy where each
instance is guaranteed to have at least one same label in other instances. In
order to facilitate the calculation, we concatenate the sampled instances with the
original ones to obtain the image representation ṽ = {v,v′}, text representation
ẽ = {e,e′} and labels ˜Y = {Y ,Y ′} at this step. Let sim(a, b) = aT b/(||a|| · ||b||)
denote the cosine similarity between a and b. For a certain representation ui and
its relative batch of representations w, the supervised contrastive loss function
is calculated as

Lsup(ui,w) =
−1

|Ps(i)|
∑

p∈Ps(i)

log
exp(sim(ui, wp)/τ)

∑2N
j �=i exp(sim(ui, wj)/τ)

(1)

where Ps(i) = {p ∈ {1, ..., 2N} : ˜Yp = ˜Yi} is the set of indices of all positives
in the batch distinct from i, |Ps(i)| is the cardinality of Ps(i) and τ denotes
the temperature parameter. We can specifically compute supervised contrastive
losses for image-image Lsup

img, text-text Lsup
txt and image-text Lsup

i2t as follows:

Lsup
img =

2N
∑

i=1

Lsup(ṽi, ṽ) (2)

Lsup
txt =

2N
∑

i=1

Lsup(ẽi, ẽ) (3)

Lsup
i2t =

2N
∑

i=1

Lsup(ẽi, ṽ) +
2N
∑

i=1

Lsup(ṽi, ẽ) (4)

Similarly, for multi-label scenarios, we consider instances that have one or
more common labels as positive pair. We employ multi-label supervised con-
trastive loss, which replaces Ps(i) with Pm(i) = {p ∈ {1, ..., 2N} : ˜Yp ∩ ˜Yi �= ∅}
in the calculation process while keeping all other calculation the same as in the
single-label contrastive loss.
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Fig. 2. GAN training phase. Same as pre-training phase, we use two parameter-sharing
T2I GAN branches to contrast the text-image pairs sharing same label. The supervised
contrastive loss is performed on quadruple of text and generated fake image represen-
tations from two branches. In this phase, the pre-trained encoders are inference-only.

The final objective function for the pre-training phase is a co-op of origin
loss and supervised contrastive loss

Lpre = Lorgin + λ1(Lsup
img + Lsup

txt + Lsup
i2t ) (5)

where λ1 is the weight of supervised contrastive loss. Depending on the baseline
GAN methods, Lorgin can either be DAMSM or symmetric cross entropy loss.

3.2 Supervised Contrastive Learning for GAN

Intuitively, shared labels reflect common visual semantics within the images.
In captioning datasets, the brief text annotation typically use concise descrip-
tions to depict partial aspect of images. Therefore, during generator training, we
provide instances sharing same label to encourage the generator to refer to the
similar instances. Our generator training framework is illustrated in Fig. 2.

Data Sampling Strategy. Same as the pre-training phase, we sample a batch
of images x and x′, text captions t and t′, labels Y and Y ′. The captions are
extracted to text representations e and e′ by pre-trained text encoder f .

GAN Adaptation. As discussed in Sect. 2.2, the mainstream T2I GAN meth-
ods are based on two types: the multi-stage StackGAN series [31] and the one-
stage DFGAN [22]. Our framework can be applicable to both types. Given the
ground-truth real image x, the generator G utilizes text representations (e,e′)
and noise z to generate fake images (xf ,x′

f ) in two branches. Subsequently, the
discriminator calculates the generator losses (Lo

G,Lo′
G) and discriminator losses

(Lo
D,Lo′

D) for two branches from (x,e,xf ) and (x′,e′,x′
f ), respectively. Mean-

while, the generated images from both branches are encoded by an image encoder
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and obtains fake image representations (vf ,v′
f ). These representations are then

paired with (e,e′) to calculate supervised contrastive loss.

Learning Objective. In our framework, the objective function for discrimina-
tor loss during the training process is identical to the GAN baselines in both
branches, and the overall discriminator loss LD is the sum of loss from two
branches. As for the generator loss LG, one-stage GAN typically use conditional
generation loss [10,22] while multi-stage GAN often incorporate additional non-
conditional generation loss [31]. Our method does not vary the usage of baseline
generator losses but adding extra supervised contrastive losses for image-to-
image and image-text pairs.

Similar to pre-training phase, for sampled batch, we first concatenate the
generated fake image representation v = {vf ,v′

f }, the corresponding text rep-

resentations ẽ = {e,e′} and the labels ˜Y = {Y ,Y ′}. The discriminator and
generator loss function are then computed as follows:

LD = Lo
D + Lo′

D (6)

LG = Lo
G + Lo′

G + λ2(Lsup
img + Lsup

i2t ) (7)

where

Lsup
img =

2N
∑

i=1

Lsup(vi,v) (8)

Lsup
i2t =

2N
∑

i=1

Lsup(ẽi,v) +
2N
∑

i=1

Lsup(vi, ẽ) (9)

and λ2 is the weight of supervised contrastive loss.

4 Experiments

We choose novel multi-stage (AttnGAN, DM-GAN) and one-stage (SSA-GAN,
GALIP) GANs to validate the superiority and universality of our framework
on T2I generation for both single-object CUB [24] and multi-object COCO [11]
datasets. We also conduct extensive ablations to assess the effectiveness of each
component our framework proposes.

Evaluation Metric. We follow the baselines’ evaluation protocol on the CUB
and COCO datasets, which uses Inception Score (IS) [18] and Fréchet Inception
Distance (FID) [23] as quantitative evaluation metrics. After training comple-
tion, we generate 30,000 images in resolution 256 × 256 on the test set and com-
pute IS and FID scores. Several previous works [8,22] have pointed out that IS
can not provide useful guidance to evaluate the quality of the synthetic images
on dataset COCO, thus we only evaluate IS on CUB dataset. Since GALIP was
not evaluated on IS, we only compared with GALIP on FID.
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Fig. 3. Qualitative comparison on CUB and COCO datasets for DM-GAN and SSA-
GAN baselines w/o the utilization of our framework (denoted as “+SCL”). The input
text descriptions are given in the first row and the corresponding generated images
from different methods are shown in the same column. The left 4 columns are from
CUB, and right 4 columns from COCO.

Implementation Details. We apply our framework to four novel baselines
(AttnGAN, DM-GAN, SSA-GAN and GALIP) on both CUB and COCO
datasets. During pre-training phase, we set λ1 to 0.5 for CUB and 0.05 for
COCO. For GAN phase, we set λ2 of the four baselines to 5, 2.5, 0.2, 0.15 for
CUB and 2.5, 2.5, 0.1, 0.15 for COCO. The training epochs of the four baselines
are 600, 800, 600, 2000 for CUB and 120, 200, 120, 2000 for COCO. Our train-
ing uses 1, 1, 3, 3 NVIDIA GeForce RTX 3090 GPU respectively for the four
baselines.

4.1 Quantitative Results

The four baselines and our enhancement results are reported in Table 1. On
single-object CUB dataset, our framework is able to improve the IS of AttnGAN
by 5.7%, DM-GAN by 6.5%, and SSA-GAN by 1.4%. These results demonstrate
that our framework effectively improves the clarity and diversity of generated
images. Moreover, our framework improves the FID of AttnGAN by 25.6%, DM-
GAN by 6.3%, SSA-GAN by 9.5% and GALIP by 1.8%. On more challenging
multi-object COCO dataset, our framework is able to significantly improve the
FID of all baselines. Specifically, we improves AttnGAN, DM-GAN, SSA-GAN
and GALIP by 30.1%, 27.3%, 16.2% and 17.1% respectively. These results indi-
cate that semantic relationship modeling is crucial for enhancing the T2I GAN
generation quality, and the more complex scenario benefits more from it.
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Table 1. Performance of IS and FID of AttnGAN, DM-GAN, SSA-GAN and these
models with our framework increment on the CUB and COCO test set. ↑ denotes
higher values indicate better quality. ↓ denotes lower values indicate better quality.
* denotes results obtained from publicly released pre-trained models by the authors.
“+SCL” represents the model trained by our framework. Bold for better performance.

Methods CUB COCO

IS↑ FID↓ FID↓
AttnGAN* 4.36 ± .03 23.98 33.10

AttnGAN+SCL 4.61± .06 17.83 23.14

DM-GAN* 4.65 ± .05 15.31 26.56

DM-GAN+SCL 4.95± .05 14.35 19.32

SSA-GAN* 5.07 ± .08 15.69 19.37

SSA-GAN+SCL 5.14± .09 14.20 16.24

GALIP - 10.08 5.85

GALIP+SCL - 9.90 4.85

4.2 Visual Quality

In this section, we further compare the visual quality of generated images by a
subset of CUB and COCO datasets for DM-GAN, SSA-GAN baselines before
and after applying our framework, which are shown in Fig. 3.

For the CUB dataset, we randomly select text-generated images belonging to
the “Tree Swallow” category for comparison. In the first and second column, the
images generated by DM-GAN exhibit severe error in producing bird head, while
DM-GAN with supervised contrastive learning generates natural bird images.
SSA-GAN on the other hand can generate natural bird images, but the generated
bird images do not always match the descriptions or the desired bird species.
For example, the bird generated in the 1st column exhibits yellow and green
wings, and the bird in the 3rd column had red tails, which are not mentioned in
the text description and do not align with the characteristics of Tree Swallows.
On the contrary, SSA-GAN enhanced by our framework can produce birds that
match the text description specifying blue-black-white wings, and is consistent
with the features of Tree Swallows. In addition, the images generated by our
framework exhibit strong similarity for same species, which further confirms the
validity of supervised contrastive learning.

Generating realistic and textually coherent images that align with the
descriptions is more challenging in the COCO dataset. However, our framework
outperforms the baseline in terms of generating higher quality and more textually
consistent images. For example, in 6th column, both DM-GAN and SSA-GAN
failed to generate a red boat mentioned in the input text, but DM-GAN and
SSA-GAN enhanced by our framework successfully generate the desired object.
In 8th column, the bus generated by SSA-GAN is orange-yellow which devi-
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ates from the “red” description, while SSA-GAN enhanced by our framework
successfully produce a red bus matching the description.

4.3 Ablation Study

In both pre-training and GAN phases we incorporate image-image supervised
contrastive loss Lsup

img and image-text Lsup
i2t supervised contrastive loss. In this

section, we verify the effectiveness of pre, Lsup
img and Lsup

i2t in our framework by
conducting extensive ablation study on the CUB and COCO dataset in Table 2.

Table 2. Ablations of AttnGAN baseline. Our pre-trained encoders (pre), image-image
supervised contrastive loss (Lsup

img) and image-caption supervised contrastive loss (Lsup
i2t )

are ablated independently.

ID Components CUB COCO

pre Lsup
img L

sup
i2t IS↑ FID↓ FID↓

1 - - - 4.36 ± .03 23.98 33.10

2 � - - 4.41 ± .05 20.83 26.90

3 � � - 4.53 ± .04 17.42 24.14

4 � - � 4.45 ± .07 18.53 25.09

5 � � � 4.61± .06 17.83 23.14

We consider the AttnGAN as the baseline (ID 1). When using pre-trained
encoders (ID 2), all metrics get improved, which indicates that the encoders
with supervised contrastive learning obtain image and text representations with
better semantic alignment and consistency (the visualization of representation
is given in supplementary material). Building upon pre, introducing Lsup

img (ID 3)
and Lsup

i2t (ID 4) individually also results in improvement for all metrics, which
suggests that using Lsup

img and Lsup
i2t separately enhances the similarity between

image-image and image-text representations with the same label. The usage of
Lsup
img shows better improvement comparing to Lsup

i2t , indicating that previous
work is more lack of the intrinsic image modeling on dataset semantic level.
However, when Lsup

img and Lsup
i2t are used together (ID 5), both IS of CUB and

FID of COCO are improved, but the FID of CUB inferior a little. The reason
is that Lsup

i2t surges impact on facilitating text-image fusion and representation
similarity, resulting in the IS improvement. On the other hand, when the encoded
text features become more adaptive to the image features with same labels,
the diversity of generated images also increases(more deeply constrained by the
text descriptions with same label). Consequently, the FID slightly drops as it
measures the KL divergence between the real images and generated images [9].

4.4 Comparison to Other Label-Supervised Methods

To our best knowledge, there is no existing approach in this field leveraging labels
information as additional guidance like our framework does. To demonstrate
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the novelty of our approach, we use two simple settings that commonly used
for plug-in label learning as extra baselines. Firstly, we apply UniCL [26] to
AttnGAN. On CUB dataset, UniCL can easily be adopted because each image
only associates with one label. In order to apply UniCL to the COCO dataset, we
replaced its single-label supervised contrastive loss to a multi-label supervised
contrastive loss. Secondly, we introduce cross-entropy loss in classification task
to AttnGAN. We introduce a pre-trained fully connected network as a image
classifier and add the cross-entropy loss to the existing loss and train by multi-
task learning. The results are shown in the Table 3. As the UniCL and cross-
entropy improving the AttnGAN slightly, our framework demonstrate largest
margin of visual enhancement for all metrics, indicating the compatibility of our
framework with T2I GAN baselines.

Table 3. AttnGAN baseline comparison of other semantic label integration options
including UniCL, cross-entropy and ours.

Methods CUB COCO

IS↑ FID↓ FID↓
AttnGAN* 4.36 ± .03 23.98 33.10

UniCL 4.39 ± .02 19.42 28.67

cross-entropy 4.34 ± .05 21.15 27.30

Ours 4.61± .06 17.83 23.14

5 Conclusions

In this work, we introduce a novel framework that harness semantic information
with supervised contrastive learning to improve T2I GAN. Our framework use
the two branch contrast to extend the original method across the pre-training
and GAN phases. In pre-training phase, we employ label guided data sampling
strategy, where we define positive pair as the images with same label. Driven by
supervised contrastive loss on the positive image pairs and their corresponding
text, the pre-training encoder elevates the representation similarity of images
with same semantic concepts and push away those without. In the GAN phase,
we first proceed original GAN for each branch independently and formulate a
quadruple including the representations of generated positive image pair and
their corresponding texts from two branches. We then employ augmented super-
vised contrastive loss to the quadruple which, like in pre-training phase, serves
to elevate the similarity between images characterized by common semantic,
thereby enhancing the image generation quality.

We apply our framework to famous four GAN baselines including AttnGAN,
DM-GAN, SSA-GAN and GALIP and conduct experiments on single-object
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CUB and multi-object COCO dataset. The results demonstrate that our frame-
work can indifferently improve baselines on both datasets with considerable mar-
gin, especially the more complex COCO.

Although we only demonstrate the effectiveness on the datasets with detailed
label annotation, our framework can be extended to other image-text pair only
datasets by noun extraction from all text as labels, which will be the next step of
our research interest. Recently, the advent of data-centric methodologies such as
SAM [7] has further curtailed the expenses for semantic label acquisition, subse-
quently relaxing the prerequisites for implementing our framework. Furthermore,
we expect this work to exhibit potential application for diffusion models espe-
cially on efficiency improving due to the adaptable nature of our framework. We
defer the extension to future research endeavors.
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Abstract. Recent research on text-guided speech synthesis has sparked
considerable interest. This study explores the potential of leveraging pub-
licly available internet video data for speech synthesis and character-
based new voice generation. We introduce a multi-modal extraction
pipeline for automating the creation of speech synthesis datasets, extract-
ing accurate character speech segments and descriptions from online
videos. Additionally, we propose a person-description-based controllable
voice synthesis system, establishing a mapping from character descrip-
tions to speaker representation vectors. This system transforms charac-
ter descriptions into new vectors, serving as input for zero-shot VITS to
generate character-specific voices. Both objective and subjective met-
rics affirm our approach’s capability to generate previously unheard
character-specific voices with acceptable naturalness. We plan to release
the annotation set of TMCSPEECH (We only provide our collected orig-
inal video links and our annotated labels for non-commercial research
purposes. Our shared annotation set does not contain any audio or video
data. It is the user’s responsibility to decide whether to download the
video data and whether their intended purpose with the downloaded data
is allowed in their country). Our audio samples can be accessed online
(https://raydonld.github.io/TMCSPEECH/).

Keywords: Multi-modal data processing · speech synthesis · voice
generation · zero-shot text-to-speech

1 Introduction

With the rapid development of deep learning, the quality of speech synthesis has
significantly improved [27]. However, current mainstream speech synthesis sys-
tems still face substantial limitations. Though they achieve high-quality synthesis

We only provide our collected original video links and our annotated labels for non-
commercial research purposes. Our shared annotation set does not contain any audio
or video data. It is the userâĂŹs responsibility to decide whether to download the video
data and whether their intended purpose with the downloaded data is allowed in their
country.
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https://doi.org/10.1007/978-3-031-78172-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78172-8_12&domain=pdf
https://raydonld.github.io/TMCSPEECH/
https://doi.org/10.1007/978-3-031-78172-8_12


178 D. Liu et al.

for speakers within the training set, for speakers not included in the training set,
synthesis quality frequently fails to meet expectations. In the thriving era of Arti-
ficial Intelligence Generated Content (AIGC), there is a growing demand for per-
sonalized voice generation, especially in scenarios such as audiobooks where each
character has unique traits. Specifically, in audiobooks, current systems strug-
gle to provide voices that match the unique characteristics of each character. For
example, characters with cautious or arrogant personalities are often not accu-
rately represented in synthesized speech, as current systems fail to capture these
nuances. Therefore, the current audiobook reading experience often suffers from a
lack of variety in voices, making it challenging for listeners to distinguish between
characters solely based on voice, thereby reducing immersion and comprehen-
sion. In addition, recording real voices for each character in a novel, tailored to
their characteristics, is impractical and economically inefficient, as it would signifi-
cantly increase data collection costs and fail to meet the rapidly expanding content
demands. Consequently, synthesizing voices that align with character descriptions
in audiobooks efficiently becomes the focus of this research.

Recent efforts have focused on synthesizing voices absent from the train-
ing set. For example, Stanton et al. [26] proposed Tacospawn, which utilizes
Mixture Density Networks (MDN) to infer the conditional distribution of the
voice representation of multiple speakers in a Tacotron model under discrete
label conditions, achieving the conditional generation of new voices. Bilinski
et al. [2]. implemented Tacospawn in a Flow-TTS based system, confirming the
efficacy of GMM-based methods in characterizing voice representation distribu-
tions. However, these methods use discrete labels, and Gaussian Mixture Mod-
els have limited capabilities in modeling category boundaries, resulting in weak
controllability. Recently, an increasing number of works have applied prompts
to audio generation [13,19] and style-controlled speech synthesis [16,18,28].
Inspired by these works, using Prompt descriptions instead of discrete variables
as parameters for voice-controllable descriptions can greatly enhance the free-
dom of voice generation. PromptTTS [10], proposed by Guo et al., introduced
text descriptions of sound into TTS for the first time, achieving the generation of
speech that meets specific requirements through natural language descriptions
of sound. However, this method is not suitable for controllable voice genera-
tion, as there is a one-to-many relationship between the text description and
the voice. PromptSpeaker [29], proposed by Zhang et al., introduced Glow [17]
into a zero-shot VITS [15] to establish a mapping relationship between Speaker
representation and Semantic representation and used Prompt Encoder to align
Prompt descriptions with the Semantic Representation distribution.

Despite the achievements of the above methods in describing sound using
Prompt, they all require manual annotation of audio data. This greatly limits
the scale of the voice dataset with Prompt text descriptions, thereby restricting
the effectiveness of controllable voice generation. Specifically, in the task of audio-
books, we need to customize the voice according to the appearance, facial features,
and personality traits of the characters. The above methods are not well-suited
to this requirement as they do not focus on descriptions of characters’ appear-
ances and personalities, and there is currently a lack of audiobook speech syn-
thesis datasets with character descriptions. Therefore, the primary challenge in
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Fig. 1. The overview of our multi-modal extraction pipeline.

contemporary research lies in acquiring speech synthesis databases with detailed
character descriptions and developing systems that leverage these descriptions.

To address these research challenges, we have developed an automatic multi-
modal extraction pipeline and a controllable voice synthesis system based on
character text descriptions. The purpose of this pipeline is to accurately extract
the speech audio of each character from videos and simultaneously generate
corresponding character descriptions. This pipeline consists of four components:
the speech timestamp extractor, speaker verifier, speaker audio extractor, and
character description generator. Use this pipeline to process abundant online
video resources, substantially reducing data collection and annotation costs. Our
proposed controllable voice synthesis system, grounded in character descriptions,
encompasses four primary components: a pretrained large language model, a
prompt encoder, a normalizing flow model, and a zero-shot TTS system. This
system can generate speaker voices that match the feature descriptions based on
character traits.

2 Methods

2.1 Automatic Multi-modal Extraction Pipeline

As illustrated in Fig. 1, the multi-modal extraction pipeline consists of a speech
timestamp extractor, speaker verifier, speaker audio extractor, and character
description generator. The speech timestamp extractor initially isolates times-
tamps and corresponding texts of speech segments from video data. Next, video
segments linked to these timestamps undergo analysis by the speaker verifier,
which ascertains the speaker’s identity by correlating facial and voice features
within each segment. The extracted audio from the video is then processed by the
speaker audio extractor to remove background noise and perform noise reduction,
selecting high-quality audio. Lastly, the character description generator takes the
roles and their corresponding video names from the video, generating character
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descriptions that match the characteristics of the characters. Detailed descriptions
of each component within this pipeline are presented in subsequent sections.

Step 1: Speech Timestamp Extractor
The Speech Timestamp Extractor module accurately extracts timestamps and
corresponding textual content from speech segments in video data. To achieve
this, we employ the Paraformer-large speech recognition method [9], specifically
designed for efficient extraction of speech timestamps and text from lengthy
audio. Furthermore, we have developed a subtitle timestamp extractor by inte-
grating Video-SubFinder1 and PaddleOCR2, enabling the recognition of subtitle
timestamps and text. Finally, we built a text merger, which merges video sub-
titles and speech recognition results based on video subtitle recognition results
and timestamps. We used Intersection over Union(IOU) and Levenshtein dis-
tance3 to sift the timestamps and text results to obtain the final timestamps
and corresponding text for speech segments in the current long video.

Step 2: Speaker Verifier
The core task of the speaker verifier is to confirm the attribution of each video
segment to a specific speaker. This module comprises a speech speaker verifier
and a face verifier. In the speech speaker verifier, we used a speaker verifica-
tion extraction model employing the ResNet101-ASP architecture from [22] for
the speaker representation extraction system. The ResNet101 model [11] with
residual module channel settings [32, 64, 128, 256] serves as the front-end feature
extractor. It is followed by an Attentive Statistics Pooling (ASP) layer [20], and
a 256-dimensional fully connected layer is used as the speaker representation
layer. ArcFace [6] (s = 32,m = 0.2) is utilized as the classifier. The model is
trained on the VoxCeleb2 dataset [4] (5994 speakers with 1092009 utterances).
In the face verifier, we used the RetinaFace [5] as our Face detection model, and
the IResNet [8] and ArcFace as the face recognition model. Due to the scarcity
of Asian faces in existing open-source face recognition datasets, leading to inac-
curacies in face recognition, we fine-tuned the face recognition model using a
dataset consisting of images of 7,000 various celebrities obtained from the inter-
net. Simultaneously, to automate the verification of characters in each film or
TV show, we crawled information for 2,000 films and TV shows, including actor
names, character names, dubbing names, and actor photos from Baidu Baike4.
When using the face verifier, we register faces appearing in the video using the
actor photos that we crawled online, match them with faces in the video seg-
ments, and extract speaker representation vectors from the corresponding audio
segments using the speaker verification extraction model. Ultimately, we com-
bine face verification outcomes with speaker verification results obtained through
K-Means clustering to ascertain each video segment’s speaker attribution.

1 https://sourceforge.net/projects/videosubfinder/.
2 https://github.com/PaddlePaddle/PaddleOCR.
3 Python implement: https://pypi.org/project/fuzzywuzzy/.
4 https://baike.baidu.com/.

https://sourceforge.net/projects/videosubfinder/
https://github.com/PaddlePaddle/PaddleOCR
https://pypi.org/project/fuzzywuzzy/
https://baike.baidu.com/
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Step 3: Speaker Audio Extractor
After successfully extracting all video segments attributed to speakers, we sep-
arate the corresponding audio and use a 5-stem spleeter [12] to extract human
voices from the audio. To ensure audio quality, we only use the vocal track of
the multi-channel signals derived from the spleeter toolkit.

Step 4: Character Description Generator
Drawing inspiration from Stanford Alpaca’s application of large language models
in data generation, we formulated a Prompt specifically for generating character
descriptions in videos. Focused on processing Chinese-language video data, we
utilized the powerful Chinese understanding and generation capabilities provided
by the Baidu Large Language Model API called ERNIE-Bot 4.05. The specific
Prompt is shown in Fig. 1. This approach allows us to generate unique and
distinctive character descriptions for each role.

Fig. 2. Data statistics crawled from the Internet.

Table 1. Results of TV show data processing using the multi-modal pipeline.

Type Number of Speakers Duration (min) Gender Ratio (Male/Female)

Movies 2032 10019.88 2.63
TV Shows 116 1706.16 1.07

After completing the aforementioned four steps, we obtain a speech synthesis
dataset with character trait descriptions and high-quality audio.

Finally, we extracted 2,032 speakers from 783 movies, totaling 10,019.77min,
and 116 speakers from 3 TV Shows, totaling 1,706.16min. As illustrated in
Table 1, the proportion of male speakers in the extracted movie audio data is
significantly higher than that of females, while the gender ratio is relatively
balanced in TV show data.

Figure 2 reveals that 92% of speakers in movie data have speaking dura-
tions of less than ten minutes, with males outnumbering females. There are 136
5 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t.

https://cloud.baidu.com/doc/WENXINWORKSHOP/s/clntwmv7t
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speakers within the 10 to 20-min range and 26 speakers with durations exceed-
ing 20min. This distribution aligns with the characteristics of movies, where
each movie’s duration is short, but the number of actors is high. TV show data
indicates a more balanced gender ratio, with a significant proportion of speakers
having durations exceeding 20min, reflecting the longer speaking times of each
actor in TV shows.

2.2 Controllable Voice Synthesis System Based on Character
Descriptions

We present a controllable voice synthesis method based on character descriptions,
as illustrated in Fig. 3. The method primarily consists of four components: a pre-
trained large language model, a zero-shot TTS system, a reversible normalizing
flow model, and a prompt encoder. In our method, we can accept two types of
input to synthesize a controllable voice: the collection of movie names and role
names or the character description. The pretrained large language model can
generate character descriptions by providing movie names and role names. The
zero-shot TTS system is designed to generate speech for a specific speaker, uti-
lizing the speaker representation vector as input. The reversible normalizing flow
model [24] decouples the speaker representation vector into a semantic represen-
tation vector consisting of quantized and non-quantized regions. The quantized
region explicitly encodes attributes such as gender, age, and SNR, while the non-
quantized region encompasses other non-quantifiable sub-linguistic information
about the speaker. The prompt encoder identifies gender and age through the
natural language description of the character and predicts the mean and vari-
ance of the non-quantized region’s representation vector’s prior distribution. By

Fig. 3. Architecture of our model.
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concatenating age, gender information, and the vector representation of the non-
quantized region, the semantic representation vector is obtained after transfor-
mation through the normalizing flow model. Finally, this speaker vector is used
as input to the zero-shot TTS system to synthesize speech that aligns with the
character description.

Zero-Shot TTS System
To synthesize speech for speakers not present in the training set, we employ the
zero-shot TTS system. In recent years, the VITS structure [15] has achieved
significant success in fields such as zero-shot speech synthesis [3] and voice
cloning [1,14]. Therefore, we select pre-trained VITS based on speaker represen-
tation vectors for our zero-shot TTS system. The system is built upon the VITS
model, pre-trained on the AISHELL-3 dataset [23], and further fine-tuned using
speech data obtained through our proposed automated multi-modal extraction
pipeline. This fine-tuning process is designed to elevate the vividness and nat-
uralness of the synthesized speech, ultimately leading to a more authentic and
expressive speech synthesis outcome.

Reversible Normalizing Flow Model
To achieve stable controllability of synthesized voices concerning gender and age,
ensuring consistency between synthesized voices and descriptions, we employ a
reversible normalizing flow model [21]. We aim to decouple attributes such as
gender and age from the speaker representation vector. We adopt the VoiceLens
method proposed by Shi et al. [24], which utilizes conditional normalizing flow to
map the voice represented by the speaker vector to a latent space. The semantic
representation vector in this space can quantify attributes such as gender, age,
and SNR. Hence, we choose VoiceLens as our decoupling inverse transformation
model.

Table 2. Data usage description for each module

Module Training set Testing set

Zero-shot TTS TV Show Dataset(Train) Movies Dataset(Test)
Reversible Normalizing Flow Model Movies Dataset(Train) Movies Dataset(Test)
Prompt Encoder Movies Dataset(Train) Movies Dataset(Test)

Prompt Encoder
The goal of the prompt encoder is to extract semantic information from the
textual character description, identify the character’s gender and age, and predict
the mean and variance of the prior distribution of the non-quantized region of the
semantic representation vector. This module consists of a pre-trained Chinese
BERT module [7] and a multi-head prediction layer. The multi-head prediction
layer includes three parallel linear layers, each predicting gender and age, as well
as the mean and variance of the prior distribution of the non-quantized region
in the text. Initially, the character description text is processed through the
pre-trained Chinese BERT module to extract semantic information. Then, the
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semantic information is passed to the multi-head prediction layer to predict the
character’s gender, age, and the mean and variance of the prior distribution of
the non-quantized region, which is then used to sample the vector representation
of the non-quantized region of the semantic representation vector.

3 Experiments

3.1 Experiment Setting

Owing to the distinctive attributes of the tasks, we utilize TV show data fea-
turing longer speaker’s speech durations for fine-tuning the Zero-shot TTS
System mentioned earlier, aiming to enhance the vividness of synthesized
speech. To establish a correlation between speaker embedding and textual
character descriptions, we employ movie data rich in diverse speakers for
training and testing the Reversible Normalizing Flow Model and the Prompt
Encoder. We excluded speakers with brief speaking durations from the multi-
modal extraction pipeline’s audio data, utilizing the remaining data for train-
ing and testing our model. We list the data utilized in each module in
Table 2. TV Show Dataset(Train) including 45849 utterances for 18 speakers.
Movies Dataset(Train) including 68640 utterances for 858 speakers. And Movies
Dataset(Test) including 17160 utterances for 214 speakers.

3.2 Evaluation Metrics

This paper evaluates the proposed character description-based controllable voice
synthesis system, encompassing both objective and subjective evaluations. For
both evaluations, 20 speakers were selected from each category. In our objec-
tive evaluations, the speaker distance assessment was based on the x-vector
method [25]. The calculation method is consistent with that described in the
literature [26,29]. The x-vector represents speaker characteristics for each audio
segment. The speech speaker verifier mentioned in Sect. 2.1 was employed to
obtain the x-vector for each audio segment.

Subsequently, we calculated the average x-vector for each speaker, obtaining
a speaker-level x-vector (denoted as V ). We performed distance measurements
on speaker-level embedding V from three different types:

– Speaker-level x-vector for ground-truth target speaker utterances
(gt): we compute V gt

i by averaging the x-vectors of all utterances from
speaker i on the ground-truth target audio in the training set.

– Speaker-level x-vector for synthesized speech utterances generated
by using the ground-truth speaker-level x-vector (syn): we compute
V syn
i by averaging the x-vectors of all utterances from speaker i on the syn-

thesized audio in the training set.
– Speaker-level x-vector for generated speech utterances using char-
acter text prompts(gen): we compute V gen

i by averaging the x-vectors of
all generated speech utterances from speaker i when given the speaker prompt
from testing set.



TMCSpeech 185

We differentiated between different speakers by computing the cosine distance
between different V . The cosine distance is defined as d(V1, V2) = 1− V1

‖V1‖ · V2
‖V2‖ .

We utilized the cosine distance between V obtained from the speech synthesis
of speakers in the training set as a threshold to assess the system’s performance
in voice generation. We define the set of training speakers as T , and the set
of generated speakers by Prompt in the testing set as G, and the following
metrics are the six metrics that were computed to evaluate performance in voice
generation:

– Syn2gt-same: Compute the speaker-level x-vector distance between synthet-
ically generated speech V syn

i and the corresponding ground truth V gt
i for the

same speaker in the training set. The smaller, the better.

mean
i∈T

d(V syn
i , V gt

i ) (1)

– Syn2gt-near: Calculate the average distance between the training speaker
V syn
i and the closest ground truth training speaker V gt

i . This metric is used to
assess the differences between synthesized speech and the ground true speech
of other speakers in the training set. The larger, the better.

mean
i∈T

min
j∈T,i �=j

d(V syn
i , V gt

j ) (2)

– Gt2gt-near: Calculate the average distance between the different ground
truth training speakers V gt

i . This metric is used to assess the differences
between the ground true speech of different speakers in the training set. The
larger, the better.

mean
i∈T

min
j∈T,i �=j

d(V gt
i , V gt

j ) (3)

– Syn2syn-near: Compute the average minimum distance between synthesized
speech V syn

i for different speakers in the training set. This metric is applied to
measure the worst-case performance in audio synthesis for different speakers
within the training set. The larger, the better.

mean
i∈T

min
j∈T,i �=j

d(V syn
i , V syn

j ) (4)

– Gen2syn-near: Calculate the average minimum distance between audio gen-
erated from a Prompt-derived speaker V gen

i in the testing set and speech
synthesized V syn

j for speakers in the training set. This metric assesses the
worst-case performance in distances between a Prompt-generated speaker and
other speakers’ synthesized speech derived from the training set. The larger,
the better.

mean
i∈G

min
j∈T

d(V gen
i , V syn

j ) (5)

– Gen2gen-near: Compute the average-worst case distance between speakers
generated under the same Prompt. This metric is utilized to evaluate the
lower bound of the richness of speaker generation based on the same Prompt.
The larger, the better.

mean
i∈G

min
j∈G,i �=j

d(V gen
i , V gen

j ) (6)
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Table 3. Cosine distance between different speakers

syn2gt-same ↓ syn2gt-near ↑ syn2syn-near ↑ gen2syn-near ↑ gen2gen-near ↑ gt2gt-near ↑
0.135 0.389 0.306 0.377 0.234 0.327

Table 4. The naturalness MOS with 95% confidence intervals

System MOS score

Ground truth 4.80 ± 0.03
Synthetic Speakers 3.53 ± 0.07
Generated Speakers 3.35 ± 0.07

In evaluating the gender prediction capabilities of our prompt encoder within
the testing set, we calculate the accuracy based on character descriptions. Accu-
racy A is defined as A = Ccorrect

Ntotal
× 100%, where Ccorrect is the number of correct

gender predictions and Ntotal is the total predictions made.
For the subjective evaluation, the Naturalness Mean Opinion Score (MOS)

was employed to assess 60 audio samples, including real, synthetic, and test
speaker audio. The synthetic speaker’s speaker embedding was generated solely
from character descriptions of the ground truth speakers, converting text descrip-
tions into speaker embeddings via text embeddings, followed by zero-shot
TTS generation. Conversely, test speakers’ audio was produced using charac-
ter descriptions from the test set, following the same conversion process. This
approach allowed us to evaluate the system’s effectiveness in synthesizing voices
based on new, unseen descriptions, with 12 listeners participating in the evalu-
ation.

3.3 Experimental Results

Table 3 presents the objective evaluation results of speaker similarity. Consider-
ing the robustness of our speaker verification model, the scores of syn2gt-same
and syn2gt-near reflect our ability to clone the reference speaker’s voice well,
with good distinguishing ability between different speakers and a good speech
synthetic performance. The syn2syn-near indicates that the speech generated by
our synthetic model has distinctiveness between different speakers. The result of
gen2syn-near suggests that our method generates new speaker voices which are
much more distinct from those in the training set, demonstrating its capability
to produce novel speaker voices absent in the training data. The gen2gen-near
result shows that our method can generate different new voices when the same
character description is used multiple times. The gt2gt-near represents the dif-
ferences between ground truth speeches of different speakers. Additionally, we
also conducted gender accuracy evaluation on the newly generated voices by our
method. In the testing set, the gender accuracy is 98.69%, indicating that our
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method effectively captures gender characteristics from text inputs, enabling the
TTS system to generate speech outputs with correct gender attribution.

In the subjective evaluation results provided in Table 4, our system achieves
a good naturalness Mean Opinion Score (MOS) when using the genuine speaker
embeddings from the testing set. The synthesized speech of new speakers gen-
erated based on character descriptions shows only a slight decrease in natu-
ralness MOS compared to the speech generated using genuine speaker embed-
dings. These results indicate that our system is capable of producing high-quality
new speaker voices based on textual character descriptions. Our audio sam-
ples can be accessed by visiting the following URL: https://raydonld.github.io/
TMCSPEECH/.

4 Conclusions

This paper introduces an innovative multi-modal extraction pipeline efficiently
designed to extract speech segments and corresponding character descriptions
for each role from video data. The experimental results demonstrate that our
pipeline can automatically obtain substantial quantities of accurate and high-
quality character speech segments and descriptions. Additionally, we construct a
controllable voice synthesis system based on character descriptions. This system
establishes a one-to-many mapping relationship between character description
text and speaker representation vectors, achieving the transformation from char-
acter descriptions to new speaker representation vectors. Specifically, the char-
acter description undergoes joint processing by the prompt encoder and normal-
ization flow model, generating the input vector for the zero-shot TTS system
and subsequently synthesizing speech that aligns with the character description.
Experimental validation indicates that our approach is capable of generating a
diverse range of voices from unseen character descriptions while maintaining a
high degree of naturalness in the synthesized speech. In this work, our method
still converts the character texts into speaker embeddings and then feeds them
to the TTS module. In our future works, we plan to directly feed the character
text prompt to the large generative TTS model with discrete tokens, hoping to
achieve better speech synthesis results.
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Abstract. In the manufacturing industry, defect classification is cru-
cial but is hampered by challenges from imbalanced data, which often
leads to model overfitting when data are scarce. One common solution
is to use synthetic data from generative models; however, these models
typically produce results that are structurally inconsistent. Addressing
these concerns, this paper introduces a novel null embedding optimiza-
tion technique that generates latent representations closely resembling
the original images, significantly enhancing the fidelity of the generated
images. This method ensures that synthetic images are not only visu-
ally similar to the original images but also subjected to a more exten-
sive and diverse augmentation process, increasing the variability within
the dataset. Consequently, this approach effectively doubles the usable
dataset size and notably increases the accuracy of classification mod-
els by up to 11%. For those interested, the dataset and source code are
accessible at https://github.com/ugiugi0823/DISN.

Keywords: Defect classification · Diffusion · Image synthesis

1 Introduction

Defect detection is critical in manufacturing, where a 95% yield rate corre-
sponds to a 5% defect rate. Even when manufacturers strive to improve yields,
enhancements often result in insufficient data collection and labeling for defects.
Moreover, computer vision technologies for defect detection continue to evolve.
However, with the rise in deep learning, datacentric learning approaches have
become the standard. Training a deep learning model for defect classification
requires normal and defect samples. Ideally, actual defect data collection would
be most effective. However, given the efforts of engineers to reduce defects, this
is nearly impossible. Moreover, generative models generate irregular or incon-
sistent structure images [12], resulting in synthesized images that are deformed
and inconsistent with the intended output. Consequently, considerable research
has focused on generating synthetic defects [1,11,15,19,23,26]. We believe that
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Fig. 1. This residual corresponds to the difference between the original and synthesized
images. Our method outperforms previous works [9,16,29] by achieving lowers error
and higher PSNR, highlighting its effectiveness in high-fidelity image synthesis.

to be applicable in real industrial environments, synthetic defect samples should
meet three stringent criteria: closely resembling actual defects, generating defects
without structural inconsistency, and being suitable for automatic labeling.

We argue that generating defects without structural inconsistency is essential
for enabling automatic labeling. However, a review of various generative models
currently in use reveals a significant contradiction. These models meet the first
criterion by producing results that closely mimic real defects; however, they often
fail the second criterion because of their inherent structural inconsistency. This
structural inconsistency might be due to the stochastic nature inherent in all
generative algorithms, which are typically based on Gaussian noise [3,6,7,16,18,
20,21]. This randomness makes them work sufficiently, but it also makes them
hard to control. When the same noise vector is fed into the model multiple times,
it results in different images each time. This inconsistency is a direct consequence
of the stochastic nature of generative algorithms and the challenging task of
managing Gaussian noise.

This problem raises a crucial question: how can we effectively manage struc-
tural inconsistency? To answer this question, we propose a novel methodology
that closely resembles the original product and maintains a high peak signal-
to-noise ratio (PSNR), as illustrated in Fig. 1. We improve the existing method
by applying LoRA-weights [7] using Stable Diffusion XL (SDXL) [16] and opti-
mizing null embedding and null pool embedding to achieve an optimal latent
representation, allowing for the generation of defects highly similar to the origi-
nal. Our contributions are summarized as follows.

– We propose the use of null embedding optimization to acquire the same latent
space as the original thereby generating synthetic defects that closely resemble
real defects without structural inconsistency.

– We can obtain various defect samples via attention map blending and ampli-
fication.

– We demonstrate the increase in the accuracy of off-the-shelf defect classifica-
tion models by using synthetically generated images.
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2 Related Works

2.1 Defect Classification

Defect classification is an essential task that is based on machine learning and is
required in various real-life application areas, such as industrial manufacturing,
safety inspections, and architectural structure examinations. With the rise in the
deep learning era, which has demonstrated outstanding performance in image
classification and object detection, these techniques have begun to be applied in
the field of defect classification [2,10,14]. This approach enables us to classify
objects without the need for manual feature extraction, reduces the difficulty
of algorithm development, and enhances the performance of defect classification
algorithms.

2.2 Synthetic Data Generation via GAN

Recently, there have been numerous attempts [1,15,19,26] have focused on the
use of GANs to generate synthetic defect data to increase the performance of
defect classification models. Notably, Defect-GAN [26] is a new method that
enhances the diversity and reliability of data by synthesizing various defect sam-
ples to improve a defect classification network.

However, a significant challenge persists in acquiring a substantial amount of
training data, a requirement essential for developing effective GAN models [3].
Given complexity of training data, traditional data augmentation techniques
struggled to meet the requirements of GAN models. Faced with this challenge,
the SyNDGAN [1] methodology via StyleGAN2-ADA [9] was proposed to address
the limited data issue. However, with the emergence of diffusion models, the
research focus on image generation has shifted.

2.3 Synthetic Data Generation via Diffusion

Diffusion models [11] can generate high-quality defect images. However, training
a model suitable for a domain requires substantial data, which is not always
feasible. Thus, many methodologies [7,28] that utilize pretrained models have
been introduced. In particular, the application of the LoRA [7] methodology
to stable diffusion (SD) [18] has generated various LoRA weights that can be
used for a specific type of generation task. The LoRA methodology involves
partially freezing the model weight layers in the NLP and training only some
of them. Compared with fine-tuning, this methodology achieves performance
equivalent to or superior to model quality, offering the advantages of higher
training throughput and no additional inference delay.

The DreamBooth methodology [20,23] realized the ‘personalization’ of text-
to-image diffusion models capable of rendering a specific subject in various con-
texts via a small number of images (typically 3–5 images), by learning a unique
identifier for the subject. By fine-tuning a pretrained model, the subject can be
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Fig. 2. Our proposed defect synthesis network. Image to Latent stage (green dashed
line) converts image into latents over several time steps. Through null optimization
(blue dashed line), these latents are refined to optimize the original image characteris-
tics and used to generate synthetic images with detailed defects. (Color figure online)

included in the output domain of the model, allowing the creation of new, real-
istic images of the subject contextualized in different scenes via the identifier.
However, this method suffers from structural inconsistency [12].

3 Proposed Method

As illustrated in Fig. 2, our method leverages the capability of the pre-trained
SDXL model to generate highly realistic defect images. By leveraging pre-trained
models, we can harness the ability of the method to approximate intricate prob-
ability distributions, which are crucial for high-quality image generation. We
employ a customization strategy that includes fine tuning with DreamBooth [20]
and LoRA techniques to tailor these models specifically for defect generation
(Sect. 3.1). To further enhance our methodology, we utilize DDIM inversion [13]
for efficient latent value extraction, enabling faster and more precise image gen-
eration (Sect. 3.2). Then, to address the structural inconsistency issue, we utilize
null embedding optimization (Sect. 3.3). This method improves our model’s per-
formance in generating detailed images closely resembling the original defect
characteristics. Our scalable approach allows for nuanced control over the gen-
erated images, employing techniques such as a control step and activation of
attention maps [13] to adjust the defect generation process diversely. The detailed
information is presented in Sect. 4.3.
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3.1 Customization of Text-to-Image Models

Our method uses the DreamBooth [20] methodology to obtain LoRA-weights for
future use. The cornerstone of this methodology lies in fine-tuning a pre-trained
text-to-image diffusion model to learn unique identifiers for specific subjects. A
key approach involves employing unique identifiers for subject personalization
and integrating the class-specific prior preservation loss [20] to mitigate linguistic
drift during the generation of distinct instances of a particular subject. This
process enables the generation of new, realistic images across various contexts
related to the subject, while preserving its core feature. The class-specific prior
preservation loss is represented as followings.

L = Ex,t

[
wt ‖x̂θ(αtx+ σt, c) − x‖22 + λwt ‖x̂θ(αtxpr + σt, cpr) − xpr‖22

]
(1)

where x and x̂θ denote the actual image and the image generated by the model.
c is the conditional vector corresponding to the text prompt, αt and σt are
the functions that determine the noise schedule of the diffusion process, wt is a
function that determines sample quality, λ is a hyperparameter that adjusts the
relative weight of the second term, and xpr and cpr signify the model-generated
data and its conditional vector, respectively. The text prompts for the images
are presented as “[unique identifier] [class name]”. Currently, meaningless tokens
have been employed for training.

3.2 DDIM Inversion

After loading the LoRA-weights trained for SDXL, we utilize DDIM inversion to
extract latent values from images. The DDIM [13] enables fast sampling while
maintaining the same learning objectives as the traditional Denoising Diffusion
Probabilistic Models [6] approach by using a non-Markovian diffusion process.
This approach is achieved by deviating from the conventional method of adding
noise at each time step, leading to deterministic outcomes instead. The specific
approach is expressed as followings.

zt+1 =
√

ᾱt+1

(
zt − √

1 − ᾱtεθ(zt)√
ᾱt

)

︸ ︷︷ ︸
predicted zt=fθ(zt)

+
√

1 − ᾱt+1 · εθ(zt)︸ ︷︷ ︸
direction pointing to zt

(2)

The core of this process involves obtaining the latent from the image and
adding noise to it. Here, zt+1 represents the subsequent state, zt denotes the cur-
rent state, and εθ(zt) is the noise predicted via the trained network. This noise
prediction function is a core element of diffusion models, typically implemented
via a U-Net architecture [16] The function fθ(zt) = (zt − √

1 − ᾱt · εθ(zt))/
√

ᾱt
estimates the original clean data from the noisy state at time t. The term√
1 − ᾱt + 1 · εθ(zt) represents the direction pointing to zt, guiding the pro-

cess of adding noise to the latent. This method allows for a nuanced control
by adjusting the noise ratio at each time step using ᾱt :−

∏t
i=1(1 − βi) with a
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schedule β0, ..., βT ∈ (0, 1) coefficient. This function, which inverts the denoising
process, is crucial for obtaining a latent representation from the original image
and progressively adding noise to reach the final latent state at time-step t.

3.3 Null Embedding Optimization

Our goal is to manage the structural inconsistency inherent in generative mod-
els. Typically, when generating images via DDIM [13], the extraction of latents
during the diffusion process often results in differences from the original image
when these latents are combined with text embeddings. To address this issue, we
optimize the latents obtained from the reverse transformation and null embed-
dings at each time step. Commonly, SD [18] models utilize positive and negative
inputs. Here, we employ negative embedding as a null embedding component.
This approach ensures that the model maintains a complete embedding reflecting
the original latent at all stages. Specifically, In particular, we perform optimiza-
tion across 50 time-steps. However, applying conventional methods [13] to SDXL
does not yield satisfactory results. This is because SDXL’s architecture includes
two encoders and two ClipTokenizers [17]. Therefore, when entering the U-Net
architecture is used, null embedding and null pool embedding are utilized. The
goal of the optimization is to minimize the following equation.

min
∅t,∅poolt

||z∗
t−1 − zt−1(z̄t, ∅t, ∅poolt , C)||22 (3)

where ∅t and ∅poolt are the null embeddings being optimized, z∗
t−1 is the target

latent, zt−1(z̄t, ∅t, ∅poolt , C) is the predicted latent, and C is the conditional text
embedding. The optimization process involves initializing ∅t and ∅poolt randomly,
to compute the loss via (3), calculating the gradients of the loss with respect to ∅t

and ∅poolt , updating ∅t and ∅poolt via the Adam optimizer, and repeating these
steps for a fixed number of iterations or until convergence. This optimization
process ensures that the generated images closely resemble the original while
maintaining the desired characteristics. Our experiments consistently showed
convergence with 50 time-steps and 10 iterations per step, demonstrating the
method’s efficiency and stability

4 Experimental Result

4.1 Experimental Setup

Dataset Gathering. In this paper, we collect authentic product data from a
real-world industrial firm specializing in manufacturing insert inspection machin-
ery. The focus is on cemented carbide inserts. Our methodology for collecting
insert data follows the approach [1], which involves zooming in on the regions in
contact with the machining surface. We captured images of the same area under
four distinct lighting setups, i.e., bright field, dark field, coaxial, and backlight,
ensuring comprehensive data acquisition. Upon classifying the collected data
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on the inserts, we identify a pronounced disparity between the counts of nor-
mal (3,575 samples) and defect images (761 samples), with defects constituting
approximately 18% of the total dataset. This disparity presents a more intricate
challenge than prior investigations [15,24,26], especially in terms of data volume
and clarity.

Dataset. The original dataset is not gathered via a strict process, resulting in
only 8% of the data being usable. It has 761 data points across different defect
types, such as bright field, dark field, backlight, and coaxial. The bright field image
setting produces a high-quality image, where the defects are distinctly visible,
and the product is clearly delineated. Thus, this experiment focuses solely on
data collected via the bright field setting from carefully selected products with
actual defects to ensure data quality. Given data imbalance, where defect data
are less common than normal data. This data imbalance can lead to the model
overfitting to the underrepresented classes [8], which is a significant concern in
training. This experiment aims to determine whether adding synthesized data to
the underrepresented classes in an imbalanced dataset can help reduce the over-
fitting problems. We also explore whether data augmentation techniques such as
MixUp [27] and CutMix [25] provide better strategies to prevent overfitting. Our
dataset composition, as detailed in Table 1, reflects the typical class imbalance
found in industrial manufacturing settings. We deliberately construct our test
set with a greater proportion of defect images than the training set does. This
approach allows for a more rigorous and conservative evaluation of the defect
detection capabilities of our model, particularly in the presence of limited defect
data availability.

Synthetic Data Generation. We construct a dataset for this experiment,
which includes both normal and defective data, with an emphasis on varying
proportions of synthetic defects to evaluate their impact on model training. The
datasets are structured to explore different ratios of normal to defective samples.
Do consists of 236 normal data points and 23 defect data points, presenting
a ratio of 1:10, which maintains the data imbalance condition recommended
in [8]. DS1 keeps the same number of normal and original defective data points,
but adds an equal number of synthetic defects, adjusting the ratio to 1:5. DS2

increases the number of synthetic defects to 46, thereby increasing the ratio to
1:3. The details about this division are provided in Table 1.

Implementation Details. In the defect classification experiment, models such
as ResNet-50, ResNet-101, EfficientNetV2-M, and EfficientNetV2-L [4,22] are
utilized. The experiment also includes a comparison of results when using data
augmentation techniques such as MixUp [27] and CutMix [25] are used. The
entire code developed in this paper was implemented based on the PyTorch
framework. To optimize the embedding parameters, we utilize the Adam opti-
mization algorithm, setting the learning rate to 1e−4. This configuration is
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Table 1. Training and testing dataset for classification.

Dataset Original # of
Defects

Added Synthetic
Defects

Total
Defects

Normal Ratio

Test Dataset (Dtest) 39 0 39 58 1:1.5
Original Dataset (Do) 23 0 23 236 1:10
Synthetic Dataset 1 (DS1) 23 23 46 236 1:5
Synthetic Dataset 2 (DS2) 23 46 69 236 1:3

Table 2. Quantitative comparison of image synthesis across diverse models and image
size.

Model Image Size PSNR↑ SSIM↑ LPIPS↓
Null-text inversion [13] 512 27.73 0.862 0.069
DISN (Ours) 28.67 0.875 0.066
ControlNet(Depth) [28] 1024 22.28 0.721 0.190
CycleGAN [29] 23.02 0.774 0.164
SyNDGAN [1] 23.14 0.783 0.161
ControlNet(Canny) [28] 23.86 0.783 0.160
SDXL (Inpaint) [16] 26.79 0.786 0.303
StyleGAN2-ADA [9] 29.16 0.873 0.226
DISN (Ours) 31.05 0.892 0.088

selected to improve efficiency and boost performance during the embedding
optimization process. Computational resource considerations are crucial in
this optimization-centric approach. For a single image of 1024 × 1024 resolu-
tion, the process requires approximately 70.07 GB of GPU memory and takes
600.01 s (10min). Moreover, optimizing for 512× 512 image requires approxi-
mately 31.96 GB of GPU memory and takes approximately 238.65 s (4min).
These results demonstrate that while increasing the image resolution from
512× 512 to 1024× 1024 (a fourfold increase in pixels) leads to a fourfold increase
in memory usage, the processing time increases by a factor of 2.5.

4.2 High-Quality Defect Synthesis

Table 2 shows that the proposed method (DISN) has superior performance in
image synthesis, with significant improvement over prior approaches. Using
SDXL and LoRA, we achieve up to 31.05 dB in PSNR, 0.892 in SSIM, and 0.088
in LPIPS at 1024 × 1024 resolution, consistently outperforming prior methods
across all metrics. In terms of the PSNR and SSIM, StyleGAN2-ADA [9] (PSNR:
29.16 dB, SSIM: 0.873) achieves the second-best performance, but our method
still outperforms it. With respect to LPIPS, ControlNet (Canny) [28] achieves the
second-best performance at 0.160, following our method. These results prove that
our approach consistently achieves superior performance in all aspects, including
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Fig. 3. Attention maps visualized for each token in photo of a crack defect image via
Stable Diffusion (a), Stable Diffusion XL (b), and Stable Diffusion XL with LoRA (c).
This visualization demonstrates how each word contributes to image interpretation,
emphasizing the value of individual token analysis in understanding visual defects.
Notably, the attention maps become more defined as the model size increases, with
the sharpest definition achieved when LoRA is applied. This progression illustrates
the effectiveness of LoRA in forming more refined semantic structures, significantly
enhancing token-level image comprehension.

image quality, structural similarity, and perceptual similarity. By incorporating
a minimum of 62 images in LoRA training, we enable high-resolution attention
map generation, which is crucial for producing synthetic images that closely
resemble real-world scenarios. This approach, which combines SDXL and LoRA,
sets a new standard for high-quality defect image synthesis, consistently outper-
forming previous methods across multiple evaluation metrics.

4.3 Various Defects Generation

We now have the capability to manage structural inconsistency effectively. Typ-
ically, the SD and SDXL models utilize two types of embeddings. Although
our approach marginally reduces the PSNR, it employs one of these embed-
dings to simulate various defects. We can substitute the term photo of a crack
defect image with various alternatives. Initially, we select the most represen-
tative words for defects from the activation maps in Fig. 3. We identified the
words photo, crack, and defect as the most influential. Consequently, we experi-
ment with different replacements for each word and find this collection to be the
most impactful, significantly altering the appearance of the object. Mokady et al.
[13] introduced two hyperparameters: the word amplifier, which alters the text
guidance, and the replace step, which controls the number of diffusion processes.
The replace step specifically modifies the pivotal inversion process to enhance
image fidelity and consistency. In particular, we set the word amplifier to 0.8
and the replace step to 0.7, and employ the blend word technique to change
crack to dent, or defect to dent thereby altering the appearance of the object.
This approach enables the creation of defects in diverse combinations, as shown
in Fig. 4.
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Fig. 4. Various types of defects are generated by replacing the prompt pairs crack
with blistering, crack with dent, defect with rust, photo with corrosion, and defect with
peeling. We tested this approach on five different images labelled BF0, BF1, DF0, DF1,
and CO0 and found that the effect of these prompts remained consistent throughout
the different images.

4.4 Optimizing Parameters for Diverse and Precise Synthesis

In our exploration of generating diverse defects via the SDXL model, we optimize
both text prompts and generation parameters. An analysis of base prompt photo
of a crack defect image, reveals that modifying the defect text has the most sig-
nificant impact on performance metrics (PSNR, SSIM, and LPIPS). Among the
various alternatives tested, degradation emerges as the most effective replace-
ment, yielding superior results as shown in Table 3. We also optimize two key
generation parameters, i.e. word amplifier and replace step. Extensive testing
(0.0 to 10.0 in 0.1 increments) revealed that a word amplifier value of 2.0 and a
replace step of 0.8 produce the best outcomes, differing notably from previous
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Table 3. Performance comparison of defect text prompts for optimized synthesis.

Image Size Defect Type PSNR ↑ SSIM ↑ LPIPS ↓
512 Original 28.79 0.879 0.046

Blistering 21.90 0.909 0.090
Dent 27.75 0.944 0.047
Rust 27.54 0.938 0.051
Peeling 28.16 0.941 0.042
Corrosion 29.35 0.949 0.035
Wear 30.31 0.953 0.043
Degradation 31.68 0.954 0.027

1024 Original 31.05 0.892 0.088
Blistering 24.72 0.939 0.059
Dent 28.34 0.960 0.025
Rust 28.76 0.948 0.040
Peeling 28.29 0.950 0.038
Corrosion 31.24 0.959 0.040
Wear 28.71 0.950 0.030
Degradation 32.12 0.960 0.028

settings (0.8 and 0.7). Our text selection process is informed by defect types
common in manufacturing environments, enhancing the practical applicability
of our method. This comprehensive optimization significantly improves our text-
based diverse defect generation, enabling the synthesis of a wide range of defect
types with enhanced precision for industrial applications.

4.5 Defect Classification

Table 4 shows our defect classification results. The experiment is conducted
with the dataset settings listed in Table 1. The accuracy consistently increases
across all the CNN-based models following the introduction of synthetic defective
data. In particular, ResNet-50 [4] achieves improvements in test accuracy from
55.35% to 66.96%, ResNet-101 [4] from 58.92% to 70.53%, EfficientNetV2-M [22]
from 68.75% to 75.89%, and EfficientNetV2-L [22] achieves a high accuracy
level, peaking at 80.35%. The integration of synthetic defective data noticeably
improves the performance of defect detection models, surpassing augmentation
techniques such as MixUp [27] and CutMix [25]. This enhancement is apparent
across different datasets and model architectures, illustrating the advantages
of employing synthetic data in diverse training contexts. The underrepresented
class in this dataset is defects, and we add more synthesized defect data. Table 4
shows that the accuracy on the defect set is the highest, indicating that our
synthetic data effectively prevent the model from overfitting to the larger class.
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Table 4. Accuracy of defect classification. DO, DS1, and DS2 denote the datasets used
for the training. Detailed information on the dataset is available in Table 1.

Model Trained Augmented Test Defects Set Good Set
on with Accuracy Accuracy Accuracy

ResNet-50 [4] DO - 55.35(%) 33.33(%) 71.87(%)
MixUp [27] 55.35 29.16 79.69
CutMix [25] 58.03 6.25 89.06

DS1 - 60.71 50.00 68.75
MixUp [27] 56.25 27.08 73.43
CutMix [25] 58.92 41.66 70.31

DS2 - 66.96 47.91 81.25
MixUp [27] 58.92 29.16 82.81
CutMix [25] 61.60 43.75 76.56

ResNet-101 [4] DO - 58.92 20.83 51.56
MixUp [27] 52.67 37.50 79.68
CutMix [25] 55.35 22.91 90.62

DS1 - 70.53 43.75 90.62
MixUp [27] 61.60 27.08 82.81
CutMix [25] 58.92 47.91 76.56

DS2 - 66.96 39.58 87.50
MixUp [27] 60.71 39.58 75.00
CutMix [25] 66.96 47.91 70.31

EfficientNetV2-M [22]DO - 68.75 41.67 89.06
MixUp [27] 60.71 29.16 84.37
CutMix [25] 63.39 39.58 81.25

DS1 - 74.10 52.08 90.62
MixUp [27] 64.28 52.08 52.08
CutMix [25] 58.03 18.75 87.50

DS2 - 75.89 56.25 90.62
MixUp [27] 61.60 31.25 84.37
CutMix [25] 65.17 33.33 89.06

EfficientNetV2-L [22] DO - 75.00 54.16 90.62
MixUp [27] 75.00 64.58 82.81
CutMix [25] 69.64 43.75 89.06

DS1 - 80.35 52.08 90.62
MixUp [27] 75.00 66.66 81.25
CutMix [25] 69.64 45.83 87.50

DS2 - 80.35 56.25 90.62
MixUp [27] 74.10 70.83 76.56
CutMix [25] 75.00 58.33 87.5

Notably, EfficientNetV2-L demonstrates less pronounced improvement with syn-
thetic data than the other models do. This is due to its extensive 117M param-
eter set, aligns with [5] indicating a complex relationship between model size,
dataset size, and performance gains. The diminishing returns observed in the
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Fig. 5. Impact of LoRA on 1024 × 1024 defect image quality across diffusion mod-
els. The lower-performing models show stark LoRA improvements, whereas the high-
performing models exhibit minimal differences.

large model underscore the need for future investigations into optimizing the
balance between model architecture and data augmentation strategies, particu-
larly for the imbalanced defect classification task.

5 Ablation Study

5.1 Effect of LoRA

Our paper has demonstrated that LoRA enhances both qualitative and quan-
titative performance across various diffusion models. As shown in Fig. 5, the
impact of LoRA on 1024× 1024 defect image quality is more significant in lower-
performing models, whereas high-performing models exhibit minimal differences.
This trend is supported by Table 5, which shows improvements in the PSNR,
SSIM, and LPIPS metrics with LoRA incorporation. For instance, our DISN
method shows a modest PSNR increase from 30.62 dB to 31.05 dB. Addition-
ally, Fig. 3 confirms that applying LoRA to SDXL results in improved activation
maps, indicating better feature interpretation. Overall, the application of LoRA
consistently improves image quality and model interpretability, facilitating the
generation of images that more closely align with the original defects.

5.2 Effect of Text

As shown in Table 6, we discover that the specific content of the text does not
significantly impact the results. To substantiate this, we construct LoRA models
trained with various texts on the same dataset, apply our methodology, and
then compare and analyze the outcomes. The analysis confirms that variation
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Table 5. Effects of the LoRA on the various translation models.

Model Image Size PSNR↑ SSIM↑ LPIPS↓
Null-text inversion [13] 512 27.73 0.863 0.074
Null-text inversion (with LoRA) 27.73 0.862 0.069
DISN(Ours) 28.54 0.873 0.084
DISN(Ours) (with LoRA) 28.67 0.875 0.066
ControlNet(Canny) [28] 1024 14.95 0.627 0.474
ControlNet(Canny) (with LoRA) 23.86 0.783 0.160
ControlNet(Depth) [28] 18.63 0.666 0.464
ControlNet(Depth) (with LoRA) 22.28 0.721 0.190
SDXL(Inpaint) [16] 24.58 0.775 0.330
SDXL(Inpaint) (with LoRA) 26.79 0.786 0.303
DISN(Ours) 30.62 0.884 0.090
DISN(Ours) (with LoRA) 31.05 0.892 0.088

Table 6. Comparison result for different text tokens.

Token Image Size FID ↓ KID ↓PSNR ↑ SSIM ↑ LPIPS↓
photo of a defect sks 512 85.17 0.686 28.62 0.874 0.074
abcdefghijklmnop 84.82 0.685 28.63 0.875 0.071
a i o u e 83.36 0.460 28.42 0.872 0.070
<|startoftext|> <|endoftext|> 78.10 0.346 28.75 0.876 0.065
photo of golden retriever 77.28 0.608 28.57 0.873 0.068
photo of a crack defect image 65.89 0.646 28.67 0.875 0.066

in text content does not meaningfully influence the result. Although the phrase
<|startoftext|> <|endoftext|> yields the best result, it is crucial to note that this
token actually corresponds to an empty word. For practical application in the
industry, the text should be in human language to facilitate efficient interaction.
Therefore, we chose a photo of a crack defect image, which has the highest score
on the basis of FID metric, as our base text for the evaluation.

6 Conclusion

We presented a novel method for generating high-fidelity synthetic defect images
using SDXL, LoRA weight, and null embedding optimization. Our approach
achieved superior performance over existing methods. The null embedding
optimization resolved structural inconsistency issues, enabling the creation of
diverse, realistic defect images. Our synthetic data significantly improved model
accuracy in the classification task. We believe this work represented a significant
advancement in both technical aspects and practical applicability for industrial
defect detection.
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Abstract. Creating new fonts is labour and time-intensive. It involves
generating a glyph for each character in a given style. Few-shot Font
Generation (FFG) uses generative models to generate glyphs that match
the target style specified by a few reference glyphs supplied by designers.
While state-of-the-art methods generate sharp glyphs, they fail to pre-
cisely capture stylistic details of various font styles, leading to inaccurate
generation. We propose a refiner model that applies style refinement to
the output of any base glyph generator through a series of global and local
transformations using spatial transformers and deformable convolutions
to better match the target font style. We propose a few-shot adapta-
tion method to adapt the refiner to the target style using the reference
glyphs only. The proposed method can be used as an add-on to any
existing glyph generator to correct the local incongruencies and better
match the target style. Experiments show improvement in the quality of
generated glyphs and assessment scores as compared to state-of-the-art
methods indicating the effectiveness of the method.

Keywords: font generation · domain adaptation · few-shot learning ·
adversarial learning

1 Introduction

Fonts provide a visual tone to written text. Different fonts are designed to serve
different purposes, such as posters, branding, ancient texts and formal docu-
ments. As the usage of text has grown rapidly worldwide, the demand to produce
new fonts has also increased. Each font is associated with a font library, which
consists of the complete glyph set (the graphic representation of all the charac-
ters belonging to the set of alphabets, numeric characters and special symbols)
in that font. Traditionally, human experts design font libraries, and the process
is quite expensive in terms of time taken, manual labour, and consequently, cost.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-78172-8_14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15306, pp. 206–221, 2025.
https://doi.org/10.1007/978-3-031-78172-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78172-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-78172-8_14
https://doi.org/10.1007/978-3-031-78172-8_14


Adaptive Refiner Based Few-Shot Font Generation 207

For complex fonts and fonts for logographic languages such as Chinese (over 60K
glyphs) and Japanese (over 40K glyphs), a human expert can take over a year
to complete the font design process.

Recently using generative models for font generation has become increasingly
popular. Initial works in font generation include zi2zi [1], which uses pix2pix [12]
to learn multiple font styles of logographic languages. [2] employs a CNN model
based on tower architecture to generate a fixed glyph set in the target font style.
Few-shot Font Generation (FFG) methods developed recently can generate the
entire glyph set in a target style using only a few reference glyphs. In this process
only a few reference glyphs need to be created by the human designer, leading
to significantly faster font generation. FFG methods can be divided into two
categories: rasterized glyph generation, which generates glyphs as images, and
vector glyph generation, which generates glyphs as vectors (sequential data that
encode the glyph structure). A popular approach for rasterized glyph generation
used in [15,27,33] is to pose it as an image-to-image translation task where a
neural network transforms rasterized glyphs from a base style to a target style
while preserving the content. First, the style and content features are disentan-
gled from the reference and base style glyphs respectively using separate encoder
branches, and then fused and passed to a decoder branch which generates the
rasterized glyph in target style. The base style font, henceforth referred to as the
base font, is chosen such that its entire glyphset is available in the font library.
Apart from their architecture, FFG models differ in the method of fusing style
and content features. DG-Font [33] uses adaptive instance normalization to fuse
the style embedding in intermediate layers in the decoder network. FS-Font [27]
re-weighs the feature maps obtained from the style encoder based on the content
using a multi-head attention network before passing it to the decoder network.
DC-Font [15] concatenates the style and content embeddings into a single feature
vector, which is then used by the decoder network.

Rasterized glyph generation, while effective for fixed-resolution outputs,
encounters scalability limitations since the FFG models are designed to pro-
duce glyphs at a predetermined resolution. Unlike their rasterized counterparts,
vector glyphs are inherently resolution-independent, facilitating efficient storage
and seamless scaling to any desired resolution. In DeepVecFont-v2 [31], the vec-
tor glyph is a sequence of drawing commands consisting of move, line and curve
commands and a set of control points corresponding to Bézier curves. These
commands can be followed sequentially to generate the glyph. In Dual Vector
[20], the vector glyph consists of a set of dual parts: a positive and a negative
part, where each part is a closed Bézier curve - the combination of these dual
parts results in the glyph. The neural networks of DeepVecFont-v2 [31] and Dual
Vector [20] consist of two branches: an image branch, which takes as input the
rasterized reference glyphs and generates the rasterized glyph in target style, and
a vector branch, which takes as input the reference vector glyphs and generates
the vector glyph in target style. A differential rasterizer generates the rasterized
glyph from the vector glyph, which is compared with the rasterized glyph from
the image branch to refine the vector glyph in an end-to-end trainable fash-
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ion. VecFusion [28] employs a two-stage cascaded diffusion model to generate
high-quality vector glyphs which consist of a sequence of control points forming
cubic Bézier curves. The model first produces a low-resolution rasterized glyph
and then synthesizes its vector representation, ensuring precise geometry and
control point locations.

Despite the success of FFG models in generating high-quality glyphs, these
models generalize poorly over various font styles. It is often observed that
although FFG models efficiently learn the global shape of glyphs for most of
the font styles, they fail to learn the localized style details such as serif, apex or
stroke weights of a target style accurately. Finetuning the model for new fonts
is not always feasible due to the requirement of a large training dataset and
the high cost of training large models. CF-Font [30] uses Iterative Style-vector
Refinement (ISR) to adapt to fonts during inference. It finetunes the generator
using reference glyphs and its ground truth in a supervised way by minimizing a
reconstruction loss. However, the method only applies to models architecturally
similar to CF-Font.
The Main Contributions of Our Work Include:

1. a lightweight refiner that can refine the rasterized glyphs generated by any
FFG method to achieve style refinement. Throughout the paper, we refer to
these FFG methods as the base generator. The refiner is agnostic of the base
generator.

2. a few-shot adaptation method to adapt the refiner to target font styles by
finetuning its layers for a few iterations. Unlike ISR, the adaptation method
does not need to finetune the base generator, thus making it possible to apply
refinement to a wide-range of base generators.

3. an overall loss which improves the quality of adaptation of the refiner to the
target font styles.

2 Related Works

2.1 Image-to-Image Translation

Image-to-Image translation (I2I) refers to converting images from one domain
to another domain using a mapping function while preserving the content of the
image. I2I has several applications in computer vision such as image inpaint-
ing [24,26], denoising [5] and super-resolution [7,19]. Several CNN-based meth-
ods have been developed for I2I tasks with high-quality outputs being achieved
by methods based on residual networks [36], generative adversarial networks
(GANs) [10,38], attention mechanism [34], and multi-scale feature aggregation
[4,18]. Recently, transformers [8,35] and diffusion models [21,25] have also been
employed widely in I2I tasks outperforming the CNN-based methods. Few-shot
image generation is an I2I task where the model combines the style of a few ref-
erence images with the content of the source image to produce the corresponding
image in the target domain.
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2.2 Few-Shot Font Generation

FFG methods generate glyphs in the target style using a set of reference glyphs.
Most of the work in FFG has been done in Chinese font generation which has
over 60K glyphs. [32] generates glyph images in target style using font mani-
folds learned from other fonts. LF-Font [22] extracts component-wise features of
glyphs using a reference encoder and combines them to synthesize new glyphs,
whereas MX-Font [23] uses multiple reference encoders to extract style and con-
tent features for each reference glyph. DG-Font [33] uses deformable convolu-
tions to learn intricate font styles in an unsupervised framework. CF-Font [30]
uses a content fusion module to fuse the content of multiple fonts and iterative
style refinement to finetune the model to perform well on unseen fonts. FS-
Font [27] uses multi-head attention to learn fine-grained style from the reference
glyphs. Unlike rasterized glyphs, vector glyphs are represented as a sequence
of commands or control points that can be converted to rasterized glyphs of
any resolution. Dual Vector [20] utilizes CNN and distance fields to learn vector
glyphs as a set of dual parts, which are closed Bezier curves complementary
to each other. In DeepVecFont-v2 [31], reference glyphs are processed by CNN
and transformers to generate raster and vector glyphs, respectively, followed by
contour-refinement. In our work, we use different FFG methods as base gener-
ators and apply adaptive refiner on their output to generate rasterized glyphs
that are perceptually closer to the target style.

2.3 Deformable Convolution

[6] proposed deformable convolutional layers that can expand their receptive
field using learnable offsets, unlike convolutional layers with fixed kernels. The
2D offsets are learned as a function of the feature maps of preceding layers, thus
allowing the deformations to be local and adaptive. The free-form deformation
of the sampling grids helps deformable convolutions learn intricate styles better
than standard convolutions. Deformable convolutions have been applied in object
detection [3,6], image-to-image translation [33], and semantic segmentation [39].
DG-Font employed deformable convolutions to learn offsets from style encoding
and used them to deform glyphs from one font style to another.

The refiner uses deformable convolutions to learn target style features that
were missing or incorrectly generated by the base generator in a localized manner
thus bringing it closer to the target style.

2.4 Spatial Transformer Network

STN is a neural network augmented with the spatial transformer module [14]
and is capable of learning spatial transformations. It takes as input feature maps
and outputs the parameters for affine or non-rigid transformations, which is then
applied to the feature maps to generate spatially transformed features. Spatial
transformer modules are differentiable, making STN end-to-end trainable. We
employ STN in the refiner to learn global style features such as slant and thick-
ness of target style conditioned on the content glyph.
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Fig. 1. Overview of the proposed pipeline consisting of a base generator, refiner and
discriminator. Detailed description in Sect. 3.1

3 Methodology

A rasterized glyph with content c ∈ C and style s is denoted as X(c, s). Our goal
is to generate the glyph X(ct, st) as a function of target character ct and target
style st. The target style is supplied by the rasterized reference glyphs drawn by
human designers for characters c ∈ Cref ⊂ C. The target character ct is supplied
as a rasterized glyph X(ct, s0) in some base style s0 for which glyphs for all char-
acters are available. A base generator Fθ, with parameters θ, takes as input the
set of rasterized glyphs {X(c, st) : c ∈ Cref} and X(ct, s0), and gives as output
X̂1(ct, st). For style refinement, we use a refiner model Gφ, with parameters φ,
which processes X̂1(ct, st) locally using a fully convolutional architecture to pro-
duce a refined rasterized glyph X̂2(ct, st). The refined glyph X̂2(ct, st) contains
the local style details which were missing or incorrectly generated in X̂1(ct, st)
and is thus closer to the target style.

In this work, we use DG-font [33], CF-font [30] and DeepVecFont-v2 [31] as
base generators. We discuss the data comprising the content and style in detail
in Sect. 4.1.

3.1 Refiner

The refiner Gφ is a light-weight fully convolutional model consisting of spa-
tial transformer (ST) module [14], deformable convolutions (DCN) [6], resid-
ual blocks and convolutional blocks. The detailed architecture is mentioned in
Table 1. As shown in Fig. 1, the input to the refiner is the rasterized glyph
X̂1(ct, st) generated by the base generator Fθ and the content glyph X(ct, s0) in
the base font concatenated channel-wise.

The first layer of the refiner is the ST module which applies affine trans-
formations on the entire feature map to learn global features such as slant and
stroke width. The transformed feature map is then passed to the DCN layers
which applies convolutional operation at a local level to learn intricate style
features such as serif and different stroke terminals. The output of DCN layers
is processed by the residual blocks and convolutional layers before generating
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the final output. The skip connections in the residual block allow a stable back-
propagation within refiner layers avoiding the vanishing gradient problem. The
output of the refiner is the fully refined rasterized glyph X̂2(ct, st) in the target
style.

Table 1. Refiner Architecture

Layer Kernel Pad Features Norm Activation

STN – – 2 – –
DCN 7 3 16 IN ReLU
DCN 7 3 16 IN ReLU
Resblock 5 2 16 IN LeakyReLU
Resblock 5 2 16 IN LeakyReLU
Convblock 7 3 16 IN LeakyReLU
Convblock 7 3 1 IN LeakyReLU
STN: Spatial transformer network [14], DCN:
Deformable convolutions [6], Resblock: Resid-
ual block, IN: Instance normalization [29],
LeakyReLU with α = 0.3

Refiner Pretraining. The refiner Gφ is pre-trained using a large dataset of
rasterized glyphs in different font styles and for a given Fθ. The dataset consists
of {X̂1(ct, st),X(ct, st),X(ct, s0) : ct ∈ C, st ∈ S}, where S is a finite set of
styles available for training. The rasterized glyph X̂1(ct, st) is obtained from Fθ

and X(ct, s0) from the base font s0. X(ct, st) serves as the ground truth for the
target style st. The refiner pre-training is carried out in a supervised setting,
where Gφ learns to map the input glyph X̂1(ct, st) to the target X(ct, st) by
minimizing the overall loss defined in Eq. (6) in Sect. 3.2. For adversarial loss in
Eq. (6), we adopt the discriminator model defined in [33] and initialize it with
pretrained weights obtained by training DG-Font as the base generator. We use
the same discriminator weight initialization while pretraining the refiner for other
base generators as well. Since we train the refiner to adapt to one font at a time,
instead of the multi-class discriminator in [33], we use a single-class discriminator
by keeping a single neuron in the last layer of the discriminator. Only the last
two layers of the discriminator are re-trained during refiner pretraining. The
discriminator classifies whether a glyph was generated by the refiner or not. We
empirically observe that freezing the discriminator’s initial layers, except for the
last two, maintains its ability to discern real glyphs, stabilizing GAN training
and allowing the refiner to focus on refining intricate stylistic details. Further,
we propose to use a few-shot adaptation method to adapt Gφ to the target style
st as follows.
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Refiner Adaptation. For each target font to be generated, the human design-
ers provide a set of rasterized reference glyphs {X(c, st) : c ∈ Cref} in the target
style st. We use these glyphs as ground truth to finetune the refiner parameters
φ so that it adapts to the target style. Thus, for each target font st, we use the
dataset {X̂1(ct, st),X(ct, s0),X(ct, st) : ct ∈ Cref , st ∈ S̄} to finetune the refiner
parameters. Here, S̄ is the set of styles not seen during training i.e., S̄ ∩ S = ∅.
We use differential learning rate [13] for finetuning: different refiner layers are
finetuned using different learning rate and beta values (parameters of Adam opti-
mizer). Specifically, the initial layers comprising of ST module and DCN layers
are finetuned using a lower β1 value compared to the later layers. In the Adam
optimizer, β1 determines how quickly the optimizer updates the running aver-
age of gradients for a new batch of data. We empirically observe that a lower β1

in the initial layers allows better adaption of the refiner to new font styles. The
fine-tuned refiner is then used for refining other glyphs {X̂1(ct, st) : ct ∈ C\Cref}.
During adaptation, the discriminator weights are frozen and only the refiner is
finetuned. We observed that finetuning the discriminator during adaptation led
to degradation in refiner performance.

3.2 Loss Terms

This subsection describes the loss functions used to train the refiner. X̂2(c, s)
is the refiner output and X(c, s) is the ground truth (target glyph). We use
five losses: (1) adversarial loss to generate realistic glyphs (2) perceptual loss to
generate glyphs that are perceptually similar to the ground truth (3) L1 loss
to generate glyphs that match the ground truth at pixel-level (4) offset loss to
ensure that the model converges to a solution (5) reconstruction loss to train the
model to reconstruct the ground truth.

Adversarial Loss: During adaptation, the refiner is trained to minimize the
Wasserstein GAN loss with gradient penalty as defined in [33]. The refiner Gφ

tries to trick the discriminator D by generating glyphs that are close to the target
style. Gradient penalty is used to penalize the discriminator for large gradient
norms which helps it converge [10].

Ladv = min
Gφ

max
D

E[logD(X(c, s)) + log(1 − D(X̂2(c, s)))] (1)

Perceptual Loss: We utilize the feature reconstruction loss component of per-
ceptual loss defined in [16] which minimizes the L1 loss between the feature maps
of the refined output and the ground truth obtained from a pretrained network.
We use relu1_2, relu2_2, relu3_3 and relu4_3 layers of the VGG16 model to
obtain the feature maps.

Lperc =
P∑

p=1

||hp(X̂2(c, s)) − hp(X(c, s))||1 (2)

where hp(.) refers to the layer p.
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L1 Loss: We train the refiner to minimize the loss between the refined output
and ground truth at pixel level. Since training generative models using L2 loss
results in blurry outputs, we minimize L1 loss between the output and the target.

LL1 = ||X̂2(c, s) − X(c, s)||1 (3)

Offset Loss: Deformable convolution used in Gφ can have a very large receptive
field which makes it difficult for the model to converge to a solution. By mini-
mizing the offset loss defined in [33], we ensure that the model converges during
training.

Loff =
1
N

N∑

i=1

||offseti||1 (4)

where offseti corresponds to the offset learned by ith deformable convolutional
layer.
Reconstruction Loss: Reconstruction loss minimizes the pixel-wise loss
between ground truth and the glyph generated by passing the ground truth
through the refiner. This encourages the refiner to learn an identity transfor-
mation in case X̂1(c, s) is the same as X(c, s). The reconstruction loss term
is

Lrec = ||Gφ(X(c, s)) − X(c, s)||1 (5)

Overall Loss: The overall loss terms for the refiner and the discriminator are

Lgen = λL1 ∗ LL1 + λperc ∗ Lperc + λadv ∗ Ladv,R + λrec ∗ Lrec + λoff ∗ Loff

Ldisc = λadv ∗ Ladv,D + λgp ∗ Lgp

(6)
where λL1, λperc, λadv, λoff , λrec and λgp are hyperparameters.

4 Experiments

In this section, we discuss the dataset preparation, implementation, and eval-
uation metrics used in this work, along with the comparison of our proposed
model with state-of-the-art methods. All the experiments are conducted using a
single NVIDIA Tesla V100 GPU. We observe that the refiner-based pipeline out-
performs the state-of-the-art models on all the evaluation metrics in generating
various font styles accurately.

4.1 Dataset Preparation

We collect a dataset of 2000 fonts in the truetype and opentype format. In each
font, we use the 26 English alphabets {A,...Z} as the complete glyphset C. We
use B, A, S, Q as the set of reference glyphs Cref [2]. We do not demonstrate
results with other scripts and glyphs in this work but the proposed method can
be easily extended to them. The dataset is split into two parts: training fonts S
and testing fonts S̄. The training fonts consist of 1000 fonts selected randomly
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from the dataset and are used to train the base generator Fθ and the refiner Gφ.
A sans-serif font is chosen from the training fonts to be used as the base font s0.
The testing fonts, which comprise the remaining 1000 fonts in the dataset, are
split into two parts: plain fonts and italic fonts to evaluate the refiner’s ability
to adapt to different kinds of fonts. Plain fonts primarily comprise of the non-
italicized sans-serif and serif typefaces. Italic fonts include the italicized forms
of the plain fonts along with other font styles.

4.2 Implementation Details

The hyperparameters comprising of the loss coefficients in Eq. (6) are tuned for
optimal learning. λL1 & λperc are higher to ensure high style accuracy. λoff is
lower to prevent over-constraining the deformable convolution layers and enable
the refiner to adapt to new font styles. Reconstruction and adversarial losses
are balanced with similar coefficients for effective learning. During pretraining,
λL1 > λperc such that the loss function emphasizes accurate glyph content gen-
eration, while during adaptation, equal emphasis is given to style accuracy by
setting λL1 = λperc. We achieve similar performance with a range of hyperparam-
eters values: λadv = 1.0, 10.0 ≤ λL1 ≤ 50.0, 5.0 ≤ λperc ≤ 10.0, 0.5 ≤ λoff ≤ 1.0
and λrec = 2.0 following the relative order described above.

For refiner pretraining, we use λadv = 1.0, λL1 = 50.0, λperc = 5.0, λoff = 1.0
and λrec = 2.0. For refiner adaptation, we use λL1 = 10.0, λperc = 10.0, λoff =
0.5 and λrec = 2.0. We use the Adam optimizer [17] with lr = 0.001, β1 = 0.9
and β2 = 0.999 to train the refiner and discriminator. During adaptation, we use
Adam with a differential learning rate for each refiner layer as described in 3.1.
The spatial transformer and deformable convolutions, which are closer to the
input, are set to lr = 1e−3, β1 = 0 and β2 = 0.999. The rest of the layers are set
to lr = 1e−3, β1 = 0.9 and β2 = 0.999. The refiner is trained with a batch size
of 32 for 50 epochs which takes nearly 6 h on our system. During adaptation,
we finetune the refiner to learn one font at a time using 1000 training steps. In
each training step, the model is trained in a supervised way using the rasterized
reference glyphs with a batch size of 4. The overall adaptation process takes
about 1min per target style.

4.3 Evaluation Metrics and Comparison with State-of-the Art
Models

We evaluate the refiner based on pixel-level and perceptual metrics. The pixel-
level metrics are L1 loss and Structural Similarity Index Measure (SSIM), which
compute the pixel-wise difference between the refined output and ground truth.
The perceptual metrics are Frechet Inception Distance (FID) [11] and Learned
Perceptual Image Patch Similarity (LPIPS) [37], which uses a pretrained neural
network to measure the perceptual similarity between the refined output and
ground truth. We apply the refiner on 3 base generators: DG-Font, CF-Font, and
DeepVecFont-v2. We evaluate their performance in two cases: (1) with adaptive
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refiner based style refinement (2) without style refinement. We modify the DG-
Font network to use 4 reference glyphs instead of 1 and a fixed base font. For
CF-Font, we fix 4 reference glyphs instead of 16, but the base font is chosen
dynamically using the content fusion technique. We train DG-Font and CF-Font
on our dataset after modifying their networks whereas for DeepVecFont-v2, we
use pre-trained weights.

The outputs of the base generators and adapted refiner for various font styles
are illustrated in Fig. 2a and the quantitative results are shown in Table 2. After
applying the adaptive refiner on the base generators, there is consistent improve-
ment in L1 loss and SSIM index. However, the LPIPS and FID scores some-
times show degradation (indicated by red bounding boxes), likely due to reduced
sharpness in the refined outputs compared to the base generator. These metrics
(LPIPS and FID) compare the difference between feature maps of the rasterized
glyphs obtained using pretrained networks (e.g. VGG16), and may emphasize
sharpness of the glyphs over style accuracy [9], resulting in the reduced score.
Despite this, our method achieves scores that are comparable to the best in

Fig. 2. (a) Comparison of the output of base generators and adapted refiner: DGFont
(col 1), Deepvecfont-v2 (col 2), adapted refiner (col 3) and the ground truth (col 4).
In col 2, - denotes invalid fonts for Deepvecfont-v2 (For Deepvecfont-v2, a font style is
valid if its vector glyphs have sequence length less than a certain threshold. It cannot
generate invalid font styles.). (b) Refiner adaptation without overall loss (Left) & with
overall loss (Right): One can observe that the refiner output (col 1) in the left image
contains local incongruencies (marked by red boxes), which are nearly eliminated in
the refiner output (col 1) in the right image. Thus, the overall loss improves refiner
adaptation.
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Table 2. Comparison with state-of-the-art methods

Font Model L1 ↓ LPIPS ↓ FID ↓ SSIM ↑
Plain DGFont 0.0603 0.1014 0.0390 0.8674

CFFont 0.0756 0.1404 0.0271 0.8618
DVFont-v2 0.0807 0.0993 0.0169 0.8220
DGFont+Refiner 0.03810.0689 0.0090 0.9082
CFFont+Refiner 0.0547 0.1178 0.0162 0.8899
DVFont-v2+Refiner 0.0750 0.1020 0.0231 0.8385

Italic DGFont 0.0768 0.1127 0.0582 0.8502
CFFont 0.0858 0.1491 0.0281 0.8462
DVFont-v2 0.1031 0.1119 0.0358 0.7880
DGFont+Refiner 0.04650.0744 0.0100 0.8974
CFFont+Refiner 0.0672 0.1323 0.0649 0.8788
DVFont-v2+Refiner 0.0855 0.1042 0.0287 0.8210

Fig. 3. Refiner output with DGFont [33], CFFont [30] and DeepVecFont-v2 [31] as base
generators. BG: Base Generator output, UR: Unadapted refiner output, AR: Adapted
refiner output, GT: Ground truth. It can be observed that the output of the adapted
refiner closely matches the ground truth.
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these metrics, underscoring its effectiveness. Qualitative results in Fig. 3 fur-
ther demonstrate the efficacy of our approach in terms of achieving better style
accuracy compared to the base generators. The base generator output (col 1)
is markedly different from the ground truth (col 4). The adapted refiner (col
3) rectifies both local (e.g. serifs) and global (e.g. italics) style inconsistencies,
producing glyphs that closely resemble the ground truth. This indicates that the
adaptive refiner enhances the base generator’s output, aligning it more closely
to the target style by addressing style inconsistencies effectively.

5 Ablation Studies

5.1 Effect of Different Loss Terms

We analyze the effect of each loss term during refiner adaptation after pretraining
it with the overall loss defined in Eq. (6). We perform adaption of the pretrained
refiner using different loss terms, starting from the L1 loss and then incrementally
adding new loss terms, followed by evaluation of the adapted refiner. The results
are shown in Table 3. The L1 loss and SSIM index consistently improve with the
addition of each loss term, with the best score being achieved using the overall
loss in Eq. (6). It is observed that dropping Lrec from the overall loss during
adaptation gives comparable performance (marked in blue). The LPIPS and FID
scores achieved using the overall loss are best or comparable (marked in blue)
to the best score (marked in black) achieved using other losses. As discussed in
Sect. 4.3, these metrics compare difference between the rasterized glyphs at the
feature level, and may give emphasis to sharpness of the glyphs over their style
accuracy [9], leading to comparable scores. Figure 2b clearly demonstrates the
improvement in style accuracy of the refined output compared to the output of
the base generator, underscoring the efficacy our method.

5.2 Effect of Different Layers

We analyze the effect of the Spatial Transformer (ST) and Deformable Convo-
lutio (DCN) layers in the refiner’s performance. We pretrain and adapt different
refiner models using the overall loss defined in Eq. (6), starting with only convo-
lutional and residual blocks and then incrementally adding ST and DCN layers,
followed by evaluation of the adapted refiner. The results are shown in Table 4. It
can be seen that both the pixel-wise metrics (L1 loss and SSIM index) and per-
ceptual metrics (LPIPS and FID scores) improve consistently with the addition
of ST and DCN layers, with the best score being achieved using the proposed
refiner model which contains one ST and two DCN layers. Thus, ST and DCN
layers enhance the refiner’s ability to adapt to various font styles.
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Table 3. Effect of different loss terms on adaptation to font styles

Model Loss L1 ↓ LPIPS ↓ FID ↓ SSIM ↑
PLAIN FONTS
DGFont – 0.0603 0.1014 0.0390 0.8674
Refiner 1.0LL1 0.0393 0.0808 0.0160 0.9046

10.0LL1 + 10.0Lperc 0.0385 0.0699 0.0064 0.9084
1.0Ladv + 10.0LL1 + 10.0Lperc 0.0382 0.0685 0.0121 0.9085
1.0Ladv + 10.0LL1 + 10.0Lperc + 0.5Loff 0.0381 0.0686 0.0101 0.9088
1.0Ladv + 10.0LL1 + 10.0Lperc + 0.5Loff + 2.0Lrec 0.0381 0.0689 0.0090 0.9086

ITALIC FONTS
DGFont – 0.0768 0.1127 0.0582 0.8502
Refiner 1.0LL1 0.0489 0.0915 0.0172 0.8913

10.0LL1 + 10.0Lperc 0.0473 0.0767 0.0075 0.8963
1.0Ladv + 10.0LL1 + 10.0Lperc 0.0475 0.0778 0.0085 0.8949
1.0Ladv + 10.0LL1 + 10.0Lperc + 0.5Loff 0.0483 0.0792 0.0082 0.8944
1.0Ladv + 10.0LL1 + 10.0Lperc + 0.5Loff + 2.0Lrec 0.0465 0.0744 0.0100 0.8974

Table 4. Effect of ST and DCN layers on adaptation to font styles

Refiner Model L1 ↓ LPIPS ↓ FID ↓ SSIM ↑
PLAIN FONTS
2 ConvBlock + 3 ResBlock + 2 ConvBlock 0.0456 0.0934 0.0149 0.8965
1 ST + 2 ConvBlock + 3 ResBlock + 2 ConvBlock 0.0412 0.0783 0.0145 0.9021
2 DCN + 3 ResBlock + 2 ConvBlock 0.0393 0.0737 0.0143 0.9057
1 ST + 2 DCN + 3 ResBlock + 2 ConvBlock (Proposed) 0.0381 0.0689 0.0090 0.9082
ITALIC FONTS
2 ConvBlock + 3 ResBlock + 2 ConvBlock 0.0545 0.1043 0.0259 0.8855
1 ST + 2 ConvBlock + 3 ResBlock + 2 ConvBlock 0.0489 0.0819 0.0168 0.8924
2 DCN + 3 ResBlock + 2 ConvBlock 0.0487 0.0853 0.0181 0.8927
1 ST + 2 DCN + 3 ResBlock + 2 ConvBlock (Proposed) 0.0465 0.0744 0.0100 0.8974

6 Conclusion

In this work, we propose an adaptive refiner model capable of transforming ras-
terized glyphs into the target font style through a few-shot adaptation process.
The adaptive refiner improves the style accuracy of FFG models, which often
fail to generate diverse font styles accurately, by refining the glyphs these models
produce. Our model demonstrates its ability to adapt to various font styles and
outperform FFG models in addressing and correcting local style inconsistencies
within the generated glyphs. This is achieved through the use of spatial trans-
formers and deformable convolutions, which learn the global and local trans-
formations essential for refining the output of FFG models to achieve superior
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style accuracy. Extensive experiments validate the effectiveness of our proposed
method in enhancing the style accuracy of FFG models, specifically for English
alphabets. However, the approach is not limited to English and can be easily
extended to other scripts and glyphs. Further exploration is needed to inves-
tigate its effectiveness across a broader spectrum of scripts. Our findings pave
the way for more sophisticated approaches in font generation, offering promis-
ing insights for the development of more versatile and accurate font adaptation
models. This work provides a robust solution to the current limitations of FFG
models and encourages further research to validate and extend our method to
diverse writing systems.
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Abstract. Recently, the impressive generative capabilities of diffusion
models have been demonstrated, producing images with remarkable
fidelity. Particularly, existing methods for the 3D object generation tasks,
which is one of the fastest-growing segments in computer vision, pre-
dominantly use text-to-image diffusion models with textual inversion
which train a pseudo text prompt to describe the given image. In prac-
tice, various text-to-image generative models employ textual inversion
to learn concepts or styles of target object in the pseudo text prompt
embedding space, thereby generating sophisticated outputs. However,
textual inversion requires additional training time and lacks control abil-
ity. To tackle this issues, we propose two innovative methods: (1) using
an off-the-shelf image adapter that generates 3D objects without tex-
tual inversion, offering enhanced control over conditions such as depth,
pose, and text. (2) a depth conditioned warmup strategy to enhance 3D
consistency. In experimental results, ours show qualitatively and quanti-
tatively comparable performance and improved 3D consistency to the
existing text-inversion-based alternatives. Furthermore, we conduct a
user study to assess (i) how well results match the input image and (ii)
whether 3D consistency is maintained. User study results show that our
model outperforms the alternatives, validating the effectiveness of our
approaches. Our code is available at GitHub repository: https://github.
com/Seooooooogi/Control3D IP/

Keywords: 3D Generative Models · Neural Radiance Fields ·
Diffusion Models

1 Introduction

Generative models are widely used in real-world industrial applications, includ-
ing creating artworks [33], video generation [25,39], automatic colorization [14,
45], virtual try-on [48], and 3D computer graphics [2,3,20,23,26,27]. Especially,
3D object generation tasks have significant demand in computer vision indus-
tries such as Artificial Reality (AR), Virtual Reality (VR), and Gaming. Con-
ventionally, generating 3D objects has been a delicate and intricate process that
requires experts well-versed in 3D graphics tools with a considerable amount
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Fig. 1. Comparison between (a) existing method using text-guided priors via textual
inversion and (b) our method that employs a single image prompt.

of time. However, recent breakthroughs have introduced 3D generative models
(e.g., text-to-3D model and image-to-3D model) that allow even non-experts to
effortlessly produce 3D objects.

Especially, several methods [20,27] have achieved significant advancements
in image-to-3D generation by using text-guided priors and textual inversion [6],
which is subsequently used in text-to-image diffusion model. However, as shown
in Fig. 1, textual inversion requires additional time and cost to get a new prompt
because it needs training process to optimize pseudo text prompt.

To address these issues, we propose the following contributions.

– We propose a controllable image prompt score distillation sampling (called
SDS) method that uses a single image as a prompt without textual inversion
to generate novel views of 3D object.

– Our method leverages depth estimated from the 3D object as a condition for
ControlNet [46] to prevent the degradation of 3D consistency, and employs a
depth conditioned warmup strategy to alleviate instability of depth in early
training epochs.

– We experimentally show that our proposed method generates diverse, con-
trollable 3D objects using a given single image and optional prompts such as
depth, pose, and text. Our method quantitatively and qualitatively outper-
forms alternative approaches.

– We also conduct a user study that participants score two evaluation met-
rics: fidelity and 3D consistency. Our method exhibits superior performance
compared to SOTA methods.
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2 Related Work

Neural 3D Representations. Neural Radiance Fields (NeRF) [22] trains
deep neural network with sparse input views and camera poses to optimize the
inherent continuous volumetric scene function, synthesizing novel views of given
scenes. Although NeRF has capability of 3D reconstruction task, optimization
process is slow and hard to get high-resolution results. To overcome computa-
tional cost, Instant-NGP [24] uses smaller neural networks, leverages multi reso-
lution hash grids without sacrificing quality. On the other hand, Deep Marching
Tetrahedra (DMTet) [37] leverages novel hybrid implicit-explicit 3D representa-
tions, achieving high resolution, finer geometric details with fewer artifacts with
efficient memory consumption. In here, we utilize Instant-NGP and DMTet for
generate 3D object from a single image, aiming for higher quality results while
maintaining memory efficiency.

Diffusion Models. In computer vision tasks such as inpainting [19,34], image
editing [21,40], super-resolution [15,35], image generation [29,33] and video gen-
eration [25,39], diffusion models are gaining popularity due to great result qual-
ity. Diffusion models train neural networks to denoise images blurred with Gaus-
sian noise and to reverse the diffusion process [9]. Especially, Stable diffusion [33],
which is open source, achieved great success with datasets consisting of large
scale text-image pairs [36]. Subsequent work, ControlNet, leverages the expres-
siveness of the Stable diffusion model, expanding it to incorporate a variety of
conditional priors such as sketches, depth, and human poses [46]. Gal, Rinon
et al. [6] introduce textual inversion, which optimizes a pseudo text prompt by
using only 3–5 images of a user-provided concept to utilize the expressiveness of
Stable diffusion model. However, it requires additional training time and usually
needs several images. To overcome these shortcomings, IP-Adapter [44] pro-
poses a lightweight adapter to directly input an image prompt into a pretrained
text-to-image diffusion model, thereby facilitating multi-modal image generation
without additional training time.

3D Generative Models. By integrating NeRF and diffusion models, several
approaches aim to train 3D generative models, either by using text [3,16,26] or a
single image [20,27]. For text-to-3D generation, DreamFusion [26] proposes score
distillation sampling to guide the training of NeRF models using a pretrained
text-to-image diffusion model. Although DreamFusion successfully achieved first
text-to-3D generative task with pretrained diffusion models, it fails to generate
high-resolution objects, requiring up to one day to train a single 3D object. To
produce high-resolution 3D objects, several methods are proposed. Magic3D [16]
integrates DMTet [37] during the training process. Fantasia3D [3] disentangles
geometry and appearance to generate high-fidelity 3D objects that closely align
with real graphics rendering. For image-to-3D generation task, RealFusion [20]
employs textual inversion from an image to derive custom tokens for training
a 3D generative model instead of text prompts. On the other hand, Zero-1-to-
3 [18] finetunes the Stable diffusion model to simultaneously input an image
and geometry-related camera pose priors, facilitating the synthesis of images
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Fig. 2. Overall architecture of our proposed 3D generative model. During training,
our method iteratively use the following stages: (i) controllable image prompt score
distillation sampling, and (ii) depth conditioned warmup strategy.

from specific 3D viewpoints. Magic123 [27] combines the Stable diffusion model
with textual inversion and Zero-1-to-3 simultaneously. Despite RealFusion and
Magic123 utilize textual inversion for single image, these methods often fail to
capture fine details of given images and requires additional training time.

3 Methods

The main goal of our method is to synthesize a 3D object without relying on
text prompts obtained by textual inversion, instead directly using controllable
image prompts (e.g., only image or with optional conditions). To achieve this
goal, as shown in Fig. 2, we introduce controllable image prompt score distillation
sampling and depth conditioned warmup strategy. We build the proposed model,
which consists of two main components, using the Magic123 [27] architecture
as the baseline. The proposed model performs alternately two stage training
process (i.e., coarse-to-fine training). During the 1st stage for training coarse
grained representation, we train NeRF. In detail, initialized NeRF model with
learnable parameters θ, predicts the volume density σ and color c of each pixel
given a random camera pose c.

(c, σ) = NeRF (θ; c) (1)

By computing each pixel’s volume density and color, NeRF predicts image x̂ ∈
R

H×W×3 and depth d̂ ∈ R
H×W×1.

When the 1st training stage finished, we finetune the NeRF with DMTet to
represent the target 3D object at high resolution during 2nd stage for train-
ing fine grained representation. Unlike NeRF which has entangled geometry and
texture representations, DMTet has disentangled geometry and texture represen-
tations. For geometry representation, DMTet uses a deformable tetrahydral grid
(VT , T ) [37], where tetrahydral grid denotes T and its vertices denote VT . DMTet
represents the 3D object using a Signed Distance Function (SDF) s at vertex
vi ∈ VT and a triangle deformation vector Δvi. In here, s is initialized from the
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Fig. 3. An overview of controllable image prompt score distillation sampling. See
details on Sect. 3.1.

NeRF, while triangle deformation vector Δvi is initialized as zero. For texture
representation, DMTet uses a neural color field, as mentioned in Magic3D [16],
is also initialized from the NeRF.

3.1 Controllable Image Prompt Score Distillation Sampling

As shown in Fig. 3, a single input image x, optionally including various condi-
tions such as text, depth, sketch, is embedded into a controllable image prompt
through the well-known pretrained Image Prompt Adapter (IP-Adapter) [44],
which consists of the pretrained CLIP [28] image encoder and the single linear
layer. The embedded controllable image prompt and depth d̂, obtained from
NeRF/DMTet, are then injected as conditions into a stable diffusion model like
ControlNet [46] to predict ε̂2D.

The x̂ obtained from NeRF/DMTet is added time-dependent noise ε to pro-
duce a noisy latent x̂t. x̂t is then fed into the ControlNet [46]. Consequently,
ControlNet outputs ε̂2D, corresponding to the random diffusion timestep t. The
loss function LIP−2D for 2D score distillation sampling is as follows:

LIP−2D = Et,ε

[
w(t)(ε̂2D(ẑt;x, d̂, t) − ε)

∂x

∂θ

]
(2)

where w(t) represents the time-dependent weighting function. By directly inject-
ing input image into the stable diffusion model, the 2D score distillation sampling
loss guides NeRF/DMTet to adhere to the input image from any camera pose.
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Fig. 4. An overview of depth conditioned warmup strategy. See details on Sect. 3.2.

Similar to ControlNet, Zero-1-to-3 predicts ε̂3D when given x̂t as input. The
loss function L3D for 3D score distillation sampling is as follows:

L3D = Et,ε

[
w(t)(ε̂3D(ẑt;x, c, t) − ε)

∂x

∂θ

]
(3)

Although L3D serves the same purpose as LIP−2D, Magic123 [27] found that
training with L3D can lead NeRF/DMTet to have better 3D consistency.

Additionally, a primary requirement of image-to-3D generative models is to
reconstruct input image from a reference camera pose cr. Given the input image
x masked with M, which is acquired by a dense prediction transformer [30],
and the predicted image x̂r masked with Mr, we perform the reconstruction by
comparing x and x̂r. The reconstruction loss Lrec is as follows:

Lrec = ‖M � (x − x̂r)‖22 + ‖M − Mr‖22 (4)

where � is element-wise product. Xu, Dejia et al. [43] introduce that recon-
structing 3D object from 2D images often results in flat geometry. To alleviate
this issue, we incorporate a monocular depth regularization loss Ld, inspired by
Magic123 [27]. Given predicted depth d̂r from the reference camera pose cr and
the input image’s pseudo depth dx, estimated by pretrained monocular depth
estimator [31], the loss function Ld is calculated using the negative Pearson
correlation between d̂r and dx, where are masked with M.

Ld =
1
2

[
1 − Cov(dx � M, d̂r � M)

σ(dx � M), σ(d̂r � M)

]
(5)

The normal smoothness loss function Ln is designed to ensure smooth nor-
mals for the 3D object, as generated 3D objects often exhibit noisy artifacts on
their surfaces. Specifically, following RealFusion [20], we compare the normals
n̂ ∈ R

H×W×3 both before and after applying a Gaussian filter blur. Then the
loss function Ln is defined as follows:

Ln = ‖n̂ − stopgrad(blur(n̂, k))‖22 (6)

where stopgrad is stop-gradient operation. We use a kernel size k = 9 for the
Gaussian filter.
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Ultimately, we use the following total loss Ltotal as follows:

Ltotal = λIP−2DLIP−2D + λ3DL3D + λdLd + λnLn + Lrec (7)

3.2 Depth Conditioned Warmup Strategy

Typically, text-to-image diffusion models suffer from 3D inconsistencies due to
insufficient 3D field information [26]. To mitigate this issue, we integrate the
depth d̂ obtained from NeRF/DMTet model as a condition for the ControlNet.
As shown in Fig. 4, ControlNet [46] injecting depth d̂ introduce a 3D prior into
the NeRF/DMTet, thereby enhancing 3D consistency. However, d̂ tends to be
unstable in early epochs. Therefore, for the initial 15 epochs, we only use the
Zero-1-to-3, exploiting on its enhanced geometric capabilities during the 1st
stage of training. After 1st stage, we use both ControlNet and Zero-1-to-3 for
2nd stage of training.

Consequently, depth conditioned warmup strategy optimizes a unified 3D
field, ensuring that the image synthesized from any viewpoint aligns with high
probabilities as evaluated by Zero-1-to-3 by distilling pretrained diffusion models
with a depth condition to refine the 3D consistency.

4 Experiments

4.1 Implementation Details

We use Instant-NGP [24] as the NeRF backbone model, consisting of three lay-
ers with 64 hidden dimensions, which is same as [26,27]. We integrates depth-
conditioned ControlNet v1.1 with Stable Diffusion v1.5 and the pretrained Zero-
1-to-3 model (100, 500 iteration checkpoint). For the IP-Adapter, we utilize a
vanilla model which extracts 4 tokens from the input image. We maintain the
same hyperparameters, including the elevation angle for the input image, for all
experiments.

Datasets. We conduct experiments on the publicly available NeRF4 [22], Real-
fusion15 (RF15) [20], Google Scanned Objects (GSO) [5], and Common Objects
in 3D (CO3D) [32] datasets. The NeRF4 dataset includes one simple object
(mic), two objects with complex geometries (ficus, drums), and one challenging
case (chair) where the input image is from the back view. The RealFusion15
dataset comprises real-world photos, including bananas, Barbie cake, bird spar-
row, blue bird, cactus, cat statue, colorful teapot, fish, metal dragon statue,
microphone, stone dragon statue, teddy bear, two cherries, two donuts, and
watercolor horse. The GSO dataset includes 3D scans of common household
items, providing five views for each object. We used single images of five objects:
squirrel, school bus, hammer, dog, and shark. The CO3D dataset offers multi-
view images of real-world objects from 50 MS-COCO [17] categories in the form
of video frames. For our experiments, we used four scenes: bench, car, bicycle,
and hydrant.
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Fig. 5. Qualitative image-to-3D generation performance comparison with SOTA alter-
natives (Dreamfusion [26], RealFusion [20], LGM [41], LRM [11], Zero-1-to-3 [18],
Magic123 [27]) on realfusion15 [20] and NeRF4 [22] datasets. More detailed results
can be found on our GitHub.
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Fig. 6. Comparison of qualitative image-to-3D generation performance with the previ-
ous methods (Dreamfusion [26], RealFusion [20], LGM [41], LRM [11], Zero-1-to-3 [18],
Magic123 [27]) on GSO [5] and CO3D [32] datasets. More detailed results can be found
on our GitHub.
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Fig. 7. Various controllable 3D synthesis with image prompt and optional conditions.

4.2 Quantitative Results

We perform quantitative experiments using contrastive language-image pre-
training-similarity (CLIP-similarity) [20,28] and adjacent learned perceptual
image patch similarity (A-LPIPS) [10] as evaluation metrics for 3D object gen-
eration. CLIP-similarity measures the consistency between the rendered image
from evenly spaced azimuths and the category of its corresponding reference
image. A-LPIPS is derived from the learned perceptual image patch similarity
(LPIPS) metric [47], predicted on the notion that two images from adjacent view-
points should be perceptually similar if the 3D object is consistent. To evaluate
3D consistency, we measure the average A-LPIPS between images adjancent in
viewpoint, maintaining the same elevation angle as used in the CLIP-similarity
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Fig. 8. Qualitative comparison with Control3D [4] and ours on sketch condition. Note
that Control3D takes sketch and text as input, not image.

assessment. For A-LPIPS measurements, we employ neural network backbones
such as Alex [13], and VGG [38], as referenced in previous work [10].

As shown in Table 1, quantitative experiments compare our method with
the state-of-the-art (SOTA) alternatives described in [11,27,41]. We verify the
superiority of our method, which relies solely on image prompts without textual
inversion. In practice, the baseline having textual inversion needs to learn a
pseudo text prompt from the input image, which requires an additional 1–2
hours of training time. In contrast, our method directly utilizes the input image,
significantly reducing training time.

In the CLIP-similarity metric, our method leverages a depth-conditioned
warmup strategy to preserve geometry during the training of the target 3D
object, demonstrating improved 3D consistency compared to alternatives. While
LRM and LGM perform well in terms of the A-LPIPS metric, our approach
excels in CLIP-similarity, indicating that our method generates 3D objects that
more accurately align with the input image.

However, these evaluation metrics often fail to capture visual realism on
3D objects. To address the limitations of quantitative evaluations, we further
evaluate and visualize ours using comparison from novel view synthesis.

4.3 Qualitative Results

In Fig. 5 and Fig. 6, we provide a comparison of visualizations of novel view syn-
thesis by DreamFusion [26], RealFusion [20], LRM [11], LGM [41], Magic123 [27]
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Fig. 9. (a) Ablation Study. (1) denotes the baseline that does not utilize IP-Adapter.
(2) IP-Adapter is utilized, however, attached to naive Stable Diffusion model, not Con-
trolNet. (3) indicates the absence of depth conditioned warmup strategy. (b) The effects
of depth conditioned warmup strategy. (up) For n epochs, only ε̂3D is backpropagated
to NeRF model. (down) CLIP-similarity results of each setup.

(both with textual inversion and without textual inversion), and our method.
Ours consistently generates novel views that closely preserve the detailed textual
and geometric features of the given input image, whereas other methods often
lose high-frequency details. More examples for qualitative experiments can be
found on our GitHub repository.

In contrast to alternative methods, by adding control conditions to the input
image, our model is possible to generate controllable 3D objects. Figure 7 demon-
strates our model can incorporate various conditions such as scribble, pose,
depth, and canny. Therefore, our method can utilize not only sketch, but also
various optional conditions.

As shown in Fig. 8, we also compare in controllable 3D object generation
with previous work, Control3D [4] that uses text prompt and sketch condition
as input. When given a sketch condition, our method outperforms not only
adheres to the specified conditions faithfully, but also excels in maintaining 3D
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Table 1. Quantitative results on NeRF4, RealFusion15(RF15), GSO, and CO3D
datasets.

Dataset Metrics LRM [8] LGM [41] Magic123 [27] textual inversion Ours

w/o w/

RF15 [20] CLIP-similarity↑ 0.705 0.529 0.827 0.828 0.850

A-LPIPSVGG↓ 0.0071 0.0109 0.0790 0.0770 0.0342

A-LPIPSAlex↓ 0.0036 0.0069 0.0559 0.0536 0.0213

NeRF4 [22] CLIP-similarity↓ 0.615 0.480 0.774 0.747 0.782

A-LPIPSVGG↓ 0.0083 0.0115 0.0683 0.0699 0.0335

A-LPIPSAlex↓ 0.0055 0.0097 0.0537 0.0519 0.0213

GSO [5] CLIP-similarity↑ 0.710 0.564 0.737 0.763 0.761

A-LPIPSVGG↓ 0.0075 0.0056 0.0165 0.0143 0.0121

A-LPIPSAlex↓ 0.0044 0.0055 0.0110 0.0088 0.0077

CO3D [32] CLIP-similarity↑ 0.630 0.546 0.702 0.670 0.730

A-LPIPSVGG↓ 0.0072 0.0055 0.0137 0.0121 0.0110

A-LPIPSAlex↓ 0.0041 0.0049 0.0101 0.0092 0.0082

Train time(m)↓ ∼ 1 ∼ 1 ∼ 30 ∼ 120 ∼ 30

consistency. It demonstrates the effectiveness of controllable image prompt score
distillation sampling.

4.4 Discussion

In Fig. 9(a), we conduct an ablation study on the baseline of our method. (1)
Without IP-Adapter, undesirable artifacts are produced as textual inversion
trained with a single image fails to capture input image’s concepts or styles
in detail. (2) Without depth condition (refer to Sect. 3.1), 3D model fails to
maintain 3D consistency. (3) Without depth conditioned warmup strategy (refer
to Sect. 3.2), 3D consistency is also adversely affected because predicted depth
is unstable in early epochs.

We examine the effects of a depth conditioned warmup strategy in our
method. As depicted in Fig. 9(b), the edge case where a warmup stage is absent,
the fidelity of 3D object is compromised. As shown in Table 2, we investigated
optimal epochs n for the warmup strategy. Backpropagating only ε̂3D to the
NeRF model achieves the optimal value of CLIP-similarity when n is set to 15,
based on our experimental results. Figure 9(b) also provides detailed visualiza-
tion results from front view to most extreme case of the rear view of the input
image’s camera pose.

4.5 User Study

While existing metrics for evaluating text-to-3D models are available [7,42],
the reliability of using CLIP-similarity and A-LPIPS for evaluating image-to-
3D models remains questionable [12]. Therefore, we evaluate the alignment of
generated 3D results with human preferences through a user study. In user
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Fig. 10. (a) User study evaluation of the generated 3D objects. Participants are asked
to evaluate two questions regarding fidelity(left) and 3D consistency(right). The rating
scale is 1–10. (b) User study form. We show participants an input image (top) and 8
views (including reference view) of the 3D object trained on the input image.

Table 2. Variation of CLIP-similarity with varying warmup epochs (n) on the depth-
conditioned warmup strategy.

warmup epochs(n) 0 15 30 45

CLIP-similarity 0.830 0.834 0.829 0.784

study, participants are shown the input images alongside eight rendered views
of 3D objects, with evenly spaced azimuths (see Fig. 10). They are then asked to
respond to two questions: (i) Fidelity, (ii) 3D consistency. Fidelity evaluates how
closely generated 3D objects visually match the object in the input image. 3D
consistency, regardless of the input image, assesses how naturally results from
any camera viewpoint and their freedom from Janus problem [1]. Responses are
rated on a scale from 1 to 10, with higher scores indicating better performance.

We compare our method with alternative methods such as RealFusion, Zero-
1-to-3, Magic123, LRM, and LGM. As depicted in Fig. 10, our method shows
matched or better performance against the existing alternatives in terms of
both fidelity and 3D consistency. These results validate the effectiveness of our
method.

5 Conclusion

In this paper, we proposed a novel approach for the image-to-3D generation
task. While existing methods employ text-guided priors and textual inversion
to derive text prompt, our method is directly utilizes a single image prompt.
Ours allows for the incorporating optional conditions such as depth, pose, and
text to facilitate more controllable generation of 3D object. Additionally, we
propose depth conditioned warmup strategy to enhance 3D consistency. In the
public benchmark, our method shows comparable performance to the existing
state-of-the-art alternatives.
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like decisions. Ethical concerns are raised because current models are
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cation accuracies and decrease in misalignment rates indicate that the
L+R fine-tuned models align more with human ethics. Hence, this study
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1 Introduction

In recent years, there has been exponential growth in advancements in artifi-
cial intelligence (AI) [15], significantly contributing to the resolution of complex
problems [10]. A major breakthrough in the domain of artificial intelligence (AI)
is the emergence of large language models (LLMs), which have excelled in nat-
ural language processing (NLP) tasks [16] such as sentiment analysis, text sum-
marization, and text-to-speech, among others. Despite the rapid development,
limitations remain regarding the ethical implications of large language models
(LLMs) [30]. Large language models (LLMs) are vulnerable in critical domains
dealing with sensitive areas such as human ethics, leading to growing appre-
hension regarding their alignment with human values. For instance, generative
language models might offer violent or harmful information to users, such as
instructions for developing malware. Furthermore, LLMs can also provide false
and misleading information, such as the claim that Bill Gates is the president
of the United States. They may also give incorrect medical information, posing
potential harm to patients. Due to these vulnerability issues, this work shows an
effective approach to reduce the misalignment of LLMs with human ethics.

Numerous approaches have already been implemented to address the ethical
limitations of LLMs. Hendrycks et al. [11] create a large dataset named ETHICS
that encompasses scenarios related to justice, virtue, deontology, utilitarianism,
and commonsense. They have fine-tuned various language models on the dataset

Table 1. Responses produced by three distinct versions of Llama-2 (7B) for a given
input. The first version corresponds to the original pre-trained Llama-2 (7B). The
second version denotes Llama-2 (7B), fine-tuned exclusively on labels (L). The third
version showcases Llama-2 (7B) fine-tuned on both labels and reasons concurrently
(L+R), representing our novel and best-performing approach in this study. We notice
that the L+R fine-tuned model generates better quality human-like reasons for the
provided input.

Prompt: Evaluate whether the statement is ethical or unethical with short reason.

Statement Pre-trained Fine-tuned (L) Fine-tuned (L+R)

I am entitled
to eat in the
pool at the
swimming

pool.

Unethical: Not unr-
easonable to expect
adherence to pool

rules.

Unethical: I am not
paying for a meal.
The statement is

unethical because I
am not paying for

a meal.

Unethical. You entitled to eat in the
pool when you are at the swimming

pool is unethical. The pool is for
swimming. If you want to eat then go

in the kitchen. But if you want to
swim then go to the pool area. So I

think it’s unethical to eat in the pool.

As a young
chef, I loved

experimenting
with exotic
fruits at my
restaurant.

Ethical: I would
often use them in
my dishes without
asking where they
came from. Unethi-
cal: The chef is not

considering the
ethical implications

of their actions.

Ethical: The state-
ment is ethical. The
statement is justi-

fied in expecting my
restaurant to be chi-
ld friendly because I
paid my employees’

wages promptly.

Ethical: The statement is ethical.
Exotic fruits are fruits that are not
normal to be found in our country.

Those fruits are very much expensive.
But if a chef is experimenting with
those fruits in their restaurant, then
it will be a great experience for the
people who want to taste that fruit.
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Fig. 1. Steps for evaluating responses generated by LLMs to compute Misalignment
Rate (MAR). Five distinct human evaluators independently evaluate each LLM-
generated response as Good or Bad. The final evaluation class is determined by majority
voting. Finally, the total number of Bad responses is counted to calculate the Misalign-
ment Rate.

to classify whether a scenario is ethical or unethical. This work has contributed
to the task of aligning LLMs with humans. However, the paper [11] only focuses
on classifying a scenario as ethical or unethical. They do not include an approach
that allows language models to generate reasoning similar to human beings (see
Table 1). To reduce the risk associated with the alignment problem, aligning
language models with human-like reasons is essential. This will ensure that LLMs
classify scenarios correctly and provide strong human-like reasons behind their
classification. This clearly shows a gap in the existing alignment approaches.

To address the identified gaps, this work proposes an approach to enable
language models to think similarly to humans and generate human-like rea-
soning across various scenarios. We curate a novel Dataset for Aligning Reasons
(DFAR). In this study, we focus on enhancing the ‘ETHICS’ dataset [11] by refin-
ing it through human annotation, specifically targeting the categories of Com-
monsense and Justice. The original dataset, ‘ETHICS,’ comprises five distinct
ethical classes: Justice, Deontology, Virtue Ethics, Utilitarianism, and Common-
sense. However, we narrowed our scope to Commonsense and Justice, which are
more fundamental concepts for deeper analysis and alignment. Through metic-
ulous human annotation, we provide detailed reasons for each categorization.
This enriches DFAR and offers a comprehensive resource for studying ethical
statements within commonsense and justice, providing human-aligned reason-
ing. Commonsense reasoning is the root cause of making ethical decisions. This
allows us to fathom the world and its potential consequences and navigate the
social norms. Justice is another core ethical principle that handles fairness and
equal treatment. By focusing on these two domains of ethics, the research builds a
concrete foundation for understanding human-like reasoning. DFAR comprises a
text dataset encompassing ethical or unethical statements and the reasons under-
lying their labels. It comprises 2886 ethical samples (57.7%) and 2114 unethical
samples (42.3%), annotated by 12 annotators. While numerous ethics-related
datasets are available, there exists a notable scarcity of datasets incorporating
logical human-like reasoning. So, the construction of DFAR dives in to fill the
gap. The DFAR dataset played a pivotal role in the supervised fine-tuning of
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LLMs. The fine-tuning process involved two approaches: (i) using labels only and
(ii) incorporating labels and their corresponding reasons. The second fine-tuning
approach, which incorporates both labels and reasons, is a unique approach not
present in previous works. To substantiate the efficacy of this approach, the fine-
tuned and the non-fine-tuned versions of LLMs underwent evaluation in an ethics
classification task. The findings of the classification task demonstrate that the
newly proposed fine-tuning method surpasses alternative approaches. Further-
more, all the versions of LLMs were utilized to generate reasons based on pro-
vided input statements. As the models generated their responses, the responses
were evaluated by humans. Experiments show that when those generated reasons
were human-evaluated, our proposed fine-tuning approach consistently yielded
superior, human-like reasons for the provided inputs. We calculated a misalign-
ment rate, the proposed evaluation metric that calculates the number of bad
responses in the total number of responses as shown in Fig. 1. The major con-
tributions of this work are summarized below:

– Introduction of a modified ethics dataset containing human reasons for ethical
and unethical scenarios, named “Dataset For Aligning Reasons” (DFAR).

– In contrast to existing fine-tuning approaches that use only ethics labels, we
employ a unique fine-tuning strategy that enables LLMs to be fine-tuned using
both labels and their corresponding reasons simultaneously. This approach
allows the LLMs to understand the ethical implications better.

– We evaluate existing and proposed fine-tuning approaches on the classifi-
cation and reason-generation tasks. Our fine-tuning approach significantly
outperforms others in both of these tasks.

2 Related Works

Dataset Curation for AI Alignment. To address the ethical concerns of
artificial intelligence (AI), Wang et al. [28] emphasize the significance of data
collection in tackling the AI Alignment Problem [32]. To bridge the gap between
human and AI perspectives, they conceptualize an instruction Ik = (xk, yk),
where xk denotes input and yk denotes the corresponding response. Humans can
annotate the response to ensure that LLMs learn from human responses. For this,
Hendrycks et al. [11] introduce the “ETHICS" dataset, comprising data pertinent
to justice, virtues, common sense, and related aspects. Although several datasets
related to toxicity [5], hate speech [19], and morality [12] have been curated
to improve LLM alignment with human values, they typically consist only of
labels and lack the underlying reasons for those labels. To mitigate this gap, our
work begins with constructing an ethics dataset containing human reasoning for
ethical-unethical scenarios.

Supervised Fine-Tuning. Supervised fine-tuning is a crucial technique for
aligning large language models (LLMs) with human-like reasoning and ethi-
cal decision-making. Hendrycks et al. [11] underscore the importance of using
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supervised learning to align AI systems with human ethical standards, primar-
ily by fine-tuning with ethical labels. This forms the basis of current align-
ment methodologies. Building on this foundation, Wang et al. [28] highlight the
significance of fine-tuning and rigorous model evaluation in achieving reliable
alignment. Ouyang et al. [20] propose practical strategies for aligning language
models through supervised fine-tuning using human feedback, which enhances
aspects such as truthfulness and toxicity mitigation. In the context of reason
generation, Li et al. [18] and Wang et al. [27] emphasize the effectiveness of fine-
tuning in enhancing reasoning capabilities. The “Alignment Fine-Tuning” (AFT)
methodology, as explored by Wang et al. [27], employs suitable prompts during
fine-tuning to better align LLM responses with human reasoning. Similarly, Wei
et al. [29] have shown the importance of using appropriate prompts during fine-
tuning to better align with human reasoning. Our study extends the supervised
fine-tuning approach by incorporating both ethics labels and their corresponding
reasons. This novel fine-tuning methodology aims to improve the alignment of
language models with human ethics more effectively than the existing approach
that solely relies on labels.

Human Evaluation. In AI alignment tasks, the reasons generated by LLMs
must be evaluated by humans to ensure their reasoning capabilities. For human
evaluation, [31] set criteria of good and bad for generated responses. The “good"
label indicates that model-generated reasons are similar to human reasoning and
well-structured, whereas the “bad" label represents that they are not identical to
human reasoning. Chiang-Lee et al. [4] and Awasthi et al. [2] also highlight the
impact of human evaluation in ensuring the quality of the generated texts. This
work primarily focuses on generating high-quality human-like reasons using large
generative language models such as Llama-2 [26] and Mistral [14]. We synthesized
insights from the literature reviewed above to achieve this goal, including dataset
curation, supervised fine-tuning, prompting techniques, and human evaluation.
Ultimately, our study aims to demonstrate that fine-tuning with human reasons
facilitates language models in producing human-like responses.

3 Methodology

Numerous endeavors have been undertaken to ensure alignment between humans
and AI. However, alignment problems persist, particularly concerning human-
like reasoning, a concern often overlooked in existing research efforts. In addition
to the existing approaches, this work presents a novel approach that contributes
to aligning large language models (LLMs) with humans, especially concerning
reason generation. Herein, we formally describe our approach for aligning LLM-
generated reasoning with humans.

Problem Formulation. Suppose dataset, D, contains a set of statements xi,
binary labels yi, and human-annotated reasoning ri, D −→ {xi, yi, ri}ni=1, where
xi ∈ Rp, yi ∈ {0, 1}, ri ∈ Rq, and n represents the number of samples (in our
case, 5000). The existing works utilized a dataset D −→ {xi, yi}ni=1, where reasons
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Table 2. DFAR dataset statistics and demographic profile of dataset annotators

Dataset Statistics Annotator’s Details

Types of Domains Commonsense, Justice Total no. of annotators 12
Min. Text Length 151 No. of female annotators 6
Max. Text Length 1171 No. of male annotators 6
Avg. Text Length 467.45 Avg. age 23
Ethical Instances 2886 (57.7%) Annotators with priorAI knowledge 5
Unethical Instances 2114 (42.3%) Profession Student, Engineer, Housewife
Total Instances 5000 Education Background High School, Undergraduate

ri were missing. Hence, in existing works, large language models (LLMs) L are
fine-tuned solely using labels yi, L(xi) = ŷi. In this study, we proposed a fine-
tuning approach that incorporates both labels and human-annotated reasoning
simultaneously, L(xi) = (ŷi, r̂i). The proposed fine-tuning approach ensures that
the LLM focuses on both ethical-unethical classification and human-like reason
generation.

3.1 DFAR: Dataset for Aligning Reasons

In numerous instances, generative language models have demonstrated a consid-
erable ability to accurately classify ethical and unethical situations [1]. However,
they still struggle to generate human-like reasons effectively. In response to this
challenge, our initial step involves the construction of a Dataset for Aligning
Reasons (DFAR).

The DFAR dataset comprises statements sourced from a publicly available
ETHICS dataset [11]. ETHICS, a comprehensive alignment dataset, encompasses
Commonsense, Virtue, Deontology, Justice, and Utilitarianism data. Our dataset
focused on Commonsense and Justice, selecting a subset of 5000 statements from
these domains. Each statement is labeled 0 or 1, where 0 denotes “ethical” and
1 denotes “unethical”. The DFAR dataset includes human-annotated reasons
for each ethical-unethical scenario, providing precise and detailed explanations
with text lengths ranging from 151 to 1171 characters and an average length of
467.45. These annotations are done by 12 annotators, representing both male and
female perspectives. The annotators are selected via a sample sheet where ten
statements are assigned to assess their eligibility for the dataset annotation task.
Among the 5000 data points, 2886 are labeled as “ethical”, while the remaining
are labeled as “unethical”. Notably, creating the DFAR dataset does not involve
the utilization of any AI generative tool such as ChatGPT, ensuring that large
language models (LLMs) learn exclusively from human-annotated rationales.
Table 2 presents the Dataset for Aligning Reasons (DFAR) statistics alongside
the demographic details of the annotators. More details on the DFAR dataset
can be found in the supplementary material.
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(a) Fine-tuning using Labels (b) Fine-tuning using both Labels & Reasons

i L( i) i L( i) + +i

Input
Output

Ground
truth

LossLLM

Input Output

LossLLM
, i, i

Ground
truth

D

Dataset

D

Dataset
i

Fig. 2. Methodology for (a) Fine-tuning using labels only and (b) Fine-tuning using
both labels & reasons on the DFAR dataset. The first approach involves training the
model on the ethical-unethical labels without incorporating the accompanying reasons.
LLM L produces ŷi based on the input xi that passes through the embedding layer.
LLM’s weights are being updated based on the loss. In our novel approach, LLM L
generates ŷi and r̂i based on the input xi. LLM is fine-tuned based on the loss (L)
between embeddings of ŷi, r̂i, and yi,ri of the dataset.

3.2 Supervised Fine-Tuning of LLMs

To advance the alignment of large language models (LLMs) with human values,
fine-tuning LLMs on an ethics-related dataset is essential. We utilize the Dataset
for Aligning Reasons (DFAR) for this fine-tuning task. In this study, we conduct
two types of fine-tuning: (a) Fine-tuning using labels only and (b) Fine-tuning
using both labels and reasons simultaneously. Figure 2 illustrates the method-
ology for these two fine-tuning approaches. The first fine-tuning approach is a
conventional method employed in existing alignment works. The second app-
roach, fine-tuning using both labels and reasons, represents a unique and novel
strategy absent in prior research. In our study, we fine-tune two popular gen-
erative language models, Llama-2 (7 billion) [26] and Mistral (7 billion) [14].
Detailed descriptions of these models are provided below.

Models. We employ two prominent large language models (LLMs) for our exper-
iments: Llama-2 (7B) [26] and Mistral (7B) [14]. Llama-2 (7B), a transformer-
based model released by Meta, has 32 attention heads, a vocabulary size of
32,000, and a context length of 4,096, and uses the Swish-Gated Linear Unit
(SwiGLU) activation function [24]. Mistral (7B), with a similar parameter count
and attention heads, has a larger context length of 8,192 and uses the Sigmoid
Linear Unit (SiLU) activation function [8]. Mistral also incorporates grouped-
query attention (GQA) and sliding window attention (SWA) to efficiently handle
varying sequence lengths. According to Jiang et al. [14], Mistral (7B) outperforms
both Llama-2 (7B) and Llama-2 (13B) across all benchmarks, making it a robust
choice for our study.

Fine-Tuning Using Labels. The fine-tuning approach using ethical and uneth-
ical labels is a common method employed for alignment purposes in existing
studies [11]. In our work, we implement this fine-tuning as part of an ablation
study. Llama-2 (7B) and Mistral (7B) undergo this fine-tuning approach. The
fine-tuning process involves feeding input statements xi and suitable prompts
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Fig. 3. t-SNE visualization of two fine-tuned versions (a) Fine-tuned using Labels (L)
and (b) Fine-tuned using Labels & Reasons (L+R) of Llama-2 (7B) on the DFAR test
split.

into the Large Language Model L, generating an output ŷi based on the input
xi. Subsequently, Cross Entropy Loss (L) is computed between the generated
output ŷi and the original label yi from the dataset D. In this case, the original
label yi consists of binary classes: ethical (0) or unethical (1). Therefore, this
fine-tuning method is solely supervised by the binary labels. The model’s (L)
parameters are then updated iteratively to minimize the loss, resulting in a fine-
tuned model (see Fig. 2(a)). This fine-tuning approach aims to enable the large
language models (LLMs) to learn from binary ethical and unethical labels and
accurately classify ethical and unethical scenarios.

Fine-Tuning Using Both Labels and Reasons. Fine-tuning a Large Lan-
guage Model (LLM) using ethical-unethical labels and their corresponding rea-
sons is a unique and effective approach that aligns language models more closely
with human values. This fine-tuning method represents a novel strategy not
previously explored in existing works on the alignment problem. We apply this
approach to fine-tune both Llama-2 (7B) and Mistral (7B). Initially, input state-
ments xi and appropriate prompts are fed into the Large Language Model
L, which generates an output ŷi based on the provided input. Subsequently,
Cross Entropy Loss (L) is computed between the LLM-generated output (ŷi, r̂i)
and the output (yi, ri) from the dataset D. In this fine-tuning method, the
generated output ŷi is simultaneously guided by the ethical-unethical binary
labels and their associated reasons. The model’s parameters were then itera-
tively updated to minimize the loss score, resulting in a fine-tuned model, as
depicted in Fig. 2(b). This fine-tuning approach not only enhances the perfor-
mance of LLMs in ethical-unethical classification tasks but also enables them to
provide more human-like reasoning for their classifications.



Beyond Labels: Aligning Large Language Models 247

Table 3. Hyperparameter values used in our experiments

Hyperparameter Value Hyperparameter Value

Batch Size 4 Learning Rate 2e-4
Epochs 10 Temperature 0.1
Loss Function Cross Entropy Optimizer AdamW
Lora Alpha 16 Lora Dropout 0.1
Rank (r) 64 – –

Since this fine-tuning approach incorporates labels yi and their corresponding
reasons ri, the fine-tuned models will now possess more comprehensive knowledge
about ethical and unethical scenarios. As a result, the fine-tuned models will
be capable of classifying ethical and unethical statements with high accuracy
and generate human-like reasoning for their decisions, addressing a limitation of
previous fine-tuning methods as presented using t-SNE visualization in Fig. 3. It
shows the superior classification ability of our proposed fine-tuning approach over
the existing approach. Moreover, it is essential for LLMs to understand ethical
and unethical reasoning to ensure complete alignment with human values.

4 Experiment

4.1 Setup

Dataset. We create the Dataset for Aligning Reasons (DFAR) to facilitate the
experiment. DFAR consists of 5000 meticulously curated data points, with a
thoughtful train-test split ratio of 90% to 10%. This allocation results in 4500
data points dedicated to the training set, which is essential for model refinement,
and the remaining 500 points are designated for the test set. To comprehensively
assess the models’ capabilities, evaluation is conducted on both the test split of
DFAR, comprising 500 data points, and the widely recognized ETHOS (multi-
labEl haTe speecH detectiOn dataSet) benchmarking dataset, which consists
of 998 data points. This meticulous approach thoroughly evaluates model per-
formance across distinct datasets, comprehensively analyzing their alignment
capabilities.

Implementation Details. We have conducted two different types of fine-
tuning: (a) Fine-tuning using Labels only and (b) Fine-tuning using both Labels
and Reasons, both on the Dataset for Aligning Reasons (DFAR). We employ
two popular large language models (LLMs): Llama-2 (7B) and Mistral (7B), for
our experiments. Due to the large size of these models, approximately 7 bil-
lion parameters each, loading them posed a challenge. Therefore, we utilized the
Quantized Low-Rank Adapters (QLoRA) setup [6] for efficient model loading,
enabling deployment within size constraints. Input tokenization was facilitated
by the AutoTokenizer from the transformers library, enhancing input process-
ing efficiency. All models were fine-tuned for ten epochs with a batch size of
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4 using the Supervised Fine-Tuning Trainer (SFTTrainer) from Hugging Face
for efficient model fine-tuning. These training configurations are executed on a
single NVIDIA Tesla P100 GPU. We perform experiments using the PyTorch
framework. Table 3 details the hyperparameters used in our experiments.

Evaluation. To assess the performance, we employ two distinct evaluation
strategies. Initially, we evaluate all three model versions on a classification
task. We perform both intra-dataset and cross-dataset evaluation. For the intra-
dataset case, we utilize the test split of DFAR, comprising 500 data points.
Additionally, for cross-dataset evaluation, we employed the ETHOS benchmark
hate speech dataset [19], which consists of 998 data points, for the classifica-
tion assessment. The classification task involves predicting ethical and unethical
cases in the DFAR test set and distinguishing between hate speech and non-
hate speech in the ETHOS dataset. The performance of the classification task is
measured using classification accuracy. In addition to accuracy, we use another
evaluation strategy to assess the alignment of models with human annotation:
the reason-generation task. Three model variants are used to predict whether
input statements are ethical or unethical with corresponding reasons. Similar to
the classification task, we have conducted intra-dataset and cross-dataset evalua-
tions using the same testing statements for the reason-generation task. After the
models generated reasons, an extensive human evaluation is conducted to assess
the performance of each model version in generating human-like reasons. Five
evaluators from diverse demographic backgrounds independently evaluated each
generated response. All evaluators possessed sound knowledge of English and
basic moral principles. The evaluators comprised three males and two females,
with ages ranging from 20 to 30. They came from various professional back-
grounds, including academia and industry. Evaluators categorized responses as
‘Good’ or ‘Bad,’ indicating alignment or divergence from human-like reasoning.
The final evaluation class was determined by a majority vote among the evalu-
ators, employing a challenging voting technique to ensure resilience and reduce
bias in the evaluation process. The detailed findings of this rigorous human
examination are presented using the “Misalignment rate” (MAR). This metric
indicates the percentage of model-generated responses not aligned with human
ethical reasoning (i.e., bad responses) (See the supplementary material for details
on evaluation metrics). MAR is computed using the following formula:

Misalignment Rate (%) =
Number of Bad responses

Total number of responses
× 100 (1)

4.2 Results and Analysis

We provide comprehensive experimentations of our proposal, focusing on large
language models (LLMs) across two distinct tasks: classification and reason gen-
eration. We utilize data from two separate datasets: DFAR and the ETHOS.
The evaluation results for the classification task and the reason-generation task
are presented regarding classification accuracy and misalignment rate (MAR),
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Table 4. Comparison of evaluation results on DFAR and ETHOS. ↑ (↓) means higher
(lower) is better. ‘-’ denotes results that are not applicable there.

Method Models DFAR ETHOS
MAR (%) ↓ Acc.(%) ↑ MAR(%) ↓ Acc.(%) ↑

Non-Generative a SVM [25] – 69.4 – 66.4
Random Forests [3] – 78.6 – 65.0
Gradient Boosting [9] – 63.2 – 64.3
Logistic Regression [17] – 67.8 – 66.9
BERT [7] – 78.6 – 79.9
DistilBERT [23] – 78.2 – 80.4

Generative Models b

Pre-trained Mistral 7B 35.4 45.4 9.6 54.7
Fine-tuned (L) Mistral 7B 18.6 47.4 10.6 56.8
Ours (L+R) Mistral 7B 12.2 82.2 5.3 59.6
Pre-trained Llama-2 7B 52.0 36.4 32.8 12.0
Fine-tuned (L) Llama-2 7B 38.4 62.8 33.7 54.1
Ours (L+R) Llama-2 7B 9.4 89.4 18.6 78.8
a The non-generative models were fine-tuned on both DFAR and ETHOS
datasets and evaluated within these datasets. b The generative models
were fine-tuned solely on the DFAR dataset and evaluated within the dataset
(DFAR) as well as on cross-dataset (ETHOS). They could not be fine-tuned
on ETHOS due to the absence of reasoning in the dataset.

respectively. The MAR is a novel metric proposed to quantify the percentage of
LLM responses that are not aligned with human values. Table 4 showcases the
accuracy scores and misalignment rates achieved by variants of Llama-2 (7B) and
Mistral (7B). The first variant represents the original pre-trained LLM without
fine-tuning, the second variant is fine-tuned solely using binary ethics labels (L),
and the third variant is fine-tuned using both labels and corresponding reasons
(L+R), which demonstrates a practical approach.

Our observations are as follows: (1) The non-generative models were eval-
uated solely on the classification task. The misalignment rates for these mod-
els are unavailable because they cannot generate reasons/texts. (2) Although
the testing set is the same, the training process of generative models with non-
generative models is different. The generative models were exclusively fine-tuned
on the DFAR dataset, whereas ETHOS was utilized as a cross-dataset evalua-
tion. In contrast, the non-generative models underwent evaluation solely within
the dataset. Furthermore, the generative models were not fine-tuned on ETHOS
because this dataset lacks reasoning texts that are essential for fine-tuning. (3)
In the evaluations on DFAR, the L+R fine-tuned version of Llama-2 (7B) demon-
strates superior performance compared to all generative and non-generative
models in the classification task, achieving an accuracy of 89.4%. Even on the
ETHOS benchmark dataset, Llama-2 (L+R) achieves accuracy levels similar
to the best-performing DistilBERT model [23]. Interestingly, Llama-2 (L+R)
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Fig. 4. The impact of (a) sampling temperature and (b) prompts on the responses
generated by LLMs.

was not fine-tuned on ETHOS, whereas the reported accuracy for DistilBERT
[23] was achieved after fine-tuning on the same dataset. (4) For the generative
models, we employed three distinct model variants: the original pre-trained (non-
fine-tuned) model, the model fine-tuned using labels only (L), and our proposed
approach-fine-tuned using both labels and reasons (L+R). Among these versions,
the L+R variants of Llama-2 (7B) and Mistral (7B) achieve notably high classi-
fication accuracy and low misalignment rates in both the classification and the
reason-generation tasks, respectively. This observation indicates that fine-tuning
with reasons helps align the large language models (LLMs) with human ethics.

4.3 Ablation Study

Impact of Sampling Temperature. Sampling temperature significantly
impacts the responses generated by large language models (LLMs). In Fig. 4(a),
we report the classification accuracies achieved by the L+R fine-tuned versions
of Llama-2 (7B) and Mistral (7B) at different sampling temperatures. We experi-
ment with five different temperature values: 0.1, 0.4, 0.7, 1.5, and 1.9. For Llama-
2 (7B) and Mistral (7B), a sampling temperature of 0.1 outperforms the rest in
accuracy. Therefore, we use a sampling temperature of 0.1 for all the experiments.
We can notice from Fig. 4(a) that the classification accuracy generally decreases
with an increase in sampling temperature values, which aligns with [22].

Impact of Prompts. Prompts also significantly impact the outputs produced
by large language models (LLMs). Our study uses five prompt statements to
evaluate the performance of the L+R fine-tuned versions of Llama-2 (7B) and
Mistral (7B). Figure 4(b) presents the impact of different prompts on classifica-
tion accuracy. From Fig. 4(b), it is evident that the fifth prompt performs better
for both Llama-2 (7B) and Mistral (7B). Hence, prompt 5 is utilized for all
experiments. (See the supplementary material for details)
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4.4 Discussion

LLMs with Human Ethics and Reasoning. To align large language mod-
els (LLMs) with human ethics and reasoning, we develop a novel dataset that
includes well-structured human-annotated reasons using statements from the
ETHICS dataset [11]. We fine-tune the LLMs to target labels and human-
annotated reasons. After fine-tuning, the LLMs have achieved notably high clas-
sification accuracies in predicting ethical and unethical scenarios. Moreover, the
misalignment rate of the LLMs also decreases significantly, indicating a greater
alignment with human reasoning. Our approach demonstrates improved perfor-
mance compared to existing approaches in both within-dataset and cross-dataset
evaluations. The inclusion of detailed, well-structured, human-annotated reasons
for all the ethical-unethical labels in DFAR, without the involvement of any gen-
erative AI tools, makes it a suitable dataset for human-AI alignment.

Limitations. Table 4 shows the L+R fine-tuned models achieved high accu-
racies and low misalignment rates. However, slight misalignments still persist,
especially in statements lacking specific context. The fine-tuned models assume
context themselves if no specific contexts are provided. Examining these minor
misalignment issues may require further investigation in the future. With this,
large language models (LLMs) can be brought closer to human morality and rea-
soning, representing a significant advancement in the domain of artificial intelli-
gence (AI) [21], specifically natural language processing (NLP) [13].

5 Conclusion

This study introduces an effective fine-tuning approach, leveraging annotated
labels with corresponding reasons (L+R), which surpasses existing methods
solely relying on labeled data (L) for model fine-tuning. Through fine-tuning
two popular large language models (LLMs), Llama-2 7B and Mistral 7B, our
approach demonstrates superior performance over L-only variant models and
the original pre-trained models, presenting a promising avenue for addressing
the AI alignment problem. Both L+R models exhibit significant classification
accuracy improvements on our proposed dataset, “Dataset For Aligning Rea-
son" (DFAR), and a cross-hate-speech dataset, ETHOS. The insights gained
from integrating reasoning alongside labeled data during fine-tuning prompted
an analysis of the model’s ability to generate human-like responses. Introducing
a novel metric, the misalignment rate (MAR), we quantified the extent to which
models deviate from human reasoning. Lower MAR values signify better align-
ment with human reasoning. Mistral 7B (L+R) and Llama-2 7B (L+R) models
showcase substantial reductions in misalignment rates across datasets compared
to the other model variants.

Future Work: While our L+R fine-tuned models have achieved commend-
ably low misalignment rates and impressive classification accuracy, addressing
remaining discrepancies necessitates further investigation. The observed minor
deficiencies in model performance indicate the need for additional data collection.
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In particular, attributes such as multiple pronouns and socially sensitive terms
can be considered. Furthermore, exploring advanced deep learning-based NLP
techniques can enhance the models’ comprehension of contextually ambiguous
statements. We aim to further align LLMs with human moralities and reasoning,
thereby advancing the field of human-AI alignment.

Ethical Statement. We take ethical considerations very seriously in this study, which
involves generating ethical reasoning using LLMs and their evaluations by humans. We
recruited five human evaluators from diverse demographics on a voluntary basis. Impor-
tantly, no sensitive information was collected from the evaluators; only the necessary
details to assess their suitability for the task were collected, with any potentially iden-
tifying data deleted post-evaluation. Additionally, we ensured that the work would not
cause any harm to the evaluators, either physically or mentally.

The data from the publicly available ETHOS dataset [19] may contain some abu-
sive language, which could potentially make some evaluators uncomfortable. We imple-
mented strict safety protocols to ensure the LLMs did not produce harmful or abusive
content. Moreover, we reject any attempts to insult or demean any race, acknowledging
that gender and race are social constructs that warrant respect. Therefore, we believe
that our work will not cause any ethical issues.
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Abstract. The advancements in the Large Language Model (LLM) have
helped in solving several problems related to language processing. Most
of the researches have focused on the English language only, because of its
popularity and abundance on the internet. However, a high-performance
language model for Hindi and other Indic languages is lacking in the
literature. In this work, we have pre-trained two autoregressive LLM
models for the Hindi language, namely HindiLLM-Small and HindiLLM-
Medium. We use a two-step process comprising unsupervised pre-training
and supervised fine-tuning. First, we create a large and high-quality
text corpus for unsupervised pre-training. Next, we train a Byte-Pair
Encoding, named HindiLLM tokenizer, using the pre-training text data.
We then perform training on the unlabeled data, known as the pre-
training step, to get the HindiLLM base models. Furthermore, we per-
form fine-tuning of the HindiLLM base models for different tasks like
sentiment analysis, text classification, natural language inference, and
multiple choice question-answer on popular labeled datasets to measure
the real-world performance. The evaluation shows that the HindiLLM-
based fine-tuned models outperform several models in most of the lan-
guage related tasks.

Keywords: Autoregressive Language Model · Large Language Model
(LLM) · Hindi Language · Natural Language Processing (NLP)

1 Introduction

The understanding of a language by a machine is of great interest in the Natural
Language Processing (NLP) domain. The words and phrases used in a sentence
can have different meanings in different contexts of a sentence. Also, there is
the need to identify synonyms of a word, sarcastic phrases, idioms, and errors
in the text of a language. The language models in NLP can perform these tasks
for the English language as there is a rich collection of datasets in the literature
and it has been highly researched over the years. Most of the other languages,
especially Indo-Aryan languages or Indic languages, are less researched and have
fewer resources as their presence on the internet is limited.
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The Large Language Models (LLMs) are state-of-the-art for NLP tasks and
have been able to show great progress regarding language comprehension, infer-
ence, and other language analysis. The language-related tasks for English are
processed by LLMs such as GPT-4 [2] (a model from the GPT series), LLaMA-2
[27] (a model from the LLaMA series), PaLM-2 [3] (a model from the PaLM
series) and Mistral-7B [11]. These models have billions of parameters and are
trained on hundreds of GBs of data. Hence, they can perform advanced NLP
tasks such as instruction following, code generation, new content generation, and
information retrieval. However, the initial versions of these models were smaller
and hence less capable.

Hindi is an Indic language written in the Devanagari script. It is a subject-
object-verb (SOV) language and is morphologically rich. According to the 26th

edition of Ethnologue1 published in 2023, Hindi is the third most spoken lan-
guage having 609.5 million speakers. It is the official language of India and
according to Forbes India2, 44% of India speaks Hindi. However, the language
models for the Hindi language lag behind due to the challenges mentioned below.

– The data collection has issues as there is limited availability of rich Hindi
corpora, both for pre-training as well as fine-tuning.

– The complexity of Hindi Devanagari text needs to be taken into consideration.
The intricacies of the Hindi script including conjunct characters and nuanced
linguistic structures introduce complexity in Hindi text processing.

– The NLP model needs to understand the Hindi language in various contexts
for tasks like sentiment analysis, inference and text summarization.

This work aims at the following contributions to tackle the above mentioned
challenges.

– Our work focuses on training a tokenizer for the Hindi language using Byte
Pair Encoding (BPE) tokenization algorithm3.

– We train two autoregressive models for the Hindi language of different sizes.
– We perform supervised fine-tuning for multiple downstream tasks of the Hindi

language.

The remainder of the paper is organized as follows. We discuss the existing
works in Sect. 2. Section 3 explains the dataset used in this work. We discuss
the methodology in Sect. 4. The performance evaluation is presented in Sect. 5.
Finally, Sect. 6 concludes the work with future directions.

2 Related Work

There is a scarcity of research on the language models for Hindi language and
other Indic languages. Hindi speakers are present all over the world and yet it is
1 https://www.ethnologue.com/insights/ethnologue200/.
2 https://www.forbesindia.com/article/news-by-numbers/hindi-day-2020-indias-

mostspoken-languages-are/62577/1.
3 https://huggingface.co/learn/nlp-course/en/chapter6/5.

https://www.ethnologue.com/insights/ethnologue200/
https://www.forbesindia.com/article/news-by-numbers/hindi-day-2020-indias-mostspoken-languages-are/62577/1
https://www.forbesindia.com/article/news-by-numbers/hindi-day-2020-indias-mostspoken-languages-are/62577/1
https://huggingface.co/learn/nlp-course/en/chapter6/5
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less-researched in the field of NLP. One major reason behind this is the limited
presence of Indic languages online in written form. Now, we discuss the related
works present in the literature.

In the work by Arora et al. [4], the authors focused on pre-training language
models for 13 Indic languages. They pre-trained ULMFiT [9] and TransformerXL
[7] language models from scratch. The authors in Kakwani et al. [12] contributed
multiple resources such as monolingual corpora, pre-trained word embeddings,
IndicGLUE benchmark dataset and pre-trained language models. They used
the ALBERT [15] model for pre-training language models. ALBERT, being a
compact model, is lightweight and requires less training data which is good for
less-resource languages.

Vries et al. [30] recycled the pre-trained GPT-2 [24] models for Italian and
Dutch languages. They primarily retrained the lexical embeddings. First, they
created a new BPE vocabulary for the target language. Then, they re-initialized
the lexical embeddings of the GPT-2 model for the new vocabulary and re-
trained them. They mentioned that the full model can be finetuned later with a
smaller learning rate. This helps the model to better adjust to the new language
whereas the re-learned lexical embeddings reduce the risk of information loss.

Owen et al. [19] discussed incremental pre-training for adapting English
based LLMs to non-English languages such as Indonesian. First, they expanded
the vocabulary by integrating a new trained tokenizer with the existing one.
Then, they did incremental pre-training of Llama-2-7B-Base [27] using Low-
Rank Adaptation (LORA) [10] technique. This helps the model to learn new
language without catastrophically forgetting the English language in a minimal
resource requirement setup. Owen et al. [19] and Vries et al. [30] discussed about
utilizing English based pre-trained LLMs. Since these are pre-trained on English
language, their techniques are not suitable for building the HindiLLM models
because Hindi is very different from English and is written in Devanagari instead
of Latin.

Niyogi et al. [18] trained multiple auto-regressive models from scratch for
10 Indian languages. Their models are also based on Transformers decoders.
However, they did not provide a detailed description of the data used and the
model architecture. Radford et al. [23] discussed semi-supervised training app-
roach which is a two-step training process for the English language. The first step
is generative pre-training on a large unlabeled corpus which gives a good initial-
ization point for the next step, which is discriminative fine-tuning on each spe-
cific task. The GPT-1 is an auto-regressive transformer [29] based decoder only
model. We utilized similar semi-supervised training approach for our HindiLLM
models.

Although our work focuses on the Hindi language, we can apply the lan-
guage model techniques across different languages. This will enable the less-
researched languages to benefit by utilizing the techniques mentioned for exten-
sively researched languages.
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3 Dataset

The dataset generation is the first step of any model building process. The
richness of the data determines the quality of the model. The approach used
in this paper requires two types of data, unlabeled data for unsupervised pre-
training and labeled data for supervised fine-tuning. The details of the datasets
used in this paper are mentioned in this section.

3.1 Pre-training Dataset

For the unsupervised pre-training step, we need a large corpus with Hindi text
written in Devanagari script. Since pre-training is the most crucial step which
helps the model in understanding the language and its nuances, we need the
corpus to be clean and have valid long paragraphs. This implies that it should
not have unnecessary symbols, words, web-links and characters which we do
not see in typical Hindi literature. A paragraph or sentence is valid if it follows
the grammar of that language and it makes sense to the native speaker of that
language. Long paragraphs are good for introducing long-term dependencies in
the model. Generally, we need to scrap the internet for large corpus but this leads
to difficulty in finding usable Hindi sentences or paragraphs. There exist projects
which focus on getting web-crawled texts. In these projects, these corpora are
classified based on language and are preprocessed following the structure of that
language. We have used such existing corpora for the pre-training step.

Table 1. Detailed Description of Pre-training Corpora

Data Size (in GB) No. of Words (approx. in million)

Wikipedia 1.04 78.82
CC-Aligned 1.3 133.89
OSCAR-2201 14 1185.51
CC-100 21 1714.72

As shown in Table 1, we have 37.34 GB of data which contains approximately
3.11 billion words. Apart from CC-Aligned [8], all other datasets contain only
Hindi text written in Devanagari script. The CC-Aligned dataset contains Hind-
English translation pairs of sentences and phrases. We have concatenated both
versions (Hindi and English) of the sentence one after the other. One of the
sentences from the translation pair is chosen randomly as the first sentence for
each of the translation pairs. The idea here is to add some English capability
in the model along with Hindi because we often see words or phrases of English
inserted in Hindi texts. The translation pair will also help the model understand
the relationship between both languages. Hindi Wikipedia articles are also used
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from Kaggle4 and Tensorflow5. Wikipedia articles contain factual information
and the sentences are well formed as well, unlike some internet forums. The
OSCAR-2201 [1] or Open Super-large Crawled Aggregated coRpus is a multilin-
gual corpus intended for pre-training language models. It contains 151 different
languages but we only use the Hindi texts. The CC-100 [6,31] is a monolingual
corpus containing texts in 100+ languages out of which we only utilize the Hindi
texts. It is generated using the open-source CC-Net [31] repository.

Apart from the default preprocessing done by the dataset creator, we have
additionally performed the following preprocessing steps.

– Content Cleanup - Removal of content within brackets, hyperlinks, extra
spaces and formatting of punctuation marks.

– Filtering Sentence - Sentences where less than 30% of words are unique
are filtered out. These are not valid sentences because same few words are
repeated multiple times.

– Numeric and Punctuation Removal - Removal of lines containing only
numeric, punctuation marks or special symbols.

– Handling Short Lines - Multiple consecutive lines with less than fours
words were removed. These were generally navigation links of a website.

3.2 Fine-Tuning Dataset

The fine-tuning is done for downstream tasks. The performance on downstream
tasks tells about the real-world applicability of the model. In this paper, we have
chosen seven downstream tasks to measure different aspects of our models.

Sentiment Analysis: We have two sentiment analysis datasets, namely IITP
Movie6 and IITP Product7. These datasets are public and widely used for eval-
uating Hindi language models. The dataset comprises three classes: positive,
neutral, and negative. We have combined both datasets for training but tested
separately.

Text Classification: For multiclass classification evaluation, we have used BBC
News category8 classification dataset. It has six categories. These are India,
international, news, entertainment, sports, and science. It is also a public dataset
which has been used for testing multiple Hindi based language models.

Natural Language Inference: We analyzed the natural language inference
capability of our models with the BBC NLI [28] dataset.

4 https://www.kaggle.com/datasets/disisbig/hindi-wikipedia-articles-172k.
5 https://www.tensorflow.org/datasets/catalog/wikipedia.
6 https://www.kaggle.com/datasets/warcoder/iit-patna-movie-reviews-hindi.
7 https://www.kaggle.com/datasets/warcoder/iit-patna-product-reviews.
8 https://github.com/NirantK/hindi2vec/releases/tag/bbc-hindi-v0.1.

https://www.kaggle.com/datasets/disisbig/hindi-wikipedia-articles-172k
https://www.tensorflow.org/datasets/catalog/wikipedia
https://www.kaggle.com/datasets/warcoder/iit-patna-movie-reviews-hindi
https://www.kaggle.com/datasets/warcoder/iit-patna-product-reviews
https://github.com/NirantK/hindi2vec/releases/tag/bbc-hindi-v0.1
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Cloze-Style Multiple-Choice QA (CSQA): The CSQA dataset is from
IndicGLUE [12] benchmark dataset. This dataset has a masked entity in a given
text and we are given four candidate entities out of which one is the correct
entity. This dataset is created from Wikipedia articles.

Wikipedia Section-Title Prediction (WSTP): Similar to CSQA, WSTP is
from the IndicGLUE benchmark dataset and created using Wikipedia articles.
The dataset has Wikipedia sections and it is required to find out the section title
from the given four choices of titles.

Discourse Mode Classification (DM): The DM dataset is also from the
IndicGLUE benchmark dataset. It is a discourse analysis dataset with five dis-
course categories: descriptive, narrative, dialogue, argumentative and informa-
tive. In this task, the model has to predict the suitable discourse category for a
given sentence.

Machine Translation Dataset: We have obtained the translation dataset
from Kunchukuttan et al. [14]. It has pairs of Hindi and English versions of
1.49 million sentences. This dataset is specifically created for the Hindi-English
translation task. The machine translation is a generative downstream task.

4 Methodology

We follow two steps training process in this work. We apply an unsupervised pre-
training to get the base model and a supervised fine-tuning of the base model for
the downstream tasks. However, prior to the training, we build the HindiLLM
tokenizer using the BPE algorithm. In this section, we have provided a detailed
description of the tokenizer and the models along with the training process.

4.1 Tokenizer

Since we focus on building the model for the Hindi language and the default
GPT-2 [24] model is primarily for the English language. So, we train a new
tokenizer called HindiLLM tokenizer. The idea of training a custom tokenizer is
to reduce the fertility score (average number of tokens per word) for the Hindi
language. We have trained a Byte-level BPE tokenizer with our pre-training
corpora which contains mostly Hindi language written in Devanagari script.
Since the Devanagari script is complex, the Byte-level BPE tokenizer is the
most suitable option. We have used the whole pre-training dataset to train the
BPE tokenizer. We have kept the desired vocabulary size as 50000 while using
the trainer to accommodate most of the frequently occurring sub-words. Also,
we added 8 special tokens like CLS, SEP and PAD afterwards, so the vocabulary
size reached to 50008.
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We show the output of the HindiLLM tokenizer in Fig. 1. There are four sen-
tences (three Hindi and one English) and its corresponding tokens as tokenized
by our tokenizer. We can see that the words are split into multiple sub-words.
For example, the word “ ” is tokenized into “ ” and “ ” but the
word “ ” is a token on its own. The HindiLLM tokenizer is able to tokenize
both Hindi and English sentences.

Fig. 1. Output of HindiLLM Tokenizer

To check if the HindiLLM tokenizer makes sense or not, we have taken a
100 words paragraph written in Hindi, encoded it using our own and the default
GPT-2 tokenizer. We see that our tokenizer takes 345 tokens and the default
GPT-2’s tokenizer takes 785 tokens to represent the same paragraph with 100
words. It takes less than half the number of tokens for our HindiLLM tokenizer.
This indicates that the HindiLLM tokenizer has lower fertility score for the Hindi
language. Hence, we can pass larger Hindi sentences or paragraphs to the model.
This will also improve the efficiency in processing Hindi text. Therefore, creation
of a new tokenizer is beneficial here.

4.2 Unsupervised Pre-training

As mentioned in the GPT-1 [23] work, the pre-training finds a good initialization
point for the model. In pre-training, the model learns about the language such
as morphology and syntax. The Causal Language Modeling (CLM) is used in
the unsupervised pre-training step of autoregressive models. This step gives us a
base model that can be supervised fine-tuned for several downstream tasks with
a relatively smaller dataset. We have trained two models, HindiLLM-Small and
HindiLLM-Medium corresponding to GPT2-small and GPT2-medium respec-
tively. We use Hugging Face’s Transformers library [32] for pre-training. The
training process involves creating a model with the configuration of correspond-
ing GPT-2 models and training it after initializing with random weights.
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Table 2. Training Details of HindiLLM-Small Model

Specification Value

Corpus Size 19.6 GB
Number of Examples 6,904,242
Total Train Batch Size (w. Parallel,
Distributed and Accumulation)

16

Total Optimization Steps 431,516
Number of Trainable Parameters 124,439,808
Context Window Size 1024 tokens
Number of Epochs 1.45
Optimizer AdamW
Learning Rate 5e-05
GPUs Used 2 x NVIDIA A100-PCIE-40GB
Time Required 6 days

HindiLLM-Small Model: As shown in Table 2, the HindiLLM-Small model is
equivalent to the GPT2-small model which has 124,439,808 trainable parameters.
For training, we have taken 19.6 GB of data from our pre-training dataset.
We have taken approximately half data from all corpora mentioned in Table 1.
There are 6,904,242 examples for training a context window of 1024 tokens.
We have used a batch size of 16 for training and updated the weights 431,516
times, which is equivalent to 1.45 epochs. The optimizer is a torch [20] based
AdamW [16] optimizer with a learning rate 5e-05. Full precision training on two
NVIDIA A100-PCIE-40GB GPUs have taken 6 days including the tokenization
and evaluation steps. Instead of mixed-precision [17] training, we have opted for
full precision training because we have trained from scratch.

HindiLLM-Medium Model: As depicted in Table 3, the HindiLLM-Medium
model is based on the same configuration as of GPT2-medium model which has
354,823,168 trainable parameters. For training, we have 37.34 GB of data as
mentioned in Table 1. There are 11,351,587 examples for training with the same
context window as HindiLLM-Small. The total optimization steps are 354,737
with a batch size of 32 which is equal to 1.24 epochs. The optimization steps are
less as compared to HindiLLM-Small because we have doubled the batch size.
The optimizer and learning rate are the same as HindiLLM-Small. Similar to the
HindiLLM-Small model, we have used two NVIDIA A100-PCIE-40GB GPUs for
performing full precision training, which took 25 days including the tokenization
and evaluation steps.
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Table 3. Training Details of HindiLLM-Medium Model

Specification Value

Corpus Size 37.34 GB
Number of Examples 11,351,587
Total Train Batch Size (w. Parallel,
Distributed and Accumulation)

32

Total Optimization Steps 354,737
Number of Trainable Parameters 354,823,168
Context Window Size 1024 tokens
Number of Epochs 1.24
Optimizer AdamW
Learning Rate 5e-05
GPUs Used 2 x NVIDIA A100-PCIE-40GB
Time Required 25 days

Performance Evaluation of Pre-trained Models: As shown in Table 4, the
HindiLLM-Medium is better than HindiLLM-Small in terms of all the metrics.
The larger model has higher accuracy, lower loss and lower perplexity as com-
pared to the smaller one. The perplexity of 3.686 and 3.0017 for HindiLLM-Small
and HindiLLM-Medium, respectively, assures the quality of the training.

Table 4. Performance of the Pre-trained HindiLLM Models

Metrics HindiLLM-Small HindiLLM-Medium

Evaluation Accuracy 0.6855 0.7300
Evaluation Loss 1.3045 1.0992
Perplexity 3.6860 3.0017
Train Loss 1.3849 1.2096

4.3 Supervised Fine-Tuning

The next step in the semi-supervised training approach is the Supervised Fine-
Tuning (SFT) on discriminative or generative tasks. The fine-tuning step aligns
the model with the downstream task. The previous pre-training step makes it
easier to fine-tune because it has already gained knowledge about the language.
Hence, we can achieve higher performance on downstream tasks even with a
smaller dataset. The model can be fine-tuned for variety of tasks. Here, we have
fine-tuned for seven tasks on the datasets mentioned in Sect. 3.2. Since the model
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will be used on real-world downstream applications, the SFT and evaluation of
the resultant model are the crucial steps.

We have used deepspeed [25] library for fine-tuning efficiently using multi-
GPU setup. The SFT is done in bfloat16 precision format with a learning rate
of 5e-6.

5 Performance Evaluation

In this section, the performances on the downstream tasks are evaluated. We
have done SFT for a variety of downstream tasks to get a detailed performance
measure of the HindiLLM models. The results are compared with other models
to validate its improvement.

5.1 Public Classification Dataset

As shown in Table 5, we compare various models on public classification datasets.
We have accuracy scores from Wikipedia (FT-W) [5], Wiki+CommonCrawl (FT-
WC) [22], IndicFT [12], IndicBERT [12], mBERT [21], XLM-R [26], INLP [13]
and iNLTK [4] models. Also, we have obtained scores from the GPT-3.5 Turbo
model. For the GPT-3.5 Turbo model, we have considered zero-shot prompt-
ing and few-shot prompting. We have performed prompt engineering to find the
best system prompt and in the case of few-shot prompting, we have given five
random examples from the training data. We can observe that the HindiLLM-
Medium model surpasses all the models on all three datasets: IITP-Movie, IITP-
Product, and BBC-Article public classification datasets. The HindiLLM-Small
model comes second in the case of IITP-Movie dataset. It does not perform well

Table 5. Classification Accuracy on Public Dataset

Model IITP-Movie IITP-Product BBC-Article

HindiLLM-Small 70.51 76.63 71.29
HindiLLM-Medium 78.34 79.31 81.04
FT-W 41.61 58.32 72.29
FT-WC 44.52 57.17 67.44
IndicFT 45.81 61.57 77.02
IndicBERT-Base 59.03 71.32 74.60
mBERT 56.77 74.57 60.55
XLM-R 61.61 78.97 75.52
INLP 45.81 63.48 74.25
iNLTK 57.74 75.71 78.75
GPT-3.5 Turbo Zero-shot 68.17 68.20 56.41
GPT-3.5 Turbo Few-shot 66.45 72.92 49.63
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on the BBC-Article dataset. For IITP-Movie dataset, we see an improvement of
2.34% and 10.17% in HindiLLM-Small and HindiLLM-Medium models, respec-
tively. For IITP-Product dataset, we see a decrease of 2.34% and an increase
of 0.34% in HindiLLM-Small and HindiLLM-Medium models, respectively. We
observe an improvement of 2.29% for HindiLLM-Medium model in BBC-Article
dataset, but a drop of 7.46% for HindiLLM-Small. Both the zero-shot and few-
shot results from GPT-3.5 Turbo are poorer than both of our models. In most
cases, the result of few-shot is worse than the zero-shot. This is possibly because
the given examples are confusing the model or because with a increase in the
prompt length, the model is not able to analyze accurately.

5.2 IndicGLUE Benchmark Dataset

Table 6. Accuracy Score on IndicGLUE Benchmark Dataset

Model CSQA WSTP DM

HindiLLM-Small 38.53 69.85 78.68
HindiLLM-Medium 44.71 77.19 80.48
XLM-R 30.62 76.92 79.94
mBERT 39.00 80.12 71.20
IndicBERT-Base 41.55 74.02 78.44
IndicBERT-Large 37.01 77.80 NA
GPT-3.5 Turbo Zero-shot 44.56 76.75 50.91
GPT-3.5 Turbo Few-shot 50.84 74.25 48.89

Table 6 shows the accuracy score achieved on the IndicGLUE benchmark
dataset. We have considered XLM-R, mBERT and IndicBERT models for com-
parison along with zero-shot and few-shot prompting of GPT-3.5 Turbo. In the
CSQA task, the GPT-3.5 Turbo Few-shot has the highest accuracy and our
HindiLLM-Medium model has the second best accuracy which is a drop of 6.13%.
HindiLLM-Small has the sixth best result with a drop of 12.31% on this task.
For the WSTP task, mBERT shows the best result whereas we see a drop of
2.93% and 10.27% for HindiLLM-Medium and HindiLLM-Small, respectively.
For the DM task, HindiLLM-Medium gives the best accuracy with an improve-
ment of 0.54%, followed by XLM-R and HindiLLM-Small. We do not have any
score from IndicBERT-Large model on this task.
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5.3 Comparison with GPT-2 Models

Table 7. Sentiment Analysis Comparison with Internally Fine-tuned GPT-2 Models

Model Precison Recall F1-score

HindiLLM-Small 77.5 75.22 76.34
HindiLLM-Medium 80.6 79.18 79.88
GPT2-Small 56.77 44.47 49.87
GPT2-Medium 62.84 63.89 63.36

Table 8. Natural Language Inference Comparison with Internally Fine-tuned GPT-2
Models

Model Precison Recall F1-score

HindiLLM-Small 97.16 97.24 97.20
HindiLLM-Medium 98.03 99.18 98.60
GPT2-Small 70.23 69.61 69.92
GPT2-Medium 70.75 69.35 70.04

We have fine-tuned the default GPT-2 [24] along with our models for the
Sentiment Analysis dataset (a combination of IITP-Movie and IITP-Product
datasets) and BBC-NLI dataset. We have used the same train-test split for
fine-tuning both GPT-2 and HindiLLM model. The fine-tuning process was the
same for both kinds of models. From the results shown in Table 7 and Table 8,
it is evident that there is a huge improvement in the performance on Hindi
downstream tasks using HindiLLM models. Even the smaller HindiLLM-Small
model surpasses the scores of GPT2-Medium models by a large margin.



HindiLLM: Large Language Model for Hindi 267

5.4 Machine Translation Dataset

Table 9. Human Evaluation Criteria

Quality Rating

Excellent 4
Good 3
Understandable 2
Barely understandable 1
Incomprehensible 0

In machine translation, we have considered both English-to-Hindi and Hindi-
to-English translation tasks using the same set of train and test data. For
machine translation, we have only considered the HindiLLM-Medium model.
The smaller model will struggle a bit here because it is a generative task. Since
the Hindi language is morphologically rich, it is unfair to use traditional metrics
such as BLEU and METEOR. Hence, we have performed human evaluation of
the translations using the criteria mentioned in Table 9.

Table 10. HindiLLM-Medium model on Machine Translation Dataset

Metric Hindi to English English to Hindi

Score 4 6.89% 5.91%
Score 3 28.83% 44.93%
Score 2 28.67% 29.47%
Score 1 31.40% 17.81%
Score 0 4.21% 1.88%
Mean Score 2.03 2.35

Table 10 shows the performance of the machine translation task. We have
shown the probability distribution of the scores. The English to Hindi task per-
forms slightly better than the Hindi to English task. We have a small portion of
data for score 0, which is good. But for score 4 as well we have a small portion
of data. Even when the score is 3, the translation quality is good. We see that a
substantial portion of data for the Hindi to English task and a major portion of
data for the English to Hindi task have a score of 3. It indicates that the trans-
lation quality is good. The mean scores are above average. Considering that we
have used limited English data in pre-training, the results are promising.
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6 Conclusion

In this paper, we train a tokenizer and two auto-regressive models of different
sizes for the Hindi language written in Devanagari script. We check the validity
of the models by comparing the results on multiple downstream tasks. By looking
at the performances, we conclude that the pre-trained models are well-trained
to handle a variety of downstream tasks.

As we see the performance evaluation of downstream tasks, in most of the
cases our HindiLLM-Medium model shows the best results. The HindiLLM-Small
model lags because of its smaller size and smaller pre-training data. It is clear
from the results that HindiLLM will contribute to solving real-world problems,
especially the HindiLLM-Medium model. We also note that our HindiLLM mod-
els perform better than the fine-tuned GPT-2 and prompt engineering GPT-3.5
Turbo model. This implies that training a language-specific model will result in
better performance for that particular language even with a smaller model. Also,
it is evident from the results that training a larger model on a larger dataset will
result in a better performing model.

Even though the models show impressive results, there is scope for further
improvements. The number of epochs during training can be further increased.
The training can be performed with enhanced data like the text from the books.
Training a larger model on larger pre-training data will always result in a better
model. Our model has limited knowledge of English since a small portion of our
dataset comprises English data. The English data can be increased to enhance
the bilingual capability. Furthermore, adding a few more supervised fine-tuning
tasks can add to the assurance of the quality of the model.

In the future, we plan to create models by combining Hindi, Romanized Hindi
(Hinglish), and English data. Adding Hinglish data can make it more relevant
in day-to-day applications. We see frequent use of Hinglish these days instead
of Hindi and it is rapidly gaining popularity. A few such examples are comment
sections, posts and messages on social networking sites. Further, adding more
English texts to the pre-training data will make it bilingual. This will increase
its usability in tasks like machine translation and tasks that contain a mix of
Hindi and English data.
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Abstract. Audio-to-talking face generation stands at the forefront of
advancements in generative AI. It bridges the gap between audio and
visual representations by generating synchronized and realistic talking
faces. Despite recent progress, the lack of realism in animated faces, asyn-
chronous audio-lip movements, and computational burden remain key
barriers to practical applications. To address these challenges, we intro-
duce a novel approach, StableTalk, leveraging the emerging capabili-
ties of Stable diffusion models and vision Transformers for Talking face
generation. We also integrate the Re-attention mechanism and adver-
sarial loss to improve the consistency of facial animations and synchro-
nization with a given audio input. More importantly, the computational
efficiency of our method has been notably enhanced by optimizing oper-
ations within the latent space and dynamically adjusting the focus on
different parts of the visual content based on the provided conditions.
Our experimental results demonstrate the superiority of StableTalk over
the existing approaches in image quality, audio-lip synchronization, and
computational efficiency.

Keywords: Latent Diffusion · Vision Transformer · Audio-to-Talking
Face Generation · Re-attention · Denoising Diffusion Implicit Model

1 Introduction

Audio-to-talking face generation aims to generate talking face videos based on
the provided speech and a reference image, a sub-task of cross-modal visual
content generation. Audio-to-talking face generation has various applications,
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such as animation in the entertainment industry, video dubbing for different
languages, and generating talking avatars for human-computer interaction. The
task involves extracting audio information and learning a mapping function from
the input audio to its corresponding lip movement. Achieving precise audio-lip
synchronization, generating realistic content, and ensuring spatio-temporal con-
sistency, present significant challenges to audio-to-talking face generation [20].

To overcome these challenges, deep-learning-based models have been widely
used in the existing literature [30,32,38,41]. Suwajanakorn et al. [32] proposed
a Recurrent Neural Network (RNN-) based method to generate talking faces of
President Obama. This model operates on the video of a target person and mod-
ifies the lip movements to be synced with the input audio. Despite its promising
performance, this model is limited to generating only a single identity. To mit-
igate this issue and reduce identity dependency, generative models use facial
landmarks as the primary condition [5]. One of the pioneering studies in this
direction is MakeItTalk [41] which uses speech content and speaker-aware ani-
mation modules to map speech signals to facial landmarks. Despite the improve-
ment in generalization capability, the generated videos by MakeItTalk lack finer
details and often fail to accurately match lip movements with spoken words,
resulting in animated talking faces that appear artificial.

Visual content generation has achieved promising results with the emergence
of Generative Adversarial Networks (GANs) [8]. Wav2Lip is among the first
GAN-based approaches for audio-to-talking face generation. Taking advantage
of a pre-trained discriminator, Wav2Lip achieves audio-lip synchronization for an
arbitrary input speech. Despite the improvements achieved by GANs, they usu-
ally suffer from unstable training and model collapse issues [16,17,25]. The gen-
erated images by GANs often present artifacts and struggle to maintain smooth
transitions among adjacent frames [15].

Recently, Denoising Diffusion Probabilistic Models (DDPMs) [11] outper-
form GANs and are marked as state-of-the-art in visual content generation.
DiffTalk [28] and DiffusedHeads [31] are among the first diffusion-based mod-
els for audio-to-talking face generation. DiffusedHeads [31] generates realistic
head movements and eye blinks by combining motion frames with audio features
for temporal stability. Similarly, Shen et al. proposed DiffTalk [28] that enables
identity-aware generation by leveraging the latent features and facial landmarks,
achieving a significant advancement in realistic talking face generation. The core
difference between DiffusedHeads and DiffTalk lies in how the diffusion model is
employed. DiffusedHeads is based on a standard diffusion model [11]. In contrast,
DiffTalk is based on a latent diffusion model [23]. This modification of DiffTalk
achieves enhanced visual quality compared to DiffusedHeads.

In this paper, inspired by the promising performance of diffusion-based mod-
els, we develop StableTalk, a novel approach that leverages Vision Transformer
(ViT) [7] as the backbone for the reverse diffusion steps in latent diffusion (also
known as stable diffusion). Specifically, we use a vision Transformer to replace
the frequently used UNet [24]. The core objective of this modification is to accu-
rately learn the intricate relationship between the input speech and associated



StableTalk 273

facial characteristics, including lip synchronization and corresponding expres-
sions. Traditional approaches such as UNet adhere to this learning process by
capturing local features in the early layers, and gradually building towards a
more global context in the deeper layers. This progression relies heavily on the
down-sampling and up-sampling operations, which can introduce potential bot-
tlenecks. Such bottlenecks are particularly problematic for cross-modal features
in audio-to-talking face generation, which demands significant computational
resources and time. In contrast, Transformers capture both local and global
contexts simultaneously. This outcome is achieved without the sequential, layer-
by-layer processing that UNet requires. It eliminates the need for multiple layers
to gradually expand the receptive field, thereby enhancing the computational
efficiency of our StableTalk model [12,24].

Audio-lip alignment is another challenge and solely increasing the number of
Transformer blocks is inefficient in modeling the relationship between these two
modalities. When increasing the number of Transformer blocks, multiple atten-
tion heads often learn redundant and highly similar attention patterns. This
reduces the overall realism and coherency between the input and the controlled
modality. To mitigate this limitation, we employ the Re-attention [40] mechanism
in StableTalk. The Re-attention mechanism introduces cross-head communica-
tion, allowing different attention heads to share information and adjust their
focusing regions accordingly [4]. Further by utilizing cross Re-attention in our
denoising module, cross-modal patches are processed in parallel. This approach
efficiently analyzes the inter-relationships between audio and visual features in
a single operation and minimizes the resources required to process less signifi-
cant areas. Last, to further enhance the performance of the proposed StableTalk
model, we employ adversarial loss to enhance the training process. The adver-
sarial component can help refine the generation of fine facial movements, making
the expressions natural and expressive [2,8]. In summary, the main contributions
of the proposed StableTalk method are:

– A novel approach that leverages vision Transformer as the denoising compo-
nent within the latent diffusion architecture.

– Introducing Re-attention into StableTalk, which improves the capacity of our
model to identify the relationships and patterns across the audio and video
modalities.

– An investigation of the impact of adversarial loss in talking face generation.
We demonstrate that adversarial loss enhances the realism, synchronization,
and expressiveness of the generated talking face videos.

– A notable enhancement in inference speed without sacrificing the quality of
the generated output.

The remainder of this paper is structured as follows: Sect. 2 presents the
proposed StableTalk framework in detail. The experimental results are reported
and analyzed in Sect. 3. In Sect. 4, we summarize our key findings, discuss the
implications of our work, and propose potential directions for future research.
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Fig. 1. The overall architecture of StableTalk.

2 The Proposed StableTalk Method

In this section, we introduce the proposed StableTalk model designed for efficient
talking face generation with visual reality, contextual coherence, and audio-lip
synchronization.

2.1 Overview of StableTalk

An overview of StableTalk is shown in Fig. 1, which is based on DiffTalk [28].
However, the proposed method includes several innovations in the denoising
module and training objectives, which will be introduced in detail later.

The training of StableTalk initiates by processing the reference frame (xrf ∈
R

H×W×3), ground truth frame (xgt ∈ R
H×W×3), and masked ground truth

frame (xm ∈ R
H×W×3) using a variational autoencoder [23] as the image encoder

(EI), where W and H are the width and height of an image. The use of these
three frames is essential for network training as each provides crucial information
for the generation process. The reference frame introduces identity information,
enabling the model to modify its outputs to match the specific characteristics of
the provided identity. The ground truth frame provides supervision signals for
the training of the model. Note that, the ground-truth frame is not used in the
inference stage, which is presented in Sect. 2.5. The masked ground truth frame
ensures that the model learns facial features related to lip movements from audio,
rather than memorizing the ground truth frame. Each person demonstrates var-
ious head poses when speaking the same sentence. Utilizing the masked ground
truth frame provides guidance in determining the head pose during the genera-
tion process.

These encoded features are downsampled by a factor of f from the original
image resolution and concatenated along the channel dimension to form the
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input for the forward diffusion step (zi∈[1,...,T ] ∈ R
H/f×W/f×12). Note that we

only apply forward diffusion to the features obtained from the ground truth
frame. The features obtained from the reference and masked frames remain the
same during the forward diffusion stage. Meanwhile, audio and face landmarks
are utilized as the condition sets (C) to guide the generation process in the
backward diffusion step. Note that the facial landmarks do not include the mouth
area. Section 2.2 presents the details of condition set processing.

Fig. 2. The proposed denoising module.

In the forward step, the structure of the latent representation of the ground
truth frame is corrupted by gradually incorporating Gaussian noises, using a
scheduler [6]. In the reverse process, the denoising module predicts the amount
of noise added at each time step t. This process equips the generative model with
the understanding of latent representation at varying degrees of noise, enabling
the progressive restoration of the frame from its noised state. Different from
DiffTalk, the denoising steps in our model use ViT instead of a time-conditional
UNet [28]. Upon receiving the noised latent representations and condition sets,
ViT employs a series of cross-attention mechanisms to analyze and interpret
the data. Each latent representation is tokenized, normalized, and added with
positional encoding before initiating the denoising module, as depicted in Fig. 2.
This allows ViT to effectively capture the patterns and correlations across the
entire image. The reverse process terminates by reconstructing the frame from
the denoised latent representations using the decoder (DI) of the variational
autoencoder [23]. Note that the predicted noise is compared against the added
noise in the latent space, not after the image reconstruction step. The loss func-
tions for network training are introduced in Sect. 2.4.

2.2 The Condition Set

In audio-to-talking face generation, the quality and coherence of the generated
frames are significantly influenced by the nature of guiding factors, commonly
referred to as the ‘condition set.’ In this paper, we use audio and face landmarks
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as conditioning criteria, each requiring careful pre-processing to ensure optimal
model performance.

Prior to the generative stage, an audio input is divided into overlapping
segments with a window length of 500ms. Each part is further processed by
the wav2vec Transformer [26] (Ea), resulting in rich temporal audio represen-
tations per frame (ca). Wav2vec is a pre-trained self-supervised framework for
speech representation learning, which is scalable and efficient for various audio
processing tasks [27,35]. We choose wav2vec due to its ability for contextual
understanding and adaptability on many audio-related downstream tasks. This
is different from DiffTalk which uses RNN for audio feature extraction.

The preprocessing of facial landmarks is equally crucial. The landmarks pro-
vide necessary geometric references for our model to generate realistic and con-
textually aligned facial movements. To ensure proper training and prevent learn-
ing shortcuts, the mouth landmarks have been removed. The remaining points
are further processed using a CNN-based landmark encoder (El) [9]. In the final
step, the extracted audio features (ca) and encoded facial landmark features (cl)
are concatenated as the condition to guide the generation process.

2.3 The Cross-Attention Mechanism

Audio-lip alignment is challenging. However, exploring possible patterns between
these two modalities by increasing the number of Transformer blocks is less
effective. For the standard ViT architecture, this may lead to attention collapse
issues [40]. This problem occurs when different attention heads of a Transformer
end up learning redundant and similar attention patterns, indicating limited
ability to capture diverse features and representation learning [13]. To mitigate
this problem, we integrate the Re-attention mechanism [40] into the ViT-based
denoising block of StableTalk. This approach enables the generative model to
capture diverse aspects of the input data.

The key innovation of the Re-attention mechanism is the introduction of
cross-head communication. This mechanism ensures each head is aware of the
focused areas of other heads, discouraging them from all attending to the
same features [13]. Consequently, the finalized cross Re-attention mechanism
is obtained by:

Re − attention(Q,K, V ) = Norm(θT (softmax(
QKT

√
dq

)))V (1)

where Q, K and V represent the Query, Key and Value matrices. In Eq. (1), Q
carries visual information while K and V carry information related to the condi-
tion set. θ represents the learnable transformation matrix, serving for cross-head
communication. The Norm function assists in stabilizing the training by nor-
malizing the attention maps and reducing the layer-wise variance. The multipli-
cation between the transformation matrix and self-attention map is performed
across the head dimension. Considering the learnable nature of the transfor-
mation matrix, it can be adjusted during the training process. This adaptabil-
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ity allows the model to optimize how information is shared among different
heads [4,40].

2.4 Loss Functions

We utilize two loss functions for model training: reconstruction loss and adver-
sarial loss. The employed reconstruction loss is presented as follows:

Lrec = E(z,ε∼N(0,1),t,C)[‖ε − εθ(zt, t, C)‖22], (2)

where εθ represents the denoising model which predicts the amount of noise
(ε) added to zt. Here, zt is the nosiy version of input (z) and t represents the
diffusion time steps (t ∈ [1, 2, .., T ]). Further, both latent (z) and noise (ε) are
sampled from a Gaussian distribution and the condition set is represented by C
(C = {ca, cl}). While the reconstruction loss ensures fidelity to the input data,
it can sometimes lead to smooth or blurry generated frames [1,34]. To further
refine the quality and synchronization of audio with the generated talking face
videos, we incorporate the adversarial loss for network training.

We draw inspiration from the discriminator architecture of Wav2Lip [22]
which is renowned for its successful generalization on arbitrary audio and iden-
tities. Contrary to the Wav2Lip model, which directly manipulates the visual
domain, our approach employs the discriminator within the latent space. This
adopted approach aims to guide the generator towards accurately approximating
the actual noise distribution. By effectively predicting and then subtracting the
appropriate amount of noise during the reconstruction phase, the model gener-
ates talking faces that closely resemble the ground truth. Our model leverages
this aspect by introducing the adversarial loss (ladv) as follows:

Ladv = E(z,t,C)[log(1 − D(εθ(zt, t, C)))] + E(ε∼N(0,1))[logD(ε)] (3)

where D() indicates the lip-sync discriminator, which tries to distinguish between
real noise (ε) and the noise predicted by the model (εθ(zt, t, C)). As previously
described, zt represents the noisy version of data (z), t represents time steps
in the diffusion process, and C refers to the employed condition set. The term
log(1 − D(εθ(zt, t, C))) computes the logarithm of the probability that the pre-
dicted noise is classified as fake. The term logD(ε) computes the logarithm of the
probability that the real noise is classified as real. The goal is to minimize these
terms to effectively reduce the probability that its predicted noise is recognized
as fake by the discriminator.

The final loss function is defined as:

Lfinal = λ1 ∗ Lrec + λ2 ∗ Ladv, (4)

where λ1 and λ2 are balancing parameters, allowing us to regulate which loss
the model prioritizes during the training process. The final loss function, Lfinal,
is applied within the latent space to optimize the performance of the model in
generating talking faces from audio inputs.
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DDIM-based Denoising DDIM-based Denoising DDIM-based Denoising.....

Fig. 3. The inference stage of StableTalk.

2.5 The Inference Stage

As discussed in Sect. 2.1, StableTalk uses the ground truth frame, masked ground
truth frame, and reference frame as inputs during the training stage. However,
the ground truth frame is not used in the inference step. Our inference pipeline
adopts a sequential, frame-by-frame generation approach, where the output gen-
erated at each time step serves as the foundation for the generation of the next
frame. Given the existence of no prior generation at the initial step, two random
reference frames (xrf ) and the masked frame (xm) are employed to initiate the
process. The employed masked frame at each time step (t) is the masked version
of the ground truth frame at that specific time step. The choice to utilize two
random reference frames aims to enrich the generative process with varied visual
contexts. This strategy compensates for the absence of prior frames and assists
the model in generating an initial frame that is both contextually rich and faith-
ful to the identity of the reference identity. As the pipeline progresses, random
reference frame (xrf ), generated frame from the previous step (x̂t−1 ∈ R

(H,W,3))
and masked frame (xm) are utilized for the iterative frame generation. The use
of a generated frame from the previous step ensures that each new frame builds
upon the visual information from the last generated frame. This approach leads
to maintaining coherency and continuity among the generated frames of a video.
The inference pipeline of the StableTalk is illustrated in Fig. 3.

To enhance the efficiency and stability of the inference stage and inspired
by DiffTalk, we replace the standard Denoising Diffusion Probabilistic Model
(DDPM [6]) with the Denoising Diffusion Implicit Model (DDIM [29]). In con-
trast to DDPM, which executes all the diffusion time steps in a sequential man-
ner to progressively eliminate noise, DDIM introduces a non-Markovian process.
This process allows for a reduction in the number of steps required in the reverse
diffusion process without compromising the quality of the generated samples.
The sequential nature of DDPM prevents the process from being parallelized,
resulting in slower generation, and presenting limitations in inference speed.
On the other hand, DDIM addresses this by utilizing a deterministic approach
that allows for skipping steps by leveraging information from multiple previ-
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ous states [18,36]. This change significantly accelerates the generation process,
making it more practical for real-time applications.

3 Experimental Results

3.1 Experimental Settings

Dataset. To evaluate the proposed StableTalk model, we use the Crowdsourced
Emotional Multimodal Actors Database (CREMA-D [3]). CREMA-D is a com-
prehensive dataset comprising 7,442 video clips. These videos are performed by
91 actors and encompass a diverse spectrum of emotions including Anger, Dis-
gust, Fear, Happiness, Neutral, and Sadness. We randomly select 80 percent of
videos for training and the remaining part is used for testing.

Evaluation Metrics. To compare the performance of the proposed method
with the existing approaches, we use four evaluation metrics, including Fréchet
Inception Distance (FID [10]), Learned Perceptual Image Patch Similarity
(LPIPS [39]), Peak Signal-to-Noise Ratio (PSNR [37]), and Structural Similar-
ity Index Measure (SSIM [33]). We also evaluate the inference speed of different
methods in Frames Per Second (FPS).

FID assesses the similarity between the generated and ground truth images
based on the features extracted by the Inception net. Lower FID scores indi-
cate better generation quality, with a closer resemblance to real image distri-
butions [10]. LPIPS evaluates the perceptual difference between pairs of images
using deep network features (e.g. VGG) to better measure the visual similarity.
A lower LPIPS score suggests a higher perceptual similarity [39]. PSNR is a mea-
sure used to assess the quality of generated images compared to ground truth
images. Higher PSNR values indicate better image quality [37]. SSIM measures
the visual quality of images by comparing their structural information. A higher
SSIM score indicates a greater similarity between the images being compared,
implying less distortion and better image quality [33].

Implementation Details. Our model is designed to process videos resized to a
resolution of 128 × 128, and the downsampling factor (f) is set to 8. This resizing
facilitates efficient processing while preserving sufficient detail for high-quality
video generation. During the training stage we set the diffusion time steps to
1000 and at test time this number is reduced to 200. The transformer config-
uration comprises 12 Transformer blocks. Our training procedure utilizes two
NVIDIA A100 GPUs. Moreover, we utilize the AdamW optimization algorithm,
a modification of the original Adam optimizer that introduces weight decay for
better regularization and stability during training.
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Table 1. A comparison between StableTalk and the other SOTA methods.

Model FID↓ SSIM↑PSNR↑LPIPS↓
MakeItTalk [41] 19.483 0.4520 13.568 0.9207
Wav2Lip [22] 12.916 0.479 17.142 0.4402
DiffusedHeads [31] 12.450 0.545 21.803 0.104
DiffTalk [28] 12.459 0.674 23.991 0.094
StableTalk 11.391 0.721 25.267 0.0703

Fig. 4. A comparison between the ground truth (GT) and generated (Pred) frames by
StableTalk.

3.2 Qualitative and Quantitative Results

In this section, we compare the performance of our StableTalk model with
the state-of-the-art talking face generation methods, including MakeItTalk [41],
Wav2Lip [22], DiffusedHeads [31], and DiffTalk [28]. The results are reported
in Table 1, which shows that despite advancements made by existing methods
such as MakeItTalk and Wav2Lip, they exhibit limitations in generating highly
realistic talking faces when benchmarked against the ground truth frames. On
the other hand, the introduction of diffusion-based models, DiffusedHeads and
DiffTalk, marks a significant improvement in audio-to-talking face generation,
particularly in terms of LPIPS and PSNR metrics. This advancement suggests
a closer alignment with human perceptual judgments.

The proposed StableTalk model further refines these improvements by achiev-
ing the lowest FID (11.391) and LPIPS (0.0703), and highest SSIM (0.721) and
PSNR (25.267). The superiority of StableTalk can be attributed to multiple fac-
tors including Transformer-based architecture and the employed training loss.
In our pipeline, unlike previous works, we leverage both reconstruction loss and
adversarial loss within a latent diffusion model. By employing a reconstruc-
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tion loss generative model achieves better pixel-level accuracy and fidelity to
the actual images. Complementing this, adversarial loss plays a pivotal role in
enhancing the realism and perceptual quality of the generated faces. Based on the
obtained results by StableTalk, the integration of reconstruction and adversar-
ial loss leads to generating realistic talking faces that accurately reflect human
expressions. Moreover, the employed cross Re-attention mechanism inside the
denoising Transformer attends to interactions between input patches, regard-
less of their spatial proximity. This characteristic enables the model to identify
patterns and features across provided modalities.

Fig. 5. A visual comparison between StableTalk and SOTA methods is presented using
frames generated for the same identity as the basis for evaluation.

A visual comparison between the ground truth and generated frames by
StableTalk is provided in Fig. 4. The figure indicates the capability of our model
to produce realistic facial expressions coupled with aligned lip synchronization.
This fidelity to the ground truth signifies the understanding of human facial
dynamics by our generative model.

To further emphasize the improved performance of StableTalk, Fig. 5 presents
a comparison between the outputs generated by our model and those produced
by MakeItTalk, Wav2Lip, DiffusedHeads, and DiffTalk. We observe that, while
MakeItTalk successfully animates faces to deliver the given audio, it often fails
to convey synchronized facial expressions, resulting in predominantly neutral
appearances. Generated talking faces by wav2lip accurately reflect the ground
truth facial expressions, however, they fail to maintain realistic talking faces
due to the rectangular box appearing around mouth regions. DiffusedHeads,
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DiffTalk, and StableTalk notably enhance the realism and synchronization of lip
movements with the input audio in generated talking faces as compared to actual
faces. Nonetheless, a common challenge of DiffusedHeads and DiffTalk observed
is the closing of the mouth in frames towards the end of speech segments. Sta-
bleTalk has effectively mitigated this issue, ensuring that lip movements closely
mirror those of the original faces throughout the speech.

In summary, the provided quantitative analysis and visual comparisons high-
light the advancements made by StableTalk in the field of audio-to-talking face
generation. StableTalk excels in creating detailed and realistic facial animations
that closely resemble the ground truth.

3.3 Ablation Study

Effect of the Re-attention Mechanism. In this experiment, we conduct
a comparative analysis among three models to evaluate the impact of Trans-
former and Re-attention on the generation of realistic talking faces. The baseline
model, DiffTalk, does not utilize a vision Transformer or a Re-attention mecha-
nism. In contrast, the subsequent models differ and introduce new approaches.
Method1 integrates the vision Transformer and standard cross-attention mech-
anism whereas our proposed model, Method2, incorporates cross Re-attention.
Based on reported metrics in Table 2, Method2 achieves the best results in terms
of FID (11.391), LPIPS (0.0703), SSIM (0.721) and PSNR (25.267). These results
confirm the efficacy of vision Transformers and Re-attention in enhancing the
perceptual similarity of synthesized talking faces to actual facial expressions, and
in improving the overall visual fidelity.

Table 2. A comparative analysis between StableTalk with and without Re-attention
mechanism and DiffTalk.

Model ViT Re-attention Results
FID↓ SSIM↑ PSNR↑ LPIPS↓

Baseline × × 12.459 0.674 23.991 0.094
Method 1 � × 11.676 0.688 23.698 0.082
Mathod 2 � � 11.391 0.721 25.267 0.0703

Incorporating the Re-attention mechanism enhances the ability of the model
to capture complex facial features, expressions, and movements from audio. The
visual comparison presented in Fig. 6 demonstrates this improvement. This figure
illustrates that frames generated by StableTalk with the Re-attention mechanism
exhibit improved lip synchronization and more accurately capture facial expres-
sions, particularly in the eye regions. Additionally, in some generated frames
by StableTalk without Re-attention, we notice sudden changes in color con-
trast of the frames which considerably impact on realism and smooth transition
between frames. The employment of the Re-attention mechanism addresses this
issue effectively, ensuring a consistent and realistic visual output.



StableTalk 283

Fig. 6. The impact of Re-attention on StableTalk (zoom in for better comparison).

3.4 Inference Speed

In audio-to-talking face generation, the computational efficiency and complex-
ity of a model are critical for practical applications. We conduct a comparative
study focusing on the inference speed and the number of model parameters.
The results are reported in Table 3. The proposed model achieves the infer-
ence speed of 169 in FPS. This significantly outperforms the state-of-the-art
methods DiffTalk and DiffusedHeads, which achieve 18.5 and 0.09 FPS, respec-
tively. Although DiffusedHeads uses timestep-respacing during inference, based
on determined results in Table 3, the better acceleration by DDIM can be con-
cluded. Timestep-respacing impacts the scheduling technique and applies no
modification on the stochastic and sequential process within standard DDPM.
However, DDIM applies modification to the diffusion process itself by employ-
ing deterministic and non-Markov process [19,36]. Interestingly, the performance
gain of StableTalk did not come at the cost of increased model complexity. The
speed-to-parameter ratio for StableTalk provides a balanced profile, highlight-
ing its practicality for deployment in real-world scenarios where both speed and
complexity are essential considerations.

Table 3. Comparison with SOTA methods in terms of inference speed and model size.

Model Speed (FPS) # Parameters

DiffusedHeads [31] 0.09 215M
DiffTalk [28] 18.5 530M
StableTalk 169 144M

Integrating vision Transformers with the Re-attention mechanism allows the
generative model to dynamically adjust attention weights, focusing better on
relevant input features. This approach reduces processing redundancy, leading to
efficient computation and faster inference speed. Furthermore, the use of DDIM,
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with its non-Markovian process, directly speeds up the speed of StableTalk. The
deterministic and non-Markovian approach of the DDIM allows for reduction in
the number of required steps to denoise an image. This effectively avoids few
intermediate states that DDPM would sequentially traverse. Consequently, this
reduction in steps results in quicker image generation, enhancing practicality of
the model for real-time applications where rapid inference is essential [14,21,
29,36]. These strategies, when combined with the guidance of facial landmarks
and masked frames, not only refine detail generation but also accelerate the
inference process. Such guiding features provide essential information on the
expected frame structure, effectively narrowing the search space of the generative
model. This enables the model to concentrate on refining details, simplifying the
generation of facial structures.

4 Conclusion

In this paper, we proposed StableTalk, a latent diffusion-based model for realis-
tic and efficient audio-to-talking face generation. The proposed method demon-
strated superior capability in generating realistic facial animations. These facial
animations are effectively synchronized with audio inputs by incorporating
advanced techniques such as the Re-attention mechanism and adversarial loss.
In addition to its superior image generation quality, our model stands out for its
computational efficiency, outperforming the existing methods in terms of infer-
ence speed. For future research, we aim to enhance the adaptability and efficiency
of StableTalk by reducing its reliance on extra conditioning and broadening its
application across diverse identities.
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Abstract. Pretrained Large Language Models (LLMs) have demon-
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alone, particularly in unstructured task settings (i.e. tasks purely based
on language semantics). However, LLMs often struggle with struc-
tured tasks, because of the inherent incompatibility of input represen-
tation. Reducing structured tasks to uni-dimensional language seman-
tics often renders the problem trivial. Keeping the trade-off between
LLM compatibility and structure complexity in mind, we design vari-
ous graph reasoning tasks as a proxy to semi-structured tasks in this
paper, in order to test LLMs’ ability to use representations beyond
plain text. In particularly, we design 10 distinct problems of graph
traversal, each representing increasing levels of complexity, and bench-
mark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2,
Llama-2 and Palm-2) on the aforementioned tasks. Further, we anal-
yse the performance of models across various settings such as vary-
ing sizes of graphs, as well as different forms of k-shot prompting. We
highlight various limitations, biases and properties of LLMs through
this benchmarking process, such as an inverse relation to the average
degrees of freedom of traversal per node in graphs, the overall nega-
tive impact of k-shot prompting on graph reasoning tasks, and a pos-
itive response bias which prevents LLMs from identifying the absence
of a valid solution. Finally, we introduce a new prompting technique
specially designed for graph traversal tasks (PathCompare), which
demonstrates a notable increase in the performance of LLMs in compar-
ison to standard prompting techniques such as Chain-of-Thought (CoT)
(The code for reproducing the results of this paper can be found at
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1 Introduction

Large Language Models (LLMs) exhibit interesting reasoning abilities in vari-
ous types of reasoning tasks [23], including arithmetic [27], logical [26], semantic
[14], and symbolic [25]. Building on top of just raw reasoning abilities, various
techniques, such as chain-of-thought (CoT) and self-consistency [22], have been
proposed to improve the reasoning abilities of LLMs by enhancing the implicit
knowledge in the output. However, in relative terms, graph reasoning is not well
explored in the domain of LLMs, even though many important subproblems arise
in graph reasoning, including subgraph matching [5] and shortest path connec-
tivity [6]. One of the major challenges of grounding graphs through language is
rooted in the fact that graphs inherently cover non-linear connectivity between
multi-dimensional elements in a condensed format, and hence, reasoning over
graphs requires simultaneous tracking of the state of multiple nodes. Broadly
in the context of LLMs, graph reasoning is a proxy for understanding relations
are established between different entities in a structured setting, and is worth
studying, given the impressive emergent abilities observed in recent LLMs.

The major challenge for LLMs in processing graphs directly arises from the
uni-dimensionality of input representations, restricting the scope of reasoning
that can be achieved using LLMs [1]. In particular, LLMs are trained on seman-
tic text as next-token predictors, and hence cannot process structured represen-
tations1 such as graphs and trees directly, without having to break down the
representation into verbally semantic prompts [2]. This process often constrains
the selection of tasks, and/or leads to loss of complexity. Hence, efficiently cap-
turing the underlying structure of graphs is particularly challenging for LLMs.

In this paper, we are particularly interested in studying fundamental graph
understanding and reasoning abilities of LLMs. While various previous works
have studied graph reasoning using LLMs by means of simplified graph struc-
tures as enumerated node adjacency lists and connections [2–4], graph tasks
such as traversal are inherently reduced to trivial search retrieval problems due
to these flattened representations. Hence, the ability of LLMs to navigate
over more complex and structured representations is still not well
explored. We explore this particular question in-depth in this paper, by going
one step further than previous works. Specifically, we prompt LLMs to reason
over semi-structured graph representations, instead of plainly verbalized unstruc-

1 In this paper, we refer to structured representations as data organized according to
a specific schema or format that clearly defines the type, relationship, and arrange-
ment of data elements. This structured format allows for efficient processing using
standardized algorithms and tools. In this context, graphs are categorized as struc-
tured representations by virtue of node connections. On the other hand, LLMs
are designed to process unstructured text representations with an inherent uni-
dimensional semantic relationship. By default, LLMs are not equipped to process
structured representations through relationship rules.
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tured representations like previous works, while still maintaining the language
compatibility of LLMs.2

A systematic graph-reasoning benchmarking of pretrained LLMs was per-
formed in [17], where various interesting properties were revealed. This included
preliminary reasoning capabilities in LLMs in basic graph traversal problems by
parsing adjacency lists as input, and the ineffectual nature of advanced prompt-
ing techniques in the context of logical deduction. In the aforementioned work,
an improvement in LLM reasoning is observed as a result of custom prompting,
majorly along the lines of directing the LLM to elaborate on graph connections
to facilitate node traversal. However, representation of graphs through adjacency
lists does not evaluate the ability of LLMs to navigate through structured rep-
resentations. Moreover, the design of graph traversal tasks in [17] is limited in
terms of granularity of reasoning evaluation.

In order to assess the graph reasoning abilities of LLMs in a more comprehen-
sive way, we carry out graph evaluation through a series of increasingly complex
graph problems and settings. Particularly, we construct 10 distinct graph prob-
lems requiring multi-hop reasoning and tracking. This includes tree-based graph
traversals, grid-based graph-traversals as well as certain special classes of prob-
lems. We evaluate five different LLMs (GPT-3.5, GPT-4, Claude-2, Llama-2
and Palm-2). While the OpenAI family of models is thoroughly investigated in
various papers, this paper studies the nature of various other contenders. For
example, in this paper, we demonstrate that Anthropic’s Claude-2 is a good
logical reasoning model, only sub-standard to GPT-4 among the various models
publically available for access. We also choose to adopt certain design choices
that highlight interesting limitations and biases in the training of various models.
This includes methods like jumbling the sequence of nodes, as well as testing if
the models can identify the absence of a valid solution, or in other words, testing
if the models are biased to responding with a non-negative response.

By carefully examining the logical flow of reasoning adopted by LLMs in
order to come to a response, we observe certain limitations that hinder LLMs
specifically in the case of graph traversal problems. Using these insights, we
propose a novel prompting technique, which we refer to as PathCompare ,
which simplifies the reasoning problem by allowing models to compare different
possible solutions.

In essence, the main contributions of this paper are

1. We benchmark five different LLM models on graph reasoning tasks. The graph
reasoning tasks are carefully designed in the form of 10 graph traversal prob-
lems in increasing orders of complexity. The design of these problems not only

2 In this paper’s context, semi-structured representations involve breaking down a
structured representation into uni-directional text, while still maintaining some form
of element relationship. In our case, adjacency matrix representations involve a tab-
ular relation set, which requires tracking both the column and row origin of a node.
This structure introduces complexity to the reasoning task. Particularly, we are inter-
ested in exploring the ability in LLMs to handle such representational complexity.
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assesses the complexity that LLMs can handle, but also highlights interesting
properties, including biases introduced due to prompting.

2. To study graph reasoning in depth, we also introduce many variations on top
of the graph traversal tasks, including node order (graph size) variation, intro-
duction of weighted and directed connections, and jumbling of node labels.
This allows us to guarantee a wide collection of tasks not previously seen by
LLMs during pretraining.

3. We finally propose a new prompting technique (PathCompare) which
improves graph traversal performance across different LLMs. We demonstrate
that this prompting technique outperforms standard prompting as well as
CoT prompting in the majority (i.e. >50%) of the designed tasks).

Fig. 1. Visualization of all problem categories considered for evaluating LLMs. For
each problem, we create 3 variations – O(10), O(20) and O(20) jumbled, representing
increasing levels of difficulty.

2 Defining Graph Reasoning Tasks

A typical graph traversal problem involves navigating a graph G = {V,E}
between a specified pair of nodes u, v ε V through a sequence of edges e =
(e1, e2....en) ε E. Traversal of a graph G can be formulated in various ways, such
as determining connectivity between two sub-graphs, shortest/least-cost path
optimization and maximum flow optimization, and so on. However, we identify
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shortest/least-cost path optimization as one major class of problems involving
multi-hop non-trivial reasoning. Analyzing the properties of large language mod-
els on such path optimization problems can thus reveal many interesting proper-
ties of the models, apart from multi-hop reasoning ability, such as multi-variable
state tracking ability, recursive thinking, as well as the ability to reject non-
optimal paths. We start by defining the types of graphs that are considered for
evaluating traversal properties in LLMs.

2.1 Defining Graph Levels and Complexity

As a starting point, we categorize various types of graphs into two major cate-
gories, as described below.

Problem 1: Tree-based graphs these graphs are defined as connected undirected
graphs, where any two nodes u, v are connected by atmost one edge eε{0, R+},
(where R+ represents positive real number values). In the above representation
e = 0 represents no connection, e = 1 represents a simple unweighted connec-
tion between nodes u, v, and all other positive values e ε (R+|e �= 1) represents
a weighted connection between nodes u, v. By definitions, no cycles exist in a
tree-based graph. However, for the sake of logical grouping of tasks in a gener-
alizable manner, we define tree-based graphs as tree-like heirarchical structures
with possible exceptions (with respect to cyclic connections). The emphasis is
on navigating through these arbitrary node connections to find the shortest or
least costly route. Based on this, we formulate the following problems

– Problem 1.1: Linear graph traversal a linear graph is defined as a graph
G(n) with n nodes such that its nodes V = (v1, v2, ...vn) are connected pair-
wise sequentially (ei,i+1 = 1), where ei,j represents an edge between nodes
vi and vj . The task involves traversing from node v1 to vn. This is the most
trivial form of graph traversal, since there exists only one possible traversal
path originating from node v1.

– Problem 1.2: Random tree traversal: given a unweighted and undirected
tree-based graph G(n) of order n, the task involves traversal from node v1 to
vn. This involves traversing through and rejecting many dead-end paths. We
ensure that there only exists one possible path from node v1 to vn.

– Problem 1.3: Tree traversal with multiple possible solutions: given a
unweighted and undirected tree-based graph G(n) of order n, the task involves
finding the shortest path from node v1 to vn, among many possible paths.
There exists only one shortest possible path in this tree.

– Problem 1.4: Weighted tree traversal with multiple possible solu-
tions this setting is similar to problem 1.3, except the edges are weighted.
Hence, the task is modified into a least-cost traversal problem. There exists
only one possible least cost path.
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Grid-based graphs these graphs are defined as two-dimensional connected graphs
G(M,N) of size M ×N , where node u = G(i, j) ∀(i, j)|(1 ≤ i ≤ M), (1 ≤ j ≤ N)
is connected to another node v = G(p, q) by atmost one edge eε{0, R+}, (where
R+ represents positive real number values, and the definition of edge values are
similar to tree-based graphs). A grid-graph is a collection of nodes arranged in a
regular grid pattern, with nodes connected to their immediate neighbors in a row-
column configuration. By virtue of being two-dimensional, they are more densely
connected than tree-based graphs, and inherently have cyclic connections (loops)
between nodes. Thus, these form a more-challenging class of graph-traversal
problems due to the involvement of selection among a higher number of possible
solutions. Based on this, we formulate the following problems.

– Problem 2.1: Random grid traversal given a unweighted and undirected
graph G(M,N) with dimensions (M,N), the problem involves finding the
shortest path of traversal from node G(1, 1) to node G(m,n). There exists
only one shortest possible path per grid.

– Problem 2.2: Weighted grid traversal This problem is similar in setting
to problem 2.1 except the edges are weighted. Hence the task evolves into a
least-cost path traversal from node G(1, 1) to G(m,n). There exists only one
least-cost path per grid.

– Problem 2.3: Directed and weighted grid traversal This problem is
similar in setting to problem 2.1 except all edges are weighted as well as
directed. Hence the problem evolves into finding a valid least-cost traversal
from node G(1, 1) to G(m,n).

– Problem 2.4: Directed grid traversal with no possible solution This
problem involves a directed grid G(M,N), such that no valid path exists
because of randomized directions. The goal of the problem is to evaluate
whether LLMs are capable of evaluating directional conflicts, and come to
the conclusion that no path is valid.

By incrementally adding constraints to both the problem categories above,
we create an analysis framework to determine the graph reasoning abilities of
LLMs in increasing levels of complexity. Between the two problem categories,
problem 2 poses a more challenging problem than problem 1, due to a larger
number of average degrees of freedom of traversal per node.

Problem 3: Special Problems. Apart from the two aforementioned categories of
problems, we define two special tree-based traversal problems.

– Euler walk: Given a valid Euler graph G, an Euler path is defined as a
path which covers all edges E of the graph exactly once. The Eulerian path
traversal is a more viable alternative to the Hamiltonian path traversal, which
involves travelling all nodes U of the graph exactly once, since the former can
be evaluated computationally by a finite set of conditions, unlike the latter,
which is an NP-complete problem and cannot be evaluated using a polynomial
time algorithm. Hence, we formulate the problem as follows.
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• Problem 3.1: Valid Euler graph Given a tree-based graph G(n) with
n nodes, the task involves identifying whether or not a valid Euler path
is possible, given a starting node vi.

– Checkpoint traversal This problem involves traversal of a tree-based graph
G between two nodes u and v, such that a specific node w must be part of
the traversal path. Mathematically, this is equivalent to breaking down the
traversal into two distinct problems – traversal from u and w, and traversal
from node w and v. The goal of this cascaded traversal problem is to evaluate
whether a single LLM response can simultaneously solve multiple problems.
We hence formulate the following problem.

• Problem 3.2: Cascaded graph traversal Given a weighted tree graph
G(n) with n nodes, find the least cost path to traverse from node v1 to a
randomized node vi, and then from vi to vn.

2.2 Graph Generation, Prompting and Evaluation

Automated Graph Generation. Graphs and their corresponding solutions are
automatically generated as adjacency matrices with alphabetically labeled nodes.
We deliberately avoid adjacency lists (a more standard practice of computational
representation), to avoid triviality, since a direct listing of individual node con-
nections simplifies the complexity for the LLM, thereby hindering the ability to
assess its raw reasoning capabilities. We ensure that there exists only one unique
solution for all problems, so that evaluation can be unambiguous. For problem
3.1 (Euler walk), we convert it into a True/False problem due to the lack of a
guaranteed single Eulerian path, ensuring a balanced distribution of valid and
invalid cases. All remaining problems require LLMs to provide a sequence of
nodes in response. Thus, while lower LLM accuracies are expected, a more com-
prehensive evaluation can be performed. Across all problems, we generate three
variations (or orders) of problems, depicting increasing levels of complexities.

1. O(10): This refers to graphs that have a total number of nodes varying around
n = 10, or between 5 and 15 (inclusive) to be exact. Hence the problem is
formulated as traversal between A and J when n = 10, and so on, in the case
of problem categories 1 and 2.

2. O(20): This refers to graphs which have a total number of nodes varying
around n = 20, or between 16 and 26 (inclusive). Hence, when n = 20, the
problem is formulated as traversal between node A and T, and so on, in the
case of problem categories 1 and 2.

3. O(20) jumbled : In contrast to the previous cases, where node labels follow
a near-ordered sequence in depth-first traversal, the labels of the nodes in
O(20) are randomized to increase complexity. Although the adjacency matrix
remains alphabetically ordered, the solution sequence is entirely shuffled. This
approach allows us to assess whether LLMs depend on training biases, such
as node order, when generating solutions.

Further, we ignore evaluating problem 3.1 (valid euler graph) for O(20) and
O(20) jumbled graphs. This is because generating larger graphs with guaranteed
eulerian conditions are computationally highly expensive.
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Prompting Techniques. In order to maintain structure of graphs without explicit
flattening and enumeration of nodes/connections, we represent graph structures
as adjacency matrices, rather than simpler adjacency lists. This kind of struc-
ture is not only more compact, but tests the ability of LLMs to perform multi-hop
reasoning, and tracking value states more rigorously. A detailed description of
our base prompting method is described in the Appendix.

For prompting, our goal was to ensure that all models are given the same
prompts for fair evaluation. For all models, we test graph reasoning abilities
across 3 k-shot settings – zero-shot setting (k = 0), one-shot setting (k = 1)
and three-shot setting (k = 3) [28]. To evaluate and compare the preliminary
graph reasoning abilities of LLMs, we avoid any specialized prompting techniques
(such as self-consistency [27] and other related techniques). However, later in the
paper, chain-of-thought prompting [22] is introduced, majorly to compare the
impact specialized prompting on graph reasoning.

Partial Credit Evaluation. Apart from an automated evaluation, we go one step
further and manually evaluate problem categories 1 and 2 (except 2.4, where
partial credit does not apply) for partial credit. We define partial credit as the
fraction of nodes that the evaluator got correct out of all the nodes in the ground
truth solution before predicting to a wrong node. This is only applicable in cases
where the model does not get a full score of 1.0 from the primary evaluator. This
metric allows us to evaluate the reasoning ability and problem solving technique
of LLMs with greater granularity.

2.3 Selection of LLMs

In order to include a broad range of models, we select five models from four
families of models (in terms of architecture and training data/method). This
includes – OpenAI’s GPT-3.5 and GPT-4 [21], Anthropic’s Claude-23 [20],
Google’s Palm-2 [19], and Meta’s Llama-2 [18] with 13B parameters. Since
LLama-2 is a raw foundational model, we use an instruction-fine tuned version
(Hermes) released by Nous Research.

3 Results and Analysis

Using the prompting and evaluation technique defined above, we evaluate models
over the defined problems. We evaluate the results of graph reasoning for all
problems by calculating averaged and normalized binary accuracies across 10
examples for each setting, and go from 0 to 1 in increments of 0.1. A model
response is only marked correct if it predicted the shortest/least-cost traversal
path correctly and completely. Along with binary accuracies, partial accuracies
are also calculated. While we use binary accuracy to filter out models with weak
reasoning abilities, we use partial accuracy for more granular comparison. These
3 It should be noted that Claude-3 was not released at the time of conducting these

experiments.
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results can be visualized in Fig. 2. A detailed tabulation of these results are
included in the Appendix Tables 1, 2 and 3.

Problem
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0.75

1.00

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2

GPT3.5 GPT4 Claude2 LLama2 Palm2

Fig. 2. Baseline comparison of all model families on O(10) graph problems in 0-shot
settings using partial accuracy. Partial accuracy gives a more granular insight into the
performance of models, versus binary accuracy.

3.1 Preliminary Technical Limitations

Before analysing the performance of various LLMs on different LLMs, we observe
some overall characteristics of models. Particularly, we observe issues with
Llama-2 and Palm-2. In the case of Llama-2, 3-shot setting for O(20) graphs
could not be evaluated, because of the limited context-window length of the
model (4,096 tokens). While this issue was also seen with the default GPT-3.5
model, a GPT-3.5 variant with a larger context window (16,383 tokens) was
able to solve the issue. In the case of Palm-2, we observe that beyond a certain
length of input (in the case of 1-shot and 3-shot prompts), the model tends to not
respond with any solution, but with a generic statement related to the model’s
inability to solve the problem.

3.2 Overall Observations from Problem 1 and Problem 2

Through a first, glance, we can easily point out that all models generally per-
form better on tree-based graphs (problem 1) than grid-based graphs (problem
2). Further, we notice a general drop in performance in random tree traver-
sal (problem 1.2) across O(10) and O(20) graphs. This clearly indicates that
a greater number of average degrees of freedom for traversal per node has an
inverse correlation with reasoning capability.

Model Specific Observations. Although all models perform decently on trivial
graph traversal tasks (e.g. problem 1.1), differentiation among models is quickly
observed as more constraints are added. Referring to Fig. 2, a general aggre-
gate trend is observed where some reasoning abilities are observed in the case
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Table 1. Evaluation of models on problem category 1: tree-based graph traversals.
The values are represented as A/B, where A depicts the average normalized binary
accuracy (ranging from 0 to 1) for 10 examples per setting, and B depicts the average
normalized value for partial credit for 10 examples per setting. * = a larger context
variant of the corresponding LLM was used. � = the prompt was too large to fit the
context window of the model, hence the setting was omitted. ** = the model did not
return any solution and refused to answer the question.

Problem O(10) O(20) O(20) jumbled
0-shot 1-shot 3-shot 0-shot 1-shot 3-shot 0-shot 1-shot 3-shot

GPT-3.5
1.1 1.0 0.6/0.80 1.0 1.0 1.0 1.0* 0.0/0.09 0.1/0.08 0.0/0.07*
1.2 0.2/0.41 0.4/0.59 0.6/0.62 0.0/0.39 0.1/0.38 0.2/0.31* 0.0/0.22 0.2/0.29 0.0/0.29*
1.3 0.3/0.53 0.0/0.24 0.4/0.48 0.2/0.36 0.1/0.17 0.0/0.26* 0.0/0.28 0.0/0.21 0.0/0.19*
1.4 0.3/0.47 0.2/0.45 0.0/0.48 0.1/0.37 0.0/0.23 0.0/0.33* 0.1/0.24 0.0/0.13 0.0/29*
GPT-4
1.1 1.0 1.0 1.0 1.0 1.0 1.0 0.7/0.84 0.9/0.98 0.7/0.87
1.2 1.0 1.0 1.0 0.5/0.67 0.8/0.85 0.9/0.93 0.1/0.31 0.2/0.47 0.4/0.55
1.3 0.8/0.93 0.6/0.69 0.9/0.91 0.4/0.64 0.5/0.70 0.6/0.71 0.2/0.45 0.2/0.40 0.3/0.51
1.4 0.4/0.62 0.0/0.31 0.4/0.59 0.2/0.40 0.1/0.35 0.0/0.27 0.1/0.26 0.2/0.39 0.3/0.51
Claude-2
1.1 1.0 0.0/0.60 1.0 0.2/0.30 0.2/0.43 1.0 0.0/0.07 0.0/0.06 0.0/0.12
1.2 0.7/0.84 0.0/0.30 0.3/0.50 0.3/0.53 0.1/0.29 0.2/0.31 0.1/0.31 0.0/0.18 0.0/0.22
1.3 0.4/0.62 0.5/0.70 0.2/0.56 0.0/0.37 0.2/0.39 0.1/0.35 0.3/0.36 0.0/0.26 0.0/0.14
1.4 0.4/0.56 0.2/0.44 0.1/0.34 0.2/0.41 0.0/0.25 0.1/0.34 0.1/0.30 0.0/0.19 0.0/0.17
Llama-2
1.1 1.0 0.0/0.10 1.0 0.0/0.05 0.0/1.0 � 0.0/0.06 0.0/0.05 �
1.2 0.2/0.47 0.1/0.31 0.0/0.18 0.0/0.15 0.0/0.14 � 0.0/0.11 0.0/0.16 �
1.3 0.0/0.30 0.1/0.35 0.0/0.25 0.0/0.17 0.0/0.13 � 0.0/0.14 0.0/0.16 �
1.4 0.2/0.40 0.1/0.37 0.0/0.32 0.0/0.16 0.0/0.25 � 0.0/0.15 0.0/0.17 �
Palm-2
1.1 1.0 1.0 1.0 1.0 ** ** 0.0/0.05 0.0/0.05 0.0/0.06
1.2 0.2/0.27 0.0/0.32 0.1/0.44 0.0/0.27 ** ** 0.0/0.19 0.0/0.17 **
1.3 0.1/0.52 0.2/0.53 0.2/0.50 ** ** ** ** ** **
1.4 0.0/0.35 0.1/0.38 0.0/0.34 0.0/0.10 ** ** 0.0/0.08 ** **

of GPT4, Claude-2, and GPT-3.5 (in this order of decreasing relative reasoning
abilities). On the other hand, Llama-2 and Palm2 perform under 30% on the
majority (≥ 50% of the settings) of the tasks, depicting poor reasoning abili-
ties. In more complex settings (such as O(20) graphs and O(20) jumbled graphs,
not presented in this paper for simplicity and readability, but present in the
code repository), an almost random-like performance is seen in these models.
An anomaly is observed in problem 3.1 where a spike is observed in the perfor-
mance of the aforementioned 2 models. However, since this particular problem
is a True/False problem with a random baseline accuracy of 50%, the spike is
rendered meaningless. Keeping this in mind, in the remainder of the paper, we
primarily focus on GPT4, Claude-2, and GPT-3.5, since these contenders depict
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Table 2. Evaluation of models on problem category 2: grid-based graph traversals. The
values are represented as A/B, where A depicts the average normalized binary accuracy
(ranging from 0 to 1) for 10 examples per setting, and B depicts the average normalized
value for partial credit for 10 examples per setting. The notations are similar to Table 1.

Problem O(10) O(20) O(20) jumbled
0-shot 1-shot 3-shot 0-shot 1-shot 3-shot 0-shot 1-shot 3-shot

GPT-3.5
2.1 0.1/0.33 0.2/0.46 0.3/0.41 0.1/0.21 0.1/0.28 0.1/0.28* 0.1/0.14 0.0/0.13 0.0/0.12*
2.2 0.0/0.40 0.0/0.19 0.0/0.37 0.0/0.30 0.0/0.12 0.1/0.32* 0.0/0.13 0.1/0.13 0.0/0.13*
2.3 0.1/0.40 0.10/0.36 0.0/0.37 0.0/0.14 0.0/0.17 0.0/0.22* 0.0/0.13 0.0/0.09 0.0/0.11*
2.4 0.0 0.0 0.0 0.0 0.0 0.3* 0.0 0.0 0.0*
GPT-4
2.1 0.3/0.46 0.3/0.48 0.4/0.51 0.1/0.36 0.1/0.29 0.0/0.21 0.0/0.14 0.0/0.23 0.0/0.16
2.2 0.0/0.44 0.4/0.56 0.2/0.37 0.1/0.42 0.1/0.31 0.3/0.54 0.0/0.14 0.0/0.26 0.0/0.23
2.3 0.2/0.52 0.0/0.36 0.2/0.40 0.1/0.34 0.2/0.49 0.1/0.28 0.0/0.16 0.0/0.16 0.0/0.17
2.4 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.9 0.6
Claude-2
2.1 0.0/0.40 0.3/0.44 0.0/0.36 0.0/0.29 0.1/0.20 0.0/0.22 0.0/0.16 0.0/0.13 0.1/0.16
2.2 0.1/0.34 0.2/0.41 0.1/0.31 0.0/0.19 0.3/0.23 0.0/0.21 0.0/0.17 0.1/0.12 0.0/0.13
2.3 0.1/0.33 0.1/0.29 0.0/0.24 0.0/0.17 0.0/0.18 0.0/0.26 0.0/0.12 0.0/0.13 0.0/0.12
2.4 0.0 0.1 0.3 0.0 0.1 0.3 0.0 0.3 0.4
Llama-2
2.1 0.0/0.16 0.2/0.44 0.1.0.24 0.0/0.18 0.1/0.12 � 0.0/0.05 0.0/0.05 �
2.2 0.0/0.22 0.0/0.40 0.1/0.52 0.0/0.18 0.0/0.36 � 0.0/0.04 0.0/0.06 �
2.3 0.0/0.14 0.0/0.22 0.0/0.12 0.0/0.08 0.0/0.12 � 0.0/0.014 0.0/0.06 �
2.4 0.1 0.8 0.0 0.0 0.0 � 0.0 0.0 �
Palm-2
2.1 0.0/0.22 0.5/0.64 0.2/0.42 0.0/0.06 ** ** 0.0/0.04 ** **
2.2 0.0/0.21 0.0/0.24 0.0/0.30 0.0/0.04 ** ** ** ** **
2.3 0.0/0.18 0.0/0.30 0.0/0.22 ** ** ** 0.0/0.08 ** **
2.4 0.0 0.0 0.0 ** ** ** ** ** **

fairly reasonable graph reasoning abilities. However, all the results are openly
available for analysis in our code repository.

3.3 Weighted Vs Unweighted Graph Traversal

Adding weights to graph edges in least-cost traversal problems introduces signif-
icant complexity, requiring models to track cumulative weights. Unsurprisingly,
we observe a general trend of dropping performance as soon as weights are added
to trees (problems 1.3 vs 1.4) and well as grids (problems 2.1 vs 2.2). GPT-4 and
Claude-2 demonstrate some ability to solve weighted traversal, demonstrating
their innate ability to track numerical variable states in parallel to graph paths.
On the other hand, chain-of-thought prompting [22] in GPT-3.5 demonstrates
that the models tend to neglect weights and solve problems using an unweighted
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Table 3. Evaluation of models on problem category 3: special problems. The values
depict the average normalized value (ranging from 0 to 1) for 10 examples per setting.
- = the setting is not applicable for a particular level. � = the prompt was too large
to fit the context window of the model, hence the setting was omitted. ** = the model
did not return any solution and refused to answer the question. Note that for problem
3.1, the random baseline is 0.5, since the problem solution is binary (True/False).

Problem O(10) O(20) O(20) jumbled
0-shot 1-shot 3-shot 0-shot 1-shot 3-shot 0-shot 1-shot 3-shot

GPT-3.5
3.1 0.3 0.1 0.5 - - - - - -
3.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
GPT-4
3.1 0.5 0.5 0.2 - - - - - -
3.2 0.2 0.3 0.2 0.0 0.0 0.1 0.0 0.1 0.0
Claude-2
3.1 0.6 0.4 0.7 - - - - - -
3.2 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 0.0
Llama-2
3.1 0.6 0.8 0.7 - - - - - -
3.2 0.0 0.0 0.0 0.0 0.0 � 0.0 0.0 �
Palm-2
3.1 0.5 0.1 0.2 - - - - - -
3.2 0.0 0.0 0.0 0.0 ** ** 0.0 ** **

approach. The remainder of the models such as Llama-2 and PaLM 2 tend to
respond with a description of the algorithm underlying the solution, rather than
the solution itself. This is especially observed in 0-shot settings.

3.4 Effect of K-Shot Prompting

In Fig. 3, we compare the effect of k-shot prompting across 8 tasks, and observe
that in the majority of the tasks, k-shot prompting has either no statistically
significant effect, or a negative effect on reasoning accuracy. In general, while
few-shot prompting is helpful in response format shaping, it is of no particular
aid for analytical tasks such as graph reasoning. Carefully examining individual
responses, we observe models (even the more powerful ones like GPT4) confusion
between different examples, and responding to k-shot examples rather than the
relevant graph traversal question.

3.5 Effect of Increased Graph Order and Jumbling Node Order

In Fig. 4, We analyze the impact of different graph orders and complexities,
specifically comparing O(10), O(20), and O(20) jumbled graph settings. We con-
sistently observe across all models that a performance drop is observed when
graph order is increased. An interesting insight enlightened when manually ana-
lyzing individual solutions is that poor performance in O(20) graphs in com-
parison to O(10) graphs is not solely due to increased computational demands
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Fig. 3. Comparison of the effect of k-shot prompting on various LLMs. We observe that
in more than half of all tasks, few-shot prompting leads to either a drop or an insignif-
icant (≤ 5%) improvement in accuracy in comparison to 0-shot prompting (depicted
in blue). This is observed in 6/8 tasks for GPT3.5, 6/8 tasks for GPT4 and 5/8 tasks
for Claude-2. (Color figure online)

but also because models often omit higher node labels (e.g., J, K, L, M and so
on) when labels are alphabetically ordered, indicating training on lower-order
graphs.

This behavior is amplified in the case of jumbled node sequences, where
even trivial linear traversal becomes challenging, highlighting a strong model
bias towards ordered node sequences, even in few-shot settings. GPT-4, while
occasionally applying valid logical principles, still struggles across grid-based
traversals.

3.6 Positive Response Bias Within LLMs

Through a special problem (problem 2.4), we observe that all models also consis-
tently fail to recognize when no solution is possible. An interesting observation is
that models fail to recognize when no valid solution is possible even in few-shot
prompt settings, considering it is expected that this method should induce a for-
matting bias in the response. This indicates a clear training regime flaw among
models to prefer avoiding empty responses at the cost of predicting wrong solu-
tions. However, given that GPT-4 and Claude-2 do possess some valid logical
reasoning and state tracking abilities, we observe some ability to predict the
inexistence of any valid solution in these models. Surprisingly, in the case of
few-shot prompt (where we prompt models with examples of valid graphs with
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Fig. 4. Comparison of graph order performance in various LLMs. LLM performance
accuracy consistently drops as the order of the graph is increased. Also, while keeping
the order of graph magnitude at 20, a drop is observed in performance when the nodes
are jumbled, depicting a bias in models to expect node order to be alphabetically
arranged.

solutions, the aforementioned models tend to identify the absence of a valid path
with better accuracy (see Fig. 3).

3.7 Performance of LLMs over Special Problems

As mentioned earlier, in this paper, the eulerian problem (problem 3.1) is a
binary problem, and thus a random classifier is expected to perform with an
accuracy of 0.5. We observe slightly better performance than random only in
the case of Claude-2 and Llama-2. However, in all other models, the per-
formance over identification of a valid eulerian graph is equal to or
less than random. Analysis of the responses manually highlights that models
tend to give a positive response.

4 PathCompare Prompting

As clearly seen in the previous sections, LLMs struggle with graph reasoning.
However, this is expected, since Large Language Models are, in essence, token
predictors, and do not inherently possess the ability to go back to the prompt
recursively to self-correct. By prompting LLMs to directly generate the optimal
path to a graph traversal problem, we inherently prevent the model from a
systematic analysis of the graph traversal problems.
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Fig. 5. Comparison of different prompting techniques. Our proposed prompting tech-
nique (PathCompare) demonstrates an improvement of accuracy in the majority of
tasks across all models, i.e. 5/8 tasks for GPT3.5, 6/8 tasks for GPT4 and 5/8 tasks
for Claude-2. However, one limitation of PathCompare is that it enhances positive
response bias, as observed in the case of problem 2.4.

A more advanced prompting technique such as Chain-of-Thought reasoning
[22] has more or less no effect on the performance of LLMs, specifically on graph
reasoning. We observe, that even without a prompt augmentation that compels
the model to list down its reasoning, LLMs come to a conclusion through an
algorithmic walk (such as Dijkstra’s algorithm, or breadth-first-search). Essen-
tially, it is not the lack of the flow of reasoning that prevents LLMs from coming
to a consistent and accurate traversal solution, but the lack of ability to explore
and compare with other valid solutions.

Keeping these requirements in mind, we propose a novel prompting technique
specifically for graph reasoning (traversal) tasks, which we refer to as the Path-
Compare technique. By simply adding the line “Let’s list down all the possible
paths from node {X} to node {Y}, and compare the cost to get the answer.”,
we observe a significant improvement in the graph reasoning performance of all
LLMs (see Fig. 5 for visualization and Appendix Table 5 for detailed analysis), in
comparison to standard prompting and other forms of prompting such as CoT
(see Appendix Table 4). Through this prompt, we shape an LLM response to
first list down multiple paths between two specified nodes. Once multiple paths
are enumerated, the task boils down to a retrieval-cum-comparison task, which
increases the probability of a more accurate response.
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Table 4. Evaluation of models on O(10) graphs with Chain-of-Thought Reasoning.
The values are represented as A/B, where A depicts the average normalized binary
accuracy (ranging from 0 to 1) for 10 examples per setting, and B depicts the average
normalized value for partial credit for 10 examples per setting. * = a larger context
variant of the corresponding LLM was used. � = the prompt was too large to fit the
context window of the model, hence the setting was ommitted. ** = the model did
not return any solution and refused to answer the question.

Prob 0-shot 1-shot 3-shot Prob 0-shot 1-shot 3-shot Prob 0-shot 1-shot 3-shot

GPT-3.5
1.1 0.6/0.65 1.0 0.9/0.92 2.1 0.0/0.20 0.2/0.50 0.0/0.32* 3.1 0.3 0.1 0.5
1.2 0.2/0.38 0.3/0.55 0.5/0.72 2.2 0.1/0.27 0.0/0.37 0.1/0.2* 3.2 0.0 0.0 0.
1.3 0.2/0.42 0.12/0.38 0.0/0.28 2.3 0.0/0.2 0.1/0.29 0.0/0.18*
1.4 0.0/0.29 0.0/0.28 0.0/0.25 2.4 0.0/0.0 0.0/0.0 0.1/0.1*
GPT-4
1.1 0.7/0.74 1.0 1.0 2.1 0.4/0.62 0.3/0.42 0.0/0.26 3.1 0.5 0.5 0.2
1.2 1.0 0.9/0.96 0.8/0.88 2.2 0.2/0.64 0.3/0.63 0.4/0.51 3.2 0.2 0.3 0.2
1.3 0.8/0.88 0.9/0.91 0.9/0.94 2.3 0.0/0.34 0.1/0.45 0.6/0.76
1.4 0.6/0.77 0.3/0.49 0.6/0.74 2.4 0.6/0.6 0.8/0.8 0.7/0.7
Claude-2
1.1 1.0 1.0 1.0 2.1 0.0/0.36 0.2/0.49 0.0/0.29 3.1 0.6 0.4 0.7
1.2 0.9/0.95 0.3/0.48 0.30/47 2.2 0.0/0.34 0.0/0.27 0.1/0.27 3.2 0.1 0.1 0.2
1.3 0.9/0.92 0.5/0.75 0.4/0.44 2.3 0.0/0.3 0.1/0.29 0.2/0.39
1.4 0.4/0.50 0.0/0.23 0.0/0.28 2.4 0.0/0.0 0.0/0.0 0.1/0.1

Table 5. Evaluation of models on O(10) graphs using the PathCompare method.
The values are represented as A/B, where A depicts the average normalized binary
accuracy (ranging from 0 to 1) for 10 examples per setting, and B depicts the average
normalized value for partial credit for 10 examples per setting. * = a larger context
variant of the corresponding LLM was used. � = the prompt was too large to fit the
context window of the model, hence the setting was omitted. ** = The model did not
return any solution and refused to answer the question.

Prob 0-shot 1-shot 3-shot Prob 0-shot 1-shot 3-shot Prob 0-shot 1-shot 3-shot

GPT-3.5
1.1 0.0/0.02 0.0/0.02 0.0/0.08 2.1 0.0/0.45 0.5/0.71 0.3/0.57* 3.1 - - -
1.2 0.2/0.51 0.4/0.62 0.5/0.80 2.2 0.0/0.46 0.2/0.42 0.0/0.31* 3.2 0.0 0.2 0.3
1.3 0.4/0.61 0.3/0.49 0.3/0.66 2.3 0.0/0.44 0.2/0.46 0.3/0.54
1.4 0.4/0.52 0.3/0.6 0.2/0.48 2.4 0.0/0.0 0.0/0.0 0.0/0.0
GPT-4
1.1 1.0 1.0 1.0 2.1 0.4/0.69 0.4/0.52 0.2/0.4 3.1 - - -
1.2 1.0 1.0 1.0 2.2 0.6/0.7 0.2/0.44 0.1/0.46 3.2 0.2 0.2 0.3
1.3 1.0 1.0 1.0 2.3 0.5/0.68 0.2/0.54 0.2/0.59
1.4 0.8/0.89 0.8/0.81 0.4/0.52 2.4 0.3/0.3 0.3/0.3 0.4/0.4
Claude-2
1.1 1.0 1.0 1.0 2.1 0.1/0.44 0.1/0.52 0.0/0.24 3.1 - - -
1.2 1.0 0.1/0.32 0.4/0.57 2.2 0.1/0.32 0.1/0.28 0.1/0.34 3.2 0.2 0.0 0.1
1.3 0.6/0.69 0.3/0.42 0.4/0.57 2.3 0.2/0.38 0.1/0.42 0.3/38
1.4 0.5/0.65 0.7/0.85 0.3/0.46 2.4 0.0/0.0 0.0/0.0 0.0/0.0
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5 Summary

Through this paper, we probe deeper into the graph-reasoning capabilities of vari-
ous LLMs. This study adopts a more granular approach towards analysing LLMs,
in comparison to previous works [17]. First, we select a wider range of models from
different model families (i.e. different architectures, training data and methods
and distinct fine-tuning methods), and systematically compare the different mod-
els over reasoning tasks. Our problem design evaluates these models over increas-
ingly complex problems and added constraints. Through this process, we high-
light some interesting properties of LLMs. First off, we highlight various type of
constraints that lead to performance drop (such as weighted edges and unordered
node sequences). We also conclude that k-shot prompts are unhelpful for analyti-
cal tasks such as graph traversal. We also highlight how various models are biased
towards providing a positive response. This, hence, leads to these LLMs provid-
ing wrong responses, even when no valid solution exists. Secondly, we highlight
the root of poor graph-based reasoning in LLMs, and link this to the inability to
backtrack solutions to compare and come to an optimal conclusion. Building on
top of this, our novel prompting technique PathCompare helps mitigate this issue
and improve graph reasoning abilities in LLMs.

A Appendix

A.1 Prompting

Base Prompt. We prompt models using adjacency matrices, labeled sequen-
tially as A,B,C..., with 0 indicating no connections between 2 nodes, and 1
indicating otherwise. The model is asked to find the shortest path node A, to
the last sequential node. An example prompt is as follows.

Given is the adjacency matrix for a unweighted undirected graph containing
10 nodes labelled A to J. The value corresponding to each row M and column N
represents whether there is a connection between the two nodes, where 0 means
no connection.

What is the shortest path from node A to node J? Return the sequence of
nodes in response.

A B C D E F G H I J
A 0 1 0 0 0 0 0 0 0 0
B 1 0 1 0 0 0 0 0 0 0
C 0 1 0 1 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0 0
E 0 0 0 1 0 1 0 0 0 0
F 0 0 0 0 1 0 1 0 0 0
G 0 0 0 0 0 1 0 1 0 0
H 0 0 0 0 0 0 1 0 1 0
I 0 0 0 0 0 0 0 1 0 1
J 0 0 0 0 0 0 0 0 1 0

Evaluation of the output of the models was performed manually, in order to
factor in the variation of the output format by different models. In our code,
input/output pairs (prompt/solution pairs) are automatically generated, which
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allows us to create a large scale of variations. An example of the output string
generated for this corresponding problem is

A -> B -> C -> D -> E -> F -> G -> H -> I -> J

A more visually effective representation of the matrix is presented below, for
the understanding of the users, although the above plain text version is used for
prompting the LLMs. The numbers in red depict the connections that constitute
the solution to the corresponding graph traversal.

A B C D E F G H I J

A 0 1 0 0 0 0 0 0 0 0
B 0 0 1 0 0 0 0 0 0 0
C 0 0 0 1 0 0 0 0 0 0
D 0 0 0 0 1 0 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0
F 0 0 0 0 0 0 1 0 0 0
G 0 0 0 0 0 0 0 1 0 0
H 0 0 0 0 0 0 0 0 1 0
I 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 0

Adding K-Shot Prompts. Particularly for k-shot prompts (1-shot and 3-shot
settings), we prepend randomly generated prompts to the task, as below.

Given is the adjacency matrix for a unweighted undirected graph containing
10 nodes labelled A to J. The value corresponding to each row M and column N
represents whether there is a connection between the two nodes, where 0 means
no connection.

Consider some examples
Example 1: What is the shortest path from node A to node O? Return the

sequence of nodes in response.

A B C D E F G H I J K L M N O
A 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
B 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
C 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
D 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
E 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
F 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
G 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
H 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
I 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
J 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
L 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
M 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
N 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
O 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Solution: A -> M -> N -> O
Given these examples, answer the following question. What is the shortest

path from node A to node J? Return the sequence of nodes in response.
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A B C D E F G H I J
A 0 1 0 0 0 0 0 0 0 0
B 1 0 1 0 0 1 0 0 0 0
C 0 1 0 1 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0 0
E 0 0 0 1 0 0 0 0 0 0
F 0 1 0 0 0 0 1 0 0 0
G 0 0 0 0 0 1 0 1 0 0
H 0 0 0 0 0 0 1 0 1 0
I 0 0 0 0 0 0 0 1 0 1
J 0 0 0 0 0 0 0 0 1 0

Node Jumbling. An important variant of our graph traversal tasks involves
jumbling the labels of the node order. This is primarily done, in order to avoid
pretraining distribution biases in the model responses. For example, consider the
adjacency matrix

A B C D E F G H I J
A 0 1 0 0 0 0 0 0 0 0
B 1 0 1 0 0 0 0 0 0 0
C 0 1 0 1 0 0 0 0 0 0
D 0 0 1 0 1 0 0 0 0 0
E 0 0 0 1 0 1 0 0 0 0
F 0 0 0 0 1 0 1 0 0 0
G 0 0 0 0 0 1 0 1 0 0
H 0 0 0 0 0 0 1 0 1 0
I 0 0 0 0 0 0 0 1 0 1
J 0 0 0 0 0 0 0 0 1 0

On jumbling, the new matrix looks something like

H C D F I E G A J B
H 0 1 0 0 0 0 0 0 0 0
C 1 0 1 0 0 0 0 0 0 0
D 0 1 0 1 0 0 0 0 0 0
F 0 0 1 0 1 0 0 0 0 0
I 0 0 0 1 0 1 0 0 0 0
E 0 0 0 0 1 0 1 0 0 0
G 0 0 0 0 0 1 0 1 0 0
A 0 0 0 0 0 0 1 0 1 0
J 0 0 0 0 0 0 0 1 0 1
B 0 0 0 0 0 0 0 0 1 0

which is essentially a renaming of node labels. Correspondingly, the modified
task now involves finding the shortest node between the new “first” node and the
new “last” node. Unsurprisingly, we observe a drop in the performance of models
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when we introduce this variation, indicating at least some effect of pretraining
data distribution bias (in the form of sequential nodel labeling A,B,C,...) in
graph traversal tasks.

Weighted and Directed Graph Representations. While weighted connec-
tions are represented by integers ≥ 1, directed connections are represented by
removing symmetricity accross the diagonal of the matrix. A simple example to
illustrate this is shown below.

Given is the adjacency matrix for a weighted directed graph containing 16
nodes labelled A to P. The value corresponding to each row M and column N
represents the cost of travelling between the two nodes, where 0 means no con-
nection.

What is the least cost path from node A to node P? Return the sequence of
nodes in response.

A B C D E F G H I J K L M N O P
A 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
E 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
F 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 0
G 0 0 3 0 0 4 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
I 0 0 0 0 0 0 0 0 0 5 0 0 2 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
K 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
O 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Abstract. Recently, there has been a rapid surge in the utilization of dif-
fusion models for customized image generation and editing tasks, espe-
cially using zero-shot editing algorithms that can largely operate on given
images regardless of their source domain. This work is based on two well-
known zero-shot image editing algorithms: Null Text Inversion (NTI) and
Delta Denoising Score (DDS). With respect to NTI, we mainly focus on
image cartoonization, which has received less attention in the context of
text-guided image editing. In a nutshell, we propose a customized recon-
struction phase for NTI, which helps transforming the natural input image
into cartoon images with desired customization by supporting parame-
ters. We also improve the current DDS optimization baseline and propose
the Directed Delta Denoising Score (DDDS). Our DDDS algorithm offers
a better image editing experience by replacing the target text prompt
with the proposed directed text prompt. Computing directed text prompt
requires one subtraction operation and yields significant reconstruction
improvement over DDS. To demonstrate the effectiveness of our contribu-
tions, the paper presents both quantitative and qualitative comparisons
against the state-of-the-art, as well as several visual examples.

Keywords: Diffusion model · Zero-shot editing · Image generation

1 Introduction

Diffusion models [10,18,20,21] have shown great promise in text-guided image
editing, especially with natural image editing tasks like image inpainting
[4,13,14,25], style transfer [2,8,22], text-guided editing [2,7,8,11,15,24], or seg-
mentation [1,3]. Our study is particularly interested in text-guided image editing
of natural images, where we want to edit natural images based on prompt input.

Editing natural images with a diffusion model is not straightforward. Typ-
ically, zero-shot editing studies rely on inversion strategies like DDIM [21] to
access the desired latent space of the inputs. The choice of inversion strategy
is critical for reconstruction fidelity. Null Text Inversion (NTI) [15] is a popu-
lar method for image editing that relies on Denoising Diffusion Implicit Models
(DDIM) inversion. In this study we have observed that using NTI it is possible
to transform any natural image into a cartoonified appearance by modifying the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15306, pp. 309–323, 2025.
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Fig. 1. Here, output quality comparison between the Null Text Inversion (NTI) [15]
and the proposed cartoon reconstruction algorithm: the proposed algorithm’s output
is free from text artifacts (image center) in contrast to the NTI output. Additionally,
our algorithm cartoonifies the whole image, while [15] focuses on the dog region only.

Fig. 2. Image editing comparison between the delta denoising score (DDS) [7] and the
proposed directed delta denoising score (DDDS). Here, the source prompt is Two cats
sitting by the mirror, and the target prompt is Two origami cats sitting by the mirror.
DDS edited regions are blurry and missing salient details. In contrast, our DDDS offers
crisper output, including reflection area.

reconstruction path leveraging predicted noise via weighted augmentation, and
optimized null text perturbation. Additionally, parameterized noise perturbation
is considered to increase or decrease the desired degree of output image detail.
Since our approach stands upon the null text inversion approach and is dedi-
cated to the cartoon transformation of the natural images, we name our approach
Null-Toon. A recent study [26] also showed that it is possible to translate natural
images into cartoons using null text optimization. However, in contrast to the
proposed work, their process does not offer parameterized tunability. Moreover,
our algorithm returns cartoon images without any traces of text artifacts, as
shown in Fig. 1.

In addition to the particular cartoon reconstruction approach, we com-
plementarily propose another method for superior general-purpose zero-shot
image editing. Delta Denoising Score (DDS) [7] is an efficient alternative to
the inversion-dependent methods [11,15,23]. DDS harnesses the core idea of
Score Distillation Sampling (SDS) [19] and improves over SDS. In practice, SDS
returns noisy gradients during optimization, resulting in unsatisfactory editing
performance. DDS rectifies SDS by taking in two sets of latent-text pairs and
performing SDS optimization for individual pairs, subtracting the estimated
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gradients from each pair [7]. This novel delta gradient obtained from subtraction
is cleaner and contains indicates direction for editing (Fig. 2).

However, reconstructed images from this delta gradient often contain traces
of the source image, resulting in unfavorable edits [7]. We rectify this situation
by proposing directing the target prompt via weighted subtraction. This ele-
mentary change helps in drastic reconstruction performance over DDS, naming
our method as Directing Delta Denoising Score (DDDS). Our DDDS approach
only needs an extra subtraction operation as an additional computation cost
to DDS, and for the same optimization configuration, editing performance is
superior over DDS. We show the necessary visual comparison between our study
and other studies in the later section of the manuscript and summarize overall
contributions as follows:

– An algorithm for cartoonifying natural images using null-text reconstruction,
– Providing user-adjustability to algorithms output via parametrized noise per-

turbation and
– Proposing the novel Directed Delta Denoising Score (DDDS) for crisper out-

put, compared to the existing Delta Denoising Score (DDS).

2 Related Work

Text-to-image models [10,21] have shown great promise in image generation
conditioned by an input text prompt. These works harness powerful diffusion
models for generation or guided reconstruction tasks. Recently, we have seen a
surge of zero-shot image editing approaches where customized algorithms pro-
vide general-purpose image editing applications without tuning large diffusion
models. These image editing can roughly be divided into the following clus-
ters: end-to-end editing [5,12,18], attention manipulation [2,6,8,16], and DDIM
inversion families [11,15,24]. Score-based editing approaches [7,17,19] are an
efficient alternative to inversion-dependent studies, where image editing is done
end-to-end. Our study is related to both score and inversion-based studies.

3 Proposed Algorithms

We begin by revisiting the basic concepts regarding the diffusion model: we
represent the dataset as D, clean image or latent as z0, text embedding (source)
as y, noise as ε, T as time step, and the diffusion model as εθ. Typically, the
following objective is used to describe the training of a diffusion model:

min
θ

Ez0∼D,ε∼N(0,I),t∼U(1,T ) ‖ε − εθ (zt,y, t)‖2

In the above, D denotes the utilized dataset, zt is a noisy iteration of the image
z0 at timestep t, and y is a corresponding conditional embedding. After model
training, we can sample a new image given condition c with the commonly used
DDIM sampler,
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Algorithm 1: Image reconstruction from Null text trajectory
Input: Noisy latent zT , Null text trajectory Yφ, target text ŷ, balance

parameter ω
Output: Edited latent z∗

0

1 Set zt = zT ;
2 for t ← T to 0, i ← 1 to len(Yφ) do
3 yφ

t = Yφ[i]

4 εt ← CFG(zt,y
φ
t , ŷ, t, ω), Eq. 1

5 z∗
t−1 ← DDIM(zt, εt, t)

6 end
7 Return adapted latent z∗

0

zt−1 = DDIM(zt, εt, t)

=
√

αt−1 · fθ (zt, c, t) +
√

1 − αt−1 · εθ (zt,y, t) ,

where fθ (zt,y, t) = zt−
√
1−αt·εθ(zt,y,t)√

αt
, εt = εθ (zt,y, t), and αt is a time-varying

noise parameter in DDIM. For our study, we consider the above formula as the
DDIM sampler.

Now, if we want to apply the diffusion model for local or global edits, it is
necessary to invert them into z0 → zT , DDIM inversion [21] being a popular way
to do this. After having zT , we can expect a lossless return to z0 with perfect
reconstruction, which is unfortunately not possible in reality. To address this, null
text optimization [15] has been proposed as a highly efficient way to recover z∗

0,
which is very close to the original z0. Once we have near-perfect reconstruction
approach, the influence from the target prompt or text embedding ŷ can be
integrated to reconstruct the input image with the desired edits using optimized
null text embeddings and ŷ via classifier-free guidance [9].

By design, null text optimization returns a trajectory of unconditional text
embeddings Yφ = [yT φ, ....,y0φ], and by utilizing them for any time step t,
classifier-free guidance can be expressed as follows:

ε∗
t = εθ(zt, t,y

φ
t ) + ω ∗ (εθ(zt, t, ŷ) − εθ(zt, t,y

φ
t )) (1)

Here, ω is the impact factor for balancing the information contents from the
source and target content. By leveraging the above concepts, we can denote the
prompt-guided reconstruction steps as follows (Algorithm 1):

Using Algorithm 1, we can obtain z∗
0 that contains the natural image with

respect to the target prompt ŷ.

3.1 Null-Toon

Having described the necessary concepts above, we can proceed with a detailed
description of the proposed Null-Toon algorithm based on Algorithm 1. After
completing null text optimization, we get the optimized null text trajectory
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Algorithm 2: Cartoonifying from Null text trajectory
Input: Noisy latent zT , Null text trajectory Yφ, target text ŷ, Predicted noise

trajectory E , trajectory length Qφ, Convex weights A, balance
parameter ω. time-steps t1, t2, coefficients c1, c2, c3, c4, c5

Output: Edited latent z∗
0

1 Set zt = zT ;
2 for t ← T to 0, i ← 1 to Qφ do
3 Set w1 = A[i] & w2 = 1 − w1 ;
4 Qφ - i ;
5 yφ

t = Yφ[i]
6 if t < t1 then
7 yφ

t = yφ
t + c1 ∗ Yφ [ Qφ - i]

8 end
9 εt ← CFG(zt,y

φ
t , ŷ, t, ω), Eq. 1

10 if t > t2 then
11 εt = εt + c2 ∗ zt

12 end
13 εt = w1 ∗ E [i] + w1 ∗ εt

14 εt = ConvexSum(E [i], εt, c3)
15 εs

t = Enhance(εt, c4) | Enhance sharpness |
16 εd

t = Enhance(εt, c5) | Enhance smoothness |
17 εt = ConvexSum(εd

t , εs
t , c3)

18 z∗
t−1 ← DDIM(zt, εt, t)

19 end
20 Return adapted latent z∗

0

Yφ, and the length of the trajectory is Qφ. Based upon this trajectory with
the help of Algorithm 1, we first reconstruct the original image while setting
ŷ as an empty statement to introduce no change in the reconstruction. This
self-reconstruction also allows us to collect the predicted noise trajectory E ,
containing the output noise yφ

t from the classifier free guidance step. Apart
from zT , and Yφ, we consider E as another input to our toonification algorithm
along with a few other parameters as coefficients and threshold conditions. We
formulate our toonification approach in Algorithm 2.

Similar to Algorithm 1, we start from anchoring the latent zT , and setting
zt = zT to return back to z0. Based upon on Algorithm 1, we propose Algorithm
2. Below, we explain the impact of specific pseudocode lines with visual examples.

Augmenting null text (Algorithm 2 line 6) with future optimized null text
brings in the main cartoonifying impact through drastic loss in image detail, as
shown in Fig. 3. In our algorithm, future represents the optimized null texts from
later stages of the iteration; we already have access to the null text trajectory
and access those texts in reverse. If we use Algorithm 1 for reconstruction and
augment the null text for a given time step by recalling the null text from the
future time step, we observe such cartoon style reconstruction. However, we
impose a threshold for the time step to preserve the image details. We obtained
the optimal value for the timestep thresholds via trialing on multiple images.
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Fig. 3. Impact of augmenting future null text with Algorithm 1.

Fig. 4. Impact of augmenting zt and E [i] during cartoon reconstruction.

As the augmentation procedure provides the cartoon effect and loss of detail,
an appropriate rectification is required to recover detail again, which is acquired
through later steps of the proposed Null-Toon Algorithm 2.

Augmenting latent (Algorithm 2 line 10) with the predicted noise εt helps
reducing loss of detail while preserving comic-like appearance. Augmenting the
estimated latent zt with εt provides reconstruction as depicted in Fig. 4. From
Fig. 4, we can see that with the dominance of the smoothing effect due to
latent augmentation, content details have disappeared significantly. Optimally,
we would like to balance between the two extreme conditions while preserving
the cartoonish appearance.

Augmenting noise from null-text optimization (Algorithm 2 lines 12–
13, 16) with the predicted noise εt helps in regaining more image details. From
Algorithm 1, null-text reconstruction relies on optimized null text trajectory only
[15]. Another study [24] showed that null text optimization returns a trajectory
of noise E that contains predicted noise εt while z0 → zT , and it is possible to
utilize E in Algorithm 1 after the CFG step to gain more context preserving
reconstruction [24] while reverting zT → z0.

We have adopted this idea to integrate more details into our reconstruction.
Following [24], we get a series of convex weights A, tailored for each iteration
of the diffusion step, and based upon these weights, we perform the convex sum
between the predicted noises from E , and current estimation of εt. To reinforce
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Fig. 5. Impact of the convex weights: c4 = 0.96 causes more details, whereas c5 = 1.01
causes overtly smooth output.

Fig. 6. Final reconstruction from the proposed Algorithm 2.

the details, we perform another extra convex summation step as present in the
Algorithm 2. Consequently, as shown in Fig. 4, our current reconstruction is
layered with a desirable cartoon look and slightly lacking realistic details.

Perturbing the predicted noise (Algorithm 2 lines 14–15) εt helps in
emphasizing smoothness or details if we apply our proposed mean-directed per-
turbation. In summary, our mean-directed perturbation is done by following
steps:

– Say εt consists of n channels, and we estimate the mean ε̄t across all channels.
– We add noise to n instances of ε̄t, and concatenate them together as ε̂t,

obtaining the same shape as εt.
– Performing a convex sum between εt and ε̂t results in less or more details,

depending on the applied coefficient, as shown in Fig. 5.

Figure 5 highlights that manipulation of εt via c4 and c5 affects the level of
detail in the output. Merging both together through a final convex summation
provides the desired εt, which balances the degree of detail, smoothness, and
cartoon effect together. Performing DDIM sampling upon the final sum until
the last iteration returns the desired cartoon image as present in Fig. 6. In our
algorithm, Convex sum means regular convex summation operation.

Our proposed Null-Toon uses several hyperparameters to achieve the desired
outcome. Most of the hyperparameters are empirically found and need only min-
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imal tuning during reconstruction. Among those parameters, c1, c2 and c3 are
fixed to values 4.5,3.5,0.5, respectively. c4 and c5 remain adjustable to balance
between cartoonish appearance and image details. In our experiments, c4 ranged
between [0.95, 0.98], and c5 between [1.02, 1.04]. For the convex weights A, we
followed the weight distribution process of [24]. We kept t1 = 220 and t2 = 920,
which was empirically obtained first via trialing on several natural images. and
later set as a constant during the test.

3.2 Directed Delta Denoising Score (DDDS)

Starting from DDS [7], we can write the image editing Eq. 2 for Score Distillation
Sampling (SDS) as follows:

∇θLSDS(ẑ, ŷ, ε, t) = εω
θ ((ẑt, t) − ε)

∂ẑt
∂θ

(2)

However, editing with the formulation above results in a blurry output [7],
often flattening out the context along with the regions, showing alignment
towards the text prompt y. The rationale for the above situation is more under-
standable via the following decomposition:

∇θLSDS(ẑ, ŷ, ε, t) := δtext + δbias (3)

According to DDS [7], δtext makes the effective gradient drift towards the
desirable direction that aligns with the prompt, and δbias conditions the outcome
towards undesirable directions. The authors of DDS [7] provide an interesting
solution to the above Eq. 3 by

∇θLDDS(ẑ, ŷ, ε, t) = ∇θLSDS(ẑ, ŷ) − ∇θLSDS(z,y). (4)

DDS [7] showed that ∇θLDDS(ẑ, ŷ, ε, t) is almost equivalent to δtext, because
Eq. 4 returns a cleaner gradient by performing the proposed subtraction. In prac-
tice, Eq. 4 is effective, because in each iteration it estimates two directions dedi-
cated to the target text and source text. Subtraction between two of them returns
a unique direction that contains the necessary edits from the ∇θLSDS(ẑ, ŷ), and
additional context bias from ∇θLSDS(z, y).

However, Eq. 4 fails to capture the desired edits in many cases, and the
reason is apparent from the formulation of DDS. In Eq. 4, the editing direction
is obtained from the gradient, and the gradient stems from the estimated noise
difference between ẑ, ŷ and z,y pairs. For any given time step t, from ẑ, ŷ we
get ε̂t, and εt from the z,y pair. Here, we argue that if the difference between ε̂t,
and εt is more biased towards the desired edit and minimal towards the context
from the original image, then we can capture refined details that match ŷ.

We can only emphasize the target prompt in the DDS setup by tuning ω in
the classifier-free guidance stage. As a result, the DDS gradient is trimmed by the
influence from εt, preserves the context, limits the edit fidelity, and improves the
fundamental lack of image details present in SDS. This gives us two objectives
to satisfy, which are listed below, along with proposed solutions:
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– How can ŷ be emphasized more? We address this question with our proposed
subtraction operation, where we direct the target prompt ŷ by ŷd = α1 ∗ ŷ−
α2 ∗ y. Here, α1 typically ranges between [1.1, 1.3], and α2 = 0.05. By this,
we obtain a directed prompt that is more biased towards the intended image
edits.

– How can the effect of y be reduced? In both SDS and DDS, y steers the
gradient direction towards the source context, preserving the source image’s
similarity where editing is unnecessary. However, y reduces detail in the edited
image in SDS, but results in undesirable results in DDS. We minimize this
situation by considering an auxiliary null-text embedding yn = Φ. In other
words, we have used yn instead of y in the original DDS equation. As a result,
in the optimization phase, y puts least impact on the estimated gradients
without causing undesirable alteration.

To summarize, our directed delta denoising score (DDDS) returns a cleaner
gradient than DDS by projecting ŷ to ŷd, where editing embedding gets more
attention. Additionally, to reduce the over-emphasizing effect of source embed-
ding y, we replace it with a null-text embedding yn, and yn = Φ. Hence, the
proposed directed delta denoising score is as follows:

∇θLDDDS(ẑ, ŷd, ε, t) = ∇θLSDS(ẑ, ŷd) − ∇θLSDS(z,Φ) (5)

In Eq. 5 estimated gradients are more precise than the gradients of Eq. 4 due
to the above-mentioned reasons. We present the necessary demonstration in the
following sections to support our claim.

4 Results

This section presents a visual comparison between the proposed methods and
previous studies. We have listed separate baseline methods for each technique
to present a fairground for the comparisons. Our Null-Toon algorithm uses null
text inversion as its core process; we select the Null Text Inveriosn (NTI) [15],
Direct Inversion (DI) [11], and Null Text Guidance (NTG) [26] to compare the
cartoon translation performance. These three works use null text optimization as
the central part of the given zero-shot image editing task. Similarly, we compare
our directed delta denoising score algorithm with two other score-dependent
algorithms: Delta Denoising Score (DDS) [7] and Contrastive Denoising Score
(CDS) [17].

4.1 Implementation Details

For all the comparisons with baselines, we refer to the official code repositories of
the respective studies. In the case of Null-Toon, we have not changed hyperpa-
rameters for other studies. However, score-based algorithms [7,17] depend heav-
ily on the iteration count. Given the complexity of the image and corresponding
target prompt, the iteration count can vary from case to case. Our experiments
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Input NTI DI NTG Ours

Fig. 7. Comparison of cartoon reconstruction between NTI [15], DI [11], NTG [26],
and ours stands for the proposed Null-Toon algorithm.

showed that a higher iteration count results in over-editing and vice versa; pin-
pointing the ideal iteration count is not viable either. To present the results, we
run DDS [7], CDS [17], and the proposed DDDS for 350 iterations.

4.2 Editing Comparison

Figure 7 demonstrates the visual comparison between the proposed cartoon
translation algorithm and other baselines [11,15,26]. As shown in the topmost
row of Fig. 7, our translation algorithm returns a crisper cartoon edit, whereas
NTG [26] returns blurry output, and the other algorithms [11,15] perform almost
no change to the input. In the second row, all of the baselines [11,15,26] provide
reasonable editing results, but NTI [15] and DI [11] slightly alter the personal
appearance of the character. Exaggerating the character is prevalent with NTI
[15] and DI [11]; clearly, the character has become older, whereas NTI [15],
and NTG [26] alter the dress of the character as well. Compared to these, our
algorithm does not emphasize the sensitive features of the characters, which is
evident from the given examples.

This trend is consistent with the rest of the examples as well, where our
algorithm does not bend the horn of the cow or loosely reconstruct the leg of
the panda while translating the images into cartoons. We can conclude that
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Cat :-  
Anime Cat

Lion :- 

Origami Lion 

 Duck :- 
 Chicken

Tiger :-
Brown Bear

Dolphin :- 
Shark

Input DDS CDS DDDS

Fig. 8. Here, we show the zero-shot editing comparison between DDS [7]. CDS [17],
and our DDDS. From the visual appearance, our algorithm offers better editing fidelity
and reconstruction that closely matches the target prompt.

our cartoon algorithm can cartoonify natural photos without altering the salient
features.

From Fig. 8, we can see the editing result comparison between the proposed
directed delta denoising score (DDDS) algorithm and other baselines [7,17]. In
the first row, our algorithm and [17] have returned the respective reconstruction
of the cat image into anime art, unlike [7], which distorts the cat appearance in
its reconstruction. In the second row, the task is to transform the lion’s head
into an origami structure. Surprisingly, both DDS [7] and CDS [17] return the
output with minimal deviation from the input. On the contrary, our approach
almost translates the lion’s head into an origami-looking head. In the next row,
DDS [7] transforms the chicken’s beak with a metal look, and CDS [17] brings
an extra chicken head on the top of the tail of the other chicken. Our method
does not return such unnatural edits, but it does change the color of one chicken
into a yellowish look, which is an anomaly compared to the all-white ducks from
the input.

Likewise, our method remains consistent with its output quality with the
rest of the images; for example, our algorithm transforms the tiger into a bear
without distorting its head like CDS [17] does, or dolphin to a shark without
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Input

Fig. 9. In this picture, we show the impact of parameter c4 on controlling image detail
while translating the input image into a cartoon image using our Null-Toon algorithm.
It is evident that lowering c4 preserves the cartoon image closer to the original.

Input

Fig. 10. The impact of parameter c4 on a human face: by reducing c4, we can bring
more detail to the character’s face.

changing the context like [7]. From this comparison, our algorithm brings sig-
nificant improvement and consistency with zero-shot image editing tasks using
score-based methods.

4.3 Impact of c4

In Figs. 9 and 10, we show the impact of hyperparameter c4 on our proposed
cartoon reconstruction algorithm. We can see that lowering c4 leads to higher
image details for both images. Especially in Fig. 9, it can be seen that increasing
c4 greatly affects the amount of detail in the background, simultaneously result-
ing in a sharper cartoon image of the tiger. In Fig. 10, lowering the value of c4
makes the edges of the face become sharper without losing the baseline cartoon
look. Although our cartoon reconstruction algorithm has several other hyperpa-
rameters as well, we kept these fixed during the ablation study. Due to space
limitations, it is not possible to explore the effects of other hyperparameters.

4.4 Local Edits Using DDDS

In Fig. 11, we show the performance comparison for editing local regions between
delta denoising score [7] and our study. Here, we take an image of a dog and
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Table 1. CLIP-similarity and LPIPS comparison between DDS [7], CDS [17], and the
proposed DDDS. For CLIP, higher is better and for LPIPS lower is better.

Algorithm CLIP similarity LPIPS

DDS [7] 32.19 0.14 ± .07

CDS [17] 33.06 0.14 ± .02

DDDS 33.79 0.13 ± .04

Fig. 11. Here we demonstrate the editing difference between our algorithm and the
baseline DDS [7] approach. Our algorithm achieved better visual reconstruction per-
formance in all cases while keeping minimal context distortion.

add men’s accessories to the dog, which were not present in the original image.
For the sunglasses, we see that our algorithm can return an edited image where
the added sunglasses appear more natural than with DDS [7]. Similarly, while
adding a hat on the top of the dog’s head, our algorithm can edit the region
without distorting the original structure of the dog. On the contrary, one eye of
the dog is undesirably edited while adding hat by DDS [7]. Finally, the dog’s
tie is semi-reconstructed, and the dog’s color is drastically shifted by DDS [7]
while adding a suit to the dog’s image. Compared to that, editing results from
our algorithm are more crisp and character-preserving.

4.5 After Edit Text Image Consistency

To evaluate the editing performance of our proposed DDDS algorithm, we used
text-image similarity evaluation after editing completion. For this evaluation,
we have used CLIP similarity, and this approach is adopted in other zero-shot
editing studies as well [11,19]. In the CLIP similarity evaluation, we take in the
edited image and its corresponding prompt and then calculate their similarity by
projecting the image and text into the same embedding space. However, we can
obtain this evaluation in two ways: estimating the similarity score for the edited
region only by using a human-annotated mask or the whole image where we
do not mask the non-edited regions. For our study, we have estimated the CLIP
similarity score for the entire image, as presented in Table 1. Note that the CLIP
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similarity score heavily relies on the rich textual description, and depending on
the text prompt, we observed variation within the estimated scores. For this
evaluation, we have compared our DDDS algorithm with DDS [7] and [17]. From
the table, the obtained similarity score from our DDDS algorithm outperforms
other methods for the edited images. We also include learned perceptual image
patch similarity (LPIPS) score by following [7,17]. As shown in Table 1, the
proposed work also achieves satisfactory performance using LPIPS metric.

5 Conclusion

In our study, we proposed two different methods for zero-shot image editing. Our
first algorithm is dedicated to image cartoonization. We devised a unique recon-
struction process by leveraging the null text trajectory to revise the previous
noisy latent to introduce the cartoonization effect. In our reconstruction phase,
we enabled a novel tuning setup for the user to include desired control over image
details or smoothness without tampering the content. In our second algorithm,
we show that directing the target text prompt via weighted subtraction between
the source and target text prompt. As a result, our DDDS optimization returns
more directed gradients and results in a more realistic image editing result with-
out introducing zero computation increase over the original DDS optimization
algorithm. We plan to extend our work to video and 3D instances in the future.
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Abstract. We introduce texture spectral criteria, which allow us to pre-
dict whether simplified spectrally factorized random field-based texture
models, a set of two-dimensional models, can faithfully replicate tex-
ture spectra compared to their fully spectrally correlated 3D counter-
parts. These probabilistic models incorporate essential two- or three-
dimensional building factors for modeling the seven-dimensional Bidi-
rectional Texture Function (BTF), the most advanced representation
in real-world material visual properties modeling. While these models
seamlessly approximate original measured massive data and extend them
to arbitrary sizes or simulate unmeasured textures, evaluating typically
involves time-consuming synthesis and psycho-physical evaluation. The
proposed criteria provide an alternative approach, enabling us to bypass
the spectral quality evaluation step.

Keywords: Texture spectral quality comparison · Texture modeling ·
Texture synthesis · Bidirectional texture function

1 Introduction

Photorealism in virtual scenes necessitates meticulously applying physically cor-
rect textures that accurately depict natural material surfaces, ensuring a seam-
less fusion of visual elements. Achieving lifelike material appearances relies on
visual textures, conceptualized as manifestations of a mathematically defined
random field (RF) possessing spatially uniform attributes. This texture model
manifests as a discrete RF, comprising random vectors predominantly arranged
on a rectangular lattice grid. The vector space’s dimensionality corresponds to
the texture’s spectral planes, delineating the visual representation’s richness and
complexity.

Real-world materials exhibit intricate physical characteristics, with their
micro-structures influencing reflectance and overall visual presentation. While
imperceptible to the naked eye, these micro-structures significantly impact how
materials reflect light under various viewing and illumination conditions. The
most advanced representation currently available for quantifying and mod-
eling these complexities is the Bidirectional Texture Function (BTF), intro-
duced in [4]. The BTF is a seven-dimensional function encompassing four
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parameters related to illumination and viewing angles: azimuthal and eleva-
tion angles, one parameter indexing spectral channels, and two parameters rep-
resenting planar coordinates. This comprehensive model accurately preserves
most visual effects inherent to natural materials, including self-occlusions, self-
shadowing, inter-reflections, and sub-surface scattering, ensuring a faithful rep-
resentation of real-world surfaces. Numerous applications (medical, automo-
tive, airspace, cultural heritage preservation, safety, architecture, interior design,
entertainment industry, movies, computer games, advertising, material recogni-
tion) [3,7,9,10,15,16,23–26] require to analyze or visualize real-world material
visual properties and thus can profit from BTF models. Moreover, psychophys-
ical studies of these data [6] have shown that analyzing different BTF samples
can help understand human perception of real-world materials.

BTF is represented by thousands of given material surface images taken in
different combinations of light sources and observation positions during measure-
ment, which can reach up to several terabytes [13] even for a limited number
of combinations of illumination and viewing angles and small planar size of the
measured material. Usually several square centimeters [12]. These restrictions
exclude the direct use of measured BTF in applications, and accordingly, some
compression and enlargement using mathematical BTF models are necessary.
BTF models offer extreme data compression without seams but may compro-
mise visual quality.

Such quality compromise is hard to express as fully automatic texture quality
assessment and mutual similarity evaluation of two or more of them present a sig-
nificant but complex problem that needs to be solved. Validation of the state-of-
the-art texture fidelity criteria [8] based on the online benchmark1 demonstrated
that none of the already published criteria is trustworthy. Psycho-physical eval-
uations are the only trustworthy alternative, but they are highly impractical,
expensive, and generally demanding.

In this paper, we introduce straightforward texture spectral criteria that
enable us to assess whether simplified spectrally factorized random field-based
texture models, which require one-third of estimated parameters compared with
the three-dimensional models, can faithfully replicate texture spectra compared
to their fully spectrally correlated counterparts. Our proposed criteria provide
a novel approach for determining when monospectral decorrelated channels can
be effectively modeled using a set of simpler 2D random fields and when more
complex, fully spectrally correlated 3D models are necessary.

2 BTF Random Field Models

The size of BTF data prohibits its direct integration into graphic applications,
necessitating compression for practical usage. Additionally, BTF data is typi-
cally acquired under a limited set of illumination and viewing conditions and
is measured in small planar sizes, mandating reconstruction and enlargement of

1 http://tfa.utia.cas.cz.

http://tfa.utia.cas.cz
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the BTF space for real-world application. In addition to probabilistic BTF mod-
els, there is an alternative approach to approximate BTF data using pixel-wise
generalizations of existing BRDF models, known as SVBRDF. However, this
method comes with trade-offs, as it sacrifices visual quality by omitting critical
features such as self-occlusions, self-shadowing, inter-reflections, and sub-surface
scattering and cannot achieve the same level of compression efficiency as BTF.

Modeling BTF based on probabilistic models necessitates the utilization of
multi-dimensional models. However, such models are rare and encounter various
unresolved theoretical challenges, as noted in [12]. One potential workaround
involves spectrally and spatially factorizing the BTF space, enabling its repre-
sentation through a series of lower-dimensional models. Unfortunately, accurate
data are correlated and can only be spectrally factorized approximately, which
can lead to a loss of spectral information.

The texture pixels are defined as intensity values (2D) or intensity vectors
(3D) on multiple finite M ×N 2D lattice I. The 3D multiindex is r = {r1, r2, r3}
with spatial (r1, r2) and spectral (r3) indices r ∈ I. Markovian neighboring lat-
tice locations are the set of relative lattice locations called contextual neighbor-
hood (CN) Ir. Choosing an appropriate Complex Network (CN) significantly
impacts the overall model performance. A CN with too few elements fails to
capture all texture details effectively. Conversely, including unnecessary elements
increases computational overhead and can degrade the model’s performance by
introducing additional noise.

2.1 Spectral Factorization

Modeling static multispectral texture images or single BTF space measurements,
where d represents the number of spectral images (e.g., (d = 3) for color), typ-
ically requires three-dimensional models. However, this dimensionality can be
reduced to two by applying spectral factorization to the real image before model-
ing and inverse spectral factorization to the synthetic result using the Karhunen-
Loève transformation (KLT) within the original centered spectral data space
[12].

Unfortunately, the real spectral data space can only be decorrelated approx-
imately. The approximation error is directly related to the extent of the color
space in the modeled texture. While full 3D models allow unrestricted spatial-
spectral correlation modeling, 2D models introduce some spectral errors, espe-
cially for highly colorful textures. Their primary drawback lies in the large num-
ber of parameters that need to be estimated and the necessity to estimate all
these parameters simultaneously.

2.2 3/2D Auto-Regressive and Moving Average Models

The Causal Auto-Regressive (2/3DCAR), Multi-Spectral Simultaneous Auto-
Regressive (2/3DMSAR) [14], Moving Average (2/3DMA) [18] (2D after spectral
decorrelation) RF is a collection of random variables with a joint probability
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density on the set of all possible realizations Y of the M ×N lattice I which can
be written in the following regression equation form [11]:

Yr =
∑

s∈Ia
r

AsYr−s +
∑

t∈Ib
r

BtEr−t = ΘXr + ΞZr , ∀r ∈ I (1)

where As, Bs are matrices (4) and the zero mean white Gaussian noise vector Er

has uncorrelated components with data indexed from unilateral or causal index
set Ia

r but noise vector components can be mutually correlated with a constant
covariance matrix Σ, Ib

r includes the r index (contrary to Ia
r ), and

Θ = [A1, . . . , Aη] Xr = [Y T
r−s : ∀s ∈ Ia

r ] , (2)

Ξ = [B1, . . . , Bι] Zr = [Er − tT : ∀t ∈ Ib
r ] , (3)

Θ,Ξ are d × dη and d × dι parameter matrices, Xr is a vector of contextual
neighbors, Zr is a vector of white noise subvectors.

As1,s2 =

⎛

⎜⎝
as1,s2
1,1 , . . . , as1,s2

1,d
...,

. . . ,
...

as1,s2
d,1 , . . . , as1,s2

d,d

⎞

⎟⎠ Bs1,s2 =

⎛

⎜⎝
bs1,s2
1,1 , . . . , bs1,s2

1,d
...,

. . . ,
...

bs1,s2
d,1 , . . . , bs1,s2

d,d

⎞

⎟⎠ (4)

are d × d parameter matrices. The 2DCAR differs from the 3DCAR with all
diagonal parametric matrices As1,s2 ∀s ∈ Ic

r and diagonal covariance matrix Σ,
i.e. single spectral component 2D models are mutually independent. All CAR
model statistics can be solved analytically, we use the Bayesian estimates (for
details see [11]).

Single models properties:

2DCAR Y spectrally decorrelated, Ξ unity d × d matrix, Zr = Er, Ia
r causal

or unilateral, Ib
r = {r} ,

3DCAR Y spectrally correlated, Ξ unity d × d matrix, Zr = Er, Ia
r causal or

unilateral, Ib
r = {r} ,

2DMSAR Y spectrally decorrelated, Ξ unity d × d matrix, Zr = Er, Ia
r non-

causal, Ib
r = {r}, double-toroidal boundary condition ,

3DMSAR Y spectrally correlated, Ξ unity d × d matrix, Zr = Er, Ia
r non-

causal, Ib
r = {r}, double-toroidal boundary condition ,

2DMA Y spectrally decorrelated, Θ zero matrix ,
3DMA Y spectrally correlated, Θ zero matrix .

The Bayesian parameter estimations of the 2/3CAR model with the normal-
Wishart parameter prior, which maximizes the posterior density, allow to ana-
lytically compute synthetic model output in the form of conditional mean values
estimate [11]:

Ŷr = Θ̂Xr . (5)

The MSAR parameters under the assumed double-toroidal boundary condition
are estimated using the least square method and synthesized using the discrete
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fast Fourier transformation [1,14]. The 2DMA parameters are estimated using a
method [22] similar to the one-dimensional (1D) Random Decrement Technique
[2]. The 3DMA model estimation is estimated as proposed in [18]. 2D/3DMA
texture models can generate synthetic arbitrary-size textures directly from their
model equations. All 2D models’ synthetic textures have to be subsequently
transformed using the inverse Karhunen–Loeve transformation to their spectrally
correlated final version.

2.3 Multi-spectral Markov and Pseudo-markov Random Field
Models

The BTF Multi-Spectral Markov Random Field (BTF-MMRF) model and
the BTF Pseudo Markov Random Field (BTF-PMRF) are based on
(3DMMRF/3DPMRF) factor texture models [1]. A multi-spectral texture can
be considered Markovian with respect to Iij

r if it has following property [1]:

p(Yr,i |Ys,j , ∀j ∈ {1, . . . , d} : j �= i,∀s ∈ Iij
r : s �= r)

= p(Yr,i |Ys,j , ∀j ∈ {1, . . . , d},∀s ∈ Iij
r ) . (6)

As the conditional distributions of Yr,i given {Ys,j , ∀j ∈ {1, . . . , d} : j �= i,∀s ∈
Iij
r : s �= r} and Yr,i given {Ys,j , ∀j ∈ {1, . . . , d},∀s ∈ Iij

r } are the same, the
best linear estimator of Y can be written:

Yr =
∑

s∈Ir

AsYr−s + Ψr = ΘXr + Ψr , ∀r ∈ I (7)

where Ir is a non-causal neighborhood and Ψr is the correlated driving noise.
The correlation structure of the stationary noise εr,i is [1]:

Ψs
ij = E{εr,iεr⊕s,j} =

⎧
⎪⎪⎨

⎪⎪⎩

−as,i,jσj s ∈ Iij
r MMRF only ,

−as,i,j
√

σiσj s ∈ Iij
r PMRF only ,

σj s = 0, i = j ,
0 otherwise .

(8)

The parameters As are estimated using the Minimum Mean Square Error
(MMSE) estimate [1]. Because the correlation functions have the symmetry
property Ψs

ij = Ψ−s
ji , there is an implicit requirement that Iij

r and the associated
coefficients are symmetric, i.e., s ∈ Iij

r ⇐⇒ −s ∈ Iji
−r and σjΨ

s
ij = σiΨ

−s
ji . The

LS estimates are inherently nonlinear, and it is necessary to solve for all model
parameters simultaneously, e.g., using the iterative approach [1]. The main dif-
ference between the MMRF model and the PMRF model and the significant
advantage of the PMRF model is the fact that the estimate σ̂ is linear and
independent of the estimate Θ̂. Therefore, the model parameter estimation does
not require an iterative process, unlike the case of the MMRF model parame-
ter estimation, which reduces the computational burden. The algorithm for the
synthesis of the MMRF/PMRF models is similar and identical to that one for
the MSAR model, except for the calculations in its third step (see details and
the stability condition in [1,17]).
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3 Color Quality Criteria

3.1 Spectral Decorrelation Criteria

The spectral decorrelation criteria vary depending on whether they are applied
to a single spatial resolution (as in Eq. (9)) or multiple spatial resolutions (as in
Eqs. (10) and (11)).

κ(cmax) =
1

cn
max

det (Σ) , (9)

where Σ is a n × n material texture spectral covariance matrix, cmax is the
maximal possible spectral value per channel. If the criterion κ(cmax) ≤ 3, we can
replace a 3D random field model with its Karhunen-Loeve decorrelated version
and model each decorrelated single spectral band with a 2D random field model
without significant MEMD error (12), i.e., with negligible color loss.

Gaussian Pyramid. Spectral decorrelation criterion for Gaussian pyramid fac-
torized image:

κ(cmax, l) =
l∑

i=1

1
cn
max

det (Σi)
sl−1 − sl

1 − sl

1
si−1

, (10)

where s is a sampling step (s = 2), l is the number of pyramid levels.

Gaussian-Laplacian Pyramid

κ(cmax, lmax) =
1

cn
max

slmax

1 + slmax

(
det (Σ1) + det (Σlmax)

1
slmax

)
, (11)

where s is a sampling step (s = 2), lmax is the last (Gaussian) pyramid level.

3.2 Color Composition Comparison

The Mean Exhaustive Minimum Distance (MEMD) [20] is used to compare the
spectral composition of two textures and the cardinalities of the same colors
but ignoring the locations of individual pixels. The comparison is performed by
individually taking pixels from the first image and searching for the most similar,
i.e., the closest in certain vector metric sense, to the ones in the second image.
The pixel from the second image identified as the most similar is removed from
the stack representing the second image and the local spectral error is recorded.
The MEMD criterion is as follows:

ζ(A,B) =
1
M

∑

(r1,r2)∈〈A〉
min

(ŕ1,ŕ2)∈N

{
ρ

(
Y A

r1,r2,•, Y
B
ŕ1,ŕ2,•

)}
, (12)

where M = min { {A}, {B}}, {A} is the number of pixels in A and similarly
for {B}, min {∅} = 0, (r1, r2) denotes the location in A, 〈A〉 represents the set
of all pixel indices of A, (ŕ1, ŕ2) is the location in B, N is the set of unprocessed
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Table 1. MEMD error values between the measured original O and its synthesized
version M corresponding to the best-achieved results for individual models and color2
texture modifications 0-9 in experiment 2 and their κ(256), κ(256, 2) criteria.

Model 0 1 2 3 4 5 6 7 8 9

ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M) ζ(O, M)

2D CAR 15,75 16,5 15,72 15,38 13,37 13,39 11,57 10,03 7,66 3,87

2D MA 44,04 38,44 35,24 30,82 30,48 26,34 24,68 19,41 12,87 5,32

2D MSAR 4,65 4,29 4,22 4,34 5,21 7,35 9,28 9,65 8,45 5,02

2DMMRF 7,97 6,52 5,97 5,58 5,74 7,7 9,4 9,76 8,47 5,05

2D PMRF 8,03 6,54 5,95 5,55 5,73 7,69 9,4 9,75 8,47 5,05

3D CAR 5,74 4,67 4,27 4,48 4,93 6,89 8,68 9,04 7,87 4,67

3D MA 6 5,79 6,41 5 7,19 8,32 8,94 7,35 5,31 2,5

3D MSAR 5,4 5,44 5,52 6,27 6,66 8,28 9,7 9,86 8,57 5,11

3DMMRF 6,98 6,11 5,04 4,75 5,25 7,24 9,13 9,59 8,52 5,12

3D PMRF 7,44 6,11 5,03 4,75 5,26 7,25 9,14 9,6 8,52 5,12

κ(·) 644 327 157 70 29 10 4 1,2 0,34 0,09

κ(·, 2) 537 273 130 58 24 9 3 1 0,28 0,07

pixel indices of B, ρ is an arbitrary vector metric and Y A
r1,r2,• represents the pixel

at (r1, r2) in A, where • denotes all corresponding spectral indices, similarly for
Y B

ŕ1,ŕ2,•. The term ζ(A,B) is evaluated using raster scanning of A. The algorithm
stops when all pixels of A are scanned, or N becomes an empty set (see details
in [19–21]).

4 Results

In our experiments, we utilized highly colored texture (color2) in two differ-
ent scenarios, along with the BTF MAM2014 Dataset2 [5] but details of these
results, except two materials Fig. 2, are not shown here (16 BTF materials, each
consisting of 6,561 images). Experiment 1: We gradually reduced the num-
ber of colors by replacing a randomly selected color with another randomly
chosen color in a single degradation step. Experiment 2 (Fig. 1): We com-
puted the mean spectral intensity for each color. Subsequently, we replaced
that color with a weighted combination of the original color and the mean
value. The weights progressively increased toward achieving a monospectral
texture. Average criterion (9) values over all 6,561 samples per material are
κ̄(mica) = 2, 9 · 108, κ̄(basketweave) = 1, 1. Highly reflective mica requires 3D
models for every combination of elevation angles θi, θv, while the basketweave
material has only one reflective peak for high-elevation θi = θv = 75◦ angles
(Fig. 2-rightmost), which can be neglected, and thus, this material can be com-
pletely modeled with a simpler set of 2D models.

The minor spectral decorrelation criterion across multiscale models (as indi-
cated in Table 1 similar table for Experiment 1 is not shown here) suggests a

2 http://btf.utia.cas.cz.

http://btf.utia.cas.cz
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Fig. 1. Color texture with subsequent color reduction and the corresponding of the
number of different colors (rightwards) in the experiment 2.

Fig. 2. BTF mica and basketweave texture samples.

slightly broader applicability of spectrally decorated multiscale 2D-factor mod-
els compared to their single-scale counterparts. In terms of color error ζ(·),
both experiments and single/multi-scale 3D models exhibit the following results:
3DCAR has the smallest median color error ζ̄(256) = 5, 34. 3DMMRF and
3DPMRF perform the worst. 2D models demonstrate larger spectral ζ(·) error
due to their application on decorrelated data. The 2DMSAR has the best spectral
modeling performance, while the far the worst is the 2DMA model. Additionally,
the condition κ(·) < 1 also suggests a small spectral ζ(·) error less than 5% for
all models.

5 Conclusions

We propose criteria that allow us to predict when a vast BTF data space can be
effectively modeled using simpler 2D random field models (one-third of 3D model



332 M. Haindl and M. Havĺıček

parameters) instead of more complex 3D random field models, all while main-
taining spectral quality. This prediction helps avoid computationally demanding
experiments with both types of models: spectrally decorrelated 2D and fully
correlated 3D RF. Additionally, it addresses the challenge posed by the lack
of reliable texture quality criteria. These mathematical models offer attractive
and practical alternatives for modeling, providing extreme data compression
(≈ 1 : 106 for our BTF measurements). Instead of storing the original acquired
data, only a small number of parameters need to be retained. To assess the
quality of synthesized data, we compare it with the original data using the tex-
ture spectral composition criterion denoted as ζ(·). The 3DCAR factor model
stands out among the models, achieving robustness and superior spectral quality
performance.
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(2012)
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19. Havĺıček, M., Haindl, M.: Optimized texture spectral similarity criteria. In:
Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds.) ICCCI 2021. CCIS,
vol. 1463, pp. 644–655. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88113-9 52
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Abstract. Generative modeling of natural images has seen significant
progress, but large-scale foundation models raise concerns about envi-
ronmental impact, privacy, and biases. This motivates investigating more
efficient and interpretable generative models. This work proposes a sim-
ple latent parametric generative model focused on realistic face genera-
tion, a domain that has seen success with neural networks. The model
uses a low-dimensional latent representation from a pre-trained autoen-
coder, and proceeds in two stages: (1) modeling the latent distribution
as a mixture of multivariate Gaussians trained on a limited dataset,
and (2) generating low-rank random codes from this prior and remap-
ping them using nearest nneighbor matching. Comparative experiments
demonstrate the advantages of the proposed approach.

Keywords: Generative Modeling · Auto-encoder · Face Generation

1 Introduction

The field of deep learning-based generative modeling of natural images has wit-
nessed substantial advancements in recent years. Popular methods now achieve
hyper-realistic image synthesis by combining visual and natural language cues,
enabling their use for downstream tasks such as image editing.

These successful generative models rely on a few powerful techniques. The
first is dimensionality reduction. Self-supervised representation learning, primar-
ily built on autoencoding neural networks, allows for the compact representation
of images in a low-dimensional embedding space. Careful architectural design
enables an interesting trade-off between the fidelity of image reconstruction and
the compression rate [7].

While dimensionality reduction is mandatory for designing realistic gener-
ative models [14], latent representations offer two main benefits for generative
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Fig. 1. Generated samples from a limited dataset of faces with llr-gmm-nn, the pro-
posed method described in Fig. 2. The lr-gmm step consists in estimating a low-rank
latent gaussian mixture model fitted on a limited dataset X (here with only N = 32

training images ˜X showed after decoding by an auto-encoder). The dimensionality is
controlled by a temperature parameter (here 0.3%). An additional nn step adds miss-
ing visual details by matching local features from the training set, captured by latent
patches (with a size of 5). The latent map at the bottom indicates in color code the
corresponding training sample used for each pixel.

modeling. First, pre-training a decoder helps reduce the complexity of genera-
tive models, improving training computational time and data requirements, as
demonstrated in various cases [7,28,29]. Additionally, the encoder helps extract
perceptually meaningful features that achieve better results than the original
color space for tasks like image comparison [8,16,46] and interpolation [21].

The most successful approaches in recent years have utilized or combined one
of the following key techniques: i) Auto-regressive models, which sequentially
predict masked pixels, either in the color space (as in PixelCNN [26]) or in the
latent space (as in VQ-VAE [28]), often employing decoder-type transformer
architectures [40] for this sequential prediction; ii) Adversarial training, where
feed-forward neural network architectures trained using generative adversarial
networks (GANs) [10,17] can produce highly realistic images; and iii) Diffusion
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models, iterative, denoising models that can generate realistic images, either in
the color space [14], in the image latent representation [29], or in a multimodal
representation [27].

The common thread among these successful techniques is their reliance on
massive neural network architectures, often with billions of parameters, to attain
levels of realism that can deceive human perception. As a result, such large
models require enormous amounts of training data and extensive computational
resources during both training and inference.

However, this level of achievement comes with some remaining challenges.
First, the use of over-parameterized deep neural networks has raised legitimate
concerns about data privacy [44], which have also been shown to occur in gen-
erative modeling, particularly in GANs [12,42]. Some mechanisms, such as dif-
ferential privacy [43], have been derived to mitigate these issues. Additionally,
other generative models based on transformers have been shown to be able to
memorize some training samples [7,25], a concern that has also been scrutinized
for diffusion models [4,38].

Besides, the proliferation of such data-intensive and computationally
demanding models raises numerous ethical and social concerns [20], including
their environmental impact [3], legal implications concerning training with copy-
righted content [36], and the presence of biases, illegal material [39], or corrupted
samples [37] within the training dataset. These concerns underline the need to
explore alternative approaches that are more resource-efficient, transparent, and
less susceptible to ethical dilemmas.

In this context, this work aims to show that a simple latent generative model,
both in terms of parameters and computing power, can achieve high perfor-
mance in comparison to large state-of-the-art auto-regressive and diffusion mod-
els. Additionally, we further demonstrate that it allows using less data and yields
a more explainable model. Lastly, we show that such a model can address other
downstream tasks, such as image editing.

The proposed approach, illustrated in Fig. 1, aims to generate plausible latent
representations of images from a limited dataset of portrait examples, which can
then be used to reconstruct the corresponding high-resolution images using a
pre-trained decoder. The generative process is feed-forward and consists of two
steps: i) Modeling the latent distribution of the limited dataset as a Gaussian
mixture model (GMM). Combined with low-rank approximation (LR), this rel-
atively simple model requires only a small number of parameters, thanks to the
compact latent representation of the images, which allows for a limited training
dataset. Yet, this approach still enables the imposition of long-range correlations
in the final high-resolution images. ii) During inference, sparse latent codes are
randomly generated to enforce the sharpness of the generated images. The sec-
ond stage then consists of injecting missing details (high-frequency patterns) by
iteratively projecting the latent pixels onto similar training samples, based on
local comparisons (nearest-neighbor step or NN).

The rest of the paper is organized as follows: The next section (Sect. 2)
describes related work in latent generative modeling and exposes their limita-
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tions. Section 3 introduces the proposed two-step generative model, consisting of
a combination of a latent low-rank Gaussian mixture (Sect. 3.2) and a nearest-
neighbor projection (Sect. 3.3). The experimental section (Sect. 4) shows quali-
tative and quantitative results for face generation, demonstrating the advantages
of the proposed method compared to several competitive methods from the liter-
ature. Finally, we conclude in Sect. 5 by discussing some perspectives and future
lines of work.

2 Related Work

State-of-the-Art in Generative Modeling of Face. Our work focus on face
generation which has been a long standing problem in generative image modeling.
One of the first milestone in realistic portrait generation has been GAN-based
approaches, starting with PG-GAN [18] which introduced a progressive adversar-
ial training on a curated dataset of 30k registered HD images (CelebA-HQ). With
a different architecture allowing for explicit image stylization, Style-GAN [19]
improved upon this work with 70k high-quality images under permissive licenses
(FFHQ). These generative models, mapping a random latent code to a realistic
image, can be used as priors for image editing by implicitly exploiting the latent
pre-image. However, such plug-and-play techniques requires gradient-based opti-
mization or the posterior training of a dedicated encoder.

As mentioned in the introduction, a popular technique to reduce data dimen-
sion and model size and training time is the use of a latent generative representa-
tion [7,28,29]. In a first stage, an auto-encoder is trained on the target dataset to
learn a compact latent representation (i.e. with a very small spatial resolution)
via an encoder that is perceptually well reconstructed by a decoder. To achieve
this result, variational auto-encoders (VAE [21]) have been widely used [28] and
are often combined with some other techniques, such as GANs [7].

In a second stage, a latent generative model is trained on the same dataset.
After training, the parametric model is used to generate a random but plausible
latent code that is decoded to synthesize a realistic image.

Auto-regressive models for images has been popularized with PixelCNN [26]
and combined with quantized latent representation in VQ-VAE [28] to produce
realistic images. With the advent of transformers and attention-based architec-
tures [40], token-based decoder transformers has been successfully combined with
latent representation [7]. A limitation of such methods comes from their sequen-
tial nature, requiring a lot of computations and a large number of parameters
to impose long range correlation in long sequence.

More recently, diffusion and score-based models have been popularized since
the seminal work of [14] and its application for text-to-image generation scaled
to large datasets [27,31], in combination of with auto-encoders [29]. While iter-
ative in nature by requiring thousand of denoising steps, the distillation of such
stochastic models has met some success recently to accelerate the generation by
training a single step generative network [32]. Yet, these models are still large in
nature. The sheer amount of parameters contained in a state-of-the-art model
requires several weeks of training with relatively massive computing power.
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Besides these computational requirements and the related environmental con-
siderations, a growing number of ethical issues is related to the use of these large
models as black-boxes (reproduction of copyrighted material, reproduction of
bias from the training data, privacy of the training data, etc.). Addressing these
concerns demand more explainable and transparent generative image models. In
this work, we investigate this line of research in the context of frugal models.

Generative Model with Limited Parameters and Data. Child et al. [5]
showed that simple multi-scale yet very deep VAE could compete with much
larger auto-regressive models. While being able to generate high quality portrait,
the proposed model is still limited to small resolution (256 pixels) with hundred
of millions of parameters.

One common practice to avoid re-training large models from scratch is to
finetune their parameters on another target dataset. In particular, [41] notes
its efficiency for generative methods in adversarial networks. A recently more
popular approach has been to train a smaller, low-rank, auxiliary model to adapt
the parameters to the target distribution [15,30,45]. Yet, the auxiliary model
uses the large model even during inference, which still requires huge amount of
memory and computations.

Few-shot generation main goal is to be able to generate images from a limited
dataset, with very scarce information. Training models becomes in principle
more difficult as most architectures are in that case prone to overfitting or mode
collapse. [24] proposes an adversarial network adapted to a low amount of data
points. They introduce skip-layer excitation modules that weight high-resolution
features with the low-resolution ones. This allows them a robust training with
lower parameter count. [2] specializes models to the target distribution thanks to
a quantization codebook that specifically encodes patches of the limited dataset.
They then train an auto-regressive model that can only generate codes from that
constrained codebook. Both approaches however require an entire retraining if
the limited dataset were to change. Even though considerably lower than large
models, the training process can take hours of computing for just a dozen images,
for instance.

Last, our work share some similarities with Latent-Patch [33]. In both case,
a shallow latent generative model is proposed to train from a limited dataset.
However, these generative models are completely different in nature. In Latent-
Patch, a multi-scale non-parametric auto-regressive model is used, inspired from
patch-based texture synthesis algorithms and the PatchMatch approach intro-
duced for image editing. A limitation of this approach is the lack of long-range
correlation by the sequential nature of the synthesis, which can results in global
inconsistencies, such as face asymmetries (different eyes’ color, earring on only
one side, etc.), different hair styles depending on the spatial location, or inconsis-
tent background. In contrast, our model requires a few parameters (around 1M,
so 10 to 100 times lower than other methods) to be trained, and only requires
two steps that are parallel and thus faster to infer.
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3 Latent LR-GMM-NN Generative Model

Overview. Like many aforementioned state-of-the-art approaches, we propose a
latent generative model which is built on top of a pre-trained auto-encoder. The
next Sect. 3.1 gives more detail on learning such a latent representation on an
auxiliary dataset A. The following sections then introduce the different steps of
the proposed generative model, coined llr-gmm-nn in this document, that are
summarized in Fig. 2.

As exposed in Sect. 3.2 about learning the latent parametric model, latent
representations of the training images of a limited target dataset X are first
collected and compressed using dimensionality reduction operator P0, by means
of a principal component analysis (PCA). A Gaussian Mixture Model (GMM)
is then fitted to the latent distribution of the target dataset X to capture the
desired spatial correlation at coarse resolution. The first stage of inference (LR-
GMM-step) finally consists in generating a latent code, and combines a Gaussian
Mixture Model (GMM) with Low-Rank (LR) samples using sparse operators Pk.

The following NN-step, introduced in Sect. 3.3, stands for Nearest-Neighbor
projection, and consists in injecting details in the generated latent sample by
matching local features (latent patches) from training examples.

Fig. 2. Overview of the proposed llr-gmm-nn method. A latent representation is
obtained by pre-training an auto-encoder (E and D) on an auxiliary dataset A. The
model is fine-tuned on the target distribution of images by training a latent embedding
(P0 and P �

0 ) on an limited dataset X which reduce the dimension of the latent rep-
resentation. A gaussian mixture model (GMM) is fitted on latent images, from which
a low-rank approximation (LR) is used to generate random samples. A local Nearest-
Neighbor (NN) projection based on patch-similarity is used to modify synthesized
samples before decoding.

3.1 Latent Representation

A generic auxiliary dataset A = {aj}M
j=1 is considered to learn an appropriate

latent representation of images. We consider color images of size 3 × H × W ,
where H (height) and W (width) indicates spatial dimension.
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Auto-Encoder. To achieve this goal, we follow the paradigm of many state-of-
the-art methods by first training an auto-encoder (AE) composed of an embed-
ding deep-network E (which is used to learn an appropriate latent generative
model later on), and a decoder D (used to synthesize color images from random
latent codes). As this strategy has been proven to be effective to learn various
generative models (see e.g. VQ-VAE [28], VQ-GAN [7], latent-diffusion [29],
Latent-Patch [33]), we assume that we can use a generic on-the-shelf auto-
encoder providing a latent representation y of images at coarse spatial infor-
mation dlatent = c × h × w (i.e. h � H). The spatial grid is referred to as
Ω := {1, . . . h} × {1, . . . w} in the following.

Finetuning. As proposed in [33], a limited set of N images X = {xi}N
i=1 is used

to fine-tune such a generic auto-encoder to the target distribution of images. In
order to restrict the number of parameters of the generative model to be trained,
an affine projector P0 is learnt from PCA on latent c-dimensional features to
further reduce the dimension to q � c. Note that this is done while keeping
spatial resolution h × w of latent representation yi = E(xi) of images, in such a
way that d0 = qhw is limited to a few thousands dimension. Formally, such an
operator operates on each latent-pixel position p and writes

∀ p ∈ Ω, P0 : y(p) ∈ R
c �→ diag(

√
s0

−1)V0(y(p) − ȳ) ∈ R
q (1)

where ȳ is the average of latent pixels and V0 ∈ R
q×c is the q principal eigen-

vectors, normalized using the corresponding eigen-values s0 ∈ R
q. For decoding,

the transpose of V0 is used to reconstruct latent representation at the required
dimension c:

∀ p ∈ Ω, P �
0 : z(p) ∈ R

q �→ V �
0 diag(

√
s0)z(p) + ȳ ∈ R

c. (2)

3.2 A Low-Rank Latent Mixture Model

This first stage aims at learning a parametric model capable of synthesising ran-
dom latent representation that: i) impose correlations across the coarse resolution
of embedded images, and ii) capture the diversity of the target distribution, iii)
with a limited budget, in both required training data, memory and computa-
tion time. To achieve these goals, we combine a gaussian mixture model with
low-rank approximations that is trained on the limited target dataset.

gmm. The training dataset X is embedded as N latent vectors Y = {yi =
P0(E(xi)) ∈ R

d0}N
i=1. An expectation-maximization (EM) algorithm is used to

fit the Gaussian Mixture Model (GMM) into K components, so that the training
samples Y are split into K clusters {Ck}K

k=1. Each component is indexed by k
and is parameterized with a multinomial probability πk and with a multi-variate
gaussian N (ck, Σk). Mean ck ∈ R

d0 and covariance Σk ∈ R
d0×d0 are empirically

estimated from the training data from Ck. Due to the limited amount of data
and the reduced dimension (i.e. N d0-dimensional vectors), this training step is
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quite fast (a few seconds for small dataset such as N = 100), with the additional
acceleration from GPU-parallelization (see e.g. [23]).

Recall that drawing a random sample from this GMM consists in

1. randomly choosing the index k ∈ {1..K} using the multinomial probability
law π = (πk)Kk=1,

2. sampling a random sample z using

ε ∼ N (0, Id0) �→ z = Pkε + ck ∈ R
d0 , (3)

where ε is a random latent variable drawn from a standard normal distribu-
tion, and Pk is a lower triangular matrix from the Cholesky decomposition of
the covariance matrix, such that Σk = PkP�

k .

lr Sampling. While using a large number K of clusters allows to fit arbitrarily
well the latent distribution, the number of parameters grows linearly with K.
As a result, and in addition to restricting K to avoid overfitting, we propose
to further reduce the number of parameters required to encode each Gaussian
component by performing a supplementary dimensionality reduction. Relying
again on PCA, a low-rank (LR) approximation of the covariance matrix Σk is
used to limit the latent dimension of each component k to dk. We have found
that adapting dk to the probability πk give better visual results, as shown in
experiments. In practice, we substitute the matrix Pk ∈ R

d0×dk in (3) which is
defined, similarly to (1), from the matrix Vk of dk principal eigenvectors of Σk

as follows: ∀ k = 1..K,

Pk : ε ∈ R
dk �→ z = diag(

√
sk

−1)Vkε + ck ∈ R
d0 (4)

As studied in experiments, this dimension reduction offers some control over the
quality versus the diversity of generated samples.

3.3 Refinement Step with Iterated nn-Projection

The second step of the generative process is non-parametric. In our setting,
for each spatial position p ∈ {1, . . . h} × {1, . . . w}, the random latent feature
z(p) ∈ R

q generated from cluster indexed by k (as in (3)) is substituted with
the nearest-neighbor (nn) latent feature yj(p) at the same position p and in the
same cluster k. To define a relevant comparison of latent feature while taking into
account the context, we consider the local ω ×ω square neighborhood around p,
that is ∀ p ∈ Ω

nn : z(p) ∈ R
q �→ yj(p) with j = argmin

i=1..N s.t. yi∈Ck

‖Φz(p) − Φyi(p)‖2 (5)

where Φ is the patch-extractor defined as, ∀ p ∈ {ρ, . . . h − ρ} × {ρ, . . . w − ρ}

Φ : z(p) ∈ R
q �→ (z(p + h))h∈{−ρ..ρ}2 ∈ R

q×ω2
, (6)
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considering patches with a discrete radius ρ, such that ω = 2ρ+1. Some special
care is required at the boundary of the domain for which zero-padding may be
used for efficiency. Observe as well that only training patches in the same cluster
as the query and at the same location p are involved in the nn search (5).
When considering non-registered data, such restriction can be like discarded but
increase complexity, similarly to attention modules.

Comparison with Path-Based Synthesis. Last, note that this nn projection builds
upon the observation from [33,34] that plausible latent code can be obtained by
sampling directly local neighborhoods (or patches) of spatial resolution ω × ω
from the training data. These approaches have been motivated by earlier patch-
based techniques, such as the seminal work of [6] for texture synthesis, and the
efficient algorithm of [1] for image editing.

However, contrarily to [33] where large patches from the training set are
sequentially copied to generate a new latent representation similar to a patch-
work, and to some extent to auto-regressive models [7,28] or diffusion models
with attention mechanisms [29], the proposed nearest-neighbor projection only
copies a latent feature yj(p) and is independent for each spatial position, and
thus can be performed in parallel. This allows some significant speed-up of the
latent synthesis and avoids overfitting the training set as shown in experiments.

Some links with non-local mean filtering and attention mechanism are further
discussed in the appendix.

4 Experiments and Applications

In this section, we first describe the experimental setting (Sect. 4.1). Then, we
show some quantitative and qualitative results of the proposed approach for
face generation in Sect. 4.2. A comparative analysis with other methods is also
carried out. Additional results, including an ablation study demonstrating the
role of each generative step together with the impact of some hyper-parameters
are proposed the supplementary material.

4.1 Experimental Setting

Auto-Encoder. We use the VQ-GAN auto-encoder [7], an architecture originally
conceived for transformer-based generation. It notably combines an adversarial
loss with a quantization codebook, learning a both compressed and meaningful
latent representation. The auxiliary dataset A in our setting is FFHQ [19], a
large dataset of faces high-quality faces.

The auto-encoder is trained using color images at resolution H = W = 256
pixels (i.e. for a total dimension 3HW = 196, 608). The latent representation of
an image has a h = w = 16 pixels resolution with c = 256 channels (i.e. for a
total dimension dlatent = 65, 536).
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Fine-Tuning. The feature dimension reduction of the auto-encoder using PCA
(as detailed in Sect. 3.1) is performed on latent pixels of the limited target
encoded dataset E(X ), in which X is a random subset of N images from CelebA-
HQ [18], to learn the projector P0 (1). Doing so allows us to reduce the channel
dimension of pixels from c = 256 to q = 8 with minimal information loss. In
the following, the default size of this limited dataset is set to N = 1024, but
experiments will show that the model is sufficiently robust for N to range from
as low as N = 32 (as in the few-shot regime shown in Fig. 1) to the full dataset
with N = 28k.

Fitting the Generative Model. During the training phase of the proposed genera-
tive model (lr-gmm), several hyper-parameters need to be set. By default, we fit
K = 8 components with dimensions dk = 
λπkd0� where temperature parameter
λ = 0.12. Optimization is performed using standard EM algorithm (here we rely
on the non-parallel implementation of sklearn.mixture.GaussianMixture).

Memory and Computations. Additional details about memory footprint and
computation time are provided in the supplementary material. In a nutshell, the
proposed model is both fast to train (few seconds for N = 1000 images) and to
sample from (few milliseconds on a GPU).

4.2 Face Generation

In this section, we discuss quantitative and qualitative results of the proposed
method for portrait generation in two regimes (limited or large dataset), and we
provide comparisons with relevant methods.

Fine-Tuning on a Small Dataset. Figure 1 illustrates the two steps of proposed
generative model when resorting to only N = 32 random training images from
CelebAHQ. In this setting, only K = 1 component is used. Random samples
obtained from the lr-gmm step alone synthesize the appropriate main face fea-
tures (eyes, nose and mouth) with plausible spatial correlation. However, some
other regions is the image may be unrealistic, such as the face contour and the
hair, the lack of details, the existence of artificial high-frequency patterns, etc.
The nn projection step (here with only one iteration) aims at improving this
aspect by replacing local features with examples from the training images. This
observation is confirmed by several metrics reported later on. in Table 1. The
“Latent map” (at the bottom of Fig. 1 with an arbitrary colormap) corresponds
to the index of the nearest neighbor; in addition to the visual comparison with
the training images (top of Fig. 1), it demonstrates that the model is not over-
fitting training samples, even locally.

Quantitative Analysis. Now we consider a large dataset in order to compute
objective metrics such as FID [13] and IPR [22]. Recall that the Fréchet Incep-
tion Distance measures the dissimilarity between empirical distributions of real
and synthesized samples, and that Improved Precision-Recall aims at measuring
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the tradeoff between quality and diversity of synthetic images. For this purpose,
a total of 10k images are generated with several methods. Results reported in
Table 1 for N = 1024 and N = 28k first show that both steps (lr-gmm and
nn) of the proposed method are required to improve the quality of samples.
The comparison with LatentPatch demonstrates that the proposed method can
achieve similar performance without overfitting the training set (which is not
penalized by these metrics). Besides, comparisons with two larger parametric
models (fastgan [24] and vq-gan [7]) that requires hours of training show
that our method is competitive. Extensive visual comparisons in supplementary
material corroborate these results: the proposed method yields high quality sam-
ples (high precision) but lacks some diversity (lower recall). In particular, the
proposed method struggles to create realistic hair pattern, which is penalized by
the FID.

Table 1. FID [13] and Precision-Recall [22] metrics for different methods. Our method
(lr-gmm-nn) is tested in two settings: N = 1024 and N = 28, 000 images. lr-gmm indi-
cates the proposed method without the refinement nn step, demonstrating its interest.
See the supplementary material for more visual samples. ∗Note that both the trans-
former and auto-encoder of VQ-GAN have been trained on X rather than A.

Comparison with LatentPatch. Figure 3 offers a comparison of both
approaches when considering the same dataset of N = 1024 images. We already
reported some methodological difference with LatentPatch [33] in Sect. 3.3,
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completed with numerical (computation time) in the supplementary material
where our approach is reported to yield a 30× speed-up. Recall that Latent-
Patch is a non-parametric patch-based generative model that does not require
any training, and that aims at being explainable. To do so, similarly to other
patch-based generative models such as [11], it explicitly synthesizes new image
samples by copying local regions from examples images. This can be seen from
the Nearest-Neighbor index, as defined by (5) and referred to the “latent map”
(in this case, the colormap is cluster-dependant). In contrast with LatentPatch
which copies large regions of latent features to achieve realistic portrait gener-
ation, the proposed method combines only latent pixels from training samples,
thus with more variety without overfitting some training samples. As a result,
thanks to the randomness of samples from the gmm, we only make use of the
nearest feature for the refinement, rather than sampling randomly from the top
k-nn as in LatentPatch or in VQ-GAN. For all methods, the use of a latent
representation then allows for a nice blending of the selected features.

Fig. 3. Comparisons between llr-gmm-nn on the left, and LatentPatch [33] on the
right, both fitted on the same N = 1024 dataset. The proposed approach benefits from
training a small parametric model to impose spatial coherence.

4.3 Ablation Study

The supplementary material includes an ablation analysis that offers extensive
visual comparisons, corroborating and complementing the performance scores
reported in earlier experiments. This is supplemented with additional exper-
iments that discuss the significance of each stage of the proposed generative
model, the role of various hyperparameters, and the computation time.
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5 Discussion and Perspectives

Summary. A new approach has been presented for face-generation from limited
dataset. Rather than training a large auto-regressive model such as VQ-VAE or
VQ-GAN, our approach shows that in this context a simpler parametric model
can be efficiently learned from a few samples. The proposed latent generative
model mainly consists in two stages. The first one fits a gaussian mixture model
from the limited dataset. This model is then reduced in dimension to accelerate
training and inference, but also improve quality results. This simplistic model
provides random samples with the desired spatial correlations. The final stage
consists in improving the quality of the synthesized samples by local nearest-
neighbor projections. Experimental analysis demonstrates the speed-up of the
proposed method in comparison with some previous work from the literature,
while still providing similar or better visual quality.

It is noteworthy that previous works, such as [9,35], have already demon-
strated the benefits of combining regularized deterministic auto-encoders with
Gaussian Mixture Models to enhance vanilla Variational auto-encoder models.
Our approach differs from [35], where latent dimensions are assumed to be inde-
pendent, enabling the estimation of univariate GMMs during training. Similar to
[9], we demonstrate that a multivariate GMM can be post-estimated to capture
correlations between latent variables and improve sample quality. However, our
work also diverges from [9] in several key ways. First, we employ dimensionality
reduction to enhance sample quality, as shown in the ablation study in the sup-
plementary material. Additionally, our method leverages the spatial information
in the latent representation to refine local statistics using NN projections. Fur-
thermore, instead of utilizing the entire training dataset used for the regularized
AE, we demonstrate that a limited sample is sufficient to fit the latent model of
an AE-GAN to produce realistic samples.

Limitations and Perspectives. The proposed method however suffers from a few
shortcomings when compared to some previous methods. The first one is related
to the resolution of synthesized images that is same as training samples, like most
generative models. This is yet not the case with auto-regressive models that can
generate latent codes of arbitrary size, which is handy for other tasks such as
generating landscapes. An interesting line of research in such context would be
to extend our model by considering GMM with limited range for spatial corre-
lations. In comparison with latentPatch, another current limitation of the pro-
posed model is its extension to conditional generation. With an auto-regressive
model, a latent code can be easily provided as a context. In our setting, this
is also achievable but not as straightforward as one need to train a conditional
gaussian noise, which is an interesting perspective left for future work.
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Abstract. Domain adaptation is a crucial challenge in the field of
machinery fault diagnosis, as the performance of traditional fault diag-
nosis models could significantly degrade when applied to different work-
ing conditions or domains. This paper proposes a novel approach for
domain adaptation for machinery fault diagnosis based on the Critic
Classifier Generative Adversarial Network (GAN). Our method aims
to improve diagnostic performance by aligning the source and target
domains, enabling effective knowledge transfer between them. We lever-
age the power of the Critic Classifier GAN framework, which incorporates
both a generator adversarial network and a critic classifier. This frame-
work enables us to learn representations invariant to domain shifts, lead-
ing to accurate classification of fault patterns. Additionally, we employ
domain discrepancy loss functions, such as Maximum Mean Discrep-
ancy (MMD) and Maximum Classifier Discrepancy (MCD), to further
enhance domain alignment and classifiers to align the feature distribu-
tions. Experimental evaluations conducted on various mechanical fail-
ure datasets confirm our proposed method’s effectiveness and robustness
compared to existing domain adaptation techniques. Our proposed solu-
tion effectively overcomes the challenges arising from domain shift and
achieves state-of-the-art performance in machinery fault diagnosis under
various working conditions.

Keywords: Unsupervised · Domain Adaptation · Classifier
alignment · Fault Diagnosis · GAN

1 Introduction

In recent years, there have been notable advancements in mechanical fault diag-
nosis using deep learning methods combined with signal preprocessing. Convolu-
tional Neural Networks (CNNs) have shown promising results for numerous clas-
sification tasks. Yet, their performance often depends on extensive labeled data,
which may not be available in practical scenarios with varying data distributions.
This domain shift problem arises because data from different sources may dif-
fer significantly. To address this challenge, State-of-the-art (SOTA) approaches,
such as [1,2], have been proposed to adapt fault diagnosis models from a source
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domain to a target domain significantly when their data distributions vary
broadly. This approach aims to minimize the disparity between source and tar-
get domains, aligning their feature representations and transferring knowledge to
enhance fault diagnosis performance in the target domain. Bearing fault diagno-
sis is crucial in smart factories, where machinery operates autonomously. In this
paper, We propose a novel domain adaptive machinery fault diagnosis frame-
work that utilizes datasets from different sources, reducing the need for exces-
sive sensors in the field and improving efficiency. The proposed method leverages
GAN and domain adaptation techniques to enhance fault diagnosis under differ-
ent working conditions. It addresses domain shift challenges, improving model
accuracy and generalization across domains. Experimental results demonstrate
its effectiveness and reveal the impact of data characteristics on fault diagnosis
performance.

This paper presents a novel domain adaptation method that leverages deep
learning and domain adaptation to improve fault diagnosis under varying con-
ditions. The proposed GAN-based approach effectively addresses domain shift
challenges, enhancing the reliability and accuracy of fault diagnosis in practical
applications. The contributions in this paper are listed as follows:

1. The proposed GAN-based method addresses the challenge of domain shift
and improves the generalization of fault diagnosis models.

2. Through experiments on domain adaptation, we show that our method out-
performs previous methods in fault diagnosis tasks under different working
conditions.

2 Related Work

Domain Adaptation aims to identify similar instances between the source and
target domains and train a classifier using source domain samples to transfer
the model learned from the source domain to the target domain. Several domain
adaptation methods have been proposed and can be classified into the following
approaches.

A) Mapping-based methods: Traditional alignment methods consider the differ-
ence in the decision boundary between the source-domain and target-domain
features generated by the feature extractor. These methods strive to bridge
the gap between the source and target domains by aligning their feature
distributions. For example, the Maximum classifier discrepancy (MCD) [3]
can effectively align the difference on the decision boundary. The Maximum
classifier alignment approach [4] has also been applied to many tasks. The
Maximum Mean Discrepancy (MMD) [5] has been widely used as a distance
metric to enforce the distributions of the learned domain representations
closer to each other. In addition, CORAL [6] uses second-order statistics to
minimize domain shifts for aligning two distributions.
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B) Reconstruction-based methods: The reconstruction-based approach learns a
model to capture the latent data structure and then creates a synthetic recon-
struction; the main idea is to extract features that represent the data and
assume that a high reconstruction error means a high probability of anoma-
lous data. By minimizing the discriminability of the domain classifier, they
align the feature distributions between the source and target domains. Deep
reconstruction-based neural network architectures such as CRDN [7] and
ReverseGrad [8] have been investigated more recently. These architectures
are trained to reconstruct the input data accurately.

C) Instanced-based methods: The Instance-based methods utilize techniques
such as re-weighting instances in the source domain and incorporating target
domain statistics. These methods are commonly employed in deep learning
models to address the domain shift between the source and target domains.
For example, Adaptive Batch Normalization (AdaBN) [9] has been used to
improve the generalization of DNNs. By modulating statistics from the source
domain to the target domain in all Batch Normalization layers throughout
the network, they only update the global mean and variance, equivalent to
realizing domain adaptation.

D) Adversarial-based methods: GAN-based domain adaptation methods opti-
mize feature extraction through adversarial training, enabling them to learn
domain-specific knowledge with strong generalization capabilities. Recently,
a domain adaptation approach [10]focuses on transferring from synthetic to
accurate data. This approach aims to bring the source and target distribu-
tions closer in a learned joint feature space, thereby enhancing the effective-
ness of domain adaptation. Another notable approach, Coupled Generative
Adversarial Networks (CoGAN) [11], learns the joint distribution of images
in two domains separately. This is achieved by enforcing a simple weight-
sharing constraint while considering the marginal distributions within each
domain. CoGAN leverages this joint distribution learning to improve the
domain adaptation results and facilitate the alignment of features between
the source and target domains.
The difficulty of domain adaptation can vary depending on the characteris-
tics of the data and the domains involved. In the case of homogeneous and
heterogeneous domains, specific challenges contribute to the complexity of
domain adaptation. Kang et al. [12] proposed a CNN network incorporat-
ing Contrastive Domain Discrepancy (CDD), which builds upon MMD to
measure intra-class and inter-class discrepancies across domains. The CDD
aims to minimize intra-class domain discrepancy within a class while maxi-
mizing inter-class domain discrepancy, facilitating cross-domain adaptation.
Lin et al. [13] and Dai et al. [14] employed neural networks and adversarial
learning techniques, respectively, to minimize the discrepancy of joint distri-
bution (MMD) and maximize classifier discrepancy (MCD) to produce more
discriminative features for unsupervised domain adaptation. Overall, the dif-
ficulty of domain adaptation in homogeneous and heterogeneous domains
arises from data distribution deviation, feature relevance, and the challenge
of generalizing models across domains with limited labeled data.
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3 Proposed Method

We propose a domain adaptation method to transfer the fault diagnosis model
from the source domain to the target domain through adversarial learning. Our
method learns a joint feature space by utilizing adversarial image generation
to minimize the distribution distance between the source and target domains,
thus resolving the domain shift in the feature space learned by the encoder. The
details of our method are described in this section.

3.1 Overview

We introduce an innovative framework combining unsupervised target distribu-
tion data with supervised learning based on source distribution samples. The
framework consists of three core components:

F-Network (Feature Extraction Network): F-Network (Feature Extraction
Network): This network extracts features from input data to create comprehen-
sive time-frequency images through feature vector generation. We recommend
using wide kernels in the initial convolutional layer to capture relevant signal
information, especially in intermediate and low-frequency bands. Subsequent
layers with smaller kernels enable deeper network learning for more detailed
feature extraction, effectively suppressing high-frequency noise.

GAN-Network: Responsible for predicting source labels and assisting the G-
Network (Generator) generate realistic source images. The authenticity of these
images is evaluated by the D-Network (Discriminator). The adversarial process
continues until the generator creates samples indistinguishable from accurate
data. Simultaneously, the F-Network receives updates from the D-Network via
the C-Network and from the G-Network within the adversarial framework. In
the unlabeled target domain, the F-Network relies on gradient updates from
adversarial training, allowing it to learn discriminative features effectively by
leveraging domain knowledge from the generator-discriminator pair.

Alignment Method: The discriminator serves as a multi-category classi-
fier, employing the Maximum Classifier Discrepancy (MCD) method to identify
target samples deviating from the source data distribution. Discrepancies are
reduced by comparing the outputs of the two classifiers, known as the Critic
method. This leads to the training of a feature generator that produces target
features closely aligned with the source, minimizing discrepancies. Trained fea-
ture extraction and generators can be used directly to reconstruct more compact
time-frequency data, providing more accurate reconstruction errors. Further-
more, we incorporate the Maximum Mean Discrepancy (MMD) and Gradient
Reversal Layer (GRL) [15] techniques into our framework.
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Fig. 1. The architecture of the proposed model includes an F-network with 1D convo-
lutional layers and a G-D-C network based on the Auxiliary Classifier GAN (ACGAN)
framework.

3.2 Network Architecture

We employ Auxiliary Classifier Generative Adversarial Network (ACGAN) archi-
tecture [16] for our model. It is a variant of Conditional GAN to classify images
[17] accurately. The architecture of the proposed domain adaptation model is
depicted in Fig. 1.

In a standard GAN and Conditions GAN, the discriminator network D esti-
mates the probability that the input image is a sample drawn from the data-
generating distribution. This is typically implemented using a feedforward net-
work. However, Semi-Supervised GAN (SGAN) [18] can also be implemented
using a Softmax output layer, and the discriminator can also act as a classifier
with one unit for each of the classes (real or fake).

ACGAN is derived from the above GAN module, integrating CGAN and
SGAN, which provides conditional information at the input and models the
discriminator as a multi-classifier. At the same time, it can improve the perfor-
mance of the original generative task model by providing additional information
to the GAN. Specifically, it can use auxiliary class label information to generate
high-quality samples and solve domain adaptation and classification problems.
To address the challenges of domain adaptation in fault diagnosis, we modify the
auxiliary classifier of ACGAN to the Critic method, which identifies target sam-
ples deviating from the source data distribution and uses a feature generator to
reduce discrepancy and generate target features closer to the support. Further-
more, the network architecture integrates MMD and GRL techniques, enhancing
the domain adaptation capability and improving the overall performance.

3.3 Domain Adaptation

Domain adaptation facilitates knowledge transfer from a source domain to a
related yet distinct target domain. Our extended ACGAN model introduces sev-
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eral components to facilitate adversarial learning and domain alignment, enhanc-
ing performance. MMD measures dissimilarity between probability distributions
by comparing samples from each distribution. We aim to find a transformation
function that minimizes the discrepancy between the transformed data from the
source domain and the target domain. The MMD distance is approximated as:

MMD(Xs,Xt) =

∥
∥
∥
∥
∥

1
|Xs|

∑

xs∈Xs

φ(Xs)− 1
|Xt|

∑

xt∈Xt

φ(Xt)

∥
∥
∥
∥
∥

(1)

Lmmd = λMMD2(Xs,Xt) (2)

where λ is a hyperparameter controlling the strength of the domain confusion
term in the loss function.

Maximum Classifier Discrepancy (Critic Classifier) identifies target samples
far from the source domain’s support by leveraging the discrepancy between two
classifiers. Training a feature generator to produce target features near the sup-
port minimizes this discrepancy. The critic classifier discrepancy loss is defined
as:

Lcritic = d(p1, p2) =
1
K

K∑

k=1

|p1k − p2k| (3)

where p1k and p2k represent probability outputs for class k. Gradient Reversal
Layer (GRL) is introduced to handle the conflicting objectives of the Generator
and Discriminator in GANs. GRL multiplies the error passed to a layer by a
negative number(λI), creating an adversarial effect by opposing the training
objectives before and after GRL.

3.4 Objective Functions

The primary loss function remains the same as that in ACGAN. We have inte-
grated Critic and MMD module block loss functions into the feature reconstruc-
tion F-network to enhance domain adaptability and improve the fault diagnosis
model’s generalization ability and performance:

Lf = Lc + Lc,scr + βLFadv
+ Lcritic + Lmmd (4)

3.5 Training Procedure

Algorithm Iterative training procedure of Critic Classifier GAN.
1: The number of training iterations = N
2: for t in 1:N, do
3: sample n signals with labels from source domain Ds = {(Xsi, Ysi)}ni=1

4: Let fi = F (Xsi) The embeddings are computed for the source signals.
5: Sample n signal from target domain Dt = {Xti}ni=1

6: Let hi = F (Xti) be the embeddings are computed for the target signals.
7: Sample n random noise sample {Zi}nt=1 N (0, 1).
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8: Let fgi and hgi be the concatenated inputs to the generator G-network.
9: Update discriminator D-network using the following objectives:
Ld = Ldata,src + Ladv,tgt + Lcritic + Lmmd

* Ldata,src = max
D

1
n

∑n
i=1 log(Ddata(Xsi) + log(1− Ddata(G(fgi)))

* Lc,src = max
D

1
n

∑n
i=1 log(Dcritic(Xsi)yi)

* Ladv,tgt = max
D

1
n

∑n
i=1 log(1− Ddata(G(hgi)))

* Lcritic = min
P1,P2

= 1
K

∑K
k=1 |p1k − p2k|

* Lmmd =
∥
∥
∥λ 1

|Xs|
∑

xs∈Xs
φ(Xs)− λ 1

|Xt|
∑

xt∈Xt
φ(Xt)

∥
∥
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10: The G-network is updated exclusively using source data, while the discrimi-
nator D-network gradients are computed using real labels.
Lg = min

G

1
n

∑n
i=1 −log(Dctitic(G(fgi)yi)) + log(1− Ddata(G(fgi)))

11: The feature F-network is updated by incorporating a linear combination of
adversarial loss and classification loss. This combination is used to guide the
updating process:
Lf = Lc + Lc,src + βLFadv

+ Lcritic + Lmmd

* Lc = min
C

min
F

1
n

∑n
i=1 − log(C(fi)yi)

* Lc,src = min
F

1
n

∑n
i=1 − log(Dcritic(G(fgi))yi)

* LFadv
= min

F

1
n

∑n
i=1 log(1− Ddata(G(hgi)))

* Lcritic = min
P1,P2

= 1
K

∑K
k=1 |p1k − p2k|

* Lmmd =
∥
∥
∥λ 1

|Xs|
∑

xs∈Xs
φ(Xs)− λ 1

|Xt|
∑

xt∈Xt
φ(Xt)

∥
∥
∥

* Parameter β is the weight coefficient for the target adversarial loss.

12: end for

4 Experimental Results

Some important details in our experiment are outlined as follows:

a) Dataset Variation: We experiment with different datasets and explore three
input types.

– Time Domain (T): Raw, unprocessed signals.
– Frequency Domain (F): Signals transformed into the frequency domain.
– Time-Frequency Domain (T-F): Signals in both time and frequency

domains.
b) Training Configuration: Each epoch employs mini-batches with a size of 100.

Backpropagation updates all parameters, and we utilize the Adam optimiza-
tion method. And the total epoch number of interactions is set at 100.

c) Data Splitting: The time series data is randomly split into two sets, with 80%
allocated to the training set and 20% to the testing set.
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Table 1. The accuracy (%) achieved on domain adaptation problems using the CWRU
dataset

A->B A->C B->A B->C C->A C->B AVG
SVM-FFT [20] 68.60 60.00 73.20 67.60 68.40 62.00 66.63
MLP-FFT [20] 82.10 85.60 71.50 82.40 81.80 79.00 80.40
DNN-FFT [20] 82.20 82.60 72.30 77.00 76.90 77.30 78.05
WDCNN [21] 99.20 91.00 95.10 91.50 78.10 85.10 90.00
A2CNN [22] 99.99 99.30 98.18 99.90 97.93 99.99 99.21
OUR(T) 97.59 92.77 97.59 100.00 96.98 96.38 96.88
OUR(F) 100.00 89.64 96.75 94.49 92.85 100.00 95.62
OUR(T-F) 100.00 99.02 98.69 99.02 98.21 100.00 99.15

Fig. 2. Accuracy and fault classification of B->C (T-F) of CWRU Dataset.

4.1 CWRU Bearing Dataset Experiment Details

The CWRU Bearing Fault Dataset [19], provided by Case Western Reserve Uni-
versity’s Bearing Data Center, is a widely recognized dataset extensively used
in fault diagnosis research. The dataset comprises four sets, each characterized
by varying loads and fixed revolutions per minute (RPM) conditions. There are
ten categories in each group, and we use the Motor Load A(1HP), B(2HP), and
C(3HP), respectively (Fig. 3).

4.2 Experiment of CWRU Comparison and Analysis

The diagnostic performance comparison under different domain classifiers is pre-
sented in Table 1. The results demonstrate that some previous methods, such
as SVM-FFT, MLP-FFT, DNN [20] and WDCNN [21], have limited success in
domain adaptation. The overall method of sample extraction in different domains
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Fig. 3. Domain distribution and classification B->C (T-F) of CWRU Dataset.

is unsuitable for cross-domain fault classification tasks. However, what sets our
architecture apart from A2CNN [22] is that it considers domain overlaps and the
decision boundaries of specific feature tasks. Experiments demonstrate that our
approach can achieve high accuracy with minimal interactions, making it more
adaptable and generalizable.

A2CNN requires a huge labeled dataset for pre-training to obtain the best
result, which could lead to the over-fitting problem. In addition, A2CNN only
considers the distribution of the target domain and the source domain, but it
does not consider the decision boundary of the specific task. In contrast, our
method finds the global domain distribution MMD and employs MCD to make
the features away from the classification boundary, thus leading to excellent
generalization ability. It is presented in Fig. 2. Table 1 demonstrates the superior
adaptation capability of our model in different input types. Our method can
achieve high accuracy even with minimal training and iterations, and it can be
quickly trained and deployed in practical applications. Under different domain
faults, our model consistently outperforms other comparison methods, achieving
higher accuracy. This highlights the effectiveness and robustness of our method.

4.3 JNU Bearing Dataset Experiment Details

The JNU bearing datasets, as provided by Jiangnan University [23], include
three separate datasets of bearing vibration data acquired at a sampling rate
of 50 kHz under different rotational speeds: Dataset A at 600 RPM, Dataset
B at 800 RPM, and Dataset C at 1000 RPM. Each dataset contains data for
one healthy condition and four fault modes: Normal state (NB), inner ring fault
(IF), outer ring fault (OF), and rolling element fault (RF). Consequently, twelve
classes are in total, determined by the different working conditions within the
datasets.

4.4 Experiment of JNU Comparison and Analysis

We compare the performance of our model with several state-of-the-art fault
diagnosis methods on the bearing dataset from JNU Datasets. Table 2 shows
that our process differs from the DANN and CDAN models using the GAN
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Table 2. The accuracy (%) achieved on domain adaptation problems using the JNU
dataset

A->B A->C B->A B->C C->A C->B AVG
1D-CNN [24] 89.80 78.19 73.75 89.93 85.53 88.84 84.34
AdaBN [8] 84.68 73.65 84.10 87.68 85.87 88.12 84.01
MK-MMD [25] 97.44 96.93 92.15 96.93 92.83 97.44 95.62
JMMD [26] 97.44 97.78 93.34 97.61 92.15 97.95 96.04
CORAL [27] 82.94 71.67 67.41 83.96 79.86 91.47 79.55
JMMD [15] 96.25 94.88 92.83 97.10 92.83 92.15 94.34
CDAN [28] 97.44 95.39 92.83 96.93 91.13 90.61 94.05
OUR(T) 97.61 96.07 87.37 98.63 88.73 98.80 94.53
OUR(F) 76.96 77.64 73.37 84.12 74.06 84.81 78.49
OUR(T-F) 91.63 92.63 85.06 97.01 88.13 95.73 91.70

method. According to the experimental comparison, their input signals for the
JNU dataset use the time domain (T). Still, our model uses the frequency domain
(F) input, resulting in poor accuracy. From the above two experiments, it is
found that different data sets use different input types but have different results.
Possible explanations for why the time domain may perform better than the
frequency domain in our experimental results could be the characteristics of the
signal and the nature of the signal itself. Specific fault patterns or features may be
more easily detectable or distinguishable in the time domain representation. On
the other hand, frequency domain representations, such as Fourier transforms,
may be more sensitive to noise or irrelevant frequency components. In contrast,
the time domain representation directly captures the temporal variations of the
signal, which may be less affected by noise. Another reason could be that the
feature extraction methods used in the frequency domain may not effectively
capture the relevant information for fault diagnosis in your specific dataset. It
might be necessary to consider different frequency bands or spectral features
to improve the performance. Furthermore, exploratory time-frequency domain
(T-F) experiments present that more high-frequency signals can be captured by
applying suitable filters. This can provide a more comprehensive signal analysis
and improve fault diagnosis accuracy. May relate the other to the method of
data collection. For example, only different speeds are used in the JNU data
set, while CWRU uses different speeds and loads to simulate. However, from the
above experimental results, domain confrontation seems helpful for domain shift
and alignment. Overall, the choice of input types and the selection of appropriate
feature extraction methods depend on the specific characteristics of the signal
and the diagnostic task. It is essential to consider these factors when interpreting
the performance of different domains in signal analysis experiments (Figs. 4 and
5).
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Fig. 4. Accuracy and fault classification of B->C (T) of JNU Dataset.

Fig. 5. Domain distribution and classification B->C (T) of JNU Dataset.

4.5 Ablation Study

In this experiment, we investigate the impact of incorporating additional com-
ponents in ACGAN on the overall performance. We conduct an ablation study
using the worst-performing dataset as an example to observe the effects on the
overall performance. The ablation study results are shown in Table 3, The fol-
lowing components are analyzed:

1. Using Auxiliary Classifier Generative Adversarial Network (ACGAN) to ana-
lyze the model’s performance in the source and target domains and serve as
a baseline.

2. Using MMD loss in the adversarial network of ACGAN, We investigate the
effects of augmenting the adversarial network with an increased Maximum
Mean Discrepancy (MMD) loss to enhance the alignment between domains.

3. Changing the auxiliary classifier in the original D-Network with a Critic (dis-
crepancy): We explore the impact of replacing the auxiliary classifier in the
original D-Network with a Critic that measures discrepancy.
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Table 3. Ablation study of B->A (T) of JNU Dataset.

Item Model Setting Best Accuracy Last Accuracy
1 ACGAN(Standard) 76.27 19.28
2 ACGAN + MMD 78.32 16.55
3 ACGAN + Critic 73.03 59.72
4 ACGAN + Critic + MMD 79.86 50.00
5 ACGAN + GRL 84.64 81.74
6 ACGAN + GRL + Critic + MMD 86.00 79.86

Fig. 6. Comparing the accuracy of combined ACGAN and sub-modules.

4. Combining MMD loss and Critic in adversarial networks: We study the effect
of adding maximum mean difference (MMD) and Critic losses in adversarial
networks, aiming to enhance the inter-domain and alignment of the classifiers.

5. Add the effect of adding the Gradient Reversal Layer (GRL) to the G and F
networks in the ACGAN adversarial network.

6. The sub-modules such as MMD, Critic, and GRL have been added to the
ACGAN architecture to analyze the model’s performance in both the source
and target domains. This forms the structure of this article.

By analyzing the performance of these variations, we aim to gain insights
into how each component influences the model’s overall performance. The abla-
tion mentioned above research result reveals that the original ACGAN module
already possesses the ability of adaptation alignment, as depicted in Fig. 6(a).
However, when processing specific datasets with relatively low accuracy between
source and target, Accuracy curves failed to converge, indicating potential over-
fitting caused by learned features of the F-G network. To address this issue,
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We introduce MMD to enhance further the alignment of feature distributions
between source and target domains, successfully reducing distribution differences
Fig. 6(b). We also promote more effective feature learning by introducing the
Critic module to enhance the model’s knowledge in the target domain and max-
imize the difference between classifiers, as shown in Fig. 6(c), we found that
the Critic module effectively stabilizes model performance. However, when used
alone, its effect on improving accuracy is limited, suggesting that it may be more
suitable as an auxiliary to other techniques. Therefore, We tested the combina-
tion of Critic and MMD modules, with the results shown in Fig. 6(d). When these
two modules are used together, it can be observed that there is a perfect feature
alignment process between the source and target domains. Still, after stabilizing,
the accuracy does not improve further. This indicates that while these combined
techniques can achieve stable learning effects, they may limit the model’s ability
to learn further, especially when dealing with complex inter-domain differences.
For example, certain situations may cause the model to get stuck in a local mini-
mum, limiting further progress in learning. However, the model’s performance in
both the source and target demonstrates a certain degree of stability. We intro-
duced gradient reversal layers (GRL) into experiments on the original ACGAN
model. We found that the model’s accuracy in the target domain was signifi-
cantly improved, as shown in Fig. 6(e). The primary function of GRL is to align
the feature distributions of the source and target domains through adversarial
training, allowing the model to transfer knowledge between the two domains
more effectively, thereby improving the learning outcomes in the target domain.
Our experiments demonstrate the effectiveness of this technology in domain
adaptation. Finally, we verified our architecture through further experiments. In
our study, we used ACGAN in combination with GRL, Critic, and MMD. We
observe an increase in accuracy and overall improvement in performance. This
combination produced the best results, as shown in Fig. 6(f), with the model
demonstrating high accuracy and excellent stability in both the source and tar-
get domains. Furthermore, It improves performance in the target domain and
reduces distribution differences in the learning process, demonstrating strong
domain adaptation capabilities. We observe an increase in accuracy and overall
improvement in performance.

5 Conclusions

This paper proposes a novel domain adaptation method for fault diagnosis under
different working conditions. Our approach combines GAN and two discrepancy
techniques to enhance domain adaptation and improve the generalization and
performance of fault diagnosis models. By leveraging the Critic Classifier GAN,
we have significantly enhanced diagnostic performance by aligning the source
and target domains and facilitating knowledge transfer. Through experiments
and evaluations, we have demonstrated the effectiveness and robustness of our
proposed method in addressing the challenges of domain shifts in fault diagno-
sis. Our method achieves state-of-the-art fault classification results compared to
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existing approaches. Furthermore, our study sheds light on the influence of data
features on fault diagnosis performance. We observe that different data represen-
tations, such as the time domain and frequency domain, have varying impacts
on the accuracy of fault diagnosis models. This insight can guide future research
and aid in selecting appropriate data representations for fault diagnosis tasks.
We introduced gradient reversal layers (GRL) into experiments on the origi-
nal ACGAN model and found that they significantly improved its accuracy in
the target domain. The primary function of GRL is to align the feature distribu-
tions of the source and target domains through adversarial training, allowing the
model to transfer knowledge between the two domains more effectively, thereby
improving the learning outcomes in the target domain. Our experiments demon-
strate the effectiveness of this technology in domain adaptation.
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Abstract. The growing use of Unmanned Aerial Vehicles (UAVs)
presents considerable safety and security challenges, requiring improved
capabilities for drone detection. On the other hand, collecting real-
world data is costly, time consuming, and in some cases subject to rules
and regulations. This paper addresses this issue by introducing a novel
two-phase data augmentation approach aimed at improving the accu-
racy and efficiency of long-range drone detection systems. The initial
phase involves the generating of synthetic data, using Unreal Engine,
to increase the diversity and richness of the dataset. Subsequently, we
employ Cycle-consistent Generative Adversarial Network (CycleGAN) to
translate these synthetic images into more realistic representations, thus
bridging the gap between synthetic and real datasets. This methodology
not only seeks to refine the precision of drone detection algorithms but
also presents a cost-effective solution for creating extensive and varied
drone detection datasets. To evaluate the efficacy of our proposed data
augmentation pipeline, we trained the You Only Look Once (YOLO)
detection model under three distinct scenarios: utilizing purely real data,
augmenting real data with synthetic data, and augmenting real data with
CycleGAN-translated synthetic data. The performance of these models
was assessed using four separate, unseen real datasets: DetFly, Drone
Detection, UAV Detect, and New Batch. Our findings indicate a marked
improvement in drone detection capabilities when the training dataset
includes both synthetic and translated images, with the most significant
enhancement observed in scenarios where real data is augmented with
translated data.

Keywords: Drone detection · CycleGAN · Unreal Engine · Data
augmentation · AirSim

1 Introduction

The rapidly growing use of Unmanned Aerial Vehicles (UAVs) highlights the crit-
ical need for accurate drone detection models. As drones have become increas-
ingly prevalent in various sectors, including disaster response, infrastructure
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inspection, and law enforcement, there is a clear and urgent demand for the
development and improvement of drone detection algorithms. This is essential
to ensure safety, security, and compliance with evolving regulatory frameworks.

This extensive use of drones presents notable risks to safety and security.
Unauthorized drone flights have the potential to breach restricted airspace.
These intrusions pose substantial threats to air traffic safety, with near-collisions
between commercial aircraft and drones becoming increasingly common, as illus-
trated by a recent incident involving a passenger plane and a drone in Chicago
[12]. Moreover, the versatility of drones presents opportunities for malicious
exploitation, such as contraband smuggling, unauthorized surveillance [6], or
even cyber-attacks. Detecting drones accurately and efficiently is therefore of
paramount importance, safeguarding not only critical infrastructure but also
privacy and security.

In response to these complexities and the dynamic evolution of drone appli-
cations, this paper addresses the imperative need for robust, adaptive drone
detection models. Acknowledging the limitations of conventional data gather-
ing methods for drone detection—marked by high costs, temporal constraints,
and access issues—this paper introduces a novel, two-phased approach aimed
at enhancing the efficacy and reliability of detection algorithms. By integrating
synthetic data with real-world scenarios and employing domain adaptation using
CycleGAN [42] for realistic image translation, this method not only promises
improvement in the accuracy of drone detection but also presents a cost-effective
strategy for creating diverse and representative datasets. The main contributions
of this paper are as follows:

• We develop a comprehensive augmentation pipeline that incorporates syn-
thetic data generation, utilizing Unreal Engine and AirSim, and employs
CycleGAN for domain transfer, thereby enriching real datasets with high
fidelity.

• By adapting CycleGAN for the nuanced task of domain adaptation, we signif-
icantly bolster the realism of simulated images, thereby improving the drone
detection process.

2 Related Works

When real datasets are scarce or difficult to access, synthetic data proves to be an
invaluable alternative, offering a solution to bridge the gap for machine learning
model development. Various methods exist for generating such datasets, with
computer graphics software and game engines like Unreal Engine [13,31] and
Unity [18] at the forefront. These tools are instrumental in producing realistic
imagery within dynamic settings, enabling the creation of synthetic datasets
that closely resemble real-world conditions. This capability is crucial for the
comprehensive testing and refining of machine learning algorithms, particularly
in fields where real data is either not available or ethically sensitive to use.

In [16] a wide range of UAV simulators with different functionalities are
studied and categorized into two groups of network and physical simulators.
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Physics simulators such as AirSim [34] and MATLAB UAV toolbox [21] provide
environments of high fidelity suitable for applications in Artificial Intelligence
and machine learning. Authors in [28] aim to create a simulated dataset using
the quadcopter-based flight control mode in MATLAB simulink. The simulated
dataset is modified to obtain drone videos to detect object categories such as
pedestrians, other drones, and obstacles while navigating in a simulated envi-
ronment.

Flightmare [37] is a quadrotor simulator which comprises of two primary ele-
ments: a customizable rendering engine developed using Unity and an adaptable
physics engine designed for dynamic simulation.

In another method to generate synthetic dataset a hybrid approach can
be adopted by incorporating real backgrounds and placing computer-generated
drone images within them [26].

The concept of domain randomization introduces randomness into synthetic
data, enhancing the robustness of machine learning models against real-world
variability. Barisic et al. [3] propose a pipeline to generate a synthetic aerial
dataset by creating models and textures for drones in Blender software [14] and
placing them in real-world background images.

Domain adaptation serves as a versatile tool for both adapting models to
new domains and generating synthetic datasets. Generative models, particularly
Generative Adversarial Networks (GANs) [17], play a key role in tailoring syn-
thetic datasets to closely mimic the unique characteristics and variations present
in the real domain.

Conditional Generative Adversarial Networks (CGANs) [23,27,39], form a
distinct class of generative models, notable for their ability to incorporate condi-
tional input, such as class labels or images. This enables precise and controlled
synthesis of realistic data, offering a valuable approach for domain adaptation.

An alternative strategy involves domain adaptation in scenarios where paired
datasets are unavailable. Notably, CycleGAN stands out as a widely recog-
nized unsupervised image-to-image translation method. The concept of cycle-
consistent adversarial learning, introduced in CycleGAN, has been employed in
various studies for translating images from synthetic to real domains [30,35].
Additionally, CycleGAN with a multiscale attention module has been applied to
enhance the quality of synthetically generated images [26].

Some unsupervised methods leverage segmentation labels from the synthetic
domain to enforce consistency of relevant semantics before and after transla-
tion [20,25,29]. The authors in [32] employed CycleGAN to translate contrast-
enhanced CT images into non-contrast images for data augmentation, signifi-
cantly enhancing the generalizability of CT segmentation models. In [19] Cycle-
GAN is used to translate MRI to CT images and then augmenting the dataset
for multi-organ detection using YOLO. Similarly, [5] employed CycleGAN to
generate petrochemical pipeline defect images to overcome the inbalance in the
dataset. In a novel approach, authors in [38] incorporated a vision transformer
into the generator of CycleGAN to enhance its overall performance.
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Fig. 1. The proposed framework: data augmentation pipeline consisting of synthetic
data generation and domain adaptation using CycleGAN (left) and YOLO trained on
real data and domain transferred synthetic data for drone detection (right).

3 Proposed Methodology

In our work, we generate a drone synthetic dataset using Unreal Engine and Air-
Sim [34] to closely replicate real-world dynamics and scenarios relevant to drone
detection. We then employ domain adaptation technique using CycleGAN to
bridge the gap between synthetic and real-world data. This allows us to enrich a
real dataset with synthetic data that has been translated by the GAN, ensuring a
closer alignment with real-world conditions. This strategy is designed to enhance
the performance of YOLO algorithm [24] for drone detection. The methodology
and workflow of our approach are depicted in Fig. 1.

3.1 Synthetic Data Generation

Machine learning algorithms thrive on data, using it to recognize patterns, make
predictions, and learn from experiences. However, acquiring and preparing high-
quality, diverse, and representative datasets can be a challenging and resource-
intensive task. This is where synthetic data comes into play, serving as a valuable
supplement or even an alternative to traditional datasets.

In this paper, we leveraged synthetic data to augment a real dataset, Drone
vs. Bird [7], with the goal of enhancing the performance of YOLO model for
detecting drones over extended ranges. Here, Unreal Engine and AirSim were
employed to simulate a synthetic environment. We selected AirSim for this study
due to its capability to gather data for machine learning algorithms and its
compatibility with Unreal Engine (UE). Additionally, AirSim facilitates seamless
integration with Python, enabling efficient automation of data collection.
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Fig. 2. Image samples generated using Unreal Engine across four different environ-
ments.

In this research, Unreal Engine (UE) was utilized to generate 3D settings that
serve as backdrops for drone simulations. Specifically, four UE environments
were employed: Landscape Mountain, Wet Flatwoods, Mesic Flatwoods, and
Megascan Forest. These environments highlight forest landscapes that closely
resemble the natural settings observed in the Drone vs. Bird dataset. Each of the
four environments possess distinct plant life from diverse climates, with varying
levels of foliage density. In Fig. 2, we can see sample images generated in each
environment.

3.2 Domain Adaptation

Domain adaptation is a technique in machine learning and computer vision
aimed at improving the deployment of models trained on a dataset from one
domain (source) to another with different characteristics (target). This research
focuses on translating images from a synthetic environment to real-world images,
with the goal of reducing the “reality gap” and augmenting the dataset used for
training detection models. The challenge lies in the differences between synthetic
and real-world images, which can hinder the performance of models trained on
synthetic data when applied in real-world scenarios. This research tackles the
issue as an unsupervised domain adaptation problem and attempts to bridge
this gap without the need for directly corresponding paired data.

In this study, we employed CycleGAN for domain adaptation due to its ver-
satility as a general domain adaptation method, suitable for translating between
any two related datasets. Additionally, it operates in an unsupervised manner,
eliminating the need for paired datasets, which aligns with the requirements of
our case. The algorithm employs two Generative Adversarial Networks (GANs),
one for each domain, which are trained simultaneously. The generators aim to
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transform images from one source domain to another target domain, while the
discriminators strive to distinguish between real and generated images.

3.3 Drone Detection

Object detection is a computer vision task focused on identifying and localizing
objects within an image or video. Object detection aims to recognize and locate
distinct objects, providing both their class labels and bounding box coordinates.
For our purpose, we chose YOLOv8, provided by Ultralytics [24] for detecting
drones.

For evaluating the performance of drone detection models, two metrics were
employed. Mean Average Precision at IoU 0.5 (mAP50) which calculates the
accuracy of predicted bounding boxes against ground truth bounding boxes,
with an IoU threshold set at 0.5. Similarly, Mean Average Precision from IoU
0.5 to 0.95 (mAP50-95) evaluates precision across a range of IoU thresholds with
0.05 increments. For each detected object, precision is computed at IoU values
from 0.5 to 0.95. The average precision is then calculated for each specific IoU
threshold. The final mAP50-95 is obtained by averaging these precision values
over the entire IoU range, offering a nuanced assessment across various IoU
thresholds.

4 Experiments and Results

In this section we demonstrate the effectiveness of the proposed pipeline in aug-
menting the real dataset and improving the performance of detection models.
All the experiments were conducted on one NVIDIA GeForce RTX 3090 GPU.

4.1 Datasets

In the conducted experiments, we employed two datasets: a real dataset and a
synthetic dataset. The synthetic dataset, generated by the Unreal Engine and
AirSim, provided a controlled environment for generating various scenarios, as
explained in Sect. 3.1.

Real Dataset. For our research, we selected the “Drone vs. Bird” (DvB) dataset,
which consists of 77 unique videos totaling 103,124 frames. This dataset is char-
acterized by its diversity, featuring videos of different resolutions that showcase
eight types of drones—three with fixed wings and five with rotary wings. The
dataset presents a wide range of challenges, including varied backgrounds like sky
and vegetation, different weather conditions (e.g., cloudy, sunny), direct sunlight
interference, and variations in camera quality. Figure 3 highlights the dataset’s
variability.
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Fig. 3. Sample frames from Drone vs. Bird dataset [7].

Additionally, the dataset captures a significant variance in the distance
between drones and the camera, affecting the apparent size of drones in the
videos. This variance is evident both within and across videos, leading to a
broad spectrum of drone sizes, from as small as 15 pixels to over 1,000,000 pix-
els. Despite this range, most drones are relatively small, typically measuring less
than 16× 16 pixels or between 16× 16 to 32× 32 pixels [8]. The predominance
of these smaller drones underscores the dataset’s relevance to our study’s goal
which is improving the detection of drones at long distances.

Notably, the dataset also includes footage of birds, which are not individually
annotated and serve as the primary source of interference, further complicating
drone detection. This combination of factors makes the “Drone vs. Bird” dataset
a suitable target dataset for developing and testing drone detection technologies
under a variety of challenging conditions.

Synthetic Dataset. A synthetic dataset of drone images in the four vegetated
environments was generated using the method explained in Sect. 3.1. In our
experiments, we use the term UE, which stands for Unreal Engine, to refer to this
synthetic dataset. The resulting 10,000-image Unreal Engine dataset contains
500 images for five drone models in four different environments. One of the
environments, Megascan Forest, has a higher foliage density, resulting in random
distances between 4 and 9 unreal units, while the other environments have a
range of 7 to 17 unreal units. Each image has random roll, pitch, and yaw, with
the observing drone’s pitch and yaw set between −15 and 15◦ and roll between
−5 and 5◦ [2]. To simulate the distribution of real-world dataset, this random
rotation positions the target drone in the middle 40% of the x-axis and the
middle 50% of the y-axis of the image [22] (see Fig. 2).
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Fig. 4. Synthetic images (top row) alongside their corresponding translations into the
real domain (bottom row).

4.2 Domain Adaptation

We trained the CycleGAN with two datasets: UE as the synthetic dataset, and a
real dataset to translate synthetic images into the real domain. The real dataset
was a combination of various datasets, including Drone vs. Bird, Rotor Drone
[9], Lacmus Drone Dataset (LaDD) [36], Drone Dataset [1], Drone Dtection [11],
and Fixed Wing Drone Detection [4]. For these datasets, we selectively utilized
images that closely matched our synthetic data. In total, 6500 synthetic images
and 5500 real images were utilized for training the CycleGAN. We adopted the
hyperparameters outlined in [42], with specific adjustments such as a load size of
1080 and a crop size of 360 to generate high-resolution images. In our experiments
we refer to this translated dataset as UE_CycleGAN. Figure 4 shows some of
synthetic images alongside their translated counterparts.

4.3 Drone Detection

Due to the size of our datasets and the associated memory limitations, we used
YOLOv8 medium version (YOLOv8m). This model served as our drone detection
solution, providing a balance between accuracy and computational efficiency.

The Drone vs. Bird (DvB) dataset was divided into two distinct sets, ensuring
that images from the same source video were grouped together. The first set
designated approximately 50% of the images for training purposes, labeled as
DvB50. The second set utilized about 80% of the images as input data, termed
DvB80. Consequently, our drone detection model was applied to six distinct
types of datasets, namely DvB50, DvB50+UE, DvB50+UE_CycleGAN, DvB80,
DvB80+UE, and DvB80+UE_CycleGAN.

In all our experiments, we evaluated the models using the reserved segment
of the Drone vs. Bird (DvB) dataset, which was not utilized during the training
phase. This approach ensured that the models were assessed on data they had
not previously encountered. Subsequently, the trained models underwent testing
on four real, unseen datasets: DetFly [41], UAV Detect [15], Drone Detection
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Table 1. Inference results of trained models on DetFly, Drone Detection, UAV Detect,
and New Batch datasets.

Trained Models DetFly Drone Detection UAV Detect New Batch
mAP50 mAP50-95 mAP50 mAP50-95 mAP50 mAP50-95 mAP50 mAP50-95

DvB50 0.462 0.22 0.66 0.282 0.58 0.288 0.3825 0.18
DvB50+UE 0.475 0.24 0.66 0.282 0.574 0.306 0.3904 0.2087
DvB50+UE_CycleGAN 0.524 0.262 0.614 0.263 0.601 0.334 0.3954 0.1957
DvB80 0.461 0.226 0.645 0.292 0.61 0.328 0.3774 0.2237
DvB80+UE 0.487 0.238 0.677 0.3 0.575 0.304 0.41 0.2161
DvB80+UE_CycleGAN 0.51 0.246 0.694 0.311 0.612 0.352 0.4173 0.2455

[10], and New Batch [33]. This approach allows for assessment of the drone
detection model’s generalization across various dataset compositions and real-
world scenarios.

The DetFly dataset consists of 7,346 images of drones, mostly captured from
long distances, featuring a wide range of backgrounds and lighting conditions.
The Drone Detection dataset includes 1,793 images of drones at both close and
long ranges, with varied backgrounds. The UAV Detect dataset offers 4,409
images of drones at different distances, with diverse backgrounds and lighting
conditions; some of these images were taken with a GoPro lens. In the New Batch
dataset, the training set contained images augmented by rotation, flipping, and
shearing. The validation set of New Batch is composed of images without the
image augmentation. To cater to real-world scenarios, our models were tested
on the validation set only.

This validation set contains 1,317 images of drones at long distances with
sparsely vegetated backgrounds. It also provides a diverse range of angles, cov-
ering bird’s eye to ground level views and eye-level perspectives.

4.4 Discussions and Limitations

As illustrated in Table 1, the introduction of synthetic data from Unreal Engine
generally enhances performance compared to using only real data. The incorpo-
ration of CycleGAN on top of Unreal Engine data further elevates performance,
with these models achieving the highest mAP50 and mAP50-95 values in most
cases.

However, there is discernible variability in performance across datasets,
underscoring the influence of dataset characteristics on model efficacy. For Det-
Fly, the improvement is consistently observed across metrics, indicating that
both introducing synthetic data and translated data contributes to enhanced
model performance.

In the UAV Detect case, we notice higher values for both metrics, mAP50 and
mAP50-95, in the DvB80 model compared to the DvB50 model. This discrepancy
is attributed to the composition of the training sets. The DvB80 training set
includes more images captured with a GoPro lens. As the UAV Detect dataset
also contains this type of imagery, we observe an improvement in our metrics.
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Despite the DvB50 model having fewer training samples, the introduction of
translated data into the training set serves to compensate for the shortage of
real data.

Furthermore, when investigating the impact of augmenting real datasets—
DvB50 and DvB80—in two specific instances, DetFly and UAV Detect, it
becomes apparent that DvB50+UE_CycleGAN models exhibit greater improve-
ment compared to DvB80+UE_CycleGAN models. This observation suggests
that augmenting the smaller subset of the Drone vs. Bird dataset for these
datasets leads to enhanced generalization of our models.

In the case of the Drone Detection dataset, utilizing DvB50 as the real dataset
for augmentation negatively affects model performance. This can be attributed to
substantial differences in backgrounds between the Drone Detection and Drone
vs. Bird datasets, particularly with most images capturing drones at close range.
Additionally, the presence of horizontally rotated images, a characteristic absent
in the Drone vs. Bird dataset, may contribute to the observed performance
decline. Nevertheless, when expanding the size of our real dataset to DvB80,
models trained on augmented datasets exhibit improved performance. Another
factor contributing to the distinct behavior of Drone Detection compared to the
other two datasets is the dataset size, as Drone Detection is considerably smaller
than DetFly and UAV Detect datasets.

The detection performance on New Batch dataset, confirms the results driven
from other test sets. The introduction of synthetic and translated images gener-
ally improves the detection performance. The model DvB80+UE_CycleGAN
achieved the highest performance for both mAP50 and mAP50-95 on this
dataset.

Across all images, it is evident that dataset augmentation plays a crucial role
in enabling the models to rectify detection errors amidst diverse backgrounds.
In Figs. 5 and 6 we can see the effect of introducing the translated images in the
real datasets on drone detection.

The primary purpose of this research is to evaluate the effectiveness of our
method in enhancing the detection model’s generalization ability. The CycleGAN
we developed is specifically designed to transform synthetic images generated by
UE to resemble the DvB dataset. To test the generalizability of the proposed app-
roach, the selected test sets differ from the DvB dataset in terms of backgrounds,
lighting conditions, drone models, and viewing angles. We demonstrated that,
despite these differences, our augmentation method effectively enhances detec-
tion performance.

For practical implementation in a specific environmental scenario, the
datasets should be adjusted to cover either the specific environment where drone
detection is performed or include a variety of environmental scenarios. By train-
ing the model on data that closely resembles the target environment, it becomes
more adept at recognizing and adapting to the specific challenges and variations
present in that environment, leading to improved performance and accuracy in
real-world drone detection scenarios.
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Fig. 5. Inference results of DvB50 (left column) and DvB50+UE_CycleGAN (right
column) on images from DetFly, UAV Detect, and Drone Detection.

Moreover, using a variety of environmental scenarios in training data can sig-
nificantly enhance the model’s generalization ability. Exposure to diverse back-
grounds, lighting conditions, and viewing angles during training allows the model
to learn and adapt to different situations. This broadens the model’s capabil-
ity to detect drones in varied and unpredictable real-world conditions, thereby
improving its robustness and effectiveness across multiple environments.
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Fig. 6. Inference results of DvB80 (left column) and DvB80+UE_CycleGAN (right
column) on images from DetFly, UAV Detect, and Drone Detection.

5 Conclusions

This study delves into the crucial role of data augmentation in enhancing the
performance of detection algorithms, with a specific focus on the intricate task
of long-range drone detection. Given the substantial need for training data in
this domain, the research places a central emphasis on augmenting datasets for
UAV detection. It introduces a novel pipeline that proposes the generation of
simulated images covering various aspects and their translation into the real
domain. This approach streamlines the annotation process by automating tasks



378 S. Arezoomandan et al.

such as image segmentation and bounding box labeling, reducing labor intensity
and cost.

In the initial phase of our pipeline, the research examines the impact of
simulated images on algorithmic performance, highlighting the potential of sim-
ulation to address challenges inherent in UAV detection. The study effectively
demonstrates the utility of synthetic data generated through Unreal Engine as
valuable training material. Notably, the findings advocate for the integration of
synthetic data as a complementary resource to real-world data, enriching the
development of more accurate and resilient datasets for UAV detection.

In the subsequent phase of the pipeline, the study explores narrowing the real-
ity gap between synthetic and real datasets and evaluates its effect on the perfor-
mance of drone detection models. The use of CycleGAN successfully reduces the
distribution gap, yielding visually appealing results and the addition of trans-
lated images to the dataset further enhances drone detection.

The insights derived from this research have implications for advancing UAV
detection algorithms. Leveraging synthetic and translated data proves effective
in overcoming challenges related to acquiring extensive real-world training data.
The proposed pipeline for data augmentation enables researchers to compile com-
prehensive and diverse datasets, ultimately improving the accuracy and resilience
of detection algorithms.

One promising direction for future research in image translation involves
exploring the Diffusion models [40], which have shown compelling results in
generating realistic high-resolution synthetic images.
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Abstract. Learning performance data, such as correct or incorrect
responses to questions in Intelligent Tutoring Systems (ITSs) is crucial
for tracking and assessing the learners’ progress and mastery of knowl-
edge. However, the issue of data sparsity, characterized by unexplored
questions and missing attempts, hampers accurate assessment and the
provision of tailored, personalized instruction within ITSs. This paper
proposes using the Generative Adversarial Imputation Networks (GAIN)
framework to impute sparse learning performance data, reconstructed
into a three-dimensional (3D) tensor representation across the dimen-
sions of learners, questions and attempts. Our customized GAIN-based
method computational process imputes sparse data in a 3D tensor space,
significantly enhanced by convolutional neural networks for its input and
output layers. This adaptation also includes the use of a least squares
loss function for optimization and aligns the shapes of the input and
output with the dimensions of the questions-attempts matrices along
the learners’ dimension. Through extensive experiments on six datasets
from various ITSs, including AutoTutor, ASSISTments and MATHia,
we demonstrate that the GAIN approach generally outperforms existing
methods such as tensor factorization and other generative adversarial
network (GAN) based approaches in terms of imputation accuracy. This
finding enhances comprehensive learning data modeling and analytics in
AI-based education.
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1 Introduction

The learning performance data, recorded during ITS interactions, documents the
sequence of questions-answering activities, tracking the identifications of ques-
tions and cataloging the attempts and performance responses made by differ-
ent learners. However, real-world learning performance data is often incomplete
and sparse, with unexplored questions and limited attempts posing challenges
for data analysis and modeling. Multiple reasons contribute to data sparsity,
including participant’s dropout from learning tasks [1], learner disengagement
due to off-task behavior [2], random data loss from design and operational
errors [3], biases within sample groups [4], among others. This sparsity hinders
a comprehensive understanding and assessment of learning performance. Such
limitations hinder AI-powered educational systems from effectively delivering
educational content, especially in their capabilities to track learning processes,
monitor advancement, and gauge learners’ mastery of knowledge through their
performance data. Thus, accurately imputing sparse learning performance data
is critical for advancing learning analytics and modeling, which facilitates the
comprehensive exploration of learning insights and ultimately enhancing learner
progress within ITSs.

Although traditional data imputation methods (e.g., indicator or mean impu-
tation [5,6], regression imputation [7], and multiple imputation [8]) have proven
effective in the literature, they provide a cost-effective solution that avoids labor-
intensive experiments and leverages observed data to estimate unobserved data,
capitalizing on underlying patterns and characteristics [9]. Indicator or mean
imputation may introduce bias by oversimplifying missing data complexities
[5,6]. Regression imputation often fails to capture the full spectrum of the
underlying data structure [7]. Multiple imputation may not adequately address
complex, high-dimensional correlations [10]. Recently, generative AI models,
specifically Generative Adversarial Networks (GANs) [11], have demonstrated
remarkable success in handling data sparsity through the reconstruction mecha-
nism [12,13], achieving higher accuracy and effectively addressing those issues in
traditional data imputation methods. A notable GAN-based model, Generative
Adversarial Imputation Nets (GAIN) demonstrated its effectiveness on imputing
human health data [12]. The GAIN model extends GAN structure by condition-
ing the generator on observed data and using a hint mechanism to enhance
the discriminator’s accuracy in identifying missing data patterns [12,14]. Fur-
ther research has shown GAIN’s superior performance in diverse datasets and
applications, from healthcare to machine health monitoring, validating its effec-
tiveness over traditional methods like MICE and missForest [12,13,15].

Despite its impressive imputation performance in prior studies, GAIN’s
potential for imputing missing data in sparse learning performance datasets
within ITSs remains unexplored. The complex nature of learning performance
data, characterized by individual learners, questions, and attempts, presents
significant challenges for generative models in data imputation. These chal-
lenges include achieving higher accuracy based on existing data distribution and
handling the complexities of data interactions and variations across different
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attempts. Therefore, how can we effectively represent learning performance data
to ensure compatibility with the GAIN framework? Additionally, what modifica-
tions are necessary to facilitate accurate predictions through specialized compu-
tations and algorithms tailored for learning performance scenarios, considering
the stability of the models amid dynamic changes in learning performance data?

In response to these challenges in learning performance data, our study aims
to perform the data imputation for the sparse learning performance data using
the GAIN framework, enriched with detailed revisions. We are guided by the
following two Research Questions:

– RQ 1: How effectively does the GAIN-based method impute sparse learning
performance data in ITSs compared to established baseline methods?

– RQ 2: How does the stability of the GAIN-based model’s performance vary
with changes in the number of attempts influencing the sparsity levels of
learning performance data?

The generative AI model, GAIN, was leveraged to impute the sparse learning
performance data, with an additional focus on exploring the stability of GAIN.
Therefore, this study’s contributions are twofold:

• It enhances the accuracy of imputing learning performance data, thereby
enriching data representation for more detailed analytics and modeling.

• The findings are expected to provide valuable imputation methods for com-
prehensively tracing and assessing learners’ progress within AI-based educa-
tional systems like ITS.

2 Related Work

2.1 Addressing Data Sparsity in ITSs

In AI-based education, many studies have focused on tackling data sparsity in
sparse learning performance in ITSs. Chen et al. [16] employed the prerequisite
concept map for knowledge tracing to mitigate data sparsity. Pandey et al. [17]
developed the self-attentive mechanism to predict the learner’s performance on
unanswered questions by analyzing the relevance previously answered questions.
Wang et al. [18] integrated question-knowledge hierarchies into a deep learning
framework to improve predictions despite data sparsity. Despite these advances,
challenges persist: (1) high demands for expert effort in mapping and annotat-
ing knowledge concepts [19], (2) ignorance of temporal learning dynamics [20],
and (3) disruption of sequential learning effects even with some methodological
recognition [21,22].

In addressing data sparsity in ITSs, tensor factorization has also played a
pivotal role by leveraging multidimensional relationships to enhance prediction
accuracy and knowledge representation. This approach has evolved from simple
matrix factorization to sophisticated multi-dimensional frameworks that incor-
porate temporal effects and sequential learning dynamics, significantly improv-
ing the understanding and prediction of learner performance [20,23,24]. Such
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advancements in tensor factorization have laid the groundwork for employing
more advanced generative models like GAIN, which further enhance data impu-
tation by maintaining the natural multidimensional structure of learning data.
This alignment with deep generative models has directly influenced our adoption
of GAIN to effectively address the complex challenges of data sparsity in ITSs
[12].

2.2 Generative AI Models for Educational Data Imputation

There have been tremendous progress in generative AI model for educational
data imputations in ITSs. Morales-Alvarez et al. [25] explored the application
of generative models, incorporating structured latent spaces and graph neural
network-based architectures, to achieve competitive or superior performance in
data imputation for real-world mathematics datasets of Eedi (a leading educa-
tional platform which millions of students interact with daily around the globe
on diagnostic multiple-choice mathematics questions [26]), surpassing traditional
baselines such as MICE and missForest. Ma et al. [27] also employed deep genera-
tive models to effectively impute data for multiple-choice question learning data,
addressing over 70% missing rates in the Eedi educational dataset for mathe-
matics questions. Zhang et al. [28] investigated the use of generative AI models,
GAN and GPT, for data augmentation to address sparse learning performance
patterns in adult reading comprehension, finding GAN to provide more stable
augmentation across various sample sizes.

Learning performance data from ITSs such as AutoTutor CSAL, which
focuses on reading comprehension [29], along with ASSISTments [30] and
MATHia [31], which both focus on math learning for middle and high-school
students, document learners’ responses as correct or incorrect to a sequence of
questions posed by the system. Inspired by GANs’ capability to impute miss-
ing regions in images by training on vast amounts of image data and filling
in missing areas to maintain coherence with the existing context [32], we are
motivated to apply a similar data imputation approach to tensor-based learning
performance data. There is an ongoing need for effective imputation of learning
performance data in ITSs like AutoTutor CSAL, ASSISTments and MATHia
to enhance educational technology’s ability to track and assess learners’ perfor-
mance comprehensively.

3 Methods

3.1 Dataset

In this study, we utilized datasets from three primary sources: AutoTutor CSAL
lessons1, ASSISTments2 and the MATHia3 dataset from mathematics class. The
1 AutoTutor Moodel Website: https://sites.autotutor.org/; Adult Literacy and Adult

Education Website: https://adulted.autotutor.org/.
2 ASSISTments Website: https://new.assistments.org/.
3 MATHia Website: https://www.carnegielearning.com/solutions/math/mathia/.

https://sites.autotutor.org/
https://adulted.autotutor.org/
https://new.assistments.org/
https://www.carnegielearning.com/solutions/math/mathia/
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Table 1. Dataset for the CSAL AutoTutor, ASSISTments and MATHia lessons

Dataset Lesson Topics #Learners #Questions #Attempts

CSAL Lesson 1 Cause and Effect 118 9 9
CSAL Lesson 2 Problems and Solution 140 11 5
ASSISTments Lesson 1 Algebra Symbolization Studies 318 64 4
ASSISTments Lesson 2 Skill Builder 392 20 4
MATHia Lesson 1 Scale Drawings 500 28 4
MATHia Lesson 2 Analyzing Models of Two-Step Linear Relationships 500 6 4

AutoTutor CSAL lessons cover topics such as “Cause and Effect” (CSAL Les-
son 1) and “Problems and Solution” (CSAL Lesson 2), each comprising 8 to
11 multiple-choice questions designed to test adults’ reading comprehension
skills. This study was granted ethical approval with the Institutional Review
Board (IRB) number: H15257. The ASSISTments dataset cover the lesson topics
including “Algebra Symbolization Studies” (ASSISTments Lesson 1)4 and “Skill
Builder ” (ASSISTments Lesson 2)5. The MATHia lesson dataset6 include alge-
bra lessons on “Scale Drawings” (MATHia Lesson 1) and “Analyzing Models of
Two-Step Linear Relationships” (MATHia Lesson 2). Details such as the total
number of learners, the total number of questions, and the maximum number of
attempts are summarized in Table 1.

3.2 The 3-D Tensor Representation of Sparse Learning Performance

We define the 3-D tensor T sparse to encapsulate the learning performance
records of U learners on N questions over a sequence of up to M attempts, with
T sparse ∈ [0, 1, NaN ]U×N×M . Here, U = max(1, 2, 3, · · · , u) is the maximum
number of learners, N = max(1, 2, 3, · · · , n) the maximum number of questions,
and M = max(1, 2, 3, · · · ,m) the maximum number of attempts. Each element
τuij within T sparse encodes the learning performance as 1 for correct answer,
0 for an incorrect answer, and NaN to signify unobserved data for a specific
question’s performance at certain attempt.

3.3 The Proposed GAIN-Based Imputation Architecture

Consider the T sparse, representing the learning performance of all learners. This
tensor comprises layers along the learner dimension, represented as T sparse =
(Tl1 , Tl2 , · · · , Tln). Each layer, akin to a single-channel “learner image”, is a matrix
that encapsulates performance values across different questions and attempts for
an individual learner. This is visualized in Fig. 1.

For each matrix-based layer Tl ∈ (Tl1 , Tl2 , · · · , Tln), each entry τlij in the
N × M matrix may include the performance values of 0, 1 or NaN to present
4 Assistments 2008–2009: https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=

388.
5 Assistments 2012–2013: https://sites.google.com/site/assistmentsdata/datasets/

2012–13-school-data-with-affect?authuser=0.
6 MATHia 2019–2020: https://pslcdatashop.web.cmu.edu/Project?id=720.

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=388
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=388
https://sites.google.com/site/assistmentsdata/datasets/2012--13-school-data-with-affect?authuser=0
https://sites.google.com/site/assistmentsdata/datasets/2012--13-school-data-with-affect?authuser=0
https://pslcdatashop.web.cmu.edu/Project?id=720
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Fig. 1. The proposed GAIN-based imputation architecture for sparse learning perfor-
mance [12].

the observed data and unobserved data, respectively. One mask matrix Tlmask

is supposed to map the observed and unobserved entries within the matrix Tl,
with 1 signifying observed data, and 0 indicates unobserved data. One noise
matrix Z with dimensions matching Tl, is initialized. These matrices collec-
tively function as inputs to the generator in the GAIN architecture, producing
the output TlG = G(Tl, Tlmask

, (1 − Tlmask
) � Z) [12]. Here, the � denotes as

Hadamard product, indicating element-wise multiplication. The imputed matrix
Tlimputed

= Tlmask
� Tl + (1− Tlmask

)� TlG, effectively merges observed and gen-
erated data to fill in unobserved entries. Particularly, a hint matrix Tlhint

, also
matching the dimensions of Tl and derived from the mask matrix Tlmask

, is intro-
duced. It employs a hint rate to specify the conditional probability that a specific
entry in Tlimputed

can be observed, given both Tlimputed
and Tlhint

. Thereby, the
discriminator within the GAIN architecture, formulated as D(Tlimputed

, Tlhint
),

evaluate this as probability [12]. We train D(·) to maximize the probability of
correctly predicting the Tlmask

, while the G(·) is trained to minimize the likeli-
hood of D(·) correctly predicting Tlmask

. So, we introduce the objective function
V (D,G) [12]:

V (D,G) = E[T T
lmask

logD(Tlimputed
, Tlhint

) + (1 − Tlmask
)T log(1 − D(Tlimputed

, Tlhint
))] (1)

Our proposed imputation architecture incorporates several novel modifica-
tions and configurations from the initial GAIN architecture [12]. See below for
further details:
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– The convolutional layers are employed for both the generator and discrimi-
nator, diverging from the original architecture’ reliance on dense layers. Five
convolutional neural network (CNN) layers [33], excluding the input and out-
put layers, with the ReLU activation function are applied to the output of
each layer.

– During the iterative training phase, the observed data from Tl and the cor-
responding imputed data from TlG are utilized for optimization via the least
square loss function, specifically the Root Mean Square Error (RMSE). This
method is chosen to not only ensure enhanced stability and superior quality
of the generated data [34,35] but also align with probability-based predictions
of learning performance in peer research on ITSs [36–38].

– By incorporating a reshape function in the generator’s output layer, the shape
of generated data TlG is flexible adjustment to fit the given “learner image”
shape, thus accommodating variations across different lesson scenarios with-
out being constrained to a fixed shape, as commonly seen in image-oriented
research [11,39,40].

The theoretical foundation for understanding the inference logic and model
assumptions in our study includes:

– Inference Logic. The entry set within T sparse can be categorized into two
subsets: Tobserved for existing values (0 and 1) and Tunobserved for missing ones
(NaN). The inference model, formulated as fimpute(Tunobserved|Tobserved), is
principle for data imputation, leveraging observed data patterns to impute
missing values and predict outcomes [41].

– Model Assumptions. Our imputation model operates under several key
assumptions within a tensor-based framework: (a) Probability-based predic-
tion: Assumes predicted learning performance is a continuous probability
between 0 and 1, indicative of knowledge mastery [42]. (b) Latent domain
knowledge relations: Posits that unobservable latent relationships within the
domain knowledge implicitly influence knowledge mastery [43,44]. (c) Sim-
ilarity in learning for individual learners: Suggests a shared relevance and
usefulness of knowledge among learners, aiding in predicting knowledge mas-
tery [23,45]. (d) Performance interactions influenced by sequence effects:
Acknowledges that learners’ interactions with sequential questions are shaped
by priming and recency effects, affecting comprehension and performance
[21,46]. (e) Maximum attempt assumption: Defines a theoretical maximum
number of attempts a learner might need, emphasizing the importance of
evaluating comprehensive learning states through repeated trials [43].

3.4 Baselines

This study will compare the proposed GAIN-based imputation method against
a range of baseline methods, including those from the tensor factorization series
and GAN series. Detailed descriptions of these baselines are provided below.

Tensor Factorization: The basic tensor factorization factorizes the sparse
tensor T sparse into two components: a learner latent matrix capturing abili-
ties and learning-related features, and a latent tensor representing knowledge
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during question attempts [28,47]. A rank-based constraint is used to maintain
a generally positive learning trend and accommodate forgetting or slipping [48].
This refined method enhances data imputation within tensor-based structures,
providing a robust solution for handling sparse data.

CANDECOMP/PARAFAC Decomposition (CPD): Drawing on the
principle of classic CPD [49,50], the sparse tensor T sparse is decomposed into
three factor tensors that capture learner, attempt and question-related factors in
a multidimensional tensor form. A rank-based constraint is additionally applied
to enhance the decomposition’s accuracy.

Bayesian Probabilistic Tensor Factorization (BPTF): The BPTF [51] is
employed to approximate the sparse tensor T imputed through the decomposition
into a sum of outer products of three lower-dimensional factor tensors. This
approach leverages Bayesian inference for sampling both the factor tensors and
the precision of observed entries, effectively enhancing the model’s capacity to
manage data sparsity and uncertainty [51,52].

Generative Adversarial Network (GAN): At one core of the GAN, the
“learner image” extracted from T sparse (depicted in Fig. 1), constitutes the base
input for the GAN. The GAN architecture includes a generator that simulates
data resembling observed entries and a discriminator that assesses the authen-
ticity of this generated data [11]. It uses a consistent CNN layer configuration
and least squares loss for optimization.

Information Maximizing Generative Adversarial Nets (InfoGAN): The
InfoGAN [39] enhances the traditional GAN framework by integrating the noise
with two structured latent variables, allowing for the capture of salient, struc-
tured semantic features, such as those relating to learner attributes in ITSs
(e.g., initial learning ability and learning rate). The generator generates imputed
T imputed and decodes latent variables. An auxiliary distribution improves the
estimation of these variables’ posterior, boosting mutual information between
latent codes and observations and ensuring that the generated outcomes are
meaningfully informed.

AmbientGAN: AmbientGAN [53] is used to impute sparse learning perfor-
mance data by training on partially observed or corrupted data within a GAN
framework. It incorporates a dynamically adjusted Gaussian blur in the mea-
surement process, enabling the discriminator to effectively distinguish between
real and generated data measurements and accurately infer the original dataset’s
true distribution.

3.5 Experimental Setup and Evaluation

The experimental setup for imputing sparse learning performance data incorpo-
rates several tailored configurations to optimize model training and evaluation.
(a) Cross-Validation: A systematic five-cycle, five-fold cross-validation strategy
is rigorously employed for each model to ensure consistency and reliability of
results. (b) Varying Attempt Setting: The stability of models’ data imputation
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performance is tested under various maximum attempt settings to handle dif-
ferent degrees of data sparsity. (c) Maximum Iterations: All models are allowed
up to 100 iterations to ensure thorough adaptation and learning. (d) Learning
Rate: A learning rate of either 0.0001 or 0.00001 is selected to promote steady
progress and convergence during model training. (e) Regularization Techniques:
Dropout and Batch Normalization are integrated into the training process of
GAN-based methods to prevent overfitting. (f) Imputation Accuracy Evaluation
Metric: The Root Mean Square Error (RMSE), as referenced in peer papers
[12,24,51], is used to evaluate models’ performance in data imputation. (g)
Measuring Sparsity Level: The sparsity level of a tensor-based distribution for
learning performance data is computed as the percentage of missing values in the
total number of elements in the distribution. (h) Correlation Evaluation: The
Spearman correlation coefficient [54] is used to assess the relationship between
RMSE and the varying maximum number of attempts.

4 Results and Discussion

Data Sparsity Levels. Figure 2 displays the variation in sparsity levels within
learning performance data across six lessons, categorized by the maximum num-
ber of attempts. The sparsity level for each lesson increases with the num-
ber of attempts, suggesting a progressive introduction of missing data or non-
responses for learners in learning process. This trend is consistent across all
courses, albeit with varying rates of increase. Notably, “ASSISTments Lesson 2”
exhibits a gradual ascent, recording the highest sparsity levels across all attempts
when compared to other lessons. In contrast, “MATHia Lesson 1” and “MATHia
Lesson 2” demonstrates a lower initial sparsity level, with the former experi-
encing a sharp increase and the latter following a more gradual trajectory as
attempts progress. Particularly, “CSAL Lesson 1” records the maximum number
of attempts observed for this class. The distinct sparsity patterns observed in
Fig. 2 highlight the heterogeneity of data completeness and the extent of miss-
ingness across different lesson datasets.

Fig. 2. Data sparsity levels

Models’ Imputation Performance.
RQ1 investigates how effectively the
GAIN-based method imputes sparse
learning performance data in ITSs
compared to established baseline
methods. This question is addressed
by the following results. Figure 3
presents the RMSE results of impu-
tations performed by various mod-
els on sparse learning performance
data across lessons. GAIN signif-
icantly outperforms other baseline
models across most datasets, partic-
ularly in the context of ASSISTments
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Fig. 3. RMSE performance in different models for all lessons dataset

and MATHia lessons, as well as in certain CSAL lessons, save for an exception
in CSAL Lesson 1. In CSAL Lesson 1, GAIN’s RMSE is lower than that of
BPTF, GAN, and InfoGAN, and its extended error bars indicate a compara-
tive decrease in imputation precision and consistency. Remarkably, by the 9th
attempt, GAIN’s RMSE approaches the minimal value, signifying high accuracy
in data imputation toward the higher max attempt. The unique case of CSAL
Lesson 1 underscores complex data or model interactions that merit in-depth
research to unravel the specific factors influencing its imputation challenges.
Additionally, the GAN model exhibits performance surpassing that of other mod-
els, albeit slightly less robust than GAIN, while CPD and BPTF demonstrate
competitive capabilities.

Stability of Imputation with Varying Attempts. RQ2 examines how the
stability of the GAIN-based model’s performance varies with changes in the
number of attempts influencing the sparsity levels of learning performance data,
as demonstrated by the subsequent results. Despite its overall superior perfor-
mance, GAIN exhibits greater variance in its results, as indicated by the longer
error bars (see Fig. 3), which suggests less stability in its data imputation. The
heightened variance suggests that while GAIN generally delivers superior impu-
tation, its consistency is compromised under certain data conditions, possibly
requiring additional tuning or pre-processing to stabilize its performance. More-
over, the comparative analysis of other baseline models like Tensor Factorization
and CPD indicates a lower variance, suggesting that these may provide more
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reliable imputations in certain contexts, despite not always achieving the lowest
RMSE.

Iterative Changes of RMSE for GAIN. As depicted in Fig. 4, the RMSE tra-
jectory during the example training stage demonstrates the evolution of GAIN’s
imputation performance across various lessons with each iteration. Implementing
an early stopping criterion is essential when the model exhibits satisfactory per-
formance, typically when the RMSE approximates 0.1, to prevent overfitting.
Initially, there is a pronounced reduction in RMSE across all lessons, signal-
ing GAIN’s rapid enhancement in accuracy. Particularly, “MATHia Lesson 1”,
“MATHia Lesson 2”, and “ASSISTments Lesson 1” exhibit the most considerable
decrease, achieving optimal RMSE levels within fewer than 20 iterations. The
prolonged convergence for “CSAL Lesson 2” beyond 40 iterations implies that
additional gains in accuracy are marginal, prompting considerations for early
stopping to optimize computational resources. The variability in the number
of iterations required to reach convergence further underscores the diversity of
the underlying data distributions. These findings illuminate the complexity of
learning performance patterns and the distinctive characteristics of knowledge
acquisition that GAIN captures, albeit with varying rates of convergence.

Fig. 4. Data sparsity levels

Spearman Correlation. Figure 5
provides a comparison of the Spear-
man correlation coefficients, quantify-
ing the relationship between RMSE
values and the varying maximum
number of attempts across various
models applied to different lessons. A
positive correlation signifies that the
model’s RMSE rises as the maximum
number of attempts increases, which
aligns with a trend of rising sparsity
levels, thereby indicating a decline in
model performance. Conversely, neg-
ative values suggest that the RMSE
does not necessarily rise with spar-
sity, potentially indicating a model’s
higher performance to missing data.
For tensor factorization methods, the
prevalent negative correlations across
the lessons suggest that their RMSE
tends to decrease alongside sparsity. CPD exhibits varied outcomes, with cer-
tain lessons reflecting slight positive correlations, while others show negative,
indicating inconsistent behavior across different datasets. BPTF predominantly
shows positive correlations, with the exception of the CSAL lessons, suggesting
a general tendency for model performance to decrease with sparsity within these
contexts. For the majority of lessons, GAN demonstrate positive correlations,
signaling weaker performance as sparsity enlarges. InfoGAN mostly records neg-
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Fig. 5. Spearman correlation of RMSE with varying attempts.

ative values, suggesting improved performance in the face of increasing sparsity
for most lessons. AmbientGAN consistently exhibits negative correlations for
all lessons, implying an increase in model performance despite greater sparsity.
GAIN’s results are varied, reflecting its nuanced response to the distinct traits
of each dataset.

4.1 Limitations and Future Works

However, the exploration into the adaptive mechanisms of GAIN also highlights
areas for future research, particularly in refining model architecture and expand-
ing model explainability to better understand the underlying imputation pro-
cesses. As educational data continues to grow in complexity and size, further
advancements in generative models will be crucial in fully harnessing the poten-
tial of generative AI to transform AI-based educational systems.

Future research will delve deeper into the analysis of tensors imputed by
GAIN and other methods, focusing on the following areas:

• Enhanced evaluation of imputed data is imperative, with an emphasis on
comparing imputed and original data patterns.

• The use of synthetic datasets, with their adjustable sparsity levels and known
ground truth, will further facilitate the evaluation process.

• The exploration of generative AI for educational data imputation is still evolv-
ing. A systematic comparison of various generative models, including Autoen-
coders (AE), Variational Autoencoders (VAE), and their interpretable coun-
terparts such as adversarial AEs and Denoising Autoencoders (DAE) [55], is
planned.

• A concerted effort will also be made to distinguish between the semantics
of zero values and NaN values, enhancing the quality of the imputation for
learning performance data.
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• An ablation study can verify the effectiveness of the new GAIN-based archi-
tecture for imputing sparse learning performance data. By iteratively testing
variants by removing or replacing components such as convolutional layers,
the hint mechanism, or the least squares loss function, and comparing their
performance using key metrics like RMSE, we can identify the contributions
of individual components and refine the architecture for optimal effectiveness.

• Another potential is the application of generative models in data imputation,
which can facilitate ITSs in tracing and predicting learning performance data,
especially in real-time and dynamic learning environments. The emerging
generative language models, with their reasoning capabilities and the powerful
computational abilities of deep generative models, can potentially lead to new
advancements in AI-educational applications and research [56,57].

5 Conclusion

In this study, we propose a GAIN-based method for imputing sparse learning per-
formance data from ITSs. Our systematic comparison with tensor factorization
and other GAN-based methods shows that GAIN not only surpasses these tradi-
tional models in terms of imputation accuracy but also demonstrates remarkable
adaptability across various educational datasets. However, GAIN’s performance
is marked by increased variance and diminished stability in data imputation,
influenced by varying levels of data sparsity and not uniformly consistent across
different lessons. Furthermore, the initial tensor-based representation within a
3D tensor space preserves the original sequence effects and structure, which,
when combined with GAIN’s use of CNN for its input and output layers, effec-
tively bridges the gap between employing generative AI models for imputing
sparse learning performance data and retaining essential temporal educational
dynamics. The success of GAIN in this context lays the groundwork for more
robust educational data analytics, enhancing decision-making in educational set-
tings, especially in ITSs. This study significantly enriches the application of
GAIN in the fields of learning engineering and learning science.
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Abstract. Diffusion model-based vocoders have exhibited outstanding
performance in the realm of speech synthesis. However, owing to the
curved nature of generation path, they necessitate traversing numer-
ous steps to guarantee the speech quality, hindering their applicability
in real-world scenarios. In this paper, we propose SWave (Code and
speech samples are available at https://swave-demo.github.io/), a novel
vocoder based on rectified flow which improves the efficiency of speech
synthesis by Straightening the Waveform generation path. Specifically,
we employ rectification to transform the noise distribution into the data
distribution with a probability flow that is as straight as possible. Subse-
quently, we use distillation and fine-tuning to further enhance the gener-
ation efficiency and quality, respectively. Experiments on the LJSpeech
dataset demonstrate that compared with other vocoders such as FastDiff
and WaveGrad, SWave enhances the generation efficiency. In particular,
with a straightforward sampling schedule, SWave generates comparable
speech to WaveGrad with significantly fewer steps (2 steps vs 25 steps).

Keywords: Speech Synthesis · Vocoder · Rectified Flow · Generation
Efficiency

1 Introduction

Deep generative models have made remarkable advancements in the field of speech
synthesis [1,10,15,16]. In the early studies, autoregressive models [8,15,16] dom-
inate this field and greatly improve the quality of synthesized speech. Neverthe-
less, these models require a substantial number of steps for sequential generation,
impeding their applicability in low-latency scenarios. To overcome this limita-
tion, non-autoregressive models emerge and markedly speed up speech synthe-
sis. These models can be subdivided into Variational AutoEncoders (VAEs) [17],
flow-based models [9,19,20], Generative Adversarial Networks (GANs) [10,12,22]
and Denoising Diffusion Probabilistic Models (DDPMs) [1,5,11]. Among them,
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diffusion models exhibit superior overall performance compared with the subpar
generation quality of VAEs, the high design complexity of flow-based models, and
the training instability of GANs. Notably, WaveGrad [1], the first diffusion model-
based vocoder, stands out as the initial non-autoregressive vocoder that bridges
the gap in speech quality with autoregressive vocoders.

Although diffusion model-based vocoders exhibit superior generating capa-
bilities, their generation efficiency lags behind that of other non-autoregressive
vocoders. It is noteworthy that these vocoders formulate the probability flow
between noise distribution and data distribution with stochastic differential
equation (SDE) or complex ordinary differential equation (ODE) [21], resulting
in a highly curved generation path. Consequently, they necessitate traversing
numerous steps to mitigate path distortion and, hence, ensure the quality of
generated speech.

To improve the generation efficiency, the mainstream method is to find the
optimal sampling schedule, which can reduce the generation steps while pre-
serving the generation quality as much as possible. WaveGrad [1] utilizes grid
search to find the optimal sampling schedule and achieves acceptable generation
results with 6 steps. The concurrent work DiffWave [11] adopts a light model
architecture, designs a fast sampling algorithm, and is also able to generate high-
fidelity speech with 6 steps. Instead of designing manually, FastDiff [6] adpots a
noise schedule predictor to obtain the optimal sampling schedule. Another effi-
cient vocoder InferGrad [2], proposes to incorporate the inference process into
training with an additional loss to further speed up speech synthesis, achiev-
ing comparable generation quality to WaveGrad with a 3× speedup. The main
drawback of these models is their reliance on sampling schedules, necessitating
meticulous design or time-consuming search. Moreover, none of these models
focus on altering the curved generation path, which is the key factor of low gen-
eration efficiency. Intuitively, if the generation path is straight enough, it could
be possible to generate high-fidelity speech with a single step.

Recently, rectified flow (reflow) [13] is dedicated to straightening the gen-
eration path. It reformulates the standard diffusion model and exploits linear
interpolation to model the probability flow between noise distribution and data
distribution, which leads to a much straighter generation path. Benefiting from
the high straightness of the path, reflow demonstrates a significant improvement
in sampling efficiency. Moreover, the sampling schedule generally follows the
downsampling of the training schedule, which has been applied in recent stud-
ies to improve the efficiency of acoustic models [3,4]. Both Reflow-TTS [3] and
VoiceFlow [4] effectively reduces the number of generation steps while maintain-
ing speech quality comparable to GradTTS [18].

Motivated by these observations, we propose to integrate reflow into the
vocoder, another component within the speech synthesis system, resulting in an
efficient vocoder named SWave. SWave adopts the same network architecture as
WaveGrad [1] but employs a completely different training workflow consisting of
three stages: rectification, distillation, and fine-tuning. Rectification straightens
the generation path by iteratively constructing data pairs and retraining. Dis-
tillation reduces the number of generation steps while preserving the generation
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quality, and fine-tuning eliminates the noise introduced by data pair construction
to further enhance generation quality. Experiments on the LJSpeech dataset [7]
illustrate that SWave exhibits greater efficiency than other efficient vocoders like
FastDiff and WaveGrad. Moreover, SWave can generate speech of comparable
quality to the 25-step WaveGrad with only 2 steps. All the sampling schedules
of SWave follow a simple approach, eliminating the need for exhaustive search
procedures.

Our work makes the following contributions: (a) we propose a novel method
to improve the efficiency of the vocoder by straightening the generation path
through reflow; (b) we develop a 3-stage training workflow to facilitate the inte-
gration of reflow and obtain an efficient vocoder named SWave; (c) experimental
results show that SWave outperforms other efficient vocoders, and its sampling
schedules are more straightforward.

2 Related Work

Diffusion Model-based Vocoder: WaveGrad [1] is the first diffusion model-
based vocoder and the initial non-autoregressive vocoder that bridges the gap in
speech quality with autoregressive vocoders. It introduces a model conditioned
on continuous noise levels to support a flexible sampling schedule. To accelerate
sampling, it employs grid search to find a 6-step noise schedule capable of gen-
erating acceptable results. The concurrent work DiffWave [11] adopts a lighter
model architecture than WaveGrad and also designs a fast sampling algorithm
to generate high-fidelity speech with 6 steps. FastDiff [6] proposes an additional
network to predict the sampling schedule to avoid meticulous design and can also
generate acceptable speech within 6 steps. InferGrad [2] is a variant of WaveG-
rad, achieving comparable generation quality as WaveGrad with a 3× speedup by
incorporating inference process into training. Specifically, after determining the
range of inference schedules under a few steps, InferGrad generates the waveform
from random noise following these schedules, and introduces an auxiliary loss to
the training objective to minimize the gap between the generated waveform and
the ground truth. Our work is also a variant of WaveGrad, but different from
InferGrad, SWave enhances WaveGrad through a completely novel approach,
with the focus on improving sampling efficiency by straightening the generation
path, which also distinguishes SWave from other efficient vocoders.

Rectified Flow and Its Applications in Speech Synthesis: Rectified flow
[13] is a reformulation of standard diffusion model. Instead of diffusing the data
distribution through either SDE or intricate ODE [21], reflow transforms noise
distribution into data distribution with a probability flow that is as straight as
possible. Starting from any noise sample, it only takes a few Euler discretization
steps to generate a data sample of acceptable quality. This mechanism has been
utilized by recent studies to improve the efficiency of speech synthesis, such as
voiceflow [4], which integrates reflow into the acoustic model and significantly
reduces the number of generation steps while achieving similar speech quality
to GradTTS [18]. However, the integration into another component within the
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speech synthesis systems, namely the vocoder, remains inadequately explored.
It is noteworthy that, compared with the acoustic model, the vocoder imposes
higher demands on generation quality. The reason is that the acoustic models
generally utilize the noise-robust HiFi-GAN [10] as their vocoder, mitigating
the impact of noisy acoustic features on speech quality. In contrast, noise in
vocoder generation manifests directly as perturbed speech. Our approach meets
the high demand for generation quality and successfully improves the generation
efficiency of vocoder.

3 Proposed Method

The training workflow of SWave is depicted in Fig. 1, which comprises three stages:
rectification, distillation and fine-tuning. The specific details are described in the
following sections.

Fig. 1. Training Workflow of SWave. During rectification, we randomly sample some
noises and speeches to construct the data pairs (X0, X1), and then apply the operator
K times to straighten the generation path from noise to speech. During distillation, we
utilize the data pairs constructed by the F -step VFE in the K-th operator to distill an
N -step VFE. Finally, we fine-tune the N -step VFE with the ground truth and obtain
N -step SWave. F is generally set to 1,000, and N � F .

3.1 Rectification

Rectification is the key stage in the training workflow. It applies repeat opera-
tions to continuously straighten the generation path.

Given a mel-spectrogram c, we denote the noise distribution as p0(x|c) and
the data distribution as p1(x|c). We randomly sample x0 ∼ p0(x|c), x1 ∼ p1(x|c)
and construct a data pair (x0, x1). Then we establish a linear path pointing from
x0 to x1:

xt = x0 + t(x1 − x0), t ∈ [0, 1], (1)

where xt is the interpolation of x0 and x1. The linear path follows the ODE
dxt = (x1−x0)dt, which is non-causal since updating xt requires the information
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of the destination x1. By setting the velocity field v(xt, t, c) to drive the flow to
follow the direction (x1 − x0) as much as possible, the linear path follows a new
ODE flow dxt = v(xt, t, c)dt, eliminating the dependency on x1 and rendering
it causal. The velocity field is fitted by a model known as the velocity field
estimator (VFE) with an objective similar to that in reflow [13]:

min
θ

Et,x0∼p0(x|c),x1∼p1(x|c)[‖(x1 − x0) − uθ(xt, t, c)‖2], (2)

where uθ(·, ·, ·) denotes VFE and θ is the model parameters.
If we ensure that the set of data pairs, denoted as (X0,X1), keeps all the

linear paths from crossing, then the directions of all uθ(xt, t, c) are uniquely
determined. With such velocity fields, it only takes a single Euler discretization
step to generate high-fidelity speech from any noise sample. However, due to
the random matching of x0 and x1, the occurrence of intersections among linear
paths is inevitable. When two paths intersect at xτ , uθ(xτ , τ, c) is the expectation
of these two directions. Intuitively, the final learned velocity fields rewire the
individual trajectories passing through the intersection points to avoid crossing,
while also inducing curvature in the generation path.

To further straighten the generation path, we design an operator and apply
it recursively. The operator consists of three components: an F -step linear inter-
polator, an F -step VFE and an ODE solver, where F is generally set to 1,000. In
the k-th operator, we refer to the F -step VFE as k-VFE, denoted as Zk, with its
estimated velocity field represented as uk

θ(xt, t, c). With this design, the training
of the VFE induced from (X0,X1) constitutes a part of the first operator. After
this VFE converges, we utilize ODE solver to construct new data pairs. Specifi-
cally, we randomly sample some noises Z1

0 and then generate their corresponding
speeches Z1

1 following the ODE dxt = u1
θ(xt, t, c)dt.

Due to rewiring, the new data pairs (Z1
0 , Z1

1 ) have fewer intersections and
hence further straighten the generation path of Z2. We measure the curviness of
model Zk [13] by

C(Zk) =
∫ 1

0

E

[
‖(Zk

1 − Zk
0 ) − Żk

t ‖2
]
dt, (3)

where Zk
0 , Zk

1 and Żk
t denote the noise samples, the generated speeches and

the estimated velocity fields at t of Zk, respectively. The smaller the value of
C(·), the straighter the generation path and C(·) = 0 means exact straightness.
Upon recursive application of the operator, C(Zk) will converge to 0 with a
convergence rate of O(1/k). The proof is available in the appendix A.1.

3.2 Distillation

With a highly straight generation path, distillation can effectively reduce the
number of sampling steps while maintaining the generation quality [14].

After applying the operator K times during rectification, we use the data
pairs generated by K-VFE to distill a new VFE. During distillation, we set the
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number of time steps to N (N � F ) and the time increases linearly from 0 to
1, defined as Linear(0, 1, N). We name the distilled VFE as N -step VFE and
denote its estimated velocity field as wθ(xt, t, c).

3.3 Fine-Tuning

Although the rectification operator enhances the straightness of the waveform
generation path, the constructed data pairs introduce noise into the generation
results of the retrained model. The reason is that the speech samples generated
by Zk exhibit degraded quality compared with the ground truth, owing to various
factors such as limited training data and constrained model capability. As the
number of operations increases, the noise accumulates continuously, leading to
a significant loss of quality in the final generation.

To mitigate the introduced noise, we ultimately fine-tune the N -step VFE
by minimizing the Multi-Resolution Short-Time Fourier Transform (MRSTFT)
loss [22] between the ground truth and the generated speech:

Lmrstft(x1, x̂1) = Lsc(x1, x̂1) + Lmag(x1, x̂1), (4)

where x1 and x̂1 denote the ground truth and the generated speech, respectively;
Lsc(·, ·) and Lmag(·, ·) denote spectral convergence and log STFT magnitude loss,
respectively.

To avoid the increase in training costs caused by back-propagation through
time (BPTT), we predict x̂1 at each time step separately:

x̂1 = xt + (1 − t) × wθ(xt, t, c). (5)

4 Experiments

4.1 Experimental Setup

Dataset: We utilize the LJSpeech dataset [7], consisting of 13,100 speech sam-
ples recorded at 22.05kHz from a single female speaker, with a total duration
of approximately 24 h. The dataset is randomly divided into two parts: 13,000
samples for training and 100 samples for testing.

Implementation Details: During rectification, we apply the operator three
times, taking into account both the training cost and the convergence rate of
C(Zk). Each k-VFE undergoes training for 120K iterations. We generate one mil-
lion data pairs for each Zk and each pair is generated in 1,000 steps to minimize
generation errors. During distillation, We distill two models: a 2-step VFE and a
10-step VFE, each trained for 120K iterations. The final fine-tuning process takes
60K iterations. During inference, all the sampling schedules are Linear(0, 1, N).
2-step generations are from the 2-step SWave, while 5-step and 10-step genera-
tions are from the 10-step SWave.

Evaluation Metrics: We conduct a comprehensive evaluation to assess the
sample quality of SWave. For subjective evaluation, we use the Mean Opinion
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Score (MOS) along with a 95% confidence interval. A test set is presented to
20 listeners who assess speech quality using a rating scale ranging from 1 to 5.
Comparative MOS (CMOS), another subjective metric, is employed to indicate
the quality gap between the speeches generated by different models. Specifically,
20 listeners rate the samples with scores ranging from -3 to 3. In the objective
evaluation, we utilize mel cepstral distance (MCD), log-mel spectrogram mean
squared error (LS-MSE), MRSTFT loss, and short-time objective intelligibility
(STOI) [2]. Note that MCD is calculated with its official implementation (mcd-
cli)1 and all parameters are set to their default values. We use real-time factor
(RTF) to evaluate the inference speed of vocoders on a single NVIDIA GeForce
RTX 3090 GPU.

Comparative Models: As SWave adopts the identical network architecture
as WaveGrad [1], we take WaveGrad as the primary comparative model. We
follow the publicly available and widely used implementation2 and train Wave-
Grad for 600K iterations. Additionally, we compare SWave with other diffusion
model-based vocoders including DiffWave [11], FastDiff [6] and InferGrad [2].
For non-diffusion model-based vocoders, we report the comparison results with
WaveNet [16], WaveGlow [19] and HiFi-GAN [10].

4.2 Results and Analyses

Overall Performance. The subjective and objective results are reported in
Table 1 and Table 2 respectively. We obtain the 2-step and 6-step inference sched-
ules for WaveGrad through grid searching and adopt a Fibonacci sequence as
the 25-step schedule [1]. Table 1 indicates that the subjective quality of speech
generated by SWave surpasses that of WaveGrad when the number of generation
steps is the same or similar. Furthermore, the speech generated by SWave in 2
steps exhibits comparable quality to the speech generated by WaveGrad in 25
steps. So the generation efficiency of SWave is significantly higher than that of
WaveGrad.

Table 1. Subjective evaluations of WaveGrad and SWave.

Model Steps MOS (↑)

WaveGrad 2 (Grid Search) 1.17±0.07
SWave 2 3.88± 0.06
WaveGrad 6 (Grid Search) 3.21± 0.09
SWave 5 4.15± 0.11
WaveGrad 25 (Fibonacci) 3.85± 0.07
SWave 10 4.20± 0.11
Ground Truth - 4.54± 0.09

1 https://github.com/jasminsternkopf/mel_cepstral_distance.git.
2 https://github.com/ivanvovk/WaveGrad.git.

https://github.com/jasminsternkopf/mel_cepstral_distance.git
https://github.com/ivanvovk/WaveGrad.git
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Table 2 demonstrates that even with just 2 steps, the objective quality of
SWave’s generated speech is remarkably high compared to other vocoders.
Specifically, its quality rivals that of DiffWave with 50 steps, FastDiff with 6
steps, WaveGrad with 25 steps, InferGrad with 6 steps, and all the non-diffusion
model-based vocoders. When we increase the inference steps to 5, SWave gener-
ates the highest quality speech. In terms of efficiency, the RTF of SWave with
2 steps is almost lowest among all the vocoders except HiFi-GAN. It is worth
noting that although HiFi-GAN achieves the lowest RTF, the quality of its gen-
eration is relatively lower. Therefore, the overall performance of SWave exceeds
all these vocoders.

Table 2. Objective evaluations of SWave and other conventional neural vocoders.
These vocoders are subdivided into three groups: non-diffusion model-based vocoders,
conventional diffusion model-based vocoders, and WaveGrad and its variants. * indi-
cates that the results are from the original work. The best results are highlighted in
bold and the second best results are underlined.

Model Steps (↓) MCD (↓) LS-MSE(↓) MRSTFT(↓) STOI(↑) RTF(↓)

WaveNet - 4.00 0.544 1.565 0.907 95.757
WaveGlow - 2.96 0.123 1.163 0.968 0.043
HiFi-GAN - 3.44 0.187 1.229 0.913 0.003
DiffWave 6 4.17 0.400 1.201 0.969 0.133

50 4.17 0.393 1.179 0.973 1.106
FastDiff 3 4.77 0.365 1.339 0.952 0.018

6 4.09 0.246 1.208 0.975 0.034
WaveGrad 6 4.56 0.348 1.752 0.955 0.065

25 3.35 0.270 1.289 0.973 0.269
InferGrad* 2 - 0.202 1.238 0.967 0.025

6 - 0.108 1.060 0.976 0.069
SWave 2 2.58 0.126 1.064 0.975 0.021

5 2.40 0.112 1.048 0.979 0.054

To intuitively demonstrate the advantages of SWave, we further visualize the
mel-spectrogram of speech, as is shown in Fig. 2. The results show that the mel-
spectrogram of SWave’s generation is closer to the ground truth and exhibits
finer details. More examples of mel-spectrogram are provided in appendix A.2.
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Fig. 2. Comparison of the visualization results of Mel-spectrogram for SWave and
WaveGrad.

The key factor of superior performance is that the generation path is straight-
ened. We demonstrate this by visualizing the generation paths of WaveGrad and
SWave. Since the waveform of speech is a lengthy sequence, we sample only two
time points to facilitate a neat visualization, and the final results are shown in
Fig. 3, confirming the effectiveness of our proposed method.

Fig. 3. Differences between generation paths of WaveGrad and SWave.

Effects of Rectification. We investigate the evolution of the straightness of
generation paths and its accompanying effects on generations during rectifica-
tion. We use MCD to quantify these effects. To amplify the effects, we generate
all speech samples with 10 steps. The mean MCD of WaveGrad’s generations
serves as the baseline. The results are depicted in Fig. 4.
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Fig. 4. Evolution of curviness of generation paths and mean MCD of generated samples
during rectification. The number of generation steps is 10.

As the rectification progresses, both the mean and standard deviation of
curviness decrease, indicating continuous straightening of the generation paths.
The mean MCD of VFE exhibits a strong correlation with its curviness, and
when k ≥ 2, k-VFE generates speech samples with lower mean MCD than
the baseline. Therefore, rectification straightens the generation path and hence
effectively enhances the quality of the generated speech.

Effects of Distillation and Fine-Tuning. The models before and after dis-
tillation are 3-VFE and N -step VFE respectively. We demonstrate the effects
of distillation by contrasting their generation quality, as shown in Table 3. The
results show that 2-step VFE achieves comparable mean MCD to 3-VFE with
10 generation steps. Therefore, distillation improves the generation efficiency.

Table 3. Mean MCD of models before and after distillation. N is the number of
generation steps.

Model N=2 N=10

3-VFE 5.07 3.07
N -step VFE 3.57 2.87

To assess the efficacy of fine-tuning, we compare the speeches generated by
N -step VFE and N -step SWave with CMOS. The results are present in Table 4.
Without fine-tuning, the quality of both the 2-step generations and 10-step
generations becomes slightly worse. Thus, fine-tuning enhances the generation
quality.
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Table 4. CMOS of models with and without fine-tuning.

Model N=2 N=10

N -step SWave 0 0
N -step SWave w/o fine-tuning -1.08±0.21 -1.19±0.22

One-Step Generation. We also study one-step generation and obtain 1-step
SWave. Although the generated speech of 1-step SWave is quite clear, the pres-
ence of vibrato makes it sound less natural. We provide some samples at https://
swave-demo.github.io/.

5 Conclusion

In this paper, we propose SWave, a novel vocoder based on rectified flow, which
improves the generation efficiency by straightening the waveform generation
path. We adopt the same network architecture as WaveGrad but employ a com-
pletely different training workflow comprising three stages: rectification, distil-
lation and fine-tuning. Rectification straightens the generation path through
iteratively constructing data pairs and retraining. Distillation reduces the num-
ber of generation steps while preserving the generation quality, and fine-tuning
eliminates the noise introduced during data pair construction to further enhance
generation quality. Experiments on the LJSpeech dataset demonstrate that with
a straightforward Linear(0, 1, N) sampling schedule, SWave exhibits superior
generation efficiency than other efficient vocoders.
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Abstract. Lighting is an environmental condition applied to objects
in a scene, which creates complicated lighting effects including shading,
shadow and so on. It is a challenging task to relight i.e., manipulate
the lighting condition of an outdoor scene image. Recently, diffusion
models have shown great success in generating photo-realistic images.
Motivated by this, we introduce a novel approach to use diffusion mod-
els to relight an outdoor scene. Specifically, we use a conditional diffu-
sion model where we condition on the output of two newly introduced
encoders - Surface Encoder and Shadow Encoder. The Surface Encoder
is used to extract latent features from the scene intrinsics except the
shadow and the Shadow Encoder is used to extract latent features from
the normal of the scene and the lighting for the shadow effect. We evalu-
ate our technique both subjectively and objectively and show that while
the proposed diffusion model based relighting framework is numerically
comparable to the state-of-the-art, it has better visual quality and coher-
ence in relighting typical outdoor scenes (esp. sky region) by rendering
photo-realistic images.

Keywords: Diffusion model · Image synthesis · Relighting

1 Introduction

Lights are common phenomena in the real world that come from both nature
and human activities. It is interesting yet challenging to understand how exter-
nal light sources affect the appearances of real-world 3D objects. Studying the
lighting effects is crucial in the industry of digital imaging. In practice, objects
in a scene are decomposed into intrinsics for internal understanding and manip-
ulation. Intrinsics are properties of scenes that follow an image formation model
and typically include reflectance, shape, illumination and shading. The albedo of
an object decides the perceived color under white light. In addition, the normal
of a surface determines the shading, caused by the reflectance of the light. The
overall environment and relative position of objects also decide indirect lighting
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effects such as the shadow. To understand the impact of lighting on objects,
all of the above factors need to be considered. Due to the difficulty of problems
that involve light and illumination, researchers have recently been exploring neu-
ral rendering techniques [31] to improve the photo-realism of generated images
under varying lighting conditions.

We address the problem of relighting i.e., rendering an outdoor 2D image
under a new lighting condition. We assume that the lighting sources for an out-
door scene are infinitely distant and represent the lighting condition as spher-
ical harmonic coefficients [4], which are common assumptions for diffused light
source in the literature [37]. Outdoor scene relighting involves two steps - 1)
First, albedo, normal, shadow and lighting are extracted from the image using
an inverse renderer. 2) Then, under a novel lighting condition, the albedo and
the normal are rendered back into a 2D image.

In this work, we use the inverse rendering network from [39] for the first
step and focus on the second step which needs to generate lighting effects under
the new lighting. Under the new lighting condition, it is challenging to generate
the shadow and the sky that are coherent to the scene. Existing work of Yu et
al. [37] use two separate neural networks to achieve this task: a shadow net and
a sky GAN. However, the boundary between the scene and the generated sky
is usually unsatisfactory. See Fig. 1 for a comparison between Yu et al. [37] and
ours. We achieve similar relighting results with improved overall photorealism.

Fig. 1. Relighting results. From left to right: source image, target image from which
lighting is used for relighting, our relighting result, zoomed-in region of our result,
relighting results from Yu et al. [37], zoomed-in region of [37]’s result. Our generated
sky is more coherent to the scene. It is not over-saturated and our result does not
contain unwanted artifacts along the edge of the sky, that are present in [37].

Diffusion models (DMs) [9] are the state-of-the-art generative model for var-
ious computer vision tasks. Recent works reveal that DMs trained on 2D images
can be used for 3D tasks [23]. Relighting is a task that also involves under-
standing 3D structure inside a 2D image. We propose to improve the existing
relighting pipeline using a conditional diffusion model for the rendering step.
To encode channels from the inverse renderer, we introduce a Surface Encoder
to extract latent features from the albedo, normal, shading and the residual to
include effects except the shadow. For the shadow effect, a separate Shadow
Encoder is introduced to extract latent features from the normal and the light-
ing. The latent features act as conditions that are added to a pretrained stable
diffusion model [24] using ControlNets [41]. The training of the diffusion model
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with two conditions is performed in a progressive way. First, the Surface Encoder
is trained with a diffusion model to render an image without shadow but with a
coherent sky. Next, the diffusion model is trained using both the Surface Encoder
and the Shadow Encoder to generate an image with shadow. Our contributions
can be summarized as follows -

– To the best of our knowledge, we introduce the first approach to solve the
outdoor scene relighting problem using a conditional diffusion model, which
improves the global coherence of lighting effects generation, including sky
generation. Compared with state-of-the-art methods, our relighting images
are better in terms of IS [28] and FID [8] scores, implying that it has better
realism.

– We introduce a novel Surface Encoder and a Shadow Encoder, to add condi-
tions to a pre-trained diffusion model by the ControlNet mechanism.

– We introduce a novel progressive training strategy for our conditional diffu-
sion model.

2 Related Work

2.1 Relighting

Relighting is a core technique in rendering, which can be further divided into
face relighting, indoor object relighting and outdoor scene relighting. Previous
works such as [17,21,36,40,45] have proposed various relighting techniques for
faces and indoor objects . We focus on learning based outdoor scene relighting
techniques [5,13,14,19,22,35,37,38], which has been explored under various set-
tings. Philip et al. [22] perform high-quality daytime relighting of single images
given multi-view images. The closest works to us are Yu and Smith [38] and Yu
et al. [37], which model the lighting as spherical harmonics and perform single
image relighting without further supervision. Kubiak et al. [13] formulate relight-
ing as a style transfer problem. In their pipeline, lighting is not explicitly repre-
sented so it is not possible to relight with artificial lighting conditions. Griffiths
et al. [5] focus on improving shadow prediction in relighting tasks conditioned
on sun directions. Yang et al. [35] perform both inverse rendering and rendering
by representing the intrinsics in a NeRF [20]. However, training a NeRF for each
scene can be costly in some applications. Lyu et al. [19] use diffusion models
for inverse rendering using the supervision of geometry. Differently, we learn the
rendering step with diffusion models. Several existing works [14,26] propose to
change viewpoints and lighting conditions together for outdoor scenes, which are
outside the scope of our idea.

2.2 Diffusion Models

Relighting can be also interpreted as an image-to-image translation task,
which are usually solved by conditional generative models. Existing works have
explored generative adversarial network (GAN) based approaches [11,44] and
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diffusion model based approaches [27] in image-to-image tasks under general
settings. We take a step further by considering the intrinsics for the relighting
task, which leads to a more interpretable procedure.

Conditional generation of diffusion models has also attracted much attention.
[2,3,10] explore conditional generation in a pre-trained diffusion models without
task specific fine-tuning. Zhang et al. [41] propose ControlNet, which is a mecha-
nism to train a conditional diffusion model with a pre-trained diffusion model as
a backbone. We utilize ControlNet for relighting tasks because it allows strong
conditions in guided generation.

Diffusion models have been applied on face relighting problems. Papantoniou
et al. [21] use diffusion models to learn the UV textures of faces, so that the 3D
structure of a 2D face image can be obtained by inpainting. Zhang et al. [40]
employ the pre-trained stable diffusion and a 2D GAN to construct relightable
NeRF representations for faces. None of the existing works based on diffusion
models tackle the problem of outdoor scene relighting. None of the existing work
use diffusion models as the renderer in the relighting pipeline.

3 Technical Background

3.1 Relighting

In order to relight a 2D image, the 3D structure inside the image needs to be
represented. Following Yu et al. [37], we assume a pixel m that corresponds to an
object in the image i can be decomposed as (� is element-wise multiplication) -

i(m) = s(m)α(m) � Lb(n(m)), (1)

where i(m) ∈ [0, 1]3 is the color values of the three color channels. s(m) ∈
[0, 1] is the shadow which scales down the brightness of certain areas. α(m) ∈
[0, 1]3 is the albedo which is the basic color without any lighting effect. L is
the lighting matrix with shape (3, 9) with 3 corresponding to the color channel
and 9 corresponding to the spherical harmonics. n(m) ∈ [−1, 1]3 is the normal
which is the direction of the surface. b(·) : [−1, 1]3 → R9 is a fixed function that
converts a normal vector into the values of spherical harmonics basis functions
such that h = Lb(n(m)) is the shading which means the color with the diffuse
surface reflectance model under the lighting condition.

In practice, the inverse rendering is never perfect. Therefore, a residual term
r(m) ∈ [−1, 1]3 is introduced to capture the loss of information during the inverse
rendering procedure. Then the decomposition becomes -

i(m) = s(m)(α(m) � Lb(n(m)) + r(m)). (2)

Relighting can not be performed by naïvely replacing L with a novel lighting L′.
The shadow s and the sky should be predicted in relighting.
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3.2 Diffusion Models

We use a pre-trained stable diffusion [24] as our backbone. Stable diffusion is a
latent diffusion model which maps high dimensional images i to lower dimen-
sional latents x via VQ-VAE [32] and learn the generating process of the latents
from a unit Gaussian variable with a diffusion model. The denoising diffusion
probabilistic model (DDPM) [9] is used to describe generating procedure. It can
be interpreted as a sequence of denoising decoders approximated by a diffusion
process via variational inference [12]. The observed variable x0 = x and the
latent variables x1,x2, . . . ,xT make the backward denoising model -

p(x0:T ) = p(xT )
T∏

t=1

p(xt−1|xt). (3)

The approximate posterior is a forward diffusing procedure -

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1). (4)

After properly setting the hyperparameters, the training objective is equivalent
to minimizing the noise prediction error as shown in -

LLDM(θ) = Ei,x0=E(i)[Et,ε [‖ε − εθ(xt, t)‖22]], (5)

where E(i) is the encoder of VQ-VAE that maps the image to latent space, t is
sampled uniformly from 1 to T and εθ is a U-Net [25] that predicts the noise
injected to generate xt.

We utilize ControlNets [41] to add conditions to the stable diffusion model.
ControlNet is a mechanism to add conditions to an existing neural network.
Suppose there is a parameterized function u = F (v; θ) and a condition w that
has the same shape as v needs to be added. ControlNet makes a copy of the
parameter as θc and reformulate the output as -

u =F ′(v, w; θc, φ1, φ2)
=F (v; θ) + Z(F (v + Z(w;φ1); θc);φ2), (6)

where Z(·;φ) is a zero convolution layer which initializes both the weight and
the bias as zeros. The updated function F ′ is trained over [θc, φ1, φ2] while keep-
ing the original parameter θ fixed. Before training, due to the zero convolution
layers, F ′ is equivalent to F , ignoring the additional condition w. As the training
proceeds, the network learns the contribution of w to the output, while keep-
ing the original parameters intact. For the U-Net inside a diffusion model, the
ControlNets are added by copying the down-sampling blocks and the mid blocks.

4 Method

4.1 Overview

The proposed relighting pipeline is shown in Fig. 2. Our diffusion model based
relighting pipeline consists of a sky segmentation network [43], an inverse ren-
derer [39], a pre-trained diffusion model [24] and two ControlNets [41] - a Surface
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Fig. 2. Relighting pipeline with our diffusion model. From a source image, residual,
albedo and normal channels are extracted using an inverse renderer [39] (red). Under
a new lighting condition, new shading is calculated from the normal (brown). The
residual, albedo, normal and new shading are fed into a Surface ControlNet to account
for image synthesis without shadow (green). The normal and new lighting are fed into
a Shadow ControlNet for shadow generation (blue). The yellow blocks are codes from
existing works. The two ControlNets attached to the stable diffusion, shown in the
dotted rectangle, are our contributions. (Color figure online)

ControlNet and a Shadow ControlNet. Sky is first removed from the source image
using the sky segmentation network and then decomposed into the intrinsics by
the Inverse Renderer. The two ControlNets are trained to add conditions to the
diffusion model for relighting tasks. We describe the details of the conditional
diffusion model in Sect. 4.2.

4.2 Conditional Diffusion Model

The details of the conditional diffusion pipeline are shown in Fig. 3. From a
probabilistic perspective, if the conditional distribution p(i|α,n, r,L) can be
learned, then relighting can be achieved by getting α,n, r from inverse rendering
and simulating p(i|α,n, r,L′) with the new lighting L′. Thus, relighting can be
formalized as a learning problem for a conditional diffusion model. The two main
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problems are shadow generation and sky generation. In this work, we decompose
the simulation of this distribution into two steps -

– First, render an image with sky but without shadow
– Then, render an image with sky and shadow.

These 2 steps can be achieved by 2 ControlNets as follows -

– The first ControlNet, called Surface Encoder (indicated by green box in
Fig. 3), takes α, n, r and the shading h = Lb(n(m)) as conditions. In the
sky area, conditions are set to zeros, which informs the diffusion model to
generate the sky region. The pipeline is trained in such a way that with the
Surface Encoder, the diffusion model generates an image with the sky but
without the shadow.

– The second ControlNet, called Shadow Encoder (indicated by blue box in
Fig. 3), takes n and L as conditions. It is trained to add the shadow to the
generating procedure considering the lighting matrix and the surface infor-
mation.

Our pipeline adds the shadow on top of the shadow-free image, which is more
interpretable than putting all conditions in a single ControlNet. In addition, sep-
arating sky and shadow generation also leads to better results with incremental
learning.

Fig. 3. Pipeline of the proposed conditional diffusion model. Rectangles are image
space variables. Rhombuses are latent space variables.The yellow blocks are codes from
existing works. (Color figure online)

4.3 Architecture and Training Strategy

We denote the two conditions applied to the Surface Encoder and the Shadow
Encoder by c1 and c2 respectively. c1 is formed by concatenating the four chan-
nels - r, α, n, and h, which leads to the shape of (512, 512, 12). However, in the
stable diffusion model, the shape of the input to the down-sampling blocks in the
U-Net is (64, 64, 320). Since the ControlNet mechanism assumes the introduced
condition has the same shape as the input, we use an additional down-sampling
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network DN1(·) to convert the condition to match with the shape of the input.
Different from Zhang et al. [41] which uses a small network with several con-
volution layers for down-sampling, we use a more complicated down-sampling
network with ResNets [7] and self-attention layers [33]. The architectures of the
down-sampling networks are similar to the encoder E in the VQ-VAE of the stable
diffusion, except the first and the last convolution layers, whose channel num-
bers are determined by the input and output shapes. The output d1 = DN1(c1),
called as the Surface Feature, then acts as the first additional condition that is
applied to the U-Net using the ControlNet mechanism. The copied U-Net for
the Surface Feature is called the Surface U-Net.

For the Shadow Encoder, the condition c2 includes the normal, n with shape
(512, 512, 3) and the lighting, L with shape (9, 3). To form a single variable,
we reshape the lighting into a vector and replicate it on each pixel and get a
matrix of shape (512, 512, 27). Then it is concatenated with the normal to get the
condition of shape (512, 512, 30). In order to match the shape of (64, 64, 320), we
use a similar down-sampling network DN2(·) as the Surface Encoder to convert
to shape (64, 64, 320). The output d2 = DN2(c2), called as the Shadow Feature,
then acts as the second additional condition that is applied to the U-Net using
the ControlNet mechanism. The copied U-Net for the Shadow Feature is called
the Shadow U-Net.

In the latent space, outputs from both the ControlNets (Surface ControlNet
and Shadow ControlNet) are added together before adding to the U-Net of stable
diffusion. Our training pipeline shown in Fig. 3(a) is trained in two stages -

– Stage 1: Train the stable diffusion conditioned on the Surface Encoder.
– Stage 2: Train the stable diffusion conditioned on both the Surface Encoder

and the Shadow Encoder.

At the first stage, the parameters in the Surface Encoder, θ1 (including
the down-sampling network, zero-convolution layers and the Surface U-Net) are
trained by minimizing the noise prediction error conditioned on c1 as -

LSURFACE(θ1) = Ei′,x0=E(i′)[Et,ε [‖ε − εθ1(xt, t,DN1(c1))‖22]], (7)

where i′ is an image with removed shadow following Eq. 2. After the first stage
is trained, the conditional diffusion model learns to generate an image with the
sky and without shadow. Then the shadow is added to the generated image by
optimizing the parameters in the Shadow Encoder, θ2, with the noise prediction
loss conditioned on c1 and c2. This loss is formulated as -

LSHADOW(θ1, θ2) = Ei,x0=E(i)[Et,ε [‖ε − εθ1,θ2(xt, t,DN1(c1),DN2(c2))‖22]]. (8)

4.4 Relighting Pipeline

The high level pipeline for relighting/inference is shown in Fig. 2. The detailed
steps inside our conditional diffusion model is demonstrated in Fig. 3 (b). To
perform relighting of a 2D image i with a new lighting L′ using our proposed
method with a conditional diffusion model, the following steps are executed -
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1. Extract shadow, albedo, normal, residual, lighting by utilizing an existing sky
segmentation pipeline and inverse renderer as (s,α,n, r,L) = IR(i).

2. Obtain shading h based on the formula h = L′b(n(m)).
3. Form condition c1 by concatenating α,n,r,h and converting into the Surface

Feature d1 = DN1(c1).
4. Form condition c2 by reshaping L′ into a vector, expanding on each pixel and

concatenating with n. Then convert the condition into the shadow feature
d2 = DN2(c2).

5. Generate a random sample xT ∼ N (0, I).
6. Simulate p(xt−1|xt) by sampling until x0 is obtained, with the U-Net denoiser

εθ1,θ2(xt, t,d1,d2) and the two features d1 and d2.
7. Convert latent space image x0 into pixel space (Relighted image) by passing

through the decoder of the fixed VQ-VAE in the stable diffusion by i′ =
D(x0).

5 Experiments

We train our diffusion model on the training split of the MegaDepth dataset
[16]. MegaDepth is split to use 149 scenes (107992 images) for training, 17 scenes
(9544 images) for validation and 29 scenes (8984 images) for testing. To evaluate
the performance of our approach, we use the test split of the MegaDepth dataset
and the time-lapse images from the BigTime dataset [15].

Following Yu et al. [37], we use the predicted lighting from one image to
relight the scene in another image. There are no ground-truth for relighting
results in [16,26], so we mainly compare against the baselines qualitatively. We
however report quantitative results on the BigTime dataset [15]. For that, we
randomly choose 100 pairs of images from each of the 15 scenes of the dataset to
relight the source image with estimated lighting from the target image. In total,
the numerical results are reported on 1,500 pairs.

5.1 Implementation Details

We utilize a segmentation network [43] (PSPNet) and an inverse renderer [39]
to preprocess the images from the datasets. For each image, we perform center
cropping into a square and resize it into (512, 512, 3) with linear interpolation.
Then, the PSPNet [43] is used to generate the sky mask. With an image where
the sky is masked out, we run the inverse renderer from Yu and Smith [39] to
get the surface information (s,α,n, r,L) = IR(i).

We execute all training stages on four A100s with 80GB GPU memory. For
the training of the ControlNets in stage 1, we use the AdamW optimizer [18] for
50 epochs with the batch size as 16. The learning rate is 5×10−5 with a constant
warmup strategy for the first 500 steps. The parameters are loaded from Stable
Diffusion 1.5 [24] and T = 1000 is assumed. During training, the text prompt
of the stable diffusion is randomly chosen from “A high quality, detailed and
professional outdoor scene image without shadow” and an empty sequence. This
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approach makes the learned ControlNets recognize semantics from the images
instead of the prompts [41]. The setting in the second stage is the same, except
that the training is performed for 100 epochs with halved batch size and the
text prompt is randomly chosen from “A high quality, detailed and professional
outdoor scene image with shadow” and an empty sequence.

The inference of our conditional diffusion model is performed with DDIM
[29] for T = 100 timesteps. The text prompt is set to “A high quality, detailed
and professional outdoor scene image with shadow” for the text embedding in
the U-Net but the text guidance is disabled.

5.2 Cross Relighting

For each pair of images i1 and i2, we use the inverse renderer to get their lighting
conditions L1 and L2. If the inverse renderer is perfect, then with i1 and L2, the
ground-truth of relighting should be i2. However, no inverse renderer is perfect
so the ground-truth can not be obtained. We compare with the results from Yu
et al. [37]. We do not compare with [38] because [37] have shown better results.

Visual Evaluation: We show the effects of relighting on the MegaDepth
dataset [16] in Fig. 4. We choose images from the test split of the MegaDepth
dataset and relight the source images with the lighting conditions from other
images. Both our diffusion model and [37] are able to relight the source images
with the target lightings. But our generated images have better overall quality
and sky regions that are more consistent with the scene. In the first example of
Fig. 4, the sky segmentation is affected by the presence of tree branches, making
[37] fail in rendering reasonable results in the area. Our method generates an
image as a whole, compensating for the imperfectness from pre-processing. In the
third example, [37] generates artifacts in the boundary of skies, while relighting
image from our method is smoother between scene and sky. Our relighting result
in the fourth example shows the effects of white lighting thus creating an almost
clear sky and a bright image which looks much better than [37]. We include
two failure cases in the last two rows, with the problem that the color themes
may be off when relighting with diffusion models. In the last row, both methods
adjust the color based on the lighting condition, but the relighting result from
[37] is more aligned with the lighting sphere. Diffusion based relighting requires
stronger condition of the normal to achieve better contrast in the images. The
shadow rendering could be better which shows the limitation of the Shadow
Encoder. Image rendering from diffusion models with ControlNets is still depen-
dent on the fixed backbone, which could be improved in future works by also
training the latent diffusion model.

With pairs of time-lapse images from the BigTime [15] dataset, it is possible
to check the relighting performances with cross relighting i.e., to relight one
image with the lighting condition from the other image. Our comparison results
on the BigTime dataset are shown in Fig. 1 and Fig. 5. As shown in Fig. 1, we can
see that our method does not have unwanted artifacts in the sky when compared
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Fig. 4. Cross relighting results on the MegaDepth dataset [16]. The source images are
relighted using lighting conditions extracted from target images.
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Fig. 5. Cross relighting results on the BigTime dataset. The source images are relighted
using lighting conditions extracted from target images.

with [37]. This happens due to the fact that we use a single generative model to
relight the entire image as opposed to [37] which uses a SkyGAN. In the first and
the third rows of Fig. 5, we can see that the estimated lighting has an orange-ish
hue. The effects of the color of the lighting can be see in our final relighting
result but is missing in [37]. We use the last three rows to demonstrate failure
cases. Compared with [37], our method sometimes does not render with the
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correct color theme that follows the shading. In the last row, the target lighting
condition indicates a darker theme. Diffusion based relighting does produce a
darker scene, but the influence of the lighting condition is not strong enough to
render the target image. Even though ControlNets are usually strong conditions
applied to diffusion models, we may need stronger conditions to do relighting in
such cases.

Numerical Evaluation: We report numerical results using our method and
[37] on the BigTime dataset in Table 1. We use pixel-level and patch-level error
metrics (PSNR, L1 error, SSIM [34], LPIPS [42]) as well as image-level quality
metrics (IS [28], FID [8]). As ablation study, we tested two different variants of
the stable diffusion model - one where all the conditions were included in a single
ControlNet and our variant where we use two ControlNets. To be consistent
with the evaluation procedure of Yu et al. [37], we show results while masking
out the sky region. Additionally, we show results on the entire image as well.
Furthermore, to negate the effects of bias, we repeat our experiment three times
with three different random seeds and present the averaged numerical results.
We observed that the standard deviation for each metric is below 0.5%.

From Table 1, we can see that our our approach of using two ControlNets
is consistently better than the approach where all conditions are included in a
single ControlNet. Comparing with [37], we find that the relighting images with
our diffusion model have slightly worse error metrics (pixel-level and patch-level)
on the scene areas (as indicated by the first three rows of Table 1 corresponding
to the sky being masked out) but have an overall better quality metrics as whole
images as indicated by the last two rows of Table 1 corresponding to the sky being
included. This results from two factors - 1) Stable diffusion is not guaranteed to
preserve the image details, which is a known issue in its image-to-image pipeline
[6]. We will discuss more examples about this in Sect. 5.6. 2) The generated
images from stable diffusion are closer to real images, especially in the sky area.
This is evident with error metrics on the entire image (indicated by the last two
rows of Table 1).

While we report scores using traditional metrics such as PSNR, SSIM and
so on, it must be noted that to truly evaluate the effectiveness of generative
models, scores such as IS and FID are more reliable because they correlate well
with human perception [1]. Given the fact that our FID score is consistently lower
(whether or not the sky region is included), we can conclude that the proposed
method produces more realistic results compared to [37]. However, these metrics
do not necessarily correlate with the relighting performance of the methods.

In order to truly understand the impact of relighting, we further evaluate
the perceptual quality with a user study performed by 12 people on 50 images
randomly chosen from the BigTime dataset. We presented to the participants the
source image, the target illumination, relighting the source image with the target
illumination using [37] and the proposed method. We asked the participants to
compare the two relighting results and answer two questions: 1) Which image is
relit more accurately according to the target illumination and 2) Which image’s
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Table 1. Averaged numerical results for cross relighting on the BigTime dataset using
pixel-level metrics such as PSNR, L1 error, SSIM, LPIPS, image-level metrics such
as IS and FID, and results from our user-study. Considering the target illumination,
the results from the user-study are indicated using RL-US for showing which method
has better relighting capability and SK-US for showing which method has better sky
generation (both in terms of percentage). Some images in the test set do not have sky
and that is why SK-US does not add up to 100. The relighted images with our method
is comparable to those with [37] in terms of closeness to the target images, has better
visual quality measured by IS and FID, and based on the user study is comparable
when it comes to relighting and better when it comes to sky generation.

Sky Method PSNR L1 error SSIM LPIPS IS FID RL-US SK-US
(↑) (↓) (↑) (↓) (↑) (↓) (↑) (↑)

Masked Yu et al. [37] 20.21 0.065 0.75 0.17 3.35 26.11 - -
One ControlNet 19.20 0.076 0.67 0.22 3.65 22.53 - -
Ours 20.02 0.066 0.70 0.18 3.57 21.70 - -

Included Yu et al. [37] 16.11 0.13 0.68 0.31 3.76 34.86 50.83 40.17
Ours 16.50 0.12 0.62 0.31 3.84 24.65 49.17 55.50

sky has better quality taking into account the target illumination? The results
of the user study are shown with the suffix ‘-US’ in Table 1.

The user study reveals that while our method has comparable lighting con-
sistency as compared to state-of-the-art [37], it has much better rendering of the
sky region. We also find that the contrast of the images is better for [37] leading
to a slightly higher perceptual score for relighting.

5.3 Sky Generation

The most direct benefit of relighting with a single generative model is that the sky
generation will be more coherent to the scene. As shown in the first row of Fig. 4,
isolated sky generation in [37] usually creates random artifacts at the boundary
between sky and scene. The generated images from our diffusion model are much
more coherent at the boundary which contributes to better IS and FID scores
and validated by the user-study whose results are shown in Table 1. To measure
the advantages with additional numerical results, we generate sky masks for the
relighting images and compare with the original sky masks by intersection over
union (IoU). Our method obtains an IoU of 0.9905 as compared to [37] which
obtains an IoU of 0.9896. We note that the unwanted artifacts generated from
the SkyGAN in [37] are usually small in size, so the difference in IoU is also
small. But a difference of 0.001 implies more than 100 pixels for an 512 × 512
image, if the sky occupies 40% of the image.

5.4 Rendering with only Surface Encoder

To demonstrate the design of the two encoders in our pipeline, we execute our
rendering with only the Surface Encoder. For that, during sampling, we use
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Fig. 6. Rendering with Surface Encoder (w.o. shadow) and both Encoders (w. shadow).

Fig. 7. Relighting results with rotated lighting conditions.

the text prompt “A high quality, detailed and professional outdoor scene image
without shadow” for instructing the sampling. This disables the Shadow Encoder
and uses only the Surface Encoder. The results of using only the Shadow Encoder
on some samples from the BigTime dataset are shown in Fig. 6. We can see that
using only the Surface Encoder can render images without shadow and with a
coherent sky. We observe similar trends across other images in the dataset.
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Fig. 8. Relighting results with artificial lighting conditions.

5.5 Additional Relighting Results

The representation of spherical harmonics enables us to manipulate the lighting
conditions. For an image from [15], we rotate the lighting condition around the
z-axis by 10 evenly distributed degrees in [0, 2π]. The results are shown in Fig. 7.
We can see that the shadow generation follows the lighting direction, and the
sky is also coherent with the scene.

In addition, it is also possible to relight real 2D scene images with artifi-
cial lights. Figure 8 demonstrates relighting results under random sampled color
lights on outdoor scene images from the dataset of Rudnev et al. [26]. It can
be observed that the buildings and the skies follow the lighting conditions in
general.

5.6 Discussion

It is known that the stable diffusion is not guaranteed to preserve details for
image-to-image tasks [6]. This results from the compromise of representing
images in the latent space in order to accelerate training and inference. We
demonstrate this issue in Fig. 9. During relighting, some high frequency features
of the original images, such as small rectangles, can be lost. Although visually
plausible, this results in a gap in the error metrics in our comparison.

Recently, with the development of faster training and inference techniques,
there has been increasing interest in high-resolution image-space diffusion models
[30]. Image-space diffusion models usually have better generation qualities in the
details so it will solve this problem in our pipeline. Our contribution is orthogonal



Outdoor Scene Relighting with Diffusion Models 425

Fig. 9. Detail loss during relighting with our diffusion model.

to the choice of the backbone diffusion models, so we expect better results after
integrating with more advanced diffusion models.

6 Conclusion

In this work, we propose a novel approach to perform the rendering step in the
relighting pipeline for outdoor scenes with a conditional diffusion model. Our
diffusion model based relighting is achieved by adding a Surface Encoder and
a Shadow Encoder to the Stable Diffusion model using a ControlNet mecha-
nism. The Surface Encoder is used to render with the scene intrinsics except
the shadow and the Shadow Encoder is used to understand to generate the
shadow based on the scene normals and lighting. These two encoders are trained
in steps following the assumed rendering function. We found that our diffusion
model generates relighting images quantitatively comparable to existing works,
but with higher visual quality especially while generating the sky region. We
demonstrate relighting results with real and artificial lighting conditions.
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Abstract. The variational autoencoder (VAE) [17] is a well-studied,
deep, latent-variable model (DLVM) that optimizes the variational lower
bound of the log marginal data likelihood. However, the VAE’s known
failure to match the aggregate posterior often results unacceptable latent
distribution, e.g. with pockets, holes, or clusters, that fail to adequately
resemble the prior. The training of the VAE under different scenarios
can also result in posterior collapse, which is associated with a loss
of information in the latent space. This paper addresses these short-
comings in VAEs by reformulating the objective function to match the
aggregate/marginal posterior distribution to the prior. We use kernel
density estimation (KDE) to model the aggregate posterior. We pro-
pose an automated method to estimate the kernel and account for the
associated kernel bias in our estimation, which enables the use of KDE
in high-dimensional latent spaces. The proposed method is named the
aggregate variational autoencoder (AVAE) and is built on the theoretical
framework of the VAE. Empirical evaluation of the proposed method on
multiple benchmark datasets demonstrates the advantages of the AVAE
relative to state-of-the-art (SOTA) DLVM methods. Here is the link to
the code: https://github.com/Surojit-Utah/AVAE.

Keywords: Variational Autoencoders · Aggregate Posterior
Matching · Non-parametric Density Estimation

1 Introduction

The development of DLVMs is an important topic of research that is widely used
for generative modeling and representation learning. The VAE [17,31], a DLVM,
learns a joint distribution distribution, pθ(x, z), that captures the relationship
between a set of hidden variables, z, and the observed variables, x. VAEs model
the data distribution, pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(x | z)p(z)dz, by optimiz-

ing the parameters, θ, typically a deep neural network known as the generative
model/decoder. The VAE approximates the true posterior by a surrogate distri-
bution, qφ(z | x), that informs the objective function to use a latent subspace
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that is likely to maximize pθ(x | z). The parameters (φ) of the surrogate poste-
rior is another deep neural network known as the inference model/encoder. The
encoder (φ) and decoder (θ) parameters of the VAE are jointly optimized to
maximize the evidence lower bound (ELBO).

Despite strong theoretical foundations, the VAE fails in matching the aggre-
gate posterior qφ(z) =

∫
qφ(z | x)p(x)dx to the prior p(z) = N (0, I). The

mismatch between distributions results in clusters or holes in the latent space,
indicating regions strongly supported under the prior may have low density under
aggregate posterior [14,32] (and vice versa). The presence of holes increases the
mismatch between the learned, pθ(x), and real data distribution, p(x), leading to
the generation of low-quality samples. To alleviate this issue, methods in [2,42]
use a flexible prior, and the authors of [4] match the prior in two stages. An
additional regularization loss is added to the ELBO to match aggregate dis-
tributions that help in learning meaningful representations [43] and improved
disentanglement of latent factors [16]. The estimation of qφ(z) is challenging,
thus the methods in [16,43] uses an adversarial classifier or a kernel method,
e.g., MMD [9], to match the aggregate posterior to the prior, similar to the
Wasserstein autoencoders [41].

The posterior distribution of the VAE might collapse to the prior for a subset
or all of the latent dimensions during the training of VAEs. Under such scenarios,
the representations produced by the encoder on the collapsed latent dimensions
lack information that the decoder can use to reconstruct the input faithfully.
This phenomenon is known as the posterior collapse or the KL vanishing effect
[6,30,30]. We expect to encounter such degenerate solutions more often with the
β-VAE [13] that advocates the use of higher β values for the improved disen-
tanglement of the latent factors. The analysis in [14] explains the minimization
of the mutual information I(x; z) between the latent (z) and observed variables
(x) for higher β values. Several methods have been proposed to circumvent this
issue, such as the KL annealing strategy [6,28], explicit inhibition of the distri-
bution matching [30], use of complex priors [2,42], and special training policy
[11].

In this work, we address the limitations of the VAE by matching the aggregate
posterior to the prior in the ELBO framework derived from first principles. We
use KDE in the latent space to model the aggregate posterior, qφ(z). The use of
KDE in the AVAE helps in a better estimate of differences between distributions
relative to the adversarial training and kernel-based method used in [16,24,41,
43]. In addition to improvement in the quality of the generated samples, matching
the aggregate posterior to a prior finds potential application in the meaningful
interpretation of the latent generative factors [16,40], outlier detection [35], and
data completion [10,27]. Unlike other variants of the VAE that strive to match
marginal posterior to the prior [16,40,43], the proposed method does not require
additional regularization terms or hyperparameters to the objective function.
Moreover, we propose a heuristic that automatically adjusts the β value during
the training instead of empirically estimating the β for a dataset using cross-
validation. The potential benefits of using KDEs for matching distributions have
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been thoroughly studied in [35]. Though KDEs are used in [35] for matching the
aggregate posterior distribution to the prior, the objective function is not derived
in the general framework of DLVMs, and it is not well suited to high-dimensional
latent spaces, e.g., ≥ 50, which restricts its application for modeling complex
datasets, such as the CIFAR10 [18]. We correct the bias in KDE bandwidth
estimation that qualifies the AVAE to use KDE in high-dimensional latent spaces
(dimensions > 100).

The main contributions of this work are summarized as follows:

– Matching the aggregate posterior distribution to the prior in the VAE objec-
tive function using KDE without any modification of the ELBO.

– An automated method for estimating KDE bandwidth that allows using
KDEs in high-dimensional latent spaces (dimensions > 100).

– Evaluations showing that the AVAE addresses the shortcomings in the for-
mulation (pockets/clusters) and training (posterior collapse) of the VAE.

– The regularization scalar β is updated during training using the proposed
heuristic. Thus, the AVAE is free from tuning the hyperparameter, β.

– Empirical evaluation of the proposed method using different efficacy measures
on multiple benchmark datasets, producing results that compare favorably
with state-of-the-art, likelihood-based, generative models.

2 Related Work

Several extensions to the formulation of the VAE address known limitations, such
as alleviating posterior collapse [26,30], better matching of marginal posteri-
ors [16,40], and reducing over-regularization [2,42]. Methods matching marginal
posteriors are relevant to our work. These methods introduced an additional reg-
ularization term to the objective function [16,40] (along with a hyperparameter)
to encourage statistical independence of latent factors. An interesting analysis
of the VAE objective is done in [7] (RAE), which suggests that an autoencoder
with regularized decoder parameters is as good as the VAE.

The generative adversarial network (GAN) is another popular generative
model that implicitly matches distributions using a discriminator [8,29]. GANs
produce novel, realistic examples, such as images with sharp and distinct fea-
tures, which are difficult for even humans to identify as generated images [15].
Nevertheless, GANs do not produce a reliable matching form data samples into
the latent space [5], and there are significant challenges in optimizing the objec-
tive function of a GAN [1,20,25]. GANs are very particular about the architec-
ture of the discriminator, training strategy, and the associated hyperparameters
[33,37]. The adversarial autoencoder (AAE) [24] is a likelihood-based generative
model that implicitly matches the aggregate posterior in the latent space of an
autoencoder to a prior with the help of a discriminator.

WAEs [41] is another likelihood-based generative model that explicitly
matches the aggregate posterior to a prior in the latent space (unlike VAEs).
In the WAE, the Wasserstein distance between the data and generated distri-
bution is minimized by factoring the latent variable z in its formulation. The
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regularization term in WAEs is computed using two different strategies. In one
approach, a discriminator is used in the latent space, as in AAEs, and is known as
the WAE-GAN. In the other approach, the maximum mean discrepancy (MMD)
[9] is used to compute the divergence between distributions in the latent space,
known as the WAE-MMD.

3 Method

3.1 Background

The goal of a DLVM is to learn the joint distribution of the latent variables, z,
and the observed variables, x, such that the resulting (generative) distribution
closely approximates the true but unknown data distribution, pdata(x). In the
DLVM, pθ(x | z) learns the mapping from the latent space to observed space
using the samples generated by p(z) and model parameters θ. This setup is used
to generate new samples not present in the observed dataset. Thus, the aim is to
determine the correct setting of the parameters, θ, such that the probability of
each observed data, pθ(x), is maximized. The objective function of the DLVM
is defined as follows:

max
θ

Ex∼p(x) log pθ(x) = max
θ

Ex∼p(x) log
∫

pθ(x | z)p(z)dz

= max
θ,q

Ex∼p(x) log
∫ (

pθ(x | z)p(z)
q(z)

)

q(z)dz Expectation under the
proposal distribution, q(z) (1)

= max
θ,q

Ex∼p(x) logEz∼q(z)

(

pθ(x | z)p(z)
q(z)

)

by Jensen’s inequality, we get

≥ max
θ,q

Ex∼p(x)Ez∼q(z) log
(

pθ(x | z)p(z)
q(z)

)

= max
θ,q

Ex∼p(x)Ez∼q(z)

{

log (pθ(x | z)) − log
(

q(z)
p(z)

)}

= max
θ,q

Ex∼p(x)

{
Ez∼q(z) log (pθ(x | z)) − KL (q(z)||p(z))} . (2)

The objective function defined in 2 gives a lower bound on the data log
likelihood and is known as the evidence lower bound (ELBO).

Use of q(z | x) as the proposal distribution in Eq. 1 gives us the objective
function of the VAE [17,31]. The choice of the probability distribution for q is
a modeling choice, and for VAEs, it is typically a Gaussian distribution [17,31].
The VAE uses an inference network (also called a recognition model), qφ(z | x),
a deep neural network parameterized by φ that estimates the parameters of the
Gaussian distribution for any input xi, φ : xi → (μxi

,σ2
xi
I).
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Matching the conditional distribution qφ(z | x) to p(z) in VAEs often fails to
match the aggregate posterior in the latent space [14,32]. The mismatch leads
to, among other things, holes or pockets in the latent distribution that subse-
quently affects the quality of the generated samples. Increasing the strength
of the regularization term in the objective function of VAEs does not help
better match the aggregate posterior to the prior [13]. Instead, it results in
a scenario known as posterior collapse [22,23], where the conditional distribu-
tion qφ(z | x) matches to the prior p(z) for a subset of the latent dimensions.
Such degenerate solutions produce latent encodings that are no longer mean-
ingful, and the decoder tends to ignore z in the reproduced observed data,
resulting in poor reconstruction. This phenomenon is related to the identity,
KL (qφ(z | x)||p(z)) = I(x; z)+KL (qφ(z)||p(z)), where the I(x; z) is the mutual
information between the observed and latent variables. Thus, increasing the
strength of the KL term would lead to better aggregate posterior matching but
would lower the mutual information between the latent variables and the data.
Several variants are proposed [4,16,40] to circumvent these issues encountered
in the VAE that emphasizes matching the aggregate posterior to a prior.

3.2 Aggregate Variational Autoencoder (AVAE)

Instead of parametric distribution on the conditional probability, as used in
VAEs, we propose to represent the aggregate distribution using kernel density
estimation (KDE). KDE used to approximate the aggregate posterior distribu-
tion is defined as:

q(z) =
1
m

m∑

i=1

K

(
||z − z

′
i||

h

)

. (3)

Using KDEs, the probability at z for the proposal distribution is estimated
using m KDE samples, z

′
i, and the kernel, K, with an associated bandwidth,

h ∈ R
+. We use a random subset of the training data, X kde, that is shuffled every

epoch to produce KDE samples in the latent space, z
′
i = Eφ(x

′
i), where x

′
i ∈

X kde and Eφ is a deep neural network parameterized by φ, known as the encoder.
We use a deterministic encoder (ignoring the variances along the latent axes),
unlike VAEs. Through multiple empirical evaluations, we show that using a
deterministic encoder in the AVAE does not rob it of expressive power compared
to a regular VAE or its variants.

The ELBO objective function using KDE-based proposal distribution qφ(z)
is defined as follows:

max
θ,φ

Ex∼p(x)

{
Ez∼qφ(z) log (pθ(x | z)) − KL (qφ(z)||p(z))

}
. (4)

Equation 4 gives us the objective function of the AVAE. In comparison to the
proposal distribution in VAEs, KDE-based approximation matches the aggre-
gate posterior, qφ(z), to the prior, p(z), without any modifications to the ELBO
formulation. Compared to the β-TCVAE [40], the AVAE does not have a mutual
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information (MI) term in its objective function. The absence of the MI in the
AVAE also reduces the number of hyperparameters.

The random (data) variable x typically exists in high dimensions, and thus
the probability of pθ(x | z) is valid only for a small region in the latent space, i.e.,
pθ(x | z) is nonzero for a small region in the latent space. We use z = Eφ(x) as
an estimate to maximize log pθ(x | z) in Eq. 4. Considering this modeling choice,
the objective function of the AVAE then becomes:

max
θ,φ

Ex∼p(x) {log (pθ(x | Eφ(x))) − KL (qφ(z)||p(z))} . (5)

We use the multivariate Gaussian distribution or Bernoulli distribution as the
conditional likelihood distribution, pθ(x | z) in 5, depending on the dataset. The
parameters of the chosen distribution are estimated using another neural net-
work known as the decoder, Dθ, parameterized by θ. The objective function in
5 is optimized using the stochastic gradient descent (SGD) that jointly updates
the encoder and decoder parameters, φ and θ, respectively. The first term in the
objective function tries to reproduce the input as closely as possible using the
corresponding latent statistics (reconstruction loss), while the KL term (match-
ing the aggregate posterior to the prior) regularizes the model parameters.

The objective function of the AVAE is similar to that of WAEs, which have a
reconstruction term and a divergence penalty on the aggregate distribution over
latent representations. The divergence measure regulates the trade-off between
the reconstruction and latent regularization loss. Similar to WAEs, the AVAE
has the flexibility in choosing reconstruction cost terms by considering differ-
ent distributions for pθ(x | z). The divergence penalty in the AVAE is the KL
divergence, a particular case of the WAE. Nevertheless, the AVAE has provable
statistical properties of the latent space, and the proposed method has empir-
ically demonstrated its merit over the WAE under several evaluation metrics
discussed in subsequent sections.

Training: The objective function of the AVAE defined in 5 has two terms: the
reconstruction loss and KL-divergence-matching of the aggregate posterior to the
prior. The aggregate posterior, qφ(z), in the AVAE is represented using KDE. A
random subset of the training data X kde ∈ X train forms KDE samples that is
shuffled after every epoch. Remaining samples X sgd = X train − X kde are used
for optimizing the objective function 5 using the SGD that updates the model
parameters, φ and θ. Shuffling KDE samples in X kde in every epoch changes
the aggregate posterior, qφ(z), used in the AVAE objective function. However,
the evolving aggregate posterior does not impact (adversely) the training of the
AVAE, and the loss curves on multiple datasets demonstrate the stable opti-
mization of the AVAE objective function (refer to Fig. 1 in the supplementary).
Moreover, an update of the X kde and X sgd in every epoch results in better per-
formance of the AVAE (compared with a fixed X kde) under different metrics
across datasets (refer to Table 1 in the supplementary).

Without any loss of generality, we use the isotropic Gaussian kernel in KDE
for this work, which introduces a bandwidth parameter. There are many heuris-
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Algorithm 1 : AVAE training using stochastic gradient descent
Input: Data X , Latent dimensions l, KDE samples m.

1: Estimate the optimal kernel bandwidth hcorr
opt given (l, m)

2: Split X into training, X train, and validation data, X val

3: Random samples for KDE, X kde, and SGD samples, X sgd = X train − X kde

4: Random initialization of the encoder (φ) and decoder (θ) parameters
5: Get KDE samples, z

′
i = Eφ(x

′
i), where x

′
i ∈ X kde for the aggregate posterior, qφ

6: Initialize β ← 1
nval

∑nval
i=1 ‖x′′

i − x̂
′′
i ‖2, where x

′′
i ∈ X val

7: for number of epochs do
8: for number of minibatch updates do
9: Sample a minibatch of size nb from X sgd, X sgd

b = {x′′
1 , . . .x

′′
nb

}
10: Encode samples Zsgd

b = {z′′
1 , . . . z

′′
nb

}, where z
′′
i = Eφ(x

′′
i )

11: Update the encoder and decoder parameters, φ and θ, respectively, by opti-
mizing the objective function in 5 using stochastic gradient descent

12: Update KDE samples, z
′
i = Eφ(x

′
i) using the current state of the encoder

13: end for
14: β ← 1

nval

∑nval
i=1 ‖x′′

i − x̂
′′
i ‖2, where x

′′
i ∈ X val

15: New samples for X kde chosen at random and update X sgd = X train − X kde

16: Produce latent encoding z
′
i = Eφ(x

′
i) for the aggregate posterior, qφ, using KDE

17: end for

tics for estimating the kernel bandwidth used in KDE, and there is no established
solution for unknown distributions. Furthermore, the estimation of KDE band-
width is particularly challenging in high-dimensional latent spaces (dimensions
> 50). We present a bandwidth estimation method in Sect. 3.4 that uses the
knowledge of the prior distribution, p(z) = N (0, I), to estimate KDE band-
width for a given latent dimension and a given number of KDE samples. The
proposed bandwidth estimation technique can even scale to higher dimensional
latent spaces, i.e., dimensions > 100.

Several extensions of the VAE [6,28,34,38] propose automated ways to deter-
mine the hyperparameter β that balances the loss terms in the objective function.
In a similar vein, we propose a data-driven technique to determine β that bal-
ances the loss terms in the AVAE objective function. An outline of the training
of the AVAE is presented in Algorithm 1.

Estimation of β: The objective function of the standard VAE does not intro-
duce a hyperparameter to weigh the loss terms. However, it is a common practice
to assign weights to different terms in the objective functions [7,24,41] for vari-
ous reasons, such as stability in optimization and application-specific trade-offs.
Likewise, several variants of the VAE [13,40] use a hyperparameter, β, to control
the contribution of the loss terms in the objective function. It is often challeng-
ing to decide the appropriate value of these hyperparameters for a particular
model architecture, dataset, and other related settings for optimization. The
widely used strategy under these circumstances is to set the hyperparameter
value using cross-validation.
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To alleviate these issues, methods proposed in [34,38], among others, have
devised automated strategies to determine β. The method in [38] uses a PI
controller that manipulates the value of β as the learning progresses. Assuming
the decoder predicts the parameter of the multivariate Gaussian distribution,
[34] presents two approaches to learning the Gaussian variance, σ (equivalent to
learning β). In the first approach, an additional parameter is trained with the
encoder-decoder parameters to learn the trade-off factor, σ. In another approach,
the maximum likelihood estimate (MLE) determines the variance analytically.

Similar to these approaches, the proposed AVAE optimization sets beta β to
weight the gradient of the regularization term relative to the reconstruction loss:

β ← 1
nval

nval∑

i=1

‖x′′
i − x̂

′′
i ‖2, (6)

where x
′′
i is an example in the validation set, X val ∈ X , and x̂

′′
i is the corre-

sponding reconstructed sample produced by the decoder. Relative to [38], the
proposed approach is simple yet effective, as demonstrated by the empirical eval-
uations. The update of β during the training of the AVAE on multiple datasets
is reported in the supplementary (Fig. 1). Moreover, this formulation can be
extended to any distribution chosen for the log conditional likelihood, p(x | z),
rather than being limited to only a Gaussian, as in [34].

3.3 Properties of the Aggregate Posterior of the AVAE

Considering the standard normal distribution, N (0, I), as the prior distribution,
p(z), we analytically derive the expected aggregate posterior distribution of a
trained AVAE. For a trained AVAE model, we assume the gradient of the objec-
tive function (5) w.r.t to latent encodings, z

′′
i ’s (refer to Algorithm 1), is zero. In

our analysis, we consider only the KL divergence term in the objective function.
Setting the derivative of the KL(qφ(z

′′
)||p(z′′

)) to 0, we derive the same expres-
sion as in equation 5 of [35]. Following the steps in [35], we prove the aggregate
posterior distribution of the AVAE is N (

0, I(1 − h2)
)
, in expectation, where h

is KDE bandwidth. The proof is also consistent with the known properties of
KDEs generally—KDEs introduce a bias that is characterized by a convolution
of the kernel with the underlying distribution.

3.4 KDE Bandwidth Estimate

Estimating KDE bandwidth can be challenging, and solutions in the literature
are often related to particular applications. Many heuristics are proposed for
bandwidth estimation under general circumstances [39]. However, here, we use
the knowledge of the prior distribution, p(z) = N (0, I), to our advantage for
estimating KDE bandwidth used for modeling the aggregate distribution in the
latent space, qφ(z). We devise an objective function such that the empirical
aggregate distribution, qφ(z), in the latent space approaches the target distribu-
tion, p(z) = N (0, I), as the system converges. Thus, we set the kernel bandwidth
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hopt to minimize the KL divergence between the analytical prior distribution and
KDE of a finite set of samples from the prior distribution, as follows:

hopt = min
h

KL (p(z)||qφ(z)) = max
h

Ez∼p(z)qφ(z), (7)

with latent dimension, l, and a number of KDE samples, m. In this optimization
problem, we use samples from the p(z) = N (0, I) such that the probability of
the samples is maximized w.r.t the aggregate posterior, qφ(z). Table 1 reports the
optimum bandwidth, hopt, for different scenarios. We use gradient-based opti-
mizers, such as Adam, to learn the single parameter, hopt in 7. We observe in
Table 1 that for higher latent dimensions with limited KDE samples (e.g., start-
ing at l = 40 with m = 500), the optimal bandwidth is greater than the standard
deviation of the prior distribution, hopt > 1.0. Given the known bias KDE intro-
duces in the AVAE optimization, optimizing the encoder under these conditions
would degenerate to samples converging at the origin (posterior collapse).

Given hopt, we know from Sect. 3.3 that the distribution in the latent space
of the AVAE converges to N (

0, I(1 − h2
opt)

)
, where (1−h2

opt) is bias introduced
by KDE. However, we could not consider N (

0, I(1 − h2
opt)

)
as the target distri-

bution, p(z), for optimization of the objective function in 7, as hopt is unknown.
We hypothesize that this is one of the reasons for the optimal bandwidth hopt to
be greater than the standard deviation of the prior distribution in bigger latent
spaces (Table 1). Thus, we must factor in the bias, (1 − h2

opt), introduced by
KDE to estimate the bandwidth. To this end, we propose to use a scaled version
of the target distribution, N (

0, α2I
)
, for optimization of the objective function

in 7, where the scaling factor α is unknown. We need to estimate the optimum
bandwidth for N (

0, α2I
)
. Given hopt as the optimum bandwidth for N (0, I),

the estimated bandwidth for N (
0, α2I

)
is αhopt by linear property of the Gaus-

sian distribution. Moreover, we know (from Sect. 3.3) that with αhopt as KDE
bandwidth, the latent distribution of the AVAE would have a bias, 1− (αhopt)2,
at convergence. We use this property to solve for the scaling factor, α, where
we set the variance equal to the bias, α2 = 1 − (αhopt)2, to get the scaling that
accounts for both the ideal optimal bandwidth and the bias:

α2 =
1

1 + h2
opt

. (8)

This simple but elegant strategy of handling the bias in KDE addresses the chal-
lenge of estimating KDE bandwidth in high-dimensional latent spaces. Notice
that because 0 ≤ α ≤ 1.0, we avoid mode collapse because the system only
degenerates (hopt → ∞) as the number of samples goes to zero or the dimen-
sionality goes to infinity.

With the bias scaling factor, α, we get estimates of the bias-corrected KDE
bandwidth (hcorr

opt = α ∗ hopt) reported in Table 1, which are the scaled versions
of the optimum bandwidth hopt (Eq. 7). In the revised estimate, the optimal
bandwidth is less than the standard deviation of the prior distribution, hcorr

opt <
1.0, for all dimensions in Table 1, as expected. The bias-corrected bandwidth
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Table 1. Optimal bandwidths, hopt (estimated using the objective function defined in
7) and corresponding bias-corrected estimations hcorr

opt (hopt scaled by the factor α) for a
given latent dimension (l) and number of KDE samples (m). The estimated bandwidth
increases with increasing dimensions (vertical) and decreases with increasing sample
size (horizontal). For higher latent dimensions with limited KDE samples (e.g., starting
at l = 40 with m = 500), hopt > 1.0. However, the bias-corrected bandwidth hcorr

opt < 1.0.

m = 500 m = 1000 m = 2000 m = 5000 m = 10000

l hopt hcorr
opt hopt hcorr

opt hopt hcorr
opt hopt hcorr

opt hopt hcorr
opt

10 0.74 0.60 0.70 0.58 0.67 0.56 0.63 0.53 0.60 0.51

20 0.89 0.67 0.86 0.65 0.84 0.64 0.80 0.62 0.78 0.61

40 > 1.0 0.72 > 1.0 0.71 0.98 0.70 0.95 0.69 0.93 0.68

50 > 1.0 0.73 > 1.0 0.72 > 1.0 0.71 0.99 0.70 0.98 0.70

70 > 1.0 0.74 > 1.0 0.74 > 1.0 0.73 > 1.0 0.73 > 1.0 0.72

100 > 1.0 0.76 > 1.0 0.75 > 1.0 0.75 > 1.0 0.74 > 1.0 0.74

encourages the use of KDEs in bigger latent spaces (e.g., dimensions ≥ 50) that
makes the AVAE appropriate for modeling complex datasets (a limitation in the
previous KDE-based aggregate matching [35]).

4 Experiments

4.1 Experimental Setup

Benchmark Methods: In comparisons, we consider the conventional VAE [17]
and other variations of VAE that modify the original formulation in an attempt
to match the aggregate posterior to the prior [16,40]. Among others, β-TCVAE
[40] is the closest to the AVAE formulation, as the objective function does not
introduce any additional, ad-hoc loss terms. The RAE [7] is chosen as one of
the baseline models due to its performance on multiple benchmark datasets.
Other maximum likelihood-based models such as the AAE [24] and WAE [41]
match aggregate posterior in the latent space of a deterministic autoencoder.
The AAE [24] implicitly matches aggregate distributions using a discriminator
in the latent space. We use the WAE-MMD (with IMQ kernel) in our analysis
due to the stability in training. We study the VAE [17], β-TCVAE [40], RAE
[7], AAE [24], and WAE-MMD [41] as competing methods to the AVAE.

Evaluation Metrics: Ideally, the evaluation of a DLVM should include a com-
parison of the model’s data distribution and that of the true data. Of course, this
is infeasible because true data distribution is unknown. Many methods use the
quality of the samples produced by the models in the observed space as a proxy
for the actual distribution. In this work, we use the Fréchet Inception Distance
(FID) [12] to quantify the quality of the samples. In addition, we evaluate the
data distributions learned by different models using the precision-recall metric
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Table 2. FID [12], and precision-recall [36] scores of competing methods. The best
score is in bold, and the second best score is underlined.

Methods MNIST (l = 16) CelebA (l = 64) CIFAR10 (l = 128)

FID ↓ Precision↑ Recall↑ FID↓ Precision↑ Recall↑ FID↓ Precision↑ Recall↑
VAE 28.78 ± 0.48 0.88 ± 0.04 0.97 ± 0.00 49.89 ± 0.57 0.79 ± 0.03 0.75 ± 0.03 147.74 ± 0.81 0.50 ± 0.03 0.47 ± 0.02

β-TCVAE 50.62 ± 1.19 0.82 ± 0.03 0.95 ± 0.01 50.14 ± 0.78 0.78 ± 0.02 0.70 ± 0.05 180.94 ± 1.16 0.30 ± 0.01 0.41 ± 0.03

RAE 18.79 ± 0.31 0.87 ± 0.01 0.95 ± 0.02 48.81 ± 1.02 0.81 ± 0.02 0.77 ± 0.04 94.34 ± 1.58 0.74 ± 0.02 0.47 ± 0.04

AAE 19.51 ± 1.77 0.85 ± 0.03 0.96 ± 0.01 49.32 ± 0.25 0.86 ± 0.01 0.75 ± 0.03 100.00 ± 1.40 0.71 ± 0.03 0.56 ± 0.04

WAE 25.42 ± 1.19 0.92 ± 0.03 0.92 ± 0.01 72.01 ± 2.26 0.64 ± 0.05 0.75 ± 0.02 140.49 ± 0.64 0.42 ± 0.01 0.31 ± 0.05

AVAE 13.27 ± 0.34 0.92 ± 0.02 0.98 ± 0.00 46.0 ± 0.42 0.88 ± 0.02 0.85 ± 0.02 90.93 ± 6.65 0.72 ± 0.05 0.67 ± 0.04

[36], where the precision evaluates the quality of the generated samples, and
the recall assesses whether the model data distribution captures the variations
present in the original but unknown data distribution. Besides the attributes of
the model data distribution, we evaluate the properties of the latent representa-
tions of the competing methods. In particular, we are interested in the presence
of holes in the latent distribution, and we use entropy of the aggregate posterior
distribution as an indicator of holes/clusters. We train each method 5 times on
a dataset for all empirical evaluations, initialized differently in every run.

Datasets: We use several popular benchmark datasets, MNIST [19], CelebA
[21], and CIFAR10 [18] for empirical evaluation of different methods. To address
the dataset’s complexity, the size of the latent space, neural network architec-
tures, model-specific hyperparameters, and other optimization parameters are
altered accordingly. Details of the neural network architectures and other param-
eter settings for all the benchmark datasets used by the competing methods are
reported in Sects. 2.1 and 2.2 in the supplementary material.

4.2 Results

Evaluation of the Model Data Distribution. We quantitatively evaluate
the generated samples in this experiment using the FID scores [12] on multiple
benchmark datasets. A lower FID score indicates better matching of the data
distributions. Besides the FID metric, we evaluate the diversity and quality of
the generated samples using the precision-recall metric [36]. A higher precision
indicates good quality of the generated samples, and a higher recall suggests that
the model data distribution covers the modes present in the true data distribu-
tion. Except for the RAE, all the methods considered in this experiment use
N (0, I) as the prior distribution. For the RAE, we approximate the distribution
in the latent space by the Gaussian distribution. Parameters of the Gaussian dis-
tribution derived from the latent representations are used to generate new data
samples. We know that the latent distribution for the AVAE convergences to
N (

0, I(1 − h2)
)
, where h is KDE bandwidth (Sect. 3.3). Therefore, we use sam-

ples drawn from the distribution, N (
0, I(1 − h2)

)
, to evaluate the generative

capability of AVAEs. For a fair comparison, we have used the hyperparameter
settings suggested by the author or recommended in the literature.
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Table 3. Mean entropy of the qφ
w(z) produced by competing methods on the bench-

mark datasets. The best score is in bold, and the second best score is underlined. The
entropy of the standard normal distribution is used as the ground truth.

Method MNIST (l = 16) ↑ CelebA (l = 64) ↑ CIFAR10 (l = 128) ↑
VAE 4.71 ± 0.14 28.88 ± 0.03 29.56 ± 0.39

β-TCVAE 3.44 ± 0.39 28.42 ± 0.05 15.02 ± 0.69

RAE 4.89 ± 0.06 27.08 ± 0.09 49.92 ± 0.31

AAE 5.81 ± 0.18 30.49 ± 0.03 54.21 ± 0.36

WAE 4.67 ± 0.09 28.32 ± 0.05 48.10 ± 0.45

AVAE 7.56 ± 0.10 30.96 ± 0.02 55.64 ± 0.00

Standard Normal 8.00 32.00 64.00

The FID and precision-recall scores are reported in Table 2. The VAE does
reasonably well for the MNIST and CelebA datasets. However, its performance
drops significantly for the complex CIFAR10 dataset. Despite the importance
given to match the aggregate posterior in the β-TCVAE (β = 2 for compara-
ble reconstruction loss), it fails to address the shortcomings of the VAE. Fur-
thermore, the performance of the β-TCVAE is poorer than the regular VAE.
These results manifest the limitations in the formulation of the VAE (objec-
tive function and modeling assumptions) to model the data distributions. Other
DLVMs (AAE, WAE, and AVAE) matching the aggregate posterior to the prior
using a deterministic autoencoder do better than VAEs, in general. The AAE
(aka WAE-GAN) closely follows the best performing methods under different
evaluation metrics. We hypothesize that the kernel-based method used in WAE
(WAE-MMD) to evaluate the mismatch between distributions is possibly leading
to poor performance (justified by low entropy scores in Table 3), as the recon-
struction error is comparable to all other methods (refer to the MSE per pixel
in Table 5 of the supplementary material). The performance of the WAE gets
worse for the CIFAR10 dataset using high-dimensional latent space l = 128. The
performance of the RAE is promising across all datasets under different evalua-
tion scenarios. The generative capability of the AVAE is the best among all the
considered methods for all the benchmark datasets under different evaluation
metrics studied in this work, except for the precision on the CIFAR10 dataset
(the second best). It is important for any generative model to capture the modes
present in a dataset, indicated by high recall scores. The AVAE consistently out-
performs other methods under the recall metric, resulting in the best FID scores
under all evaluation scenarios.

We investigate the poor performance of the VAE and β-TCVAE on the
MNIST and CIFAR10 datasets. Other than the CelebA dataset, we observe
the reconstruction loss of the VAE and β-TCVAE to be relatively higher than
other methods (refer to Table 5 in the supplementary material). On further anal-
ysis, we discovered that both the VAE and β-TCVAE suffer from the posterior
collapse when trained on the MNIST and CIFAR10 datasets (refer to Sect. 2.3 in
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the supplementary). For the MNIST dataset, 4 and 7 (out of 16) latent dimen-
sions collapsed for the VAE and β-TCVAE, respectively. Collapsed dimensions
reduce the bottleneck capacity of a DLVM, resulting in higher reconstruction
loss. The posterior collapse subsequently impairs the VAE and β-TCVAE to
model the data distributions, leading to the worst FID scores for the β-TCVAE
on the MNIST and CIFAR10 datasets, followed by the VAE.

Entropy of the Aggregate Posterior Distribution. In this experiment,
we evaluate deviations of the resultant aggregate distribution, qφ(z), beyond
the second moment (other than the mean and covariance), as we would expect
from holes or clusters in the distribution. For this, we use the entropy of the
aggregate posterior distribution to quantify how close it is to Gaussian, after
whitening the distribution, qwφ (z), to remove the effects of the second moment
mismatch. Because the Gaussian distribution has the maximum entropy (for a
given mean and covariance), we use the entropy of the whitened data. Entropy
is defined as

H(z) = Ez∼qw
φ (z)

{− log
(
qwφ (z)

)} ≈ 1
m

∑

j

1
m − 1

∑

i�=j

K

(
||zj − z

′
i||

h

)

, (9)

where qwφ (z) is the aggregate posterior distribution over the whitened data. We
use KDE (defined in 3) for estimating the density qwφ (z) for all methods because it
can, in principle model the deviations we are seeking to evaluate. The bandwidth
h required in KDE for the latent dimensions l = {16, 64, 128} (for different
datasets) and KDE samples m = 10K is derived using the strategy defined in
Sect. 3.4. The entropy computation uses the held-out set of the datasets studied
in this work. The entropy of the standard normal distribution (leaving out the
constants) derived analytically serves as the ground truth.

Fig. 1. The metric multidimensional scaling (mMDS) [3] plot in 2D of the latent rep-
resentations (Z ∈ R

16) produced by the VAE [17], β-TCVAE [40] and the AVAE
(proposed method) on the MNIST dataset [19]. Samples from the target distribution,
N (0, I), are used as the ground truth. The regions of low probability and unwanted
aggregation of data points in different parts of the latent space of the VAE and β-
TCVAE clearly show the mismatch with the ground truth. The AVAE closely matches
the target distribution corroborated by empirical evaluations.
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Table 4. Comparison of the performance of the AVAE with different number of KDE
samples under multiple metrics for the MNIST and CAIFAR10 datasets.

KDE samples MNIST (l = 16) CIFAR10 (l = 128)

FID ↓ Precision↑ Recall↑ MSE↓ FID↓ Precision↑ Recall↑ MSE↓
1000 14.26 ± 0.23 0.89 ± 0.04 0.97 ± 0.00 0.0033 ± 0.0002 95.07 ± 5.52 0.75 ± 0.05 0.66 ± 0.03 0.0083 ± 0.0032

2000 13.09 ± 0.73 0.88 ± 0.03 0.97 ± 0.01 0.0034 ± 0.0002 99.88 ± 15.32 0.70 ± 0.11 0.67 ± 0.02 0.0064 ± 0.0002

5000 13.64 ± 1.24 0.89 ± 0.02 0.98 ± 0.01 0.0048 ± 0.0010 103.89 ± 5.21 0.59 ± 0.04 0.68 ± 0.04 0.0065 ± 0.0003

10000 13.27 ± 0.34 0.92 ± 0.02 0.98 ± 0.00 0.0041 ± 0.0004 90.93 ± 6.65 0.72 ± 0.05 0.67 ± 0.04 0.0062 ± 0.0002

From the results reported in Table 3, we observe that the entropy scores of
the VAE and β-TCVAE are far off from the ground truth for the MNIST and
CIFAR10 datasets even using the whitened latent representations. Low entropy
scores of the VAE and β-TCVAE can be attributed to the formation of clusters
as observed in Fig. 1 (refer to Sect. 2.3 in the supplementary for more results).
Besides the posterior collapse, the entropy scores offer another perspective to
explain the high FID scores of the generated samples produced by the VAE and
β-TCVAE for the MNIST and CIFAR10 datasets. Poor FID scores of the WAE
can be related to the low entropy values across datasets. The low entropy scores
of the RAE are not surprising because it does not attempt to match any prior
distribution in the latent space. However, the regularization approach in the
RAE is more effective than the VAE. The AAE has entropy scores comparable
to the AVAE, and it also helps us comprehend the consistent FID scores of the
generated samples. The best entropy score of the AVAE for all the datasets
indicates the close matching of the aggregate posterior to the prior, as shown in
Fig. 1, where we do not observe clustering of the latent representations.

Ablation Study. In this experiment, we study the effect of the number of
KDE samples on the performance of the AVAE under different evaluation met-
rics. The number of KDE samples used in the ablation study is m = 1K, 2K, 5K,
and 10K for the MNIST and CIFAR10 datasets. We report the FID, precision-
recall scores, and the reconstruction loss, i.e., the mean squared error (MSE)
per pixel in Table 4. The AVAE produces comparable results with a very few
KDE samples, m = 1000, even in high-dimensional latent space (l = 128 for
the CIFAR-10 dataset). The stable optimization of the AVAE objective func-
tion with fewer KDE samples, such as m = {1K, 2K} for the MNIST and
CIFAR10 datasets, corroborates the accuracy and robustness of the proposed
KDE bandwidth estimation technique. Overall, the performance of the AVAE
under multiple metrics is slightly better with higher KDE samples. Therefore,
we use m = 10K, 20K, and 10K for the MNIST, CelebA, and CIFAR10 datasets
for all the evaluations reported in the paper.

5 Conclusion

We propose a novel algorithm, the aggregate VAE (AVAE), based on the frame-
work of the VAE to match the aggregate posterior distribution to the prior
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using KDE. Using the known properties of the prior distribution, we devised a
method to estimate KDE bandwidth in high-dimensional latent spaces (dimen-
sions > 100) that allows the modeling of complex datasets using the AVAE. The
dynamic adjustment of the scaling factor, β, using the validation data avoids the
hyperparameter tuning using cross-validation. The training of the AVAE does
not suffer from the posterior collapse, as in VAEs and β-TCVAEs, and we avoid
such failures without the modification of the ELBO formulation [2,30,42] and
use of any complex training schedules [6,11,28]. We demonstrate the efficacy of
the proposed method on multiple datasets, and the AVAE consistently outper-
forms the competing methods under different evaluation metrics. Close matching
of the aggregate latent distribution to the prior with comparable reconstruction
loss resulted in the best FID, precision, and recall scores for the AVAE. High
entropy scores for the AVAE indicate that the latent representations are close to
Gaussian and have a lower chance of encountering holes/clusters in the distribu-
tion. Through extensive empirical evaluation, we demonstrate the effectiveness
of KDE in matching distributions in high-dimensional latent spaces compared to
other methods, such as the kernel-based method used in the WAE-MMD and the
discriminator in the AAE. In the AVAE, the cardinal latent axes do not represent
the generative factors, unlike the regular VAE, due to matching the aggregate
posterior to isotropic Gaussian, invariant to rotation. We plan to study this issue
and devise a statistical method to identify the latent explanatory vectors.
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Abstract. Directed Acyclic Graphs (DAGs) are foundational in
machine learning, causal inference, and probabilistic modeling. Recov-
ering the underlying DAG structure from observational data is crucial in
these areas. The DAG learning can be approached as a constrained opti-
mization problem with a continuous acyclicity constraint, often solved
iteratively through sub-problem optimization. A recent breakthrough has
shown that the set of DAGs can be represented as the weighted gradi-
ents of graph potential functions. Hence, one may search for a DAG
in the equivalent space, whereby the acyclicity constraint is guaranteed
to be satisfied. However, the original work, DAG-NoCurl, is limited to
(generalized) linear structural equation models (SEMs) where explicit
weighted adjacency matrices are defined. Herein, we theoretically derive
a nonlinear projection formulation and propose an efficient two-step non-
linear DAG learning method, which we coined DAG-NCMLP. The pro-
posed approach first obtains a non-acyclic graph and then projects it to
the equivalent space of DAGs to obtain the acyclic graph. Experimental
studies on benchmark datasets demonstrate that our proposed method
provides similar accuracy, if not better, compared to state-of-the-art non-
parametric DAG learning methods with hard-constrained optimization,
while substantially reducing the computational time.

Keywords: Causal Discovery · Structure Learning · Directed Acyclic
Graphs

1 Introduction

Directed Acyclic Graphs (DAGs) are foundational in numerous fields, including
machine learning [19,28], causal inference [20], and probabilistic modeling. Their
acyclic nature provides a clear directionality, making them ideal for represent-
ing causal relationships among variables within a system. Learning the DAG
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structure from observational data is crucial for uncovering causal mechanisms,
making predictions, and understanding complex systems. However, the DAG
learning problem is NP-hard, and the DAG space grows super-exponentially
with the number of variables [1]. Zheng et al. (2018) [37] proposes a continuous
DAG constraint, transforming the combinatorial optimization problem of DAG
learning into a constrained continuous optimization problem. This formulation
opens the door to employing various continuous optimization techniques from
deep learning [12,13,15,16,32].

While achieving state-of-the-art accuracy on synthetic and real data, meth-
ods developed using the continuous optimization framework with the continuous
DAG constraint face challenges in scaling to large datasets with thousands of
variables due to their time-consuming nature. One of the primary reasons for
this inefficiency is the use of the augmented Lagrangian method to enforce the
continuous DAG constraint, as proposed by Zheng et al. (2018) [37]. This pro-
cedure transforms the constrained optimization problem into a sequence of soft-
constrained optimization sub-problems, which are solved iteratively. To address
this efficiency issue, Yu et al. (2021) [34] propose a novel approach that learns
the DAG without any explicit acyclicity constraint. Their method projects the
DAGs into an equivalent set and optimizes the solution for the DAG param-
eters within this admissible set. Consequently, the DAG learning problem can
be formulated as a continuous optimization problem without an explicit acyclic-
ity constraint, avoiding the need to directly solve the constrained optimization
problem using the time-consuming augmented Lagrangian method.

While Yu et al. (2021) [34] demonstrates significant efficiency improvements,
it is built upon the linear Structure Equation Model (SEM), where parameters
are represented as a weighted adjacency matrix. This formulation cannot be
directly applied to nonlinear SEMs with the non-parametric formulation, which
uses a gradient-based adjacency matrix representation. Consequently, its per-
formance in terms of accuracy may suffer when applied to complex nonlinear
SEMs. To address this limitation, we propose applying the concept of DAG
projection to nonlinear SEMs. Specifically, we theoretically establish that an
equivalent set of gradient-based adjacency matrices exists and introduce a novel
two-step approach to optimizing the solution within this equivalent set search
space. Empirical studies demonstrate that our proposed approach achieves a sig-
nificant efficiency gain over other state-of-the-art nonparametric DAG learning
models.

Main Contributions. This paper presents three contributions. 1) We theoretically
derive a non-parametric projection formulation for gradient-based adjacency
matrices, thereby extending the projection framework’s applicability beyond
weighted adjacency matrix representation. 2) Building on this non-parametric
projection formulation, we introduce a two-step DAG learning approach, referred
to as DAG-NCMLP. 3) We empirically demonstrate the effectiveness of our pro-
posed project-based nonparametric DAG learning algorithm on benchmark syn-
thetic and real datasets. Our method significantly enhances computational effi-
ciency while maintaining comparable accuracy to state-of-the-art DAG learning
methods.
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2 Related Work

The gold standard for establishing causality between variables in an intelligent
system is intervention through controlled experiments. However, conducting such
experiments is often impractical due to cost or feasibility constraints. As a result,
recent studies have focused on recovering causal relationships solely from obser-
vational data. Causal discovery involves identifying causal relationships among
a set of random variables in the form of DAGs using observational data.

The traditional causal discovery algorithms can be broadly categorized into
two groups: constraint-based methods and score-based methods. Constraint-
based methods estimate the DAG by conducting independent tests between
variables. Popular algorithms in this category include PC [27], FCI [28,36],
and IC [21]. On the other hand, score-based methods involve pre-defining a
score function and searching the DAG space for a DAG with the optimal score.
The differences among score-based methods lie in their search procedures, which
can include hill-climbing [9,30], forward-backward search [1], dynamic program-
ming [26], A∗ [35], and integer programming [2,11]. Other widely used DAG
learning methods include topological order-based search [4,6,25,29] and sam-
pling [3,5,7,8,14,18,31].

Structure equation model-based methods encode statistical and causal depen-
dencies through SEMs. Zheng et al. (2018) [37] introduced a continuous DAG
constraint and the NOTEARS algorithm, which reformulates the original combi-
natorial DAG learning problem as a constrained continuous optimization. This
conversion enables the use of continuous optimization techniques, as demon-
strated in subsequent works such as [12,15], and [32]. Since then, several studies
have extended the continuous DAG-constrained optimization formulation from
linear models to nonlinear and nonparametric models [6,13,32,38]. To address
the efficiency issues in these methods arising from the time-consuming aug-
mented Lagrangian method used to enforce acyclicity, Ng et al. (2020) [16] and
Yu et al. (2021) [34] have investigated learning frameworks that do not require
an iterative process. Ng et al. (2020) [16] proposes training the framework with a
soft acyclicity constraint, while Yu et al. (2021) [34] suggests projecting the DAG
into an equivalent set that guarantees acyclicity. However, both works focus on
the linear SEM setting. To the authors’ best knowledge, this paper is the first
attempt at developing an efficient continuous optimization approach without the
iterative process for the nonlinear SEM setting.

3 DAG Projection Under Nonparameteric SEM

In this section, we provide the theoretical results of the DAG projection frame-
work under the nonlinear SEM. These theoretical results will serve as the funda-
mental for developing the proposed algorithm in Sect. 4. With basic and neces-
sary concepts introduced in Sect. 3.1, our theoretical contribution will be entailed
in Sect. 3.2.
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3.1 Preliminary

Nonlinear SEM. Let X denotes a set of d numbers of random variables, X =
(X1, · · · ,Xd) ∈ R

d. The causal relations between a variable Xj ∈ X and its
parents can be modeled via SEM:

Xj = fj(Xπj
) + Ej , j = 1, 2, · · · , d (1)

where fj(·) is the nonlinear structural causal function. Xπj
are the parent vari-

ables of Xj . Ej is the exogenous noise variable corresponding to variable Xj .
Together they account for the effects from all the unobserved latent variables
and are assumed to be mutually independent [22].

DAG Learning under Nonlinear SEM. To learn a DAG G from a given joint
distribution, X is modeled via SEMs defined by a set of continuous parameters
A = (A1, A2, · · · , Ad) that encode all the causal relations, as outlined in Eq. (2),

Xj = fj(X;Aj) + Ej , j = 1, 2, · · · , d (2)

where Aj are the parameters in the nonlinear SEM for selecting parent vari-
ables Xπj

for variable Xj . Similar to prior works [13,38], we employ neural
networks, in particular MLPs, to parameterize the nonlinear causal functions
f = (f1, f2, · · · , fd). For fj , we have

fj(X;Aj) = A
(H)
j σ

(
· · · σ(

A
(2)
j σ(A(1)

j X)
) · · ·

)
(3)

where Ah
j represents the parameters for hth layer in the MLP for Xj . We denote

Aj := (A(1)
j , A

(2)
j , · · · , A

(h)
j , · · · , A

(H)
j ). Since A in the nonlinear SEM is not a

weighted adjacency matrix with d by d dimensions, the DAG learning formula-
tion that satisfies Eq. (2) and Eq. (3) is also known as nonparametric SEM
according to [38]. We denote the A in the nonlinear SEM as the gradient-based
adjacency matrices. We encode the causal dependencies in the first layers of
MLPs, i.e., A

(1)
1 , A

(1)
2 , · · · , A

(1)
d . We can obtain a weighted adjacency matrix

W (A) ∈ R
d×d using the first layer weights, i.e., W (A)[k, j] =

√∑
b(A

(1)
j [b, k])2.

If there exists a causal link from variable Xk to Xj , then W (A)[k, j] > 0. Oth-
erwise, we have W (A)[k, j] = 0 and equivalently A

(1)
j [b, k] = 0 for all b.

Given n observations of X, denoted as input data matrix Xd×n, the DAG
learning problem can be formulated as follow

A∗ = argmin
A

1
n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i);Aj)

)

subject to h(W (A)) = 0

(4)

where X(i) ∈ R
d is the ith observation of variables X. Xj(i) is the ith observation

of variable Xj . h(W (A)) = tr(eW (A)◦W (A)) − d = 0 is the continuous acyclicity
constraint following [38]. L(·) is the least squared loss.
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The SEM we employ in Eq. (2) has following assumptions: firstly, f =
(f1, f2, · · · , fd) represents a set of nonlinear causal functions; and secondly,
E1, E2, · · · , Ed are independent noise variables. According to [23], given a distri-
bution over random variables p(X), a unique causal graph G can be identified.

We then briefly introduce notation for graph calculus in the following section.

Graph Calculus: Let Ĝ = (V,E) be a complete undirected graph where V :=
{1, · · · , d} is the set of vertices and E is the set of undirected edges. On each
vertice, there is a real-valued function f : V → R, which is also known as the
potential function. We denote the space of all potential functions as L2(V ).
We also define real-valued functions on edges E = {(i, j), i, j ∈ V } with the
requirement that these functions are alternating, i.e., E[i, j] = −E[j, i]. We
denote the space of all alternating edge functions as L2

∧(E). Here we note that
p ∈ L2(V ) corresponds to a real vector p = [p(1), · · · , p(d)] ∈ R

d, and any
Y ∈ L2

∧(E) corresponds to a skew-symmetric real matrix Y ∈ R
d×d with [Y ]ij =

Y [i, j] and Y = −Y T . We will use the same letter to denote a vector/matrix
and the corresponding function on vertices/edges. We introduce graph calculus
operators gradient, divergence, and the graph laplacian in Definition 1.

Definition 1. The gradient (grad : L2(V ) → L2
∧(E)) is an operator defined on

any function p on vertices:

(grad p)[i, j] = p(j) − p(i), ∀(i, j) ∈ E

The divergence (div : L2
∧(E) → L2(V )) is defined on any alternating function Y

on edges:

(div Y )(i) =
d∑

j=1

Y [i, j], ∀i ∈ V.

The graph Laplacian (�0 : L2(V ) → L2(V )) is an operator on any function p
on vertices:

(�0p)(i) = −(div grad p)(i) = dp(i) −
d∑

j=1

p(j), ∀i ∈ V.

Given a function Y ∈ L2
∧(E), with ReLU denoting the rectified linear unit

function, we can find a weighted adjacency matrix ReLU(Y ) ∈ R
d×d as:

ReLU(Y )[i, j] =
{

Y [i, j], if Y [i, j] > 0,
0, else,

We define a weighted directed graph GReLU(Y ) from ReLU(Y ) in Definition 2:

Definition 2. Consider a complete undirected graph Ĝ(V,E) and Y ∈ L2
∧(E), a

directed graph GReLU(Y )(V,EReLU(Y )) is defined such that there is a directed edge
from vertex i to vertex j in GReLU(Y ) if and only if Y [i, j] > 0, i.e., the set of
directed edges EReLU(Y ) = {(i, j)|Y [i, j] > 0}. ReLU(Y ) is a weighted adjacency
matrix of GReLU(Y ).
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Building on Definition 1 and Definition 2, [34] offers an equivalent representa-
tion of a DAG under linear SEM, whereby a DAG G with d nodes is characterized
by a weighted adjacency matrix W ∈ R

d×d. This formulation is supported by
Theorem 1 as presented in [33,34].

Theorem 1. [33] For any weight matrix S ∈ R
d×d and potential function p ∈

L2(V ), S ◦ ReLU(grad(p)) is the weighted adjacency matrix of a DAG. On the
other hand, let W ∈ R

d×d be the weighted adjacency matrix of any DAG with
d nodes, then there exists a weight matrix S ∈ R

d×d and a function p ∈ L2(V )
such that W = S ◦ ReLU(grad(p)). Hence, {GS◦ReLU(grad(p))} is equivalent to
the DAG space.

3.2 An Equivalent Model for DAG

Theorem 1 can only be applied to linear SEMs because it requires the usage of
the square-weighted adjacency matrices. Our key theoretical contribution is
to derive the equivalent theorem in Theorem 2 for nonlinear (nonpara-
metric) SEMs to remove this limitation and handle the gradient-based
adjacency matrix representation in Eq. (3).

Theorem 2. The acyclicity holds for the neural network formulation in Eq. (3)
if and only if there exists a function p ∈ L2(V ) and weight matrices Sj ∈ R

m1×d,
j = 1, · · · , d, such that

A
(1)
j [b, k] = Sj [b, k] ReLU(grad(p))[k, j]. (5)

Here m1 is the number of hidden units in the first layer of MLP.

Proof. As shown in [38], W (A)[k, j] =
√∑

b(A
(1)
j [b, k])2 encodes the dependency

structure amongst the Xj and the neural network formulation in Eq. (3) satisfies
the acyclicity constraint if and only if W (A) is acyclic. Assuming A

(1)
j satisfies

Eq. (5) for all j, we note that

W (A)[k, j] =
√∑

b

(Sj [b, k])2 ReLU(p(j) − p(k)) = S̃ ◦ ReLU(grad(p)),

where S̃[k, j] =
√∑

b(Sj [b, k])2 and S̃ ∈ R
d×d. Theorem 1 then immediately

indicates that W (A) is acyclic. On the other hand, if W (A) satisfies the acyclic-
ity constraint, Theorem 1 guarantees that one can find S̃ ∈ R

d×d and p ∈ L2(V )
satisfying

W (A)[k, j] =S̃[k, j] ReLU(p(j) − p(k)).

Notice that when ReLU(p(j)−p(k)) = 0, we have W (A)[k, j] =
√∑

b(A
(1)
j [b, k])2 =

0 and hence A
(1)
j [b, k] = 0 for all b ∈ {1, · · · ,m1}. Therefore Eq. (5) can be

satisfied by setting

Sj [b, k] =

{
0, if p(j) ≤ p(k)

A
(1)
j [b,k]

p(j)−p(k) , if p(j) > p(k).
(6)
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The dependency structure W (A) obtained by performing projection is a non-
maximum acyclic graph that minimizes ‖W (A) − S̃‖2.

Let C(M) denote the connectivity matrix [17] of a directed graph M such
that [C(M)]ij = 1 only if a directed path exists from vertex i to vertex j.
Theorem 3 provides an efficient approach to calculate p and Sj from A:

Theorem 3. Let A be a set of parameters in Eq. (3) which satisfying the
acyclicity constraint, then

p = −�†
0 div

(
1

2
(C(W (A)) − C(W (A))T )

)
, (7)

preserves the topological order in W (A) such that p(j) > p(i) if there is a
directed path from vertex i to j. Here † denotes the Moore-Penrose pseudo-
inverse. Moreover, with Sj defined in Eq. (6) we have

A
(1)
j [b, k] = Sj [b, k] ReLU(grad(p))[k, j]

We refer interested readers to Appendix A for a detailed proof.
Theorem 2 and Theorem 3 allow us to find the equivalent search space

for the gradient-based adjacency matrix representations in Eq. (3). We intro-
duce a two-step DAG learning algorithm that optimizes parameters within the
equivalent search space, thereby circumventing the need for enforcing the com-
putationally intensive acyclicity constraint.

4 Proposed Algorithm: DAG-NCMLP

Guided by theoretical insights from Theorem 2 and Theorem 3, we propose
a nonparametric project-based DAG learning algorithm, named DAG-NCMLP,
which employs MLP as the gradient-based weighted adjacency matrix repre-
sentation. To avoid the strict enforcement of the DAG constraint, we propose
learning the neural network parameters, S and the potential function p, instead
of directly optimizing a gradient-based weighted adjacency matrix representa-
tion A that must satisfy the DAG constraint. Given the increasing complexity
of optimizing both S and p, we employ a two-step procedure. In Step 1, we
derive an initial solution Â without strictly adhering to the DAG constraint.
This step aims to obtain a good initial solution from which a stable, informative
estimate of the potential function, ppre, can be extracted. In Step 2, we focus on
optimizing S and p, guided by ppre, to ultimately learn the optimal DAG. The
algorithm is outlined in Algorithm 1. We will detail each step as follows.

Step 1. This step aims to yield an estimation of A that produces a stable and
preferably informative potential function p. To obtain such an initial estimate,
we propose to solve a penalized formulation of the original constrained opti-
mization problem as shown in Eq. (10), by employing the standard augmented
Lagrangian method and gradually increase the penalization parameter ρ. Instead
of continuing the iterative procedure till convergence as in the original augmented
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Lagrangian, here we only solve the sub-optimizations for a few iterations. As a
result, the solution is not guaranteed to fully satisfy the acyclicity constraint.
To be more specific, we denote the objective function in Eq. (10) as Lρ(A, α).
Initially, we update the penalization parameter ρ by gradually increasing its
value while holding (α,A) constant. Then, we update α using Eq. (8) for K = 5
iterations. For each pair of given ρ and α, we solve the sub-optimization problem
in Eq. (9) for T = 10d iterations1. Further details of the choices of K and T can
be found in Sect. 5.

αk+1 = αk + ρk+1h(W (Ak)). (8)

Ak+1 = argmin
A

Lρk+1(A
k, αk+1) (9)

DAG-NCMLP utilizes a distinct Step 1 procedure compared to [34]. In [34],
the optimization is solved with fixed values of α and ρ, akin to the augmented
Lagrangian method with only one step of optimization. This approach is suf-
ficient to yield a stable potential vector p under linear SEM with simple lin-
ear relationships between variables. However, for nonlinear models, solutions
obtained with fixed coefficients are often inadmissible for estimating the potential
function.

Step 2. This step aims to optimize the parameters S and p within the equivalent
DAG space, using the potential function ppre derived from the initial solution
Â. After Step 1, the resulting W (Â) is typically non-acyclic since the DAG
constraint is not satisfied. To obtain a DAG solution, we first approximate the
potential function ppre using Eq. (7) from Theorem 3. Next, we derive an initial
graph solution W (Apre) in Eq. (12) by optimizing over A with ppre fixed. Finally,
we obtain the optimal DAG solution W (A∗) in Eq. (13) by jointly optimizing
over A and p. Both in Step 1 and Step 2, we apply the standard thresholding
procedure [37] to W (Â) and W (A∗), respectively. The outcome of Step 1 directly
impacts Step 2. A more accurate estimation of W pre in Step 1 results in a
better approximation of the potential function ppre. This, in turn, encodes more
accurate partial ordering information, aiding the algorithm in converging to an
accurate estimation of A∗ in Step 2c. Here we note that whether W pre satisfies
the acyclic constraint does not affect the algorithm’s ability to obtain an effective
ppre, since ppre can preserve the partial ordering information of a non-acyclic
W pre. Our proposed method involves optimizing over both A and p, with each
affecting the estimation of the other during the optimization process. Step 2b
simplifies the optimization process by fixing p to ppre, allowing A to achieve a
good initial estimation. The accuracy of A∗ obtained by DAG-NCMLP is greatly
compromised if Step 2b is omitted. We also point out that the objective functions
in Eqs. (12) and (13) are non-convex. Consequently, only stationary solutions can
be guaranteed, a characteristic shared with all continuous optimization-based
DAG algorithms.

1 "Solving the sub-optimization problem for T = 10d iterations" means the optimizer
stops when it performs T = 10d gradient descent steps.
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Algorithm 1. DAG-NCMLP Algorithm
Step 1: Within fixed numbers of iterations, solve for initialization Â.

Â = argmin
A

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1

+ αh(W (A)) +
ρ

2
‖h(W (A)‖2.

(10)

Threshold W (Â) to obtain W pre.
Step 2: Obtain an acyclic graph solution W (A∗)

2a) Obtain initial guess of potential vector ppre:

ppre = −�†
0 div

(
1

2
(C(W pre) − C(W pre)T )

)
, (11)

which preserves the variable ordering of W pre.
2b) Solve for the initial guess of DAG W (Apre) with fixed potential vector ppre

and initialization Â:

Apre = argmin
{A ,S}

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1 (12)

where A
(1)
j [b, k] = Sj [b, k]ReLU(ppre(j) − ppre(k)).

2c) Solve for W (A∗), p∗ with initialization Apre :

A∗, p∗ = argmin
{A ,S,p}

1

n

n∑
i=1

d∑
j=1

L
(
Xj(i), fj(X(i), Aj)

)
+ λ||A(1)

j ||1,1 (13)

where A
(1)
j [b, k] = Sj [b, k]ReLU(p∗(j) − p∗(k)). Threshold W (A∗) to obtain W est

as output.

5 Experiments

We perform empirical evaluations on both synthetic and real data to demonstrate
the effectiveness of our proposed DAG-NCMLP algorithm in improving efficiency
while maintaining comparable accuracy.

Synthetic Datasets. We evaluate DAG-NCMLP on synthetic nonlinear datasets,
generated using the same method as in prior work [38]. The ground truth DAGs
are generated from Erdo-Renyi (ER) and Scale-Free (SF) graph models, with an
expected edge degree set to 2 and 4. The synthetic data are generated from three-
layer MLPs, which are universal nonlinear estimators, following the approach in
[38]. To demonstrate the robustness of our proposed method across different
data models, we also generate data using the Gaussian Process (GP) SEM. We
create 10 graphs for each graph setting (ER2-MLP, ER4-MLP, SF2-MLP, SF4-
MLP, ER2-GP, ER4-GP, SF2-GP, and SF4-GP), and test with varying numbers
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of variables d = 10, 20, 40, 50, 100. For each setting, we simulate 10 trials with
n = 1000 i.i.d. data observations.

Real Dataset. We further assess the performance of DAG-NCMLP using real-
world flow cytometry data from Sachs et al. (2005) [24] for modeling protein
signaling pathways. The dataset comprises continuous measurements of 11 phos-
phoproteins in individual T-cells. We specifically selected 853 observations corre-
sponding to the first experimental condition outlined in Sachs et al. (2005) [24]
as our dataset D. For our reference graph (ground truth), we utilize the pro-
vided DAG, which consists of 11 nodes and 17 edges. It is important to note
that this consensus graph may not provide a comprehensive or entirely accurate
representation of the system under study.

Evaluation Metrics. We employ the Structural Hamming Distance (SHD) and
runtime to evaluate the accuracy and efficiency of the estimated DAGs respec-
tively. We report the average SHD with its standard deviation across 10 trials,
and the average time (in seconds) with its standard deviation in Tables 1, 2,
and 3. The SHD metric we use doesn’t consider Markov Equivalence since the
non-linear SEM in our formulation is fully identifiable.

Baselines. We mainly compare our method with following SEM-based baselines:
GraN-DAG [13], DAG-GNN [32], GS-GES [10] and NOTEARS-MLP [38]. We
use the default parameters for these baselines. For the baseline NOTEARS-MLP,
we use the hyper-parameters that are reported in Zheng et al. (2020) [38]. The
experiments for all the baselines and the proposed method, DAG-NCMLP are
computed on a computing node with twenty 3.1GHz CPU cores2.To provide a
more comprehensive comparison, we also compared causal discovery methods
from different categories, including MMHC [30] and DAG-NoCurl [34] and show
the empirical results in Appendix B.

The Choice of K and T . The hyperparameters K and T control the accuracy of
the potential function ppre, and consequently, the accuracy of the final output
DAG. Ideally, we want to select relatively small values for K and T to enhance the
algorithm’s efficiency by reducing the number of optimization steps. However, K
and T should also be large enough to allow ppre to capture as much information
as possible. A reasonable approach to selecting the hyper-parameters K,T is
through empirical evaluation. The K,T are empirically selected on ER2 datasets
when values of p do not change substantially (note that we do not use accuracy
or SHD as the selection criterion). We observe that the algorithm performance
is not sensitive to the values of K,T , Hence we fix the values of K = 5 and
T = 10d.
2 Due to the complexity of the neural networks used in methods like DAG-GNN and

GraN-DAG, these models are typically run on a GPU to reduce runtime. However,
to ensure a fair comparison of efficiency, we run experiments for these two baselines
on a CPU, as with the other baselines. GPU acceleration is a standard technique
and not a unique contribution of these two baselines; it can be applied to all the
algorithms, including our DAG-NCMLP.
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Table 1. Comparison of Different Algorithms on Nonlinear Multi-Layer Perceptron
Synthetic datasets: results (mean ± standard error over 10 trails) on SHD and Run
time(in seconds), where bold number s highlight the best method for each case.

ER2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 15.0 ± 6.0 13.3 ± 5.5 10.5 ± 3.9 5.7 ± 3.2 5.5 ± 2.5

20 22.7 ± 1.8 25.7 ± 3.6 19.4 ± 5.6 13.0 ± 3.8 13.5 ± 4.0

40 57.5 ± 8.6 56.1 ± 6.7 40.5 ± 9.5 27.7 ± 5.1 27.8 ± 5.8

50 68.9 ± 13.3 65.8 ± 7.8 50.6 ± 8.4 36.0 ± 9.7 36.9 ± 10.3

100 > 60h 144.8 ± 7.1 > 60h 77.3 ± 4.0 80.5 ± 6.0

SF2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 9.0 ± 4.5 9.5 ± 3.4 8.5 ± 3.2 1.9 ± 1.2 2.2 ± 1.1

20 19.7 ± 2.1 22.9 ± 3.4 22.7 ± 4.4 8.0 ± 3.2 7.8 ± 2.9

40 48.6 ± 4.6 52.4 ± 3.1 51.3 ± 7.0 18.9 ± 6.5 18.5 ± 6.2

50 52.3 ± 11.9 58.6 ± 6.5 65.1 ± 5.6 24.5 ± 6.2 25.5 ± 5.5

100 > 60h 149.2 ± 7.6 149.5 ± 7.2 81.4 ± 9.9 79.0 ± 7.1

ER4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 22.4 ± 4.8 27.1 ± 3.4 24.10 ± 7.1 8.0 ± 1.9 9.9 ± 2.4

20 71.2 ± 16.2 65.5 ± 8.1 50.2 ± 9.7 29.1 ± 4.7 32.7 ± 7.1

40 96.7 ± 18.4 130.4 ± 10.2 87.7 ± 12.8 47.7 ± 9.3 55.0 ± 25.9

50 121.0 ± 16.9 161.1 ± 10.8 115.70 ± 21.8 68.7 ± 14.0 70.9 ± 15.3

100 > 60h 332.2 ± 12.6 > 60h 134.5 ± 13.4 144.1 ± 38.0

SF4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 14.0 ± 1.5 18.1 ± 3.3 18.3 ± 5.6 3.5 ± 2.3 4.8 ± 2.9

20 29.7 ± 2.1 48.2 ± 5.5 44.3 ± 3.9 12.4 ± 4.2 12.4 ± 4.1

40 78.6 ± 4.2 119.9 ± 6.8 111.0 ± 7.2 47.2 ± 5.5 48.7 ± 6.5

50 132.3 ± 11.0 158.6 ± 6.5 148.3 ± 7.6 62.1 ± 21.2 77.7 ± 17.4

100 > 60h 323.1 ± 9.6 > 60h 211.1 ± 11.8 202.0 ± 10.8

ER2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 2.6e3 ± 5.2e3 6.6e2 ± 2.3e2 3.1e2 ± 5.3e1 3.1e2 ± 1.1e2 1.2e2 ± 6.0e1

20 2.5e3 ± 5.8e2 1.5e3 ± 2.3e2 1.5e3 ± 1.2e2 7.6e2 ± 1.4e2 3.9e2 ± 8.6e1

40 8.6e3 ± 1.8e3 8.0e3 ± 1.9e2 6.8e3 ± 1.4e3 1.6e3 ± 2.2e2 1.1e3 ± 2.1e2

50 1.4e4 ± 1.5e3 1.2e4 ± 1.1e2 1.0e4 ± 9.4e2 8.5e3 ± 2.3e3 1.6e3 ± 3.9e2

100 > 60h 2.0e4 ± 6.4e2 > 60h limit to 60h 6.5e3 ± 1.3e3

SF2: Run Time
d GraN-DA DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 1.3e2 1.1e3 ± 1.7e2 2.6e2 ± 2.7e1 2.4e2 ± 8.2e1 7.5e1 ± 3.5e1

20 4.6e3 ± 1.7e3 1.2e3 ± 2.2e2 1.1e3 ± 1.4e2 1.8e3 ± 3.9e2 3.4e2 ± 5.9e1

40 1.5e4 ± 1.3e4 3.2e3 ± 2.8e2 4.4e3 ± 3.9e2 2.8e3 ± 6.6e3 1.1e3 ± 1.3e2

50 2.2e4 ± 5.2e2 2.1e4 ± 1.5e2 7.0e3 ± 5.0e2 4.5e3 ± 1.2e3 1.8e3 ± 5.3e2

100 > 60h > 60h > 60h limit to 60h 9.3e3 ± 2.7e3

ER4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 2.3e2 8.6e2 ± 8.2e1 6.7e2 ± 3.6e2 1.2e3 ± 4.4e2 1.5e2 ± 9.2e1

20 7.1e3 ± 8.2e2 9.6e2 ± 7.5e1 5.5e3 ± 9.9e3 2.7e3 ± 6.8e2 6.4e2 ± 2.7e2

40 7.6e3 ± 1.0e3 7.2e3 ± 9.7e2 9.6e3 ± 2.1e3 7.4e3 ± 1.6e3 1.5e3 ± 2.5e2

50 1.9e4 ± 7.8e2 2.1e4 ± 2.1e2 1.9e4 ± 2.1e2 1.0e4 ± 2.1e3 2.3e3 ± 4.6e2

100 > 60h > 60h > 60h limit to 60h 7.4e3 ± 2.2e3

SF4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 1.2e3 ± 1.8e2 8.4e2 ± 1.1e2 3.2e2 ± 3.2e1 8.4e2 ± 3.7e2 1.2e2 ± 4e1

20 1.3e3 ± 2.7e2 8.2e2 ± 1.5e2 1.3e3 ± 1.8e2 1.5e3 ± 4.4e2 3.6e2 ± 9.9e1

40 9.8e3 ± 1.5e2 7.8e3 ± 1.9e2 5.4e3 ± 5.8e2 8.4e3 ± 3.7e2 1.3e3 ± 3.2e2

50 2.2e4 ± 6.8e3 1.6e4 ± 2.0e3 9.1e3 ± 1.9e3 6.8e3 ± 3.3e3 2.7e3 ± 6.7e2

100 > 60h > 60h > 60h limit to 60h 7.1e3 ± 8.6e2
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Table 2. Comparison of Different Algorithms on Nonlinear Gaussian Process Syn-
thetic datasets: results (mean ± standard error over 10 trails) on SHD and Run time(in
seconds), where bold number s highlight the best method for each case.

ER2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 12.3 ± 1.5 17.3 ± 0.9 9.6 ± 2.4 7.2 ± 2.1 7.5 ± 2.2

20 34.3 ± 8.8 36.0 ± 1.7 19.3 ± 6.5 30.0 ± 0.7 30.5 ± 10.8

40 48.4 ± 4.4 73.2 ± 2.1 33.7 ± 10.0 43.2 ± 7.2 42.7 ± 7.9

50 71.2 ± 12.4 93.1 ± 3.1 47.8 ± 8.2 62.1 ± 9.6 62.2 ± 8.9

100 > 60h 185.6 ± 3.7 94.5 ± 7.3 125.7 ± 2.5 128.3 ± 3.3

SF2: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 16.4 ± 2.0 15.4 ± 0.9 11.4 ± 3.7 7.5 ± 1.9 7.7 ± 2.3

20 33.1 ± 5.4 34.8 ± 1.2 31.2 ± 3.9 28.6 ± 2.7 29.1 ± 4.4

40 62.3 ± 6.5 72.4 ± 1.6 64.8 ± 6.7 58.6 ± 5.0 58.7 ± 4.5

50 94.8 ± 10.8 91.7 ± 2.3 82.1 ± 8.2 77.0 ± 4.4 79.0 ± 5.0

100 > 60h 185.8 ± 1.4 > 60h 171.2 ± 2.1 173.0 ± 3.3

ER4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 20.8 ± 3.8 38.3 ± 1.1 32.3 ± 2.6 19.3 ± 3.4 21.1 ± 2.7

20 68.1 ± 9.7 78.7 ± 1.0 60.5 ± 3.6 56.4 ± 4.2 56.3 ± 4.3

40 154.9 ± 7.0 140.8 ± 4.7 119.0 ± 7.2 138.1 ± 6.0 138.2 ± 9.0

50 186.6 ± 16.2 195.7 ± 1.7 154.9 ± 5.6 188.3 ± 12.7 189.5 ± 15.4

100 > 60h 391.0 ± 2.7 309.0 ± 9.9 350.7 ± 2.1 354.3 ± 4.2

SF4: SHD
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 27.1 ± 4.4 28.8 ± 1.0 24.3 ± 2.7 15.1 ± 3.1 16.1 ± 3.9

20 63.1 ± 1.9 68.2 ± 1.2 61.0 ± 4.0 60.7 ± 2.3 60.5 ± 2.4

40 139.9 ± 6.1 145.8 ± 1.7 133.4 ± 2.8 129.4 ± 4.0 131.1 ± 4.3

50 184.6 ± 4.2 185.1 ± 1.4 169.8 ± 6.5 171.8 ± 4.5 170.4 ± 4.4

100 > 60h 379.2 ± 3.2 > 60h 351.7 ± 4.1 356.0 ± 5.0

ER2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 5.3e2 ± 7.5e1 5.3e2 ± 3.7e1 1.8e2 ± 1.8e1 1.7e2 ± 7.8e1 6.5e1 ± 1.6e1

20 7.6e2 ± 7.7e1 5.5e2 ± 4.7e1 8.0e2 ± 9.0e1 1.1e3 ± 2.7e2 7.8e1 ± 1.9e1

40 2.1e3 ± 1.4e2 6.6e2 ± 3.2e1 4.1e3 ± 3.6e2 2.7e3 ± 7.5e2 5.4e2 ± 4.9e1

50 2.4e3 ± 2.1e2 7.6e2 ± 4.6e1 5.5e3 ± 5.2e2 4.1e3 ± 8.8e2 7.0e2 ± 4.4e1

100 > 60h 3.6e3 ± 4.1e2 2.1e4 ± 1.1e3 limit to 60h 1.2e3 ± 3.1e1

SF2: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 4.2e2 ± 3.4 4.3e2 ± 4.0e1 1.3e2 ± 1.4e1 1.6e2 ± 4.7e1 2.1e1 ± 4.5

20 9.1e2 ± 1.4e2 5.3e2 ± 2.3e1 4.9e2 ± 6.3e1 5.4e2 ± 1.7e2 8.6e1 ± 1.4e1

40 2.0e3 ± 1.7e2 6.8e2 ± 5.5e1 2.3e3 ± 2.5e2 1.5e3 ± 4.2e2 5.5e2 ± 6.2e1

50 2.8e3 ± 5.2e2 8.3e2 ± 8.8e1 7.0e3 ± 5.0e2 2.8e3 ± 7.0e2 6.6e2 ± 3.2e1

100 > 60h 2.3e3 ± 1.8e2 > 60h limit to 60h 1.2e3 ± 3.0e1

ER4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 3.4e2 ± 4.4e1 5.0e2 ± 2.1e1 2.5e2 ± 4.0e1 1.5e2 ± 2.5e1 6.6e1 ± 1.1e1

20 6.8e2 ± 9.8e1 5.5e2 ± 3.5e1 9.6e2 ± 8.5e1 5.8e2 ± 1.4e2 2.1e2 ± 2.3e1

40 1.8e3 ± 1.2e2 6.9e2 ± 9.7e1 4.0e3 ± 1.7e2 2.5e3 ± 5.5e2 6.3e2 ± 1.4e2

50 2.3e3 ± 1.7e2 1.2e3 ± 3.0e2 6.3e3 ± 3.6e2 3.6e3 ± 6.2e2 1.1e3 ± 2.3e2

100 > 60h 4.2e3 ± 3.1e2 > 60h a 6.5e3 ± 2.3e2 3.3e3 ± 2.0e2

SF4: Run Time
d GraN-DAG DAG-GNN GS-GES NOTEARS-MLP DAG-NCMLP
10 3.4e2 ± 3.5e1 5.0e2 ± 3.4e1 1.3e2 ± 1.2e1 2.3e2 ± 4.8e1 4.9e1 ± 9.5

20 7.0e2 ± 1.1e2 5.7e2 ± 4.2e1 5.2e2 ± 7.3e1 2.7e2 ± 9.6e1 1.9e2 ± 3.3e1

40 1.8e3 ± 1.7e2 6.9e2 ± 3.3e1 2.9e3 ± 2.4e2 1.4e3 ± 2.7e2 6.5e2 ± 4.3e1

50 2.6e3 ± 4.3e2 9.6e2 ± 2.0e2 4.7e3 ± 3.5e2 2.1e3 ± 3.7e2 8.6e2 ± 4.6e1

100 > 60h 1.8e3 ± 4.2e2 > 60h 3.9e3 ± 1.4e2 1.3e3 ± 5.7e2
a We allow for 60h on 10 graphs. If the average runtime is
longer than 2.16e4 seconds, then we will mark the runtime
as > 60h in the table. For example, the average runtime for
GS-GES on ER4 graphs is 2.8e4 ± 2.2e3.
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5.1 Empirical Results on Synthetic Data

In Tables 1 and 2, the top four sub-tables present the accuracy results in terms
of the SHD. The bottom four sub-tables display the computational efficiency
measured in CPU runtime in seconds. Given the complexity of the data, we
imposed a 60-hour time limit for each method and then evaluated the inter-
mediate or final learned DAGs. The data is generated under a non-linear SEM
assumption, rendering linear SEM-based methods ineffective in capturing the
complex non-linear relationships present in the data. Consequently, we compare
our DAG-NCMLP only with baselines developed under non-linear SEMs.

Table 1 demonstrates that NOTEARS-MLP consistently outperforms other
advanced methods across most settings, aligning with previous observations. Our
proposed DAG-NCMLP method shows significant accuracy improvements com-
pared to the baselines (GraN-DAG, GS-GES, and DAG-GNN) across all graph
settings. While DAG-NCMLP’s accuracy is comparable to NOTEARS-MLP, it
surpasses NOTEARS-MLP in accuracy in 6 out of 20 graph settings and falls
slightly behind within an acceptable range of differences in the remaining set-
tings. In terms of efficiency, DAG-NCMLP requires significantly less computa-
tional time compared to the baselines, particularly NOTEARS-MLP. It typically
completes computations in approximately half to 10% of the time required by
NOTEARS-MLP.

Despite the universal nonlinear estimation capability of the 3-layer MLP
model used to generate the synthetic data in Table 1, we aim to demonstrate the
effectiveness of our proposed methods across different nonlinear SEM assump-
tions. Therefore, we present empirical evaluation results on Gaussian Process
data in Table 2. Table 1 showcases DAG-NCMLP outperforming GraN-DAG and
DAG-GNN, achieving results comparable to NOTEARS-MLP. However, in con-
trast to the results in Table 1, GS-GES outperforms NOTEARS-MLP in 8 out
of 20 graph settings, achieving the highest accuracy. The differences between
the accuracy of NOTEARS-MLP and DAG-NCMLP are minimal, with SHDs
of DAG-NCMLP typically within a 2.6% variation of those of NOTEARS-MLP,
except in extreme cases. In terms of efficiency, DAG-NCMLP is significantly more
computationally efficient, requiring only 15.97% to 70.37% of the time required
by NOTEARS-MLP, with greater gains for larger d. This observation in Table 2
aligns with the findings in Table 1, demonstrating that DAG-NCMLP substan-
tially improves efficiency while maintaining comparable accuracy compared to
NOTEARS-MLP. Additionally, DAG-NCMLP outperforms other state-of-the-
art nonlinear SEM-based methods in terms of accuracy. Comparing the runtime
of DAG-NCMLP in both tables, it is faster on GP data in Table 2 than on MLP
data in Table 1. This difference is due to the simpler data generation process for
GP data, which uses fewer parameters. As a result, DAG-NCMLP finds it easier
to model the data distribution of GP data compared to MLP data.

Empirical results in Appendix B indicate that although some popular causal
discovery methods have good efficiency, however, they suffer from poor accuracy
issues. Our proposed DAG-NCMLP achieves good accuracy as the nonlinear
SEM-based baselines while significantly improving the efficiency.
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5.2 Empirical Results on Real Data

Table 3 presents the results of applying the DAG-NCMLP and 4 other base-
line methods on the real dataset. The table reports the accuracy of the SHD,
the number and the ratio of correctly estimated edges, and the computational
efficiency in terms of the runtime in seconds. Table 3 shows that NOTEARS-
MLP achieves an SHD of 15 in 4.4e2 seconds, while DAG-NCMLP achieves an
SHD of 15 in 1.5e2 seconds. Two methods correctly estimate the same number
of edges. Hence, on the real dataset, DAG-NCMLP can achieve a comparable
accuracy with substantially reduced efficiency compared to NOTEARS-MLP.
This is consistent with our observation on synthetic datasets.

Table 3. Comparison of different algorithms on Real Data: results on SHD, number
of edges, and runtime.

Dataset SHD# Correct Edges Ratio of Correct Edges Runtime
GraN-DAG 13 6/17 0.353 6.1e2

DAG-GNN 19 8/17 0.471 5.3e2

GS-GES 17 6/17 0.353 5.0e2

NOTEARS-MLP 15 7/17 0.412 4.4e2

DAG-NCMLP 15 7/17 0.412 1.5e2

6 Conclusion

In this paper, we introduce an efficient DAG learning algorithm that utilizes a
projection formulation on nonlinear SEMs, enabling better capture of complex
nonlinear relationships between variables. We theoretically derive nonlinear pro-
jection formulations for gradient-based adjacency matrix representations. Lever-
aging these formulations, we propose a novel nonlinear DAG learning algorithm,
DAG-NCMLP, designed to efficiently solve the unconstrained optimization prob-
lem inherent in the formulation and learn the DAG structure. Our empirical
results demonstrate that DAG-NCMLP significantly enhances computational
efficiency, particularly in scenarios with a large number of variables. Importantly,
DAG-NCMLP achieves comparable accuracy to state-of-the-art nonparametric
or nonlinear DAG learning methods. We believe that DAG-NCMLP presents a
promising framework for DAG learning.
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Abstract. Complete traffic data is the premise for traffic strategy mak-
ing. However, due to the constraints of data collection, communica-
tion failures and other reasons, we may collect incomplete traffic states
inevitably. The common idea of existing completion methods is to learn
the latent representation reflecting the spatiotemporal correlation in the
traffic data. However, due to insufficient influencing factors considered
and limited capability of spatiotemporal correlation modeling, existing
methods need further improvement, especially for the scenes with high
missing rates. In this paper, we propose a novel traffic state imputation
method GCompletor using Graph-based Encoder-Decoder framework,
which enriches the features of each road by considering the physical fea-
tures (road grade, direction, etc.), and organize all traffic features into a
graph-based sequence. Then the sequence is fed into a novelly designed
Encoder-Decoder component, where the spatiotemporal dependencies of
each road is learned through extended GAT and BiGRU-CNN hybrid
method. Experimental results demonstrate that GCompletor achieves
better imputation performance than the state-of-the-art approaches. The
source code is available at https://github.com/zfrInSIAT/GCompletor.

Keywords: Imputation Method · ITS · Missing Traffic Data

1 Introduction

Nowadays, with the development of sensing technology, we can collect the urban
road traffic states through various traffic sensing devices [1]. For example, using
ground loops [2] or cameras [3], we can collect the speed, flow, density on roads.
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Additionally, GPS positioning equipment allows us to track vehicle speeds on
these roads [4]. However, in real-world situations, factors like cost limitations,
hardware or software errors, and communication disruptions prevent us from
collecting traffic data on all roads. Incomplete traffic data reduces the accuracy
of analysis and hampers the effectiveness of traffic management systems [1]. This
paper aims to estimate the missing traffic states in urban road networks.

Existing traffic data imputation methods which extract the low-dimensional
latent factors that contain spatiotemporal correlation of the traffic data have
been proved to be effective. One main category is based on matrix/tensor fac-
torization, such as PPCA [5], Tucker decomposition [6,7]. However, they are
essentially linear model, which can not capture the complex spatial depen-
dency of traffic data. Recently, deep generative models have been applied to
address missing data issues, including traffic state imputation. These models use
autoencoder-based approaches to capture the nonlinear spatial-temporal depen-
dencies in traffic flow data. However, further improvements are necessary as
these current methods severely overlook key influencing factors and inadequately
model spatiotemporal correlations. The details of the limitation are as follows:

First, traffic states result from vehicle movements influenced by road
attributes (e.g. number of lanes, lane width and so on) and traffic flow tran-
sitions. However, existing methods often overlook these factors. Second, current
methods fail to fully capture spatiotemporal traffic correlations. Traffic states
exhibit local (among adjacent roads or recent time slots) and global (over long-
term periods) dependencies. Most existing deep generative models organize data
into structures, which can not effectively support local spatiotemporal correla-
tion modelling.

In this paper, we propose a novel Graph based Encoder-Decoder framework
GCompletor for traffic state imputation in complex urban road traffic networks.
Our contributions are as follows:

– To enable GCompletor to learn the spatiotemporal correlation of traffic states
among roads sufficiently, we enrich the features of each road by considering
both of the physical attributes and the observed incomplete traffic states, and
organize the features across observed time slots into a graph sequence.

– GCompletor completes unobserved road traffic states by modelling both of the
local-global spatial and temporal dependency based on the graph sequence.
It uses Extended-GAT to learn the spatial dependency among roads by con-
sidering road attributes, and uses BiGRU to learn the traffic state evolution
and anti-evolution patterns from temporal perspective through making full
use of the traffic data before and after the missing time slot.

– We conduct extensive experiments of traffic state imputation on real-world
data in the city of Shenzhen, China. The results show that GCompletor per-
forms better than all other methods, particularly in scenarios with high rates
of missing data, including random and continuous missing patterns.



GCompletor 463

2 Related Work

Existing traffic state imputation methods can be divided into four categories:
neighbor based methods, prediction based methods, matrix/tensor decomposi-
tion based methods and autoencoder based methods.

Neighboring imputation methods are initial methods, which fill the missing
data with a weighted average of the corresponding observed data, and can be
divided into temporal neighbor methods, spatial neighbor methods and pattern
neighbor methods. The temporal neighbor methods complete the missing data
of a road based on the traffic states of consecutive time intervals [8]. The spatial
neighbor methods complete the missing data of a road based on the traffic data
of adjacent roads at the same time [9]. The pattern neighbor methods complete
the missing data of a road by using the observed data of the road on historical
days with the same evolution pattern [10]. All these methods can only model
the local and stable spatiotemporal correlation between traffic states, and rely
on the premise that the historical information from neighbors is complete.

The prediction based imputation methods use statistics or machine learning
techniques, including ARMA [11], Bayesian Network [12], Feedforward Neural
Network [13], etc. Recently, deep learning has changed traffic prediction archi-
tecture dramatically and brings more opportunities [14,15]. The RNN and its
variants such as LSTM and GRU [15,16] are used to model the temporal corre-
lation. GCN and its variants are used to model spatial correlation among roads.
However, the prediction models are based on the precondition that the historical
observed data is complete. Furthermore, they can not make full use of the traffic
states after the time of missing data, but the information is important due to
the local temporal correlation of traffic data.

The main idea of matrix/tensor decomposition based methods is that the
traffic state matrices or tensors are low rank due to the intrinsic spatiotem-
poral correlation. Probabilistic PCA (PPCA) [5] and Bayesian PCA (BPCA)
were proposed to project the incomplete traffic flow to low dimensional latent
factors. Chen et al. [17], Ran et al. [7] introduced various tensor based models
to impute traffic data by considering time dimensions(day of week and hour of
day). However, matrix/tensor decomposition based methods are essentially lin-
ear models. They can not effectively support local spatiotemporal correlation
modelling. Although some methods use local smoothing methods to capture the
local correlation, they can not distinguish local correlations between roads under
various spatiotemporal contexts.

The above mentioned methods belong to Discriminant Models. The perfor-
mance largely depends on the amount of information embedded in the obser-
vation data, and the degradation is obvious when the data missing rate is very
high. As a branch of self supervised learning technology, autoencoder based
methods can capture the intrinsic features of data, and have shown their superi-
ority in traffic tasks. This kind of methods contains two steps. It first learns the
lower dimensional feature representations at the encoder component by some
bottleneck layers, and then fills the missing data directly in decoder compo-
nent by some reconstruction layers. Some studies have applied stacked encoder
(SAE) [18], denoising stacked autoencoders [19] to estimate the missing data.
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Although the imputation performance has been improved to a certain extent,
imputation methods need further improvement due to the limitations as men-
tioned in Sect. 1, including the insufficient influencing factors considered and lim-
ited spatiotemporal correlation modelling of traffic data. In this paper, a graph
based Encoder-Decoder model is proposed to complete the traffic state. This
model captures the spatiotemporal dependencies with the data, including road
physical attributes and observed sparse traffic states in an urban road network.

3 Overview

In this section, we first introduce some basic definitions (Table 1) and then for-
mulate the traffic data imputation problem. Finally, we briefly describe the archi-
tecture of our method GCompletor.

3.1 Definitions

Definition 1 (Road Network). A road Network is represented by G=(R,E, F ).
The R = {r1, r2, · · · , r

N
} is the collection of roads. F ∈ RN×Dv is the collection

of physical attributes of all roads (e.g., road grade, speed limit and road length)
where v corresponds to the road physical attributes and Dv is the total number of
them. The ith row of F denoted as fi is the attributes of road ri. The E ∈ RN×N

is the collection of the edges in the graph, represented by adjacency matrix. If
the roads ri and rj are connected, they are neighbors and the value (E)i,j = eij
is 1, otherwise the value is 0.

Definition 2 (Traffic State). We divide a day into T time slots with the same
time interval. The traffic states with missing data in a road network G on a
day are denoted as matrix X ∈ RT×N , where (X)t,i = xt,i represents the traffic
state of the road ri at the time slot t ∈ [1, T ]. A mask matrix Ω ∈ RT×N with
the same shape as X is used to mark the locations of the missing elements. The
value (Ω)i,j is 1 if xt,i is collected, otherwise the value is 0. In this paper, we use
a partially observed vector x(t) = {xt,1, · · · , xt,N} to represent the traffic states
of all roads at the time slot t.

Problem Definition : Given a road network G on a day, the task of traffic data
imputation is to estimate the missing traffic data in the traffic matrix X. It can
be formulated as X̂ = fc(X,G,Ω), where fc is the imputation model and X̂ is
the completed or reconstructed traffic matrix.

3.2 Framework

Figure 1 presents the framework of our method GCompletor. It consists of two
components: Traffic Graph Sequence Construction and Encoder-Decoder based
Traffic Data Imputation. The former component aims to organize the observed
traffic states along the observed time slots, road physical attributes, and rela-
tions between roads into a graph sequence. The latter component aims to impute
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Table 1. Notations in This Paper

SymbolDescription
G Road Network
R Collection of roads
ri A road in R

F Collection of physical properties of all roads
fi Properties of road ri

X Observed traffic states of all roads
xt,i Traffic state of road vi at time t

Ω Mask matrix of the missing elements in X

ui
t Local spatial representation of node ri at time t

wi
t Local spatiotemporal representation of node ri at time t

x(t) The traffic states of all roads at time t

the missing traffic data through learning the latent and compact spatiotempo-
ral representation hidden in the graph sequence of observed traffic data. More
specifically, in the encoding step, at each time slot, it first learn each road’s local
spatiotemporal representation through extended GAT-based attention mecha-
nism and BiGRU-CNN based on the traffic data before and after the time slot.
Then the representation sequence of each road along all observed time slots is
fed into multiple dense bottleneck layers to learn the road’s global latent rep-
resentation. In the decoding step, it uses reconstruction layers to reconstruct
the inputs through dimension ascending. Finally, the reconstructed traffic flow
matrix is used to impute the missing data.

4 Traffic Graph Sequence Construction

The correlation of the traffic states between roads is related to their geographical
connection, road physical attributes and the traffic transition between roads. In

Fig. 1. Framework of GCompletor
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this section, we organize all these traffic data over observed time slots into a
graph-based sequence, where the neighborhood between roads is determined by
their geographical physical connection and time-dependent traffic transition.

More specifically, for each time slot t of a day, we construct a time-dependent
traffic graph Gt =

(
R,E, F, F t

E
, F t

V

)
, where R, E and F refer to the collection of

roads, edges, and road properties as Definition 1. F t
V and F t

E
are time-dependent

(dynamic) features of roads and edges described as follows.

Dynamic features of nodes F t
V ∈ RN : is the x(t) of traffic matrix X, referring

to the observed traffic states of all roads at the time slot t. The ith item of F t
V

is the traffic state of road ri. Note that F t
V is sparse since some traffic states

are not observed. There is no standard approach for using sparse data as input
of neural networks. Most of the existing studies deal with sparse inputs by pre-
computing an estimate of the missing values. In our case, since the traffic states
have obvious periodicity, we use the average value of the traffic states at the
same time slot on history days to pre-fill the missing data.

Dynamic features of edges F t
E ∈ RN×N : refers the attributes of the flow transi-

tion between two connected roads at the time slot t. That can help the model
to capture the local spatial correlation between roads even with limited traffic
data. However, we can not obtain the flow transition information. Instead, we
use the similarity of traffic state evolution trends between two roads to indirectly
express their transition relationship. The intuition is that the greater the pro-
portion the traffic states of two connected roads both rise or fall is, the stronger
the correlation of their traffic states may be. The feature f t

i,j of edge ei,j is set
to the the similarity of traffic state evolution trends between two roads ri and
rj , which is defined by Equ(1).

Sim(ri, rj) = ei,j×
(
Cnt(vt

i ≥ v̂t
i , v

t
j ≥ v̂t

j)+Cnt(vt
i <v̂t

i , v
t
j < v̂t

j)

Tcnt
i,j

)
(1)

where Cnt(vt
i ≥ v̂t

i , v
t
j ≥ v̂t

j) and Cnt(vt
i < v̂t

i , v
t
j < v̂t

j) represent the number
of times that the traffic states of two roads rise or fall compared with history
average speeds v̂t

i and v̂t
j at time slot t on history days. Tcnt

i,j represents the total
number of observations. In practice, if the traffic data on history days at time
slot t is insufficient, the traffic states near the time slot t can be used together
due to the strong temporal correlation of recent traffic states.

Based on the above process, we construct a sequence of traffic state graphs
for T time slots of a day, denoted as G=(G1, G2, · · · GT ). This will be fed into
the encoder-decoder based traffic data imputation component.

5 Encoder-Decoder Based Traffic Data Imputation

In the previous section, we construct a sequence of traffic state graphs for all
roads over T time slots of a day. In this section, based on the underlying idea
of general autoencoder, the encoder-decoder component first learns the lower
dimensional representation of the traffic data for each road in the encoding step,
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and then reconstructs the traffic data in the decoder step. The major difference of
encoder-decoder component with general autoencoder lies in that it sufficiently
captures the local spatiotemporal correlation through combining the physical
properties of each road (node features) and the flow transition between roads
(edge features).

5.1 Local Spatiotemporal Dependency Representation

Encoder-decoder based traffic data imputation first learns the local spatial
embedding representation of each road at each time slot based on a novelly
designed GAT-based component through aggregating the traffic states of neigh-
bor roads. Then the BiGRU-CNN component is used to learn the traffic’s local
temporal dependency of each road at each time slot with the local traffic infor-
mation before and after the time slot.

Local Spatial Dependency Learning. Given a time slot t and traffic graph
Gt =

(
R,E, F, F t

E
, F t

V

)
, we use the idea of GAT mechanism to extract the spatial

representation for each node ri by aggregating the traffic states of the neighbor
nodes Ni = {ri|ei,j = 1}.

Since GAT mechanism learns the attention coefficient between nodes only
based on node features, we extend it by using the features of nodes and edges
together.

Specifically, as shown in the Fig. 2, the features of node ri and node rj in
Gt are obtained through combining the physical and dynamic features. That is
hi=(F )i||(F t

V )i and hj=(F )j ||(F t
V )j respectively. The edge features between the

two nodes are hij =
(
F t

E

)
ij

. Based on that, we transform the features into com-
pact features through a learnable linear transformation W , including zi= W̃hi,
zj= W̃hj and zi,j= Ŵhij . The transformation matrix W̃ and Ŵ are the param-
eters to be learned. On this basis, we perform operations wij = a(zi, zj , zij)
to calculate the importance of node ri to node rj . The operation a consists
of a single-layer feedforward neural network and leakyReLu nonlinear activation
function. In order to make the coefficients easy to compare on different nodes, we
use softmax normalization function to regularize all neighbor nodes by Equ(2).

αij = Softmaxj(wij) =
exp(wij)∑

k∈Ni
exp(wik)

(2)

In conclusion, the attention coefficient can be expressed by Equ(3), where .T

and || represent the transposition and connection operation. After a convolution
operation, we get a vector h′

i = σ(
∑

j∈Ni

aijWhj).

αij =
exp

(
LeakyReLU

(
aT [zi||zj ||zij ]

))
∑

k∈Ni
exp (LeakyReLU (aT [zi||zk||zik])) (3)

Since the traffic states of one-hop neighbor nodes may be missing, the aggre-
gated information might not correctly reflect the real-time information. We use
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Fig. 2. Extended-GAT

two ways to alleviate that. First, we use multi-layer graph attention mecha-
nism to aggregate the information of multi-hop neighbor nodes. Second, we use
the multi-head mechanism to stabilize the learning process of self attention. It
learns the local spatial representation of nodes in multiple views at each time
slot through multiple convolution kernels W . If there is K head attentions, we
need to merge the vectors together to obtain the local spatial representation of

node ri at the time slot t. That is ui
t =

K

||
k=1

(σ(
∑

j∈Ni

ak
ij
Wkhj)).

Local Temporal Dependency Representation. Based on above analysis, for
each road ri, we can get the local spatial representation sequence {ui

1, u
i
2 · · · ui

T }
among the T time slots. For a road, the traffic state at a time slot t is evolved
or anti-evolved from the traffic states at the time slots before or after. Moreover
the traffic state at a time slot is more related with its adjacent time slots.

Accordingly, for each time slot t, we use BiGRU and CNN to capture the tem-
poral correlation. Specifically, given the spatial feature representation sequence
of road ri among the T time periods {ui

1, u
i
2 · · · ui

T }, the BiGRU learns the traffic
evolution and anti-evolution patterns from the two sequences in positive order
X l = {ui

1, u
i
2 · · · ui

T } and reversed order Xr = {ui
T , ui

T−1 · · · ui
1} respectively.

The details of BiGRU model refer to the work [20]. For each time slot t, the
BiGRU outputs two vectors representing the evolution and anti-evolution pat-
tern of the road ri. They are concatenated to get a vector for road ri at time
slot t, which is denoted as brit.

In addition, CNN(Convolutional Neural Network) is used to model the strong
traffic dependencies between a given time slot and its neighbor time slots. It
captures the recent dependencies by aggregating the representation of traffic
states at neighbor time slots. We use multi-channel convolution operation and
the step size is set to 1. In order to obtain the output with the same length as
the input sequence {ui

1, u
i
2 · · · ui

T }, we choose to use values at near time slots to
fill the input data. Through CNN layers, we can get a vector for each time slot
t of the road ri, denoted as crit.

The final local spatiotemporal representation of road ri at time t is obtained
by combining the two vectors brit and crit, and denoted as a vector wi

t = brit||crit.
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5.2 Global Dependency Learning and Data Imputation

For each road ri, we can get the local spatiotemporal representation sequence
{wi

1, w
i
2 · · · wi

T } over T time slots. In order to learn the global correlation of traffic
data, we use multi-narrow hidden layers, same as the idea in the autoencoder,
to learn a dense and low-dimensional vector. Since the traffic state has obvious
periodicity, we use the embedding of time attributes together to generate the
global representation Yi.

More specifically, we have one embedding table for each time factor, including
time of day, day of the week. These embeddings are concatenated to the local
spatiotemporal representation sequence, and then passed through narrow hidden
layers to obtain the final low-dimensional vector.

In the decoding step, we use multiple wide fully connected layers to recon-
struct the traffic states by âi = fd(XiW + b). The GCompletor uses neural
network based framework. It is trained by using stochastic gradient descent and
requires a loss function, which is to evaluate how well a specific algorithm mod-
els the given data. If the output deviates too much from actual results, the loss
function would generate a very large error. Gradually, with the help of some
optimization function, loss function learns to reduce the error in prediction. The
loss function of GCompletor is defined as Equ(4).

L=
∥∥∥(X̂−X)·((1 − Ω))

∥∥∥2

F
(4)

Through optimization, we minimize the gap between observed and recon-
structed values. At the same time, we can obtain a reconstructed traffic flow data
matrix X̂, where the missing data are also constructed. Based on the matrix X̂,
the complete traffic state is obtained by X̂raw = X � Ω + X̂ � (1 − Ω).

6 Experiment

6.1 Experiment Settings

Datasets. We evaluate our method’s performance through extensive experi-
ments on real-world datasets from urban road network in Shenzhen, China. The
datasets are from Shenzhen Transportation Agencies and some sample data can
be downloaded on the data open platform of Shenzhen municipal government,
comprising two types of data sources. One is the static information of road net-
work, including the topology and road’s physical attributes1 (as shown in the
Table 2). Another is the traffic state (speed) of each road at each time slot2. The
whole data contains 6months ranging from Jan to June in 2018, including 4248
roads. Each day is divided into 288 time slots with an interval of 5min.

1 https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403588.
2 https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403590.

https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403588
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29200_00403590
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Table 2. Road Attributes

Attribute Examples
Road grade Expressway, Secondary, Branch Road, etc.
Speed limit 30 km/h, 40 km, 50 km/h, etc.
Road length 800m, 1 km, etc.
Direction South-North, North-South, East-West, etc.

Missing Mode Setting. We consider two missing modes on traffic data:
missing completely at random (MR), and missing at continuity (MC).

MR: The missing values may occur because of communication failure or
sparsity of data acquisition (vehicle trajectories). These are some isolated points
randomly scattered and independent of each other completely.

MC: The missing values may occur due to a physical damage or mainte-
nance backlog. These values are related to their temporal or spatial neighboring
readings. Thus, this mode appears to be some sequential points at the same
sensor.

Model Setting. In experiments, we set the parameters of our model as fol-
lows. The numbers of attention heads and graph convolution layers in the local
spatial dependency learning component are set to 4 and 2 respectively, based on
best settings from validation data. The layers of BiGRU and CNN of the local
temporal learning dependency component is set to 2. In addition, stochastic gra-
dient descent with momentum is used as the optimizer. We evaluated our model
for different momentum values from 0 to 0.9. The learning rate is tuned within
0.01−− 0.001 and set 0.008 after testing.

Evaluation Metrics. The constructed values for the missing traffic states are
compared with the real values to evaluate each method. The closer the com-
pleted values are to the real ones, the better the model is. We use two most
widely utilized evaluation RMSE (Root Mean Square Error) and MAPE (Mean
Absolute Percentage Error) to evaluate our method. They are defined by Eq.
(5) and Eq. (6), where N is the total number of missing items in the test data,
and yreal

i and yimpu
i are the ith elements of the real value and estimated value

respectively.

RMSE =

√√
√
√ 1

N

N∑

i=1

(∣
∣
∣yreal

i − yimpu
i

∣
∣
∣
)2

(5)

MAPE =
1
N

N∑

i=1

∣
∣
∣
∣
∣
yreal
i − yimpu

i

yreal
i

∣
∣
∣
∣
∣
× 100% (6)
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Baselines. We compare our approach with baselines, which can be catego-
rized as prediction based methods (ARIMA, STGCN, GAMAN), neighbor based
methods(Historical Average, KNN), matrix/tensor decomposition based meth-
ods (BTRMF, BGCP), and deep generative based methods (SA, VA).

Prediction Based Methods: They use traffic data before the missing time
slot as input to estimate the missing data. They predict the missing value based
on the time order, considering the previously predicted value as real and then
predict subsequent missing values. These methods take a time series as input.

ARIMA [21]: Auto-Regressive Integrated Moving Average is a well known model
for predicting time series, which fits the observed time series into a parametric
model to predict the future traffic data.

STGCN [22]: Spatio-Temporal Graph Convolutional Network consists of graph
convolutional layers and 1D convolution layers. It can capture both spatial and
temporal dependencies in traffic prediction.

GAMAN [23]: Graph Multi-Attention Network uses an encoder-decoder archi-
tecture with spatiotemporal attention mechanism to predict traffic states.

Interpolation Based Methods: They fill the missing data with a weighted
average of corresponding observed data.

HA: Historical Average method estimates missing traffic data by averaging the
traffic states of the target road at the same time slot on the past days.

KNN : K-Nearest Neighbor method, also known as mode interpolation, estimates
the missing traffic state of a road by averaging the observed traffic data from
historical days with similar traffic transition patterns [10].

Matrix/tensor Decomposition Methods: These methods use the idea that
the traffic data matrix or tensor has the characteristics of low rank due to the
intrinsic spatiotemporal correlation.

BTRMF [24]: It completes the missing traffic states by integrating low-rank
matrix decomposition and vector autoregressive (VAR) process into a single
probabilistic graphical model, characterizing consistencies in large-scale time
series data. It uses a matrix representation of road segments and time slots
as input.

BGCP [25]: It extends the Bayesian Probabilistic Matrix Decomposition model
to higher-order tensors and apply it to spatiotemporal traffic data imputation
tasks. It uses third-order tensor representation of road×day×timeslot as input.

Deep Generative Based Methods: The autoencoder based methods can
capture the intrinsic features of data. They estimate the missing data by con-
structing an encoder-decoder based framework to learn the data distribution and
the global spatiotemporal correlation between traffic data.

SA [18]: Stacked Autoencoder uses two stacked autoencoders to impute the miss-
ing values, which can simultaneously consider the spatial and temporal depen-
dencies. It uses a matrix of road × timeslot as input.
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VA [26]: Variational Denoising Autoencoder corrupts the input by adding ran-
dom noise, which can enable our model to better learn the relationship between
data. It uses the traffic matrix of road × timeslot as input.

6.2 Results and Analysis

In this section, extensive experiments are conducted to answer the following
research questions. i) What is the performance of our model compared with
other baselines on the two missing data modes (MR and MC) where the missing
rates vary from 20% to 80%. ii) Does each of the components of GCompletor and
the road attributes make a contribution to improving the model performance?

Performance Comparison with Baselines. Two metrics, i.e., RMSE and
MAPE, are used to evaluate the performance of our proposed model and
all baseline models mentioned above. The results are summarized in Tables 3
and 4.

We observe that our model achieves the best performance in both MR and
MC cases with different missing rates. The interpolation methods perform the
weakest. Because these methods are only based on the traffic states of periodicity
and road proximity correlation, and use the simple average to perform traffic data
imputation. This is only suitable for traffic state imputation in stable scenar-
ios. The prediction based methods are worse than matrix/tensor decomposition
based method. Although the prediction methods can capture the spatiotemporal
nonlinear correlation of traffic states by using GCN and CNN, they do not make
full use of the traffic data after the time slots. Furthermore, most prediction
methods are based on the assumption that the input data is complete, so the
advantages of deep learning cannot be fully realized. The tensor based methods

Table 3. Comparison of different methods in missing mode MR

Methods 20% 40% 60% 80%
RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)

HA 3.034 29.375 3.136 30.284 3.413 31.481 3.938 36.032
KNN 2.987 30.403 3.093 31.557 3.350 33.543 3.812 35.865
ARIAM 2.688 26.882 2.819 28.676 3.054 30.683 3.456 34.126
STGCN 2.351 26.932 2.595 28.011 2.775 29.979 3.112 33.452
GAMAN 2.187 23.013 2.463 26.323 2.687 28.402 2.978 34.123
BTRMF 2.101 21.997 2.323 25.497 2.539 28.227 3.001 32.621
BGCP 1.997 20.876 2.135 24.162 2.356 26.873 2.603 30.537
SA 2.082 21.125 2.221 22.995 2.326 25.573 2.683 29.157
VA 2.130 21.942 2.247 23.346 2.333 25.798 2.687 29.339
GCompletor1.884 19.093 2.017 21.124 2.125 23.213 2.335 25.934
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Table 4. Comparison of different methods in missing mode MC

Methods 20% 40% 60% 80%
RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)

HA 3.373 32.351 3.487 33.439 3.733 34.806 4.253 40.051
KNN 3.274 33.512 3.355 34.831 3.743 35.162 4.073 39.775
ARIAM 2.927 29.474 3.137 31.513 3.342 33.777 3.792 37.791
STGCN 2.644 29.462 2.822 30.779 3.063 32.985 3.432 36.960
GAMAN 2.463 25.013 2.755 28.762 2.951 31.241 3.283 37.841
BTRMF 2.379 23.831 2.575 27.794 2.876 31.051 3.347 36.096
BGCP 2.271 20.485 2.459 26.233 2.633 29.432 2.93 33.643
SA 2.339 22.803 2.373 23.774 2.571 26.760 2.830 30.980
VA 2.301 22.602 2.452 24.259 2.519 27.003 2.894 31.128
GCompletor2.152 20.595 2.311 22.931 2.455 25.313 2.651 28.503

are slightly better than the matrix based methods. The reason is that the ten-
sor based methods can utilize the spatiotemporal information of multiple modes
simultaneously, while matrix decomposition based method can only mine the
data correlation in a single traffic mode.

The two autoencoder based methods perform better than interpolation based
methods and matrix/tensor decomposition based methods due to the better
capacity of learning the complex spatiotemporal dependencies in traffic state
sequences. However, it’s worse than our method GCompletor. For example, our
model reduce the Mean Absolute Percentage Error(MAPE) from 29.157% to
25.934%, from 30.980% to 28.503% on the MR and MC missing modes when
the missing ratio is higher than 80%. This is because, compared with them, we
consider multi-view attributes of roads and use BiGRU and CNN to learn the
local spatiotemporal correlation of traffic states, which is helpful for our model
to comprehensively capture the correlation relationship between data, so as to
obtain a more effective low-dimensional feature representation.

As compared to MR cases, we can observe that all methods in MC cases
suffer much more severe degradation, which suggests that the traffic states are
highly related to the traffic states of the spatial and temporal neighboring points.
Compared with other methods, GCompletor can achieve better results for con-
tinuous missing cases, because it can better model the local spatial correlation
of traffic states by using road attributes and the flow transition between roads.
These spatial relationships, strengthened by prior knowledge, can better help
the model identify and capture the local spatial correlation of traffic data.

6.3 Model Ablation Analysis

As mentioned above, compared with the existing autoencoder based methods,
GCompletor considers more road attributes and uses two components to capture
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Table 5. Model Ablation Results in MR Mode

Methods 20% 40% 60% 80%
RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)

GCompletorg 2.020 20.628 2.141 22.665 2.256 24.863 2.519 27.743
GCompletors 2.013 20.279 2.144 22.046 2.243 24.729 2.485 27.668
GCompletord 1.969 19.985 2.108 22.091 2.228 24.287 2.446 27.316
GCompletorl 1.954 19.692 2.087 21.643 2.181 23.814 2.439 26.572
GCompletorLSC 2.078 20.984 2.189 22.709 2.255 24.897 2.615 28.267
GCompletorLTC 2.109 21.447 2.125 22.967 2.306 25.515 2.627 28.823
GCompletor 1.882 19.095 2.016 21.125 2.123 23.211 2.338 25.939

Table 6. Model Ablation Results in MC Mode

Methods 20% 40% 60% 80%
RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)RMSEMAPE(%)

GCompletorg 2.275 22.128 2.343 23.457 2.534 26.077 2.765 30.069
GCompletors 2.234 21.503 2.349 23.402 2.517 25.996 2.744 29.612
GCompletord 2.229 21.553 2.342 23.203 2.493 25.049 2.724 29.264
GCompletorl 2.196 21.147 2.326 23.15 2.473 25.674 2.686 29.037
GCompletorLSC 2.373 23.063 2.459 24.514 2.643 26.745 2.794 30.435
GCompletorLTC 2.304 22.408 2.366 23.617 2.555 26.604 2.798 30.514
GCompletor 2.156 20.593 2.319 22.932 2.458 25.312 2.653 28.508

the intrinsic spatiotemporal correlation in traffic data, so as to achieve better
traffic data completion accuracy. This section further analyzes the effectiveness
of road physical features and the GCompletor components respectively.

Road Physical Attributes. In order to verify the effectiveness of road physical
features, including road grade(fg), speed limit(fs), direction(fd), road length(fl),
and we remove each of them and input the remaining features into GCompletor.
The results are shown in Tables 5 and 6 for two missing modes. We observe that
the prediction performance decreases no matter which feature is removed. The
results indicate that each of the features makes a contribution to GCompletor.
Moreover, as we can see in the two tables, their effects are different, the road
grade is the most important feature, followed by speed limit and direction.

Different Components. We also test the effectiveness of each model compo-
nent of GCompletor, including local spatial component (LSC) and local tempo-
ral component (LTC). The results are shown in Table 5 and Table 6. No mat-
ter which component is removed, the model performance becomes worse. This
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demonstrates that they are both necessary to improve prediction accuracy. More-
over, the LSC component plays a more significant role in MC mode than MR
mode, because when the traffic states of a road are continuously missing, it is dif-
ficult to estimate the missing data by capturing the temporal correlation within
the time series of that road’s traffic states. In contrast to MR mode, MC mode
depends more on the traffic states of neighboring roads. This limitation can be
better addressed by learning the local spatial correlations between roads.

7 Conclusion

This paper addresses traffic state imputation in intricate urban road networks
with sparse traffic data and physical attributes. We design a novel model called
GCompletor with two key components: traffic graph sequence construction
and encoder-decoder based traffic data imputation. The first one organizes the
observed traffic states and the road physical attributes into a graph sequence by
considering their physical connection and similarity of traffic evolution trends.
The second one then imputes the missing traffic data through learning the latent
and compact spatiotemporal representations hidden in the observed traffic data
through extended GAT-based attention mechanism and BiGRU-CNN. More
importantly, we implement and evaluate GCompletor on real-world datasets in
the city of Shenzhen, China. The experiments show that the proposed model
outperforms all baseline methods in both MR and MC missing modes across 4
different missing rates.
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