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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. In this study, we introduce a novel application of transformer
for document image unwarping, leveraging depth information and Opti-
cal Character Recognition (OCR) results. Our proposed model integrates
two key modules: a depth module and an OCR module, into the trans-
former framework tailored for document image processing. The depth
module predicts the relative depth of each pixel in the document image,
thereby providing crucial spatial context for unwarping. Concurrently,
the OCR module identifies regions suitable for OCR, acting as pref-
erences for the unwarping process. This hybrid approach aims to miti-
gate text distortion inherent in document image unwarping, consequently
enhancing OCR accuracy, although it may reduce our model’s capabil-
ity in structural image unwarping. Experimental results showcase our
model’s effectiveness, achieving a Character Error Rate (CER) of 24.81%,
marking a significant 6.2% absolute enhancement compared to the base-
line method, DocTr.

Keywords: Transformer · Depth Information · OCR · Document
Image Unwarping

1 Introduction

Nowadays, the ubiquitous use of portable devices like smartphones for captur-
ing and sharing document images is prevalent. However, paper documents often
suffer from geometric distortions, aggravated by the inherent challenges of per-
spective distortion during casual captures. These distortions hinder the effective
exchange of document images in both personal and professional spheres. Fur-
thermore, document image unwarping serves as a vital preprocessing step for
Optical Character Recognition (OCR), enhancing its accuracy and efficiency.
Consequently, rectifying geometric distortions in document images is imperative
for improving OCR performance, underscoring the necessity to prioritize and
invest in document image unwarping tasks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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In early stages of tackling document image unwarping challenges, methods
primarily relied on hardware-based solutions. These approaches involved deploy-
ing stereoscopic vision systems [16,25] for document modeling, acquiring flat doc-
ument images using reference points, or pre-modeling specific document types
[7,24,28] followed by shape transformations to obtain flat images corresponding
to their categories. However, these methods were largely reliant on specialized
hardware platforms to acquire spatial information from documents, severely lim-
iting their practical applicability in everyday life and work settings.

Fig. 1. Illustration of document image unwarping results obtained using our model.
The top row exhibits the distorted document images, while the bottom row showcases
the corresponding unwarping outcomes.

The advent of Convolutional Neural Networks (CNNs) [10] revolutionized
document image unwarping tasks, circumventing the constraints of hardware
platforms. CNNs are trained to establish mappings from input images to rec-
tified images. The U-Net [21] architecture, initially deployed for this purpose,
demonstrated promising outcomes. Subsequently, Generative Adversarial Net-
works (GANs) [8] were tailored for document image unwarping, alongside meth-
ods such as block-wise unwarping [12], all of which yielded significant successes.
Notably, the DocTr [6] model integrated transformer [26] into document image
unwarping tasks, yielding substantial enhancements in OCR accuracy.

When examining the outcomes of document image unwarping through the
mentioned deep learning methodologies, there is a notable challenge: irregulari-
ties at the document image borders. These models often interpret the borders as
linear, causing text distortion along the edges. Moreover, incomplete rectification
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of document images by the models exacerbates text deformation. These mistakes
detrimentally impact the OCR precision, counteracting the objectives of docu-
ment image unwarping. The top row of the right column in Fig. 3 indicates some
text distortions generated during the image unwarping process.

To mitigate this challenge, we propose a strategy of delineating OCR-
optimized regions from the original document images, thereby establishing a
reference for the model. This method ensures that our model preserves text leg-
ibility throughout the document image unwarping process. Furthermore, recog-
nizing the intrinsic influence of text legibility on geometric unwarping outcomes,
we incorporate depth information extracted from the images as an additional
unwarping reference. This integration aims to encourage the model to achieve
maximal flattening of document images. Our contributions can be summarized
as follows:

• We introduce a depth information module that forecasts the relative depth
details of input document images. This module provides spatial references for
subsequent document image unwarping tasks, aiding the model in attaining
superior unwarping outcomes.

• We introduce an OCR module to optimize document image unwarping. Ini-
tially, OCR operations are executed on distorted document images to isolate
easily recognizable regions, generating an OCR mask. Subsequently, image
features are extracted from these regions and integrated into the transformer
decoder as references for document image unwarping. This approach enables
the model to prioritize preserving the legibility of text throughout the unwarp-
ing procedure.

• We enhance the encoder-decoder [2] architecture of DocTr [6] by incorporating
a depth information module and an OCR module, enabling the model to
address document image unwarping and text recognizability concurrently.
Experimental findings reveal that our model attains a 24.8% Character Error
Rate (CER) in the unwarping results, showcasing a remarkable 6.2% absolute
enhancement over the state-of-the-art (SOTA) DocTr [6] model.

2 Related Work

2.1 Rectification Based on Three-Dimensional Reconstruction

Early techniques for document image unwarping predominantly relied on stereo-
scopic vision systems to reconstruct documents in three dimensions. Subse-
quently, corresponding deformations were applied to the images to produce the
final flat images. Notably, Fu et al. [7] proposed a pre-modeling approach for
flattening book images, where they predefined books as cylindrical-like models.
By utilizing textual line information from acquired images, they corresponded
distorted regions of the images with flattened regions, automatically adjusting
model parameters, thus achieving the task of flattening book images. Adrian
et al. [28] introduced a document image unwarping approach leveraging general
stereoscopic vision principles. Their method involved modeling the shape of book
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images and deriving flat images of books based on reference points. Similarly,
Tsoi et al. [24] proposed a technique that employed images captured from multi-
ple viewpoints to generate a comprehensive three-dimensional model, effectively
addressing the document image unwarping challenge.

In addition to the pre-modeling methodologies mentioned earlier, numerous
researchers have explored hardware-based document image flattening techniques.
For example, Gao et al. [16] employed two structured light beams to illuminate
document pages and delineate spatial curves. These curves were subsequently
flattened onto a plane by solving a system of ordinary differential equations,
yielding flat images of documents. Similarly, Ulges et al. [25] utilized stereoscopic
vision systems to reconstruct the shape of paper documents afflicted with curved
surfaces or folds.

2.2 Rectification Based on Deep Learning

Classical Models for Document Image Unwarping. In the realm of docu-
ment image unwarping, convolutional neural network models are used to acquire
pixel-level mappings from distorted document images to rectified images. Ini-
tially, Ma et al. [15] devised a stacked U-Net network model, pioneering an end-
to-end approach for document image unwarping with promising outcomes. Build-
ing upon this foundation, Tanmoy et al. [1] augmented this architecture with
an edge detection module, resulting in enhanced performance. Subsequently,
Ramanna et al. [20] introduced a more streamlined model leveraging Gener-
ative Adversarial Networks [8] for document image unwarping tasks, achieving
greater efficiency. Furthermore, Li et al. [12] proposed a Patch-based model archi-
tecture, facilitating document image flattening by segmenting them into blocks
before integration into complete images. Liu et al. [13] designed a pyramid-style
encoder-decoder architecture that predicts the unwarping results of document
images at multiple resolutions from low to high. They employed three gating
modules to introduce structural information such as text lines and table rows to
assist in predicting document unwarping images, achieving excellent results.

Transformer for Document Image Unwarping. With the enormous success
of transformer in the natural language domain [4,18,19], it has gradually been
introduced into fields such as computer vision [5], speech processing [17], and
recommendation systems [23], achieving remarkable results as well. Feng et al.
[6] revolutionized document image unwarping by integrating the transformer
architecture into their pioneering work, DocTr. They devised a classic encoder-
decoder framework, where document images underwent background separation,
feature extraction, and subsequent mapping to the final backward map via the
Transformer decoder. This approach effectively addressed the document image
unwarping challenge. Their method showcased remarkable results in metrics such
as MS-SSIM (Multi-Scale Structural Similarity) [27] and LD (Local Distortion)
[29], while also exhibiting great performance in OCR accuracy.
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Our model is based on the framework of DocTr [6], bolstered by the integra-
tion of image depth and OCR auxiliary map, resulting in a substantial enhance-
ment of OCR accuracy for document image unwarping tasks. Furthermore, we
conducted ablation experiments to showcase the effectiveness of the modules
we devised. Figure 1 displays examples of document image unwarping results
achieved through our proposed model.

Fig. 2. Architecture of Our Model for Document Image Unwarping.

3 Approach

In this section, we present an improved transformer model tailored for document
image unwarping, which integrates both image depth information and an OCR
auxiliary map. As depicted in the Fig. 2, the model architecture comprises a
background segmentation module, a depth information prediction module, an
OCR module, and a transformer encoder-decoder architecture.

For the task of document image unwarping, the model takes a distorted
document image as input, aiming to predict pixel-wise mappings for unwarp-
ing. Specifically, the input image ID ∈ RH×W×3 is processed by the model.
Initially, the model downsamples the input image to obtain a low-resolution ver-
sion Id ∈ RH0×W0×3, where H0 = W0 = 288. Subsequently, Id is forwarded
to a background segmentation module to eliminate its background, yielding the
resulting image Ie. The background segmentation module leverages the prepro-
cessing module from DocTr [6] to effectively remove the background of the doc-
ument image. It’s based on U-Net [21] and trained with a binary cross-entropy
loss. Because of its effectiveness and universality, we bring it into our ODTr
model.

Following this, the depth information prediction module generates the depth
information Md ∈ RH0×W0 for Ie. Subsequently, Ie and Md are concatenated
to form I

′
e ∈ RH0×W0×4, which serves as input to the transformer encoder for

extracting global-aware representations. Concurrently, ID is utilized as input
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to the OCR module to produce the OCR mask MOCR. During inference via
the transformer decoder, the OCR mask is incorporated as an additional input,
functioning as a reference for document image unwarping, ultimately predicting
the backward mapping field fb ∈ RH0×W0×2. Finally, fb is upsampled to size
H × W and transformed into the final backward mapping field fB ∈ RH×W×2.

3.1 OCR Module

As previously mentioned, distortions in the text content of document images
may arise from irregularities at the image edges and inadequate unwarping. To
address this challenge, we developed the OCR Module. Initially, it conducts
character recognition on the image ID to produce a document region mask
MOCR ∈ RH0×W0 , which delineates regions of the image conducive to OCR.
Subsequently, these segmented regions of the image are fed into a feature head.
The resulting output contributes to the attention mechanism, facilitating pixel-
level predictions.

3.2 Depth Information Prediction Module

Numerous challenges in document image unwarping tasks arise from the absence
of spatial information. Moreover, our model introduces the OCR region mask
as a guide for document image unwarping, which may influence the geometric
unwarping of the image. To solve this contradiction, we devised the depth infor-
mation prediction module to incorporate three-dimensional information, offering
the model a preliminary image shape reference.

The module is constructed based on the U-Net [21] architecture, which takes
the image Ie as input and predicts its depth information Md through this module.
It’s important to note that this depth information represents relative positions.
Specifically, the ground truth Mgt is normalized from the z-axis position of the
image to the range [0, 1]. The normalization operation is defined as follows:

Mgt =
Zgt − Zmin

Zmax − Zmin
(1)

where Zgt represents the value of the image’s z-axis position, and Zmin and
Zmax denote the minimum and maximum values of the image’s z-axis position,
respectively. The training loss of the module is defined as the L1 distance between
the predicted depth map Md and the ground truth Mgt:

Ldepth = ‖Mgt − Md‖1 (2)

3.3 Transformer Encoder and Decoder

The transformer encoder and decoder adopt the basic architecture from DocTr
[6], comprising K encoder layers and K decoder layers. It takes the background-
removed image Ie and the predicted depth information Md as inputs. These
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inputs pass through the feature module to obtain features fg1 ∈ R
H
8 ×W

8 ×cg1 ,
which are then fed into the transformer encoder to extract global-aware rep-
resentations FK . Simultaneously, the document image, processed through the
OCR module to generate OCR detection regions, undergoes the feature module
to obtain fg2 ∈ R

H
8 ×W

8 ×cg2 . These two sets of features, FK and fg2 , collectively
serve as the attention value for the transformer decoder to generate pixel-level
predictions fb. The backward mapping fb is generated as follows:

fg1 = F ([Ie,Md]) (3)

fs1 = Flatten(fg1) ∈ RNg×cg1 (4)

FK = EN(fs1 , E
′
p) (5)

fg2 = F (OCR(ID)) (6)

fb = UP (DE([FK , F latten(fg2)] , Ep, Ed)) (7)

where Ng = H
8 × w

8 ,E
′
p and Ep represent position embeddings, Ed is a learnable

embedding, F (.), EN(.), UP (.), OCR(.) and DE(.) denote the feature module,
transformer encoder, upsample layers, OCR module and transformer decoder,
respectively. The training loss of the model is defined as the L1 distance between
the predicted backward mapping fb and the ground truth fgt as follows:

Lbm = ‖fgt − fb‖1 (8)

4 Experiments

4.1 Baseline Model

We choose DocUNet [15], DRIC [12], DewarpNet [3], and DocTr [6] as base-
line models. These models represent classic methods or the best transformer
models for document image unwarping. Within these methods, document image
unwarping is commonly divided into two tasks: geometric unwarping and illumi-
nation correction. Illumination correction typically follows geometric unwarping
and can be directly reused. Therefore, for comparison purposes, we focus solely
on evaluating the performance of these methods in geometric unwarping.

4.2 Datasets and Metrics

The model proposed in this paper is trained on the Doc3D dataset [3]. Fur-
thermore, to facilitate comparison with DocTr [6], the model undergoes perfor-
mance evaluation on the DocUNet benchmark dataset [15]. To quantify their
performance, we employ Multi-Scale Structural Similarity (MS-SSIM) [27] and
Local Distortion (LD) [29] metrics to assess the geometric similarity between
the model’s results and the ground truth. Additionally, Edit Distance (ED) [11]
and Character Error Rate (CER) are metrics commonly used to evaluate the
accuracy of character recognition in the generated results.
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Datasets. The Doc3D dataset [3] stands out as the largest document image
unwarping dataset, encompassing 100,000 images of distorted document images
synthesized from both real document data and rendering software. It includes
various accompanying data such as three-dimensional coordinates, albedo maps,
normals maps, depth maps, UV maps, and backward mapping maps.

On the other hand, the DocUNet Benchmark [15] comprises 130 real-world
document images, which serve as a widely-used benchmark to evaluate the doc-
ument image unwarping capabilities of different models.

Metrics. MS-SSIM measures the structural similarity between the model’s out-
put and the ground truth, while LD quantifies the local differences between them.
These metrics evaluate the model’s image unwarping capabilities from the per-
spective of image structure. The MS-SSIM score ranges from 0 to 1, with 1
indicating perfect structural similarity. Conversely, a lower LD score signifies
better model performance.

On the other hand, ED and CER compare the OCR results of the model’s
output with those of the ground truth. ED measures the number of edits (inser-
tions, deletions, substitutions) required to transform the recognized text into
the ground truth text. CER represents the percentage of characters in the rec-
ognized text that differ from the ground truth text, normalized by the total
number of characters in the ground truth text. These metrics provide insights
into the accuracy of the model’s image unwarping process in terms of character
recognition.

4.3 Implementation Details

During the model training process, we train the depth module and the trans-
former encoder-decoder model separately. For the depth module, we employ the
Adam optimizer [9] with a fixed learning rate of 1 × 10−4. The image size is set
to 288×288, and the batch size is set to 16. For the transformer encoder-decoder
model, we also set the image size to 288 × 288 and the batch size to 16. Addi-
tionally, we utilize the AdamW optimizer [14] with a maximum learning rate set
to 1 × 10−4, adjusting it based on the One-Cycle policy [22].

The generation of the OCR auxiliary map and the calculation of ED and
CER are performed using Tesseract (v3.02.02) as the OCR engine.

4.4 Experimental Results

We compare our model with DocTr [6] and several typical models on the
DocUNet benchmark [15], and the results are presented in Table 1. As men-
tioned earlier, we assess both image structure similarity and OCR accuracy. It’s
important to note that, when evaluating OCR accuracy, we focus solely on 30
images in the DocUNet benchmark [15] where the textual content predominates,
following the approach of DocTr [6]. The data in the table indicates that our
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Table 1. Comparisons with the results reported by the original papers trained on
Doc3D [3] and evaluated on the DocUNet benchmark [15].

Method LD ↓ MS-SSIM ↑ ED ↓ CER ↓
Distorted Image – – 2051.4 0.68

DocUNet [15] 14.08 – – –

DRIC [12] 18.19 – 1840.9 0.61

DewarpNet [3] 8.98 0.4735 1121.1 0.38

DocTr [6] 8.38 0.4970 935.2 0.31

ODTr 10.43 0.4552 625.2 0.25

model surpasses the state-of-the-art model in terms of both ED and CER met-
rics, achieving an absolute improvement of 6% in CER over the state-of-the-art
result by DocTr [6]. However, our model’s performance on the structural simi-
larity evaluation metric is slightly lower than the state-of-the-art result.

This outcome is attributed to the incorporation of image regions conducive to
character recognition from the original image as references during the document
image unwarping process. Figure 3 depicts a comparison between the results of
our model and DocTr [6]. From the content within the red boxes, we can observe
that during document image unwarping with DocTr [6], text near the edges of
the image sometimes experiences distortion. In contrast, our model demonstrates
better mitigation of such issues. Moreover, our model prefers to keep text content
taking up most of the document image’s space, consistent with the document’s
feature. However, these regions easily recognized may contain minor distortions.
Consequently, while preserving the recognizability of text regions, this process
may introduce some degree of interference to image unwarping.

4.5 Ablation Study

In this model, we have designed two modules: the depth information module
and the OCR module. These modules aim to extract spatial context and text
information from the input image, respectively. To validate the effectiveness of
these modules, we trained three models: the basic transformer with the depth
module, the transformer with the OCR module, and the complete model trained
on the Doc3D dataset. We then evaluated the capabilities of these models on
the DocUNet benchmark [15].

As depicted in Table 2, incorporating OCR-friendly regions contributes to
enhancing the readability of document images, whereas the inclusion of depth
information aids in improving the capability of geometric unwarping. However,
it’s noteworthy that the readability of documents may occasionally conflict with
geometric unwarping, as described previously.
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Fig. 3. Comparison examples between our model and DocTr [6]. The left column shows
the input document images, the middle column displays the results from our model,
and the right column presents the results from DocTr [6].

Table 2. Ablation experiments conducted on our model ODTr.

Method Depth OCR LD ↓ MS ↑ ED ↓ CER ↓
Depth only

√
9.89 0.4620 785.7 0.286

OCR only
√

11.99 0.4263 453.4 0.198

Full
√ √

10.43 0.4552 625.2 0.248

5 Conclusion and Future Work

In our study, we propose ODTr, a novel model for document image unwarping.
Leveraging depth information and OCR-friendly regions from the original image,
our model demonstrates enhanced performance in character recognition.

Our findings underscore the significance of incorporating depth information
and text features from input images to enhance document unwarping outcomes.
Moving forward, we aim to employ a more rigorous methodology to identify flat
regions in original images and train the depth module on a larger dataset to
further enhance visual and OCR performance.
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Abstract. Oracle bone characters represent the earliest inscriptions
in China. Recognizing and deciphering these characters is significant.
Despite some progress made by recent methods, their recognition accu-
racy remains limited by two major issues: 1) how to focus on characters
features within complex background noise images, and 2) how to effec-
tively fuse shallow detail information with deep semantic information.
To address these issues, we propose a novel deep learning model called
Character Feature Enhancement Network (CFE-Net). The model con-
sists of two key components: Character Feature Enhancement (CFE)
and Adaptive Multi-level Classifier Fusion (AMCF). Specifically, CFE
utilizes the Spatial Focus Attention Module (SFAM) to focus on extract-
ing foreground character features and suppressing background noise,
thereby significantly enhancing high-level semantic representation capa-
bilities. AMCF, on the other hand, achieves multi-level feature fusion
by adaptively fusing the outputs of different classifiers, effectively avoid-
ing information loss or interference that simple fusion strategies might
cause. We evaluated the CFE-Net on two rubbing oracle bone charac-
ters benchmark datasets, OBC306 and Oracle-MNIST. The experimen-
tal results demonstrate that CFE-Net significantly outperforms several
existing methods in terms of Top-1 accuracy, establishing it as the new
state-of-the-art.

Keywords: Oracle Bone Characters · Character Image Recognition ·
Attention Mechanism · Feature Fusion

1 Introduction

The automatic recognition technology for oracle bone characters plays a vital
role in the preservation and research of digital cultural heritage. Oracle bone
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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characters, which are an important symbol of ancient Chinese civilization, are
mainly carved on tortoise shells or animal bones. Their contents include historical
events, social customs, clan situations, and ritual activities. With the discovery
of a large amount of oracle bone characters data and the increasing demand
for its digitization, determining how to accurately and efficiently identify and
interpret this complex textual information has become a major challenge in the
field of oracle bone characters recognition.

In the field of oracle bone characters recognition, early studies primarily
utilized graph theory and topology to extract text features [14,18,26]. With
technological advancements, deep learning methods began to be applied in this
field [20,25,34].

Although deep learning methods have achieved significant results in oracle
bone characters recognition, the inherent characteristics of rubbing oracle bone
characters-complex background noise, irregular character morphology, and char-
acter mutilation due to erosion, as shown in Fig. 1-still pose two major challenges:
1) how to effectively extract character features from images with complex back-
ground noise; and 2) how to synthesize shallow detail information with deep
semantic information of characters. Noted, unless otherwise stated, we simplify
oracle bone characters recognition as oracle recognition.

To address the above challenges, we propose a Character Feature Enhance-
ment Network, CFE-Net. Initially, to enhance the model’s ability to capture
key character information and effectively suppress the background noise, we
designed the Spatial Focus Attention Module (SFAM) and the Character Fea-
ture Enhancement (CFE) module. Furthermore, we constructed the Adaptive
Multi-level Classifier Fusion (AMCF) module. This module utilizes global aver-
age pooling with various kernel sizes to process multi-level feature maps, thus
effectively fusing the shallow detail information of characters with deep seman-
tic information. Utilizing an adaptive dynamic weighting strategy, the module
optimizes the classification results and more effectively adapts to the diversity
of oracle bone characters. To summarize, the main contributions of this study
are as follows:

– We propose a new oracle recognition network, CFE-Net, which utilizes the
attention mechanism and feature fusion techniques to enhance the ability to
capture key information in oracle images and effectively suppress background
noise.

– We designed the Spatial Focus Attention Module (SFAM) and the Character
Feature Enhancement (CFE) module. These modules enhance the model’s
focus on foreground character features and effectively isolate key character
information from complex backgrounds.

– We constructed an Adaptive Multi-level Classifier Fusion (AMCF) module.
This module optimizes classification results through adaptive weight adjust-
ment, enabling dynamic adjustments based on the hierarchical structure and
importance of features, thus enhancing character recognition accuracy.

– We conducted experiments on the challenging rubbing oracle bone charac-
ters datasets OBC306 [12] and Oracle-MNIST [29]. The experimental results
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demonstrate that the proposed model not only improves baseline performance
but also establishes a new state-of-the-art.

Fig. 1. Examples of selected samples from the Oracle dataset. (a) OBC306; (b) Oracle-
MNIST. In each subgraph, images in the same row belong to the same class

2 Related Works

2.1 Oracle Character Recognition

Research on oracle recognition has primarily utilized traditional pattern recogni-
tion and deep learning methods for both handwritten and rubbing oracle images.
Traditional pattern recognition methods rely on graph theory and topology. For
example, reference [14] employs a graph isomorphism-based approach, treating
oracle characters as undirected graphs and characterizing their structure through
nodes (e.g., endpoints and intersections) and edges to achieve matching and
recognition. Another study [4] converts oracle characters into topological graphs
for matching and recognition. Guo et al. [6] propose hierarchical representations
combining Gabor filters and sparse encoder features to improve the efficiency of
oracle characters recognition. Despite the initial success of these methods, they
are complex and heavily rely on manual feature extraction, which limits their
scalability.

In contrast, deep learning methods have greatly improved the performance of
oracle characters recognition. Recent research has focused on utilizing Convolu-
tional Neural Networks (CNNs) for automatic feature extraction [2,30,36]. Due
to the difficulty in obtaining rubbing oracle datasets, early studies were usually
limited to self-constructed handwritten or small collections of rubbing oracle
characters images. It was not until Huang et al. released the first large-scale
rubbing oracle dataset, OBC306 [12], which provided a valuable resource for
deep learning research, that more researchers were prompted to turn to rubbing
oracle recognition.
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The OBC306 [12] dataset suffers from significant sample imbalance, with
some categories being extremely rich in samples while others are sparse. To
address this challenge, Li et al. [17] combined the mix-up enhancement strategy
and triplet loss to increase the sample size of minority classes by combining the
information from majority and minority classes, thus improving the accuracy
of oracle recognition based on Inception-v4 [28]. Additionally, Li et al. [16] pro-
posed two new data enhancement strategies: Repatch and TailMix. The Repatch
strategy enhances the output diversity of the Generative Adversarial Network
(GAN) [3] generator by generalizing the samples, while the TailMix strategy
increases the number of samples in the tail class by synthesizing data from other
classes, effectively improving the model’s recognition ability for minority class
samples. Furthermore, Mao et al. [24] enhanced the fusion of shallow and deep
features and optimized the classifier structure by improving the ResNeSt [35]
network, further enhancing the recognition accuracy of rubbing oracle bone char-
acters.

Although research based on ResNeSt [35] and Inception-v4 [28] has achieved
significant results in oracle recognition accuracy, these models suffer from com-
plex designs, a large number of parameters, and lengthy training times. To
address these issues, this paper proposes achieving efficient and accurate oracle
recognition using smaller models such as ResNet-18 [8], aiming to significantly
reduce model complexity and training time.

2.2 Attention Mechanism

In the field of computer vision, attention mechanisms have become crucial tech-
niques for improving the performance of Neural Networks (NN). These atten-
tion mechanisms are effectively integrated into Convolutional Neural Networks
(CNNs), enhancing the model’s focus on key features and suppressing irrelevant
information. Attention mechanisms can be primarily categorized into channel
attention, spatial attention, and a combination of both.

The channel attention mechanism adjusts the feature response by learning
the importance of each channel in the feature map, highlighting useful features
and suppressing irrelevant information. SE-Net [11] is one of the earliest imple-
mentations. It focuses on the global features of channels through a global aver-
age pooling layer and employs a simple recalibration strategy to improve fea-
ture responses among channels. ECA-Net [31] avoids complex spatial dimen-
sionality transformations and dimensionality reduction operations, using a one-
dimensional convolution with adaptive kernel sizes to dynamically capture chan-
nel dependencies at different scales. The spatial attention mechanism concen-
trates on the spatial dimensions of the feature map, optimizing each location by
learning the importance of specific areas. GENet [10] aggregates local feature
information via the “Gather” operation and modulates the feature response
with the “Excite” operation, effectively leveraging spatial attention to enrich
the contextual information in the feature map. SPA-Net [5] employs multiple
adaptive average pooling within a spatial pyramid structure to model both local



CFE-Net for Oracle Character Recognition 17

and global contextual semantic information, thereby more fully exploiting spa-
tial semantic information. Considering the importance of channel and spatial
dimensions simultaneously, methods like CBAM [33] that combine channel and
spatial attention enhance feature representation by sequentially applying these
two types of attention. Coordinate attention [9] further innovates by integrating
position coding within channel attention, merging spatial position information
with channel features to enhance the model’s ability to discern various positions
in the image.

Fig. 2. Overall architecture. (a) Backbone; (b) Character Feature Enhancement mod-
ule; (c) Adaptive Multi-level Classifier Fusion module. GAP(̊u) denotes global average
pooling with different kernel sizes. α, β and γ are three trainable parameters. FC
represents fully connected layer. LCE denotes the cross-entropy loss function

The recognition of complex-morphology oracle bone characters is significantly
impacted by background noise and diverse character shapes. We designed a spa-
tial focus attention module that enhances foreground character feature extrac-
tion and suppresses background noise.

2.3 Multi-level Feature Fusion

Multi-level feature fusion is crucial for visual tasks. Each layer of the back-
bone network has a distinct receptive field. However, the lack of feature corre-
lation means that information from different levels is not fully utilized, limiting
image recognition accuracy. To address this challenge, multi-level feature fusion
enhances information utilization efficiency by integrating features from different
layers. As a classic example, the Feature Pyramid Network (FPN) [19] enhances
multi-level feature utilization by combining low-resolution, high-semantic fea-
tures with high-resolution, low-semantic features in a structure that relays
semantic information from top to bottom, achieving effective feature fusion
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across levels. Building on this, PANet [21] further emphasizes effective informa-
tion exchange between lower and higher layer features by adding an additional
bottom-up path to aggregate multi-path, multi-level feature information.

Although FPN [19] and its variants have achieved significant results in image
classification and object detection, they exhibit limitations when addressing
detail-rich character images against complex backgrounds. The primary chal-
lenge with these images lies in the fineness and criticality of details, particularly
at character edges and stroke details.

To alleviate this problem, this study proposes a strategy focusing on multi-
level feature fusion from the classifier’s perspective. This approach not only
minimizes information loss or interference from directly fusing different-level
features, but also more effectively utilizes deep semantic information while pre-
serving original detail.

3 Proposed Approach

In this section, we present a comprehensive overview of the proposed model.
Section 3.1 outlines the overall architecture of the model, Sect. 3.2 designs the
character feature enhancement module, and Sect. 3.3 constructs the adaptive
multi-level classifier fusion module.

3.1 Overall Architecture

In this study, we propose a Character Feature Enhancement Network (CFE-
Net), focusing on attention feature enhancement and multi-level feature fusion
to improve oracle recognition accuracy.

The overall framework, illustrated in Fig. 2, includes the backbone network,
the Character Feature Enhancement (CFE) module, and the Adaptive Multi-
level Classifier Fusion (AMCF) module. Initially, the backbone network extracts
features from the input image. Subsequently, the CFE module emphasizes key
features and suppresses irrelevant ones. Finally, the AMCF module fuses features
of different levels to optimize recognition results.

3.2 Character Feature Enhancement

Oracle images, which contain complex background noise mixed with characters,
significantly impact recognition accuracy. To address this challenge, we designed
the Character Feature Enhancement (CFE) module, as shown in Fig. 2(b), aim-
ing to emphasize character features and suppress background noise.

Oracle bone characters are typically elongated, with distinct information
along the width and height dimensions. To more effectively focus on information
in different spatial dimensions, we introduce Coordinate Attention (CA) [9], illus-
trated in Fig. 3(a). This module encodes spatial features of the character image
along width and height, embedding these features into the channel to enhance
the model’s accuracy in locating and focusing on effective features. Specifically,
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this module generates two direction-aware feature maps via two one-dimensional
global average pooling operations, aggregated horizontally and vertically. These
two direction-specific feature maps are then encoded into two attention maps,
each capturing long-range dependencies of the input features in their respective
directions. Through a multiplication operation, these attention maps enhance
important features and suppress unimportant ones in the input feature maps.

Fig. 3. From left to right, they are: (a) CA module; (b) SFAM module; (c) Residual
Dilated Convolution block

To further enhance the foreground features of character images and suppress
background noise, we designed a Spatial Focus Attention Module (SFAM) to
intensify spatial feature focus, inspired by CBAM [33]. The SFAM module com-
prises two branches: channel attention and spatial attention, with its detailed
structure illustrated in Fig. 3(b). For a given input feature map F ∈ R

C×H×W ,
the module independently computes channel attention Mc(F ) ∈ R

C and spatial
attention Ms(F ) ∈ R

H×W , subsequently fusing these branches via element-wise
summation to generate a 3D attention map M(F ), ranging from (0, 1), using a
sigmoid activation function (as shown in Eq. 1). Given the differing dimensions
of the two attention maps, they are expanded to R

C×H×W using a broadcasting
mechanism prior to fusion. Finally, the resulting 3D attention map is multiplied
element-wise with the input feature map F to produce the enhanced feature map
F ′ (as shown in Eq. 2).

M(F ) = σ(Mc(F ) + Ms(F )) (1)
F ′ = F ⊗ M(F ) (2)

where ⊗ denotes element-by-element multiplication, σ represents the sigmoid
activation function.

Specifically, the channel attention branch first applies global average pooling
to the feature map F ∈ R

C×H×W , aggregating channel features and generat-
ing a channel vector Fc ∈ R

C×1×1. Subsequently, downscaling and upscaling
operations are conducted via two Fully Connected (FC) layers, introducing a
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Non-Linear process to estimate inter-channel attention. The hidden layer size is
set to R

C/r×1×1, where r, the reduction ratio, is 16. Within the spatial atten-
tion branch, the channel dimension of the feature map F is initially reduced
to R

C/r×H×W using 1×1 convolution to decrease computational overhead. Sub-
sequently, two Residual Dilated Convolution (RDConv, illustrated in Fig. 3(c))
blocks (convolution kernel of 3 and dilation rate of 4) are sequentially employed
to expand the receptive field and further focus spatial features. Residual dilated
convolution expands the convolution kernel’s receptive field by introducing dila-
tions, enhancing the capture of detailed character stroke features while preserv-
ing feature map resolution. Residual concatenation facilitates smooth informa-
tion transfer, preventing information loss and gradient vanishing issues. The
number of channels in the feature map is further reduced using 1×1 convo-
lution, producing an R

1×H×W spatial attention output. Finally, the attention
maps from both branches are summed and re-weighted with the input feature
map post-sigmoid activation to produce the final attention feature map. This
strategy, which sums attention maps followed by activation, combines different
attention strengths, optimizing the re-weighting process and enhancing overall
model performance.

3.3 Adaptive Multi-level Classifier Fusion

As the depth of CNNs increases, the resolution of the feature map gradually
decreases. Although low-level features are high in resolution and rich in detail,
they are less semantic and contain more noise. In contrast, high-level features,
rich in semantic information, have lower resolution and capture fewer details.
For character images, the details between strokes are crucial for distinguishing
different characters. Therefore, effectively fusing low-level detail with high-level
semantic information presents a major challenge in oracle recognition.

To address this challenge, we developed an Adaptive Multi-level Classifier
Fusion (AMCF) module, illustrated in Fig. 2(c). This module facilitates the
fusion of multi-level features at the classifier level. Specifically, we conduct global
average pooling (GAP) with various kernel sizes-GAP(4), GAP(2), and GAP(1)-
on the output feature maps from stages 2, 3 and 4 of the backbone network to
derive three feature maps, each capturing detail and semantic information at
distinct levels. These feature maps are transformed into feature vectors along
the channel dimension and then input into three distinct classifiers: Classifier1,
Classifier2, and Classifier3. Variations in global average pooling dimensions yield
feature vectors of differing dimensions. Consequently, we designed a unique clas-
sifier structure for each level. Each classifier maps feature vectors of 2048, 1024,
and 512 dimensions to corresponding category counts. To achieve optimal fea-
ture fusion, we introduce three trainable parameters α, β and γ, and employ
an adaptive weighting strategy to combine the outputs of different classifiers,
namely score1, score2, and score3 (as shown in Eq. 3).

Fused score = α × score1 + β × score2 + γ × score3 (3)
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This multi-level feature fusion strategy, viewed from the perspective of clas-
sifier integration, offers several advantages. First, processing features through
independent classifiers at various levels prevents information loss and reduces
interference from simple fusion, enabling more effective integration of detailed
and semantic information. Second, the independent classifier design diminishes
the model’s reliance on a single feature level, thereby enhancing noise robust-
ness. Additionally, the adaptive fusion mechanism dynamically adjusts classifier
weights to optimize feature information utilization across various input scenar-
ios. The strategy’s flexibility allows the model to handle complex and diverse
character images more robustly.

4 Experiments

4.1 Datasets

To the best of our knowledge, the publicly available rubbing oracle recognition
datasets include OBC306 [12] and Oracle-MNIST [29]. We conducted tests on
these two rubbing image benchmark datasets to evaluate the effectiveness of our
proposed network. Samples from these datasets are shown in Fig. 1, and relevant
dataset information is listed in Table 1.

Table 1. Oracle recognition dataset OBC306, Oracle-MNIST related information. IR
represents imbalance ratio, which denotes the ratio between the largest and smallest
class sizes in terms of sample quantities.

Data set Train set Test set Train IR Test IR Total number Class Number

OBC306 232,236 77,286 19,424:1 6,474:1 309,522 277

Oracle-MNIST 27,222 3,000 3,399:2,328 300:300 30,222 10

OBC306 [12] is currently the largest rubbing oracle bone characters recog-
nition dataset. This dataset comprises 306 classes of oracle characters, totaling
309,551 images. Given the dataset’s long-tailed distribution, to ensure at least
one sample from each class in both training and test sets, we removed 29 classes
that had only one image, retaining 277 classes totaling 309,522 images. Following
the work of [12], we randomly divided the dataset into training and test sets at
a 3:1 ratio. Ultimately, the training set includes 232,236 images, and the test set
includes 77,286 images, with imbalance ratios of 19,424:1 and 6,474:1, respec-
tively. This alignment is consistent with the ratios reported in the work [15].

Oracle-MNIST [29], modeled after the classic MNIST [13] dataset for image
classification, was derived from OBC306 by Wang et al. This dataset comprises
10 classes of oracle bone characters totaling 30,222 images, with 27,222 images
in the training set and 3,000 images in the test set. Unlike OBC306 [12], this
dataset exhibits a relatively balanced distribution of images across each category,
with imbalance ratios of 3,399:2,328 in the training set and an equal distribution
of 300:300 in the test set.
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4.2 Evaluation Metrics

In the experiments, this study utilized total accuracy to evaluate the model’s
performance, reporting overall accuracy across all categories. This metric is com-
monly used in the field of image classification and is defined by Eq. 4.

ATotal =
1
H

C∑

c=1

nc (4)

where H denotes the total number of images in the test set, C represents the
number of classes in the test set, and nc indicates the number of images of class
C that were correctly classified by the model. Higher values of accuracy indicate
better model performance.

4.3 Implementation Details

The proposed method underwent end-to-end training on the PyTorch deep
learning framework. In the experiments, input images were uniformly scaled
to 224×224, and the batch size was set at 64. Optimization was performed using
the AdamW [22] optimizer with a weight decay of 5e-4 and an initial learning
rate of 5e-4. Initially, training involved a CosineAnnealing [23] decay strategy for
20 epochs, followed by fixing the learning rate at 1e-6 for an additional 5 epochs.
We employed a cross-entropy loss function to quantify the discrepancies between
predictions and actual labels. Additionally, random horizontal flipping and ran-
dom rotation were implemented to enhance sample diversity. All experiments
were conducted on a single GeForce RTX 3090 GPU.

4.4 Ablation Study

To validate the effectiveness of the various components of our model, we selected
ResNet-18 as the baseline model for ablation studies on the OBC306 dataset.
The evaluation criteria included Top-1 and Top-3 accuracy, with detailed results
presented in Table 2.

Table 2. Ablation experiments on the OBC306 dataset.

Method Top-1 Accuracy (%) Top-3 Accuracy (%)

Baseline 91.50 97.01

Baseline+CFE 93.46 97.83

Baseline+AMCF 93.24 97.63

Baseline+CFE+AMCF 94.22 98.07

Effectiveness of the CFE. Results in Table 2 demonstrate significant perfor-
mance improvements attributed to the CFE module. The addition of the CFE
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module improves the Top-1 and Top-3 accuracy to 93.46% and 97.83%. This
improvement primarily results from effectively combining CA and SFAM within
CFE. Specifically, CA captures information from various spatial orientations in
the oracle bone character image, while SFAM intensifies spatial feature focus,
effectively suppressing background noise and enhancing foreground feature char-
acterization.

Additionally, feature map visualizations for the three stages of CFE imple-
mentation are displayed in Fig. 4. With the CFE module integrated, attention
to character features is significantly enhanced in the model. Attention is par-
ticularly focused on the main parts of the character, underscoring the model’s
focus on key features.

Fig. 4. Visualization of the feature maps. The first row shows the feature maps gener-
ated by the baseline model, while the second row illustrates the feature maps generated
after adding the CFE module. Yellow areas indicate higher attentional intensity and
blue or black indicate lower attentional intensity (Color figure online).

Effectiveness of the AMCF. Similarly, the AMCF module significantly
improved model performance. The addition of the AMCF module increased
the baseline model’s Top-1 and Top-3 accuracy to 93.24% and 97.63%. This
enhancement is attributed to AMCF’s optimization of overall feature represen-
tation by effectively integrating the strengths of each classifier and fully utilizing
multi-level feature information. Specifically, AMCF trains by feeding varying lev-
els of output feature maps to separate classifiers and fusing the outputs in an
adaptively weighted manner. This strategic approach enables each classifier to
focus on features received at a specific level, enhancing information accuracy and
improving image recognition performance.

4.5 Comparison with Previous Methods

To further validate the state-of-the-art status of the proposed method, we com-
pared it with existing work in the field of rubbing oracle recognition. Experimen-
tal results comparing the proposed method with others on OBC306 and Oracle-
MNIST are presented in Tables 3 and 4, respectively. The symbol ∗ denotes the
benchmark results for the different models from our own implementations.

As demonstrated by the results in Tables 3 and 4, our proposed CFE-Net
exhibits excellent performance on the challenging datasets OBC306 and Oracle-
MNIST. On the OBC306 dataset, CFE-Net achieved a Top-1 accuracy of 94.22%,



24 Z. Han et al.

Table 3. Experimental results on the OBC306 dataset.

Method Backbone Top-1 Accuracy (%) Top-3 Accuracy (%)

Simonyan et al. [27]* VGG16 90.95 96.38

He et al. [8]* ResNet-18 91.50 97.01

Szegedy et al. [28]* Inception-v4 92.68 97.49

Guo et al. [7] Inception-v3 87.73 94.85

Liu et al. [1] ResNet-18 91.53 -

Li et al. [17] Inception-v4 91.74 -

Wang et al. [32] Inception-v4 92.02 -

Mao et al. [24] ResNeSt 93.53 -

Li et al. [16] Inception-v4 93.86 -

Ours ResNet-18 94.22 98.07

Table 4. Experimental results on the Oracle-MNIST dataset.

Method Backbone Top-1 Accuracy (%) Top-3 Accuracy (%)

Wang et al. [29] CNN 93.80 –

Simonyan et al. [27]* VGG16 96.63 99.67

He et al. [8]* ResNet-18 96.57 99.70

Szegedy et al. [28]* Inception-v4 97.27 99.73

Zhang et al. [35]* ResNeSt-50 97.60 99.70

Ours ResNet-18 98.50 99.70

significantly outperforming other listed models. Compared to the ResNet-18
baseline model’s 91.50%, CFE-Net showed a 2.72% improvement in Top-1 accu-
racy and achieved 98.07% in Top-3 accuracy. Even compared to more complex
architectures like Inception-v4 and ResNeSt-50, our model remains competitive,
surpassing the best current method by Li et al. [16] (93.86%) by 0.36%. On
the Oracle-MNIST dataset, CFE-Net also excelled, achieving a Top-1 accuracy
of 98.50%, and 4.7% higher than the best current method by Wang et al. [29]
(93.80%). These results demonstrate that CFE-Net not only excels in Top-1
accuracy but also maintains superior performance in Top-3 accuracy, effectively
handling the task of oracle recognition.

4.6 Comparing the Advantages of Our Model

In this subsection, we provide a detailed comparison of the Top five models-
VGG16, ResNet-18, ResNeSt-50, Inception-v4, and our proposed CFE-Net-
focusing on recognition accuracy on the test set of OBC306, with results pre-
sented in Table 5. Among them, the accuracy rate for ResNet-18, Inception-v4,
and ResNeSt-50 reflects the findings from [1], [16] and [24], while the accuracy
rates for the remaining models are derived from our own implementations.
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Table 5. Comparison of different models in terms of Parameters, FLOPs, Weight file
size, and Top-1 accuracy.

Model Params (M) FLOPs (G) Weight Size (MB) Top-1 Accuracy (%)

VGG16 [27] 138.36 15.47 516.50 90.95

ResNet-18 [8] 11.69 1.82 43.25 91.53

ResNeSt-50 [35] 27.48 5.43 99.59 93.53

Inception-v4 [28] 42.68 6.16 164.98 93.86

CFE-Net (Ours) 12.19 2.19 46.57 94.22

Through detailed comparative analysis, it can be clearly seen that CFE-Net
offers significant advantages in several aspects. First, CFE-Net has only 12.19M
parameters, nearly 91% fewer than VGG16, which has the largest parameter
count at 138.36M. Additionally, CFE-Net features 2.19G FLOPs and a 46.57MB
weight file, achieving over 70% reduction in parameter quantity, approximately
64% reduction in FLOPs, and nearly 72% reduction in weight file size com-
pared to the high-performing Inception-v4 model. Most importantly, with a
Top-1 accuracy of 94.22%, CFE-Net outperforms all current models in terms
of performance. In summary, CFE-Net not only offers the best recognition per-
formance but also maintains low resource consumption.

5 Conclusion

This study proposes a novel deep learning model, the Character Feature
Enhancement Network (CFE-Net), specifically designed to address the chal-
lenges of automatic oracle recognition. CFE-Net enhances the recognition accu-
racy of rubbing oracle bone characters through two innovative modules: Char-
acter Feature Enhancement (CFE) and Adaptive Multi-level Classifier Fusion
(AMCF). The CFE module significantly enhances the representation of seman-
tic information through the Spatial Focus Attention Module (SFAM), which
emphasizes foreground character features against complex backgrounds. Mean-
while, the AMCF module optimizes feature integration across different levels,
reducing information loss and suppressing noise interference. Evaluation results
on two rubbing oracle recognition datasets, OBC306 and Oracle-MNIST, demon-
strate CFE-Net’s effectiveness and superiority in oracle recognition tasks.
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Abstract. Document Image Dewarping (DID) task aims to address the
issue of geometry distortion and improve image quality. In this paper,
we propose a simple but effective method, named DocHFormer, that can
take hierarchical priors features of images, including document image
mask and coordinate positions, as additional information to realize accu-
rate representation. To better exploit these fused information for dewarp-
ing, we take them into a harmonized space random shuffle operation,
which can stochastically rearrange the pixels across spatial space and
further use inverse operation to recover the original order. This way can
adapt to allocate each feature pixel with equal probability and thus make
full use of multi-type features. Furthermore, we introduce this mecha-
nism into local self-attention to use linear complexity to input resolution
and also design a new feed-forward network with structural modeling
to boost representation. With the help of the above components, our
proposed DocHFormer can achieve competitive performance with lower
complexity and also outperform the existing state-of-the-art on several
popular datasets.

Keywords: Document Image Dewarping · Harmonized Space

1 Introduction

With the advance of smartphones and thanks to their convenience, people usu-
ally use ubiquitous smartphones, equipped with high-quality cameras, to cap-
ture photos of documents for archiving and retrieving information. Unlike the
controllable operating environment of the scanner, such documents in these pho-
tos often suffer from unwanted geometric distortion under the various physical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15331, pp. 29–44, 2025.
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deformation, e.g., folded, curved and crumpled. These distortions will lead to
poor document readability and the deteriorated performance of OCR systems,
such as text edit and character recognition. Therefore, it is of great value to
design an effective Document Image Dewarping (DID) method to eliminate geo-
metric distortions for real-world applications.

Fig. 1. Left: visual results of our proposed and several state-of-the-art methods. Right:
the performance-parameters results.

DID tasks have been investigated extensively during the past decades. In
traditional methods, several researchers dewarp images by reconstructing 3D
document shapes [1–3] or assume parametric models to exploit specific priors on
the 2D document images [4,5]. However, these methods require high-cost hard-
ware equipment or complex optimization process of model parameters, which
limit the potential values of applications and are not sufficiently robust for real-
world scenes. Recently, with the developments of deep learning technologies,
Convolutional Neural Network (CNN) and Transformer have been introduced
to DID task and obtained promising performance [6–12]. In CNN-based cate-
gories, the works of [6,7] build the UNet-shape structures to regress a pixel-wise
displacement field to dewarp the distorted images. However, it is difficult for
CNN to effectively capture the long-range relationship to model the deforma-
tion of images with relatively low complexity, as shown in Fig. 1. As a result, the
dewarped images still exist curved textline regions. These phenomena also can
be observed in Fig. 1. To solve these issues, some researchers [9,11,12] introduce
the Transformer-based Encoder-Decoder structures to model geometric regions
and dewarp the distorted images with mask prior and foreground information.
However, these methods do not make full use of another key prior, such as coor-
dinates, to ensure the image integrity with position information. Moreover, com-
mon distortions, such as sheet deformation, illumination details and color-cast
images, have non-uniform and diverse distributions, which are not addressed well
by existing approaches. This is because they ignore inherent weight-sharing prop-
erty and mainly adopt fixed parameters to learn distortion representation. There-
fore, from the results of Fig. 1, the deformation issues with amplified halo noise
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can not be effectively addressed. Moreover, the large model complexities of most
methods need to be considered carefully. Based on these analyses, we can con-
clude the main challenges: How to effectively use different priors to boost model
representation and exploit them to improve model generalization ability under the
low complexity condition?

To tackle the aforementioned issue, we propose a simple but effective frame-
work (DocHFormer) that is capable of jointly using explicit modeling and har-
monized representation mechanisms to achieve high-quality dewarping. To be
specific, first, the distorted images refer to local position deformation and global
integrity disruption, which can be represented by image coordinates and masks,
respectively. Hence, different existing methods, our proposed DocHFormer sug-
gests to fuse mask and coordinate these two priors with original input to help
extract global and local image properties. Second, we adopt a two-step strategy
that divides the feature representation into two parts, namely feature transfor-
mation and feature reconstruction. Among them, feature transformation adopts
shuffle operations to transform the previous fused features into a harmonized
space. This way can adapt to allocate each feature pixel with equal proba-
bility. Then, the reconstruction uses the inverse operation to reconstruct the
image semantics by using the relative position of pixels. With their cooperation,
the image content information can be preserved well without key content loss
and modeled under low complexity. Finally, we introduce this shuffle mechanism
into Local-window Self-Attention (LSA) to boost the representation of complex
distorted images. In addition, we also design a structural information-based Feed
Forward Network (FFN) to model structure-based interactions in dewarping pro-
cess. In summary, the main contributions can be included as follows:

– We consider the main properties of distorted images and fuse various priors
as auxiliary information into the modeling pipeline to boost representation
ability. Specifically, we provide a novel two-step way that can adaptively har-
monize the fused features while avoiding learning ambiguity.

– We design the novel random shuffle and inverse shuffle operations that can
help the model effectively realize feature harmonization without content loss.
Moreover, we introduce this mechanism into local window self-attention to
build the basic unit of our proposed framework.

– Our proposed method has strong robustness and high generalization abil-
ity on complex distorted images. Extensive and comprehensive experiments
conducted on popular datasets demonstrate the superiority of our proposed
method over the state-of-the-arts.

2 Related Work

2.1 Traditional Methods

Traditional DID methods are mainly addressed by 3D reconstruction techniques.
Typically, these methods estimate the 3D meshes of the distorted documents
and then attempt to restore them to their flat states. These methods achieve
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high-quality 3D reconstruction using differentiable rendering with various 3D
representations. However, the majority of these approaches require the use of
additional hardware [5,13,14] or rely on images captured from multiple view-
points [2,15,16], which can be impractical for individual users. Other techniques
propose a parametric model for the document’s surface and refine this model by
identifying distinct features such as edges [3] and texture patterns [17]. Never-
theless, these simplified models often result in suboptimal performance, and the
refinement process entails a significant computational expense.

2.2 Deep Learning-Based Methods

In recent years, many works used deep learning to rectify distorted document
images. Ma et al. [6] firstly stacked the UNet structure to predict the deforma-
tion field for each pixel in the warped document images. Li et al. [18] introduced
a two-step process to rectify and stitch distorted images. Xie et al. [8] inte-
grated a smoothing constraint into the learning algorithm to refine the pixel
displacement field. Amir et al. [19] focused on learning the orientation of
text within documents. Das et al. [7] proposed a novel method to model the
three-dimensional structure of documents using a U-shape structure. Feng et al.
[12] used a transformer-based network to improve the feature representation in
dewarping. Das et al. [7] proposed to predict local deformation fields and then
integrated them with global context to achieve a superior unwarping result. Li
et al. [11] combined foreground with text line information to guide the model
to focus on the global and local features of the distorted paper. Zhang et al. [20]
explored polar coordinates to represent document contour. Yu et al. [21] utilized
an attention-enhanced control point module to better capture local deformations.
Kumari et al. [22] introduced an innovation network for rectifying unconstrained
document images from a single input image based on transfer learning. Verho-
even et al. [23] proposed a novel method for grid-based single-image document
unwarping. Feng et al. [24] proposed a groundbreaking unified framework for
document image rectification, without any restrictions on the input distorted
images. While these methods can effectively achieve commendable performance,
they need to train complicated models and can not generalize well on various
images under unrestricted conditions.

3 Methodology

3.1 Motivation

Our proposed DocHFormer has strong robustness and can generalize well on
complex unrestricted distorted images. This goal is achieved by the coopera-
tion of multi-priors guidance, harmonization and structure modeling. The moti-
vation is described as follows: first, we need to analyze the main properties of
distorted images. In general, the noises of unwarped images contain different spa-
tial patterns at global, regional, and local distributions. As we can observe from
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some samples in Fig. 1, shadows or illumination issues usually exist in almost all
deformed surfaces of documents. While boundary and curve distortions mainly
refer to geometric deformation, they should be considered in a regional range,
e.g., the regions of coordinate positions. Besides, some tiny details, such as the
blueness of textline, are easy to ignore in local areas. In contrast to existing
deep models that solely design end-to-end dewarping networks, our framework
extracts different spatial features, including mask Imask and coordinate Icoor,
and fuses fuse(·) them with I to guide model produce dewarped image Id. This
process can be formed as follows:

If = Net(fuse(I, Imask, Icoor), φ), (1)

where Net(·) denotes the designed network, e.g., CNN-based or Transformer-
based architecture, that learns image representation with suitable parameters φ.
However, this way easily produces learning ambiguity issues due to the weight-
sharing property. With this, we give the second motivation: the desired model
needs to harmonize the fused features and further conduct explicit modeling in
training processing.

Fig. 2. Visualization of comparison results from the first encoder layer and last decoder
layer. The (a) - (d) illustrate the features from the based-transformer without random
shuffle, while the (e) - (h) correspond to the features processed by random shuffle. As
we can observe the proposed DocHFormer can generate more rich features with details
textures.

Second, it is difficult for dewarping process to adaptively focus each pixel
since different spatial patterns refer to unique positions. Our motivation is to
design a harmonized space that can exchange information between channel and
space without disrupting spatial distributions. Figure 2 illustrates the basic mod-
eling pipeline. We attempt to make each pixel of input feature X can obtain an
equal probability through a two-step way, which consists of random shuffle S(·)
and invert shuffle IS(·) operations. S(·) stochastically permuts the elements of
input while IS(·). To better avoid the bias from the stochasticity of random
shuffle, we make full use of equivariant reordering of Local Self-Attention (LSA).
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Fig. 3. The Shuffle Transformer Block (STB), which mainly contains Structure Multi-
Layer Perceptron (SMLP) and Shuffle Local Self-Attention (SLSA).

The overall architecture can be seen in Fig. 3. The operation LSA(·) is embedded
between S(·) and IS(·). This process can be named Shuffle Local Self-Attention
(SLSA), which can eliminate the position-based information constraint to the
model with the weight-sharing property. SLSA can be step-by-step expressed as
follows:

XS = S(X),

XL = LSA(XS),

X
′
= IS(XL),

(2)

where X
′
is the output feature of SLSA. Besides, Fig. 4 shows different distribu-

tions of distorted images can be harmonized into a unique space. This verifies
the reasonable of our proposed strategy.

Third, we also need to consider the structure information of the distorted
images. This is because self-attention can not exploit structure-based information
to modeling. Thus, as shown In Fig. 3, we stack Depth-Wise Convolution (DWC)
DWC(·) between two Multi-Layer Perceptrons (MLPs) to Feed Forward Net-
work (FFN), which follows the proposed SLSA. This process is named Structure
Multi-Layer Perception (SMLP), which can be expressed as:

X1 = MLP (X),

X2 = DWC(X1)× DWC(X1),

X
′
= MLP (X2).

(3)

3.2 Network Structure

The overall architecture of the proposed DocHFormer, shown in Fig. 5, is based
on a hierarchical encoder-decoder framework. Given a distorted image I, we
perform overlapped image patch embedding with a 3 × 3 convolutional layer. In
the network backbone, we stack four STBs to progressively learn features for
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Fig. 4. Visualization results of different distributions of distorted images: (a) input
image, (b) fused output, (c) shuffled image and (d) inverted image.

multi-scale representation. Each level covers its own specific spatial resolution
and channel dimension. Additionally, we also add skip-connections to bridge
across continuous intermediate features for stable training. In the end, we use
a 3 × 3 convolutional layer to output the dewarped backward map Ibm. After
that, Ibm and Id through Bilinear Sampling (BS) BS(·) can get high-resolution
dewarped images Id. This process is obtained by the following process:

Ibm = Net(I),
Id = BS(I, Ibm),

Igtd = BS(I, Igtbm),

loss = L1(Ibm, Igtbm) + L2(Id, I
gt
d ) + SSIM(Id, I

gt
d ),

(4)

where Igtbm is the ground-truth of backward map. We utilize BS operation through
the combinations Igtbm with I to generate the ground-truth of I, named Igtd . L1(·),
L2(·) and SSIM(·) denote the Mean Absolute Error, Mean Squared Error and
Structural Similarity Index, respectively.
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Fig. 5. The overall architecture of the DocHFormer.

4 Experiments and Discussion

4.1 Datasets and Implementation Details

Our proposed method and comparisons are trained on Doc3D dataset [7], which
is a synthetic dataset comprising 100K samples created by real-world document
images and rendering software. For each distorted document image, there are
corresponding 3D world coordinate maps, albedo maps, normals maps, depth
maps, UV maps, and backward mapping maps. As for testing, we adopt the pop-
ular DocUNet Benchmark dataset [6] and DIR300 dataset [9]. DocUNet Bench-
mark dataset contains 130 distorted images in natural scenes captured by mobile
devices, while DIR300 includes 300 images of real distorted documents involving
more complex backgrounds, distorted degrees, and various lighting conditions.
In this paper, we respectively choose 50 and 90 images from the DocUNet Bench-
mark dataset and DIR300 datasets, a total of 140 distorted images, to create their
corresponding testing sets.

In this paper, we implement our model on 5 NVIDIA 3090 GPUs for 60 steps
with a global batch size of 8. We set the weight decay of Adam to 0.0005 and use
the cosine learning rate scheduler with 0.0002 as the maximum learning rate.
Moreover, the patch size of the input image is set to 256 × 256 for training.
We measure the quality of dewarped images through popular metrics including
Multi-Scale Structural Similarity (MS-SSIM) [25], Local Distortion (LD) [2],
and Aligned Distortion (AD) [26]. As for OCR accuracy, we use Character Error
Rate (CER) [27]and Edit Distance (ED) [28] to measure the performance of our
method. All comparisons are retrained on the above configurations and evaluated
on the same platform.

4.2 Comparisons with State-of-the-Arts

In this paper, we compare our proposed method with five state-of-the-art algo-
rithms, including DewarpNet (ICCV’19) [7], GeoTr (ACM MM’21) [12], Doc-
GeoNet (ECCV’22) [9], FAM (ICCV’23) [11] and DRS (CVPR’24) [29]. For a
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Table 1. Quantitative comparisons in DIR300 dataset.“↑” indicates the higher the
better, while“↓” means the opposite.

Methods Venue/Year MS-SSIM↑ LD↓ ED↓ CER↓ AD↓ Para.

DewarpNet ICCV’19 0.5793 13.1849 619.256 0.3633 0.2619 49.2M
GeoTr ACM MM’21 0.6807 6.3877 446.689 0.3325 0.1954 20.1M
DocGeoNet ECCV’22 0.6911 6.3220 450.422 0.3604 0.1972 19.9M
FAM ICCV’23 0.6648 7.8056 476.611 0.2713 0.1843 63.6M
DRS CVPR’24 0.6787 6.5791 470.289 0.3191 0.1855 23.1M
Ours - 0.7176 5.7301 419.911 0.2867 0.1665 17.8M

fair comparison, we use the available open-source codes provided by the original
authors for training and testing.

Quantitative Results. As shown in Table 1, our DocHFormer achieves an
LD of 5.7301, an ED of 419.911 and an AD of 0.1665. These results significantly
outperform previous state-of-the-art methods DocGeoNet [9] and FAM [11]. In
addition, from the results of the DIR300 dataset, our proposed DocHFormer
achieves a higher MS-SSIM score than all previous SOTA methods, for example
with a gain of 0.02 compared with DocGeoNet [9], which demonstrates that our
method is capable of improving the integrity of the dewarped image faithfully.
Besides, model complexity with 17.8M parameters also shows the promising
efficiency of the proposed method.

Qualitative Results. The qualitative comparisons are conducted on the
DIR300 and DocUNet Benchmark datasets. To compare the local rectified detail,
we also show the comparisons of cropped local rectified text. As shown in
Fig. 6 and Fig. 7, the proposed DocHFormer shows superior rectification qual-
ity. Specifically, the proposed DocHFormer can effectively handle incomplete
boundaries and preserve global region details. Moreover, the textlines and curves
can be dewarped straighter than other comparisons. Besides, we can see that our
method shows less blur and shadows after dewarping (Table 2).

Another goal of DID tasks is to improve subsequent text-related intelligent
tasks such as document enhancement and optical character recognition (OCR).
To demonstrate the effectiveness, we adopt Tesseract (v5.0.1) [30] as the OCR
engine to recognize the text in the images. The visual results of our proposed
DocHFormer and several popular DID methods are shown in Fig. 8. As we
can see our proposed DocHFormer can OCR engine extract more key textlines
from the given scenes and improve performance. This experiment also illustrates
the proposed DocHFormer can accelerate the OCR applications in real-world
scenarios.
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Fig. 6. Qualitative comparisons with previous methods on the DIR300 dataset.

4.3 Ablation Study

To verify the effectiveness of our proposed methods and further analyze the key
components, we conduct a series of ablation studies on different configurations
(Table 3).

Effects of Multi-priors. In this paper, we introduce mask and coordinate
priors to boost network representation. To demonstrate their contributions to
dewarping, we conduct experiments with the following configurations: (1) We
remove the mask prior, named DocHFormer w/o mask; (2) We remove the
coordinate prior, named DocHFormer w/o coordinate; (3) We only take the
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Fig. 7. Qualitative comparisons with previous methods on the DocUNet dataset.

distorted image as input, named DocHFormer w/o any priors; (4) Our com-
pleted version, named DocHFormer. Compared with the results of different
configurations, LD/ED both increase by a large margin with applying fused pri-
ors in four connection schemes. Besides, the results of Fig. 9 achieve the best
performance, which validates our current design of different priors.

Effects of the Shuffle Mechanisms and Structure Guidance. In this
paper, we design random shuffle and inverse shuffle operation pairs to form
the Shuffle Transformer Block (STB) that can achieve adaptive representation
for various features. Besides, we design a SMLP to model structural infor-
mation. To explore their benefits, we conduct experiments with the following
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Table 2. Quantitative comparisons in DocUNet Benchmark dataset.“↑” indicates the
higher the better, while “↓” means the opposite.

Methods Venue/Year MS-SSIM↑ LD↓ ED↓ CER↓ AD↓
DewarpNet ICCV’19 0.5305 9.6795 732.28 0.4274 0.2950
GeoTr ACM MM’21 0.5797 9.5183 557.62 0.3548 0.2664
DocGeoNet ECCV’22 0.5727 9.1102 540.42 0.3590 0.2632
FAM ICCV’23 0.5801 9.2919 511.34 0.3493 0.2547
DRS CVPR’24 0.5256 10.5465 587.32 0.381 0.3130
Ours - 0.5606 9.4366 487.44 0.3422 0.2736

Fig. 8. Compared with the recognized text results using Tesseract as OCR engine.

Fig. 9. Qualitative comparison of DocHFormer with different priors on DIR300 dataset.

configurations: (1) We replace the STB with original Transformer Block (TB),
named DocHFormer w/o STB; (2) We remove the SMLP of our proposed
STB, named DocHFormer w/o SMLP; (3) Our completed version, named
DocHFormer. From the results of Table 4, without the combinations of har-
monization and structure modeling, model performance can be impaired severely.
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Table 3. Effects of the different priors of DocHFormer.

Configurations MS-SSIM↑ LD↓ ED↓ CER↓ AD↓
DocHFormer(w/o any priors) 0.6291 8.3921 834.556 0.3758 0.3122
DocHFormer(w/o mask) 0.6582 7.1826 494.322 0.2997 0.1954
DocHFormer(w/o coordinate) 0.6957 5.8879 433.044 0.3758 0.1748
DocHFormer(Ours) 0.7176 5.7301 419.911 0.2867 0.1665

Fig. 10. Qualitative comparison with different configurations of DocHFormer on
DIR300 dataset.

Table 4. Effects of the different modules of DocHFormer.

Configurations MS-SSIM↑ LD↓ ED↓ CER↓ AD↓
DocHFormer w/o STB 0.5225 21.1517 1297.022 0.5727 0.5906
DocHFormer w/o SMLP 0.6241 8.3855 721.478 0.3770 0.2638
DocHFormer (Ours) 0.7176 5.7301 419.911 0.2867 0.1665

Similarly, Fig. 10 reveals that the image details and structural integrity can be
preserved well.

Effects of Different Loss Functions. In this paper, we adopt L1-based, L2-
based and SSIM losses to form our final objection loss. To demonstrate the effec-
tiveness of this multi-term loss on model training, we conduct experiments with
the following configurations: (1) We remove L1-based loss, named DocHFormer
w/o L1 loss; (2) We remove L2-based loss, named DocHFormer w/o L2
loss; (3) We remove L2-based loss, named DocHFormer w/o SSIM loss; (4)
Our completed version, named DocHFormer. The quantitative and qualita-
tive results of Table 5 and Fig. 11 all verify the reasonable and effectiveness of
multi-term loss in model training.
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Fig. 11. Qualitative comparison of DocHFormer with different loss configurations on
DIR300 dataset.

Table 5. Effects of different loss on the DIR300 dataset.

Configurations MS-SSIM↑ LD↓ ED↓ CER↓ AD↓
DocHFormer w/o L1 loss 0.6798 6.5739 636.189 0.3225 0.2232
DocHFormer w/o L2 loss 0.6636 6.3733 499.533 0.2924 0.2069
DocHFormer w/o SSIM loss 0.6703 6.6898 501.533 0.4060 0.1836
DocHFormer (Ours) 0.7176 5.7301 419.911 0.2867 0.1665

5 Conclusion

In this work, we consider the properties of Document Image Dewarping (DID)
tasks and present a novel Transformer-based network, called DocHFormer, that
can take hierarchical priors features of images with harmonized space to achieve
accurate representation. To be specific, we adopt the novel random shuffle and
inverse shuffle operations to make each pixel adaptively obtain equal probability,
avoiding the learning ambiguity of weight sharing. After that, we embed this
mechanism into Local window Self-Attention (LSA) to form the basic feature
extractor of our DocHFormer. Besides, we suggest exploiting structure-based
information to boost structural information modeling. With these cooperations,
our proposed DocHFormer can achieve significant dewarping results and benefit
downstream OCR tasks.
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Abstract. Removing shadows from document images can significantly
improve the Quality of Experience (QoE) and boost the performance of
the downstream document analysis and recognition tasks. However,
existing methods still have limited generalization ability on complex doc-
ument images and are prone to disrupt the image details. To address
this issue, we consider the different shadow types that impact the
image content on different frequency sub-bands. This motivates us to
exploit frequency-domain information and further design a Frequency
Information-oriented Deshadow Network (FID-Net). The proposed FID-
Net mainly uses two elaborated modules, named Frequency Feature
Extractor (FFE) and a Frequency Feature Refinement (FFR). FFE can
generate low/high-frequency features through adaptively decomposing
spectra of the shadow image. After that, FFR further refines both fre-
quency features with mutual information operations. With the proposed
key designs, extensive experimental results on the commonly used bench-
marks demonstrate that the proposed method can learn discrimina-
tive shadows and achieve favorable performance against state-of-the-art
approaches.

Keywords: Document Image Deshadowing · Frequency Domain
Representation

1 Introduction

The document images captured under complex conditions, including uncontrol-
lable illumination conditions, camera angles and occlusion et al., exist ubiquitous
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shadows that impair the visual quality of images but impose severe limitations
on various subsequent Optical Character Recognition (OCR) [1–5] tasks. Thus,
developing an effective method to remove shadows of documents becomes an
attractive topic in the current research community. Conventional methods [6–9]
mainly rely on carefully designed hand-crafted image priors,e.g., illumination,
gradient, and region consistency, to form a function for shadow removal. How-
ever, these methods lack the flexibility to generalize to various cases.

Fig. 1. The generated results of different types of shadows between our method and
recent SOTA methods.

Recently, with the developments of advanced deep Convolutional Neural Net-
work (CNN) models, the shadow removal performance has achieved remarkable
progress with a data-driven nature. Nevertheless, as shown in Fig. 1, the pro-
duced results of current popular methods have some detail loss and halo arti-
facts, since they have a limited receptive field to effectively capture long-range
image dependencies. To solve this problem, Transformer-based structures have
been introduced and present larger receptive fields experimentally outperform
the previous methods. However, no matter CNN-based or Transformer-based
approaches, most of them mainly design single-stacked architectures to learn
mappings between shadow and shadow-free images. These ways are prone to
ignore the importance of explicit modeling in feature representations when han-
dling complex distributed shadows, such as local, global and non-homogeneous.
Moreover, existing methods only operate deshadow in the image spatial domain,
and do not consider frequency domain information. As a result of these issues, we
operate on the assumption that different type of shadows impact image content
on different frequency sub-bands. Therefore, we subtract shadow images from
the ground-truth images and further obtain Fourier spectra of residual images.
As illustrated in Fig. 1-(b), we can observe that locally distributed shadows are
contaminated with high-frequency content while global and nonhomogeneous
shadows are dominated by low-frequency degraded contents, thus indicating the
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need to consider the different properties among these shadows in modeling. Based
on these facts, we can conclude the main issue: How to effectively combine fre-
quency with spatial information and explicitly model them for various shadow
removals in document images?

Fig. 2. TSNE plots of the degradation embeddings used in our proposed method and
the state-of-the-arts.

To address the mentioned-above issue, we propose a Frequency Information-
oriented Deshadow Network (FID-Net) to address the above issues. To be spe-
cific, we design a Frequency Feature Extractor (FFE) and a Frequency Fea-
ture Refinement (FFR) these modules and incorporate them into a U-shaped
Transformer backbone. They are designed to identify and refine the relevant fre-
quency components based on the shadow patterns present in the input image.
On one hand, FFE explicitly extracts specific frequency elements from the image
intermediate features, guided by an adaptive decomposition of the input spec-
tral characteristics that reflect the underlying degradation. On the other hand,
FFR further refines these elements by facilitating the exchange of complemen-
tary information across different frequency features. With the cooperation of
these two modules, the proposed FID-Net not only can learn discriminative rep-
resentation more effectively than others, as shown in Fig. 2, but also can effec-
tively remove complex shadows with a dynamically adjusted learning strategy.

– We consider the properties of shadows in documents and propose a simple
but effective framework that incorporates both spatial and frequency domain
information to conduct shadow removal in document images.

– We design two elaborated modules, namely Frequency Feature Extractor
(FFE) and Frequency Feature Refinement (FFR). FFE aims to dynamically
decouple various features of input images, while FFR further refines these
elements by facilitating the exchange of complementary information.

– Extensive experiments on popular datasets demonstrate that our pro-
posed method outperforms state-of-the-art approaches with fewer parame-
ters. Moreover, the downstream application performance of (OCR) can be
improved significantly after deshadowing by our proposed method.
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2 Related Work

2.1 Natural Image Shadow Removal

Traditional natural image shadow removal methods mainly rely on various phys-
ical properties, such as image gradients and illumination information, to build
models. For example, Finlayson et al. [10,11] exploited the gradient consis-
tency to remove shadows. Guo et al. [12] introduced illumination information
to guide shadow detection and further remove them. Gong et al. [13] com-
bined two rough user inputs and designed an interactive way to remove shadows.
Recently, many deep learning-based methods have been proposed and achieved
remarkable progress in this field. Qu et al. [14] proposed a DeshadowNet that
integrates multi-scale context embedding information for shadow removal. Hu
et al. [15] captured global features for shadow detection and removal through a
direction-aware spatial attention module. Chen et al. [16] developed a CANet
that attempts to transfer the contextual information of shadow-free to shadow
regions to operate shadow removal. Recently, some researchers [17,22], [23] used
masks to detect shadows and remove them. Although these methods are effec-
tive for natural images, they do not generalize well to document image shadow
removal due to the different characteristics between natural images and docu-
ment images, especially in image properties and evaluation metrics.

2.2 Document Image Shadow Removal

The earlier document image shadow removal methods tend to use hand-crafted
priors or mathematical formulas to build models [6–9,18]. Bako et al. [6] adopted
an estimated shadow map to detect and remove shadows. Oliveira et al. [9] used
natural neighborhood interpolation to remove shadows. Jung et al. [8] imple-
mented a water-filling technique to rectify the illumination of document images
by transforming the input image into a topographic representation. These meth-
ods can achieve good performance to some extent, but they can not effectively
work on complex scenes. Recently, deep learning-based methods have emerged
in this task and provided significant achievements. Lin et al. [19] first intro-
duced background and attention information and proposed a BEDSR-Net for
document image shadow removal. Li et al. [20] proposed a FSENet that com-
bines a frequency-aware way to remove shadows. Zhang et al. [21] presented
a BGshadowNet that improves appearance and illumination consistency in a
coarse-to-fine way. However, these methods have limited performance in various
shadow removal, for example, BEDSR-Net does not do a good job of distinguish-
ing text from shadows, and FSENet does not do a good job of overall contrast
in the image. Furthermore, artifact distortion and detail loss are obvious in their
generated results. In contrast, our proposed FID-Net explores the properties
of shadows in the frequency domain to improve robustness in various shadows
removal.
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3 Methodology

3.1 Motivation

Fig. 3. Spatial and frequency domain masks of different shadows.

Existing methods [17,22], [23] utilize masks to model the shadow regions.
However, this way fails to accurately capture the distribution due to the fixed
threshold, as shown in Fig. 3-(b). Moreover, all these approaches purely operate
in the spatial domain and do not consider frequency domain information. Based
on this, we attempt to design a model using both spatial and frequency informa-
tion, thus we transform the input images into frequency versions and find that
high/low-frequency components of the spectrum have an obvious difference on
different distributed shadows, as shown in Fig. 3-(c). Different spectrum maps
accentuate the corresponding informative sub-bands for different frequency dis-
tributions. This motivates us to design frequency-based masks to accurately
locate shadow regions. This goal is achieved by two elaborated modules, Fre-
quency Feature Extractor and Frequency Feature Refinement (FFR). FFE aims
to deal with the amplitude spectrum dynamically and exploit it to guide shadow
removal in the frequency domain. Moreover, to refine different frequency features
to boost representation, FFR is proposed to facilitate the exchange of comple-
mentary information.

Fig. 4. The framework of our proposed FID-Net.
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3.2 Network Structure

Figure 4 shows the overall framework of our proposed FID-Net, which directly
learns the mapping between shadow Iinput and shadow-free images Iclean via
an end-to-end way. First, FID-Net extracts shallow features Il by applying a 3
× 3 convolution operation. Second, Il are processed through a 4-level encoder-
decoder U-shape network. Each level employs several Transformer Blocks (TBs),
with the number of blocks gradually increasing from the top level to the bot-
tom level to maintain computational efficiency. Then, the encoder takes Il as
input, and progressively transforms them into a lower-resolution latent repre-
sentation. Third, in order to assist the decoding process, we incorporate a Fre-
quency Information Assistant (FIA) module, as shown in Fig. 5, in our FID-Net.
FIA is an adapter module that sequentially connects every two levels of the
decoder. At each decoder level, we use the FIA to explicitly depart the various
shadow contents from the clean image content in the frequency domain, and sub-
sequently assist in refining features in the spatial domain for effective deshadow.
We achieve this goal by designing two key modules: Frequency Feature Extractor
(FFE) and Frequency Feature Refinement (FFR).

Fig. 5. The framework of our proposed FIA. It consists of FFE and FFR.

Frequency Feature Extractor. As illustrated in Fig. 5, FFE takes both the
input image Iinput and the intermediate features F i of each level i = 1, 2, 3, 4.
In particular, FFE adaptively decouples the spectra of Iinput, which is used to
guide f to extract the different frequency representations. To be specific, FFE
achieves the above process via three steps: (1) Domain Transformation, (2) Mask
Representation, and (3) Attention feature extraction.

(1) Domain Transformation: We use one 3 × 3 convolution layer to
extract initial feature Ip, and feed it into Fast Fourier Transform (FFT) to
obtain spectral domain representation of Iinput, named Is.
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(2) Mask Representation: We aim to adaptively depart different fre-
quency contents of Ip during network learning. This motivates us to design a
Lightweight Mask Generation Block (LMGB), as shown in Fig. 5, that uses fre-
quency boundary to divide the frequency sub-band into two parts. Each of them
adjustly refers to shadow components according to various distributions. Thus,
in LMGB, we project the Ip into a Global Average Pooling (GAP), a 1 × 1 con-
volutional layer with GELU activation function to produce two factors (α and
β) with a range from 0 to 1. In this work, the channel dimension of them is
set to 2. Thus, both factors can define the mask size by multiplying with the
width W and height H of the spectra Is. In this work, we set the binary Mask
of low frequency Mlow[H2 - αH

k :H2 + αH
k , W

2 - αW
k :W2 + αW

k ] = 1, where k
is set to a small value of 128. Accordingly, the mask for high frequency Mhigh

can be obtained by setting the values within the remaining region as 1. Sub-
sequently, we can obtain the adaptively decoupled features flow and fhigh by
applying the learned masks to the spectra via element-wise multiplication and
using the Inverse Fast Fourier Transform (IFFT). This process can be expressed
as follows:

Ip = Conv(Iinput),
Is = FFT (Ip),
Mlow,Mhigh = LMGB(Ip),
flow = IFFT (Mlow ∗ Iinput),
fhigh = IFFT (Mhigh ∗ Iinput).

(1)

(3) Attention Feature Extraction: As shown in Fig. 5, we use the effi-
cient transformer module, namely Multi-DConv-Head Attention (MDHA), to
effectively extract the discriminate contents from f with the guidance of flow
and fhigh. The process can be expressed as:

Q = H1
dconv(H

1
pconv(LN(f∗))),

K = H2
dconv(H

2
pconv(LN(f))),

V = H3
dconv(H

3
pconv(LN(f))),

Xatten
∗ = V ∗ Softmax(QKT /α),

(2)

where f∗ refers to flow or fhigh. Hdconv(·), HPconv(·) and LN denote depth-wise
convolution, pixel convolution, and layer normalization, respectively. Xatten

∗ refer
to the output low frequency Xatten

low or high frequency Xatten
high features. Both of

them will be taken into the Frequency Feature Refinement (FFR) for better
representation with cross-interaction.

Frequency Feature Refinement. In general, edges and fine texture details
exist in high-frequency while global information, such as color and contrast, are
presented in low-frequency regions. These two different components should be
effectively interacted in the training process for better representation. As shown
in Fig. 5, we design an FFR that builds upon Channel Attention Unit (CAU)
and Spatial Attention Unit (SAU) to achieve the above goal.
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(1) Channel Attention Unit (CAU): This unit computes the channel
attention map from high-frequency features that are then used to complement
features of the low-frequency branch. As shown in Fig. 5, CAU sequentially lever-
ages two different channel-wise pooling techniques, named Global Average Pool-
ing (GAP) and Global Max Pooling (GMP) to produce two single-channel spatial
feature maps. Both them are concatenated and passed through one convolutional
layer to produce spatial attention map Gs, which is used to obtain the refined
low-frequency features Xr

l through element-wise multiplication on Xa
l . This pro-

cess can be expressed as:

Xg = GAP (Xatten
high ),

Xm = GMP (Xatten
high ),

Gc = Sigmoid(Conv(concat(Xg,Xm))),

Xr
low = Gc × Xatten

low ,

(3)

where Xg and Xm are the intermediate outputs of GAP and GMP operations,
respectively.

(2) Spatial Attention Unit (SAU): In contrast to SAU, this unit uses
a dual-branch architecture that works on low-frequency features Xa

l to pro-
vide complementary information for high-frequency features. Specifically, the
top branch stacks GAP and one Convolutional layer with ReLU. Instead of
GAP, the bottom branch adopts GMP at the head. With the combinations of
these two branches, we apply the sigmoid function to produce the final channel
attention map Gc, which is used to modulate the refined high-frequency fea-
tures Xr

low through element-wise multiplication on Xatten
high . This process can be

expressed as:
X

′
g = Conv(Conv(GAP (Xatten

low ))),

X
′
m = Conv(Conv(GMP (Xateen

low ))),

Gs = Sigmoid(Conv(X
′
g + X

′
m)),

Xr
high = Gs × Xatten

high ,

(4)

where X
′
g and X

′
m are the intermediate outputs of GAP and GMP operations,

respectively.

Fig. 6. The generated feature maps before and after CAU and SAU process.



FID-Net 53

Figure 6 respectively shows the features map before and after processing by
SAU and CAU. We can observe that the feature details can be refined with fewer
noise issues. The ablation study also shows the effectiveness of these two units.
In the end, we can obtain the final output via the following process:

Xr = Conv(Xr
high + Xr

low),

Ifia = MDHA(Concat(X
′
r, f)),

(5)

where Xr denotes the refine features, and Ifia denotes the output of FIA module.

3.3 Object Function

Our final loss function Lossfinal for optimizing the proposed network consists
of three components: L1-based loss Lossl1, SSIM loss Lossssim and perceptual
loss Lossper:

Lossl1 = l1(Iout, Igt),
Lossssim = 1 − SSIM(Iout, Igt),

Lossper =
1

ClHlWl
‖φl(Iout) − φl(Igt)‖22 ,

Lossfinal = Lossl1 + Lossssim + Lossper,

(6)

where l1(·) denotes the Mean Square Error (MSE) denote, SSIM(·) refers to
structural similarity calculation. In Lossper(·), Cl, Hl, Wl represents the dimen-
sion of the feature map at l − th convolution layer within the VGG19 network.
φl(X) denote the feature of the l−th convolutional layer. In this paper, we focus
on the last convolutional layer of VGG19 only. The ablation study also shows the
different configurations of loss functions.

4 Experiments and Discussion

4.1 Dataset and Implementation Details

The proposed method is evaluated on two public datasets, RDD dataset [21]
and Kligler’s [7]. RDD collects 4916 pairs of shadow and shadow-free images,
divided into two groups, 4371 for training and 545 for testing. These images
contain paper, menu, and color texts, under different lighting conditions and
occluder shadow. As for Kligler’s, due to the lack of training sets, we adopt
the same training set of RDD and evaluate on Kligler’s all images, totally 300
images of various intensities and scales shadows.

As for training, we crop patches sized at 128 × 128 pixels for each input and
adopt a batch size of 8. The network optimization emploies the Adam optimizer
(β1 = 0.9 and β2 = 0.999) with a learning rate of 0.0002. The whole train-
ing epochs are set to 200. The measure metrics include popular Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM) and Learned Perceptual
Image Patch Similarity (LPIPS). In this paper, all comparisons are retrained on
the above configurations and evaluated on the same platform.
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4.2 Comparisons with State-of-the-Arts

We compare our proposed method with eight state-of-the-art algorithms, includ-
ing three natural image shadow removal methods (DHAN (AAAI’20) [17], Fu et
al. (CVPR’21) [22] and ShadowFormer (AAAI’23) [23] ) and five document image
shadow removal methods (Bako et al. (ACCV’16) [6], Jung et al. (ACCV’18)
[8], BEDSR-Net (CVPR’20) [19], FSENet (ICCV’23) [20] and BGShadowNet
(CVPR’23) [21]). For a fair comparison, we use the available open-source codes
provided by the original authors for training and testing. To note that, we resize
all testing images to the same size (512 × 512) for evaluation.

Table 1. Quantitative results on RDD and Kligler’s datasets.

Methods RDD Kligler’s

PSNR ↑ SSIM↑ LPIPS↓ PSNR ↑ SSIM↑ LPIPS↓
DHAN (AAAI’2020) 28.017 0.918 0.058 24.163 0.904 0.094

Fu et al. (CVPR’2021) 24.498 0.821 0.182 21.522 0.832 0.278

ShadowFormer (AAAI’2023) 13.545 0.391 0.654 15.064 0.462 0.667

Bako et al. (ACCV’2016) 20.486 0.892 0.085 24.772 0.896 0.098

Jung et al. (ACCV’2018) 14.278 0.840 0.122 13.723 0.851 0.124

BEDSR-Net (CVPR’2020) 23.969 0.919 0.103 16.055 0.719 0.268

FSENet (ICCV’2023) 13.071 0.385 0.667 15.525 0.404 0.680

BGShadowNet (CVPR’2023) 13.435 0.420 0.677 15.125 0.497 0.671

Ours 32.484 0.9666 0.046 28.842 0.9339 0.077

Quantitative Evaluation. Table 1 compares the performance of our proposed
FID-Net with the SOTA methods on RDD and Kligher’s, respectively. The eval-
uation results indicate that the proposed ADR-Net has achieved the best values
on PSNR, SSIM and LPIPS. Specially, our FID-Net achieves 32.484dB PSNR
and 0.966 SSIM on RDD. It improves the PSNR by almost 4dB over the previous
SOTA method DHAN. Furthermore, our method can outperform all methods
and especially surpass FSENet almost 85% by PSNR in Kligler’s dataset. In
terms of LPIPS on all datasets, our FID-Net also surpasses other methods by
a large margin. These results can well validate the effectiveness of our proposed
method.

Qualitative Evaluation. Figure 7 show visual results on RDD and Kligher’s
datasets. We can observe that the images generated by other methods are less
natural in the shadows and high-frequency regions. Different from them, our
proposed FID-Net generates shadow-free images with better-restored details in
the shadows, and are most similar to ground truths, especially in complex dis-
tributed shadow regions. To be specific, Fu et al. hardly remove the shadows,
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Fig. 7. Visual results on RDD dataset and Kligher’s dataset.

BEDSR-Net generate images with graininess and loss of detail, FSENet gener-
ates images with color distortion, and the results by BGShadowNet suffer from
artifacts and texture loss. Besides, the incomplete and redundant boundaries
phenomenons that exist in other methods. Compared with them, the shadow-
free images generated by our method show fewer artifacts and are much cleaner
than others.

Evaluation on Real-World Applications. As for OCR accuracy evaluation,
we utilize Edit Distance (ED) to evaluate the capacity of text detection on the
RDD dataset. The presented results of Table 2 show that our FID-Net performs
better on detection accuracy than most comparisons. In terms of visual appear-
ance, in Fig. 8, we provide the character detection results by a popular detection
algorithm, namely CharNet [24]. As observed, although parts of shadow removal
methods can improve the performance to a large extent, some may even dam-
age the detection performance. As can be seen from Fig. 8-(a), compared with
DHAN, FSENet and ShadowFormer, our proposed FID-Net has achieved bet-
ter performance in text detection, and compared with BEDSR-Net, our method
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Fig. 8. (a) Visual results on text detection. (b) Comparisons of PSNR and parameters
on current popular methods.

is also closer to the original image in the processing of the overall background
color. In addition, we conduct runtime and model complexity analysis to explore
the potential capacity of the application. Table 2 also reports that our proposed
FID-Net is able to outperform most algorithms with lower computational com-
plexity.

Table 2. Quantitative results of Edit Distance (ED) on Kligler’s dataset and model
complexity.

Methods ED ↓ Parameters (M)

Input 138.31 –

DHAN (AAAI’2020) 121.25 12.85

Fu et al. (CVPR’2021) 174.89 55.42

ShadowFormer (AAAI’2023) 116.08 10.84

Bako et al. (ACCV’2016) 123.37 –

Jung et al. (ACCV’2018) 126.96 –

BEDSR-Net (CVPR’2020) 127.43 30.72

FSENet (ICCV’2023) 117.69 28.03

BGShadowNet (CVPR’2023) 169.19 32.94

Ours 109.63 28.8

4.3 Ablation Study

In this section, we conduct ablation studies to test the impacts of various con-
figurations to the overall performance of our proposed method.
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Table 3. (a)Quantitative results on different modules. (b) Quantitative results on
different loss functions. (c) Quantitative results on different decomposition strategies
of LMGB.

Configurations PSNR↑ SSIM↑ LPIPS↓
(a) FID-Net w/o None 23.87 0.9516 0.072

FID-Net w/o Mask 27.12 0.9568 0.058

FID-Net w/o SAU 24.88 0.9522 0.064

FID-Net w/o CAU 27.29 0.9616 0.067

(b) FID-Net w/o Lossl1 15.04 0.2603 0.076

FID-Net w/o Lossper 28.00 0.8326 0.058

FID-Net w/o Lossssim 25.67 0.7768 0.061

(c) FID-Net w/ AP 27.08 0.9548 0.064

FID-Net w/ GF 26.46 0.9521 0.063

(d)Ours 32.484 0.9666 0.046

Fig. 9. Visual results on different modules and Loss Functions.

Effects of the Different Modules. In this paper, our proposed FID-Net
mainly uses the Frequency Feature Extractor (FFE) and Frequency Feature
Refinement (FFR) modules to help the model improve feature representation.
Therefore, we attempt to explore the effects of these modules via the follow-
ing configurations: (1) In FID-Net, we remove FFE and FFR, named FID-
Net w/o None; (2) In FFE, we remove Lightweight Mask Generation Block
(LMGB), named FID-Net w/o Mask; (3) In FFR, we remove Spatial Atten-
tion Unit (SAU), named FID-Net w/o SAU; (4) In FFR, we remove Channel
Attention Unit (CAU), named FID-Net w/o CAU; (5) The overall of our
proposed FID-Net. The quantitative and qualitative experiments are reported
in Table 3 and Fig. 9, respectively. Especially, LMGB can help model gain the
5.3 dB improvements of PSNR with the decomposition of input spectrum. In
addition, SAU and CAU can bring 7.6 dB and 5.2 dB improvements, respec-
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Fig. 10. Visual results on different decomposition strategies of LMGB.

tively. Furthermore, visual appearance results also demonstrate the effectiveness
of these modules.

Effects of the Different Loss Functions. In this paper, our proposed
FID-Net use three popular losses, including L1-based loss Lossl1, SSIM loss
Lossssim and perceptual loss Lossper, to optimize the model training. To explore
the effects of each loss, we conduct the ablation study with the following config-
urations: (1) We remove L1-based loss, named FID-Net w/o Lossl1; (2) We
remove SSIM loss, named FID-Net w/o Lossssim; (3) We remove perceptual
loss, named FID-Net w/o Lossper; (4) The overall of our proposed FID-Net.
The quantitative and qualitative results of Table 3 and Fig. 9 respectively show
the benefits of each loss, especially, SSIM and perceptual losses can contribute
to structural image details and image fidelity.

Effects of the Decomposition Strategy of Lightweight Mask Genera-
tion Block. In this paper, we design an LMGB to adaptively generate masks to
decompose the frequency into low-frequency and high-frequency parts. To verify
the effectiveness of this strategy, we conduct the ablation study with the fol-
lowing configurations: (1) We refer to the method [25] and use Average Pooling
(AP) to obtain the low-frequency feature region. After that, we subtract it from
the input feature to obtain the high-frequency part. We named this process as
FID-Net w/ AP; (2) We adopt the Gaussian Filter (GF) with size 5 × 5
to obtain the low-frequency part and use the same way to identify the high-
frequency part. We named this process as FID-Net w/ GF. (3) The overall
of our proposed FID-Net. From the reports of Fig. 10 and Table 3, our proposed
adaptive decomposition strategy can help produce mostly clear and visually
appealing results, which also outperform other strategies across all metrics.

5 Conclusion

In this paper, we design a simple but effective Frequency Information-oriented
Deshadow Network (FID-Net) that can handle complex shadows in document
images and improve visual quality. In particular, our model design is motivated
by the observation that different shadows affect distinct frequency bands. Thus,
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in the basic unit of FID-Net, we propose two novel components: Frequency Fea-
ture Extractor (FFE) and Frequency Feature Refinement (FFR). Each of them
has its own contributions to deshadowing. FFE aims to learn specific frequency
elements guided by an adaptive decomposition of the input spectral charac-
teristics. While FFR further refines the features through information exchange
operations. With the cooperation of these two modules, our proposed FID-Net
can achieve high-quality deshadowing with detail preservation and outperform
state-of-the-art on several popular datasets.
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Abstract. Online handwriting recognition is a widely used technique
in our daily lives. Furthermore, deep learning has become one of the
most popular and influential methods for online handwriting recognition.
However, artificial neural networks typically require massive datasets.
Transfer learning is a standard method to overcome the problem of lack
of data. Usually, transfer learning works by initiating a network with
trained weights and fine-tuning with a smaller dataset. Still, obtaining
large amounts of online handwriting can be difficult for pre-training net-
works. Therefore, we propose pre-training with data sources with dimen-
sions different from handwriting. Namely, we propose using univariate or
multivariate data as a source dataset for two-dimensional target data
by embedding out-of-domain time series of different dimensions into
two-dimensional space. We evaluated the proposed method with four
handwritten character datasets: a numerical digit dataset, an uppercase
alphabet dataset, a lowercase alphabet dataset, and a Chinese character
dataset. Through the evaluation, we demonstrate that transfer learning
from datasets with a different dimensionality as online handwriting is
possible.

Keywords: Online Handwriting Recognition · Transfer Learning ·
Time Seires Recognition

1 Introduction

Nowadays, machine learning with deep neural networks [16] is one of the most
popular approaches for handwritten character recognition [1], including both
offline and online handwriting recognition. While offline handwriting recogni-
tion deals with static-rendered images of handwritten text, online handwriting
recognition focuses on directly using the data input from the capturing device
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as a sequence of coordinates and features. However, this introduces additional
issues, such as temporal distortions, rate, strokes, etc.

Thus, online handwriting recognition systems employ temporal neural net-
works, such as Recurrent Neural Networks (RNN) [27] and temporal Convolu-
tional Neural Networks (CNN) [15]. For example, there are many neural networks
used for various online handwriting recognition fields, such as online handwritten
character classification [17,23,25,30], online signature verification [34,38], online
handwritten mathematical expression recognition [42], etc.

However, deep neural networks often require a lot of annotated data for
practical training. Getting large amounts of annotated data can be difficult for
online handwriting, especially for languages with complex alphabets. Further-
more, training can demand much time for the training loss to converge.

One solution to training networks with insufficient data is to use transfer
learning. Transfer learning leverages knowledge from pre-trained models and
adapts it to a target task with limited data. Transfer learning can effectively
improve the performance of neural networks by fine-tuning the pre-trained
model’s parameters on the specific dataset. While the pre-trained model con-
verges the training loss faster, using transfer learning can reduce the need for
extensive annotated data.

One issue with using transfer learning is that to transfer the parameters of one
network to another, the input sizes should be the same size and dimensionality.
Thus, to use pre-trained models for online handwriting, the network needs to
be pre-trained using similar data. This is less of an issue in the image domain
because images are typically one, three, or four-dimensional. However, for online
handwriting, finding similar dimensional data can be challenging due to the wide
variety of time series characteristics. Thus, in order to utilize various datasets as
source data for pre-training, we propose a method of pre-training with different-
dimensional data, i.e., time series data that is a different dimension than the
target and fine-tuning with the online handwriting.

Specifically, we propose using univariate and multivariate time series data,
which there is an abundance of, to train temporal CNNs using two-dimensional
target data. Figure 1 shows the proposed model. In order to utilize different-
dimensional data, we first project the elements of the input time series into
two-dimensional space using a learned linear embedding. By doing so, the dimen-
sionality of the input time series can be changed to match the target data. The
source data is then used to train the model, and the common part’s parameters
can be transferred as usual.

Notably, this allows us to use out-of-domain data, which many exist, to pre-
train networks for online handwriting recognition. This is possible because some
abstract features in the out-of-domain data may exist that are similar to features
that are important for online handwriting.

The contribution of this paper is as follows:

– We propose a new method of pre-training neural networks with a different
dimensionality source dataset as the target dataset. This is done using an
embedding layer that is added during the pre-training process.
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Fig. 1. The proposed source embedding for pre-training models with different dimen-
sionality time series. For the pre-training stage, the one-dimensional dataset is embed-
ded into a two-dimensional space, and the weight learned from pre-training from
different dimensional data becomes the initial weights of fine-tuning of a given two-
dimensional online handwriting dataset.

– We demonstrate that, through our proposed method, transfer learning
between different dimensional data is possible.

– We evaluated the proposed method with four online handwritten character
datasets: Unipen 1a, Unipen 1b, Unipen 1c, and the Chinese Academy of
Sciences Institue of Automation (CASIA) dataset.

2 Related Work

In computer vision, there are many examples of pre-training a model with a dif-
ferent task to target task. Taskonomy [40] is a well-known work demonstrating
inter-task transferability among multiple computer vision tasks with a graphi-
cal structure. For example, they demonstrated that the 2D key points task can
be improved with pre-training with unsupervised learning tasks such as denois-
ing, colorization, and in-painting [40]. Also, there are many examples of trans-
fer learning from non-related tasks improving performance in the medical image
domain. For example, pre-training ImageNet [7] improved convergence and accu-
racy in liver lesion segmentation and classification tasks [13], and pre-training
JFT [31] and ImageNet [7] showed improvement in Mammography, CheXpert,
and Dermatology tasks [21].
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2.1 Online Handwriting Recognition

There have been many works of online handwriting recognition since hand-held
computers such as PDAs became widespread [24]. Online handwriting recogni-
tion has the benefit of utilizing its dynamic information as a time series, and
it has been shown to sometimes have better performance than offline hand-
writing recognition [24]. Machine learning has recently been widely adopted for
online handwriting recognition. For example, temporal CNNs have shown out-
standing performance in Chinese character recognition [39], and also recurrent
neural networks (RNNs) have shown to be effective in online handwriting recog-
nition [10,22].

2.2 Transfer Learning on Online Handwriting Recognition

Unlike offline handwriting recognition, there have only been a few works to
adopt transfer learning in online handwriting recognition. In one example, trans-
fer learning increased the performance of online Turkish handwriting recognition
from 49% to 85% [33]. Chakraborty et al. [3] used transfer learning for handwrit-
ten Bangla and Devanagari. Mehralian et al. [20] propose pre-training networks
using a self-supervised method which includes stroke masking.

3 Transfer Learning Using Different-Dimensional Sources

3.1 Transfer Learning

Transfer learning is a powerful approach in machine learning that has been
widely used, especially in recognition and classification. The primary use of
transfer learning is to pre-train models to make up for the lack of annotated
data on specific tasks [26]. However, it is also used as a standard practice to ini-
tialize neural networks, even when large amounts of annotated data exist. This
is because pre-training models can increase the speed of training convergence
and overall accuracy [5,9,35].

Transfer learning typically involves two main steps: pre-training and fine-
tuning. A model is first trained on a large source dataset during pre-training.
The source dataset can be from a similar task as the target dataset, such as in
domain adaptation [36], or an unrelated task. The second step, fine-tuning, uses
the weights trained by the pre-training as an initialization for the target task.
The fine-tuning process updates the weights of the pre-trained model using the
new task.

3.2 Linear Embedding

One common limitation of transfer learning is that the target and source datasets
should be the same size and dimensionality. In the image domain, dimensional-
ity is not usually an issue because most images have common dimensionalities,



Improving Online Handwriting Recognition 65

e.g., 1, 3, or 4. For example, it is common practice to use the weights of well-
known CNNs pre-trained on ImageNet [7].

Unlike images, time series datasets have various dimensionalities depending
on the application and the capture device. Online handwriting, in particular, can
have two or more dimensions. Accordingly, there are few applicable time series
datasets outside of online handwriting datasets that can be used for pre-training.
Following this, we propose to perform transfer learning using an out-of-domain
source of a different dimensionality to train online handwriting. We propose
training with data from a different dimensional source than online handwriting
to do this.

Since the inputs are different dimensions, we propose using a learned linear
embedding between the input and the model, as shown in Fig. 1. A tiny dense
layer with shared weights between time steps changes the input into two dimen-
sions. Namely, an embedding matrix W is multiplied by each one-dimensional
element of the input time series. A two-dimensional time series x′ is created by:

x′ = Wx1, . . . ,Wxt, . . . ,WxT , (1)

where x = x1, . . . , xt, . . . , xT is the original time series and embedding matrix
W is of size (D, I). Each element xt can be univariate or multivariate, and D
is the dimensionality of the target, and I is the dimensionality of the source. By
adding the embedding layer, it is possible to train a temporal neural network
using an input of any dimensionality with a model that would typically require
a different dimensionality.

3.3 Pre-training Using Different-Dimensional Sources

In order to exploit transfer learning from out-of-domain data sources, we propose
a method to pre-train the model with data that has a different dimension from
the target handwriting. The idea is that domains with more data can be used
to pre-train the model for specific targets, such as handwriting. Accordingly, the
model will learn to extract features from the source domain, hoping that some are
common to the target domain. This is similar to using Imagenet [7] to pre-train
image neural networks for specialized out-of-domain tasks.

Namely, using the proposed embedding layer, the weights of the model can be
fixed for data that would be the same size as what would be required for transfer
learning to the target dataset. Specifically, as shown in Fig. 1, the network is
trained with one-dimensional data using the model with the embedding layer.
Notably, the embedding is only used for the pre-training step, not fine-tuning the
online handwritten characters. Next, the rest of the model’s parameters, except
the output layer, are used in the same way as pre-training for fine-tuning. As
in a typical transfer-learning fashion, the output layer is excluded because the
number of classes may differ between the source and target tasks.
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4 Experimental Result

4.1 Datasets

We use eight out-of-domain time series datasets for the experiments, four uni-
variate and, four multivariate, and four online handwritten character datasets.

Univariate Source Datasets. We show the effect of pre-training for the
source datasets with one of four one-dimensional out-of-domain time series
datasets. The datasets were selected due to their classification tasks, similar in
length to the online handwritten characters, and having large training sets. The
four datasets consist of the following.

– Crop [32]. Crop consists of spectral measurements of a pixel from aerial pho-
tography. The objective is to classify the pixel by the type of land. There are
7,200 patterns in the training set, 46 time steps, and 24 classes.

– FordA [6]. This dataset is from the 2018 University of California Riverside
(UCR) Time Series Archive [6]. The task of the dataset is to judge whether
there is a symptom in an automotive subsystem. The training set has 3,601
patterns of 500 time steps long and two classes.

– InsectSound [4]. InsectSound is gained from the UCR computational ento-
mology group. The task of this dataset is to classify flying insects from their
sound. This dataset has 25,000 patterns of 600 time steps long and ten classes.

– NonInvasiveFetalECGThorax1 [28]. NonInvasiveFetalECGThorax1 is from
the UCR Time Series Archive. This time series dataset is comprised of fetal
electrocardiographic (FECG) signals of the throat. The training set has 1,800
patterns of 750 time steps long and 42 classes.

Multivariate Source Datasets. In addition to the one-dimensional datasets,
we examined four sources with varying numbers of dimensions.

– FaceDetection [8]. The task of this dataset is to classify whether the subject
is watching a human face picture or a scrambled image from recorded Mag-
netoencephalography (MEG) signals. This dataset has 5,890 patterns of 62
time steps with 144 dimensions and two classes in the training set.

– InsectWingbeat [4]. This dataset is taken from the UCR computational ento-
mology group. The task is to classify flying insects from the power spectrum
of the sound of insects passing through a sensor. Each dimension of the data
is a frequency band of the spectrogram. This dataset has 25,000 patterns in
the training set, 10 classes, and 200 dimensions.

– SpokenArabicDigits [2]. The patterns of this dataset are derived from sounds
spoken by native Arabic speakers. The training set has 6,599 patterns of 93
time steps with 13 dimensions and 10 classes corresponding to the 13 Mel
Frequency Cepstral Coefficients.
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– WalkingSittingStanding [41]. The task of this dataset is to classify signals
recorded by the wearable sensors in six activities: walking, walking upstairs,
walking downstairs, sitting, standing, and lying. The training set of this
dataset contains 7,352 patterns of 206 time steps with three dimensions and
six classes.

Online Handwriting Datasets. To evaluate our proposed method, we used
four online handwriting datasets: three from the UNIPEN online handwriting
database (Unipen) [11] datasets and one from the CASIA Online and Offline
Chinese Handwriting Databases (CASIA) [18] dataset.

– Unipen 1a Unipen 1a is a dataset of the Arabic numeral digits. This dataset
is comprised of 12,950 time series out of 10 classes from “0” to “9”. Figure 2
shows ten sample data of Unipen 1a.

Fig. 2. Sample data of Unipen 1a.

– Unipen 1b Unipen 1b is a dataset of the English uppercase alphabet charac-
ters. This dataset is comprised of 12,298 time series with 26 classes from “A”
to “Z”. Figure 3 shows ten sample data of Unipen 1b.

Fig. 3. Sample data of Unipen 1b.

– Unipen 1c Unipen 1c is a dataset of the English lowercase alphabet characters.
This dataset is comprised of 12,298 data out of 26 classes from “a” to “z”.
Figure 4 shows ten sample data of Unipen 1c.

– CASIA CASIA is a dataset that contains online and offline Chinese character
handwriting data. We used the online handwriting characters and not the
offline characters for the research. The online dataset has 1,570,051 online
handwritten Chinese characters with 3,740 labels. Figure 5 shows ten random
sample data of the CASIA.
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Fig. 4. Sample data of Unipen 1c.

Fig. 5. Sample data of CASIA.

4.2 Dataset Regularization

We rescaled timesteps of online handwritten characters and one-dimensional time
series data into 256 time steps through Gaussian Smoothing. Also, the datasets
are regularized so that the training dataset’s minimum and maximum values are
-1 and 1.

Regularization is performed so that the values of each of the datasets are of
the same magnitude and to remove any bias based on the range.

4.3 Model and Settings

For the experiments, we used a Visual Geometry Group Network (VGG) [29]
modified with 1D convolutions and 1D max pooling to use with time series. The
VGG is made of four convolutional blocks. Each block has three convolutional
layers with 64, 128, 256, and 512 filters, respectively. Max pooling is used at the
end of each block. Finally, there are three fully connected layers: two layers have
1,024 nodes, and the output layer.

As illustrated in Fig. 1, only the convolutional layers are transferred for the
transfer learning. Also, in addition to VGG architecture, we use a small embed-
ding layer between the convolutional layer and the input layer for the pre-training
network only during training to implement our proposed method.

To train the network, we use an Adaptive Moment Estimation (Adam) opti-
mizer [14] with an initial learning rate of 0.0001. We trained 10,000 iterations for
pre-training and 20,000 and 200,000 iterations for fine-tuning Unipen datasets
and CASIA, respectively. CASIA is trained longer due to having a much more
extensive training set than the other datasets. The training is conducted with
batch size 32 and cross-entropy loss.

4.4 Comparative Evaluation

To evaluate the proposed method, we compare the following evaluations.

– w/o Transfer Learning. This evaluation is trained without transfer learn-
ing. The weights are initialized using the uniform distribution proposed by
He et al. [12].
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– Transfer Learning. We perform typical transfer learning between the online
handwriting datasets. For example, we show the results of fine-tuning Unipen
1a on a model pre-trained with Unipen 1b, 1c, and CASIA.

– TL w/ Retrained First Layer. One simple way to use transfer learning
between datasets of different dimensions is to pre-train a network and replace
the conflicting layers with appropriate-sized layers. This way, we created an
evaluation that replaces the first convolutional layer with the number of chan-
nels to match the input dimensions. The rest of the layers use transfer learning
like usual.

– TL w/ Proposed. We evaluate the proposed method of using an embedding
layer to resize the input to the dimensionality of the online handwriting.

Experiments are done to demonstrate that not only is pre-training with out-
of-domain different-dimensional data useful, but it also matches and sometimes
surpasses the accuracy of in-domain same-dimensional data. However, it should
be noted that pre-training with the cross versions of Unipen might be considered
data leakage due to most of the writers being the same across the datasets.

Evaluation Results. The experimental results of the Unipen and the CASIA
are shown in Table 1. For the Unipen 1a dataset, transfer learning with resized
first layer showed 99.08% accuracy, pre-trained with SpokenArabicDigits, had a
98.85% accuracy compared to 98.23% accuracy without transfer learning. Fur-
thermore, this improvement is higher than the highest performance improve-
ment with the two-dimensional online handwriting dataset (Unipen 1b). The
Unipen 1b and 1c, the proposed method performed better than any of the com-
parison online handwriting datasets. Specifically, for Unipen 1b, the best dataset
to transfer from was the one-dimensional dataset, FordA and InsectSound, and
the 200-dimensional dataset, InsectWingbeat. Also, for Unipen 1c, Crop had the
highest results from transfer learning. For the CAISA, transfer learning showed
significant effectiveness due to the difficulty of the task compared to the oth-
ers. Specifically, our proposed method with the one-dimensional dataset, Crop,
showed the best recognition accuracy of all. Transfer learning with a resized
first layer also showed a lower performance than our proposed method overall.
Also, as mentioned previously, using transfer learning between Unipen subsets
might not be a fair comparison due to having the same writers, although they
have different characters.

One interesting observation is that using transfer learning from CASIA, i.e.,
Chinese characters, to Unipen tends to hurt the overall accuracy of the network.
When pre-training from CASIA, Unipen 1a and 1c had worse results when com-
pared to initializing by random. CASIA is the largest dataset of the evaluated
datasets, and thus, it might generally be a first choice for pre-training in a naive
application using online handwriting.

Again, from the result of the CASIA, interestingly, these datasets are com-
pletely different tasks and are unrelated to online handwriting. Transfer learning
from the Unipen datasets performed worse despite being similar to CASIA.
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Table 1. Experimental result of the proposed method with datasets of the Unipen.

Source Dimensions Accuracy (%)

Unipen 1a Unipen 1b Unipen 1c CASIA

w/o Transfer Learning 98.23 96.76 96.68 59.11

Transfer Learning

Unipen 1a 2 – 97.89 96.60 75.01

Unipen 1b 2 98.69 – 96.19 81.19

Unipen 1c 2 98.31 96.84 – 77.02

CASIA 2 97.85 97.17 96.03 –

TL w/ Retrained First Layer

Crop 1 97.92 96.19 96.03 81.05

FordA 1 98.38 97.17 96.36 69.87

InsectSound 1 98.92 97.49 95.71 57.22

NonInvasiveFetalECGThorax1 1 98.38 97.57 96.28 78.96

FaceDetection 144 98.62 97.41 96.76 76.62

InsectWingbeat 200 98.38 97.73 96.44 76.42

SpokenArabicDigits 13 98.76 97.73 96.52 69.98

WalkingSittingStanding 6 99.08 97.17 96.68 74.20

TL w/ Proposed

Crop 1 98.31 96.76 97.09 84.16

FordA 1 98.00 98.06 96.84 61.49

InsectSound 1 98.54 98.06 96.52 72.48

NonInvasiveFetalECGThorax1 1 98.69 97.49 96.19 84.05

FaceDetection 144 98.69 97.49 96.52 72.45

InsectWingbeat 200 98.54 98.06 96.36 79.74

SpokenArabicDigits 13 98.85 97.09 96.92 72.33

WalkingSittingStanding 6 98.31 97.33 96.11 82.40

5 Discussion

5.1 Discriminability of the Pre-trained Networks

We examine the features learned from the convolutions to examine the rea-
son for the improved performance. Through T-distributed Stochastic Neighbor
Embedding (t-SNE) [19], the flattened output of the last convolutional block
is visualized, i.e., dimensionality reduction using t-SNE has used the 16 × 512
feature vector from the last convolutional layer. We examine before and after
fine-tuning and compare pre-training with online handwriting and the proposed
out-of-domain one-dimensional time series.

Figure 6 shows how the features of test data of Unipen 1c are distributed.
The subfigure on the left shows the distribution of Unipen 1c with the model pre-
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trained with the CASIA, and the one on the right is with Crop. It should be noted
that this is after pre-training but before fine-tuning. The distribution of features
with the model pre-trained with CASIA shows that patterns overlap significantly
between the classes. On the other hand, the distribution of the with the model
pre-trained model with Crop showed much less overlap. This demonstrates how
CASIA is not necessarily a good source of pre-training for online handwriting,
whereas out-of-domain and different-dimensional data sources might be.

Fig. 6. The features of Unipen 1c provided the model pre-trained with CASIA (left)
and Crop (right). The colors represent the different classes.

We also visualize the features after fine-tuning. In Fig. 7, the features of
Unipen 1c in a model pre-trained by CASIA and Crop and fine-tuned using
Unipen 1c are visualized using t-SNE. After fine-tuning, the two distributions
become similarly clustered. However, the model with our proposed method still
seems to have a better separation between the classes than the model pre-trained
with CASIA.

By observing the discriminability of the distributions of the features, we can
intuitively infer why the proposed method using Crop ended up having a 1.06%
increase in accuracy for Unipen 1c over using CASIA. Because the pre-trained
model has a better initialization, it can be fine-tuned towards a more robust
classifier.

5.2 Comparison Between Datasets

In general, with a small-scale target dataset, pre-training with a closely related
source dataset is considered to allow for more efficient training while reducing
the risk of overfitting. However, there is also a risk that transfer learning with the
wrong source can ruin performance. Therefore, for online handwritten characters,
transferring knowledge from different-looking languages, i.e., Latin characters
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Fig. 7. The features of Unipen 1c provided the model pre-trained with CASIA (left)
and Crop (right) and after fine-tuning. The colors represent the different classes.

of Unipen versus Chinese characters of CASIA, might be victim to negative
transfer [37].

However, despite the different-dimensional time series coming from different
domains such as online handwriting, the results show that the features learned in
the convolutions helped positively initialize the network. Figure 8 shows exam-
ples of time series from the Crop and NonInvasiveFetalECGThroax1. While pre-
training with CASIA had a negative effect on the Unipen datasets, the proposed
method worked especially well with these two datasets. From the figure, these
two datasets have fairly simple time series with only subtle differences between
classes.

Fig. 8. Examples of time series patterns from (a) Crop and (b) NonInvasiveFe-
talECGThorax1. The examples are univariate time series and the x-axis represents
the time dimension. Each one is from a different class.
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6 Conclusion

In this research, we propose the source embedding model to solve the problem
of a small number of available source datasets for transfer learning of online
handwriting datasets. Our proposed method makes it possible to train with a
dataset with different dimensions to target tasks in the target task’s dimension
for transfer learning of isolated online handwriting character recognition.

We evaluated our proposed method with four isolated online handwriting
character datasets: Unipen 1a, Unipen 1b, Unipen 1c, and CASIA. Our proposed
method showed its potential for all handwriting datasets by improving the clas-
sification performance. All the cases in the experiment with Unipen did not show
good results; however, our proposed method showed a significant improvement
for the CASIA dataset compared to when it trained without transfer learning.

In the future, we want to examine our method in various domains, not only
having a two-dimensional target but also every possible combination of dimen-
sions. Also, we will investigate how to predict the transfer learning performance
of our proposed method before the training stage.
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Abstract. Visual semantic entity recognition (visual SER) aims to
extract contents that fall in key fields from the given visually-rich doc-
ument image, and it has been widely applied across diverse scenarios.
Most existing visual SER methods employ the BIO tagging schema to
extract key entities, necessitating well-organized OCR results at the
entity level as prior information. However, meeting this prerequisite is
challenging in real-world applications. General OCR engines typically
provide disordered line-level results, where entities with multiple text
lines are split into several segments. Moreover, some adjacent entities
may fall into the same detection box, posing challenges for accurate
span detection and text aggregation. To address this issue, this paper
introduces a novel framework, ROISER (Real wOrld vIsual Semantic
Entity Recognition), integrating entity line span detection, line aggrega-
tion, and line classification to achieve visual SER with real-world OCR
input. Experiment results demonstrate that our model outperforms exist-
ing approaches on various benchmarks, showcasing its effectiveness and
compatibility for practical applications.

Keywords: Visual Information Extraction · Document
Understanding · Computer Vision

1 Introduction

Visually-rich documents like forms and receipts are widely seen in real-world
scenarios. As digitization continues to advance, there is an increasing need to
identify key information from document images. Visual semantic entity recogni-
tion is a vital step in this progress. It involves extracting texts that belong into
predefined categories, such as retrieving the departure time from a train ticket
[8] or analyzing purchased item details from receipts [13,22]. In recent years,
various visual SER methods [10,12,17,27,29,30] have been proposed. Most of
these methods follow a BIO-tagging [24] pipeline (Fig. 1): texts and boxes in the
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15331, pp. 76–90, 2025.
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document are first obtained through an OCR engine, then split into token-level
information through a tokenizer. Subsequently, a pre-trained document under-
standing backbone is employed to generate multi-modal token features. Following
this, a classifier (BIO tagger) assigns each token a tag, indicating whether it rep-
resents the beginning (B), inside (I), or outside (O) element of a desired entity.
The contents of each key field can be parsed by aggregating the corresponding
B/I tokens. These visual SER approaches have demonstrated impressive perfor-
mance in tasks such as form entity identification [7,32] and receipt information
extraction [13,22].

Fig. 1. The BIO-tagging pipeline employed by previous visual SER methods. Entity-
level OCR results are processed by the Pre-Trained Document Understanding Back-
bone and generate multi-model features for each token. A BIO Tagger is then applied
to predict the span and category of the key entities.

Despite the advancements in visual SER, challenges persist when it comes
to real-world applications. The aforementioned methods employ fine-annotated
OCR labels as the model input, where bounding boxes are provided at the entity
level, and texts within an entity are pre-aggregated and sorted in human read-
ing order (Fig. 2 left). However, in real-world applications, document contents
are obtained through general OCR engines, where bounding boxes are assigned
at the line level (Fig. 2 right). For entities that span across multiple text lines,
additional steps for text sorting and grouping are required, which can be prob-
lematic for complex layout documents. As depicted in Fig. 2 right, if we simply
sort the line boxes from left-top to right-bottom based on their coordinates, the
multi-line entity Hengcong baihui ... RI 66961 will be disrupted by NOTIFY
PARTY:, causing failure in the BIO-tagging scheme. Although we may employ
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document layout analysis algorithms [6,9] to produce more reasonable grouping
results, these methods often involve adjustments of multiple hyper-parameters,
making them cumbersome and lacking in robustness. Furthermore, inaccurate
OCR detection results can lead to the contents of two entities being merged
into the same bounding box, posing difficulties in separating them. As shown in
Fig. 2 right, entity TEL: and +533235727262 fall within the same box. These
factors present challenges for applying existing visual SER methods in real-world
applications.

Fig. 2. Illustration of span detection and text aggregation issue. Text bounding boxes
are marked in different colours for differentiation. Left: entity-level OCR results used by
previous methods. Right: outputs of real-world OCR engines, only line-level bounding
boxes are provided, and contents of two entities may be merged.

To address the aforementioned issues, in this paper, we propose a novel frame-
work ROISER (Real wOrld vIsual Semantic Entity Recognition) to handle
visual SER with imperfect OCR inputs. Specifically, given the document image
and its corresponding line-level OCR results, multi-modal token features are
first obtained through a pre-trained document understanding backbone. A novel
downstream head is then employed to perform the following three steps: (1)
entity line span detection, which serves to identify, separate, and extract entity
lines from the token sequence; (2) line aggregation, which connects entity lines
belonging to the same field; and (3) line classification, which determines the key
category of each entity. By combining the predictions from these three steps, the
model effectively extracts organized key information from unstructured OCR
input, eliminating the need for rectified input as required in the original BIO-
tagging pipeline. Extensive experiments on five public visual SER benchmarks
and our in-house dataset can demonstrate the effectiveness of our method.

Our main contribution can be summarized as follows:

– We propose ROISER, a novel pipeline that integrates entity line span detec-
tion, line aggregation, and line classification for visual SER. The model effec-
tively addresses the challenges associated with entity extraction and aggre-
gation in practical scenarios.

– ROISER surpasses existing visual SER pipelines on various benchmarks when
collaborating with advanced document understanding backbone, demonstrat-
ing its versatility and effectiveness.
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2 Related Work

2.1 Visual SER with BIO-Tagging Pipeline

With the advancements in deep learning techniques, various transformer-based
visual SER approaches have been proposed in recent years. LayoutLM [30]
employs a BERT-like [5] architecture that incorporates bounding box embed-
dings to fuse and extract document multimodal token features. Subsequent works
[1,12,17,29,31] have further integrated visual features during the pre-training
phase to improve the understanding of key information in documents. Struc-
turalLM [15] replaces word-level boxes with cell-level ones, strengthening the
contextual representation. BROS [10] proposes a novel relative embedding to
enhance the layout interaction, achieving satisfactory performance only with
text and layout information. LiLT [27] introduces a two-branch architecture,
enabling flexible semantic backbone switching and fast adaptation to differ-
ent language scenarios during the fine-tuning stage. GeoLayoutLM [21] employs
various spatial-aware pre-training strategies to further boost the SER perfor-
mance with stronger positional clues. All of the above methods achieve visual
SER through a downstream BIO-tagging head, which necessitates well-organized
OCR inputs with properly sorted and aggregated text contents, making them
hard to be used in industrial applications where complex layout documents are
commonly seen.

2.2 Approaches Compatible for General OCR Inputs

XY Cut algorithms [6,9] are widely applied in layout analysis tasks. These
algorithms merge and divide document contents into blocks based on the gaps
between line boxes, and can aggregate content within multi-line entities based on
block information. However, one limitation of XY Cut algorithms is the need for
manual threshold setting, which makes it challenging to apply across documents
with different layouts. LayoutReader [28] introduces an encoder-decoder archi-
tecture for reading order prediction in a generative manner. However, its gener-
ative nature leads to relatively low inference efficiencies, which makes it difficult
to satisfy the high throughput demand in most applications. ERNIE-Layout
[23] integrates a Layout Parser module to generate a sorted input sequence,
and further employs a reading order prediction task in the pre-training stage to
enhance the ability to handle inputs that are mistakenly ordered. However, the
parser assembles multiple modules based on heuristic rules, and it is not publicly
accessible.

Image-to-sequence pipelines like Donut [14] and Dessurt [4] predict the
desired content directly from the document image, without the need for text
sorting or aggregation operations. EATEN [8] first generates feature maps of
each entity, then employs entity-aware decoders to predict the text content.
QGN [2] first extracts the prefix token of each key field, then generates the entity
content accordingly. These generative approaches require a significant amount of



80 Z. Lin et al.

Fig. 3. Model architecture of ROISER. Line-level OCR results are processed by the
Pre-Trained Document Understanding Backbone to extract multi-modal features of
each token. The downstream head employs Entity Line Span Prediction, Line Classi-
fication, and Line Aggregation to obtain the line token span, line category, and neigh-
bouring line relations, then generate the visual SER results.

training data and struggle in documents with complex layouts or low image qual-
ity. DocTr [18] generates anchor words for each entity and predicts entity-level
bounding boxes using a vision-language decoder, but it necessitates task-specific
pre-training, consuming substantial resources. TPP [34] predicts the token path
of each entity, thus eliminating the effect of input OCR granularity and order.
However, it models the task at the token level, resulting in relatively high mem-
ory consumption.

3 Methodology

The overall pipeline of ROISER is illustrated in Fig. 3. Our model starts with
generating multi-modal representations for each token. Given the OCR results
of a document, recognized texts are tokenized into token sequences and further
processed by the multi-modal encoder. Any pre-trained BERT-like document
understanding model, like LayoutLM [30] or LiLT [27], can serve as the encoder
backbone, fusing semantic, layout, and visual (optional) information to predict
a sequence of features F = {f1, f2, · · · , fN}, where fi ∈ R

de represents the multi-
modal embedding of the ith token, de denotes the backbone hidden size, and
N represents the length of the token sequence. In the downstream head, three
steps were applied to organize the unordered input and produce the final SER
results, which will be elaborated on in the subsequent sections.

3.1 Entity Line Span Prediction

General OCR engines may produce inaccurate text boxes, resulting in the merg-
ing of content from different entities within the same bounding box. To address
this issue and identify the boundaries of entity lines from the given unordered
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token sequence, we utilize a BEO-tagging scheme, classifying the tokens into
three types: B (beginning), E (end), and O (other). Substrings that start with
a B token and end with an E token are recognized as entity lines. By employ-
ing this approach, we are able to separate the content of individual entities and
determine the position of entity lines. The above tagging process is done with a
linear classifier:

S = {s1, s2, · · · , sN} = arg max (FWs + bs) , (1)

where Ws ∈ R
de×3 and bs ∈ R

3 are the weights and bias of the classifier.
si ∈ {0, 1, 2}, category 0, 1, and 2 denote other, beginning, and end tokens
respectively.

To simplify the complexity of the task, we adopt the approach of representing
each entity line with the embedding of its first token. This allows us to shift the
modelling granularity from the token level to the line level, thus reducing the
number of elements for subsequent operations:

L′ = {l′1, l′2, · · · , l′K} = {fi}si=1, (2)

where l′i is the entity line feature, K is the number of entity lines.
To ensure stability and consistency, during the training phase, the selection

of line features L′ is based on the span prediction ground truths Ŝ. While at the
inference stage, line features are selected by the predicted S.

3.2 Line Aggregation

To address the challenges posed by multi-line entities, we employ a line aggre-
gation module to merge neighbouring lines. The module starts with a linear
projection layer, which maps the channels of the output features to a smaller
size, aiming to further alleviate the memory burden:

L = {l1, l2, · · · , lK} = L′Wproj + bproj , (3)

where Wproj ∈ R
de×dr and bproj ∈ R

dr are the projection weights and bias, dr

is the reduced channel size.
Determining text line adjacency relies on sufficient information interaction

between lines. To achieve this, we set up an attention-based Global Interaction
Module (GIM) that contains multiple Transformer [26] encoder layers to fuse
line features. Let L(n)

i = {l(n)1 , l(n)2 , · · · , l(n)K } denotes the input feature of the
n-th GIM layer, the attention score is calculated using the following formula:

α
′(n)
ij =

1√
dr

(l(n)i W(n)
Q )(l(n)j W(n)

K )T . (4)

The relative position holds significant importance in linking-based document
understanding tasks. Drawing inspiration from KVPFormer [11], we incorporate
a similar spatial compatibility bias (SCB) term to enhance layout awareness:

rij = (Δ(Bi, Uij),Δ(Bi, Bj),Δ(Bj , Uij)), (5)
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Bi is the line OCR box that token i falls in, and Uij is the union box of Bi

and Bj . Δ(Bi, Bj) = (txctr
ij , tyctr

ij , twij , t
h
ij , t

xctr
ji , tyctr

ji , twji, t
h
ji), each term denotes a

relative position information calculated as:

txctr
ij = (xctr

i − xctr
j )/wi, tyctr

ij = (yctr
i − yctr

j )/hi,

twij = wi/wj , thij = hi/hj ,

txctr
ji = (xctr

j − xctr
i )/wj , tyctr

ji = (yctr
j − yctr

i )/hj ,

twji = wj/wi, thji = hj/hi.

(6)

(xctr
i , yctr

i ) is the center point of Bi, and (wi, hi) are the corresponding box width
and height. The bias term is processed by a feed-forward layer for channel size
projection, and is subsequently added to the attention score:

α
(n)
ij = α

′(n)
ij + FFN(n)

α (rij). (7)

The output of the attention module is the weighted average of the projected
value vectors:

h(n)
i =

∑

j

exp(α(n)
ij )

∑
k exp(α(n)

ik )
(l(n)j W(n)

V ). (8)

Line representations processed by GIM are concatenated in a pair-wise man-
ner, generating a next-line prediction matrix M, in which each term is calculated
by:

Mij = [l(last)
i ⊕ l(last)

j ] + FFNpair(rij), (9)

Here l(last) denotes the output of the last GIM layer, ⊕ denotes vector concate-
nation. A binary classification step is subsequently applied to M to obtain the
line aggregation results. If line j is considered the next line after line i, element
Mij is marked as positive, while all other elements remain negative.

3.3 Line Classification

To predict which category the entity line falls in, a linear classifier is applied to
line features L′.

C = L′Wcls + bcls, (10)

Wcls ∈ R
de×Ncls , bcls ∈ R

Ncls are weights and bias of the classifier. Ncls is the
number of entity types in the document, with the background category included.

3.4 Optimization and Result Parsing

The three steps above are all supervised by the cross-entropy loss. The overall
optimization target is the weighted sum of all losses, denoted as:

L = λ1Lsp + λ2Lla + λ3Llc, (11)
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Here Lsp, Lla, and Llc represent the losses of entity line span prediction, line
aggregation, and line classification, respectively.

The final visual SER results can be obtained by parsing the predictions of
these three steps. For line aggregation, it has been observed that each text line
is connected to at most one other line, and is also linked by at most one line.
Consequently, when parsing the next-line prediction matrix, for each entity line,
we retain the in/out-linking with the highest confidence. For entity classification,
the line category that appears most frequently within the entity lines is assigned
as the SER category for that entity.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on six benchmarks: RFUND [19] is the re-annotated
version of FUNSD [7] and XFUND [32], which provides line-level OCR results
based on the original labels and rectifies various annotation errors. For our
experiments, we select RFUND’s English subset RFUND-en, which contains 199
English samples, with 149 samples used for training and 50 for testing. Entities
in RFUND are categorized into four types: header, question, answer, and other.
CORD [22] comprises 1000 shopping receipts in English, of which 800 are for
training, 100 for validation, and 100 for testing. Contents of the receipts fall into
30 categories including item name, item count, total price, etc. We employ the
word-level OCR results provided in the annotations as the model input. SIBR
[33] is a bilingual form understanding dataset composed of 600 training sam-
ples and 400 testing samples. It contains 600 Chinese invoices, 300 English bills
of entry, and 100 bilingual receipts. Entities in the dataset are categorized as
header, question, answer, and other. Compared to FUNSD, documents in SIBR
have a relatively more complex layout, making it hard to recognize and aggregate
entity contents. The dataset is annotated at the line level, with line aggregation
(intra-links) labels provided. Its line-level OCR results are used for model input.
FUNSD-r and CORD-r are revised versions of FUNSD and CORD proposed
by [34], with different annotation strategies applied compared to RFUND. OCR
results of these two datasets are obtained through real-world open-source OCR
engines [16], where cases like inaccurate bounding boxes and missing contents
exist. Char-level and segment-level annotations are provided, and the latter is
used as our model’s input. INVOICE is our in-house dataset, which contains
3427 Chinese invoices captured by mobile phone cameras, with 2399 for train-
ing and 1028 for testing. Contents to be extracted include payer address, item
name, tax rate, total price, etc. The invoices have complex layouts with densely
arranged text, and some images may in low quality due to equipment limitations,
posing unique challenges. Line-level OCR results are used as the model input.

We evaluate the model’s performance with entity F1 score. A prediction is
considered true positive only when the predicted string and category exactly
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match the ground truths. In addition, we utilize the multi-line F1 score to eval-
uate the model’s capability in aggregating fragmented fields, where only entities
that span across multiple text lines (boxes) are taken into account.

4.2 Implementation Detail

The reduced hidden size dr in the line aggregation head is set to de/2. We use
a 3-layer Transformer encoder as the GIM layers, where the head size and feed-
forward dimension are set to 6 and 384, respectively. The loss weighting param-
eters λi are all set to 1. We utilize OHEM [25] to cope with category imbalance
in the next-line prediction matrix during the training phase. Specifically, we
select all positive elements and 10 negative elements for back-propagation. We
employ AdamW [20] optimizer, with a warmup ratio of 0.1 and scheduled by the
linear decay scheduler. The maximum learning rate is set to 8e-5 for the docu-
ment understanding backbone, and 8e-4 for the newly added downstream head.
Betas and epsilon of the AdamW are set to (0.9,0.99) and 1e-8, with no weight
decay applied. We finetuned our model on RFUND-en/CORD/SIBR/FUNSD-
r/CORD-r/INVOICE for 300/100/100/200/100/40 epochs, respectively, with a
global batch size of 32.

4.3 Baseline Settings

We employ two publicly available and advanced document understanding mod-
els, LiLT and LayoutLMv3, as our token embedding backbone. InfoXLM [3] is
used as the semantic branch of LiLT for multi-lingual compatibility across dif-
ferent datasets. For LayoutLMv3, we initialize the backbone weights with the
official laytoulmv3-base checkpoint1 on RFUND, CORD, FUNSD-r, and CORD-
r, and the layoutlmv3-base-chinese checkpoint2 on SIBR and INVOICE. Two
types of pre-processing strategies were applied to the OCR results before sending
them to ROISER: (1) Left-Top-Right-Bottom (LTRB in Table 1) sorting, which
arranges the recognized segments based on their bounding box’s centre coordi-
nate in a left-top to right-bottom order. (2) Augmented XY Cut [6] (denoted
as XY in Table 1) first divides document contents into multiple blocks and then
organizes the segments within blocks in LTRB order. This approach maximizes
the alignment of contents within entities to adjacent positions. Specifically, for
FUNSD-r and CORD-r, we follow the settings in [34] by directly using the raw
OCR order presented in their annotations.

4.4 Comparison with Previous Methods

Results on RFUND-en, CORD, SIBR, and INVOICE are shown in Table 1. For
RFUND-en, compared to the BIO tagging baseline, our ROISER improves the
performance on multi-line entities with both LiLT (36.31→46.11, 49.36→52.60)

1 https://huggingface.co/microsoft/layoutlmv3-base.
2 https://huggingface.co/microsoft/layoutlmv3-base-chinese.

https://huggingface.co/microsoft/layoutlmv3-base
https://huggingface.co/microsoft/layoutlmv3-base-chinese
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and LayoutLMv3 (40.60→59.07, 58.47→60.64), thus leading to a higher global
F1-score, showing its advances in handling the text aggregation issue. For the
CORD dataset, ROISER demonstrates better performance compared to the
baseline when using word-level OCR results as the model input, showcasing
its applicability across different modelling granularities. Figure 4 visualizes an
example of line aggregation. Our model correctly extract and merge the desired
contents, while the conventional approach fail to aggregate all of the words. It
is observed that preprocessing with Augmented XY Cut leads to poor results
(32.01 for LiLT and 57.37 for LayoutLMv3) in the BIO tagging pipeline, as the
densely arranged contents in CORD make it challenging for XY Cut to correctly
split elements based on box gaps, resulting in highly interrupted text order. How-
ever, despite these noisy inputs, ROISER successfully groups the content and
significantly improves the score (32.01→90.69 for LiLT, 57.37→92.61 for Lay-
outLMv3), demonstrating its outstanding performance in order correction and
text aggregation. Our method also outperforms the BIO-tagging scheme under
all settings for SIBR and INVOICE, highlighting its effectiveness in complex
layout scenarios.

Table 1. Comparison with existing pipelines on RFUND-en, CORD, SIBR, and our
in-house INVOICE datasets. Pre. denotes pre-processing strategies. LTRB refers to
sorting the OCR boxes from left-top to right-bottom by coordinates, and XY refers to
sorting with Augmented XY Cut. ml-F1 denotes F1-scores of multi-line entities. Best
scores are marked as bold, and second best scores are marked as underline.

Backbone Pipeline Pre.
RFUND-en CORD SIBR INVOICE

ml-F1 F1 ml-F1 F1 ml-F1 F1 ml-F1 F1

LiLT[InfoXLM]base
(ACL22)

BIO
LTRB 36.31 78.13 87.62 86.94 22.26 92.46 12.74 93.67

XY 49.36 78.77 10.04 32.01 47.20 92.92 46.74 93.93

ROISER
(Ours)

LTRB 46.11 82.53 89.91 92.52 60.05 93.70 96.94 99.48

XY 52.60 83.09 87.88 90.69 62.80 93.49 94.42 98.38

LayoutLMv3base

(MM22)

BIO
LTRB 40.60 82.82 90.36 90.98 22.26 92.46 12.85 93.72

XY 58.47 84.75 43.23 57.37 31.00 92.90 45.75 93.72

ROISER
(Ours)

LTRB 59.07 87.32 92.03 93.50 63.52 93.94 97.76 99.66

XY 60.64 88.08 91.38 92.61 61.84 93.61 96.09 98.38

The results presented in Table 2 demonstrate that ROISER outperforms both
the BIO tagging baseline with various pre-processing strategies and the previous
state-of-the-art method, TPP [34], on both FUNSD-r and CORD-r datasets. One
common issue in these datasets is the presence of inaccurate bounding boxes that
merge different entities. Our model effectively addresses this issue by utilizing
the span prediction module. As shown in Fig. 5, our model correctly extracts
entities such as Mail to:, Telephone:, and FAX:, even when they are merged
within the same box as other contents in the OCR inputs.
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Table 2. Performance comparison on FUNSD-r and CORD-r. Pre. refers to pre-
processing strategies. None denotes using the raw input order provided in the annota-
tions. LR and TPP mean sorting the input content with LayoutReader [28] and TPP
[34], respectively. Best scores are marked as bold.

Backbone Pipeline Pre. FUNSD-r CORD-r

LayoutLMv3base BIO None 78.77 82.72

LR 78.37 70.33

TPP 79.72 83.24

TPP (EMNLP23) None 80.40 91.85

ROISER (ours) None82.50 92.22

Fig. 4. Visualization of line aggregation ability on CORD dataset. Green boxes denote
the correct prediction, and red are erroneous. Arrays refer to the aggregation prediction.
The BIO tagging pipeline (left) fails to merge the word THAI with ICED and TEA,
while ROISER (right) successfully handle the case. (Color figure online)

Fig. 5. Illustration of span prediction ability on FUNSD-r. Grey boxes in the upper sub-
figure represent the input OCR results. The lower sub-figure displays the predictions
made by ROISER. Arrows denote the line aggregation prediction, and each entity type
is distinguished by a different colour. In this case, adhered entity lines such as Mail to:,
Telephone:, and FAX: are correctly split apart. (Color figure online)

4.5 Ablation Studies

Table 3 presents a comprehensive overview of the effectiveness of the global inter-
action module for the line aggregation task. Results are reported on RFUND-
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Table 3. Effectiveness of the global interaction module. Encoder refers to the Trans-
former encoder layers. SCB refers to the spatial compatibility bias, GIM is the global
interaction module, and NPM is the next-line prediction matrix M.

SettingEncoder
SCB

in GIM
SCB

in NPM
ml-F1 F1

1 40.50 79.90

2 � 0.87 75.95

3 � � 45.11 81.65

4 � 46.72 81.63

5 � � 41.83 80.00

6 � � � 52.60 83.09

Table 4. Ablation studies on the number of encoder layers in global interaction module.

# of
Layers

Backbone ml-F1 F1 Backbone ml-F1 F1

1

LiLT[InfoXLM]base

47.21 81.14

LayoutLMv3base

58.66 86.63

2 48.65 81.96 53.91 86.48

3 52.60 83.09 60.64 88.08

4 47.37 82.04 56.64 86.22

5 45.27 80.37 54.35 86.64

en with LiLT[InfoXLM]base, and Augmented XY Cut is employed as the pre-
processing strategy. When exclusively utilizing the Transformer encoder for line
interaction (setting 2), the performance experiences a detrimental impact com-
pared to direct classification (setting 1). Integrating SCB as the attention bias
proves advantageous in enhancing performance (setting 3). Incorporating an SCB
term into the next-line prediction matrix yields an approximate improvement of
6 points in multi-line F1 and 2 points in global F1 (setting 4), significantly con-
tributing to the overall result. The optimal score is achieved by employing the
transformer encoder with SCB as attention bias and including SCB in the next-
line prediction matrix (setting 6). It can be concluded that to achieve favourable
line global interaction, the Transformer encoder should collaborate with an SCB
term. Otherwise, it may harm the results (setting 2 & 5). The relative position
assumes a vital role in boosting the line aggregation performance.

We further examine the effect of the number of encoder layers in the global
interaction module (Table 4). Results are reported on RFUND-en with Aug-
mented XY Cut sorting. Our findings indicate that setting the layer number to
3 results in optimal performance.
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5 Conclusion and Future Work

In this paper, we proposed ROISER, a novel pipeline for visual SER tasks that
is capable of real-world OCR input. Our approach starts with identifying the
entity lines through span prediction and subsequently merges them with a line
aggregation module. Entity categories are further determined through line classi-
fication. This approach effectively addresses challenges encountered in real-world
applications such as multi-line entities and inaccurate OCR detections. Experi-
ments on diverse benchmarks validate the efficacy of ROISER. Future research
will focus on further improving the generalization capability of span prediction
and line aggregation across different layouts. We hope that our work can draw
attention to the struggles faced in the practical application phase, and promote
the emergence of more algorithms for real-world scenarios.

Acknowledgement. This research is supported in part by National Natural Science
Foundation of China (Grant No.: 62441604, 62476093).
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Abstract. Key information extraction (KIE) from scanned documents
has attracted significant attention due to practical real-world applica-
tions. Despite impressive results achieved by incorporating multimodal
information within the generative framework, existing methods fail to
understand complex layouts and fuzzy semantics in document images. To
settle these issues, we propose a perception-enhanced generative trans-
former (PEGT), which improves the model through fine-grained multi-
modal modeling and pre-training tasks tailored for the generative frame-
work. Firstly, we introduce a pre-trained vision-language model to pro-
vide transferable knowledge for visual text perceptron. Then two aux-
iliary pre-training tasks including absolute position prediction (APP)
and semantic relationship reasoning (SRR) are designed for the gener-
ative framework. APP learns to predict which grids the texts fall into,
improving the model on utilization of the position information. SRR
exploits prior information of semantic relationships, injecting the abil-
ity for better semantic discrimination into PEGT. Finally, well-designed
prompts are leveraged to unleash the potential of PEGT for extracting
key information from documents. Extensive experiments on several pub-
lic datasets show that PEGT effectively generalizes over different types of
documents. Especially, PEGT achieves state-of-the-art results in terms of
F-measure, i.e., 97.47%, 98.04%, and 84.32% on the SROIE, CORD, and
FUNSD datasets, demonstrating the superiority of the proposed method.
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1 Introduction

Recently the key information extraction (KIE) from document images, such as
scanned receipts [14], forms [15], financial reports [34] and even in the wild scene
[18] demonstrate significant value, attracting researchers from the academic and
industrial communities. KIE tasks typically involve multiple research areas,
including optical character recognition (OCR) [28–32,37] and named entity
recognition (NER) [21,35]. Thus utilization of multimodal information, such
as text, layout, and visual information is well explored in existing KIE meth-
ods. Among these methods, discriminative frameworks [13,41,42] are frequently
employed, in which the OCR results generated by common tools are leveraged
to provide layout and textual information. However, these models are inevitably
affected by the accumulated errors from the OCR process. To mitigate the impact
of OCR errors in the input content, a KIE method [3] based on a generative
framework [39] has recently been proposed, which shows the potential to correct
the OCR errors and generate the desired output with a sequence decoder.

Fig. 1. Comparisons of results predicted by the baseline model and PEGT. PEGT
exhibits better perception ability of documents, which benefits from pre-training tasks
and knowledge from pre-trained vision-language models. (a) When dealing with dense
and long text that is difficult to distinguish by the baseline model, PEGT can make
more reasonable judgments based on contextual semantic information. (b) Encounter-
ing ambiguous or similar text, PEGT makes more accurate, fine-grained predictions
based on the position of the text and the layout logic of the document image.
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Existing generative large multimodal models, e.g., OFA [39], LLaMA [38],
and VisionLLM [40] have demonstrated great success on multimodal under-
standing, which benefit from the pre-trained large-scale language model as the
back-end and the unified decoding paradigm. However, these models fail to com-
prehend document images with complex layouts and fuzzy semantics. Despite
the generation ability inherited from the pre-trained language model, due to the
lack of perception ability for the visual modality, when processing document
images, the model cannot locate the answer by understanding the layout logic
and contextual semantics like humans, which leads to the false predictions as
shown in Fig. 1. In our experiments, we try to remove the visual modality, leav-
ing only text and layout features as input, and find that this leads to a minor
impact on performance. This finding further indicates that the information of
visual modality in existing methods is underutilized.

In addition, pre-training techniques have also been well explored to enable
models to learn commonsense knowledge from data and make significant progress
in document understanding [13,41,42]. BERT [16] proposes masked language
modeling (MLM), which learns the bidirectional representation by reconstruction
based on random masked texts. In the visual document understanding (VDU)
area, existing discriminative methods such as DocFormer [1], SelfDoc [22], and
Layoutlmv3 [13] follow this approach and extend it to a multimodal encoder
for representation learning to achieve better results. However, the difference in
granularity between images and text increases the difficulty of learning a unified
multimodal representation. Moreover, considering the importance of the decoder
in generative frameworks, existing pre-training tasks that account for encoders
alone may lead to sub-optimal performance.

To solve the above problems, we propose PEGT, a perception-enhanced gen-
erative transformer that extracts the key information generatively, equipped with
better perception ability for VDU. Firstly, inspired by the phenomenon that
CLIP responds to visual texts [26], we propose to introduce the pre-trained CLIP
[33], which provide commonsense knowledge for the model to enhance the per-
ception of visual text. Besides, two pre-training tasks, including absolute position
prediction (APP) and semantic relationship reasoning (SRR) are designed for the
generative framework for better perceiving position and semantic information.
In particular, the APP learns to predict which grids the texts fall into, improv-
ing the model on utilization of the position information. SRR exploits prior
information of semantic relationships, injecting the ability for better seman-
tic discrimination into PEGT. PEGT achieves better perception ability with
the proposed modules and produces more accurate predictions than the baseline
model. As shown in Fig. 1 (a), when dealing with paired long sentences, the base-
line model makes it difficult to understand the differences between dense texts,
which struggle to make correct decisions and tend to commit easy errors; in con-
trast, PEGT can better give correct answers considering the semantics between
long sentences. For example, the second highlighted text with the ground-truth
“answer” that is long and close to a “question” is easily misidentified as part of
the “question”. As shown in Fig. 1 (b), the baseline model can not perceive the
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semantics and layout structures in documents, e.g., unit prices and total prices
often appear in the middle and the far right respectively, making false predictions
when distinguishing similar categories; PEGT can better utilize layout informa-
tion and predict more accurate results. Extensive experiments on three public
KIE datasets demonstrate the effectiveness of the proposed method.

The key contributions of this work are summarized as follows:

– We propose PEGT, a perception-enhanced generative transformer for the KIE
task that can efficiently utilize visual information that contains pre-trained
vision-language knowledge and auto-regressively generates key information
from scanned documents based on well-designed prompts.

– Two pre-training tasks, including absolute position prediction (APP) and
semantic relationship reasoning (SRR) are designed to enhance the perception
ability of the generative model for multimodal information.

– Comprehensive experiments on real-world KIE datasets demonstrate the
strong robustness of PEGT against document images containing numerous
small texts and complex layouts, which makes it more applicable in practical
scenarios.

2 Related Works

2.1 Multimodal Document KIE

An encoder-based multimodal transformer, accompanied by pre-training tech-
niques, becomes a prevalent method for VDU demonstrates strong feature rep-
resentation, and achieves SOTA performance in downstream tasks involving
KIE tasks. LayoutLM [42] first proposes the pre-training framework to han-
dle multimodal KIE, which incorporates text, layout, and visual features. Lay-
outLMv2 [41] integrates a spatial-aware self-attention mechanism into the trans-
former architecture, allowing the model to comprehend the relative positional
relationships between texts. LayoutLMv3 [13] learns multimodal representation
through self-supervised using three pre-training objectives: word-patch align-
ment, masked image modeling, and masked language modeling. To simplify the
visual branch for VDU, DocFormer [1] designs a multimodal self-attention layer
to combine multiple modalities and share learned spatial embeddings across
modalities. BROS [2] employs a graph-based classifier to predict entity tags as
well as entity relationships. Similar to BROS, LAMBERT [9] designs a layout-
aware language model, which does not use the original image but only augments
the coordinates of token bounding boxes to the input. StrucText [23] and Struc-
Textv2 [44] introduce a segment-token aligned encoder to handle entity labeling
and entity linking tasks at varying levels of granularity. Unlike the discrimina-
tive methods mentioned above, GenKIE [3] proposes a generative framework that
provides the potential correct error information in OCR results. ICL-D3IE [10]
introduces an in-context learning framework that allows large language mod-
els (LLMs) to perform document information extraction using various types
of demonstration examples. Despite the strong ability for sequence generation,
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existing generative methods can hardly effectively utilize visual information and
achieve synergy between different modalities due to the lack of perception ability.
Thus the generative frameworks are not fully explored for the KIE tasks.

2.2 Visual Representation Learning in VDU

Visual representation learning plays an important role in VDU tasks, in which
high resolution is required for fine-grained text perception, making the efficiency
and performance both matter. Early approaches tend to directly adopt visual
encoders pre-trained in the natural image domain, which keeps the pipelines
simple and demonstrates good generality. OFA [39] uses ResNet [11] as a visual
encoder to unify a diverse set of cross-modal and single-modal tasks in a sim-
ple sequence-to-sequence learning framework. Inspired by ViT [6], LayoutLMv3
[13] utilizes the original image patch directly from the document image without
complex pre-processing steps. Donut [17] proposes an end-to-end framework,
which does not rely on an explicit OCR process to complete various VDU tasks.
Subsequent methods [7,8] focus on improving the image encoders, aiming to
better perceive the small and dense characters within document images as well
as maintain efficiency. Based on DETR [4], DocTr [8] design a CNN backbone
with multi-scale visual feature extraction and a vanilla transformer for efficient
encoding of visual features, which reduces the feature map resolution to 1/8 of
the input image scale for better detection of small entities. DocPedia [7] pro-
cesses visual input in the frequency domain instead of the pixel space, which
can capture more visual and textual information with a limited set of visual
tokens. However, how to achieve a good balance between computation efficiency
and performance for the design of the visual encoder in VDU remains an open
question.

2.3 Vision-Language Pre-training

Vision-language pre-training (VLP) exhibits great advantages in processing joint
visual-linguistic representations. ViLBERT [25] extends BERT’s architecture
into a multimodal, two-flow model by incorporating tasks such as masked multi-
modal modeling and multi-modal alignment prediction. LXMERT [36] allows
the model to connect visual and linguistic semantics through pre-training tasks,
which learn intra-modality and cross-modality relationships. UNITER [5] uses
conditional masking in pre-training tasks rather than applying joint random
masking to both modalities. Unicoder-VL [20] borrows ideas from the cross-
language pre-trained model XLM [19], enabling the model to learn context-
aware representations based on visual and linguistic content. These works focus
on general vision-language tasks such as image-text retrieval, visual question
answering, and visual grounding. For visual text understanding, TAP [43] pro-
poses text-aware pre-training to help the model learn a better aligned repre-
sentation among text words, visual objects, and scene text. For the KIE tasks,
LayoutLMv3 [13] is pre-trained using discrete token reconstruction objectives,
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including masked language modeling, masked image modeling for the multi-
modal transformer, and word-patch alignment. However, these tasks are mainly
designed for encoder pre-training and are not suitable for multimodal generative
models which consist of both encoders and decoders.

Fig. 2. An overview of PEGT. PEGT is a perception-enhanced multimodal generative
model. Given a document image and its OCR results, the encoder’s input is composed
of patched visual tokens and textual tokens, which are embedded with the positional
features. The decoder generates the output according to a designed prompt. Addi-
tionally, PEGT is pre-trained with absolute position prediction (APP) and semantic
relationship reasoning (SRR) to better perceive positional and semantic information.

3 Methodology

The overall architecture of PEGT is shown in Fig. 2, which consists of a multi-
modal encoder-decoder model and two pre-training tasks. The encoder embeds
multimodal features from the input and the decoder generates the textual output
by following the prompts. To improve the model’s ability to understand layout
and semantics, we pre-train it using the perception-enhanced pre-training tasks
including APP and SRR, then fine-tune it on downstream KIE tasks. In the
subsequent sections, we explain the process of multimodal feature extraction,
prompt design, and decoding, and then elaborate on the pre-training method
and loss function techniques.

3.1 Multimodal Feature Extraction

Textual Embedding. Textual embedding encompasses both word embeddings
and position embeddings, which are generated based on the OCR results (text
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transcription and box detection). Then we use the BPE (Byte Pair Encoding)
tokenizer to split words into subword units. Finally, the <BEG> and <END> tags
are used as the start and end identifiers, the <SEP> tag serves to divide the
transcripts T and the prompt P , and the <PAD> tokens are added at the end to
standardize the length of sequences within a batch. The input sequence Sinput

can be expressed as:

Sinput = <BEG>,BPE(T ), <SEP>,BPE(P ), <END>, ..., <PAD>. (1)

The Sinput is then embedded to obtain the word embeddings T emb and summed
with the position embeddings P emb (including 1D and 2D positional embed-
dings) as shown in Fig. 2. Following the LayoutLMv3 [13], the 1D positional and
the 2D embeddings are based on the index of tokens within the text sequence
and the OCRed bounding box information respectively, where the x-axis and
y-axis features are integrated to create a two-dimensional spatial layout embed-
ding. All textual tokens in a bounding box use the same layout feature, instead
of detailing the bounding box of each token. In addition, all special symbols and
the prompted layout feature are set to a blank box bblank = (0, 0, ..., 0).

Visual Embedding. Given a document page image I, it is first resized to
a dimension of 480 × 480 pixels, then input into the visual backbone of the
model for further processing. Different from direct fine-tuning, we design to
adopt a modified CLIP image encoder. Specifically, we froze the weights of the
CLIP-ResNet backbone to retain the knowledge from the pre-training process.
The image encoder is reformulated by replacing the value-embedding layer and
the last linear layer with two respective 1× 1 convolutional layers as inspired by
[45]. It extracts a contextualized feature map from the input image I maps it
from the image token dimension to the model dimension and flattens it into a
sequence of patches V pat. A trainable position information is also added to the
visual modality. The visual embedding is formulated as follows:

V emb
i = V pat

i · Wv + PE(i) ∈ R
d, (2)

where Wv is the trainable parameters of a linear projection layer, PE(i) is the
trainable 1D positional embedding.

We concatenate the image embedding V emb with textual embedding, which
contains word embeddings T emb and position embeddings P emb. The final doc-
ument multimodal feature embedding as follows:

E = Concat(V emb, T emb + P emb) ∈ R
(T+P )×d, (3)

then the final output E of the above three encoders is fed into the following
multimodal transformer.

3.2 Prompt Design and Decoding

Following the design pattern for the three datasets in GenKIE [3], we provide
two kinds of prompts. The first is designed for the entity extraction task, where
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the question gives the type of information required and the model generates the
corresponding text answer. For example, “Date is ?” will prompt the model to
extract date-related content such as “25/12/2018” from the document image.
The second is designed for entity labeling tasks, where the question gives an
entity in the document image and the model generates the category of the entity,
e.g., the category of the “PROJECT SHEET” is “header”. At the same time, to
enable the model to better understand and utilize the position information,
we add the bounding box information of the queried text to the prompt. The
prompt information is appended at the end of the text sequence and fused with
other modality features into a multimodal representation, which is fed into the
multimodal transformer for answer generation.

The decoder input includes the filled-in prompt, acting as the learning tar-
get and ensuring consistency between the training and testing processes. During
inference, if the prompt is provided as a template, we apply prefix beam search
to restrict the search space, ensuring it begins with the template prefix with-
out requiring the exploration of multiple paths to determine the most probable
sequence, which is found to work quite accurately and efficiently on the three
datasets.

3.3 Perception-Enhanced Pre-training Tasks

Fig. 3. Illustration of the proposed pre-training tasks including (a) APP and (b) SRR.

The pre-training tasks aim to enhance the model’s perception of the mul-
timodal inputs. Considering the potential layout logic in document images and
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contextual semantics between different texts, we design two kinds of pre-training
tasks according to the characteristics of document images. The proposed abso-
lute position prediction (APP) and semantic relationship reasoning (SRR) pre-
training tasks are well illustrated in Fig. 3.

Absolute Position Prediction. The APP pre-training task is designed to
enable the model to understand the logic position information in document
images. We find that text fields with similar semantics tend to occur in fixed
regions within a document image, e.g., the “title” is usually at the top, and the
“total” generally occurs at the bottom right. Therefore, an accurate perception
of the position matters a lot. As shown in Fig. 3 (a), according to the layout
of the document images, we divide the documents into six grids of 3 × 2. The
learning target of the APP is to predict which grid the text’s top-left coordinate
(x0, y0) falls into, which improves the model on understanding the global infor-
mation relative to the entire documents. To enable the model to distinguish the
pre-training task and the fine-tuning task, the APP’s prompt template form is
set to “question: The location of T is ?”. For example, PEGT generates “right
down” by filling in the template “question: The location of 302,016 is ?”.

Semantic Relationship Reasoning. To learn the semantic relationship
between texts, the SRR pre-training task is proposed which forces the model
to concentrate on the strongly related texts. Considering that the noise pairs in
the documents may degrade the learning process, we propose to select high-
quality text pairs. For the FUNSD dataset, the question-answer text pairs are
selected to perform the SRR pre-training task. Because they have stronger prior
semantic associations than isolated texts labeled as “title” or “other” with fewer
amounts and semantic meaning. We select the price types and price numbers in
SROIE, menu name, and menu price in CORD similarly. As shown in Fig. 3 (b),
the prompt template is designed as “question: The question of T is ?”, where T
is the corresponding answer text in the document image, e.g., PEGT generates
“DATE” by filling in the template “question: The question of 12/10/98 is ?”.

3.4 Loss Function

The overall loss function consists of three parts:

Loss = LossKIE + α1LossAPP + α2LossSRR, (4)

where LossKIE , LossAPP , and LossSRR denote the KIE and the two pre-
training tasks, α1 and α2 are both set to 1.0. The cross-entropy loss function with
label smoothing Lsce is adopted to optimize the three tasks uniformly, which bal-
ances the learning of various classes to reduce overfitting and achieves an efficient
and flexible loss calculation strategy for diverse task requirements. The formula
is expressed as follows:

Lsce = (1.0 − ε − εi) · [− 1
N

N∑

n=1

log(pyn
)] + εi · [−ε

C∑

i=1

pilog(pi)], (5)
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where the output probability p is obtained by feeding E into the multimodal
transformer, ε is the global smoothing factor, εi is obtained by equally distribut-
ing epsilon overall error classes, N represents the total number of samples, y
represents the real label of the sample, pyn

represents the probability of the cor-
rect category predicted by the model, C indicates the total number of categories
and pi represents the probability of the model’s prediction for category i.

4 Experiments

4.1 Experiment Settings

In our experiments, we use the modified CLIP-ResNet as the image encoder,
while the other network models follow the pre-trained OFA model [39]. We
trained the model using two NVIDIA A6000 GPUs. The model dimension is
768. We fine-tuned PEGT on three datasets, uniformly setting the number of
epochs to 50, the batch size to 1, the initial learning rate to 5e-5, and the max-
imum encoder length to 1024. The maximum length for the template prompt is
restricted to 128, while the question portion is limited to 32. Taking into account
the distinct demands of the entity extraction task and the entity labeling task,
we constrain the maximum generated sequence length to 512 for the former and
128 for the latter. We introduce PEGTbase and PEGTlarge, which are based on
the OFA models with 182M and 472M parameters respectively.

4.2 Data and Baselines

Our experiments are conducted on three real-world datasets, including SROIE
[14], CORD [27], and FUNSD [15]. Table 1 demonstrates the statistics of these
datasets. Several baselines are used for comparison, including the SOTA models
such as LayoutLMv2 [41], DocFormer [1], GenKIE [3] and StrucText [23]. For
GenKIE, the evaluation result is obtained by using the official implemenation1

Table 1. Statistics of different datasets.

Dataset Type Labels Images

Train Val Test

FUNSD [15] Form 4 149 0 50

SROIE [14] Receipt 4 626 0 347

CORD [27] Receipt 30 800 100 100

1 https://github.com/Glasgow-AI4BioMed/GenKIE.

https://github.com/Glasgow-AI4BioMed/GenKIE
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4.3 Comparison with Existing Methods

As shown in Table 2, we evaluate the effectiveness of PEGT for the entity
extraction and entity labeling tasks on three public datasets. PEGT can achieve
97.47%, 98.04%, and 84.32% in terms of F-measure on the SROIE, CORD, and
FUNSD datasets, respectively. Compared with GenKIE, which is also a gener-
ative model, PEGT performs better through the pre-training tasks for learning
layout and semantic information. Besides, PEGT achieves the best performance
among existing methods on the CORD dataset, which has up to 30 categories,
demonstrating its powerful key information extraction capability and robustness
in understanding fine-grained semantics. Moreover, PEGT demonstrates compa-
rable performance to other discriminative models with pre-training for encoders,
such as LayoutLMv2, DocFormer, and LAMBERT on the three datasets.

Table 2. Overall performance of the compared models on the three datasets. The bold
font indicates the best performance, the underline indicates the second-best, P is the
accuracy rate, R is the recall rate and F is the F1 score. ∗ indicates results reproduced
by using the official implementation.

Model SROIE CORD FUNSD

P R F P R F P R F

BERT [16] 90.99 90.99 90.99 88.33 91.07 89.68 54.69 67.10 60.26

RoBERTa [24] 91.07 91.07 91.07 - - - 66.48 66.48 66.48

UniLMv2 [2] 94.59 94.59 94.59 89.87 91.98 90.92 65.61 72.54 68.90

Bros [12] 94.93 96.03 95.48 95.58 95.14 95.36 81.16 85.02 83.05

LayoutLM [42] 94.38 94.38 94.38 94.37 95.08 94.72 76.77 81.95 79.27

LAMBERT [9] - - 96.93 - - 94.41 - - -

LayoutLMv2 [41] 96.25 96.25 96.25 94.53 95.39 94.95 80.29 85.39 82.76

StrucText [23] 95.84 98.52 96.88 - - - 85.68 80.97 83.09

DocFormer [1] - - - 96.52 96.14 96.33 80.76 86.09 83.34

GenKIE [3] 97.40 97.40 97.40 95.75 95.75 95.75 83.45 83.45 83.45

GenKIE∗ [3] 96.84 96.91 96.88 97.90 96.07 96.98 80.00 80.00 80.00

PEGTbase 97.31 97.21 97.26 98.19 97.53 97.86 83.70 83.70 83.70

PEGTlarge 97.49 97.45 97.47 98.15 97.92 98.04 84.32 84.32 84.32

4.4 Ablation Study

The ablation experiments are performed based on the PEGTbase model, veri-
fying the effectiveness of the pre-training tasks and the image encoder on the
three datasets for the KIE tasks.
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Effectiveness of the Pre-training Tasks. As shown in Table 3, the pro-
posed APP and SRR pre-training tasks provide a consistent improvement on
the three datasets. The APP task increases the score from 97.12% to 97.25%
on SROIE, from 97.43% to 97.45% on CORD, and from 80.29% to 81.32% on
FUNSD, which shows the effectiveness of learning the position information. The
SRR task increases the score from 97.12% to 97.14% on SROIE, from 97.43% to
98.00% on CORD, and from 80.29% to 82.11% on FUNSD, which suggests that
learning contextual semantics helps guide the model to understand the docu-
ment image. Furthermore, the combination of APP and SRR tasks also leads to
improvement, i.e., 97.26% on SROIE and 83.70% on FUNSD. PEGT achieves
a 3.41% performance gain in terms of F-measure on the challenging FUNSD
dataset, and a 0.14% and 0.43% improvement upon a strong baseline on the
SROIE and CORD datasets, showing the advantage of the proposed pre-taining
tasks. We also tried the widely used Masked language modeling (MLM) pre-
training method. It can be seen that the mask recovery method is not suitable
for our model framework and prompt template.

Table 3. Performance comparison of variants with different pre-training tasks on the
SROIE, CORD, and FUNSD datasets.

Pre-training task(s) SROIE CORD FUNSD

P R F P R F P R F

- 97.26 96.99 97.12 97.61 97.26 97.43 80.29 80.29 80.29

APP 97.16 97.33 97.25 97.86 97.04 97.45 81.32 81.32 81.32

SRR 97.22 97.05 97.14 98.15 97.84 98.00 82.11 82.11 82.11

APP + SRR 97.31 97.21 97.26 98.19 97.53 97.86 83.70 83.70 83.70

Table 4. Performance comparison of variants with different multimodal embeddings
without pre-training tasks. T, V, and L denote the textual, layout, and visual modali-
ties. VCLIP represents the enhanced visual encoder introduced in this work.

Modality SROIE CORD FUNSD

P R F P R F P R F

T+L 95.44 94.19 94.81 95.67 92.75 94.19 79.38 79.38 79.38

T+L+V 97.11 97.06 97.08 97.98 96.30 97.13 80.00 80.00 80.00

T+L+VCLIP 97.26 96.99 97.12 97.61 97.26 97.43 80.29 80.29 80.29

Effectiveness of the Enhanced Visual Encoder. As shown in Table 4, first,
to show the importance of the visual modality information, we try to remove the
image encoder from the network. It can be seen that if text modality and lay-
out modality are used alone, the scores have declined in all three datasets. This
proves that the visual modality can provide complementary information for the
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model to complete the KIE task, which has not been fully explored. Then, we use
the modified CLIP image encoder to replace ResNet in the network, which shows
improvement in the three datasets. Therefore, introducing commonsense knowl-
edge from the visual modality can enhance the ability to perceive visual text.
Specifically, using our image encoder design strategy improves the baseline from
97.08% to 97.12% on the SROIE dataset, from 97.13% to 97.43% on the CORD
dataset, and from 79.38% to 80.29% on the FUNSD dataset.

5 Conclusion

In this work, we propose a perception-enhanced generative transformer (PEGT)
for the KIE task, which improves the model through fine-grained multimodal
modeling and pre-training tasks tailored for the generative framework. We intro-
duce a pre-trained vision-language model to provide commonsense knowledge for
visual text perceptron. Then two auxiliary pre-training tasks including APP and
SRR are designed for the generative framework to understand position infor-
mation and semantic relationships better. Extensive experiments on KIE tasks
including entity labeling and entity extraction are performed on three public
classical datasets, demonstrating the effectiveness of the proposed method.

Acknowledgements. This work is supported by the fund of Laboratory for Advanced
Computing and Intelligence Engineering.
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Abstract. Aggression detection from memes is challenging due to their
region-specific interpretation and multimodal nature. Detecting or clas-
sifying aggressive memes is complicated Bengali) because benchmark
datasets and primary language processing software are needed. This
paper proposes an innovative meme classification technique that har-
nesses deep learning (DL) approaches to leverage memes’ visual and
textual features in Bengali. Various DL frameworks, such as VGG16,
VGG19, ResNet50, CNN, BiLSTM, and BiLSTM+CNN, extract visual
and textual features from memes. A novel corpus named the Ben-
gali Meme Dataset (AMemD) is also introduced, comprising a sub-
stantial amount of multimodal data, including text and image com-
ponents. Experimental results on AMemD demonstrate the effective-
ness of the proposed approach. The CNN combined with VGG16
obtained the highest f1-score of 0.738 among all multimodal techniques
tested. This pioneering research offers valuable insights into the com-
plex task of aggression detection from memes in Bengali and provides a
foundation for future studies in this area. The dataset is available at
https://github.com/Maruf089/Multimodal-Aggression-Detection.

Keywords: Natural language processing · Meme classification · Deep
learning · Aggressive memes · Multimodal fusion

1 Introduction

With the significant rise in internet usage, social media has emerged as a power-
ful platform for conveying information, expressing opinions, and conveying emo-
tions on various topics. The proliferation of symbolic, offensive, obscene photos,
inappropriate gestures, and provocative textual comments on social media has
underscored the need for effective identification and classification of aggressive
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content. Memes have become a popular tool for spontaneously transmitting
ideas or emotions. Their humorous or sarcastic nature makes them an effec-
tive means of spreading information on social media, where posting and sharing
memes has recently surged in popularity. Recently, memes have gained popular-
ity to convey information on online media. Typically consisting of visuals with
embedded text, they can rapidly spread hatred and offensive content. Memes,
being popular forms of internet communication, often contain elements with
humorous, satirical, or provocative messages. Their multimodal nature, contex-
tual dependencies, data sparsity, and annotation challenges further complicate
the detection process. The propagation of hostile memes and other connected
actions through memes, such as trolling and cyberbullying, is rapidly advanc-
ing. Detecting aggressive memes often requires context and understanding of
the cultural and social implications behind the content. Automated systems can
assist in flagging potentially aggressive content, but human judgment and over-
sight are crucial for accurate and nuanced detection. Meme classification has
become increasingly complex due to its implicit meanings, ambiguous, humor-
ous, and sarcastic language use, and the inclusion of eye-catching, comical, and
theatrical images.

The detection and classification of aggressive memes are crucial for safeguard-
ing the well-being of users, promoting civil discourse, preventing radicalization,
and upholding legal and ethical standards in online spaces. Detecting multimodal
aggressive content or social media memes has significantly progressed in high-
resource languages. However, detecting aggressive memes in resource-constrained
languages needs to be more robust due to the lack of benchmark corpora and
language processing tools. Memes embedded with Bengali text have spread expo-
nentially in recent years due to the proliferation of Internet usage. Although
few studies concentrated on detecting aggressive content using a single modal-
ity (text or image), multimodal aggression content detection is still a work in
progress concerning the Bengali language. No substantial tools or techniques
have been developed to manage multimodal aggression on social media concern-
ing Bengali. Considering the current constraints of aggressive meme detection in
Bengali, this work presents an intelligent system to detect multimodal aggressive
memes (image and text) leveraging DL models exploiting visual and textual fea-
tures. After analyzing the results from each modality, an early fusion approach is
utilized to integrate features from both visual and textual modalities for detect-
ing aggressive memes. The key contributions of this work are highlighted as
follows:

• Developed AMemD, Aggressive Meme Detection corpus comprising 1718 Ben-
gali memes. This corpus serves as a crucial resource for training and evaluating
the multimodal framework for aggressive meme detection.

• Developed MuLAD, an automatic framework to identify multimodal aggres-
sive memes by leveraging various DL architectures (LSTM, Bi-LSTM, CNN,
VGG16, VGG19, and ResNet50) exploiting the visual, textual, and multi-
modal features.
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2 Related Work

Recent studies have focused on identifying content such as trolling [22], aggres-
sion [17], and hate speech [2] from a single modality (e.g., image, text). To detect
cyber-trolling in tweets, Sadiq et al. [16] designed and analyzed several methods,
including a Multi-Layer Perceptron (MLP) with TF-IDF, and word embeddings
and two DNN architectures (CNN+LSTM and CNN+BiLSTM). Their results
indicated that the MLP with TF-IDF features surpassed the other techniques,
achieving 92% accuracy. Zampieri et al. [24] developed an English offensive lan-
guage detection dataset and conducted baseline experiments using CNN, BiL-
STM, and SVM approaches. The CNN model attained the most elevated macro
f1-score (0.80) for offensive language detection. Chen et al. [4] suggested a CNN-
based technique for identifying verbal aggression in tweets, incorporating senti-
ment analysis. Additionally, Suryawanshi et al. [21] published a Tamil troll and
non-troll memes dataset. They employed pre-trained image categorization algo-
rithms such as ResNet and MobileNet to distinguish between meme categories.
Though their approach attained a macro f1-score of 0.52, it served inadequately
on the troll class, with a lower recall value (0.37).

Multimodal learning has recently acquired popularity owing to its capability
to effectively integrate knowledge from various modalities into a unified learning
architecture [15]. Yadav et al. [23] surveyed the application of DL approaches
for sentiment analysis and followed a growing trend among researchers towards
integrating multiple modalities (audio, images, and video), somewhat depending
on the text alone. Consequently, researchers increasingly adopt multimodal tech-
niques to detect objectionable content in memes, acknowledging the significant
negative impact such content can have on society [14]. Kumari et al. [13] pre-
sented a strategy where the visual features are recovered employing pre-trained
VGG16, and the text features are dragged using CNN. These features are opti-
mized employing the binary particle swarm optimization technique, attaining
a f1-score of 0.74. Suryawanshi et al. [20] created a multimodal corpus of 743
offensive and not-offensive memes. To integrate the multimodal features, they
employed an early fusion strategy. The integrated technique acquired a f1-score
of 0.50, while the text-based CNN method surpassed the other models (f1-score
of 0.54). Hossain et al. [8] introduced an inter-modal attention-based framework
for offensive meme detection, employing VGG19 and BERT as feature extractors.
Their approach yielded a weighted f1-score of 0.635. Sharma et al. [19] curated
a dataset designed to identify targets affected by harmful memes and introduced
DISARM, a novel multimodal framework. The authors evaluated their models on
three test sets: entities encountered during training (f1-score of 0.7845), entities
not encountered as harmful targets during training (f1-score of 0.6498), and
entities entirely unseen during training (f1-score of 0.641). Gasparini et al. [7]
introduced a new dataset to detect multimodal misogynistic content comprising
800 memes. They annotated these memes, categorizing them based on whether
they exhibit misogyny, aggression, and irony. Zhu et al. [25] introduced TAME,
a novel multimodal framework designed to detect hateful memes in a zero-shot



110 Md. M. Hasan et al.

setting, taking into account the targets of hate speech. Their approach achieved
an accuracy of 66.81% in generalized zero-shot learning scenarios.

Sharif et al. [18] used a hierarchical annotation schema to create an aggressive
text identification corpus in Bengali. They investigated a variety of ML and DL
approaches. The CNN+BiLSTM obtained the best f1-scores of 0.87 (coarse) and
0.80 (fine-grained). Kumar et al. [12] introduced ComMA, a multilingual, hierar-
chical, fine-grained dataset explicitly designed for detecting aggression and bias
within comments, memes, and audio content. Their research primarily focused
on four languages: Meitei, Bangla, Hindi, and Indian English. They ran a series
of experiments with different baseline models. They found that XLM-R pro-
duced the highest f1-scores for aggression (0.58) and gender bias (0.52), while
MuRIL produced the highest f1-score for communal bias (0.56). Hossain et al.
[10] proposed a new technique for aligning unimodal features before integrating
them for multimodal detection of hateful content. They assessed their method
using two datasets, MUTE (Bengali) and MultiOFF (English), achieving f1-
scores of 69.7% and 70.3%, respectively. Dutta et al. [6] presented a multitask
learning strategy for classifying emotion in comics. To address the challenge
of mislaid modalities, they operated three distinct classifiers, with the conclu-
sive decision being assembled via a unified decision module. Ahsan et al. [1]
created a target-aware multimodal aggressive meme dataset in Bengali, which
includes 4848 memes categorized into five groups (one non-aggressive category
and four aggressive categories). They introduced a novel multimodal framework
employing an attention-based fusion of unimodal features, achieving a weighted
f1-score of 0.742. Hossain et al. [11] created a novel multimodal dataset to detect
hateful memes and identify their targets within Bengali meme content. They con-
structed DORA, a dual co-attention-based multimodal framework tailored for
hateful meme detection, achieving f1-scores of 0.718 for hateful meme detection
and 0.720 for target identification.

Most past studies in Bengali focused on detecting aggressive memes based
on a unique modality (e.g., text). However, it is usually critical to comprehend
and categorize the contents of a meme regarding multiple modalities. Therefore,
exploring visual and textual modalities to detect aggressive memes is essen-
tial. This work presents a DL-based framework for detecting multimodal aggres-
sive memes exploiting textual and visual features with a late fusion approach.

3 AMemD: A New Aggressive Memes Dataset

At the outset of our research endeavor, we recognized the need for a special-
ized dataset to detect aggression from Bengali memes. Therefore, we meticu-
lously curated Bengali memes from diverse social media platforms and developed
AMemD-an innovative multimodal dataset for aggressive meme detection. To
maintain uniformity and quality, we adhered to the dataset development proto-
cols outlined by Hossain et al. [9]. Figure 1 illustrates the developmental steps of
AMemD.
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Fig. 1. AMemD development steps

3.1 Data Collection and Preprocessing

We gathered data from multiple social media sources, including Facebook
and Instagram. Specifically, 1,065 memes out of 1,718 (approximately 62%)
were collected from Facebook, while the remaining 653 memes (approximately
38%) were obtained from Instagram. To capture a broad spectrum of con-
tent, we utilized a variety of keywords such as “Bengali Memes,” “Bengali
Troll Memes,” “Bengali Aggressive Memes,” “Bengali Hateful Memes,” “Bengali
Offensive Memes,” “Bengali Funny Memes,” “Bengali Celebrity Memes,” “Ben-
gali Cricket Memes,” “Bengali Political Memes,” “Bengali Sports Memes,” and
“Bengali Ironical Memes.” This keyword-based search strategy was employed to
ensure inclusivity across different meme categories and minimize dataset bias.
During the data collection, we gathered 1,780 memes from publicly accessible
meme groups and pages to mitigate copyright concerns. Each meme under-
went scrutiny, leading to the removal of memes that met the following criteria:
(i) memes that had blurry images or unclear text, (ii) memes that consisted
of unimodal content (either image or text), and (iii) memes that were dupli-
cates. As a result of this review, 62 memes were excluded, leaving us with 1,718
memes. Given the absence of standard optical character recognition (OCR) for
Bengali, we manually extracted text from the images. Subsequently, we manu-
ally reviewed the extracted text to correct typographical errors, including mis-
spellings and grammatical inaccuracies.

3.2 Data Annotation

We conducted manual annotation of AMemD, categorizing them into two dis-
tinct groups: non-aggressive and aggressive. Annotators were given a clear def-
inition of what constitutes an aggressive meme to maintain consistency and
reliability throughout the annotation process.

Defining Aggressive Memes: We examined previous studies on detecting
aggression [13,18] and identified aggressive memes as multimedia elements con-
sisting of both an image and accompanying text. These memes can physically
intimidate, attack, or intend harm toward an individual, group, or community.
Memes also can include factors like political views, religious beliefs, sexual orien-
tation, gender, race, or nationality, or they may include nudity, sexually sugges-
tive material, items promoting violence, or racially charged content. For example,
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the meme in Fig. 2b is aggressive as it attacks an internet personality by express-
ing a wish to assault him physically. On the other hand, the meme in Fig. 2a
is non-aggressive since it compares the year 2020 with a bitter vegetable and is
lighthearted and humorous.

Fig. 2. Instances of aggressive and non-aggressive memes. The criteria used to decide
the category: a) contains humorous content by comparing the year 2020 with a bitter
vegetable, b) attacks an internet personality, c) makes an offensive remark but does
not physically threaten or attack anyone

Aggressive content is distinct from other forms of undesirable content in sev-
eral ways. While aggressive content is often harmful and offensive, not all harm-
ful, hateful, or offensive content can be classified as aggressive. Offensive content
encompasses material that is insulting, derogatory, discriminatory, or otherwise
inappropriate [20]. However, it does not necessarily include direct threats or
attacks, unlike aggressive content. For instance, Fig. 2c is categorized as offen-
sive because it makes a derogatory comment about an individual’s appearance
by likening them to a zebra. Although the content is offensive, it does not con-
tain direct threats or physical harm towards anyone. Strong feelings of animosity
characterize hateful content and promote hostility, discrimination, or prejudice
against specific individuals or groups based on factors such as race, gender, reli-
gion, sexual orientation, or political views [9]. Unlike aggressive content, hateful
content often reflects an extreme bias towards certain groups without necessarily
including direct threats or physical aggression.

Process of Annotation: The initial annotation process was conducted by
three undergraduate students, who were instructed to classify memes as aggres-
sive or non-aggressive based on the provided definitions. To ensure accuracy and
consistency in their annotations, the students underwent training using a small
subset of the data to familiarize themselves with recognizing aggressive content.
Annotators were guided to label the images objectively, avoiding bias towards
any particular demographic region, culture, sensitive topics, or religious beliefs.
Initial labels were determined through a majority voting system, as outlined in
Algorithm 1. When disagreements arose, a seasoned expert with over 20 years of
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experience in NLP intervened to resolve conflicts and validate the annotations.
We assessed the quality of the annotations by calculating the inter-annotator
agreement with Cohen’s Kappa coefficient [5]. The pairwise Kappa score between
annotators 1 and 2 and annotators 2 and 3 are 0.890 and 0.855, while the score
is 0.923 between annotators 2 and 3. The average Kappa value for the AMemD
dataset is 0.889, indicating almost perfect agreement based on the Kappa scale
[3].

Algorithm 1: Majority Voting & Initial Label
1 T ← Text corpus;
2 Labels ← [0,1];
3 AL ← Label of annotators;
4 IL ← Initial Labels;
5 for ti ∈ T do
6 label count = [0,0];
7 for aij ∈ AL do
8 label count[aij ]++;
9 end

10 ILi = indexof [max(label count)];
11 end

3.3 Dataset Statistics

The dataset comprises 1,718 memes in jpg image format, with a total size of
210 MB. Table 1 displays the distribution of the dataset between the training
and the test sets, along with statistics specific to the training set, such as the
total data in each class (Tt), total word count (Tw) and the count of unique
words (Tuw). The training set contains 1425 memes, and the testing set contains
293. The aggressive class has 1,671 words, with 1,141 unique words. Conversely,
the non-aggressive class contains 14,778 words, of which 6,112 are unique. The
majority of texts consist of fewer than 20 words.

Table 1. Dataset distribution

Dataset Train Test Tt Tw Tuw

Aggressive 140 55 195 1671 1141

Non-Aggressive 1285 238 1523 14778 6112

Total 1425 293 1718 16449 7340

4 Methodology

This research presents MuLAD, a comprehensive framework for detecting
aggression within multimodal memes. MuLAD comprises several key compo-
nents: preprocessing, textual feature extraction, visual feature extraction, and
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multimodal fusion. Figure 3 depicts the abstract architecture of the proposed
framework.

Fig. 3. Abstract framework for multimodal aggressive meme detection (MuLAD)

4.1 Preprocessing

Initially, the raw text data undergoes preprocessing to remove punctuation,
hyperlinks, emojis, and special characters. Subsequently, the cleaned text data
undergoes tokenization and is converted into a vector of integers via the Keras
tokenizer function. To ensure uniformity in the data structure, the tokenized vec-
tors are padded to achieve equal-length sequences. Likewise, the images undergo
preprocessing before being utilized in deep learning (DL) models. This process
involves resizing the images to 224 × 224 × 3, then preprocessing using Keras
functions tailored to each pre-trained image model.

4.2 Textual and Visual Feature Extraction

This work exploited various word embedding techniques, such as Keras, Fast-
Text, and GloVe, to extract textual features for DL models.

• Keras: We instantiated an embedding layer with a vocabulary comprising
8000 words, utilizing a vector space of 64 dimensions and enforcing a maxi-
mum sequence length of 130.

• FastText: Pre-trained FastText embedding was employed, trained to employ
CBOW with position weights. The embedding model was trained with vectors
of dimensionality 300, comprising character n-grams (length 5), a window
(size of 5), and ten negative samples.
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• Glove: The GloVe pre-trained model was trained with a dimension of 300, a
window size of 5, and a min count of 5. Pre-trained FastText embedding was
employed, trained to employ CBOW with position weights. The embedding
model was trained with vectors of dimensionality 300, comprising character
n-grams (length 5), a window (size of 5), and ten negative samples

The embedded text was passed to several DL models to extract textual fea-
tures, including CNN, BiLSTM, and CNN+BiLSTM. The CNN architecture
comprises a single convolutional layer with a filter (size of 128) and a kernel
(size of 5). The convolution layer is obeyed by a max pooling layer and a dense
layer with 32 neurons. Subsequently, a dense layer with a sigmoid activation
function was employed for binary classification. Extensive experimentation was
conducted with the CNN architecture to refine the framework. Table 2 demon-
strates the hyperparameters of the CNN architecture.

Table 2. Hyperparameters for the CNN model. The acronyms AF and LR denote the
activation function and learning rate.

Hyperparameters Hyperparameter Space CNN

Kernel Size 3, 5, 7 5

Pooling Type ‘max’, ‘average’ ‘max’

Embedding Dimension 32, 64, 128 64

Batch Size 16, 32, 64, 128 32

AF ‘relu’, ‘sigmoid’ ‘relu’

Optimizer ‘adam’, ‘SGD’ ‘adam’

LR 0.0001, 0.001, 0.05 0.001

We utilized various pre-trained image models (e.g., VGG16, VGG19, and
ResNet50), employing transfer learning techniques to find visual features. Ini-
tially, the top layers of these models were discarded. Subsequently, a flattening
layer and dropout layers are added to the base model. Additionally, relu acti-
vation was incorporated into each layer to ensure that negative values were not
propagated to subsequent layers. The model is finalized with a dense layer fea-
turing a sigmoid activation function for classification.

4.3 Multimodal Fusion

To construct a multimodal framework, we combined the final layers of the textual
and visual models through concatenation. Subsequently, a dense layer featuring a
sigmoid activation function was added for binary classification. During training,
we employed the ‘binary crossentropy’ loss function and the ‘adam’ optimizer.
Extensive experimentation was conducted, employing three visual models for
visual feature extraction and nine textual models for textual feature extraction
to identify the optimal framework. Figure 4 depicts the overall architecture of
the proposed multimodal framework (MuLAD).
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Fig. 4. Proposed framework for multimodal aggressive meme detection (MuLAD)

5 Experiments

The experiments were performed on the Google Colab platform, leveraging
TensorFlow frameworks to construct DL architectures. Various Keras func-
tions were employed for data preprocessing, model construction, and training.
The BNLP toolkit1 facilitated textual data preprocessing, while model evalua-
tion utilized the Scikit-Learn library. Data visualization was performed using the
Matplotlib library. The weighted f1-score is the primary metric for assessing the
models’ performance.

5.1 Baselines

We investigated three visual and nine textual baseline models to evaluate the
proposed multimodal framework’s performance.

Visual Baselines: With the transfer learning approach, this work inves-
tigated several pre-trained image models (such as VGG16, VGG19, and
ResNet50). These models were chosen as baselines because they performed excep-
tionally well across various image classification tasks. The top two layers of each
model were removed first, and then a global average pooling layer was added.
The final layer of the model was a dense layer with a sigmoid activation function
for binary classification. We trained the models using the ‘binary crossentropy’
loss function and ‘adam’ optimizer. We used a LR of 1e−3 and a batch size of 32.

1 https://pypi.org/project/bnlp-toolkit/.

https://pypi.org/project/bnlp-toolkit/
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In addition, we used the Keras callback technique to store the finest intermediate
model while training.

Textual Baselines: To establish textual baseline models, we explored DL archi-
tectures, including CNN, BiLSTM, and CNN+BiLSTM. Initially, the prepro-
cessed texts underwent embedding using diverse techniques such as Keras, Fast-
Text, and GloVe. For Keras embedding, we employed an output dimension of
64 with an input dimension of 7340, representing the vocabulary size. The CNN
architecture comprised a convolutional layer with 32 units and a kernel size of 5,
followed by a maxpooling layer. To enhance the model’s capability of capturing
long-term dependencies within the text, a BiLSTM layer consisting of 100 neu-
rons was integrated into the CNN network to create the BiLSTM+CNN model.

6 Results

Table 3 presents the performance measures of the textual baseline techniques
on the test dataset, where the metrics A (accuracy), P (weighted precision), R
(weighted recall), and WF (weighted f1-score) are utilized. Among the models
employing Keras embedding, the BiLSTM architecture earned the most ele-
vated WF score of 0.887. Conversely, for the pre-trained GloVe and FastText
embeddings, the CNN framework attained the maximum WF score of 0.888
in both cases. Specifically, the CNN model utilizing FastText word embedding
demonstrated P and A of 0.907 and 0.901.

Table 3. Performance of textual models on the test set

Classifier Keras GloVe FastText

A P R WF A P R WF A P R WF

BiLSTM 0.901 0.908 0.901 0.887 0.894 0.895 0.894 0.881 0.901 0.912 0.901 0.886

CNN 0.870 0.862 0.870 0.855 0.901 0.907 0.901 0.888 0.900 0.904 0.901 0.888

BiLSTM+CNN 0.881 0.874 0.881 0.867 0.887 0.883 0.887 0.875 0.884 0.879 0.884 0.871

In contrast, VGG16 exhibited the most elevated WF score (0.789) among the
visual baseline models, with a P (0.784) and A (0.816). Table 4 demonstrates the
outcomes of visual models. These findings suggest that VGG16 outperformed
ResNet50 and VGG19 regarding performance metrics. The results indicate that
the textual baseline models surpassed the visual baseline models’ performance.

Table 5 shows the performance of the multimodal techniques on the test
dataset. The CNN⊕VGG16 model acquired the most elevated WF score of 0.738
with a P of 0.717 and an A of 0.778.
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Table 4. Performance of visual models on the test set

Classifier A P R WF

ResNet50 0.812 0.659 0.812 0.728

VGG16 0.816 0.784 0.816 0.789

VGG19 0.785 0.690 0.785 0.725

Table 5. Performance of the multimodal techniques on the test set

Classifier Keras GloVe FastText

A P R WF A P R WF A P R WF

BiLSTM⊕ResNet50 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728

CNN⊕ResNet50 0.764 0.676 0.764 0.713 0.747 0.712 0.747 0.727 0.747 0.712 0.747 0.727

BiLSTM+CNN⊕ResNet50 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728

BiLSTM⊕VGG16 0.747 0.669 0.747 0.704 0.375 0.698 0.375 0.411 0.512 0.744 0.512 0.562

CNN⊕VGG16 0.778 0.717 0.778 0.738 0.450 0.700 0.450 0.502 0.812 0.659 0.812 0.728

BiLSTM+CNN⊕VGG16 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728 0.512 0.744 0.512 0.562

BiLSTM⊕VGG19 0.812 0.659 0.812 0.728 0.699 0.715 0.699 0.707 0.484 0.719 0.485 0.536

CNN⊕VGG19 0.785 0.690 0.785 0.724 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728

BiLSTM+CNN⊕VGG19 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728 0.812 0.659 0.812 0.728

6.1 Class-Wise Performance Analysis

To enhance our understanding of the developed architectural design’s effective-
ness, we assessed the model’s performance across individual classes and com-
pared it against the top-performing visual and textual baseline models (refer to
Table 6). Notably, the top-performing textual baseline model, employing CNN
with FastText embeddings, outperformed the leading visual baseline model (uti-
lizing VGG16 architecture) and the proposed multimodal model. Specifically,
it achieved a precision of 0.964, a recall of 0.491, and an f1-score of 0.651 for
the aggressive class, and a precision of 0.894, a recall of 0.996, and an f1-score
of 0.942 for the non-aggressive class. Although excelling in precision for the
aggressive class, this textual baseline model exhibited inferior recall, resulting
in a reduced f1-score for this particular class. Conversely, the proposed frame-
work encountered challenges in correctly identifying instances of the aggressive
class, evident from its notably low f1-score of 0.156. However, it demonstrated
commendable performance for the non-aggressive class, obtaining an f1-score of
0.872. This discrepancy can be ascribed to the scarcity of training data for the
aggressive class, which constrains the model’s ability to effectively learn distin-
guishing features for this category.

6.2 Error Analysis

We performed an exhaustive error analysis encompassing quantitative and quali-
tative examinations to discern the specific patterns underlying misclassifications
within the non-aggressive and aggressive classes.
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Table 6. Class-wise performance of the best visual, textual, and proposed multimodal
framework (MuLAD) on the test set

Class Classifier Precision Recall f1-score

Aggressive VGG16 0.519 0.255 0.341

CNN (FastText) 0.964 0.491 0.651

CNN (Keras)⊕VGG16 0.273 0.109 0.156

Non-aggressive VGG16 0.846 0.945 0.893

CNN (FastText) 0.894 0.996 0.942

CNN (Keras)⊕VGG16 0.819 0.933 0.872

Quantitative Analysis: Quantitative error analysis was conducted on the
best baseline models and the proposed architecture using confusion matrices
(refer to Fig. 5). Among the 55 aggressive memes evaluated, the CNN⊕VGG16
model accurately classified merely six images while misidentifying 49 as non-
aggressive. This disparity can be attributed to the scarcity of data within the
aggressive class and the relatively smaller dataset size. Similarly, the VGG16
model encountered difficulty discerning aggressive memes, correctly identifying
only 14 out of the 55. However, it demonstrated proficient performance in classi-
fying non-aggressive memes, accurately categorizing 225 out of 238, with only 13
misclassifications. Conversely, the CNN model improved performance in identi-
fying aggressive memes, correctly categorizing 27 out of the 55 instances. Fur-
thermore, it achieved a notably higher accuracy in classifying non-aggressive
memes, accurately identifying 237 out of 238 instances. Notably, all models were
biased towards categorizing memes as non-aggressive, evidenced by the higher
frequency of misclassifications into this category. This trend likely stems from
the inherent overlap in meme content across various classes and the limited
availability of data within the aggressive class, posing challenges for multimodal
models to predict the actual class accurately.

Fig. 5. Confusion matrix for (a) best textual baseline, (b) best visual baseline, and (c)
best multimodal model (MuLAD)
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Qualitative Analysis: For deeper insights, we investigated select inputs to
compare their actual class with the predictions made by the top three mod-
els, including our proposed method. Figure 6 visually represents the actual and
predicted outputs for a subset of sample inputs. Upon analysis, it is evident
that the text and image classifiers accurately predict their respective modalities
in the first and third samples. Consequently, the multimodal model achieves a
correct prediction due to the individual classifiers’ alignment. However, in the
second sample, discrepancies arise as the text and image classifiers yield conflict-
ing predictions. Consequently, the multimodal model fails to make an accurate
prediction due to the inherent overlapping characteristics present in memes, lead-
ing to ambiguity in classification. This challenge could be addressed by expand-
ing the dataset with auxiliary memes exhibiting such overlapping characteristics,
thereby enhancing the model’s ability to discern nuanced distinctions.

Fig. 6. Sample predictions by MuLAD (CNN⊕VGG16)

7 Discussion

Using a multimodal approach, we employed various deep-learning architectures
to detect aggression in memes. The proposed model, MuLAD, which combines
CNN with Keras embedding and VGG16, obtained the highest f1-score of 0.738
among all multimodal approaches. However, it was outperformed by the best tex-
tual baseline model (CNN with FastText embedding). The underperformance
of the multimodal model may be attributed to the limitations and imbalance
within the dataset. To address these issues in future work, the dataset could
be expanded to increase its scope and diversity, incorporating a wider range of
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meme styles, domains, and types of aggression. Additionally, improving the qual-
ity of annotations by involving more skilled and experienced annotators would
help ensure the accuracy and reliability of the data. While this research focused
on deep learning architectures, future research could explore more advanced
models, such as transformers, attention mechanisms, and large language mod-
els (LLMs), to enhance the effectiveness and performance of the multimodal
approach.

8 Conclusion

This study introduced MuLAD, a multimodal approach for identifying aggres-
sive memes in Bengali. It utilized CNN and VGG16 models and explored various
fusion techniques across visual, textual, and visual-textual data to classify memes
in a developed dataset. Results showed that the CNN with FastText embedding
achieved the most elevated weighted f1-score (0.888) among textual approaches,
while the VGG16 model scored the highest (0.789) among visual approaches.
However, when features were combined from both CNN and VGG16, the per-
formance of the multimodal MuLAD model decreased (0.738 f1-score). Future
research aims to augment the dataset with more multimodal aggressive data to
improve the approach. Investigating advanced techniques like transformer-based
models (such as BERT, Visual BERT, and ViL-BERT) and large language mod-
els (LLMs) could enhance overall performance.
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Abstract. Retrieval Augmented Generation (RAG) has become a
common practice to alleviate the hallucination of Large Language
Models (LLMs). The retrieval phase of RAG, however, usually solely
depends on the original query, which, to some extent, suffers from the
problem of semantic gap and thus degrades the quality of the retrieved
external knowledge. To address this problem and enhance the perfor-
mance of the traditional RAG, we propose a rEwrite-sElect-votE-rEad
paradigm (E𝟜) that first paraphrases the original query into 𝑁 rewrit-
ten ones to bridge the semantic gap from different perspectives and then
determines the most valuable retrieved external knowledge via a voting
manner. Besides, in the midst of the above procedures, a certain query-
selecting strategy is also required to filter out the extra noise introduced
by the query-rewriting process. Following this proposed paradigm, we
provide our implementation of E𝟜. Experimental results of our implemen-
tation on long context reading comprehension datasets from LongBench
demonstrate the effectiveness of our proposed paradigm and provide a
profound insight into the whole enhanced RAG process.

Keywords: Large language model · Retrieval augmented generation ·

Voting-based enhancing paradigm

1 Introduction

Large Language Models (LLMs), due to their excellent language understanding,
logical reasoning and language generation abilities [25], have become the most
popular research direction in natural language processing (NLP) domain nowa-
days. These abilities of LLMs are largely endowed by their large scale parameters
[24] where all the world knowledge from model pre-training corpus is also stored
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(a.k.a., Parameterized knowledge). Since parameterized knowledge is acquired
by LLMs via pre-training, which is a high resource and time demanding process,
it is intractable to frequently update this kind of knowledge, therefore, leading
to the hallucination of LLMs (e.g., Generating outdated content) [8]. Besides,
the essence of neural network makes the parameterized knowledge interwoven
with each other in the LLMs’ parameter space, further deteriorating the model
hallucination phenomenon (e.g., Generating fabricated content).

Recently, RAG [6] has become a mainstream solution to address the LLMs’
hallucination problem. Different from previous methods that need model train-
ing, RAG leaves LLMs’ internal parameters intact but additionally introduces
knowledge from external source (e.g., Database and Wikipedia). Knowledge of
this kind is usually in the form of plain text and referred to as non-parameterized
knowledge. The goal of RAG is to find ways that can strike a balance between
parameterized and non-parameterized knowledge, making the generating process
of LLMs reliable and explainable to the largest extent.

The traditional RAG consists of two steps:

– Retrieval: Using the original query to search relevant knowledge from exter-
nal sources;1

– Read: Converting the knowledge obtained from the previous step and the
original query into a specific prompt which is then fed into LLMs for final
content generation.

The original query, however, is not always the optimal choice for knowledge
retrieval in the first step of RAG since there exists the problem of semantic gap
[6] between original query and external knowledge.

To address the aforementioned problem, we propose a voting-based paradigm
to enhance the traditional RAG which includes four steps:

– Rewrite: Paraphrasing the original query into 𝑁 rewritten ones;
– Select: Selecting the most valuable rewritten queries and filtering out queries

that contain noise with a certain query-selecting strategy;
– Vote: Determining the most useful retrieved knowledge via a voting manner

according to the selected rewritten queries;
– Read: Same as that of the traditional RAG.

To the best of our knowledge, we are the first to conduct a comprehensive
research on enhancing RAG from the perspective of query rewriting via a voting
manner. The contributions of this paper are as follows:

– A novel voting-based paradigm E
𝟜 is proposed to enhance the traditional

RAG from the perspective of bridging the semantic gap. E𝟜 is relatively flex-
ible, containing four steps that can be optimized respectively, which provides
promising research directions in future work;

1 Methods from information retrieval domain such as sparse and dense retrieval meth-
ods are widely used in this step.
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– Following this paradigm, we give our implementation of E𝟜, which leverages
LLMs to paraphrase the original query and contains various query-selecting
strategies;

– Experimental results on long context reading comprehension datasets from
LongBench demonstrate the effectiveness of our proposed paradigm and pro-
vide a profound insight into the whole enhanced RAG process.

2 Related Work

In this section, we introduce the related work from the perspectives of query
rewriting, information retrieval and prompt engineering.

2.1 Query Rewriting

There are several previous studies that focus on query rewriting. The most typ-
ical one is RRR [14]. Not like our method, RRR tries to rewrite the original
query via a small model, which is trained by means of reinforcement learning
with feedback signals from LLMs. BEQUE [18] is another representative work.
It aims at solving the problem of long-tail queries, a phenomenon that is very
common in real-life scenarios. BEQUE has significantly improved the recall rate
after query rewriting and has been successfully applied to the Taobao. HyDE [4]
first adopts LLMs to transform the query into a hypothetical document and then
uses this hypothetical document to search knowledge from the external source,
making the retrieval process happen at the same semantic level (document vs.
document).

2.2 Information Retrieval

Searching useful knowledge from the external source is the first and most impor-
tant procedure of RAG and usually depends on information retrieval (IR) [15]
methods. IR methods can be roughly divided into two categories, namely, sparse
retrieval [3] methods and dense retrieval [26,27] methods.

Sparse retrieval methods use shallow features, such as term frequency, to
calculate lexical similarity between text. BM25 [19] algorithm is the most typical
sparse retrieval method. Its inverted index structure makes itself a widely applied
IR tool in industry and a strong baseline in academic researches.

Since sparse retrieval methods only focus on the lexical similarity of text,
they are not capable of handing situations that entail complicated semantic
similarity (e.g., different words with the same meaning). Dense retrieval methods,
therefore, are proposed to address this problem. Dense retrieval methods usually
first convert the raw text into dense vectors by using a semantic encoder and
then calculate the similarity scores between these vectors via some specific vector
similarity metrics (e.g., cosine similarity and L2 distance) during retrieval.

Transformer-based architecture [22] is often adopted nowadays to form the
backbone of semantic encoders. Renowned pre-trained language model (LM)
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BERT [2] is the most popular choice. Other pre-trained LMs, such as RoBERTa
[12] and ERNIE [20], are also widely used. After a pre-trained LM is selected,
it needs to be further trained to be adapted to the semantic feature extraction
task, which is usually achieved by the contrastive learning methods. The goal of
contrastive learning is to make the representation vectors with the same seman-
tics close to each other in the latent space, while those with different semantics
far away from each other. The representatives of dense retrieval encoders include
DPR, Contriever and SimCSE, etc.

2.3 Prompt Engineering

Prompt engineering becomes an emerging research field [16,23] after LLMs have
unified most NLP tasks into a sequence-to-sequence paradigm. By leveraging
LLMs’ strong instruction-following and in-context learning abilities, prompt
engineering can easily adapt LLMs for completing tasks they have never seen
before.

LLMs’ prompt usually consists of two parts, task and instruction. Task indi-
cates what LLMs exactly need to do and instruction tells LLMs how to do it.
In the realm of RAG, an additional part, namely, task context, is also required
which aims at providing supplementary information to help LLMs reduce hallu-
cination and generate more reliable content according to the task.

Our research belongs to the field of prompt engineering and focuses on how
to select the most helpful task context (external knowledge).

3 Methodology

In this section, we introduce our implementation details of E𝟜 in rewrite, select,
vote and read four steps.

3.1 Rewrite

Query rewriting is the key step of bridging the semantic gap between original
query and external knowledge, which requires the rewritten queries having the
same semantics with the original one but asking from a different perspective.
Since instruction-aligned LLMs have demonstrated strong instruction-following
ability, we leverage LLMs themselves to conduct the query rewriting in our
implementation via prompt engineering. The prompt we use is shown in Fig. 1.

In Fig. 1, <ori query> is the placeholder of the original query and <N> is
the number of the required rewritten queries. In this paper, we use 𝑄 to indicate
the original query and 𝑄𝑛 (𝑛 ∈ [1.𝑁]) to represent the rewritten queries.

3.2 Select

Although there exist constraints on the query-rewriting process which have
already been included in the above query-rewriting prompt, LLMs, however, may
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Fig. 1. LLM Query-Rewriting Prompt

Fig. 2. Four Query-Selecting Strategies

not always follow them, generating some queries that distort the meaning of the
original one or are even totally irrelevant. These kind of queries will introduce
extra noise into the following voting step and, therefore, severely degrade the
final RAG performance. To solve this problem, we design three query-selecting
strategies from different perspectives, namely, similarity-based strategy (SBS),
diversity-based strategy (DBS) and LLM-based strategy (LLMBS). These
strategies are illustrated in Fig. 2.

Similarity-Based Strategy. Similarity-based strategy provides the most intu-
itive way to conduct query selecting. By calculating the similarity scores between
the original query and the rewritten ones, keeping the rewritten queries with the
highest 𝐾 similarity scores, the most irrelevant rewritten queries are filtered out.

Diversity-Based Strategy. Depending solely on similarity may lead to the
selected queries lacking diversity which means that these queries are not capable
of bridging the semantic gap but only repeat the original query’s behavior. To
overcome this drawback of the similarity-based strategy, diversity-based strategy
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first splits the rewritten queries into 𝐾 groups via a certain clustering method
and then selects the query that is the most similar to the original query from
every group. This strategy is designed to strike a balance between similarity and
diversity.

LLM-Based Strategy. LLMs, after trained on a massive corpus, acquire an
excellent natural language understanding ability, which can help select the most
valuable rewritten queries. In this strategy, LLMs are adopted to calculate the
conditional probability of the original query given the rewritten one. We believe
that the higher the probability of the original query, the more valuable the
rewritten one. Queries that with the 𝑡𝑜𝑝 − 𝐾 probabilities will be kept. This
process is illustrated as follows:

𝑃�̂�𝑛
= 𝑃

(
𝑄 | 𝑄𝑛, 𝐼

)
=

𝑇∏
𝑡=0

𝑃
(
𝑄𝑡 | 𝑄𝑡−1, · · · , 𝑄0, 𝑄𝑛 𝑗 , · · · , 𝑄𝑛0, 𝐼𝑚, · · · , 𝐼0

)
(1)

where 𝑄 represents the original query, 𝑄𝑛 donates the nth rewritten query, 𝐼 is
the guiding instruction, 𝑄𝑡 , 𝑄𝑛 𝑗 and 𝐼𝑚 are the corresponding tokens in 𝑄, 𝑄𝑛

and 𝐼. In our research, we investigate the LLM-based strategy with and without
the guiding instruction, respectively. The guiding instruction we select in our
experiments is shown in Fig. 3. It is worth noting that the guiding instruction
used here is not for guiding LLMs to generate content but only act as a prior
knowledge when calculating the conditional probability.

Fig. 3. Guiding Instruction

In Fig. 3, <rewritten query> is the placeholder of the rewritten query and
<ori query> is that of the original one.

3.3 Vote

After filtering out the useless rewritten queries, the remaining ones are adopted
to determine the most helpful retrieved knowledge by voting. In the realm of
RAG, the external non-parameterized knowledge is usually organized into the
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form of text chunks with certain length in order to be conveniently processed by
IR methods. Thus, we regard text chunks as the basic voting units.

In this paper, 𝐶 denotes the external non-parameterized knowledge, where
𝐶 = {𝐶0, 𝐶1, · · · , 𝐶𝐿}, 𝐶𝑙 represents the 𝑙th text chunk, 𝐿 is the number of
total text chunks. 𝑆𝑘 is the 𝑘th selected rewritten query’s voting score vector
on each text chunk candidate 𝐶𝑙 obtained via a certain IR method, where 𝑆𝑘 =
{𝑆𝑘0, 𝑆𝑘1, · · · , 𝑆𝑘𝐿}. The voting process is illustrated by Eq. 2.

𝑆 =
𝐾∑
k=1

𝑑𝑘 · softmax (𝑆𝑘) (2)

where 𝑆 is the final voting results on all text chunk candidates by all selected
rewritten queries. softmax(·) is the softmax function. 𝑑𝑘 is the weighting param-
eter of each selected rewritten query 𝑄𝑘 and is calculated via Eq. 3, where 𝑑𝑘
is the similarity score between the original query and the 𝑘th selected rewritten
query given by a certain IR method.

{𝑑1, 𝑑2, · · · , 𝑑𝑘} = softmax
(
𝑑1, 𝑑2, · · · , 𝑑𝑘

)
(3)

3.4 Read

Fig. 4. Prompt Template

The voting step yields a score vector for all text chunk candidates in 𝐶 and
the last reading step needs to select the text chunks with the highest 𝐵 scores
and combines them with the original query according to the template shown in
Fig. 4 to form the RAG prompt for LLMs to generate the final answer, where
<text chunks> is the placeholder of the selected 𝐵 text chunks and <ori query>
is that of the original query.

In our experiments, we set 𝐵 via Eq. 4.

𝐵 = �log𝜌 𝐿� (4)
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where 𝜌 is called compression factor. It is important to set the correct value
of compression factor and details will be discussed in Sect. 5.2. �·� indicates the
rounding up operation. Our implementation of E𝟜 is summarized in Algorithm 1.

Algorithm 1. Our implementation of E𝟜

Input: Original query 𝑄, external non-parameterized knowledge 𝐶, query-selecting
strategy pool 𝐺={vanilla-vote; SBS; DBS; LLMBS; LLMBS-guide}, pre-
defined number of required rewritten queries 𝑁, number of selected rewritten queries
𝐾 and compression factor 𝜌
Step 1: Leveraging LLMs to paraphrase the original query 𝑄 into 𝑁 rewritten queries
𝑄𝑛

Step 2: Choosing one query-selecting strategy 𝑔 from strategy pool 𝐺
Step 3: Using the current strategy 𝑔 to select 𝐾 queries from 𝑄𝑛

Step 4: Using the selected 𝐾 rewritten queries and the original query Q to vote on
external non-parameterized knowledge 𝐶 via Eq. 2
Step 5: Combining text chunks with the highest 𝐵 voting scores and the original
query 𝑄 to form the final RAG prompt, where 𝐵 is calculated via Eq. 4
Step 6: Inputting the prompt into LLMs and let LLMs generate the final answer

Output: Final RAG answer

4 Experimental Setup

In this section, we present the details of our experimental setup.

4.1 LLM

In our experiments, we choose Llama-2-7B-Chat [21] as the target model. Llama-
2-7B-Chat is an instruction-aligned large language model designed and trained
by Meta AI. Its training process has three phases including Pre-Training (PT),
Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feed-
back (RLHF). Therefore, it is endowed with excellent instruction-following abil-
ity, making itself capable of conducting tasks such as query rewriting and reading
comprehension.

4.2 Task Description and Datasets

We adopt the long context reading comprehension task (LCRC) in our exper-
iments to testify the effectiveness of our proposed E

𝟜 paradigm and its corre-
sponding implementation.

LCRC task consists of three parts, namely, a long passage, a question based
on this passage and an answer list. Since the passages in LCRC datasets are quite
long (usually exceed the maximum input lengths of LLMs, e.g., 4096 tokens of
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Llama-2-7B-Chat), LCRC becomes a suitable downstream task to measure a
RAG framework’s performance.2

We select three LCRC datasets, 2WikiMQA, HotpotQA and MultiFieldQA-
en, to conduct our experiments. The statistics of these three datasets are listed
in Table 1.

Table 1. Statistics of datasets

Dataset Sample Num. Avg. Passage Length (in tokens)

2WikiMQA 200 8400.03

HotpotQA 300 11210.32

MultiFieldQA-en 150 8056.62

4.3 Baselines

Six widely applied IR baselines are adopted in our experiments, including BM25
[19], DPR [10], Contriever [9], SimCSE [5], TAS-B [7] and Nomic [17]. Among
them, BM25 is a lexical-similarity-based algorithm that has a profound impact
on industry and others are popular semantic-similarity-based methods.

4.4 Evaluation Metric

All results in our experiments are reported in the standard reading comprehen-
sion evaluation metric F1-score which calculates the overlap between characters
of the generated answer and the golden answer. F1-score integrates the recall
and the precision rate together. Equation 5 shows the computing process of it.

F1-score =
2 ∗ precision ∗ recall
precision + recall

(5)

4.5 Other Experimental Setup

LLMs have been found relatively sensitive to the granularity and order of the
external non-parameterized knowledge [1,13]. In order to fully take these factors
into consideration, we set the text chunk’s size to 256 and 512, respectively,
and use four sorting strategies to organize the selected text chunks, including a)
sorting the text chunks by voting scores in ascending order; b) sorting the text
chunks by voting scores in descending order; c) sorting the text chunks according
to their positions in original passage; d) interleaving the text chunks at the front
and back ends of the sequence alternately by voting scores in ascending order.
[11] The combination of two text chunk granularities and four orders finally
yields eight experimental settings in total.

2 The long passage of a data sample in LCRC task can be regarded as the external
non-parameterized knowledge and the question as the original query.
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To eliminate the impact of randomness on experimental results, greedy
decoding strategy is adopted when generating the final answers.

In our main experiment, we set the number of required rewritten queries and
that of the selected rewritten queries to 15 and 3, respectively. The clustering
method used in DBS is K-Means. The compression factor 𝜌 is 2.

5 Results and Analyses

In this section, we first show the results of our main experiment and then sev-
eral case studies as well as an ablation experiment are conducted to provide a
profound insight into the whole enhanced RAG process.

5.1 Main Experiment

Results of the main experiment are listed in Table 2.3 We can observe from Table
2 that our proposed voting-based paradigm is able to enhance the traditional
RAG with almost all the retrieval baselines.

Table 2. Results of the Main Experiment

Strategy ↓ \ Method → BM25 DPR Contriever SimCSE TAS-B Nomic

2
W

ik
iM

Q
A

Baseline 24.681 27.600 27.094 27.280 29.800 28.908

+ vanilla-vote 24.423 27.704 ↑ 28.725 ↑ 27.253 29.695 28.338

+ SBS 25.096 28.094 ↑ 27.845 ↑ 27.609 ↑ 29.786 28.986 ↑

+ DBS - 28.101 ↑ 28.926 28.466 ↑ 30.159 ↑ 28.840

+ LLMBS 24.109 28.104 26.962 28.758 31.097 29.030 ↑

+ LLMBS-guide 25.074 ↑ 28.058 ↑ 27.620 ↑ 28.440 ↑ 30.782 ↑29.759

H
o
tp

o
tQ

A

Baseline 33.738 30.937 31.724 33.233 32.262 33.530

+ vanilla-vote 33.486 31.332 ↑ 31.534 32.527 33.014 ↑ 34.226 ↑

+ SBS 32.639 31.426 ↑ 32.015 34.534 ↑ 32.538 ↑ 34.025 ↑

+ DBS - 31.649 31.057 33.555 ↑ 32.283 ↑ 33.712 ↑

+ LLMBS 33.162 31.094 ↑ 31.041 34.994 33.094 35.777

+ LLMBS-guide 33.546 31.577 ↑ 31.904 ↑ 34.390 ↑ 32.827 ↑ 34.809 ↑

M
u
lt
iF

ie
ld
-e
n

Baseline 42.642 38.644 42.106 41.162 43.120 41.878

+ vanilla-vote 43.390 ↑ 38.737 ↑ 42.152 ↑ 40.650 42.793 41.284

+ SBS 42.032 38.629 42.058 41.043 42.802 42.052 ↑

+ DBS - 38.794 ↑ 42.408 ↑ 41.359 ↑ 43.271 ↑ 42.583 ↑

+ LLMBS 43.523 39.027 42.447 ↑ 41.562 43.302 41.681

+ LLMBS-guide 42.867 ↑ 38.766 ↑ 42.769 41.202 ↑ 43.260 ↑42.755

3 Here, the best results among eight experimental settings are reported. In each col-
umn, the best result is in bold and results better than baselines are marked with
↑.
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Among all the voting-based methods, the method with vanilla-vote is the
most unstable one and degrades the performance of the traditional RAG in most
cases, since it adopts all the rewritten queries during the voting step, introducing
a lot of extra noise. These results demonstrate the necessity of conducting query
selecting after query rewriting to dispose of the distracting ones.

Although SBS is able to filter out the rewritten queries that contain noise to
some extent, the similarity-oriented essence of it limits the final performance of
the corresponding method with SBS, only having slight improvement compared
to the vanilla-vote one in most cases.

Methods with DBS and LLMBS, however, have the most consistent perfor-
mance in enhancing the traditional RAG, validating our hypotheses above. We
argue that LLMBS-guide, which naturally integrates with the great potential
of LLMs, is a promising research direction in future studies of fully exploiting
LLMs’ capacity.

5.2 Case Study 1: Compression Factor 𝝆’s Role in the RAG Process

Fig. 5. Compression factor 𝜌’s impact on the final RAG performance

Compression factor 𝜌, according to Eq. 4, determines to what extent the external
knowledge (e.g., long passages in the LCRC task) is compressed. External knowl-
edge compression is a necessary procedure in RAG since LLMs usually have a
maximum input sequence length due to the hardware and computing resource
limitations. Thus, it is impractical to input the whole passage into LLMs during
inference. Besides, due to the fact that the longer the input sequence, the more
noise it contains, external knowledge compression, via selecting the text chunks
with high voting scores only, can act as an additional denoising step to help
further improve the final RAG performance. As shown in Fig. 5, we set the com-
pression factor 𝜌 to Max, 2, 4 and 8, respectively, where Max represents selecting
the text chunks until their total length reaches the length limitation of LLMs
(e.g., 4096 tokens of Llama-2-7B-Chat in our experiment). It can be observed
from Fig. 5 that setting 𝜌 to 2 obtains the best performance, further striking a
balance between filtering out extra noise and keeping useful information.
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5.3 Case Study 2: Number of Selected Rewritten Queries 𝑲’s
Impact on the Final RAG Performance

In our main experiment, we set the number of selected rewritten queries 𝐾 to 3.
In this section, we are going to study the Number of selected rewritten queries 𝐾’s
influence on the final RAG performance. We conduct an additional experiment
on 2WikiMQA dataset and set 𝐾 to 3, 6, 9 and 12, respectively. Results are in
Table 3.4 Methods with smaller 𝐾 values (e.g., 3 and 6) are more consistent in
improving the performance of the traditional RAG and are better than those with
larger 𝐾 values in most situations especially those with DBS and LLMBS. We
argue that the rewritten queries generated by LLMs have redundant information
to some extent and, therefore, it is not necessary to take a large proportion of
the rewritten queries into account (e.g., 9/15 or 12/15) when voting but the
most useful ones only. These results also support our conclusion above from a
different perspective that diversity is a more important criterion than similarity
when conducting query selecting.

Table 3. 𝐾’s Impact on the Final RAG Performance

Method ↓ \ 𝐾 → no-vote 3 6 9 12

S
B
S

BM25 24.681 25.096 24.550 24.721 ↑24.636

DPR 27.600 28.094 27.704 ↑ 27.704 ↑27.704 ↑

Contriever 27.094 27.845 ↑ 28.131 ↑28.252 28.116 ↑

SimCSE 27.280 27.609 ↑28.447 28.368 ↑27.401 ↑

TAS-B 29.800 29.786 30.490 30.099 ↑29.766

Nomic 28.908 28.986 27.723 28.727 28.132

D
B
S

BM25 - - - - -

DPR 27.600 28.101 ↑28.104 27.649 ↑27.704 ↑

Contriever 27.094 28.926 ↑28.948 28.202 ↑28.481 ↑

SimCSE 27.280 28.466 26.934 26.671 27.452 ↑

TAS-B 29.800 30.159 ↑30.320 30.311 ↑29.989 ↑

Nomic 28.908 28.840 27.716 27.037 27.761

L
L
M

B
S

BM25 24.681 24.109 24.401 24.203 24.498

DPR 27.600 28.104 ↑28.115 27.894 ↑27.704 ↑

Contriever 27.094 26.962 27.533 ↑28.415 27.935 ↑

SimCSE 27.280 28.758 26.767 26.939 27.124

TAS-B 29.800 31.097 ↑ 31.038 ↑31.153 30.151 ↑

Nomic 28.908 29.030 27.865 28.582 27.766

L
L
M

B
S
-g

u
id

e BM25 24.681 25.074 24.146 24.625 25.019 ↑

DPR 27.600 28.058 ↑28.115 28.104 ↑27.849 ↑

Contriever 27.094 27.620 ↑ 27.444 ↑28.328 28.222 ↑

SimCSE 27.280 28.440 27.723 ↑ 26.868 25.929

TAS-B 29.800 30.782 ↑31.640 30.948 ↑30.584 ↑

Nomic 28.908 29.759 28.350 27.930 27.559

4 In each row, the best result is in bold and results better than baseline are marked
with ↑.
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From these analyses, it is reasonable to choose a small 𝐾 value in the query-
selecting step, which can not only yield a better performance but reduce the
computing complexity in the proceeding voting step as well.

5.4 Ablation Experiment

Table 4. 𝑑𝑘 ’s Impact on the Final RAG Performance

Method ↓ \ Strategy → vanilla-vote SBS DBS LLMBS LLMBS-guide

BM25
w/ 𝑑𝑘 23.271 23.724 - 22.529 23.137

w/o 𝑑𝑘 23.300 23.169 - 22.992 22.239

DPR
w/ 𝑑𝑘 25.442 25.539 25.583 25.367 25.510

w/o 𝑑𝑘 25.276 24.742 24.449 24.585 24.346

Contriever
w/ 𝑑𝑘 24.698 25.232 24.911 24.721 24.676

w/o 𝑑𝑘 24.629 25.023 24.725 24.622 24.468

SimCSE
w/ 𝑑𝑘 26.087 26.030 25.956 25.854 25.906

w/o 𝑑𝑘 25.555 26.142 25.745 25.667 25.853

TAS-B
w/ 𝑑𝑘 26.928 27.002 27.327 27.181 27.585

w/o 𝑑𝑘 27.136 27.293 27.719 27.052 26.930

Nomic
w/ 𝑑𝑘 25.913 27.002 26.386 26.586 26.645

w/o 𝑑𝑘 26.153 26.819 26.052 26.605 26.665

In this part, we are going to investigate the impact of the weighting parameter
𝑑𝑘 on the final RAG performance via an ablation study on 2WikiMQA dataset.
Results are listed in Table 4.5 From Table 4 we can observe that adding weighting
parameter 𝑑𝑘 to the voting step helps improve the performance in most cases,
especially that of methods combined with various query-selecting strategies. We
believe that weighting parameter 𝑑𝑘 , according to the original query, provides a
more fine-grained signal to further adjust different rewritten queries’ degree of
importance in the voting process, which is crucial to the final voting results.

6 Conclusion

In this paper, we propose E
𝟜, a voting-based paradigm for enhancing RAG,

which has rewrite, select, vote and read four parts. Besides, an implementation
of E𝟜 is elaborated in this paper, including a LLM-based query-rewriting compo-
nent and various query-selecting strategies. Experimental results on three long
context reading comprehension datasets demonstrate our proposed paradigm’s

5 Mean values of results under eight experimental settings are reported in Table 4.
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effectiveness and give us a profound insight into the whole enhanced RAG pro-
cess.

Since E𝟜 contains four independent parts which can be implemented via many
other different ways, our implementation, therefore, may not be the optimal one.
We believe implementing E

𝟜 with four parts that can benefit from each other and
mutually obtain a better performance a promising research direction in future
studies.
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Abstract. The growing popularity of Chinese social media platforms
such as Sina Weibo has created a large number of user generated text
content, which is of great value for understanding public emotions. How-
ever, the existence of mixed languages in these texts, especially Chinese
and English, and mixed expressions pose a major challenge to current
emotion classification methods. To address these issues, we propose a
Bilingual Feature Fusion Network (BFFN) that leverages the multilin-
gual capabilities of pre-trained language models to enhance the semantic
feature extraction of Chinese text. Additionally, we introduce a Bilingual
Cross Attention Mechanism (BCAM) that utilizes emotional features as
the primary factor to capture cross-lingual emotional information effec-
tively. Furthermore, we employ a lightweight fine-tuning approach that
combines Low-Rank Adaptation (LoRA) and Embedding Fine-tuning
(LEF) to reduce the complexity of fine-tuning model weights for down-
stream tasks. Extensive experiments on various datasets demonstrate
the superiority of our proposed method, outperforming state-of-the-art
models like ERNIE by 1.43% in accuracy. Our work contributes to the
advancement of emotion classification in the context of mixed-language
communication culture and provides a practical solution for real-world
applications. Our code has been published on the open source community
Github (https://github.com/oujieww/BFFN).

Keywords: Emotion Classification · Bilingual Feature Fusion ·
Bilingual Cross Attention Mechanism

1 Introduction

Emotion classification has become a crucial research area in Natural Language
Processing (NLP) due to the increasing popularity of social networking sites.
Platforms like Sina Weibo have become repositories of vast amounts of textual
data, including user comments and opinions [12,13]. This wealth of social text
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information holds immense commercial value for businesses and public institu-
tions to understand public emotion [27]. Especially during the COVID-19 out-
break, Sina Weibo played a significant role in keeping Chinese netizens informed
[29]. However, many current studies have ignored the changes in current language
communication culture, especially the mixing of Chinese and English, and hybrid
expressions that are increasingly appearing in our lives. And these mixed words
contain strong emotional information as shown in Table 1, the words shit and
low are strong emotion key words.

Table 1. These two samples come from the EB dataset. The dataset is in Chinese
(ZH), and we use translation software to show the corresponding English(EN) version
for readers to understand.

categories text

angry ZH: Shit shit shit.

ENShit shit shit, this is impossible. What kind of meeting is this? This is bullshit.

sad ZH: low.

CN: If your hair does not follow your heart, your emotion will be very low for the whole day.

Emotion classification has evolved from traditional machine learning tech-
niques like SVM [15], NBC [9], and CRT [1] to deep learning approaches. The
introduction of the Transformer network [24] has greatly advanced the field of
NLP, with models like BERT [5] and its variants (RoBERTa [14], XLNet [28],
Nezha [26], Electra [2], and Ernie [22]) becoming key in emotion classification.
However, these methods increase model parameters and training time, and large-
scale Chinese datasets are scarce. Recent studies have proposed various improve-
ments, such as combining BERT with BLS [17], employing dynamic encoding and
multi-granularity feature fusion (DCCMM) [27], utilizing PCA for feature extrac-
tion and fusion (PCA-BERT). Although these technologies have made some
progress, they ignore the fact that as time goes by, languages also have mixed
expressions. Moreover, these methods directly use fine-tuning technology to align
the corresponding models to downstream tasks, without deeply exploring the
properties of the model itself, and without fully utilizing the value of pre-training
itself, especially the multi-language analysis capabilities. For instance, BERT-
based-Chinese [5] is pre-trained in Chinese on BERT-based-uncased [5], while
RoBERTA-wwm-ext [4] is an improvement on BERT-based-Chinese, indicating
that RoBERTA-wwm-ext possesses English knowledge.

Multimodal emotion classification [8,11,18,21] integrates data from various
channels, including text, audio, visual, and physiological signals, to achieve a
more comprehensive emotion assessment. However, in the text channel, current
approaches still do not account for the growing prevalence of language mixing,
such as the use of multiple languages within a single utterance or document, and
the multilingual capabilities of the models used are not fully utilized, limiting
their effectiveness in analyzing emotion in real-world contexts where language
mixing is increasingly common.
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To address the aforementioned issues, we propose the Bilingual Feature
Fusion Network (BFFN) based on a single backbone model, which leverages
the English processing capability of the pre-trained language model to enhance
the semantic feature extraction of Chinese text, thus improving emotional clas-
sification without introducing additional base models. Furthermore, to fully uti-
lize cross-lingual features and thoroughly explore the role of strong emotional
information features, we introduce a Bilingual Cross Attention Mechanism
(BCAM) that employs global salient emotional features as clues to extract
and aggregate cross-language word-level emotional features and enhance the
model’s performance. Subsequently, we apply Low-Rank Adaptation (LoRA)
technology for fine-tuning and combined with Embedding fine-tuning, utilizing
Embedding adjustments to further align semantics and reduce the complexity
of fine-tuning model weights for downstream tasks. The main contributions of
this paper are as follows:

1. Proposed a bilingual feature fusion network (BFFN), which utilizes the
English processing ability of the pre-trained language model to improve emo-
tional classification.

2. Proposed a bilingual cross-attention mechanism (BCAM), which uses global
salient emotional features as clues to extract and aggregate cross-language
word-level emotional features, so as to strengthen the overall emotional fea-
tures.

3. Introduced a lightweight fine-tuning method that combines LoRA and
Embedding Fine-tuning (LEF), reduce the difficulty of fine-tuning model
weights for downstream tasks.

4. We conduct extensive experiments on various models and datasets to validate
the effectiveness of our proposed method. The results show that our approach
outperforms the current state-of-the-art model, ERNIE, by achieving a 1.43%
improvement in accuracy.

2 Related Work

2.1 Transformer in Natural Language Processing

Vaswani et al. proposed Transformers [24], which utilize self-attention mecha-
nisms as the model’s foundation, consisting of an encoder for input sequence
encoding and a decoder for target sequence generation. BERT [5], based on the
Transformer architecture, employs only the encoder and introduces MLM and
NSP tasks to enhance language understanding. RoBERTa-wwm-ext [4] intro-
duces whole word masking based on BERT and is pre-trained on a larger Chi-
nese data set. NEZHA [26] incorporates Functional Relative Positional Encod-
ing, Whole Word Masking, and optimized training techniques. XLNet [28] intro-
duces PLM and a two-stage attention mechanism, with a Chinese version avail-
able [3]. ELECTRA [2] refines BERT with RTD and advanced training tech-
niques, and its Chinese version [3] is also offered. ERNIE [22], developed by
Baidu, builds on BERT with entity-level enhancements, dynamic masking, and
is pre-trained on a larger Chinese corpus.
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2.2 Emotion Classification

Emotion classification research has shifted focus to deep learning techniques
for text classification. Tang et al. were among the first to employ CNNs or
LSTMs for sentence encoding [23], while Wang et al. proposed a context-aware
bidirectional LSTM model [25]. Kim pioneered the use of CNNs for sentence-
level text classification, and Johnson et al. introduced a word-level DPCNN
to capture long-distance dependencies [10]. However, RNN-based models suffer
from sequence dependency issues and lack parallel computing capabilities, while
CNN-based models struggle to capture long-distance features and lose positional
information due to pooling layers.

To improve emotion analysis, Peng et al. combined BERT with the Broad
Learning System (BLS) [17], which combines BERT and extensive learning sys-
tem (BLS) for emotion classification, Guo et al. used question-and-answer pairs
as inputs for BERT [6], and Yan et al. proposed the DCCMM model [27] using
WOBERT Plus and ALBERT for dynamic encoding and multi-granularity fea-
ture fusion. Su et al. introduced PCA-BERT [20], which utilizes principal compo-
nent analysis to extract and fuse effective features from BERT layers. Although
these technologies have progressed, they overlook the fact that languages evolve
over time, leading to mixed expressions. Moreover, these methods directly apply
fine-tuning to align models to downstream tasks without deeply exploring the
model’s intrinsic properties and fully harnessing the value of pre-training, par-
ticularly multi-language analysis capabilities.

3 Method

In this section, we introduce the Bilingual Feature Fusion Network (BFFN),
as show in Fig. 1. First, the Chinese text is automatically translated into
English. Both the original Chinese text and the translated English text are then
fed into two separate LoRA branches, which operate in conjunction with the
shared BERT backbone model. The Word Embeddings are aligned and fine-
tuned during this process. The hidden representations obtained in the two lan-
guages are subsequently passed through the proposed Bilingual Cross Attention
Mechanism (BCAM) for feature enhancement and fusion, resulting in a final
feature vector that is used for emotion classification.

3.1 Bilingual Feature Fusion

As world cultures continue to evolve and interact, an increasing number of peo-
ple are employing mixed language expressions on social media platforms. These
cross-linguistic words and phrases often carry relatively strong emotional con-
notations, making them particularly relevant for emotion classification tasks.
Table 1 presents examples that illustrate this phenomenon, where the words
“shit” and “low” exhibit clear emotion tendencies and play a crucial role in
capturing the overall emotion of the entire sentence. If we rely solely on a pre-
trained model based on Chinese language for fine-tuning on the dataset, there
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Fig. 1. The pipeline of our proposed BFFN.

is a significant risk that these important emotion-bearing elements will be over-
looked or misinterpreted.

As illustrated in Fig. 1, we employ the BERT model as a single contributing
backbone network and extend it with two LoRA branches for extracting word-
level and sentence-level features in Chinese and English, respectively. Subse-
quently, we fuse the features obtained from these two distinct language sources to
generate the final classification features. This approach allows the relevant emo-
tional features extracted from the English branch to enhance the Chinese emo-
tional features, enabling the model to fully capture and utilize the emotional
information conveyed by the entire text.

3.2 Bilingual Cross Attention Mechanism

The cross-attention mechanism uses the global and local features of sentences
and establishes connections between different languages to improve the effect of
emotion classification. Directly fusing bilingual feature vectors may not yield the
best results. The salient emotional characteristics at the vocabulary level and the
general emotion conveyed by the meaning at the sentence level are crucial for
accurate classification. A naive fusion approach may inadvertently prioritize uni-
lateral information, potentially introducing side effects that affect the quality of
the fused information. For instance, in the second example presented in Table 1,
the emotional information expressed in the Chinese portion is relatively weak,
lacking the presence of strong emotional words like “ as seen in the Chinese part
of the first example. Consequently, the emotional features of the final feature
vector derived from the Chinese text may be comparatively weak. In contrast,
the English portion of the second example contains the strong emotional word
“low”, which, in conjunction with the relevant English text “emotion will be
very low”, is likely to generate a robust emotional feature in the feature vector
corresponding to the English part.

To enhance the effective fusion of bilingual features, we propose a bilingual
cross-attention mechanism that takes advantage of the features of each language
to assign scores to emotion features at the lexical level. Subsequently, based



144 H. Lan et al.

on these scores, we acquire the feature vectors corresponding to each language
component and then fuse them to obtain the final representation.

The hidden states of the outputs in Chinese and English are transformed into
queries (Q), keys (K), and values (V ) using linear projections (W ), as shown in
Eqs. (1), (2), and (3). Subsequently, the dot products between the queries (Q)
and keys (K) from different languages are calculated, scaled, and normalized
using the softmax function to obtain attention weights. This step enables the
model to assess the relevance between the two languages, facilitating effective
fusion of feature sequences. Through these attention weights, the values (V )
of each language are aggregated, thereby enabling cross-linguistic information
propagation. The calculations are presented in Eqs. (4) and (5), where ΔHcn

and ΔHen represent the information propagated from English to Chinese and
from Chinese to English, respectively.

Qcn, Qen = WQ
cnHcn,W

Q
enHen (1)

Kcn,Ken = WK
cnHcn,W

K
enHen (2)

Vcn, Ven = WV
cnHcn,W

V
enHen (3)

ΔHcn = softmax
(

QcnK
T
en√

d

)
Ven (4)

ΔHen = softmax
(

QenK
T
cn√

d

)
Vcn (5)

Equations (1), (2), (3), (4), and (5) describe the attention mechanism pro-
cess using a single head. In this paper, we use 12-heads attention mechanism
enhances the representational capacity of this process, with the results from
each head being subsequently merged to obtain richer and more nuanced inter-
language interaction information. Finally, the information propagated from the
other language is then utilized to update the features of the current language,
as calculated in Eqs. (6) and (7).

ΔHcn-cross = LayerNorm(Hcn + ΔHcn) (6)

ΔHen-cross = LayerNorm(Hen + ΔHen) (7)

Following the cross-attention layer, a feedforward layer consisting of a single
linear layer and a ReLU activation function is introduced to further enhance the
model’s representational capability, as shown in Eqs. (8) and (9). By incorporat-
ing a feedforward layer after the cross-attention layer, leading to a more refined
feature representation.

Hcn-cross = LayerNorm(ΔHcn-cross + Feedforward(ΔHcn-cross)) (8)

Hen-cross = LayerNorm(ΔHen-cross + Feedforward(ΔHen-cross)) (9)

Hfinal =
Hcn-cross + Hen-cross + Hcn + Hen

4
(10)
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Finally, Eq. (10) is used to fuse and average features, incorporating the
residual mechanism. This mechanism allows for the preservation of original fea-
tures throughout the BCAM calculation process, facilitating the flow of infor-
mation and gradients throughout the network. By allowing the model to learn
residual functions with reference to input characteristics, the residual mecha-
nism improves the overall effectiveness and efficiency of the training process,
as demonstrated in [7]. This approach helps to mitigate the vanishing gradient
problem and allows for the training of deeper networks, ultimately leading to
improved performance in the emotion classification task.

3.3 LoRA with Embedding Fine-Tuning

We jointly fine-tune the BFFN by LoRA with Word embedding fine-tuning to
construct bilingual processing branches and serve as a lightweight fine-tuning
method that reduces memory requirements. LoRA constructs low parameter lin-
ear layers for the Chinese processing branch and the English processing branch,
respectively. The low parameter linear layers for both languages store the results
of BFFN’s Chinese and English fine-tuning, which fully utilizes the model’s
bilingual processing capabilities (Chinese and English), reduces memory require-
ments, and minimizes parameter updates during BFFN fine-tuning. Fine-tuning
word embedding can further accelerate the alignment process between embed-
ding representations and the feature space, reducing the difficulty of the LoRA
fine-tuning process. Through this adjustment, the model can learn according to
task-specific data, optimizing word vectors to better reflect the semantic fea-
tures related to the current task. This optimization is crucial for improving the
model’s performance on specific text classification tasks, particularly when deal-
ing with tasks that are highly sensitive to word meaning, such as emotion clas-
sification. By fine-tuning the word embedding, the model can more accurately
capture the subtle semantic differences in the text.

3.4 Loss

In order to optimize the model parameters and minimize the discrepancy between
the predicted and actual probability distributions, we employ the cross-entropy
loss function during the training process. The back propagation algorithm is
utilized to update the model parameters on the basis of the calculated loss. The
mathematical formulation of the cross-entropy loss is given by Eq. (11):

L = −
∑
x∈D

C∑
i=1

yi(x) log (ŷi(x)) (11)

Where L represents the cross-entropy loss, D denotes the training dataset, and
C is the total number of emotion categories. For each training sample x, yi(x)
represents the ground truth probability of x belonging to the i-th emotion cate-
gory, while ŷi(x) represents the predicted probability of x belonging to the i-th
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emotion category. By iteratively minimizing the cross-entropy loss during the
training process, the model learns to generate predictions that closely match the
ground truth probability distribution, thereby improving its performance on the
emotion classification task.

4 Experiment

4.1 Datasets

The SMP2020-EWECT dataset [19], provided by the Social Computing and
Information Retrieval Research Center at Harbin Institute of Technology, con-
sists of two parts: pandemic-related and general data. The pandemic dataset
(Epidemic dataset) contains 13,606 Weibo posts collected during the COVID-19
pandemic using relevant keywords, while the general dataset (General dataset)
comprises 34,768 randomly collected Weibo posts without any specific topic.
Both datasets are categorized into six emotional categories: fear, positive, neu-
tral, anger, surprise, and sadness. The data is characterized by its brief length,
casual language style, and the presence of noise, non-standard expressions, abbre-
viations, slang, and spelling errors. In addition, texts often include user informa-
tion and contextual details, such as @mentions, topic tags, and links, which can
influence emotion classification tasks. For the Epidemic dataset, the training set
contains 8,606 corpus, the test set contains 3,000 corpus, and the verification
set contains 2,000 corpus. As for the General dataset, the training set comprises
27,768 corpus, the test set includes 5,000 corpus, and the verification set consists
of 2,000 corpus.

4.2 Evaluation Metrices

In this paper, we use Accuracy, Macro-Precision, Macro-Recall, and Macro-F1
as evaluation indicators. Accuracy (Acc) is the ratio of the number of correctly
predicted samples to the total number of samples, calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(12)

Where TP, TN, FP, and FN represent True Positive, True Negative, False Pos-
itive, and False Negative, respectively. Precision (P) is the ratio of the number
of correctly predicted positive samples to the total number of predicted positive
samples, while Recall (R) is the ratio of the number of correctly predicted pos-
itive samples to the actual total number of positive samples. These metrics are
calculated as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
(13)

The F1-score is the harmonic mean of P and R, which can more comprehen-
sively evaluate the performance of the model:

F1 = 2 × P × R

P + R
(14)
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In multi-class classification tasks, performance evaluation typically uses
micro-averaging and macro-averaging metrics. Macro averaging first calculates
TP, TN, FP, and FN for each category, then calculates P, R, and F1 separately,
and finally takes the arithmetic mean. The specific calculation process is shown
in the following equations:

Macro-P =
1
C

C∑
i=1

Pi, Macro-R =
1
C

C∑
i=1

Ri, Macro-F1 =
1
C

C∑
i=1

F1i (15)

The Pi, Ri, and F1i are the Precision, Recall, and F1-score for the i-th
category, respectively.

4.3 Training Details

In this paper, we set the dimension size of the hidden layer to 768, the batch size
to 32, the learning rate to 2e−5, and conducted 30 training epochs. We choose
Adam optimizer as the optimizer in the training process. To limit the length
of the input sequence, we set the maximum sequence length to 240 references
to the settings [6]. In terms of the LoRA parameter setting, we set the r value
to 16, alpha to 16 for each module of each linear layer in Attention and MLP.
We used an Intel(R) Core(TM) i9-10850K CPU and an NVIDIA V100 GPU for
all experiments in this paper. Our code is developed based on the Pytorch [16]
deep learning framework.

4.4 Compare with the States-of-the-Arts

As shown in Table 2, BFFN increased Accuracy by 1.2%, Macro-F1 by 5%,
Macro-R by 4.87%, and Macro-P by 1. 31% compared to RoBERTa baseline.
Compared to the state-of-the-arts ERNIE, BFFN achieved 1.43%, 5.99%, 5.91%,
and 4.43% higher scores in Accuracy, Macro-F1, Macro-R, and Macro-P, respec-
tively, on the epidemic dataset. These results effectively demonstrate the effec-
tiveness of the bilingual feature fusion method proposed in this paper. By com-
paring the results of the RoBERTa and ERNIE, we can also observe that the
fine-tuning results of RoBERTa are superior. This can be attributed to the fact
that ERNIE is a pure Chinese pre-training model, and its ability to understand
English content is inferior to that of RoBERTa. This finding supports the reason-
ableness of exploring and utilizing the model’s inherent multilingual capabilities
to improve emotion classification performance, as presented in this paper.

Our proposed BFFN significantly outperforms the baseline BERT across all
evaluation metrics. BFFN achieves 81.03% accuracy, 67.69% Macro-F1, 66.28%
Macro-R, and 70.45% Macro-P, surpassing BERT by 2.76%, 9.76%, 8.46%, and
2.56%, respectively. These results demonstrate that the introduction of bilin-
gual feature fusion and cross-lingual attention mechanisms in BFFN effectively
captures and utilizes emotion information, thereby enhancing Chinese emotion
classification performance.
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Table 2. The comparison of our proposed BFFN with the state-of-the-arts on the
SMP2020 Epidemic dataset.

Model Acc Macro-F1 Macro-R Macro-P

BERT [5] 78.27% 57.93% 57.82% 67.89%

RoBERTa [4] 79.83% 62.69% 61.41% 69.14%

XLNET [3] 79.03% 62.94% 62.30% 64.96%

BERT+CFBLS [17] 76.40% 58.70% – –

PCA-BERT [20] 78.97% 63.99% – –

Nezha [26] 79.23% 59.63% 60.09% 69.67%

ELECTRA [3] 79.17% 59.72% 58.23% 70.88%

ERNIE [22] 79.60% 61.70% 60.37% 66.02%

BFFN (ours) 81.03%67.69% 66.28% 70.45%

In Table 3, our proposed BFFN model still achieves the best results. How-
ever, unlike the Epidemic dataset, the General dataset has a training set that is
more than twice as large, which leads to better performance for the ERNIE.
This can be attributed to the fact that the ERNIE itself is relatively advanced
and has certain structural advantages. Despite this, the method presented in
this paper is still able to surpass the performance of the ERNIE on the General
dataset (78.94% vs. 78.6%). This can be mainly attributed to our effective uti-
lization of cross-language features through the Bilingual Cross Attention Mecha-
nism (BCAM). The BCAM demonstrates robustness and adaptability to various
datasets, enhancing the model’s generalization ability and enabling it to perform
well across different domains.

Table 3. The comparison of our proposed BFFN with the state-of-the-art models on
the SMP2020 General dataset.

Model Acc Macro-F1 Macro-R Macro-P

BERT [5] 77.78% 74.72% 75.23% 74.41%

RoBERTa [4] 77.82% 75.11% 76.37% 74.18%

XLNET [3] 77.38% 74.23% 75.07% 73.63%

BERT+CFEBLS [17] 76.30% 72.40% – –

Nezha [26] 76.90% 73.58% 73.84% 73.79%

ELECTRA [3] 77.80% 74.99% 75.08% 74.98%

ERNIE [22] 78.60% 75.89% 76.63% 75.43%

BFFN 78.94%75.94% 76.23% 75.70%
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4.5 Ablation for Feature Fusion Methods

This section will conduct an ablation analysis on the details of the method
proposed in this paper, mainly focusing on the basic bilingual feature addition
(BFA), the bilingual cross-attention mechanism, and the LoRA with Embedding
Fine-tuning (LEF) strategy, and we use the epidemic dataset for the ablation
experiment. The backbone models employed in our ablation experiment were
BERT and RoBERTa, respectively.

In Table 4, we primarily compared and analyzed different bilingual feature
fusion methods. BFA represents the extraction and direct add of bilingual fea-
tures based on the backbone model, while BCAM represents the Bilingual Cross
Attention Mechanism we proposed. This experiment aims to analyze two fac-
tors: 1. Whether the bilingual feature fusion itself is effective. 2. Whether the
proposed bilingual cross attention mechanism (BCAM) is effective.

Table 4. Analyzing the impact of different feature fusion methods.

Method Acc Macro-F1 Macro-R Macro-P

BERT 78.27% 57.93% 57.82% 67.89%

+BFA 78.77% 64.00% 62.18% 67.64%

+BCAM 79.40% 65.41% 63.99% 68.08%

RoBERTa[61] 79.83% 62.69% 61.41% 69.14%

+BFA 79.87% 65.71% 64.42% 68.19%

+BCAM 80.77% 67.00% 66.04% 68.92%

The results presented in Table 4 clearly demonstrate the impact of different
feature fusion methods on the performance of emotion classification models. By
incorporating bilingual feature addition into the BERT and RoBERTa base mod-
els, we observe a notable improvement across all evaluation metrics, including
accuracy, Macro-F1, Macro-Recall, and Macro-Precision. This finding under-
scores the importance of leveraging bilingual features to enhance the model’s
ability to understand and classify emotions in text data containing mixed lan-
guages.

Moreover, the proposed Bilingual Cross Attention Mechanism (BCAM) fur-
ther elevates the performance of both BERT and RoBERTa models compared to
the BFA method. The BCAM approach achieves the highest scores in all metrics,
with an accuracy of 79.40% and 80.77% for BERT and RoBERTa, respectively.
This significant improvement can be attributed to the effectiveness of the cross-
attention mechanism in capturing and integrating relevant bilingual information,
enabling the model to better understand the nuances of emotion expressed in
mixed-language text.

These results highlight the superiority of the BCAM method in emotion clas-
sification tasks, particularly in scenarios where the text data contains a mix of
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languages, such as Chinese and English. By effectively leveraging bilingual fea-
tures and employing a cross-attention mechanism, BCAM enhances the model’s
ability to accurately classify emotions, outperforming both the base models and
the BFA approach. This finding emphasizes the importance of considering lan-
guage diversity and utilizing advanced feature fusion techniques to improve emo-
tion classification performance in real-world applications.

4.6 Ablation for Fine-Tuning Strategies

In this section, we compare and analyze the effectiveness of different training
strategies based on the Epidemic dataset. The base model used here is not the
original BERT, but rather RoBERTa combined with the BCAM. This approach
allows us to analyze not only the effectiveness of different training strategies
separately but also the effectiveness of the combination when these strategies are
integrated with BCAM.

Table 5. The comparison of different fine-tuning strategies.

Methods Ratio Accuracy Macro-F1 Macro-R Macro-P

LoRA – 80.77% 67.00% 66.04% 68.92%

LEF 10% 81.00% 67.70% 66.31% 70.42%

25% 81.00% 67.72% 66.34% 70.42%

50% 81.03% 67.69% 66.28% 70.45%

75% 80.96% 66.84% 65.54% 69.31%

90% 80.93% 67.23% 65.90% 69.85%

100% 80.96% 67.31% 65.98% 70.00%

Table 5 presents the results of our experiments, focusing on two fine-tuning
strategies: Low-Rank Adaptation (LoRA) and LoRA with Embedding Fine-
tuning (LEF). The ratio column in the table represents the percentage of word
vectors in the embedding matrix that are randomly selected for training. The
results demonstrate that the LEF strategy consistently outperforms the LoRA
strategy across all evaluation metrics, regardless of the ratio of word vectors
selected for training. This indicates that fine-tuning the embedding layer along-
side LoRA is beneficial for improving the model’s performance in emotion clas-
sification tasks.

The best performance is achieved with a ratio of 50%, the LEF strategy
reaches an accuracy of 81.03% and a Macro-F1-score of 67.69%, surpassing the
results obtained with higher ratios. This suggests that fine-tuning a subset of
word vectors can be more effective than updating the entire embedding matrix.
As the ratio of word vectors selected for training increases, we observe a slight
decline in performance. This trend is particularly noticeable when the ratio
exceeds 75%. One possible explanation for this phenomenon is that updating
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a larger portion of the embedding matrix may introduce noise and overfitting,
especially when the dataset is relatively small, like the Epidemic dataset used
in this study. It is worth noting that even when the entire embedding matrix is
fine-tuned (ratio = 100%), the LEF strategy still outperforms the LoRA strat-
egy. This highlights the importance of updating the embedding layer during
fine-tuning, as it allows the model to better adapt to the specific characteristics
of the emotion classification task.

5 Conclusion

This paper introduces a novel approach for emotion classification that addresses
the challenges posed by the increasing prevalence of mixed-language content on
Chinese social media platforms. The proposed Bilingual Feature Fusion Net-
work (BFFN) harnesses the multilingual capabilities of pre-trained language
models to enhance the semantic feature extraction of Chinese text, while the
Bilingual Cross Attention Mechanism (BCAM) effectively captures cross-lingual
emotional information. Additionally, a lightweight fine-tuning method combining
Low-Rank Adaptation (LoRA) and Embedding Fine-tuning (LEF) is employed
to reduce the complexity of fine-tuning model weights for downstream tasks.
Extensive experiments demonstrate the superiority of the proposed method, out-
performing state-of-the-art models like ERNIE by 1.43% in accuracy. This work
advances emotion classification in mixed-language contexts, providing a practical
solution for applications.

6 Future Works

The current work primarily considers the bilingual situation in Chinese and
English. As the world’s cultures continue to blend, similar problems will exist
in other multimedia and multimodal data, including other languages. Therefore,
future work based on this paper will consider the following two points:

1. Evaluate the effectiveness of BFFN in mixed language environments outside
of the Weibo dataset.

2. Investigate the effectiveness of the proposed BFFN approaches on other lan-
guages and mixed-language contexts beyond Chinese and English to further
validate their generalizability and robustness.

3. Examine the performance of BFFN in real-time processing scenarios, espe-
cially when the data scale is large or biased towards specific domains.

4. Explore the integration of the proposed methods with multimodal emotion
classification techniques, incorporating data from various channels such as
audio, visual, and physiological signals, to achieve a more comprehensive emo-
tion assessment in real-world scenarios where language mixing is increasingly
common.
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Abstract. The extraction and analysis of insights from medical data,
primarily stored in free-text formats by healthcare workers, presents sig-
nificant challenges due to its unstructured nature. Medical coding, a
crucial process in healthcare, remains minimally automated due to the
complexity of medical ontologies and restricted access to medical texts
for training Natural Language Processing models. In this paper, we pro-
posed a method, “SNOBERT,” of linking text spans in clinical notes to
specific concepts in the SNOMED CT using BERT-based models. The
method consists of two stages: candidate selection and candidate match-
ing. The models were trained on one of the largest publicly available
datasets of labelled clinical notes. SNOBERT outperforms other classi-
cal methods based on deep learning, as confirmed by the results of a
challenge in which it was applied.

Keywords: NLP · SNOMED · BERT · Entity Linking · NER

1 Introduction

Most medical data is stored in free-text documents, usually filled in by health-
care workers. Analyzing this unstructured data can be challenging, as it can
be difficult to extract meaningful insights. Medical coding remains an under-
automated process despite being widely applicable in healthcare, medical insur-
ance, and medical research, mainly due to the vast amount of codes in medical
ontologies and the minimal access to medical texts for training natural lan-
guage processing systems [8]. In recent years, the problem of Named Entity
Recognition (NER) within medical texts has received increasing attention from
the research community [17]. By applying standardized terminology, healthcare
organizations can convert this free-text data into a structured format that com-
puters can readily analyze, stimulating the development of new medicines, treat-
ment pathways, and better patient outcomes. One of the most comprehensive
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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and multilingual clinical healthcare terminologies in the world is Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT) [3], a systematically
organized computer-processable collection of medical terms that provides codes,
terms, synonyms, and definitions used in clinical documentation and reporting.

Annotating medical data according to SNOMED CT terminology is a time-
consuming and labor-intensive process that often requires the annotator to have
prior medical training. Automating such a process using Natural Language Pro-
cessing (NLP) methods is called an Entity Linking (EL) problem. EL is the task
of linking entities within a text to a suitable concept in a reference Knowledge
Graph [18]. This work presents a “SNOBERT” method for linking text spans
in clinical notes with specific topics in the SNOMED CT clinical terminology
that distinguishes itself with a novel two-stage approach leveraging advanced
NLP models and a refined preprocessing strategy. In the first stage, we applied
the candidate selection with a BERT-based model, whose embeddings are then
matched with extracted embeddings from the entire dataset. The method was
tested in the “SNOMED CT Entity Linking Challenge” [7].

2 Related Works

With the recent advances of deep learning (DL) technologies, NLP applications
have received an unprecedented boost in performance [13]. However, DL has
rarely been used to solve the entity linking problem in SNOMED CT terminol-
ogy since the massive size of the corpus needed to train on such a large set of
classes [5]. Nevertheless, few papers have been published in the field. Hristov
et al. [8] proposed a method that integrates transformer-based models, such as
BERT, pre-trained on biomedical data, with support vector classification using
the transformer embeddings for fine-tuning and predicting SNOMED CT codes
for medical texts. This hybrid approach leverages the strengths of both deep
learning and classical machine learning techniques to achieve high accuracy in
medical text coding, particularly in morphology and topography coding.

The KGE4SCT method [4] is a technique that utilizes Knowledge Graph
Embeddings (KGEs) to automatically post-coordinate SNOMED CT clinical
terms. It does this by using a vector space to capture the ontology’s graph-
like structure. The method uses vector similarity and analogies to derive post-
coordinated expressions for clinical terms that are not explicitly present in
SNOMED CT. This facilitates the encoding of clinical information that has
been extracted from text. The effectiveness of this method has been validated
on a subset of SNOMED CT and a set of manually post-coordinated concepts.

3 Data

In this work, we used the MIMIC-IV-Note dataset, which contains 331,794 de-
identified hospital discharge summaries from 145,915 patients provided by the
Beth Israel Deaconess Medical Center (BIDMC) and Massachusetts Institute of
Technology (MIT) [10]. The challenge provided annotated data, comprising up to
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300 annotated discharge summaries from the original MIMIC-IV-Note dataset.
The full dataset consists of a public training subset (204 notes) and a private test
subset (around 70 notes) comprising approximately 75,000 annotations across
discharge summaries.

Each entry in the discharge dataset includes a note ID and the anonymized
discharge text. Annotations indicate the concept ID, start and end points, and
the corresponding note ID. Each note ID consists of a subject ID, note sequence
position number, and note type (in this work, we use only discharges). Anno-
tations consist of note IDs, starting and end points of concepts according to
SNOMED CT clinical terminology, and their corresponding IDs. Fig. 1 shows
an example of an annotated part of a synthetic discharge note according to the
SNOMED CT terminology.

Fig. 1. Example of synthetic discharge note annotated according to SMOMED CT
terminology, e.g. “blockage” corresponds to “235918000” concept ID.

Medical notes frequently use abbreviations that can be context-dependent
and may assume prior knowledge. In addition, the knowledge bases used in
medical notes can contain hundreds of thousands of concepts, with many of
these concepts occurring infrequently. As a result, there can be a “long tail”
effect in the distribution of concepts, Fig. 2. Thus, 2162 concepts out of 5336
appear only once in the annotated data. This effect causes zero-shot learning
(ZSL), a problem in DL in which, at test time, a learner observes samples from
classes that were not observed during training and needs to predict the class to
which they belong.

4 Method

This section presents the proposed method for the clinical notes EL. Figure 3
illustrates the scheme of the method that consists of two stages: Candidate
Selection and Candidate Matching. In the first stage, we solved the NER clas-
sification problem, and in the second stage, for each classified span from the



SNOBERT: A Benchmark for Clinical Notes Entity Linking 157

Fig. 2. Distribution of the concepts in the annotated dataset: “long tail” distribution
effect.

first stage, we linked the corresponding concept ID in SNOMED terminology. In
further sections, we describe each of the stages in detail (Fig. 4).

4.1 Preprocessing

We utilized the NER pipeline [20] to address certain annotation inaccuracies,
such as those caused by shifts due to tags. Approximately 10 notes out of 204
underwent corrections, involving adjustments to around 150 annotation IDs.
These corrections specifically targeted errors resulting from shifted annotations.
Furthermore, most annotated notes are missing some labels in the paragraphs
with the following headers: ‘medications on admission:,’ ‘ on admission:,’ ‘dis-
charge medications:.’ We excluded these parts from the training process. All
HTML markup elements, such as the line break element (‘br’) or the new line
(‘n’), have also been removed from the notes.

While a robust baseline for EL, the dictionary method falls short when it
comes to ZSL, highlighting the need for alternative solutions [2]. We generated a
static dictionary of the most common concepts from training data and matched
them with test data in the post-processing step using a string-matching search.
Levenshtein ratio or Stolois distance could be utilized as a matching metric.
However, we applied “one-to-one” matching, linking only complete coincidences.

4.2 First Stage: Candidate Selection

NER is the task of identifying rigid designators’ mentions from text belonging to
predefined semantic types such as person, location, organization, etc. [14]. NER
involves processing raw text through stages, including Sentence Segmentation,
where text is divided into sentences, and Word Tokenization, which breaks text
into individual words. Subsequent stages include Part of Speech Tagging, assign-
ing grammatical tags based on word roles and context, and Entity Detection,
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Fig. 3. SNOBERT scheme. The method consists of two stages. In the Candidate Selec-
tion stage (I), the BERT model is utilized to classify the text’s tokens into seven classes.
In the Candidate Matching stage (II), the Mention Encoder matches the extracted
embeddings from the training and testing datasets within these classes. Reranker is
used to rerank the top matches and to get the final similarity score.

Fig. 4. Training pipeline of the proposed approach. The method uses a two-stage solu-
tion: Candidate Selection and Candidate Matching. All the models were trained on the
MIMIC-IV dataset. The model from the first stage was trained on the annotated train-
ing subset. An optional pretrain step was done on the full unlabelled dataset. Models
were evaluated on the test annotated subset.
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which identifies and categorizes key elements in the text, highlighting the core
function of NER in extracting meaningful information from unstructured data.

We proposed to separate the concepts according to the first-level hierarchy
(the first entry in the path to the concept) according to SNOMED terminology.
Thus, we can emphasize the “Finding,” “Procedure,” “Body structure,” and
“None” classes. During Tokenization, the words got flags in “B-I-O” tagging
format: “B” (Beginning) means the first token of the first word within an anno-
tation; “I” (Inside) - is the first token of a subsequent word within an annotation;
“O” (Outside) - is as a stand-alone token or single word token. Consequently,
we have seven classes: “I-Finding,” “B-Finding,” “I-Procedure,” “B-Procedure,”
“I-Body,” “B-Body,” and ”O”.

4.3 Second Stage: Candidate Matching

To link classified terms from the first stage, we matched their embeddings with
embeddings of terms from SNOMED terminology by cosine similarity. For this
purpose, the whole database extracted concepts from the “Body structure,”
“Findings,” and “Procedure” paths, which is about 200k unique IDs with the
Mention Encoder. In this work, we applied the cambridgeltl/SapBERT-from-
PubMedBERT-fulltext-mean-token model trained with UMLS 2020AA [15].

4.4 Postprocessing

A reranker is used to improve the performance of the model’s initial predictions.
The model generates a list of possible predictions, which might not be ranked
optimally in order of correctness. A re-ranker evaluates these predictions and
adjusts their ranking based on more refined or specific criteria. Using only the
top one or top five predictions may cause the correctly predicted vector to be
missed. In our method, as a re-ranker, we applied the MedCPT model [9] trained
on 18M semantic query-article pairs from PubMed.

4.5 Metrics

We evaluated the proposed method on both stages. First stage was evaluated
with Macro-F1 score across all labels:

Macro − F1 =
1
N

N∑

i

2 × Precisioni × Recalli
Precisioni + Recalli

, (1)

Precisioni =
TPi

TPi + FPi
, (2)

Recalli =
TPi

TPi + FNi
, (3)

where TP = True Positive, TN = True Negative, FP = False Positive,
FN = False Negative, and N is a number of classes.
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The second stage was evaluated with cosine similarity:

cos(θ) =
∑n

i AiBi√∑n
i A2

i

√∑n
i B2

i

, (4)

where A and B are comparing vectors.
The final results were evaluated using a class macro-averaged character inter-

section over union (mIoU). IoU is a popular metric for measuring localization
accuracy and computing localization errors. It calculates the amount of overlap
between a prediction and a ground truth:

IoUclass =
P char
class ∩ Gchar

class

P char
class ∪ Gchar

class

, (5)

macro IoU =
∑

classes∈P∪G IoUclass

Nclasses∈P∪G
, (6)

where P char
class is the set of characters in all predicted spans for a given class

category, Gchar
class is the set of characters in all ground truth spans for a given

class category, and classes ∈ P ∪ G are the set of categories present in either
the ground truth or the predicted spans.

4.6 Training

For the training, we employed the four-fold cross-validation. Each fold consisted
of 51 discharge notes. For the first stage, we used a domain-specific pretrained
language model for Biomedical Natural Language Processing [19]. We utilized
the base version, microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-
fulltext, which was pretrained on abstracts from PubMed and full-text articles
from PubMedCentral and is available in the HuggingFace repository [6]. We
ran four experiments for each setup so that three folds were used each time
for training and one for validation. We trained each split on 100 epochs using
EarlyStoppingCriteria. Therefore, 75 epochs on average were needed. We used
ADAM optimizer with 3e−5, batch size of 8, and class weighting. Training took
30 min on 4 GPUs (NVIDIA A100-SXM4-40GB). A more detailed description
of the training configuration is shown in our training repository [11].

We found a slight improvement of 0.0005 in IoU when applying the Masked
Language Model (MLM) pretraining technique. To accomplish this, we used
the larger microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract weights
as an initial model instead. This optional pretraining step took 24 h on 4 GPUs.

5 Results

Table 1 shows the averaged cross-validation evaluation results for the first (I)
stage and final evaluation. MLM pretraining slightly improves the F1 score in
the first stage, and therefore, mIoU in the second with the best score of 0.4302
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Table 1. Evaluation metrics of the proposed method

Model (I) GPUs F1 (I) mIoU Epoch

BiomedBERT large 1 0.7429 0.4231 75

BiomedBERT base 1 0.7487 0.4199 76

BiomedBERT large 4 0.7514 0.4302 74

BiomedBERT base 4 0.7499 0.4257 72

training on 4 GPUs. MultiGPU outstands single due to the batch size and its
synchronization in the Bert model.

Table 2 shows the evaluation results of the second stage before reranking for
each class. The results for the top five best candidates are significantly higher
than those of the top one, which shows the need to use a reranker in the post-
process, as the best candidate after the second stage is not always at the top of
the similarity score.

Table 2. Evaluation metrics of the second stage.

Category Similarity@1 Similarity@5

Body structure 0.715 0.811

Findings 0.614 0.703

Procedure 0.478 0.694

Table 3 shows the final test results of the three best methods and the baseline
of the competition. The dictionary-based method achieved the highest score.
However, this is a time-consuming method that requires manual effort.

Table 3. Results on the test dataset.

Author Method mIoU

Bilu et al. Dictionary-based ∗ 0.4202

Ours SNOBERT 0.4194

Popescu et al. Faiss + Mistral 0.3777

Baseline deberta-v3-large 0.1794
* Time-consuming semi-manual method

6 Discussion

Even though the MIMIC-IV-Note dataset we used for training the models has
some limitations, it is extensive, well-organized, and properly annotated. Our
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method requires a large dataset, which can be challenging and expensive to
prepare. Medical notes often contain abbreviations and assumed knowledge, and
the knowledge base itself can include hundreds of thousands of medical concepts.

Technology must be able to be used in countries where English isn’t the pri-
mary language. The MIMIC-IV-Note dataset contains 300 discharge notes that
were annotated in English. It’s essential to understand that models trained only
on this English-labeled data are limited to working with English text. However,
parts of our solution, like the pre-trained SapBERT model, are multilingual, as
they were trained on texts from different language domains.

7 Conclusion

We proposed a “SNOBERT” method of EL of text spans in clinical notes with
specific topics in the SNOMED CT clinical terminology, tested in practice in
the “SNOMED CT Entity Linking Challenge.” Our method uses two stages;
however, an end-to-end approach could improve the linking score [1] but would
need more training data from the other side. The limited annotation problem
could be solved using synthetic data generated with Large Language Models [12].
SapBERT from the second stage can be changed by the BioLORD model, trained
on a cumulative dataset of biomedical concepts’ names and descriptions [16].
With BioLORD, we achieved results similar to SapBERT’s. However, given that
the data used to train this model originates from UMLS, that makes different
restrictions.

The proposed method showed confident results, and so did a fair comparison
with alternative methods during the “SNOMED CT Entity Linking Challenge”
[7], losing only to the dictionary-based method by less than a percent. Since
our method used a dictionary in the last step, the two methods can be easily
combined, potentially yielding a significant improvement in the score.
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Abstract. Automated Short Answer Grading (ASAG) comes under
automatic answer script evaluation where the answer length is limited
from one phrase to one paragraph. The main task in ASAG is gener-
ating a good sentence embedding for both the student and the refer-
ence answers. The existing works on the embedding creation perform
better when using different deep-learning techniques and language mod-
els. However, the deep-learning techniques’ performance mainly depends
on the training set size and quality. Most of the publicly available
datasets typically have a limited number of reference and student answer
pairs. To automate the dataset expansion, text augmentation tech-
niques can be used. Conventional methods like back-translation, syn-
onym replacement, and random deletion may replace some important
technical words with other non-relevant terms, resulting in a loss of
contextual meaning. We propose a new augmentation strategy for the
ASAG datasets using LLM (Large Language Model) prompting. The
effect of the proposed strategy is analysed on sentence transformer
fine-tuning. We experimented with four different sizes of augmented
training sets to determine the impact of the size of augmented train-
ing data on fine-tuning the sentence transformer model. Results indi-
cate that sentence transformer fine-tuned using a 50% prompt-driven
augmented dataset generates better embeddings. After having good
embeddings, the traditional classifiers can be used to classify the student
answers to different scores. We introduce “Prompt Adaptive Oversam-
pling (PAO)” to address the class imbalance issue during grade clas-
sification. The effectiveness of the proposed strategy is analysed on
two different public datasets: SPRAG, and Mohler-ASAG. The pro-
posed method performs better while training highly imbalanced datasets.
The source code of this work is available here.
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1 Introduction

Automatic answer script evaluation is an area of research that seeks to develop
algorithms and methods for automatically evaluating student answers in the
education system. As the use of online education platforms continues to grow, the
need for efficient and accurate methods of assessing student answers has become
increasingly important. Traditionally, the evaluation of student answers has been
done manually, which can be time-consuming and lead to grading inconsistencies.
Automatic answer script evaluation aims to address these issues by developing
systems that can evaluate student answers, and provide feedback and grades
to students without human intervention. This work focuses on Automatic Short
Answer Grading (ASAG), a kind of answer script grading where the answer script
length is limited from one phrase to one paragraph. ASAG can be considered as
both a regression and a classification problem. In the regression approach, ASAG
predicts a continuous score for each short answer. While in the classification
approach, it categorizes each short answer into predefined grade categories. Both
approaches have their advantages and disadvantages. The regression approach
provides more nuanced grading by assigning a specific numerical score, but it
requires a continuous scale for grading and may be sensitive to the consistency of
human graders. On the other hand, the classification approach simplifies grading
by categorizing answers into discrete grade categories, but it may lose some
granularity in grading and requires careful definition of grade boundaries. To
apply regression, the dataset should contain continuous scores. Most publicly
available datasets do not contain continuous scores as grades. But, if the score
in the dataset is continuous, it can be converted to categorical by applying some
boundary conditions. Hence, in this study, we consider ASAG as a classification
problem.

Most previous works in ASAG are considered a pairwise comparison between
the student and reference answers [8]. A vector representation that encapsulates
the context and meaning of the student and reference answer is necessary for
comparing them accurately. There are many types of vector representations for
texts. Word2Vec [16] stands out as a leading choice because it consistently rep-
resents words regardless of their contextual nuances. Since it is a static represen-
tation, it is giving context-free vector representations. So, instead of this static
representation, if the vectors are created by considering the surrounding words
in a sentence, it would be more related to the context. Because of this realiza-
tion, bi-directional LSTM [11] was introduced. The drawback of this network
is its computation complexity. It predicts the tokens based on past and future
but does not encounter them simultaneously. Then, BERT [6] was introduced to
address this issue. It will take both the previous and next tokens into account at
the same time. Any network can be used to fine-tune these vectors after having a
good vector representation of both the student answer and the reference answer.
A Siamese network [9] is a type of neural network architecture commonly used for
tasks involving similarity or dissimilarity measurement between pairs of inputs.
The architecture of a Siamese network can be customized based on the character-
istics of the task. The appropriate layers, embeddings, or attention mechanisms
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can be chosen to suit the specific requirements of our data. In the context of short
answer grading, the Siamese network can be used to assess the similarity between
a student’s answer and a reference answer. Some works are already done using
the Siamese network [4,5,7,13,19,20]. A deep hybrid Siamese neural network is
introduced in [4]. This network consists of a combination of Siamese Convolu-
tional Neural Network(CNN), Siamese Bi LSTM layer, interaction enhancement
layer, and dot product attention mechanism. The final layer of this network is
the classification layer. However, the computation complexity of this method is
greater due to the very deep network architecture. In [7], a pre-trained trans-
former model, T5, in conjunction with a Siamese BI-LSTM architecture is used.
A framework called GradeAid is introduced in [5], which combines lexical and
semantic features. Lexical features are computed with the TF-IDF method and
semantic features are computed with the BERT cross encoder. It uses a regres-
sion method for scoring. The limitation of this work is that the regressor’s output
values can be under zero and over the maximum score. So, these scores need to be
capped manually. In [13] a Siamese LSTM network for automatic short-answer
scoring is introduced. They use an earth movers distance pooling mechanism to
combine the Siamese network output and subsequently add a regression layer
for score calculation. Another Siamese BiLSTM for the ASAG purpose is intro-
duced in [19]. Here, the Glove is used for word embedding and after the Siamese
BiLSTM layer, a dense layer is added to combine these embeddings and then
the probability distribution of the score is predicted. The sentence transformer
[21] is a kind of Siamese network introduced to compute the vector representa-
tion for a sentence rather than a word. Here, the base model is BERT. So, the
sentence transformer could achieve state-of-the-art performance even though it
contains a single pair of BERT layers compared to other Siamese networks. So,
in this work, the sentence transformer is used to fine-tune the embeddings of
the answers. However, the accuracy of every deep-learning technique is greatly
influenced by the size and quality of the dataset. The publicly available dataset
only consists of thousands of answer pairs. To automate the dataset scaling,
text augmentation techniques can be used. A study about the effectiveness of
transfer learning and dataset expansion using various augmentation techniques
is conducted in [2]. They experimented with augmentation techniques like back-
translation, random deletion and synonym replacements. These augmentation
techniques do not ensure the preservation of the exact contextual meaning of
the sentence. Sometimes these augmentation techniques may lead to the replace-
ment of some important technical words with other non-relevant terms further
leading to the loss of contextual meaning. So, one of the objectives of this work
is to propose a new dataset augmentation technique by prompting a Large Lan-
guage Model(LLM) [14]. This technique will preserve the technical terms after
the augmentation.

After embedding the student and reference answers, the classifiers are trained
to build a score prediction model. The class imbalance problem is one of the
major challenges in classification. The class imbalance problem is the situation
where the classifiers are trained on the datasets having the number of samples
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in some classes significantly higher than the other classes. In such cases, the
model may achieve high accuracy, but perform poorly in the case of minor-
ity classes. Different types of oversampling techniques can be used to address
these issues. Randomly selecting instances from minority classes to duplicate the
samples is the simplest method of oversampling technique. Synthetic Minority
Over-sampling Technique (SMOTE) [3] is another method that generates syn-
thetic samples of the minority class by interpolating between existing minority
class instances. Adaptive Synthetic Sampling Approach for Imbalanced Learn-
ing (ADASYN) [10] is an extension of SMOTE that adaptively generates new
instances based on the difficulty of learning the minority class samples. The
limitation of these oversampling techniques is that if the minority classes con-
sist of outliers, they will be replicated in the oversampled dataset. To over-
come this issue, we propose Prompt Adaptive Oversampling (PAO), which com-
bines prompt-driven augmented samples with existing synthetic oversampling
techniques.

The main contributions of this work are:

– Proposing a new augmentation strategy that preserves the contextual mean-
ing for automatic short answer grading datasets using the prompting tech-
nique.

– Fine-tuning sentence transformer with the original and augmented training
sets and comparing the performance.

– Compare the performance of the proposed augmentation strategy with other
existing augmentation strategies on sentence transformers with different
training set sizes. Hence find out the best model for answer-pair embedding.

– Apply the proposed oversampling strategy on different datasets to solve class-
imbalance issues and compare the effect of this oversampling with other
strategies on different classifiers.

The rest of the paper is organized in the following way. Section 2 provides a
detailed description of the proposed methodology. Section 3 provides the exper-
imentation details and a comparative study. Section 4 concludes the paper.

2 Proposed Methodology

The architecture of the proposed methodology is shown in Fig. 1. It comprises
of three phases. Phase 1 augment the original dataset using the prompt-driven
technique. Phase 2 is the sentence transformer fine-tuning. In phase 3, the train-
ing set is balanced using PAO and the classifier is trained using a balanced
dataset. A detailed description of this architecture’s component is provided in
the following sub-sections.

2.1 Dataset Preprocessing

Initially, the dataset is converted to a CSV format to make it convenient for
further processing. Here, the first four columns are indicated by the question id,
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Fig. 1. Architecture of Proposed Methodology

the question, the corresponding reference answer, and the student answer respec-
tively. As a fifth column, we have added the student mark as the average score of
two evaluators. During the fine-tuning phase, the range of scores (between 0 and
5) is needed to map to the range of cosine similarity values (0 to 1). It is done
by simply dividing the score by 5. In Phase 1, all the five columns are required.
For Phase 2 and Phase 3, the columns ‘Reference answer’, ‘Student answer’ and
‘Score’ are required. So, at the beginning of each phase, a data frame which
contains the above columns is created. The dataset is initially split into training
and test sets. Here, we choose 20% of the total dataset as the test set and the
remaining as the training set. The dataset split is done before dataset scaling.

2.2 Prompt-Driven Dataset Generation

In Phase 1, a dataset is generated by adding new reference answers to the original
dataset entries. The initial expansion is done by adding the student answers
with the full score as another set of reference answers. The additional reference
answers are then generated by prompting an LLM. Prompting an LLM using a
question from a dataset will give more generalized answers in some situations.
Providing the context and question, LLM produces a better reference answer.
The reference answer or the answers with the full score corresponding to that
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Algorithm 1. Prompt-Driven Dataset Generation
1: Input: Original training set, and the new reference answer set
2: Output: Augmented training set
3: initialize new dataframe named generated dataset

4: train ← training set
5: new ← new reference answer set
6: m ← size(original training set)
7: for i ← 0 to m − 1 do
8: result ← rows from ’new’ where new.id = train.id(Studenti)
9: for j ← 0 to size(result)-1 do

10: new row ← {train.id(i), train.Question(i), result.answer(j),
train.StudentAnswer(i), train.Score(i)}

11: add new row as the last index of current generated dataset

12: end for
13: end for
14: Save updated generated dataset as CSV file

question can be used as the context. Repeat the above procedure for the entire
questions-correct answer pairs in the original dataset. Mistral-7B-Instruct-v0.11

is used here as the LLM model. It is an instruct fine-tuned version of the Mistral-
7B-v0.1 [12] which uses a variety of publicly available conversation datasets. This
model is open source and small (only 7B parameters). However, it outperforms
other best open-source models. To handle the data efficiently during prompting,
a 4-bit quantization technique [15] is used. Algorithm 1 is introduced to generate
a new dataset with LLM-generated reference answers.

The ‘new reference answer set’ in Algorithm 1 is a dataframe containing
three columns - id, question, and answer. Before doing the prompt-driven aug-
mentation, an initial augmentation is done by creating new instances where
the new reference answers are the student answers with full score. For initial
augmentation also the same algorithm is used. During initial data expansion,
the column answer consists of the student answers with full scores. During the
prompt-driven dataset expansion, the column answer contains the new set of
reference answers generated using LLM prompting. The variable m varies in
different datasets, indicating the original training set’s size.

2.3 Fine-Tuning the Sentence Transformer

The sentence transformer can be fine-tuned by setting two objectives - classifi-
cation and regression. Here, we focus on fine-tuning the model with regression
as the primary objective. The sentence transformer is designed as a Siamese
network to get meaningful embedding for the answer pairs. The base layer of the
sentence transformer comprises a pair of pre-trained BERT models. A pair of
pooling layers succeed the BERT. Finally, the output layer connects these identi-
cal pairs of layers. This network aims to maximize the cosine similarity between

1 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1.

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
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similar text inputs and minimize the cosine similarity between dissimilar texts.
The student and the reference answer are fed as input text pairs during fine-
tuning. The corresponding student score converted to the range of 0 to 1 is used
as the actual similarity measure between the student and the reference answer.
At each iteration, the cosine similarity between the student and reference answer
denoted by sa ∈ R

n and ra ∈ R
n respectively are calculated.

cos similarity(sa, ra) =
∑n

i=1 sai ∗ rai
√∑n

i=1 sa2
i

√∑n
i=1 ra2

i

(1)

where n is the dimension of the student and reference answers. The mean square
error (MSE) loss is then calculated and fine-tuned the sentence transformer by
back-propagating this loss.

MSE =

∑N
j=1(actual scorej − cos similarity(saj , raj)2

N
(2)

where N is the number of data points in the training set. The sentence trans-
former used for this work is all-MiniLM-L6-v2 2. This is a simple model that
requires less computational resources but performs well like other large models.
The result is minimally influenced by the hyperparameters used during fine-
tuning. The following hyperparameter setting is used during the fine-tuning to
facilitate experiments.

– Learning rate = 2e−05
– Scheduler = warmupconstant
– Number of epochs = 10
– Warmup steps = 500
– Batch size = 64
– Optimizer: Adam
– Evaluation steps = 500

2.4 Prompt Adapative Oversampling (PAO) and Classifier Training

Oversampling is a technique used to address class imbalance in the dataset while
training a classifier. When certain classes are underrepresented, the classifier
struggles to learn patterns effectively from these classes. One commonly used
oversampling technique is randomly duplicating examples from minority classes
in the training set to balance the class distribution. However, random over-
sampling can lead to overfitting especially when applied to highly imbalanced
datasets. If some classes have extremely few instances compared to others, and if
some outliers are present in those classes, there is a possibility to duplicate such
outliers multiple times, further leading to overfitting. Adding more instances
without duplicating the same instances can solve this problem. The underrepre-
sented class instances from the new Prompt-driven dataset generated in Phase
2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Algorithm 2. Prompt-Adaptive Oversampling (PAO)
1: Input: Original training set, and the prompt-driven augmented instances
2: Output: Balanced training set (X, y)
3: train ← training set
4: aug ← prompt-driven augmented instances
5: m ← length(train)
6: l ← number of labels
7: count t ← count of each label in ‘train’
8: count n ← count of each label in ‘aug’
9: for i ← 0 to l − 1 do

10: b ← [ ]
11: if count t[i] < max(count t) * α then
12: b.append(max(count t) * α - count t[i])
13: else
14: b.append(0)
15: end if
16: end for
17: for i ← 0 to l − 1 do
18: if count n[i] < b[i] then
19: frac=1
20: else
21: frac= b[i]

count n[i]

22: end if
23: train.concatenate(frac fraction of samples from each question in aug)
24: end for
25: sa ← apply fine-tuned SentenceTransformer encoding on train[StudentAnswer]
26: ra ← apply fine-tuned SentenceTransformer encoding on train[ReferenceAnswer]
27: X ← |sa - ra|
28: y ← train[label]
29: (X, y) ← Apply synthetic sampling technique on (X, y)
30: return (X, y)

1 are used here to make the classes partial-balanced. After having the partial-
balanced dataset, the student and reference answer pairs are fed to the fine-tuned
sentence transformer model. Let sa and ra be the embeddings generated by this
model that correspond to the student and reference answers respectively. The
input feature for the classifier training can be found using the following equation:

X = |sa − ra| (3)

The resulting embedding X represents the degree of similarity between sa and ra.
After generating the features X for each pair of answers, synthetic oversampling
techniques such as Random oversampling, SMOTE, or ADASYN can be applied
to balance the classes completely. The target feature for the classifier is the
discrete score for each student. The algorithm for the proposed PAO is given in
Algorithm 2. The parameter α used here determines the percentage of prompt-
driven samples used for oversampling.
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3 Result and Analysis

3.1 Datasets

In this study, we use two publicly available datasets called the Mohler dataset
[18] and the Short Programming Related Answer Grading (SPRAG) dataset [1].
The Mohler dataset is the earliest ASAG dataset. It consists of 80 questions
from 12 assignments (prepared by Mohler et al. from North Texas University).
It consists of 2442 student responses. The SPRAG dataset consists of Python
programming-related student responses and their corresponding scores. It con-
sists of 144 different questions with a total of 4039 student responses. In these
two datasets, two annotators evaluated the student responses independently.
Here, the average score is considered for the experimentation. The score range
is from 0 to 5.

3.2 Evaluation Metrics

The primary contribution of this work lies in the development of prompt-driven
data augmentation. This approach to text augmentation for dataset expansion
proves particularly valuable when the augmented text maintains semantic simi-
larity while introducing lexical diversity relative to the reference text. To assess
the effectiveness of the proposed augmentation strategy, we introduce a compos-
ite metric termed the Diversity-Similarity Trade-off Score (DSTS). The equation
for DSTS is provided below.

DSTS =
1
2
(SS + LD) (4)

Where the Semantic Similarity (SS) is quantified in terms of Cosine similarity
(1) and the Lexical Diversity (LD) can be computed as LD = 1 − LO. Where
the Jaccard similarity [23] is used to find out Lexical Overlap (LO).

The results of the fine-tuned sentence transformer models are evaluated using
the Pearson correlation coefficient, Spearman’s rank correlation, and the root
mean squared error (RMSE). The Pearson correlation coefficient is a measure of
the strength of the association between the two variables, the equation for which
is given by:

r =
∑n

i=1(xi − x̃)(yi − ỹ)
√∑n

i=1(xi − x̃)2(yi − ỹ)2
(5)

Where xi and yi denote the ith values for the distribution of variables X and
Y, and x̃ and ỹ indicate the mean values of X and Y distribution. Here we can
consider X to be the distribution of the actual scores and Y to be the distribu-
tion of the scores predicted by the model. Another metric used for this experi-
ment is Spearman’s rank correlation coefficient between the cosine similarity of
the sentence embeddings and the gold labels. The formula for Spearman’s rank
correlation coefficient is given below:

ρ = 1 − 6
∑

d2

N(N2 − 1)
(6)
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where d is the difference between the ranks of corresponding data points, and N
is the number of data points. RMSE is the standard deviation of the prediction
error. Its formula is given as follows:

RMSE =

√
∑N

i=1(yi − ŷi)2

N
(7)

where, N = Number of data points
yi = Actual similarity value
ŷi = Predicted similarity value
To evaluate the classifier, Accuracy and F1-score are used as metrics. The

following formula can be used to compute the accuracy.

Accuracy =
∑N

i=1 f(yi = ŷi)
N

(8)

where yi is the actual score, ŷi is the predicted score, N is the total number of
instances in the training set, and f(.) is the function that returns ‘1’ if (yi = ŷi)
and return ‘0’ otherwise. The main objective of a good classifier model is to
obtain high precision and recall. F1-score can be used to express these metrics
as a single metric. The following formula can be used to calculate the F1-score.

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

where Precision measures the accuracy of positive predictions. It is calculated
as the ratio of true positives to the sum of true positives and false positives.
Recall measures the proportion of actual positives that are correctly predicted.
It is calculated as the ratio of true positives to the sum of true positives and
false negatives.

3.3 Experimental Setup & Results

This subsection analyses the effectiveness of the prompt-driven augmented
dataset on the sentence transformer finetuning and the effect of prompt-adaptive
oversampling on classification. Both the datasets used for this study are used to
fine-tune the sentence transformer separately. Each fine-tuned sentence trans-
former learns the domain-specific features of the answers. To analyse the effect
of the proposed augmentation strategy on sentence transformer fine-tuning, the
results are compared against other augmented datasets and the original dataset.
In [2], the authors experimented with the effect of the different augmented
datasets on binary grading. Some of those augmentation techniques- back trans-
lation, random deletion and synonym replacement -are used for the comparative
study. An example of original student answer and augmented answers corre-
sponding to the question ‘Differentiate exploratory and explanatory analysis?’
are listed in Table 1.



174 P. P. Afeefa et al.

Table 1. Example of an original student answer and the augmented student answer.

Method Augmented Answer

Original Exploratory analysis is done while searching for insights and
used to find the answer to many questions. Explanatory analy-
sis is performed to provide the accurate, insightful and visually
appealing results to others.

Back-translation Explorer analysis is performed when searching for insights and
used to find many questions. Explanation analysis is to provide
accurate, visible and visually attractive results for others.

Random deletion Exploratory is done while searching for insights and used to
find the answer to many questions. Analysis is performed the
insightful and visually results to others.

Synonym replace-
ment

explorative analysis is make while searching for insights and
used to find the answer to many questions. Explanatory analy-
sis is performed to provide the accurate, insightful and visually
appealing results to others.

Prompt-based Exploratory analysis is the initial step in data analysis where
the goal is to understand the data and identify patterns, while
explanatory analysis is the final step where the goal is to com-
municate the findings to others in a clear and concise manner.

The back translation technique [22] uses an existing machine translation algo-
rithm with two steps - Forward translation and Backward translation. Here, we
use the Google translation algorithm with the source language as English and the
target language as Chinese. So, during forward translation, English-to-Chinese
translation occurs and during backward translation, this Chinese text is again
translated back to English.

In the random deletion technique [24], randomly deleting n number of words
with a probability p. Since we augment short text answers, we set n as 3. So, if
the actual answer text consists of a total m number of tokens, the augmented
text contains a maximum of m tokens and a minimum of m − 3 tokens.

Synonym replacement [24] is an augmentation technique that replaces some
random words with their synonyms. The synonyms of each word can be col-
lected from some lexical database. Here we use the help of WordNet [17] for this
purpose.

Table 2 analyses the effectiveness of the proposed augmentation strategy on
dataset expansion. The metric DSTS in Eq. 4 is used here for the evaluation.
The higher value of DSTS is obtained in the case of the proposed augmentation
strategy which indicates that the augmented texts using the proposed strategy
are more semantically similar as well as more lexically diverse to the reference
answer.
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Fig. 2. Comparison of performance of the prompt-based augmentation with other aug-
mentation strategies in different training sizes on sentence transformers fine-tuning.

Since we use the automated augmentation techniques, there is a chance to
get good results in low-resource scenarios as well. So every augmented dataset
is split into 4 different sizes (25%, 50%, 75%, and 100%) to analyse the result in
the low resource scenario.
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Table 2. Analysis on the effectiveness of prompt-based text augmentation over other
techniques.

Text augmentation technique DSTS on Mohler-ASAG DSTS on SPRAG

Back-translation 0.785 0.786

Random deletion 0.569 0.542

Synonym replacement 0.627 0.599

Prompt-based 0.887 0.849

The plot of Spearman correlation, Pearson correlation, and RMSE of the dif-
ferent augmentation techniques are shown in Fig. 2. The Fig. 2(a), 2(b), and 2(c)
are the results obtained from fine-tuned all-MiniLM-L6-v2 on SPRAG dataset
and the Fig. 2(d), 2(e), and 2(f) are the results obtained from fine-tuned all-
MiniLM-L6-v2 on Mohler-ASAG dataset. The best result is achieved while using
50% of the prompt-based augmented training set in both cases. Table 3 com-
pares the best results of the model trained with the augmented datasets and
the performance of the model trained with the original dataset. The best fine-
tuned sentence transformer model obtained here is used to embed the student
and reference answers during grade classification.

Table 3. Comparison between the effect of different augmentation techniques

all-MiniLM-L6-v2 on SPRAG dataset

Dataset RMSE ρ r

Original dataset 1.00 0.799 0.793

Back-translation based augmented dataset 1.02 0.826 0.798

Random deletion based augmented dataset 1.02 0.824 0.795

Synonym replacement based augmented
dataset

1.00 0.840 0.812

Prompt based augmented dataset 0.96 0.846 0.818

all-MiniLM-L6-v2 on Mohler-ASAG dataset

Original dataset 0.837 0.659 0.702

Back-translation based augmented dataset 0.765 0.837 0.796

Random deletion based augmented dataset 0.776 0.823 0.785

Synonym replacement based augmented
dataset

0.784 0.835 0.779

Prompt based augmented dataset 0.752 0.843 0.804

Both the datasets used for this work consist of continuous scores. Hence,
these scores must be converted to discrete score labels before classification. The
number of labels we choose for classification can significantly affect the classi-
fication model’s performance and interpretability. The higher number of score
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Table 4. Comparison of performance of classifier with different oversampling tech-
niques on SPRAG dataset

6-way classification

Oversampling technique SVM KNN XGBoost

Accuracy F1-score Accuracy F1-score Accuracy F1-score

No oversampling 0.582 0.535 0.556 0.501 0.562 0.509

RO 0.582 0.529 0.566 0.506 0.563 0.509

SMOTE 0.582 0.535 0.566 0.512 0.563 0.515

ADASYN 0.583 0.535 0.563 0.513 0.562 0.509

PAO with RO 0.580 0.528 0.567 0.506 0.564 0.522

PAO with SMOTE 0.585 0.542 0.579 0.529 0.576 0.539

PAO with ADASYN 0.583 0.540 0.567 0.513 0.566 0.520

3-way classification

No oversampling 0.759 0.732 0.720 0.711 0.710 0.704

RO 0.756 0.729 0.714 0.654 0.743 0.713

SMOTE 0.754 0.727 0.736 0.699 0.735 0.705

ADASYN 0.755 0.729 0.730 0.703 0.741 0.715

PAO with RO 0.755 0.725 0.713 0.649 0.739 0.709

PAO with SMOTE 0.755 0.729 0.734 0.699 0.745 0.713

PAO with ADASYN 0.757 0.731 0.728 0.696 0.736 0.705

2-way classification

No oversampling 0.848 0.822 0.828 0.819 0.844 0.817

RO 0.849 0.824 0.819 0.806 0.845 0.820

SMOTE 0.853 0.829 0.845 0.823 0.845 0.823

ADASYN 0.854 0.832 0.846 0.827 0.849 0.827

PAO with RO 0.849 0.824 0.817 0.769 0.845 0.820

PAO with SMOTE 0.854 0.832 0.852 0.829 0.845 0.823

PAO with ADASYN 0.854 0.832 0.847 0.827 0.849 0.827

labels provides the highest granularity in distinguishing between different perfor-
mance levels. However, it requires more data to model each class effectively. Here,
the experiments are done as 6-way, 3-way and 2-way grade classification using
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and XGBoost
(Extreme Gradient Boosting) classifiers. Here, both SVM and KNN are the tra-
ditional machine-learning models and XGBoost is one of the ensemble learning
models. KNN is a simple model that performs well even when the dataset size
is very small. SVM can effectively learn the data with high dimensions and it is
more robust to outliers. XGBoost works by combining multiple decision trees.
The deep-learning models are not suitable in the case of low-resource scenarios.
So, the above three models are used for further analysis. The following seven
combinations of the training data are used here for analysis in the case of both
datasets.
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Table 5. Comparison of performance of classifier with different oversampling tech-
niques on ASAG dataset

6-way classification

Oversampling technique SVM KNN XGBoost

Accuracy F1-score Accuracy F1-score Accuracy F1-score

No oversampling 0.717 0.479 0.729 0.494 0.722 0.493

RO 0.722 0.498 0.733 0.531 0.724 0.488

SMOTE 0.722 0.500 0.740 0.552 0.720 0.532

ADASYN 0.717 0.497 0.729 0.537 0.722 0.533

PAO with RO 0.717 0.496 0.736 0.535 0.726 0.538

PAO with SMOTE 0.724 0.502 0.740 0.545 0.724 0.553

PAO with ADASYN − − − − − −
3-way classification

No oversampling 0.823 0.620 0.828 0.622 0.830 0.657

RO 0.825 0.654 0.828 0.679 0.823 0.627

SMOTE 0.825 0.654 0.830 0.700 0.832 0.697

ADASYN 0.825 0.654 0.821 0.677 0.821 0.666

PAO with RO 0.830 0.660 0.830 0.651 0.825 0.683

PAO with SMOTE 0.830 0.660 0.830 0.700 0.832 0.697

PAO with ADASYN − − − − − −
2-way classification

No oversampling 0.936 0.714 0.926 0.647 0.928 0.665

RO 0.933 0.698 0.933 0.728 0.931 0.693

SMOTE 0.938 0.729 0.931 0.723 0.943 0.757

ADASYN 0.938 0.729 0.933 0.736 0.931 0.704

PAO with RO 0.936 0.714 0.933 0.728 0.933 0.698

PAO with SMOTE 0.938 0.729 0.936 0.741 0.940 0.743

PAO with ADASYN 0.938 0.729 0.933 0.736 0.938 0.738

– No oversampling: This is the original training set without doing any oversam-
pling.

– RO: The training set where the random oversampling is applied.
– SMOTE: The training set where the SMOTE is applied.
– ADASYN: The training set where the ADASYN oversampling is applied.
– PAO with RO: The training set where PAO with random oversampling is

applied.
– PAO with SMOTE: The training set where PAO with SMOTE is applied.
– PAO with ADASYN: The training set where PAO with ADASYN sampling

is applied.

Table 4 and Table 5 show the results obtained while classifying the SPRAG test
set grades and the ASAG test set grades respectively. Both these dataset’s scores
are in the range of (0,5). Hence while doing 6-way classification, the scores are
capped to 0, 1, 2, 3, 4, and 5. In the case of 3-way classification, the scores less
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than 1.5 are capped as 0, the scores between 1.5 and 2.5 are converted as 1,
and the scores greater than 2.5 are considered as 2. In 2-way classification, the
scores less than 2.5 are capped as 0, and others are capped as 1. All the experi-
ments are done using Google Colab T4 GPU with system RAM of 51 GB, GPU
RAM of 15 GB, and Disk Space of 201.2 GB. Table 4 shows the performance
of the classifiers in SPRAG dataset. The proposed methodology performs bet-
ter in the 2-way and 6-way classification. 3-way classification is performing well
without any oversampling. While analysing the training set distribution of these
three classification data (Fig. 3), the majority of classes in the 3-way classifica-
tion contain the number of instances greater than the average number of class
instances. In the case of 6-way classification PAO with SMOTE is performed well
in all classifiers. However, in the case of 2-way classification, PAO with SMOTE
performed well in SVM and KNN, and PAO with ADASYN performed well in
XGBoost.

Fig. 3. Class distribution of both SPRAG and Mohler-ASAG datasets

Table 5 demonstrates the experimental results of classifiers on the Mohler-
ASAG dataset. In the majority of cases, PAO with SMOTE is performing
well. Although the SMOTE is better performing in XGBoost 2-way classifica-
tion, PAO with SMOTE achieves comparable performance. However, PAO with
ADASYN failed in the case of 6-way and 3-way classification. This is because of
the working principle of ADASYN. ADASYN failure generally occurs when the
minority class samples are highly isolated in the feature space. This algorithm
checks the number of majority class neighbours to find out the amount and the
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direction of synthetic samples that have to be generated. Hence, ADASYN is
not working for every dataset distribution.

Table 6. Best α obtained after tuning

Oversampling technique SPRAG Mohler-ASAG

SVM KNN XGBoost SVM KNN XGBoost

6-way classification

PAO with RO 0.6 0.6 0.6 0.7 0.7 0.7

PAO with SMOTE 0.6 0.7 0.6 0.1 0.8 0.7

PAO with ADASYN 0.6 0.6 0.6 − − −
3-way classification

PAO with RO 0.5 0.5 0.5 0.6 0.6 0.6

PAO with SMOTE 0.5 0.5 0.5 0.6 0.1 0.6

PAO with ADASYN 0.5 0.5 0.5 − − −
2-way classification

PAO with RO 0.5 0.5 0.5 0.1 0.1 0.1

PAO with SMOTE 0.8 0.5 0.5 0.1 0.1 0.1

PAO with ADASYN 0.5 0.5 0.5 0.1 0.1 0.1

While executing PAO, the hyper-parameter α used in Algorithm 2 is tuned
manually to get better results in all classifiers. The value of α ranges from 0 to
1. The experiments were conducted by varying the value of α in 0.1 intervals.
The best values of α obtained in all cases are listed in Table 6. The experimental
results of PAO in Table 4 and Table 5 are obtained by setting these tuned α
values.

4 Conclusion and Discussion

This work proposes a new prompt-driven dataset augmentation technique and
prompt-adaptive oversampling technique to improve the performance of short
answer grade classification. The performance of the proposed prompt-driven aug-
mentation is analysed with other traditional text augmentation methods, with
the DSTS metric showing superior results, indicating higher semantic similarity
and greater lexical diversity compared to other approaches.

By experimenting with various sizes of augmented training sets, we found
that the sentence transformer fine-tuned using a 50% prompt-driven augmented
dataset generates better embeddings. But it need not be always 50%. This will
change according to the dataset properties like the number of instances, dataset
distributions, etc.

Additionally, we introduce PAO to improve grade classification accuracy. The
performance of the proposed methodology is analysed by training three different
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classifiers- SVM, KNN, and XGBoost. In most of the cases, PAO with SMOTE
is performing well. In a few cases, other synthetic oversampling techniques like
RO, SMOTE, and ADASYN perform better. However, in such cases, PAO with
SMOTE still yields comparable performance with RO, SMOTE, and ADASYN.
The oversampling techniques are not that much of useful in the cases where the
size of the majority classes exceeds the average size of one class. The parameter
α used in the PAO algorithm is tuned manually to achieve optimal results. In
the future, an automated method for parameter tuning can be proposed.

The experimental analysis was conducted on two publicly available datasets,
Mohler ASAG and SPRAG, both within the computer science domain. To eval-
uate the generalizability of the proposed method, future research could expand
the analysis to include datasets from diverse domains.
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Abstract. Geometry problem solving (GPS) is an important research
direction in artificial intelligence. Previous studies have demonstrated
the effectiveness of neural solvers in GPS. However, they are deficiencies
in accurately representing spatial relationships of geometric primitives
within visually rich geometric diagrams. This paper presents a novel
neural solver termed spatial-aware neural solver (SANS) that can per-
ceive spatial relationships between geometric primitives. SANS includes
two new modules: multimodal dual-branch spatial awareness pre-trained
language module and point-primitive spatial-aware attention module.
The pre-training module employs a dual-branch visual-textual point-
matching strategy to align visual and textual points, and utilizes seman-
tic structure pre-training to model global relationships. Additionally, the
point-primitive spatial awareness attention module enhances the model’s
ability to perceive spatial relationships between geometric primitives
by accounting for the relative positions of points. Experiments show
that SANS achieves 81.5 and 74.1 of accuracy on the Geometry3K and
PGPS9K datasets.

Keywords: Geometry problem solving · Multimodal · Pre-training ·
Neural solver · Attention

1 Introduction

The task of automatic geometry problem solving (GPS) has long been a chal-
lenging endeavor in AI. Recently, it has garnered significant attention from both
the computer vision and natural language processing communities [17,22,29].
This challenge is notable not only due to its academic significance, but also
because of its playing a crucial role in educational contexts [3]. A geometric
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problem encompasses both a textual description and its corresponding geomet-
ric diagram. The textual component outlines the conditions and objectives of
the problem, while the diagram offers structural and semantic insights that the
textual part cannot provide. The effective integration of geometric images and
text is key to enhancing understanding of geometric problems.

Fig. 1. Overview of spatial-aware neural solver.

Due to the differences between geometric images and natural scene images,
simple image feature extraction fails to capture the unique structural informa-
tion of geometric images. Conversely, the methods adopted by Lu et al. [17] and
Zhang et al. [30], which are based on describing images with textual descriptions,
yield superior reasoning results. In detail, textual clauses can be categorized into
structural clauses, semantic clauses, and textual problems. Among them, struc-
tural clauses describe the structural relationships between geometric primitives.
For example, “line A C D” describes a structural relationship that points “A”,
“C” and “D” lie on the same line in order. Semantic clauses describe the seman-
tic relationship between textual and geometric primitives. For example, “m∠
ACB = w” illustrates the semantic relationship between the “∠ ACB” and the
textual “w”. Textual problems describe the solving objectives of geometric prob-
lems. Geometric diagrams provide unique spatial relationships among geometric
primitives that textual clauses cannot provide. For example, the semantic clause
describes “∠ ACB”, which angle is “w”. However, it does not specify whether
“∠ ACB” is obtuse or acute, which needs the geometric primitive spatial rela-
tionship to be determined.
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We propose a neural solver called spatial-aware neural solver (SANS) to solve
the problems mentioned above. The overall architecture of the proposed SANS
model is shown in Fig. 1. It contains two submodules: multimodal dual-branch
spatial awareness pre-trained language module (MDSP) and point-primitive
spatial awareness attention (PP-SAA). They improve the model’s ability to
capture spatial relationships across diverse geometric diagrams. In the pre-
training phase, our model employs a contrastive learning-based dual-branch
visual-textual points matching (DB-VTPM) strategy. This approach achieves
fine-grained matching between geometric images and textual texts and opti-
mizes feature extraction for images and texts. Combining DB-VTPM with the
structural semantic pretraining (SSP) [30], which enables the multimodal pre-
training module to comprehend text clauses and gain a preliminary understand-
ing of spatial relations of geometric primitives. During the model training phase,
we design a PP-SAA by introducing point-primitive spatial-aware attention that
enhances the model’s ability to perceive spatial relationships between geometric
primitives.

The contributions of this work are summarized in four aspects: (1)We propose
a spatial-aware neural solver for GPS, which can represent and fuse geometric
diagrams effectively. (2) We introduce the MDSP module, achieving optimized
feature representations for geometric images and geometric text and facilitating
cross-modal alignment. (3) We propose PP-SAA to enhance the model’s spatial
perception capabilities. (4) Our SANS significantly outperforms existing sym-
bolic solvers and neural solvers on the Geometry3K and PGPS9K datasets.

2 Related Work

2.1 Geometry Problem Solving

GPS is a long-standing and challenging mathematical reasoning task [26]. In
existing research, geometry problem solvers can be classified into symbolic solvers
and neural geometric solvers. For existing symbolic solvers [17,21,22], the main-
stream approach is to parse geometric illustrations and problem texts into for-
mal languages, followed by symbolic reasoning based on manually defined com-
plex geometric axioms. However, this leads to the complex design of symbolic
solvers, making them difficult to apply in practical geometry problem solving.
The first neural geometric solver, proposed by [6], utilizes multiple auxiliary
tasks to address the semantic gap between geometric images and text. In recent
years, the neural solver PGPSNet [30] has adopted structural semantic pretrain-
ing (SSP), data augmentation, and self-restricted decoding to fuse multimodal
information. These methods did not consider the spatial relationships between
geometric primitives in geometric diagrams. In contrast, we propose a neural
solver that can perceive the spatial relationships of geometric primitives, thereby
improving the joint understanding of diagram images and texts.
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2.2 Multimodal Reasoning

Multimodal reasoning refers to the process of reasoning using data from multiple
modalities (e.g., images, text, etc.). In multimodal reasoning, it is essential to
effectively utilize information from different modalities to address a variety of
complex tasks, such as visual question answering [2,13] and visually-rich docu-
ment understanding [11,27,28], among others. One of the critical challenges in
multimodal reasoning is how to effectively understand and integrate information
from different modalities, which involves aspects like learning representations of
cross-modal features, aligning and integrating modalities, and applying domain
knowledge [8]. GPS can be regarded as a specialized multimodal reasoning prob-
lem [30], where the unique characteristics of its dataset make understanding
internal features within each modality and the fusion of cross-modal informa-
tion crucial for GPS.

2.3 Multimodal Pre-training

Compared with single-modality pre-training, multimodal pre-training effectively
addresses issues such as modality completion and cross-modal alignment and can
compensate for the limitations of a single modality. Therefore, multimodal pre-
training helps extract common features across modalities [23]. To achieve cross-
modal alignment, understanding, and fusion, researchers can design appropri-
ate pre-training objectives for multimodal pre-training, such as contrastive loss
[12,14,20], image-text matching [13,25], and others. Although these strategies
show excellent performance on natural scene images, the application to GPS
tasks directly is hindered by the specificity and small scale of GPS datasets. In
existing GPS works, the structural-semantic pre-training strategy proposed in
PGPSNet [30] achieves excellent performance by specifically modeling geometric
text. However, due to it adopting single modality pre-training, it would over-
look the information provided by the visual modality. Therefore, our proposed
multimodal dual-branch spatial awareness pre-trained language model (MDSP)
effectively improves both single modality expression and multimodal fusion in
GPS while endowing the model with the ability to perceive spatial relationships
among geometric primitives.

3 Method

Before introducing the neural solver model, we first define the GPS task. The
GPS task is formalized as providing a geometric problem P = [PD,PT ], where
PD represents geometric diagram images, and PT represents textual clauses.
By learning and applying geometric knowledge through the model, a solution
program is generated, and numerical results for geometric problems are obtained
through program execution on calculators.
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3.1 Overall Framework

To better fuse features from geometric diagrams and textual clauses, we pro-
pose a spatial-aware neural solver (SANS). For data processing, we adopt the
geometric image parser [29] to parse geometric diagrams into textual clauses,
including structural clauses and semantic clauses. After that, image embedding
and text embedding are concatenated as tokens together. Then, these modal
tokens are fed into the Multimodal Dual-Branch Spatial Awareness Pretrain-
ing (MDSP) and processed by the bidirectional GRU encoder to perform fusion
encoding. Subsequently, we take the corresponding part of the text HT = {ht

i}Li=1

from context encoding H. The text encoding HT is fed into the point-primitive
spatial awareness attention (PP-SAA) module to further boost the spatial rela-
tionship of geometric primitive awareness. Finally, H is input into a self-limited
GRU decoder for decoding, and a sequence solution program is generated in an
autoregressive manner [30]. The proposed MDSP and PP-SAA modules will be
detailed in the following sections.

3.2 Image and Text Embedding

Visual Embedding. To accelerate model convergence, we put the geometric
image PD into the CNN encoder to quickly extract coarse-grained global visual
features of the diagram. Next, the feature map is divided into N patches via
linear projection. The image could be further expressed as D = {di}Ni=1, and the
visual feature could be expressed FPD, where N is a number of diagram patches.
To enable the subsequent transformer model to better process the image features,
we incorporate 1D positional embeddings into the image features extracted by
the backbone, compensating for the CNN’s inability to capture positional infor-
mation. The visual encoding can be represented as:

epdi = PatchEmb(di) + PosEmb(i), 1 ≤ i ≤ N (1)

di represents the feature extracted from each image patch through CNN, and
PosEmb(∗) represents the positional embedding of image patches. For subse-
quent pre-training tasks, we use a transformer to encode the epdi to F̃PD =
{f̃pd

i }Ni=1.

Textual Token Embedding. To represent geometric text with fine-grained,
textual token embeddings eptj fuse not only positional encoding but also the
embeddings of class tags and section tags [30]. In detail, textual token embed-
dings are formulated as:

eptj = TokenEmb(ptj) + PosEmb(i) + ClassEmb(ptj)

+ SectEmb(pt
j
), 1 ≤ j ≤ L (2)

where L is the maximum length of the problem text. We feed the textual token
embeddings into a transformer encoder [24] to obtain the textual feature named
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FPT by learning the intrinsic relationships between textual tokens simultane-
ously. Similar to the processing of visual embeddings, FPT is linearly mapped
to F̃PT = {f̃pt

j }Lj=1.

Fig. 2. Pipeline of multimodal dual-branch visual-textual points matching pre-training.
The red dot text and image patches denote the matched points, and the image patch
shows where the points are located. f

′∗
p represents the output from inter-modality,

while f̃∗
p represents the output from intra-modality. [M] denotes the mask marker.

(Color figure online)

3.3 Multimodal Dual-Branch Spatial Awareness Pretraining
Language Module

Geometric problems are often solved by humans through reasoning about spa-
tial relationships using visual and textual information. Previous neural geome-
try solvers [6,18,30] have not fully utilized the spatial relationships of geometric
primitives, resulting in suboptimal performance. We propose a multimodal dual-
branch spatial awareness pre-training language module (MDSP), which is illus-
trated in Fig. 2, with two pre-training strategies: structural semantic pre-training
(SSP) and dual-branch visual-textual point matching (DB-VTPM).

Structural Semantic Pre-training. While textual clauses describe the fine-
grained structural and semantic information, these clauses lack overall structure
and context. To enable the multimodal pre-training module to comprehend text
clauses, we adopt the structural semantic pre-training (SSP) [30]. This strategy
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aims to recover the masked text in a unified text generation manner. The training
loss is denoted as LSSP . Specifically, we maintain the masking of text tokens pti,
with only 30% being masked, following the approach outlined in [7].

Dual-Branch Visual-Textual Point Matching (DB-VTPM). To address
the semantic feature differences between geometric diagrams and texts, we pro-
pose the DB-VTPM strategy. This strategy matches visual and textual points
intra and inter modality. It aims to enhance cross-modal learning by integrat-
ing information from different modalities, allowing the model to gain an initial
insight into the spatial relationships of geometric primitives in the geometric
diagrams described by the text clauses.

Specifically, we obtain the patch containing the visual point by using the
coordinates of the point primitives in the geometric image. Then, we combine
the visual features FPD and textual features FPT . Finally, those feature maps will
be input into a transformer encoder [24] for cross-modal learning to obtain the
fused textual features F ′

PT with integrated visual features and the fused visual
features F ′

PD with integrated textual features. We utilize contrastive learning
loss [9,14,20] to force the textual points and the image patches containing those
points to be more similar in the same semantic space, achieving the matching
between textual points and visual points. The training loss is represented as:

Lintra = − exp(s(f̃pt
p , f̃pd

p )/τ)

ΣN
i=1exp(s(f̃pt

j , f̃pd
i )/τ)

(3)

Linter = − exp(s(f ′pt
p , f ′pd

p )/τ)

ΣN
i=1exp(s(f ′pt

j , f ′pd
i )/τ)

(4)

where fpt
p represents the features of textual points, and fpd

p represents the
features of the image patches containing those points. The function s(∗, ∗) =
WPT (fpt)TWPD(fpd), where WPT and WPD are linear projection layers, and τ
is a temperature coefficient. The total training loss for this task is represented
as LV TPM = Lintra + Linter, where Lintra represents intra-modality and Linter

represents intra-modality.
Overall, our pre-training module adopts a multi-task learning approach, com-

bining SSP with the DB-VTPM strategy. The SSP task effectively models the
global context by comprehending the semantics and context of the text. The
DB-VTPM strategy is used to calculate semantic similarity among modalities,
allowing for better semantic alignment between the image and text modalities
in the same semantic space. Moreover, it provides initial learning of the spa-
tial relationships of geometric primitives. The pre-training loss is defined as
Lall = α × LSSP + β × LV TPM , with α and β serving as hyperparameters.

3.4 Point-Primitive Spatial Awareness Attention

While pre-trained models hold valuable prior knowledge that allows for a prelim-
inary understanding of the spatial relationships between geometric primitives,
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this capability may diminish during downstream training due to the varied train-
ing objectives of GPS. To bolster the model’s perception of these relationships,
we design a point-primitive spatial awareness attention (PP-SAA) mechanism.
This module will be positioned between the bidirectional GRU encoder and the
self-restricted GRU decoder.

To implement PP-SAA, we design a relative distance table to calculate the
attention score between the relative distance and point symbols. By analyzing
the coordinates of the point primitives depicted in the diagram images, we can
calculate their relative distances in 2D space. These distances offer valuable
insight into the positions of the geometric primitives in relation to one another.
For instance, if the relative distance between point symbol “A” and point symbol
“B” on the x-axis is positive, it indicates that point symbol “B” is located to
the right of point symbol “A”. Similarly, the y-axis follows the same principle.
By utilizing this method, SANS can gain a heightened perception of the spa-
tial relationship between the geometric primitives. In particular, we employ the
original attention mechanism to capture the correlation between text i and text
j:

aij =
Q(ht

i)K(ht
j)√

dhead
(5)

where Q(∗) and K(∗) are the query matrix and key matrix, respectively. Con-
sidering the large range of values for the relative positions, we incorporate the
relative positions of point primitives in space as bias terms to prevent adding
too many parameters. Similar approach has been demonstrated to be effective
in text-only Transformer architectures [4,27]. The relative distance bias of the
point text on the x-axis and y-axis is represented by b(x) and b(y). The attention
score is further expressed as

âij = aij + bpi−pj(x) + bpi−pj(y) (6)

where pi and pj denote the point symbols in the text. Finally, the attention
output is represented as:

hi =
∑

j

softmax(
âij∑
k âik

)V (ht
j) (7)

where V (∗) denotes the value matrix. After the PP-SAA module, the model
is made to enhance the understanding of the spatial relationship between the
geometric primitives.

4 Experiments

4.1 Datasets and Implementation Details

Datasets. Due to the scarcity of datasets in the GPS field, we utilize two
widely used datasets: Geomety3K and PGPS9K to evaluate the effectiveness of
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the proposed SANS. These datasets comprise geometric content from American
grades 6–12, covering 30 different types of problems. Geometry3K contains 8,433
training samples and 589 test samples, while PGPS9K has 8,022 training sam-
ples and 1,000 test samples distributed evenly across different problem types.
This paper utilizes chart annotations to structure the textual clauses, textual
semantic clauses, and point coordinates. The solution programs are composed of
multiple steps, each containing an operator and relevant operands. These opera-
tors correspond to geometric theorems, while operands are arranged according to
theorem formulas. Due to the smaller size of GPS datasets compared to natural
language corpora, the pretraining process is conducted on the PGPS9K dataset.

Data Augmentation. To enrich the diversity of geometric problems, we per-
formed data augmentation on text and diagram separately. For the text, we
adopted four augmentation strategies from [30]: token replacement, connec-
tion rotation, representation transposition, and clause shuffle. The diagrams are
flipped randomly, and change the position of the point in the text description
accordingly.

Metrics. Consistent with PGPSNet [30], we adopt three metrics, namely Com-
pletion, Choice, and Top-3, to evaluate the numerical performance of our model.
Specifically, in Completion, the neural solver selects the first executable solution
program as the completion result. In Choice, the process involves selecting the
correct option from four candidates, but one is randomly chosen if the answer
is not among them. Regarding the Top-3 metric, it is considered correct if the
solution lies within the top three high-confidence solutions. We using the Choice
selection as the evaluation metric for the ablation study in Sect. 4.3.

Implementation Details. For geometric diagrams, we scale the image to 256
on the longest side and center it on a blank 256× 256 screen. We utilize ResNet10
[10] as our visual backbone to extract image features, which are then mapped
to 64 image patches using linear mapping. Our pre-training module adopts the
transformer [24] with 6-layers, 8-heads, 256-inputs, and 1024-hidden dimensions.
For the PP-SAA module, we use a 1-layer transformer encoder with the same
number of heads and feature dimensions. In terms of hyperparameters, our con-
figuration remains consistent with PGPSNet [30] to ensure the fairness of the
experiments. In the training stage, we employ the AdamW optimizer [16] with
a weight decay of 1 × 10−2 and a decay rate of 0.5 for step-down scheduling.
The training batch size is set to 128, and the learning rate is initialized to 1e−4,
with an initial learning rate of 1e−3 for the pre-training module.

Comparing with State-of-the-Arts Methods. To evaluate the performance
of SANS, we conduct a comparative analysis with several state-of-the-art GPS
solvers, including symbolic solvers like Inter-GPS [17] and GeoDRL [19], as well
as neural solvers like NGS [6], Geoformer [5], SCA-GPS [18], and PGPSNet



192 Z.-H. Lin et al.

Table 1. Performance comparison among excellent GPS solvers. The first rows indicate
the performance solved by humans. The bolded portion indicates optimal performance.

Model Geomety3K PGPS9K

Completion Choice Top-3 Completion Choice Top-3

Human Expert [17] – 90.9 – – – –

Baseline [17] – 35.9 – – – –

InterGPS (Predict) [17] 44.6 56.9 – – – –

InterGPS (Diagram GT) [17] 64.2 71.7 – 59.8 68.0 –

InterGPS (All GT) [17] 69.0 75.9 – – – –

GeoDRL (Predict) [19] – 68.4 – – – –

NGS [6] 35.3 58.8 62.0 34.1 46.1 60.9

Geoformer [5] 36.8 59.3 62.5 35.6 47.3 62.3

SCA-GPS [18] – 76.7 – – – –

PGPSNet [30] 65.0 77.9 80.7 62.7 70.4 79.5

LLaVA-v1.5 [15] 7.6 11.2 – 6.3 9.1 –

GPT-4V [1] 38.7 41.4 – 30.2 35.7 –

SANS (ours) 68.8 81.5 83.5 66.4 74.1 82.5

“Predict” (the formal language of input images and text is predicted by its
parser), “Diagram GT” (the formal language of input charts uses ground truth
data), and “All GT” (the formal language of input charts and textual problems
are ground
truth data)

[30]. The results reported in Table 1 reveal some noteworthy distinctions among
these models. GeoDRL optimizes the search strategy of Inter-GPS. Our SANS
demonstrate superior performance on the Geometry3K dataset compared with
Inter-GPS (All GT), achieving a 5.6% improvement in the Choice metric but
slightly lower in the Completion metric.

As to neural slover, NGS is a pioneering neural geometric solver, which lever-
ages auxiliary self-supervised tasks to bolster cross-modal semantic representa-
tion, while Geoformer jointly tackled geometric proof and computation prob-
lems. Compared to them, our SANS showed significant improvement in all met-
rics. The character alignment method SCA-GPS, resulted in a 4.8% lower in the
Choice metric compared to SANS. PGPSNet improves image-text understanding
through semantic modeling and text pre-training, yet our SANS adopts a finer-
grained cross-modal fusion strategy and enhances spatial awareness of geometric
primitives, resulting in improvements of 3.8%, 3.6%, and 2.8% in the Comple-
tion, Choice, and Top-3 metrics, respectively. Moreover, our model outperformed
all other state-of-the-art solvers on the PGPS9K dataset.

We also compare our approach with general multimodal large models, and
the results show that the performance of GPT-4V [1] and LLaVA-v1.5 [15] is
poor in GPS contexts. This underperformance may be attributed to the limited
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capability of general multimodal large models to perceive the complex geometric
structures and spatial relationships present in geometric images.

4.2 Ablation Study

Effect of Modules. We conduct ablation experiments on the Geometry3K
dataset to examine the effectiveness of the modules proposed in our SANS.
As shown in Table 2, we select PGPSNet [30] as our baseline for the ablation
experiments. The SS-PLM module of PGPSNet only pre-trains the text modal-
ity, while our SANS pre-training all input modalities before training. The results
show that our multimodal pre-training module (MDSP) outperforms PGPSNet’s
single-modal pre-training module and improves performance by 2.4%. Addition-
ally, our point-symbol spatial awareness attention module further enhances GPS
performance by enhancing the differences in relative distances of text points in
geometric space during training. Ultimately, our model achieves an accuracy of
81.5%, which is a 3.4% improvement over the baseline.

Table 2. Impact of the design submodules on Geometry3K.

Module Accuracy

Baseline 77.9

+ MDSP 80.3(+2.4)

+ MDSP + PP-SAA 81.5(+3.4)

Table 3. Effectiveness of pre-training strategies on Geometry3K.

Module Accuracy

None 60.2

+ SSP 73.2(+13.0)

+ DB-VTPM 77.6(+17.4)

+ SSP + DB-VTPM 81.5(+21.3)

Pre-training Strategies. To validate the efficacy of our proposed DB-VTPM
strategy, we conduct distinct pre-training experiments utilizing both SSP and
DB-VTPM methodologies. Subsequently, we conduct fine-tuning on the Geome-
try3K dataset to perform ablation studies, and the results are detailed in Table 3.
The SSP strategy effectively models global relationships, and the DB-VTPM
strategy enhances the model’s cross-modal learning of geometric diagrams and
texts during pre-training and preliminary learning of point primitive distribution
in geometric diagrams. When comparing the results between the fourth row and
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the outcomes from the second and third rows, the simultaneous application of
both strategies allows for a deeper understanding of spatial relationships among
geometric primitives, which advances the model’s comprehension of geometric
diagrams and texts.

4.3 Case Analysis

As shown in Fig. 3, we conduct a case analysis. In case (a), this problem requires
the model to perceive the spatial relationships between geometric primitives.
SANS accurately understood the positions of various geometric primitives in the
diagrams, while PGPSNet [30], lacking spatial awareness of geometric primi-
tives, which confuses the orientations of angles. In case (b) - (c), the perception
of the relationships between geometric angles is key to solving this problem.
SANS brilliantly handled the correspondence between angles in geometric dia-
grams, whereas PGPSNet confused the relationships between edges and angles,
leading to errors in problem-solving. In case (d), the complex spatial relation-
ships between geometric primitives led to incorrect solutions by both SANS and
PGPSNet. In conclusion, SANS promotes the development of GPS by enhancing
the spatial perception among geometric primitives.

Fig. 3. The cases analysis on the Geometry3K dataset. (a), (b), and (c) represent the
problems correctly solved by SANS, whereas (d) denotes the instance where SANS
provided an incorrect solution.

5 Conclusion

In this paper, we proposed a neural solver for GPS. Specifically, the designed
MDSP is used to promote the performance of cross-modal fusion through learn-
ing the spatial relationships between geometric primitives. Furthermore, during
the training phase, the PP-SAA module can force the model to pay more atten-
tion to the space relationship between points. Experimental results demonstrate
the effectiveness of our proposed MDSP and PP-SAA. Compared to the recent
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state-of-the-art models, SANS achieves superior performance on publicly avail-
able benchmarks. Moving forward, we aim to design a finer-grained fusion of
geometric images and text, further enhancing the model’s understanding of spa-
tial relationships among geometric primitives.
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Abstract. The proliferation of offensive, hateful, and toxic content on
social media platforms has reached unprecedented levels. These deleteri-
ous expressions not only tarnish the fabric of online interactions but also
pose significant threats to individual well-being, potentially precipitating
mental health issues such as depression. Manifesting in various modalities
including audio and text, this digital toxicity exerts a corrosive influence,
leaving enduring impacts on the psyche of individuals. The literature has
begun addressing this issue through the lens of natural language pro-
cessing. However, conventional toxic language detection systems often
exhibit biases, particularly in misidentifying text featuring mentions of
minority groups as harmful. Furthermore, the overreliance on spurious
correlations undermines the efficacy of these systems in detecting implic-
itly toxic language. Notably, existing benchmark datasets such as Tox-
iGen predominantly comprise text-based content. Thus, to address this
gap, this study presents a pioneering effort in assembling an audio-based
hate speech dataset. Subsequently, a multimodal hate speech detection
algorithm integrating audio and text inputs is proposed, demonstrat-
ing a significant performance enhancement over conventional text-based
models.

1 Introduction

The phenomenon of hate speech, although perennial, has assumed greater sig-
nificance in the digital age. Its ramifications extend beyond individual targets
to encompass entire societies by starkly contradicting principles of tolerance,
inclusion, and human rights. Not only does hate speech subject its victims to
discrimination, abuse, and violence, but it also perpetuates social and economic
marginalization. Left unchecked, it can sow seeds of conflict, impeding soci-
etal peace and development while engendering egregious human rights viola-
tions [28], including acts of atrocity. Consequently, addressing and counteracting
hate speech becomes imperative. In recent years, researchers have proposed var-
ious machine learning and deep learning methods to detect online hate speech,
which includes content spreading hostility or inciting violence based on race, reli-
gion, gender, or other identity traits [9,12,17,21]. Nonetheless, existing research
predominantly revolves around text-based models, with a limited exploration
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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into speech-based approaches [13,14]. However, one can safely assume that hate
speeches are not limited to text but predominately used through voice as well.
One scenario of hate speech in audio form can be seen during several national
elections which see a sharp jump in the content of hate speech audio/videos on
the social media platforms. This study aims to investigate whether audio data
can furnish unique and valuable signals for hate speech detection, drawing upon
the success of audio-based person identification methodologies.

Recent trends indicate a concerning uptick in toxic content within media, par-
ticularly in movies where hate-driven dialogue seeks to elicit strong reactions.
Likewise, certain comedians employ divisive and derogatory humor targeting
caste, religion, and gender, perpetuating the normalization of hate speech. This
issue transcends entertainment to permeate public platforms such as YouTube,
Meta, and Twitter, which witness a substantial influx of audio content daily,
some of which contain hateful elements. Despite moderation efforts, the sheer vol-
ume of audio content renders it challenging to identify and remove all instances
of hate speech, potentially fostering its unchecked proliferation and contributing
to toxicity and division online. While some platforms utilize human moderators
to identify and remove harmful content, the sheer volume of daily uploads poses
a formidable challenge. Even though platforms try to moderate, there’s just too
much content to check. For instance, Facebook employs approximately 15,000
moderators to review content flagged by both AI and users, yet it still encounters
approximately 300,000 content moderation errors daily1. Moreover, moderators
themselves involve emotional and psychological risks. Compliance with regula-
tory mandates further complicates matters, as failure to expeditiously remove
hateful content may result in fines. While larger platforms deploy machine learn-
ing algorithms for detection, smaller platforms may lack the resources to develop
datasets and models for hate speech detection in audio. Hence, there arises a
necessity to develop efficient and effective hate speech detection models capable
of detecting hate speech not only in text but also in audio. We assert that it
underscores the need for a comprehensive benchmark encompassing both spoken
and written language to fortify society against this pervasive menace.

1.1 Current Limitation and Contribution

In recent years, notable strides have been made in text-based hate speech detec-
tion [3]. A pivotal factor contributing to the success of hate speech detection
technology lies in the availability of publicly accessible hate speech text datasets.
However, unlike numerous openly accessible text-based datasets, the absence of
large-scale datasets capturing both text-based and audio-based hate speech con-
currently is conspicuous. Remarkably, there has been scant exploration into hate
speech detection in audio, highlighting a critical research gap in the field. Our
objective is to bridge this void by leveraging both text and audio data, employ-
ing multimodal fusion to yield distinctive and valuable insights into hate speech

1 https://www.theverge.com/2020/11/13/21562596/facebook-ai-moderation.

https://www.theverge.com/2020/11/13/21562596/facebook-ai-moderation
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detection. While text-based hate speech detection has historically shown sig-
nificant efficacy [26], parallelly, audio modality shows success in several tasks
including person identification and sentiment analysis [15,22]. By amalgamat-
ing these modalities, we aim to develop a more comprehensive and precise hate
speech detection system. This multimodal approach capitalizes on the strengths
of text and audio analyses, presenting a robust framework poised to potentially
surpass existing methodologies and contribute to the evolution of dependable
solutions in hate speech detection. Section 2 provides a brief overview of the
existing hate speech detection algorithms followed by a description of the pro-
posed audio hate speech detection dataset in Sect. 3. Section 4 describes the
proposed multimodal hate speech detection algorithms; whereas, its effective-
ness is reported in Sect. 5. Section 6 provides the overall summary of the findings
reported in this paper along with possible future directions to advance the hate
speech detection task.

2 Related Works

In recent years, significant progress has been made in text-based hate speech
detection due to the availability of public datasets. We will first summarize
the existing datasets. Following that, we will analyze multimodal models, which
integrate text, videos, and audio for hate speech detection. At present, there
are many benchmark datasets based on text content. In the text-based hate
speech datasets, most work has focused on explicit or overt hate speech, failing
to address a more pervasive form based on coded or indirect language. To fill
this gap, Implicit Hate [10] dataset introduces a theoretically justified taxonomy
of implicit hate speech and a benchmark corpus with fine-grained labels for
each message and its implication, ToxiGen [12] offers a large machine-generated
dataset to train models on subtler forms of hate speech. It includes a wide
variety of grammatically correct yet subtly offensive language targeting thirteen
different minority groups. ETHOS [20] is another hate speech detection dataset
for comments found on YouTube and Reddit. It comes in two versions: a simple
classification (hateful or not) and a more detailed one that identifies specific types
of hate speech. HateXplain [18] covers multiple aspects of hate speech detection
by annotating each post from three different perspectives: the basic, commonly
used 3-class classification (i.e., hate, offensive or normal), the target community
(i.e., the community that has been the victim of hate speech/offensive speech in
the post), and the rationales, i.e., the portions of the post on which their labeling
decision (as hate, offensive or normal). Automatic hate speech detection using
machine learning approaches is a relatively recent field, and hence, only a few
works for the detection of hate speech are available especially targeting audio
hate speech [2,4,27].

Although automatic identification of offensive comments has seen tremendous
success from the point of processing natural text into hate speech and cyberbul-
lying [1,25]. The natural language processing field has witnessed several tools
for analyzing large datasets, such as social media content [7,29]. Further, tech-
niques such as deep learning architectures including convolutional neural network
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(CNN), recurrent neural networks (RNN), and long short-term memory (LSTM)
and ensemble learning including random forest, bagging, and boosting have sig-
nificantly contributed to automatic hate speech detection in social media [21].
However, we believe that sentence transformer and speech t5 which are already
pre-trained on large internet datasets containing a variety of hate words might
be instrumental in learning word embedding highly effective as compared to
handcrafted models.

Hate speech detection is not limited to the utilization of any one particular
data modality but is seen as the fusion of multiple input modalities. For example,
in the context of multimodal hate speech detection, Rana et al. [23] present a
hate speech detection video dataset (HSDVD). Das et al. [8] used a multimodal
approach (text, audio, video) for hate speech detection but primarily focused on
video content. It is important to note that a significant portion of their video
collection consists of content where only images and text are associated with
music, shifting the focus of their research towards text and video rather than
audio detection. To the best of our knowledge, we are the first to experiment with
multi-modal hate speech detection, where we leverage text and audio modalities.
We are confident that our dataset, along with the benchmark model trained on
it, will assist moderators in discerning authentic instances of hate speech while
minimizing false alarms.

3 Proposed Audio Hate Speech Dataset

To thoroughly investigate the potential of the audio modality, we have generated
both hate and non-hate speech samples by transforming text excerpts from the
ToxiGen dataset [12] into audio representations. 1000 random text samples where
502 samples belong to the non-hate class and 498 samples belonging to the
hate class are selected to generate the audio samples. We utilized the Speech
T5 a state-of-the-art speech synthesis model designed for converting text into
natural-sounding speech [5]. Since it is a natural sound-like encoder, this cutting-
edge technology has applications in various fields, including voice assistants,
and interactive media, and hence is an ideal choice for our work. Within the
SpeechT5 framework, [19], various speakers are available, including two distinct
male voices namely BDL and RMS, and two female voices namely CLB and
KSP. To ensure a comprehensive evaluation, we generated the audio dataset
using four distinct voices: two male voices (BDL and RMS) and two female
voices (CLB and KSP). The prime reason behind this is since hate speech is
concerned with any particular demographic identity, covering a wide spectrum
of demographic variables can ensure the universal detection of hate samples. By
utilizing 4 different voices, in total, we have generated 4000 audio samples. The
proposed dataset is publicly available for research purposes at the following link.

4 Methodology

In this paper, we formulate the hate speech detection problem as follows: Let
D = {(ai, ti, yi)}N

i=1 be a dataset, where ai is the audio embedding, ti is the

https://github.com/kirti1545/HateSpeech_Dataset
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Fig. 1. A schematic diagram of the proposed multi-modal hate speech detection algo-
rithm. Pre-net converts the input speech into the hidden representations used by the
transformer (SpeechT5). K and M represent the dimensions obtained using the par-
ticular text and audio encoder, respectively.

corresponding text embedding. yi ∈ 0, 1 represent binary label, where (y = 0)
corresponds to non-hate speech and (y = 1) belong to the hate class. This
research aims to learn a binary classifier fθ(ai, ti) that can predict the label yi

for a given audio and text embedding pair. The simplest possible classifier can
be learned by minimizing the cross-entropy loss function �:

�(fθ(ai, ti), yi) = −yi log(fθ(ai, ti)) − (1 − yi) log(1 − fθ(ai, ti))

Figure 1 shows the schematic diagram of the proposed multimodal hate
speech detection architecture. The architecture uses the embeddings of both
text and audio modalities and combines them to harness the distinct strengths
of each. Since the literature comprises several audio and text embedding tech-
niques; therefore, the effective selection of an accurate embedding method is
critical. Further, to comprehensively understand the strengths and weaknesses of
embedding methods, multiple audio and text embedding techniques are explored
in this research. Once audio and text embeddings are obtained, a binary classi-
fication network attached at the end of the proposed architecture is trained for
multimodal hate speech detection.

In this work, to effectively encode the text modality we used several sen-
tence transformer encoders [24], namely (i) all-MiniLM-L12-v2 (enc-1), (ii) all-
MiniLM-L6-v2 (enc-2), and (iii) all-mpnet-base-v2 (enc-3). It is to be noted
here that these models are distilled versions of BERT (bidirectional encoder
representations from transformers) and are optimized for creating dense vector
representations of sentences while being computationally efficient, with L12 and
L6 denoting the number of layers. all-mpnet-base-v2, on the other hand, is a sen-
tence transformer based on Microsoft’s MPNet (masked and permuted network),
which captures both the word order and contextual meaning effectively, leading
to improved performance on natural language understanding tasks. We assert
that these encoders that are pre-trained on large-scale text datasets are effec-
tive in extracting semantic information. By utilizing these state-of-the-art text
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encoders, we aimed to capture nuanced linguistic characteristics and semantic
nuances within our textual data. Each encoder offers unique strengths in cap-
turing different aspects of textual information, thus enriching our analysis and
providing a comprehensive understanding of the underlying linguistic dynamics.
Our preliminary study also demonstrates the effectiveness of these pre-trained
text encoders for hate speech detection [6].

In our work endeavor, similar to text encoders, to extract the discriminative
features from the audio samples, we have utilized one of the popular meth-
ods, namely, the Microsoft SpeechT5 processor [5,16]. The three distinct voice
feature extraction methods used in this research are (i) speecht5-vc (Venc-1),
(ii) speecht5-tts (Venc-2), and (iii) speecht5-asr (Venc-3). Since the text and
audio modalities are complementary to each other, the fusion of their encoding
advances the hate speech detection task. Further, to comprehensively evaluate
the effectiveness of individual demographic entities, we trained hate detection
models on each voice representing different genders. This holistic approach not
only enabled us to unravel the intricacies of spoken language but also laid the
groundwork for exploring diverse applications in the realm of speech processing
and analysis.

Once the text and audio fused vectors are obtained, they are passed to two-
dense classification layers to learn the decision boundary between the hate and
genuine samples. These two dense layers contain 512 and 256 neurons respec-
tively. To avoid overfitting on our small-scale dataset, we trained our model for
100 epochs with early stopping. The Adam optimizer with an initial learning
rate of 10−3 and batch size of 128 is used to train the classification layers. Fur-
ther, a learning rate scheduler with a factor of 0.1 and patience of 20 is also used
for effective parameter tuning. In the proposed research, we have performed the
ablation study by combining each text encoder with each audio encoder. In other
words, a total of 9 combinations (3 text encoders and 3 audio encoders) have
been extensively evaluated to identify the effective combination of hate speech
detection. Text encoders namely enc-1 and enc-2 provide the feature of dimen-
sion 384 and the dimensionality of the feature obtained from the enc-3 text
encoder is 768. Each audio encoder used in this research provides the feature
vector of dimension 768.

5 Experimental Results and Analysis

The analysis of the multimodal hate speech detection approach reveals insight-
ful findings concerning multiple demographic entities and the effectiveness of
the amalgamation of different feature encoders. The results of multimodal hate
detection for female and male entities coupled with text encoding are reported
in Table 1 and Table 2, respectively. The results of hate speech detection are
reported in terms of accuracy (Acc), balanced accuracy (B-Acc), area under the
ROC (RA), and F-1 (F1) score. The analysis can be broadly divided into two
groups: (i) analysis based on the effectiveness of individual demographic voice
and (ii) the effectiveness of encoders. While both genders exhibit strong perfor-
mance in multimodal concatenation, female voice generated using CLB display a
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slightly higher accuracy compared to male voices. This disparity suggests poten-
tial variations in the underlying linguistic and acoustic characteristics between
male and female speech patterns, influencing the effectiveness of multimodal
fusion techniques. The female voice encoded using CLB yields an accuracy of
84.70% as compared to the 83.10% obtained using the BDL-encoded male voice.
Furthermore, a comparative analysis between male and female voices reveals a
nuanced trend in performance.

As mentioned earlier, effective generation of voice is equally important sim-
ilar to encoding of them. It can also be seen from the hate speech detection
results, where a drastic performance difference between the female voices gener-
ated using CLB and KSP is noticed. A similar observation can be seen on the
male voice modality as well, where the use of RMS voice yields 11.10% lower
performance than the BDL voice. Interestingly, in both male and female cases,
the amalgamation of text encoder-3 (all-mpnet-base-v2) with speecht5-vc (Venc-
1) voice encoder resulted in the highest hate speech detection performance. These
results highlight the efficacy of leveraging diverse encoders to capture and con-
catenate rich textual and auditory features, enhancing classification accuracy in
male voice classification tasks.

Table 1. Hate speech detection using the combination of text and female voice (CLB
and KSP). The best classification performance across each voice technique is high-
lighted and the second best is underlined.

Model CLB Voice KSP Voice

Acc B-Acc RA F1 Acc B-Acc RA F1

enc-1 + Venc-1 78.70 78.58 78.65 78.58 66.50 66.50 65.44 65.50

enc-1 + Venc-2 49.50 50.00 32.82 50.00 50.00 50.00 33.33 50.00

enc-1 + Venc-3 76.50 76.50 76.49 76.50 61.00 61.22 58.92 61.22

enc-2 + Venc-1 77.70 77.57 77.67 77.57 65.00 65.26 64.75 65.26

enc-2 + Venc-2 49.50 50.00 32.82 50.00 51.00 50.00 34.45 50.00

enc-2 + Venc-3 76.10 76.16 76.11 76.16 69.00 68.50 68.47 68.50

enc-3 + Venc-184.70 84.67 84.69 84.67 70.00 70.35 69.81 70.35

enc-3 + Venc-2 49.50 50.00 32.82 50.00 47.50 50.00 30.59 50.00

enc-3 + Venc-3 82.80 82.68 82.76 82.68 70.50 71.80 69.24 71.80

Surprisingly, in our experiments, we observed that the “Microsoft Speech-
T5-tts” encoder encounters difficulties in accurately processing embeddings of
female voices, leading to erratic predictions. Consequently, the model exhibited
random predictions, resulting in an accuracy of 49%, which notably stands as the
lowest among all predictions. This observation underscores the need for further
investigation and potential refinement of the text-to-speech (TTS) encoder to
ensure robust performance across diverse voice characteristics.
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Table 2. Hate speech detection using the combination of text and male (RMS and
BDL) voices. The best classification performance across each voice technique is high-
lighted and the second best is underlined.

Model RMS Voice BDL Voice

Acc B-Acc RA F1 Acc B-Acc RA F1

enc-1 + Venc-1 63.00 62.98 63.02 62.98 78.30 78.08 78.21 78.08

enc-1 + Venc-2 49.00 50.00 32.22 50.00 75.40 75.12 75.26 75.12

enc-1 + Venc-3 71.00 71.30 70.74 71.30 78.20 77.89 78.07 77.89

enc-2 + Venc-1 60.00 59.17 58.15 59.17 76.50 76.39 76.44 76.39

enc-2 + Venc-2 48.50 50.00 31.68 50.00 74.10 73.98 74.05 73.98

enc-2 + Venc-3 63.50 64.42 61.58 64.42 76.00 76.11 75.95 76.11

enc-3 + Venc-1 64.50 65.42 63.77 65.42 83.10 83.18 83.11 83.18

enc-3 + Venc-2 47.50 50.00 30.59 50.00 82.90 82.78 82.87 82.78

enc-3 + Venc-372.00 72.22 72.04 72.22 81.80 81.86 81.79 81.86

Table 3. Performance of unimodal text-based hate speech classification.

Model Accuracy Precision Recall F1

HateBERT 50.3 52.4 10.7 17.8

RoBERTa 79.8 93.8 63.9 76.0

5.1 Performance of Unimodal vs Multimodal Hate Classification

For a comprehensive comparison between unimodal and multimodal models, we
have now performed experiments with individual modalities used in this research.
To effectively encode the text modalities, two state-of-the-art unimodal models,
HateBERT and RoBERTa. We believe that these algorithms are developed using
the ToxiGen [12] dataset, they must be effective for hate speech detection. The
results of the unimodal algorithms for text are reported in Table 3. It is observed
that the RoBERTa outperforms the HateBERT model by a significant margin.
For instance, the accuracy obtained by HateBERT is 29.5% less than the accu-
racy obtained by the RoBERTa model. Further, in comparison to the utiliza-
tion of state-of-the-art (SOTA) text encoding algorithms, we have performed

Table 4. Performance of unimodal audio-based hate speech classification.

Gender (Generator) Accuracy B-Acc F1 RA

Male (BDL) 47.88 50.92 43.24 50.92

Male (RMS) 51.21 51.51 50.45 51.51

Female (CLB) 52.28 52.51 48.26 52.28

Female (KSP) 47.27 47.09 42.28 47.09
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experiments with the text encoders used in this research. To perform the hate
speech classification using individual text encoders, we have used the two-layer
feed-forward neural network with batch normalization. The first layer of this net-
work consists of neurons equal to the dimension of the input feature embedding;
whereas, the second layer contains 64 neurons. As found in multimodal detec-
tion, enc-3 (all-mpnet-base-v2) yields the highest accuracy of 80.3% surpassing
the performance of other encoders by at least 4.7%. We have performed the
ablation study with deeper neural networks as well; however, through five-fold
cross-validation two-layer network is found the best for hate speech detection.

Further, similar to the comparison with state-of-the-art (SOTA) text-based
hate speech detection architecture, we utilized the audio spectrogram trans-
former (AST) [11] to perform hate detection. The results of hate audio detec-
tion using 4 different voice variations are reported in Table 4. AST, known for its
effectiveness in audio analysis, ensured unbiased evaluations across both modali-
ties. Once the AST feature vector is obtained, it is passed to the two-layer neural
network comprising 527 and 128 neurons in the first and second layers, respec-
tively. When the AST model is used on the male voice generated using BDL, it
yields an accuracy of 47.88%. However, when the RMS-generated male audios
are used for evaluation, the performance of hate speech detection increases by
3.33%. Similarly, the performance of the CLB-generated female voices is 5.01%
better than the KSP-generated female voices in detecting hate speeches. How-
ever, the proposed multimodal architecture yields significantly higher accuracy
of 84.7% than any unimodal model. The superior performance of the multimodal
approach can be attributed to its ability to integrate and leverage the strengths
of both text and audio modalities. Therefore, we can easily assert that while
the generated audio modalities are synthetic, they act as auxiliary information
enhancing the hate speech detection performance by capturing nuanced fea-
tures. Similar to the evaluation of individual text encoders, we have evaluated
the effectiveness of individual audio encoders as well. For classification, again
we have used the two-layer neural network. Speecht5-vc (Venc-1), speecht5-tts
(Venc-2), and speecht5-asr (Venc-3) yield the hate audio classification accuracy
of 68.7%, 51.3%, and 69.8%, respectively. Similar to text, compared to deeper
neural networks, two-layer neural performed best with each audio encoder.

6 Conclusion and Future Directions

This paper represents a significant step forward in the ongoing effort to iden-
tify and mitigate hateful content by harnessing signals from both text and audio
modalities. In pursuit of advancing research in this crucial direction, we introduce
a novel hate audio speech detection dataset2 by synthetically transforming the
text corpus using the voice of multiple demographics. In the realm of hate speech
detection, relying solely on text data is not enough since the hate content is not
limited to any one input modality. It can be seen from the lower performance of
hate speech detection using only the text corpus. Therefore, we have proposed
2 https://github.com/kirti1545/HateSpeech Dataset.

https://github.com/kirti1545/HateSpeech_Dataset
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a multimodal hate speech detection architecture by combining the audio with
text. The proposed algorithms outperform the unimodal hate speech detectors
by a significant margin reflecting the potential of audio modality even when it
is synthetically generated. It demonstrates that even when an audio modality is
missing in hate content it can be used by synthetically generating it to detect
hate speech effectively. Since, the dataset developed as part of this research is
still not large enough as compared to the text dataset used, in the future, we aim
to extend this dataset. Furthermore, addressing bias inherent in toxic language
detection systems, particularly concerning false positives associated with men-
tions of minority groups, stands as a critical challenge that we are committed to
addressing in forthcoming studies. We aspire to develop context-aware toxicity
analysis methodologies that leverage sentiment analysis and contextual cues to
enable more nuanced language identification.
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Abstract. Though deep learning-based scene text detection methods
have achieved promising results on conventional datasets, these methods
are unable to maintain optimal performance in adverse weather condi-
tions, such as foggy weather. To alleviate this problem, we propose a
Two-Branch Image-Adaptive DBNet (TBIA-DBNet) framework. Specif-
ically, to avoid missing discriminable features from the original image
in one branch, we design an Image Enhancement Network (IENet) in
another branch. Additionally, we design a Fusion Module based on Coor-
dinate Attention (FMCA) to fully integrate original and enhanced fea-
tures. Experimental results demonstrate that TBIA-DBNet significantly
enhances scene text detection performance in foggy weather. Notably, it
improves detection accuracy by nearly 10% in real-world foggy weather
conditions compared to existing methods.

Keywords: Scene Text Detection · Dehazing · Real World ·
Two-Branch Network

1 Introduction

Scene text detection has consistently been a focal point of research within the
realm of computer vision. Nowadays, scene text detection predominantly focuses
on representing arbitrary-shaped text and designing post-processing methods to
recover text outlines from geometric attributes [1–5]. Nevertheless, there is a
notable absence of research examining scene text detection in adverse weather
conditions. Degraded images under adverse weather such as fog appear blurred
and distorted, which leads to reduced accuracy in text detection. The visualiza-
tion results of traditional scene text detection algorithms in various weather are
presented in Fig. 1, although DBNet [6] achieves excellent test results in clear
weather, its performance significantly deteriorates under foggy conditions.
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Fig. 1. A comparative analysis of the results obtained by DBNet [6] for scene text
detection. In the figure, the green curve indicates correctly detected text areas, the yel-
low curve indicates incorrectly detected text areas, and the red curve indicates missing
text areas.

While there is a limited number of algorithms addressing scene text detec-
tion under adverse weather, numerous papers on object detection under adverse
weather are available for reference. The most straightforward method is to con-
duct object detection via image restoration. AOD-Net [7] was the first CNN-
based end-to-end dehaze network, seamlessly embeddable into other deep mod-
els. Instead of relying on separate and intermediate parameter estimation steps,
it produced clear images directly from fogged images. Furthermore, DSNet [8]
employs two subnetworks to concurrently learn visibility enhancement and object
detection. Shared feature extraction layers enable DSNet to mitigate the impact
of image degradation. IA-YOLO [9] noted that DSNet encountered challenges
in adjusting the parameters to achieve a balanced weight distribution between
detection and recovery during the training phase. Therefore, IA-YOLO intro-
duced a differentiable image processing module and employed a compact con-
volutional neural network to predict its parameters. BAD-Net [10] replaced IA-
YOLO’s dehazing module with that of AOD-Net. Experimental results indicated
that IA-YOLO’s detection loss was difficult to converge and that detection accu-
racy significantly decreased. BAD-Net observed that IA-YOLO was not a reliable
framework for object detection under foggy weather and proposed a two-branch
foggy weather object detection framework. These methods have demonstrated
notable efficacy in foggy weather conditions.

However, object detection and scene text detection differ significantly. In
general, text detection requires higher positioning accuracy (IoU greater than
80%) and scene text itself is more easily confused with the background. This
necessitates rethinking suitable methods for text detection under foggy condi-
tions. Although the latest BAD-Net method considers feature fusion between
the two branches, scene text detection requires more scale features to increase
the accuracy of scene text positioning.
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To address the above limitations, this paper designed a Two-Branch Image-
Adaptive DBNet (TBIA-DBNet) model. Specifically, the two branches are
divided into original image feature and enhanced image feature branches. To
improve the ability of feature extraction in adverse weather, the enhanced image
feature branches adopts Laplacian pyramid method [11] to decompose the image
into a low frequency (LF) component and multiple high frequency (HF) com-
ponents to fully learn image features. The image has been processed by the
IENet, and the weather-specific information is suppressed, thereby facilitating
the restoration of latent information. Additionally, we designed FMCA to fuse
features from the two branches at multiple scales, employing coordinate attention
[12] to capture long-range dependencies while preserving precise positional infor-
mation. This approach ensures that the features of the two branches at different
scales can be maximally complementary. In the realm of scene text detection,
even without any bells and whistles, our method can compete or outperform
current state of the art methods on foggy weather datasets.

In summary, the primary contributions of this paper are as follows:

– A Two-Branch Image-Adaptive DBNet scene text detection network called
TBIA-DBNet is proposed. Unlike typical single-branch networks, TBIA-
DBNet utilizes the differences between its two branches to form complemen-
tarity, maximizing the extraction of image features.

– We propose an Image Enhancement Network (IENet), which is based on
Laplacian pyramid for adaptive image enhancement. Furthermore, we pro-
pose FMCA, which efficiently integrates features from different scales in two
branches to improve the robustness and complementarity of the network.

– Comprehensive experimental results illustrate that our proposal can achieve
superior detection performance in foggy weather conditions.

2 Related Work

2.1 Traditional Scene Text Detection

Scene text detection is a critical preliminary step in the process of scene text
recognition. Its main function is to automatically detect text information in
an image or video and convert it into an editable or searchable text form for
subsequent processing and application. Currently, scene text detection methods
are commonly categorized into two groups: regression-based and segmentation-
based approaches.

Regression-based approaches consider text as objects and focus on identifying
their locations by directly predicting the bounding boxes that enclose the text
instances. For example, EAST [13] and ABCNet [14] achieve efficient pixel-level
regression of text objects through direct prediction without using anchor mech-
anisms or proposal generation. TextBoxes [15], building on the SSD [16] object
detection method, employs larger default box aspect ratios and convolutional
kernels to detect long text. Additionally, TextBoxes++ [17] applies quadrilat-
eral regression to multi-directional text instances. LOMO [18], building on these
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direct regression methods, introduces an iterative refinement module that iter-
atively refines bounding box proposals for ultra-long text, and then predicts
the centerline, text region, and boundary offsets to reconstruct text instances.
Although these methods have achieved strong performance in quadrilateral text
detection, most texts appear in irregular shapes, which makes it challenging for
these methods to effectively handle various irregular texts.

Segmentation-based methods are capable of accurately describing scene text
of diverse shapes through the utilisation of pixel-level segmentation masks. For
example, PSENet [19] uses different scaling checks to scale text regions step by
step to generate complete text boundaries. PAN [20] generates an efficient text
detector by utilizing a lightweight feature extraction network, a computationally
cheap segmentation head, and several post-processing stages. Inspired by Masks
R-CNN [21], SPCNet [22] proposes a supervised pyramid context network based
on instance segmentation to detect text of arbitrary shape. I3CL [23] designs
a text detection method for interinstance and real exception based on Masks
R-CNN. DBNet [6] designs a differentiable binarization module that is capable
of predicting text regions directly through segmentation. Nevertheless, these
methods are designed based on high-quality images and do not account for the
adverse effects of low-quality images under adverse weather conditions on text
detection.

2.2 Scene Text Detection in Adverse Weather

At present, there is a limited amount of research available on scene text detec-
tion specifically under adverse weather conditions [24]. However, there have been
some studies conducted on object detection in similar scenarios. The classic app-
roach is to preprocess the image first [25–29], they were designed to eliminate fog
and enhance image quality. Nevertheless, enhancements in image quality do not
invariably enhance detection accuracy. Others directly implement the end-to-end
network structure through the combination of enhancement and detection meth-
ods [10,30]. This combined approach has proven to be effective [10]. However,
these are all methods based on object detection, and how to effectively apply
them in text detection also proves the necessity of our work.

3 Proposed Methodology

Figure 2 illustrates the architectural design of our approach. It mainly contains
two backbone, an Image Enhancement Network (IENet), four Fusion Module
based on Coordinate Attention (FMCA), an FPN [31] layer and an output net-
work. Following [6], we employ ResNet50 [32] as the backbone and DB-Head [6]
as the output network. We first simultaneously input the pre-processed image
into two distinct branches. Then, we employ FMCA to merge the feature maps
acquired from the four stages of ResNet50. Finally, the fused features are trans-
mitted to the FPN layer, where multi-scale features are fused again for the
ultimate detection.
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Fig. 2. The overall framework of the proposed TBIA-DBNet. TBIA-DBNet employs
a two-branch architecture, where one branch directly extracts original image features,
while the other branch captures features processed by IENet. FMCA is used to fuse
four different scale output features from two branches. The fused features are then
passed to the FPN layer for final detection.

3.1 Image Enhancement Based on Laplacian Pyramid

The Laplace pyramid has demonstrated outstanding performance in image pro-
cessing [33], and DE-YOLO [30] have confirmed its effectiveness in object detec-
tion. Unlike previous work, we have redesigned a network for text detection
that processes both high and low-frequency information after Laplacian pyra-
mid decomposition [11]. This includes designing a multi-scale convolution mod-
ule to expand the receptive field when dealing with low-frequency information.
When processing high-frequency information, we introduce the SFT [34] mod-
ule, which can reconstruct high-resolution images with rich semantic regions by
transforming the intermediate features of the network with only one forward
pass, as illustrated in Fig. 3.

We employed Laplacian pyramid decomposition to dissect an input image
with dimensions H × W into a low-frequency component and three high-
frequency components. The low-frequency component and high-frequency com-
ponents for the ith decomposition layer of the Laplacian pyramid (1 ≤ i < N)
are computed based on the following equations:

L = GN (I) (1)
Hi = Gi (I) − B (upsample (Gi+1 (I))) (2)

here B(•) denotes the application of a two-dimensional Gaussian kernel with
a size of 5 × 5. N denotes the total number of decomposition levels. And
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Fig. 3. An illustration of the Image Enhancement Network (IENet).

Fig. 4. The Laplace pyramid decomposition image detail display.

“upsample” refers to enlarging an image by a factor of 2. Gi (I) ∈ R
h

2i−1 × w

2i−1 ×3

represents the ith level of image in Gaussian pyramid [11], which can be expressed
as:

Gi (I) =
{

I i = 1
downsample (B (Gi−1 (I))) 2 ≤ i ≤ N

(3)

where “downsample” refers to reducing an image by a factor of 2. As evident
from equations (1)–(3), the decomposition process is entirely reversible. H1, H2,
H3, and L after Laplacian pyramid decomposition are shown in Fig. 4.

Equation (3) reveals that the Nth layer has the lowest resolution, which con-
tains the global information of the image and removes a lot of high-frequency
noise. Consequently, inspired by Lin et al. [35], we designed a Low-frequency
Enhancement Network (LEN) to learn its underlying features as much as pos-
sible, as illustrated in Fig. 5. Our proposed Multiscale Convolution can be sum-
marized as follows:

Fout = G1×1 (Concat (DWki×ki
(xi), ...,DWkn×kn

(xn))) (4)

where x = [x1, x2, x3, x4] means to split up the input feature x into multiple
heads in the channel dimension and ki ∈ {1, 3, 5, 7} denotes the kernel size. DW
denotes depth-wise separable convolutions. G1×1 represents grouped convolution
using a 1× 1 kernel size.
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Fig. 5. An illustration of the Low-frequency Enhancement Network (LEN).

Equation (2) shows that Hi consists of residual details of the HF component.
From high decomposition to low decomposition, the coarse to fine details of the
image are stored separately in {Hi}. We spliced the low frequency component
with the feature processed by LEN and then employed spatial attention mecha-
nisms [36] to direct the network’s focus towards text regions. Subsequently, we
gradually upsample them to improve the image enhancement.

We generate new HF components by combining the processed LF information
with the HF components using an affine transformation [34]. This transforma-
tion is primarily used for high-resolution reconstruction, and its formula can be
expressed as follows:

SFT (Fi |αi, βi ) = αi � Fi + βi (5)

where Fi denotes high frequency features. � denotes element-wise multiplication.
αi and βi correspond to the scale and shift parameters for the ith decomposition
layer. Through the newly acquired LF and HF component, we gradually merge
and enhance the image.

3.2 Fusion Module Based on Coordinate Attention

An illustration of the FMCA is shown in Fig. 6. FMCA combines the features
from the original branches and the enhanced branches. Then the multi-scale
features are fused by FPN. We believe that features at the same scale exhibit
stronger correlations and are more effective in fusing fog-invariant characteris-
tics. Further integrating fog-invariant features across different scales can help us
achieve precise localization of scene text.

Specifically, we add the features from the two branches point by point to
obtain the fusion features. These fused features are subjected to 1× 1 convolution
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Fig. 6. An illustration of the Fusion Module based on Coordinate Attention (FMCA).

layers, BN layers, and ReLU activation functions to reduce their channel size.
After that, we use coordinate attention [12] to capture long-range dependencies
while preserving precise positional information. We adjust the channel size for
both the original feature and the enhanced feature, both of which are reduced
by a 1× 1 convolution. Finally, the spliced channels are restored to the original
channel size through the 1× 1 convolution layer.

3.3 Loss Function

IA-YOLO [9] demonstrates that combining image recovery loss with detection
loss during object detection training can lead to longer training times, difficulty
in achieving convergence of the total training loss, and a reduction in detec-
tion accuracy. Therefore, following the IA-YOLO approach, we define the loss
function of the proposed method solely based on detection loss as follows:

Ltotal = Ls + αLb + βLt (6)

where Ls denotes the probability map loss, Lb is the binary map loss, and Lt

stands for the threshold map loss. Note that Ls is the balanced cross-entropy
loss, Lb and Ls are equal. In this work, we retained the settings from DBNet [6]
with α and β set to 1.0 and 10.

4 Experiment

4.1 Datasets

We utilize two datasets for scene text detection under foggy weather.
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Table 1. Comparison of the proposed method to the state-of-the-art on the HTT and
REF datasets. Note that all models were trained on HTT datasets, and all results are
represented by the metric F-measure.

Method Venue HTT REF

PAN [20] ICCV’19 74.0 37.4

PSENet [19] CVPR’19 77.5 25.4

DBNet [6] AAAI’20 79.6 50.1

FCENet [40] CVPR’21 73.6 25.9

DB++ [41] TPAMI’22 79.8 50.0

TCM [42] CVPR’23 80.5 38.3

TBIA-DBNet (Ours) - 82.2 60.9

HTT is a synthetic fog dataset that is rendered by the synthetic fog algorithm
[9] for Total-Text [37]. The dataset comprises 1,255 training images and 300
test images. All text instances are annotated with word-level polygon markings.
Real-English-Fog (REF) consists of 204 real foggy images that we collected under
real-world foggy weather conditions.

4.2 Implementation Details

In this paper, all the models utilise a pretrained ResNet50, which was trained
on the SynthText dataset [38] for 100,000 iterations. Subsequently, the models
are fine-tuned on particular datasets for 1,200 epochs. All the experiments are
performed using SGD optimizer. The training batch size is set to 16. We employ
a “poly” policy [39] with the initial learning rate of 0.007, and use a weight
decay of 0.0001 and a momentum of 0.9. We use the same data augmentation as
DBNet [6]. Our experiments were conducted by the PyTorch-based TorchVision
detection framework. All models are trained and tested using two NVIDIA 3090
GPUs.

4.3 Comparisons with State-of-the-Art Methods

In this paper, we choose DBNet as the baseline model. Our experimental
results are depicted in Table 1, compared to the baseline, TBIA-DBNet exhibits
a remarkable 2.6% improvement in F-measure on the HTT datasets. TBIA-
DBNet’s performance improvement is even more pronounced on real-world foggy
weather datasets, with an impressive 10.8% increase. These enhancements sub-
stantially outperform state-of-the-art methods, highlighting TBIA-DBNet’s out-
standing text detection performance in foggy conditions. These results validate
that our approach significantly enhances the scene text detection network’s fea-
ture extraction capacity under foggy weather.

As shown in Fig. 7 and Fig. 8, we provide some representative qualitative
samples, including synthetic foggy images and real-world foggy scenes images.
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Fig. 7. Visualization results of TBIA-DBNet in comparison to other methods on the
HTT datasets.

Fig. 8. Visualization results of TBIA-DBNet in comparison to other methods on the
REF datasets.

The results indicate that the TBIA-DBNet demonstrates superior performance
in foggy weather conditions.

4.4 Ablation Study

To evaluate the effectiveness of each module in our proposed framework, we per-
formed ablation experiments with different settings and assessed the network’s
performance on two separate test datasets.

As show in Table 2, we use TBIA-DBNet to represent our proposed network
framework. Compared to baseline, when we combined IENet into DBNet, the
F-measure improved by 1.5% and 7.4%, respectively, on the HTT and REF
datasets. This shows that IENet effectively reveals more potential features con-
ducive to text detection, and greatly improves the accuracy of text detection in
foggy weather. In the second line, we sum distinct image features from separate
branches. and F-measure improved by 2% and 9% respectively on HTT and
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Table 2. Ablation study on various modules of our approach on the HTT and REF
datasets.

IENet Two-Branch FMCA HTT REF

✘ ✘ ✘ 79.6 50.1

✔ ✘ ✘ 81.1 57.5

✔ ✔ ✘ 81.6 59.1

✔ ✔ ✔ 82.2 60.9

Table 3. Image Enhancement Network and several advanced dehaze networks were
subjected to ablation experiments on the HTT and REF datasets.

Methods HTT REF

DBNet [6] 79.6 50.1

AODNet [7] -DBNet 80.2 52.4

DM [10] -DBNet 80.6 54.2

DENet [30] -DBNet 80.8 55.8

IENet-DBNet 81.1 57.5

TBIA-DBNet (Ours) 82.2 60.9

REF datasets. This shows that the two-branch network effectively improves the
complementarity of the two branches and avoids the performance degradation
of the single-branch network that may be caused by the omission of important
potential features in the dehaze network. In the third line, the text detection
performance is optimal when we combine the features of the two branches and
replace the sum with FMCA. Compared with the sum method, the F-measure
of FMCA is improved by 0.6%, and 1.8% on the HTT, and REF datasets.

We compared our method with several popular defogging networks combined
with detection networks. As shown in Table 3. Importantly, for quantitative com-
parison in this paper, we replaced the detection models in other methods with
our baseline. The results indicate that under single-branch conditions, IENet-
DBNet achieved the highest F-measure. The reason is that, unlike other dehazing
networks, IENet directly uses the Laplacian pyramid to decompose foggy images
into LF and HF components, rather than relying on atmospheric scattering mod-
els [43]. We believe that methods using the atmospheric light scattering model
to predict clear images can introduce noise detrimental to detection. The rea-
son is that even clear regions in the image without fog are forcibly restored,
which may introduce noise and negatively impact detection. Although DENet
[30] considers the influence of the atmospheric light scattering model, its net-
work is implemented based on object detection. Additionally, the last row shows
that our proposed TBIA-DBNet achieves the highest F-measure, indicating that
the two-branch network structure we propose is more effective than the typical
single-branch network structure.
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5 Conclusion

In this paper, we introduce TBIA-DBNet, a novel two-branch detection frame-
works designed for scene text detection in foggy weather. The proposed IENet
can effectively remove weather-specific information and reveal more latent infor-
mation. Furthermore, through the design of FMCA, we seamlessly integrate
both original and enhanced features, effectively improving the complementarity
and richness of the target features. Our proposed approach is capable of adap-
tively handling real-world foggy weather conditions. It is a robust framework
that bridges low-level image enhancement with high-level vision tasks, allowing
for the seamless replacement and extension of each module. A significant num-
ber of experiments have demonstrated the effectiveness of our method. In the
future, we are interested in expanding our approach to enable text recognition
in challenging weather conditions.
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Abstract. Effective script identification is pivotal in document anal-
ysis and recognition, especially when dealing with hybrid multiscript
documents at fine-grained levels. Recent advancements in deep learn-
ing models have revolutionized document analysis and recognition tasks,
leveraging script document images. However, these images often require
resizing, which can result in data loss. This paper explores the impact of
MULLER, a learnable resizer on a hybrid word-level script identification
task using the Multi-lingual and Multi-script Documents In the Wild
(MDIW-13) dataset. Our approach integrates MULLER resizer with a
pre-module that employs k-means clustering to determine the optimal
target size. When jointly trained with MobileNet, it achieves an impres-
sive average accuracy of 98.16%. In summary, our findings underscore
the potential of the MULLER resizer to outperform conventional resiz-
ers, thereby evaluating script classification performance.

Keywords: Hybrid word level Script identification · MULLER
resizer · conventional resizers · MDIW-13 dataset · MobileNet model

1 Introduction

Automatic script identification is a critical component of document image analy-
sis. This process involves identifying a document’s script (writing system) before
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the Optical Character Recognition (OCR) process. In a multiscript environment,
document handling necessitates a script identifier and a collection of OCRs. The
process involves detecting the document’s script and then employing the appro-
priate OCR (one OCR per script) [1]. Script identification can provide benefits
to various industries, including scene understanding [2], multi-lingual machine
translation [3], and video script identification [4].

Documents can be classified into three categories based on the type of infor-
mation they contain [5]. These include machine-printed documents, which consist
of typed and printed-out text, handwritten documents, which contain handwrit-
ten text, and hybrid documents, which feature both printed and handwritten
text blocks on the same page in many practical documents, such as bank checks,
forms, and letters [6,7]. Handling hybrid documents effectively requires adapt-
able systems due to their multifaceted content.

Script identification can be performed at different levels: page, block, line, and
word. However, script identification at the word level is particularly challenging
as it provides less information than at other levels. This level requires identifying
individual words, which can be particularly difficult in cases where words are
closely connected or overlap. The success of the script identification process at
this level depends heavily on the accuracy of the segmentation algorithm; any
segmentation errors can significantly impact the accuracy of the results. Another
challenge arises from the quality of the input image can significantly impact the
accuracy of word-level script identification, with factors such as low resolution,
poor lighting, and skewing potentially compromising the reliability of the results
[8].

Script images contain a significant amount of fine-grained valuable informa-
tion in tiny connected components (characters, stress, diacritics, etc.). Still, their
large and varying spatial size can pose a challenge for many computer-assisted
models [9].

Convolutional neural networks have significantly transformed the field of
computer vision in recent years [10]. However, one crucial aspect that has been
surprisingly overlooked is the impact of image size on the accuracy of the tasks
being trained for. Typically, for efficiency reasons, input images are resized to a
small spatial resolution (e.g. 224× 224), and both training and inference phases
[10]. Considering memory limitations, training CNN models with high or arbi-
trary resolutions might not be practical, requiring image resizing to a uniform
size to adapt deep learning models. Consequently, resizing is usually essential to
successfully implement deep learning models for script document images. Con-
ventional resizing techniques like nearest neighbor interpolation [11], bilinear
[11], and bicubic [11] could lead to data loss and artifacts, as they do not sustain
the fine-grained details of the original image [12].

To overcome this limitation, researchers have proposed learned resizers that
leverage deep neural networks to learn image resizing directly from data, yield-
ing improved performance on several tasks. For example, the authors in [13]
proposed a residual CNN module for downscaling and jointly trained it with
an image compression network to generate “compression-friendly” representa-
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tions. Hossein and Peyman [10] introduced a CNN-based learned resizer that is
jointly trained with classification models to improve their performance. It han-
dles any arbitrary scaling factor, including up and down-scaling. This allows
to explore the resolution versus batch size trade-off and as a result to find the
optimal resolution for the task in hand. Similarly, the idea of learned rescaling
has been applied to other computer vision applications [14] showing improved
performance in detection and recognition.

However, one of the main challenges with these learned resizers is that they
often require a large number of parameters, and high computational overhead
during training and inference. To mitigate this issue, authors in [12] introduce an
incredibly lightweight learned resizer called MULLER, that operates on the mul-
tilayer Laplacian decomposition of images. MULLER requires very few parame-
ters and does not incur any extra training cost, outperforming existing methods
in terms of computational efficiency, parameter efficiency, and transferability.
MULLER resizer only learns four parameters and is more effective than previ-
ous complex ones using deep residual blocks.

This paper presents an adaptive resizer-based transfer learning framework
for classifying the word-level MDIW-13 dataset with hybrid documents incorpo-
rating the use of Kmeans clustering algorithm to determine the optimal target
size, along with a lightweight learned resizer module, known as the MULLER
trained conjointly with the baseline MobileNet [23] architecture. The effective-
ness of the MULLER resizer is evaluated against three conventional resizing
methods: Nearest Neighbor Interpolation, Bilinear, and Bicubic on various reso-
lutions. Our results provide valuable insights into the performance of MULLER
as a learned resizing model on this dataset and underscore the importance of
adopting an adaptive resizer to enhance the model’s precision.

The novelty of this work lies in the integration of the MULLER resizer with a
pre-module employing k-means clustering for optimal target size determination.
This approach provides a studied target size that offers guidance to the resizing
module, mitigating the issue of image degradation that typically arises from
resizing all images to a single, and generalized target size. Specifically applied to
the hybrid word-level script identification task, this method is the first to utilize a
learnable resizer within this context, significantly enhancing script classification
performance.

The rest of the paper is organized as follows: Section 2 provides a general
overview of the prior literature on hybrid word-level script identification and
learned resizing. Section 3 describes the proposed adaptive resizer-based trans-
fer learning framework for hybrid word-level script identification. Section 4 dis-
cusses the outcomes derived from applying the proposed approach compared to
the Conventional resizing technique, providing a comprehensive analysis of the
approach’s performance. Finally, Sect. 5 wraps up the paper by summarizing key
findings and providing suggestions for future research directions.
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2 Related Works

2.1 Hybrid Word-Level Script Identification

Most research in the field of script identification concerns printed or handwrit-
ten documents. However, since several documents may contain text blocks with
both printed and handwritten texts, some research is now addressing hybrid
documents. Despite the progress made in this field, further investigation and
the development of more accurate and efficient approaches for word-level script
identification from hybrid documents still need to be further investigated.

Asma Saidani et al. [15] presented an approach for Arabic and Latin script
identification based on Histogram of Oriented Gradients (HOG), Pyramid HOG,
and co-occurrence matrices of HOG descriptors, along with a genetic algorithm
to select the combinations of the informative features. Experimental results show
a good classification rate of 99.07% using Bayes-based classifier.

By using new structural features which are intrinsic features, a successful
attempt was made by [16] to identify the Arabic or Latin script. Experiments
have been conducted with 1320 handwritten and printed words, covering a wide
range of fonts, achieving a correct classification rate of 98.4% using Bayes clas-
sifier.

Authors in [17] proposed an accurate system based on a steerable pyra-
mid transform for Arabic and Latin script identification at word-level. The S.P
parameters tested are sp0filter, sp3filter, and sp5filter with respectively 2, 4,
and 6 orientations and 1, 2, 3, and 4 levels, with sp3filter with 4 orientations
and 2 levels being the best. The overall correct identification rate obtained is
about 97.5% using the K nearest neighbors classifier with K = 5.

The study [18] focuses on the problem by designing a dual-branch structured
deep convolutional neural network (CNN). For the training stage, a two-stage
multi-task learning strategy to learn robust shared features. Furthermore, three
CNN networks of different scales (small, medium, and large) are evaluated to
determine the best CNN architecture. The accuracy achieved by the two-stage
multi-task CNN is 95%.

In [19] a deep learning method is proposed that features a set of opti-
mized convolutional layers followed by recurrently connected layers to identify
the script of any word sample. The experiments were conducted on MDIW-13
and PHDIndic-11 datasets, achieving a correct identification rate of 97.57% on
MDIW-13 dataset and 96.15% on PHDIndic-11 dataset.

While earlier researches [15–17] have made progress in this field, it has been
limited to Arabic and Latin scripts using handcrafted features to achieve promis-
ing results. In more recent studies [18,19], deep learning techniques have been
employed, achieving even stronger performance across a broader range of scripts.
All previously mentioned works use conventional resizing methods. This is a sig-
nificant breakthrough because script document images are often challenging due
to the multitude of tiny connected components, including characters, stress, dia-
critics, and more, each containing valuable fine-grained information and varying
spatial sizes.
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2.2 Learned Resizing

Learned resizers have been evaluated for several domains and scopes. Some recent
works have explored the use of learning-based methods of image downscaling to
enhance the desired content in the resized images from training data.

Xupeng and Yuehui [20] applied the learnable resizer proposed in [10]. to
COVID-19 lung CT image classification, jointly training the MobileNet model
with the learnable resizer. The researchers compared their results with those
of different models, namely VGG19, Resnet50 v2, MobileNet, Inception v3, and
Densenet169. The jointly trained MobileNet model with the learnable resizer
achieved an accuracy of 96.9%, sensitivity of 98.3%, and specificity of 95.3%,
outperforming other models. Notably, the jointly trained MobileNet model with
the learnable resizer only had 30,000 more parameters than the MobileNet model.

Authors in [21] illustrated the influence of the learnable adaptive resizer
[10] on breast cancer classification using the BreakHis dataset. The proposed
approach incorporates the adaptive resizer with various convolutional neural
network models, including VGG16, VGG19, MobileNetV2, InceptionResnetV2,
DenseNet121, DenseNet201, and EfficientNetB0. Despite producing visually less
appealing images, the learnable resizer effectively improves classification perfor-
mance. DenseNet201, when jointly trained with the adaptive resizer achieves the
highest accuracy of 98.96% for input images of 448 × 448 resolution.

This work [22] introduces a zero-shot diffusion-based video generator aiming
to accurately produce animal animations while preserving the background. Ani-
mateZoo includes two steps: first improving appearance feature extraction by
integrating a Laplacian detail booster and a prompt-tuning identity extractor
while maintaining low computational overhead and preserving detailed informa-
tion using a trainable Laplacian resizer, MULLER [12]. Extensive experiments
showcase the outstanding performance of the proposed method in cross-species
action following tasks, demonstrating exceptional shape adaptation capability.

The above works show that image pre-processing, in terms of resolution,
downscaling, and joint resizing has a great impact on the performance of vision
models. However, these methods have not yet proven their effectiveness in
the field of script identification and document analysis tasks. To the best of
our knowledge, the current academic discourse has not extensively examined
the impact of adaptively learned resizers, especially MULLER resizer [12], on
the performance of any document analysis tasks precisely script identification.
Therefore, our research aims to address this gap by investigating the effects of
MULLER resizer on the effectiveness of hybrid word-level script identification
tasks.

3 Learned Resizer-Based Transfer Learning Framework
for Hybrid Word-Level Script Identification

In the field of script identification, actual systems need to collect images from
the wild with various sizes. However, they must be resized to a standard size
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to fit deep-learning training tools. This is an inevitable compromise for compu-
tational resources and the training framework, as the resizing procedure causes
information loss, negatively affecting model performance. To address this issue,
this study proposes an adaptive learnable resizer-based transfer learning frame-
work, introduced in detail in this section.

The proposed hybrid word-level script identification system comprises a clus-
tering module using Kmeans algorithm, a resizing module based on the MULLER
resizer, and a lightweight classifier using MobileNet (see Fig. 1). Initially, we pre-
ceded the resizing module with a clustering step using the Kmeans algorithm
with K set to 3. Because of the extreme variations in image sizes (see Fig. 2 and
Fig. 3), resizing all images to a general size would cause additional loss and defor-
mation of essential information. Therefore, using a clustering module to group
the images into heterogeneous groups regarding height and width and defining
the most suitable size for each group is considered a plus to enhance the overall
pipeline.

Fig. 1. The architecture of the proposed system. The resizer decomposes the input
image into multiple layers of Laplacian residuals and then adds them back to the
default resized image. After choosing the most suitable target size using Kmeans, the
MULLER resizer is trained along with the MobileNet model to get the script category.

After that, the resizing module used is based on MULLER resizer which
consists of two layers, a Gaussian kernel size of 5, and a standard deviation of 1,
with a bilinear resizer as the base resizer method. MULLER is adopted to boost
the detail quality of low-resolution images. It combines various filters of distinct
frequencies to boost the sample ratio of crucial frequencies for the task at hand,
such as edge, detail, and sharpness information. This adjustment involves merely
four trainable parameters as weights and biases, rendering the trainable resizer
can be applied to our pipeline almost without cost.

Finally, the Resizer module is trained in conjunction with a lightweight clas-
sifier MobileNet [23] model pre-trained on ImageNet, which takes the resized
image as input. This network focuses on neural network models for tasks on
mobile devices, the output layer comprises a dense layer with 13 nodes, equipped
with a softmax activation function to predict the final probability of the script
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class. During the training phase, we used Adam optimizer with a lower learning
rate (1e−4) to preserve the valuable features learned during pre-training (see
Fig. 1).

3.1 Dataset

The MDIW-13 [1,24] is the largest publicly available multi-lingual and multi-
script dataset for script identification, comprising 113 printed and handwritten
documents that were scanned from the local newspaper and handwritten letters
and notes, segmented to over 13979 lines and 86655 words from a gigantic variety
of widely used scripts (13 scripts), namely Arabic, Bengali (Bangla), Gujarati,
Gurmukhi, Devanagari, Japanese, Kannada, Malayalam, Oriya, Roman, Tamil,
Telugu, and Thai. Nevertheless, the dataset’s arbitrary image sizes present sev-
eral challenges, making it difficult to identify scripts properly.

MDIW-13 provides a comprehensive evaluation framework for our proposed
method. By leveraging this extensive dataset, we are able to demonstrate the
effectiveness and robustness of the MULLER resizer in real-world scenarios
involving diverse and complex script documents.

As shown in Fig. 2 and Fig. 3, The dataset has a significant variation in image
size, making it difficult to find a one-size-fits-all solution for all 13 scripts included
in the dataset due to the unique nature of each script’s small components. It
is important to note that resizing or padding images can distort specific small
components unique to each script, adversely affecting the identification system’s
performance [9].

3.2 Clustering Module: Kmeans

Our experimental dataset comprises images of arbitrary sizes as depicted in
Fig. 2. This can lead to the loss of discriminative information if all images are
downsampled or upsampled to the same target size. K-means clustering was
applied to group the images into three clusters to mitigate this issue. These
clusters correspond to three different target sizes, as shown in Fig. 3.

In our study, we employed the K-means clustering algorithm to determine
the most appropriate target size for each group of images, to obtain a carefully
considered target size, addressing the extreme variations observed in word image
sizes and mitigating the potential loss of distinctive word forms that could occur
with a fixed general target size. We set the number of clusters, k, to 3, based
on manual observation of the word images, categorizing them into three groups:
too small, medium, and large word image size.
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Fig. 2. Images sizes distribution. Fig. 3. Clustering of image sizes.

3.3 Learned Resizing Module: MULLER

We employ a compact multilayer Laplacian resizer MULLER introduced by
[12] that converts images with higher input resolution into the baseline net-
work input. The purpose of MULLER is to dynamically adjust the input image
size while discomposing the input image into various Laplacian residual layers,
improving image contrast and emphasizing its details and textures, as shown in
Fig. 1. It has the following form:

z = R(x) +
k∑

l=1

σ (αl (R ((Wl − Wl+1)X) + βl)) (1)

where R denotes the base resizer (e.g. bilinear) and W1,W2, ...,Wk represents
the low-pass filter basis. We define W ′ as a positive row-stochastic matrix of size
n×n, with n representing the number of pixels in the vectorized input image x.
Note that we assume Wk+1 = I, where I is the identity matrix. In Eq. (1), each
layer uses a variety of filters to decompose the image into distinct detail layers
through bandpass filtering, as shown in Fig. 1.

The MULLER resizer model employs a base resizer to handle input images
and applies filters at different scales to capture details across various frequen-
cies. This iterative filtering process selectively enhances specific frequency com-
ponents, boosting the overall level of detail in the image. Using multilayer Lapla-
cian decomposition, MULLER targets specific frequency ranges like edges and
textures to enhance image quality and informativeness. By concentrating on fre-
quency subbands, MULLER improves the quality of resized images used in the
identification task.

In our experiments, we used MULLER with two layers, a Gaussian kernel
size of 5, and a standard deviation of 1, with a bilinear resizer as the base resizer
method. In particular, the MULLER module is trained in conjunction with the
recognition model to better adapt to the model architecture and get excellent
results. The resizer receives an image from the data pipeline and adjusts its size
before it is input into the model. MULLER is designed to address the challenge
of resizing images while preserving their content and maintaining visual quality.
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Fig. 4. Resizing resulting image per cluster.

It is crucial to sustain as much detail as possible when dealing with script text
images, especially for fine-grained levels like word level, which include important
little details. Traditional resizing of images may lead to the loss of fine details
and bad image quality, which can be problematic when working with lower levels
and with handwritten word images (see Fig. 4). MULLER resizer approaches this
drawback by conserving the image’s unique characteristics guaranteeing critical
details are preserved during the resizing operation.

As demonstrated in Fig. 4, MULLER maintains finer details and text clarity
while producing smoother transitions and fewer artifacts in both downsampling
and upsampling scenarios. This exceptional ability to preserve image quality
makes the MULLER method ideal for demanding tasks such as script text iden-
tification.

4 Results and Discussion

Our research findings, as summarized in Tables 1, 2, and 3 demonstrate the
effectiveness of our proposed approach across different clusters. Specifically:
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1. Cluster 1 (Large Target Sizes: (135,341)): Achieved an impressive
accuracy rate of 98.57% with a precision rate of 99%. In this context, Com-
pared to traditional methods, MULLER’s performance shows moderate per-
centage improvements, suggesting that while it handles large resizing tasks
effectively, the gap between MULLER and traditional methods is not as
wide. This indicates that all methods are fairly robust when resizing to
larger dimensions, but MULLER maintains a consistent edge.

2. Cluster 2 (Small Target Sizes: (73,114)): Maintained high accuracy
at 98.48% with a precision rate of 98.68%. The improvements in percent-
age are more pronounced for MULLER with a larger improvement margin
suggesting that as the target resizing size decreases, MULLER’s advantages
become more apparent. Traditional methods seem to struggle slightly more
with smaller dimensions, whereas MULLER’s advanced algorithms better
preserve image quality and details.

3. Cluster 3 (Medium Target Sizes: (106,212)): Showed robust perfor-
mance with an accuracy rate of 97.44% accompanied by a precision rate of
98.02%. In Cluster 03, MULLER still performs strongly, this indicates a con-
sistent but slightly reduced margin of improvement compared to Cluster 02.
The intermediate size may offer a balance where traditional methods per-
form relatively well, but MULLER still provides noticeable enhancements.

Table 1. Resizers performance comparison for Cluster 01.

Resizer Accuracy Precision Recall F1-score

Nearest Neighbor 98% 98.61% 98% 98.26%

Bilinear 98.28% 98.64% 98.28% 98.44%

Bicubic 98.34% 98.82% 98.34% 98.56%

MULLER 98.57% 99% 98.57% 98.77%

In Table 1, the performance of different resizers is compared for Cluster 01.
The MULLER resizer outperforms traditional methods across all metrics. Specif-
ically, the MULLER resizer achieves an accuracy of 98.57%, which is higher than
Nearest Neighbor 0.58%, Bilinear by 0.30%, and Bicubic by 0.23%. The precision,
Recall, and F1-score follow the same trend, with MULLER attaining the highest
values of 99%, 98.57%, and 98.77% respectively. This demonstrates MULLER’s
ability to maintain a balance between precision and recall, ensuring better overall
performance in resizing script images without losing critical details.

Table 2 presents the performance metrics for Cluster 02. Here, MULLER
again shows superior performance compared to traditional resizers. With an
accuracy of 98.48%, MULLER surpasses Nearest Neighbor by 1.37%, 0.06%
over Bilinear, and 1.39% over Bicubic. The F1-score of 98.58% further confirms
MULLER’s advantage in balancing precision and recall showing an improvement
of 1.45% over Nearest Neighbor, 0.06% over Bilinear, and 1.47% over Bicubic.
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Table 2. Resizers performance comparison for Cluster 02.

Resizer Accuracy Precision Recall F1-score

Nearest Neighbor 97.15% 97.70% 97.15% 97.37%

Bilinear 98.42% 98.61% 98.42% 98.50%

Bicubic 97.13% 97.73% 97.13% 97.40%

MULLER 98.48% 98.68% 98.48% 98.58%

These percentages indicate MULLER’s effectiveness in preserving image quality
and details, particularly in more challenging scenarios.

Table 3. Resizers performance comparison for Cluster 03.

Resizer Accuracy Precision Recall F1-score

Nearest Neighbor 97.02% 97.69% 97.02% 97.35%

Bilinear 96.20% 97.02% 96.20% 96.53%

Bicubic 96.76% 97.49% 96.76% 97.08%

MULLER 97.44% 98.02% 97.43% 97.72%

For Cluster 03, as shown in Table 3, MULLER continues to lead. The accu-
racy achieved by MULLER is 97.44%, which is higher than Nearest Neighbor by
0.43%, 1.29% compared to Bilinear, and 0.70% compared to Bicubic. MULLER
also records the highest precision at 98.02%, showing an enhancement of 0.73%
over Nearest Neighbor, 1.58% over Bilinear, and 0.99% over Bicubic. With an
F1-score of 97.72%, MULLER again proves to be superior in maintaining the
equilibrium between precision and recall. F1-score improvements are 0.58% over
Nearest Neighbor, 1.42% over Bilinear, and 0.85% over Bicubic.

MULLER consistently outperforms traditional methods across all target
sizes. However, the performance advantage of MULLER is more significant with
smaller target resizing sizes. This suggests that MULLER’s learned resizing
model is particularly effective in scenarios requiring high-detail preservation in
smaller dimensions, where traditional methods tend to lose more critical infor-
mation.

Table 4. Comparison of Misclassified Samples Across Different Resizing Techniques.

Cluster Total Train Test MULLER Nearst Bilinear Bicubic

1 24403 19523 4880 122 (2.5%) 155 (3.18%) 185 (3.79%) 158 (3.24%)

2 8761 7009 1752 25 (1.42%) 35 (2.00%) 30 (1.71%) 29 (1.65%)

3 53491 42793 10698 153 (1.43%) 304 (2.48%) 169 (1.58%) 307 (2.87%)
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Table 4 illustrates the number of misclassified samples compared to the total
number of test samples for the Muller resizer, and three conventional resizing
techniques: nearest neighbor interpolation, bilinear interpolation, and bicubic
interpolation. The analysis is segmented into three distinct clusters, providing
insight into the performance of each resizing method across different data dis-
tributions.

The analysis clearly shows:

1. Performance Consistency: MULLER consistently shows the lowest mis-
classification rates across all clusters, indicating that is more effective com-
pared to conventional methods.

2. Cluster Sensitivity: The performance gap between MULLER and the con-
ventional methods varies by cluster. For example, in Cluster 2, the differences
are relatively small, while in Cluster 3 and Cluster 1, the differences are more
pronounced. This suggests that the effectiveness of learned resizing can be
influenced by the number of data in each cluster.

4.1 Comparison with The-State-of-Art Methods

Additionally, we conducted a thorough comparison with state-of-the-art meth-
ods. Specifically, we evaluated our system against competitors in the ICDAR
2021 Competition on Script Identification in the Wild [24], focusing on the third
task related to hybrid word-level script identification. The data in this compe-
tition is a subset of a large dataset since they were randomly selected from the
MDIW-13 multiscript document database [1,24].

Table 5 summarizes the participating groups and their methods compared to
our proposed system.

Table 5. Summary of participants and submitted approaches to SIW 2021 compared
with our proposed approach. The table lists the abbreviations of the models, as used
in the experimental section. PR = Pre-trained models, EX = External data, HC =
Hand-crafted features, AL = Detection and alignment, EM = Ensemble models, DM
= Differentiate models, Pre = Pre-processing, post = Post-processing, � = Yes, × =
No. [24]

Team PR EX HF AL EM DM Pre Post Score

Ambilight � � × � × × � � 99.84%

DLVC-Lab � � × × � × × × 98.87%

NAVER Papago � × × × × × � × 97.17%

UIT MMlab � × × × � � × � 97.09%

CITS � � × × × × � � 94.79%

Larbi Tebessi × × � × × × × × 83.83%

Ours × × × × × × � × 98.16%
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Table 5 outlines the methodologies employed by different teams, indicat-
ing whether they used pre-trained models, external data, hand-crafted fea-
tures, detection and alignment techniques, ensemble models, and pre- or post-
processing techniques. We can observe, that the results of the participants ranged
from 99.84% to 83.83%, where we’ve remained third with an average accuracy of
98.16%. Ambilight, which achieved the highest accuracy of 99.84%, utilized an
extensive array of methods including pre-trained models, external data, detec-
tion and alignment, and both pre- and post-processing techniques, contributing
to their superior performance. Similarly, DLVC-Lab, with an accuracy of 98.87%,
employed pre-trained models and ensemble techniques, demonstrating the effec-
tiveness of combining multiple advanced methods. NAVER Papago and UIT
MMlab focused on pre-processing and ensemble models respectively, achieving
accuracy scores of 97.17% and 97.09%. In contrast, Larbi Tebessi, relying solely
on hand-crafted features, scored the lowest at 83.83%, indicating the limitations
of using fewer techniques.

Our method achieved a notable accuracy of 98.16% with the use of a single
learned resizing technique as a pre-processing step. This performance is signif-
icant given the simplicity and lower computational requirements compared to
more complex methods. The core strength of MULLER lies in its ability to feed
non-square, varying size images directly into a resizer jointed to a classification
module, eliminating the need for resizing, padding, or patching, which often
leads to a loss of essential information and decreased performance. This capabil-
ity is revolutionary in domains where maintaining the integrity of the original
image is crucial. Our proposed approach also highlights the potential for fur-
ther enhancement by addressing dataset imbalances, implementing fine-tuning,
and incorporating more sophisticated modules, which could lead to even higher
accuracy levels.

5 Conclusion and Future Work

This paper introduces a novel approach for word-level script identification for
hybrid documents, leveraging the synergy between the learned MULLER resizer
module and the MobileNet model. From input images of varying sizes, our app-
roach employs K-means clustering to determine the optimal target. The results
are promising: our approach achieves a remarkable average accuracy of 98.16%,
surpassing the original model’s performance that relied on an unlearned resizer.
The success of our approach can be attributed to the learned resizing capability
of the MULLER module, which preserves essential details and quality of images,
making it feasible to process non-square, varying size images effectively. This is
revolutionary in several domains where traditional resizing, padding, or patching
solutions often lead to severe loss of critical information, causing a decrease in
performance.

By addressing dataset imbalances, implementing fine-tuning, investigating
other Script identification Levels, and incorporating more sophisticated modules,
our method could achieve even higher accuracy levels. Such improvements could
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further solidify the advantage of using learned resizing in diverse and complex
image analysis tasks.
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Abstract. Scene text recognition (STR) is a challenging task that
aims to automatically localize and recognize text in varied natural
scenes. Although the performance of STR methods has been signifi-
cantly improved, the STR problem is far from being solved, especially
when dealing with text with complex shapes and intricate backgrounds.
To increase the accuracy of the STR model for arbitrary-shaped text
and robustness to interferences such as noises and adjacent objects, we
propose a novel deformable ensemble attention model and a scene text
recognition network DEATRN based on it. The attention model com-
bines the flexibility of an ensemble of deformable 2D local attentions for
retrieving discriminative features of characters and the constraints on
the regularity of the overall shape of a text depicted by its parametric
centerline, which effectively enhances the text recognition performance
of DEATRN. We also propose effective text geometry-based loss terms
to improve the accuracy of attention. The experimental results show the
superiority of DEATRN in recognizing arbitrary-shaped text in real sce-
narios.

Keywords: Scene text recognition · Local attention · Deformable
sampling · Text centerline

1 Introduction

Scene text is an important class of visual objects in natural images, which con-
tains a wealth of valuable semantic information for various applications. As a
critical step for retrieving textual information from the image, scene text recogni-
tion (STR) has attracted considerable research interests. However, recent studies
[9] indicate that the problem of scene text recognition is far from being solved
in complex real-world scenarios.

Most contemporary STR approaches employ an encoder-decoder architec-
ture. The encoder extracts visual features from a text image, and the decoder
transforms the features into the final character label sequence using some
sequence model, in which attention mechanisms are often employed to adap-
tively align features with characters in decoding.
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Fig. 1. The overall architecture of the proposed text recognition network DEATRN.

To recognize text in arbitrary shapes, some methods [15,22] introduce text
shape rectification mechanisms that transform the input text into a more regular
shape before recognition. Another line of research [13,26] enhances the decoder
with 2D attention mechanism, which adaptively selects features corresponding
to each character in 2D feature maps, avoiding compressing the feature map
in height dimension before decoding like some conventional recurrent neural
network (RNN) based models, so that important spatial clues of irregular-shaped
text can be preserved and exploited for recognition. As Transformer models [24]
are widely used in STR methods, the two dimensional representations of the
text used throughout the attention model significantly increase the capability
and flexibility to learn spatial clues of the text.

Despite the greatly improved performance of STR methods on experimental
benchmarks, few attention models used in previous STR work explicitly model
and utilize the text shape clues and struggle with enforcing effective constraints
on locations of characters, which reduces the robustness of the attention model
to ambiguities or interferences caused by noises, adjacent objects, and intricate
backgrounds in real-world scenarios.

To improve the accuracy and robustness of the attention model to arbitrary
shapes of the text and various contextual interferences, we propose a scene text
recognition network DEATRN with a novel 2D attention mechanism, which com-
bines the flexibility of an ensemble of deformable 2D local attentions to align
characters with discriminative features and the constraints on the regularity of
the overall layout of characters depicted by the parametric text centerline to
enhance the text recognition accuracy. The overall architecture of DEATRN is
shown in Fig. 1.
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The main contributions of our work are summarized as follows:

– We introduce the parametric description of the text shape in the attention
model to help reliably locate character features in the face of contextual
interferences.

– We propose a flexible feature selection and alignment mechanism for the
decoder, which adaptively aggregates features at an ensemble of deformable
local attention positions that effectively capture discriminative visual charac-
teristics of the character in varied shapes and styles.

– We devise effective label generation schemes for the text geometry and char-
acter regions, requiring no character-level annotation information. We further
propose effective loss terms to supervise the training of the model to obtain
as accurate attentions as possible.

– Our method achieves leading performance on several STR benchmarks,
demonstrating the effectiveness of the proposed attention and recognition
model.

2 Related Work

Numerous methods for scene text recognition have emerged in the past few years.
From the perspective of processing flow, most methods can be divided into two
broad categories: character-oriented and word-oriented. The former typically fol-
lows a bottom-up pipeline [8,25], starting by classifying individual characters
and then grouping recognized characters into words. To overcome the prob-
lem of character segmentation errors encountered in the former approach, word-
oriented methods recognize the character sequence of a word as a whole through
certain sequence modeling mechanism, integrating character feature extraction
and classification into the text recognition process.

Most of recent text recognition methods [3,14,19,21,32] leverage some
sequence models like RNN to capture relations between character features and
linguistic knowledge and recognize the text in a word-oriented manner. Inspired
by speech recognition, these methods often employ an encoder-decoder frame-
work, where the text image is first encoded into a feature sequence using usually
some convolutional and recurrent networks and then decoded into character via
sequence models, and variant attention mechanisms are exploited to adaptively
align characters with related features in the sequence for classification [3,26].

Arbitrary-Shaped Text Recognition. Early scene text recognition studies
mostly focused on regular-shaped horizontal text, which is usually encoded into
an one-dimensional feature sequence without loss of important information for
character classification. However, as increasing research interests turn to arbi-
trary, especially irregularly shaped text which has a two-dimensional layout,
representing the text image with traditional 1D sequence models becomes insuf-
ficient to keep key text clues for recognition and may introduce ambiguities and
noises. Accordingly, some methods [15,22,32] transform the input irregular text



240 S. Xu et al.

into a canonical (horizontal straight) shape using spatial transformation net-
works (STN) or specific layout rectification mechanisms, so that the text with
regularized shape can be recognized using 1D sequence models.

Besides introducing text shape normalization as a pre-processing step for
recognition, some methods [5,12,13,23,28] employ 2D attention to adaptively
attend to certain regions in the two-dimensional feature maps during the decod-
ing process, which better captures the spatial information of the text and enables
more accurate extraction of character features. For example, some 2D attention
mechanisms [13] take the hidden state of RNN as the query to sequentially attend
to neighboring positions in the 2D feature map to select effective features for
character recognition.

Benefiting from the context modeling capability of Transformer, some recent
methods [12,28] exploit Transformer to learn spatial dependencies of characters
and sequential relations within 2D feature representation, which is then utilized
to retrieve relevant features of the characters given previous decoding output.

Our work also adopts a Transformer-based 2D attention framework, but
unlike most previous methods which capture global (word-level) dependencies
only, we further introduce character-level spatial attention to adaptively retrieve
local discriminative features of individual characters based on explicit model-
ing and exploitation of the geometric shape clues of the text, which effectively
increases the accuracy of attention in the presence of various interferences such
as noises and adjacent text instances.

Performance Evaluation. A common paradigm [1] in scene text recognition
is to train the model on large synthetic datasets [7,8] and then evaluate it on six
standard real-world benchmarks, namely, IC13 [11], IIIT5k [16] and SVT [25]
for regular text and IC15 [10], SVT-P [18], and CUTE [20] for irregular text.
The performance gains that state-of-the-art methods achieve on six benchmarks
are decreasing, which, however, does not mean that the challenges in STR have
been largely addressed. To more comprehensively measure the capabilities of
STR methods, some new datasets such as Union14M [9] and WordArt [28] have
been proposed, which contain a large variety of challenging scene text samples
in real scenarios with great diversity and complexity. The performance of exist-
ing STR methods on these new benchmarks is often poorer than that on the
six conventional benchmarks, showing that the latter is not sufficient for fully
exploring the challenges of the STR problem. In this work, we focus on the new
and more comprehensive Union14M dataset and the WordArt dataset while also
providing the results on the conventional benchmarks for comparison.

3 Methodology

As shown in Fig. 1, the proposed text recognition network DEATRN consists of
a Transformer encoder and a local-global hybrid decoder. Given a text image,
the encoder extracts its feature representation, which is fed to the decoder and
on the other hand is used to predict the geometric parameters of the centerline of
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the text. The local decoder takes the text embeddings as the input and outputs
features of the character obtained through the proposed deformable ensemble
attention mechanism. The global decoder further refines the features by cap-
turing relationships between features of different characters, and the resulting
embeddings are then used for character classification. For higher accuracy, the
decoding is performed in both forward and backward directions. We’ll take a
look at each component of the network in the following sections.

3.1 Feature Extraction

To obtain the feature representation of an input text image X ∈ RH×W×3 (W
and H are image width and height), a shallow convolutional neural network
(CNN) is first employed to extract the initial visual features Fi ∈ RH/4×W/4×C

(C is the number of channels) of the image, which are further flattened into the
size RHW/16×C . The resulting features are then fed into the Transformer encoder
proposed in SATRN [12] and get refined by self-attention. The output feature
representation fe ∈ RHW/16×C is input into the decoder while also being used
to predict the geometric parameters of the text centerline.

3.2 Text Centerline Regression

Different from previous attention mechanisms used in the decoder which do not
explicitly exploit the shape characteristics of the text, in our work, the geometric
description of the text’s centerline, which depicts the overall spatial layout of
the text as shown in the text example in Fig. 1, is utilized as a constraint on
the attention positions of the characters to improve the attention accuracy and
suppress attention drift caused by noise, background and adjacent text, which
is especially useful for irregular-shaped text.

The centerline of a text is formulated as an n-th order polynomial:

y = fa(x) = anxn + an−1x
n−1 + · · · + a1x + a0 (1)

where (x, y) are the coordinates of a point on the polynomial curve,
a = [an, an−1, · · · , a0] are the coefficients of polynomial terms.

Given the features output by the encoder, a text centerline (TCL) prediction
module is used to predict the parameters a of the polynomial centerline of the
text. To generate the ground-truth label ā for a text image to train the parameter
prediction network, we first apply the K-means algorithm on the image pixels
with the number of clustering centers set to 2 to generate a binary label for
each pixel which indicates it belonging to the text region or the background.
This yields a segmentation map Sgt of the text image. Next, we apply the K-
means clustering algorithm on the coordinates of the text pixels in Sgt, with the
number of clusters set to L (the number of characters in the image). The resulting
L cluster centers (xgt,i, ygt,i)i∈[1,L] are taken as a set of center points of the text.
We then obtain the label ā for the parameters of the polynomial centerline by
fitting it to the center points using the least squares method. Figure 2 show some
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Fig. 2. Examples of the labels generated for text centerline regression. The first row
shows the training text image. The second row shows the generated labels of the text
segmentation map, center points (denoted by red dots), and the approximated text
centerline (denoted by the yellow line). (Color figure online)

Fig. 3. The local deformable ensemble decoder

examples of the generated labels of the text segmentation map, center points,
and the polynomial centerline of the text.

As slight changes in the high order coefficients of the polynomial curve can
lead to tremendous variations in the curve shape, we do not use ā to supervise the
prediction of a directly. Instead, we uniformly sample T (10 in this work) values
for the curve variable {xi}i∈[1,T ] between the variable values of the ground-truth
start point and end point (i.e., xgt,1 and xgt,L) of the centerline, and compute the
L2 centerline approximation loss Lcline between the predicted and ground-truth
curve function values as follows:

Lcline =
T∑

i=1

L2(fa(xi), fā(xi)) (2)

3.3 Local Deformable Ensemble Decoder

Given the features output by the encoder, we propose a local deformable ensem-
ble decoder (LDED) to accurately obtain aligned features of each character to
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be recognized. To achieve this goal, the decoder integrates three effective mech-
anisms. 1) As there are usually multiple features at different locations that play
an important role in the classification of a character, we propose to locate an
ensemble of K sampling points (K = 16 in this work) in the feature map where
the features are selected for decoding the character. 2) Considering that the same
character may exhibit varied appearances with different fonts and styles, instead
of using a fixed, regular sampling grid, we allow the sampling points to have
a deformable distribution over the feature map so as to adaptively search for
effective features for the character. 3) Since the sampled features may capture
different aspects of useful information for character classification, we employ a
multi-head attention mechanism to allow the decoder to jointly attend to infor-
mation from different representation subspaces of the sampled features.

Figure 3 shows the architecture of our proposed local deformable ensemble
decoder. Similar to other auto-regressive decoder, LDED takes the embedding
of the previous character as the initial query, which goes through a mask multi-
head self-attention (MSA) layer, a multi-head deformable ensemble attention
(MDEA) layer and a fully connected (FC) layer to obtain the feature of the
current character. Specifically, given the initial query for the current character
to be decoded, LDED employs the query mechanism similar to that used in
D-DETR [33] to predict the center point of the current character (as shown in
Fig. 4) based on the query and feed the projected query to a set of M attention
heads. Each of the M heads of MDEA adaptively localizes K sampling points (in
terms of K predicted offsets relative to the center point) in the output feature
map fe of the encoder. At the same time, each head predicts a weight wk (k ∈
[1,K]) for each sample point, which is then used to aggregate the features at
the sampling points to yield the aligned feature for the current character. The
process can be formatted as follows:

si = MSA(ei−1 + pi) (3)

h = siWP (4)

poscen = Linear1(si), posoff = Linear2(h), w = Linear3(h) (5)

possamp = poscen ⊕ posoff (6)

fi =
K∑

k=1

wk · fe[possamp,k] (7)

where ei−1 ∈ RC is the embedding of the previous character, pi is the position
encoding, si is the output of MSA, WP ∈ RC×C/M is the projection matrix
and h is the projected feature. poscen ∈ R1×2 denotes the position of the center
point, posoff ∈ RK×2 denotes the offsets of the sampling points relative to
the center point, ⊕ denotes matrix addition with broadcasting, and possamp ∈
RK×2 denotes the positions of the sampling points. w = [w1, . . . , wK ] are the
predicted aggregation weights for sampling points, fe[possamp,k] denotes the
feature sampled from the encoder’s output feature map fe at the kth sampling
point, and fi is the feature of the current character output by one head of MDEA.
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Fig. 4. Illustration of the center point
(red) and sampling points (green) of
a character and the text centerline
(blue). (Color figure online)

Next, the features {fmi ∈ RC/M}m∈[1,M ]

extracted by all M attention heads are con-
catenated and projected into the feature gi

of the current character:

gi = Concat(f1, · · · , fM )WH (8)

where WH ∈ RC×C is the projection
matrix. The feature gi is finally fed to an
FC layer to produce the output of the local deformable ensemble decoder. As
shown in Fig. 3, the model stacks N LDEDs for improved accuracy.

Loss on Character Attention Position. Accurate attention is crucial to the
effectiveness and discriminability of character features extracted. We propose
three losses, the center loss, the bidirectional alignment loss, and the disper-
sion loss, for training the model to accurately infer the attention positions for
character features.

The center loss Lcenter brings the center points of characters closer to the
polynomial centerline to reduce attention drift. Given the x-coordinates of the
center points xcen, their y-coordinates ycen should be close to the values of the
polynomial function Eq. 1 at xcen, which can be formulated as follows:

Lcenter = MSE(fa(xcen), ycen) (9)

where a is the predicted coefficients of the polynomial centerline, and MSE
denotes the mean square error.

The bidirectional alignment loss Lalign further fine-tunes the x-coordinates
of the center points in a self-supervised way on the basis of bidirectional decod-
ing. Specifically, given the two groups of center points obtained in the forward
and backward decoding processes respectively, the bidirectional alignment loss
is formulated as follows:

Lalign = max(Pos − Neg, 0) (10)

Pos =
L∑

i=1

Dist(xf
i , xb

L−i+1), Neg = min
i�=j

(Dist(xf
i , xb

j)) (11)

where the function Dist(·, ·) calculates the distance between two inputs, which
is the square distance in this paper. xf and xb are the x-coordinates of a center
point obtained in the forward and backward decoding respectively. L is the
number of characters in the image. Pos denotes the positive distance and Neg
denotes the hardest negative distance.

The dispersion loss Ldisp constrains the sampling points to distribute near
the character’s center point, which helps to suppress the influence of interfering
objects such as noises and other characters located at a distance. We define the
dispersion loss as follows:

Ldisp =
R∑

i=1

K∑

k=1

oi,k, oi,k = max((
ox

W/4
)2 + (

oy
H/4

)2 − τ, 0) (12)
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where R is the maximum number of characters that one text may contain and
is set to 25 in this work. K is the number of sampling points associated with
a center point. τ is a hyperparameter that controls how the distance between
a sampling point and the center point is counted in the loss. ox and oy are
the offsets between the ith center point and its kth sampling point in x and y
coordinates, respectively.

3.4 Global Decoder

Given the output features of the local

Fig. 5. The global decoder.

decoder, which focuses on the adja-
cent features related to each charac-
ter, we employ a global Transformer
decoder shown in Fig. 5 to model the
relationship between the features of
all characters in the text. The features
extracted by the local decoder are fed
into a series of Transformer decoder
blocks, each consisting of a self-attention layer, a cross-attention layer which
takes the encoder output features as the key and value while taking the output
features of the self-attention layer as the query, and a linear layer. The output
of the final decoder block is fed to a fully connected layer and a softmax layer
to predict the character label, and the labels with the highest word probability
obtained in the forward and backward decoding processes are selected as the
final output characters.

3.5 Loss Function

The whole loss function of the model is defined as follows:

L = λ1Lrec + λ2Lcline + λ3Lcenter + λ4Lalign + λ5Ldisp (13)

where Lrec is the cross-entropy loss for character classification, and λ1..5 are the
balance weights which are set to 1.0, 10.0, 1.0, 1.0 and 1.0, respectively.

4 Experiments

4.1 Datasets

The proposed text recognition network DEATRN is trained on two synthetic text
datasets, MJSynth (MJ) and SynthText (ST). MJSynth [8] contains nine million
text images generated from a set of 90k common English words. SynthText [7]
is created for the text detection task, whose samples are generated in a way
similar to MJSynth. We crop the words in the image according to its ground-
truth bounding box for the recognition task.

To evaluate the performance of DEATRN, the following eight scene text
recognition benchmarks are employed in the experiments:
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– Union14M [9] covers scene text in a broad range of real scenarios, including
900 artistic text (ART), 2426 curved text (CUV), 1495 contextless text
(CTX), 1369 multi-oriented text (MOR), 892 multi-words text (MWD),
1585 salient text (SAL), and 400000 general text (GEN) samples.

– WordArt [28] contains 1511 artistic text images collected from posters, greet-
ing cards, covers, billboards, handwriting, etc.

– IIIT5k [16] contains 3000 cropped word images collected from the web.
– SVT [25] comprises 647 testing word images cropped from Google Street

View, many of which are severely corrupted by noise and blur and may have
very low resolutions.

– IC13 [11] provides 857 cropped testing word images after filtering out images
containing non-alphanumeric characters or less than three characters.

– SVT-P [18] contains 639 cropped testing word images picked from side-
view angle snapshots in Google Street View and many images contain severe
perspective distortions.

– IC15 [10] comprises 1811 cropped testing word images captured by Google
Glass. A large number of text instances are irregularly shaped such as arbi-
trarily oriented, perspectively distorted, or curved.

– CUTE [20] includes 288 cropped word images for testing, in which many of
the text is curved.

We employ word recognition accuracy as the performance metric, which is
defined as |O|

|G| where O and G are the set of correctly recognized words and the
set of ground-truth words, respectively.

4.2 Implementation Details

We implement the proposed DEATRN based on PyTorch. The encoder, local
decoder and global decoder in the model have 12, 3 and 3 layers, respectively.
The feature dimension C is 512, and the number of attention heads M is 8.

The model is trained on four NVIDIA Tesla V100 GPUs with the AdamW
optimizer and a batch size of 384 for 6 epochs. The learning rate is warmed up
from 3e×10−7 to 3e×10−4 in the first 3000 iterations of the first epoch, and then
a cosine scheduler is applied in the subsequent iterations, gradually decreasing
the learning rate until it reaches a final value of 3e × 10−6. The bidirectional
alignment loss is not used in the first 4 epochs for the stability of the training.

The character set contains 90 character classes including uppercase and low-
ercase English letters, numbers from 0 to 9 and 28 special symbols. All text
images are resized to 32 × 128. We adopt the same data augmentation strat-
egy as used in ABINet [5], including rotation, perspective deformation, blurring,
color jittering, Gaussian noise, and so on.

4.3 Comparisons with State-of-the-Arts Methods

In Table 1, we compare our proposed DEATRN with some state-of-the-art scene
text recognition methods which are similarly trained on the ST and MJ datasets
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Table 1. Recognition accuracy on Union14M and WordArt benchmarks. In each col-
umn, the best result is shown in bold.

Method CUV MOR ART CTX SAL MWD GEN WordArt

CRNN [21] 7.5 0.9 20.7 25.6 13.9 25.6 32.0 47.5

ASTER [22] 34.0 10.2 27.7 33.0 48.2 27.6 39.8 57.9

MORAN [15] 8.9 0.7 29.4 20.7 17.9 23.8 35.2 -

SAR [13] 44.3 7.7 42.6 44.2 44.0 51.2 50.5 63.8

DAN [26] 26.7 1.5 35.0 40.3 36.5 42.2 42.1 52.4

RobustScanner [31] 43.6 7.9 41.2 42.6 44.9 46.9 39.5 61.3

SEED [19] - - - - - - - 60.1

SCATTER [14] - - - - - - - 64.0

SATRN [12] 51.1 15.8 48.0 45.3 62.7 52.5 58.5 65.7

ABINet [5] 59.5 12.7 43.3 38.3 62.0 50.8 55.6 67.4

VisionLAN [27] 57.7 14.2 47.8 48.0 64.0 47.9 52.1 -

SRN [30] 63.4 25.3 34.1 28.7 56.5 26.7 46.3 -

SVTR [4] 63.0 32.1 37.9 44.2 67.5 49.1 52.8 -

CornerTransformer [28] - - - - - - - 70.8

MATRN [17] 63.1 13.4 43.8 41.9 66.4 53.2 57.0 -

DEATRN 69.2 22.8 59.1 59.3 71.7 65.7 61.9 72.1

only. For the fairness of comparison, all methods are not fine-tuned on the target
scene text datasets. We cite the results on the Union14M and WordArt datasets
reported in [9,28] respectively for corresponding methods in Table 1.

DEATRN achieved the best performance on seven out of eight benchmarks
– Curve, Artistic, Contextless, Salient, Multi-Word, General, and WordArt,
surpassing the second best by 5.8%, 11.1%, 11.3%, 4.2%, 12.5%, 4.9%, and
1.3%, respectively. The results show that the proposed geometry-constrained
deformable attention mechanism can effectively recognize text of various appear-
ances in real scenarios. Some examples of scene text recognition results are shown
in Fig. 6.

We also evaluate DEATRN on the six conventional STR benchmarks IIIT5k,
IC13, SVT, IC15, SVT-P, and CUTE in Table 2. DEATRN achieves competitive
performance compared to other state-of-the-art methods. It is worth noting that
as we take the Union14M and WordArt benchmarks as the primary optimization
target of DEATRN and the same trained model is used for evaluation on the
six conventional benchmarks, which have significantly fewer complex and irreg-
ularly shaped text samples than Union14M/WordArt, DEATRN’s strengths in
recognizing complex scene text are more pronounced on the new Union14M and
WordArt benchmarks compared to the conventional ones.
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Fig. 6. Examples of text recognition results obtained by DEATRN.

Table 2. Recognition accuracy on six scene text benchmarks. In each column, the best
result is shown in bold.

Method Regular Text Irregular Text

IIIT5k SVT IC13 SVT-P IC15 CUTE

ASTER [22] 93.4 89.5 91.8 78.5 76.1 79.5

TRBA [1] 87.9 87.5 92.3 79.2 77.6 74.0

MORAN [15] 91.2 88.3 92.4 76.1 68.8 77.4

SAR [13] 91.5 84.5 91.0 76.4 69.2 83.3

ESIR [32] 93.3 90.2 91.3 79.6 76.9 83.3

DAN [26] 94.3 89.2 93.9 80.0 74.5 84.4

RobustScanner [31] 95.3 88.1 94.8 79.5 77.1 90.3

SEED [19] 89.6 92.8 93.0 81.4 80.0 83.6

SCATTER [14] 93.2 90.9 94.1 86.2 82.0 84.8

SATRN [12] 92.8 91.3 94.1 86.5 79.0 87.8

ABINet [5] 96.2 93.5 97.4 89.3 86.0 89.2

SVTR [4] 96.3 91.7 97.2 88.4 86.6 95.1

CornerTransformer [28] 95.9 94.6 96.4 91.5 86.3 92.0

MATRN [17] 96.6 95.0 97.9 90.6 86.6 93.5

SIGA [6] 96.6 95.1 97.8 90.5 86.6 93.1

LISTER [2] 96.8 93.5 97.7 89.5 87.2 89.6

OTE/SVTR [29] 96.4 95.5 97.4 89.6 87.2 92.4

DEATRN 95.6 93.2 97.9 90.2 85.9 94.8
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4.4 Ablation Study

We evaluate the effectiveness of the main components of the proposed text recog-
nition model by ablation experiments. For simplicity, all models in the ablation
experiments employ a single-directional decoder, unless specifically stated.

Table 3. Effectiveness of text centerline constraint on character attention.

Model CUV MOR ART CTX SAL MWD GEN WordArt

w/o centerline 56.0 15.3 48.8 52.9 62.1 54.2 57.4 65.1

w. centerline 54.1 15.0 51.3 55.2 63.0 57.3 58.2 67.5

Fig. 7. Illustrations of the predicted text centerline (blue) and character centers (red).
(Color figure online)

Text Centerline Constraint on Character Attention. We compare the
text recognition accuracy with and without the constraint of the geometry of the
text centerline on character attention in Table 3. Specifically, in the contrasting
model, the distribution of the center points of the characters is no longer con-
strained by the geometry of the text centerline, i.e., the center loss is omitted
in this model. It can be seen that the centerline constraint helps to improve the
recognition accuracy on six of the eight datasets, showing the effectiveness of
the centerline constraint in improve the accuracy of attention. Figure 7 shows
some examples of the predicted text centerline and character centers. Note that
some degree of inaccuracy in the centerline and center point prediction can
be effectively compensated for by the proposed deformable ensemble attention
mechanism with dynamically predicted feature sampling positions.

Table 4. Effectiveness of the dispersion loss.

τ CUV MOR ART CTX SAL MWD GEN WordArt

0.1 59.4 16.2 50.3 57.6 64.9 61.3 58.6 67.4

0.3 58.6 15.9 51.6 58.4 65.9 62.9 58.5 68.7

0.5 57.7 16.1 50.1 56.0 65.1 58.9 58.7 66.7

∞ 54.1 15.0 51.3 55.2 63.0 57.3 58.2 67.5
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Dispersion Loss. We verify the effectiveness of the proposed dispersion loss
in Table 4, which compares the text recognition accuracy using different values
for τ in Eq. 12. According to the definition of the dispersion loss, the larger the
value of τ , the more freely the sampling points are distributed in the feature
map. Particularly, τ = ∞ means that the center point has no constraint on the
spatial distribution of the sampling points, i.e., the dispersion loss is omitted.

As shown in the data in Table 4, too large or too small τ are both not con-
ducive to text recognition. We guess too much constraint on the sampling point
position resulting from small τ values limits the flexibility of the attention model.
In contrast, excessive freedom in the attention position may make the model
more vulnerable to interferences like noises, resulting in degraded performance.
Accordingly, we adopt τ = 0.3 in our model. Compared to τ = ∞ (i.e. without
the dispersion loss), the results also show the effect of the proposed dispersion
loss in improving the recognition performance.

Local Deformable Ensemble Decoder. We verify the effectiveness of the
proposed local deformable ensemble decoder in Table 5. Models ‘Global’ and
‘Local’ employ only a 6-layer global and local decoder for character prediction,
respectively. Model ‘Hybrid’ combines the local and global decoders as proposed,
which consists of 3 local decoder layers and 3 global decoder layers.

As shown in Table 5, compared to the standard Transformer-based global
decoder, the proposed local deformable ensemble decoder achieves higher or
equal recognition accuracies on all benchmarks. By combining the local and
global decoders, the hybrid decoder achieves the best results on four benchmarks
and a higher average performance.

Table 5. Effectiveness of the local deformable ensemble decoder.

Model CUV MOR ART CTX SAL MWD GEN WordArt

Global 51.1 15.8 48.0 45.3 62.7 52.5 58.5 65.7

Local 58.6 15.9 51.6 58.4 65.9 62.9 58.5 68.7

Hybrid 63.1 19.4 51.0 55.3 66.9 60.0 59.6 68.1

Table 6. Effectiveness of bidirectional decoding with the alignment loss.

Model CUV MOR ART CTX SAL MWD GEN WordArt

Single-Dir 63.1 19.4 51.0 55.3 66.9 60.0 59.6 68.1

Bi-Dir 67.7 20.5 58.3 59.3 70.2 65.3 61.4 71.8

Bi-Dir + Align. Loss 69.2 22.8 59.1 59.3 71.7 65.7 61.9 72.1
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Bidirectional Decoding and Bidirectional Alignment Loss. To verify the
effectiveness of the bidirectional decoding mechanism and the proposed bidirec-
tional alignment loss, we compare the performance of three variants of the recog-
nition model, single-direction decoding and bidirectional decoding without and
with the alignment loss. As shown in Table 6, the performance of bidirectional
decoding is much better than that of single-direction decoding, and the intro-
duction of the alignment loss further improves the text recognition accuracy.

4.5 Limitations

Figure 8 shows some examples of the failure cases of DEATRN. Most incorrect
recognition results are caused by character-like object, heavy distortion of char-
acter, complex image background, and ambiguous text orientation.

Fig. 8. Examples of the failure cases of DEATRN. Incorrect recognition results are
displayed in red text, and the ground truth is shown in blue text in parentheses. (Color
figure online)

5 Conclusion

We propose a novel 2D attention model for arbitrary-shaped scene text recog-
nition. The model adaptively aggregates discriminative features selected by an
ensemble of deformable local attentions to generate character feature for classi-
fication. We further introduce a parametric modeling of the text centerline and
associated loss terms as spatial constraints to improve the accuracy and robust-
ness of attention in the face of various interferences. The proposed attention
model effectively enhances the performance of the recognition network for scene
text with varied shapes and appearances.
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Abstract. High-quality tabular datasets are often traded by their own-
ers as valuable digital assets due to their scarcity and usefulness in
training machine learning models. A pivotal concern when trading the
datasets is their ownership, which is seriously threatened by piracy due to
the simplicity of reselling illegal copies. This produces an urgent demand
for an effective watermarking method to demonstrate the ownership of
the dataset. Existing database watermarking methods rely on either a
primary key or a virtual primary key to watermark a tabular dataset.
These methods cannot work well in the context of machine learning,
because a primary key can be easily modified without affecting the
machine learning utility of a tabular dataset, and a virtual primary key
is often not robust against watermark-removing attacks. How to water-
mark a tabular dataset without using a primary key or virtual primary
key is a challenging task that has not been systematically studied before.
In this paper, we tackle this task by a novel primary key free method that
embeds a sinusoidal signal as the watermark into a discrete-time signal
constructed from the tabular dataset. We conduct an in-depth theoreti-
cal analysis on the exceptional robustness of our watermark against five
challenging attacks, and further validate the robustness through compre-
hensive experiments on two real-world datasets.

Keywords: Primary key free · Tabular dataset watermarking · Robust

1 Introduction

Artificial intelligence powered by machine learning has brought significant bene-
fits to the modern society. In many successful applications, large machine learn-
ing models are fueled by huge amount of tabular datasets, such as market-
ing data [8], healthcare data [4], environment & climate data [13], and sensor
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data [16]. Due to the enormous efforts and cash invested in data collection and
management, these datasets are often regarded as high value digital assets of
their owners. However, when these datasets are traded in the market, their safety
is usually threatened by piracy due to the simplicity of creating and reselling
illegal copies. This produces an urgent demand for an effective watermarking
method that embeds a detectable watermark into a dataset to demonstrate the
ownership of the dataset and its copies.

As discussed later in Sect. 2, existing methods are mostly not robust to water-
mark removing attacks because they embed their watermarks based on the pri-
mary key (PK) [2,3,15,37] or virtual primary key (VPK) [3,9,10,25]. The use
of PK and VPK significantly weaken the robustness of existing methods against
attacks, because both PK and VPK can be easily modified by an attacker to
remove the watermark without significantly decreasing the machine learning
utility of the dataset. As far as we know, how to watermark a tabular dataset
without using a primary key (or a virtual primary key) is a novel and challenging
task that has not been well studied in the literature.

In this paper, we systematically tackle this task by formulating and solving
a novel problem named primary key free watermarking for numerical tabular
datasets. We make the following contributions. First, we propose the novel task
of primary key free watermarking for tabular datasets. The goal is to embed
and detect watermarks on tabular datasets without using primary key (or a vir-
tual primary key) while achieving good robustness against watermark-removing
attacks. Second, we successfully tackle the problem with a carefully designed
watermarking method. The key idea is to first map the data instances in a tab-
ular dataset to a discrete-time signal, and then embed a watermark by adding
a sinusoidal signal to the discrete-time signal. The watermark can be accurately
detected by checking the existence of the sinusoidal signal. Last, we conducted
extensive experiments on two real-world datasets to compare the performance of
our method with five state-of-the-art baseline methods. The experimental results
demonstrate the superior robustness of our watermark against six challenging
watermark-removing attacks.

2 Related Work

Many existing works [3,10,12,15,19,25,33–35] have been proposed to embed
and detect watermarks in tabular datasets. Our work is related to the following
methods.

The primary key methods [2,3,17,35] rely on the primary key of a tab-
ular dataset to embed and detect watermarks. Most primary key methods [2,3,
12,35,37] use a primary key to uniquely identify watermarked data instances in
order to accurately detect watermark. Some other works [5,15,20,26,32–35] use
primary key to organize data instances in groups to embed and detect water-
marks. These methods work well when the primary key of a watermarked tabular
dataset stays unchanged. However, they cannot accurately detect the watermark
if an attacker modifies the primary key. Since modifying the primary key of a
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tabular dataset often does not reduce its machine learning utility in training
good machine learning models, the resale value of the tabular dataset in the
application areas of machine learning is not affected. Therefore, the primary key
methods cannot effectively protect tabular datasets against piracy, because an
attacker can easily modify the primary key of a watermarked tabular dataset to
create an illegal copy, which successfully escapes watermark detection and also
preserves the resale value.

The virtual primary key methods [3,9,10,25] compute a virtual primary
key (VPK) from data instances and use it as a substitution of primary key to
embed and detect watermarks. For example, Agrawal et al. [3] use the most
significant bits of an attribute to compute VPK. Li et al. [25] select multiple
attributes to compute VPK. By using a VPK, existing primary key methods
can be extended to watermark a tabular dataset. These methods are robust to
primary key modification, because they do not use primary key and the VPK
is secretly computed from data instances. However, a watermark embedded by
using VPK is often not robust against watermark-removing attacks [3,22,34,35],
because modifying the data instances changes the values of VPK [10,11,34]. As
a result, by slightly modifying the tabular dataset, an attacker can remove a
VPK-based watermark without causing much damage to the machine learning
utility of the dataset.

To the best of our knowledge, our work is the first in the literature to water-
mark a numerical tabular dataset without using a primary key (or a virtual pri-
mary key) while achieving outstanding robustness against watermark-removing
attacks. This makes our work particularly effective in protecting numerical tab-
ular datasets against piracy in the application areas of machine learning.

3 Task Definition

In this section, we first introduce a typical application example of the proposed
numerical tabular dataset watermarking task in Fig. 1. Then, we give the formal
definition of our task.

Fig. 1. A typical application scenario.

Example 1 (A typical application). As shown in Fig. 1, Alice owns a valuable
numerical tabular dataset Q and she wants to sell it to Bob and Mike. Before



PKF Watermarking for Numerical Tabular Datasets 257

selling Q, Alice uses two different secret keys KB and KM to embed two different
watermarks in Q. The watermarked dataset Q′

B produced by KB is sold to
Bob. The watermarked dataset Q′

M produced by KM is sold to Mike. Mike uses
watermark-removing attacks to modify Q′

M into Q̂ and put Q̂ on the market for
sale. Alice uses each of KB and KM to detect watermark from Q̂, which produces
WB = 0 and WM = 1, respectively. Since WM = 1 means Q̂ is watermarked by
KM , Alice demonstrates her ownership on Q̂ and she also knows Q̂ comes from
the copy she sold to Mike.

Next, we first define some related concepts and then introduce the formal
definition of our task, which includes two parts such as primary key (PK)-free
watermark embedding and PK-free watermark detection.

Definition 1 (Numerical tabular dataset). A numerical tabular dataset is
represented by a matrix, denoted by Q ∈ R

n×d, where each row stores one
data instance and each column corresponds to one attribute of the data instances.
A tabular dataset is also called a “dataset” in short.

Definition 2 (Machine learning utility). Given a numerical tabular dataset
Q, the machine learning utility (MLU) of Q, denoted by MLU(Q), indicates the
effectiveness of Q in training good machine learning models. It is measured by
the performance of a machine learning model trained on Q [19,24].

Definition 3 (Secret key). Denote by Q an original dataset that is not embed-
ded with a watermark and by Q′ the watermarked dataset that is embedded with
a watermark. A secret key, denoted by K, is a cryptographic key that is used to
embed and detect watermark from Q′.

The secret key K is completely different from a primary key (PK) or a virtual
primary key (VPK). In typical watermarking systems [3], K often consists of a set
of variables storing the information to generate and identify a watermark. While
PK and VPK are unique identifiers of data instances. Different watermarking
systems use different types of secret keys. Leaking K exposes the watermark
embedded in Q′, which makes it vulnerable to watermark-removing attacks.
Thus, K is often kept secret by the owner of the dataset Q.

Definition 4 (PK-free watermark embedding). Given Q, K and a positive
threshold γ, the process of watermark embedding produces Q′ by modifying the
data instances in Q. This process should satisfy: (1) no primary key is used; (2)
Q′ carries a watermark that can be verified by K; and (3) |MLU(Q)−MLU(Q′)| ≤ γ.

In the above conditions, (1) requires the embedded watermark to be inde-
pendent from primary key, which improves the robustness of watermark against
primary key modification. (2) means Q′ is watermarked by K. (3) establishes an
MLU constraint, which limits the damage on MLU(Q) caused by the modifica-
tion on Q when embedding the watermark. This preserves the resale value of Q′

because MLU(Q′) is close to MLU(Q).
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Definition 5 (PK-free watermark detection). Given K and a suspicious
dataset Q̂ that may or may not be watermarked by K, the process of watermark
detection verifies whether Q̂ is watermarked by K. This process returns a binary
variable W ∈ {0, 1}, where W = 1 means Q̂ is watermarked by K and W = 0
means Q̂ is not watermarked by K. This process should satisfy: (1) no primary
key is used; (2) the original dataset Q is not used; and (3) the value of W cannot
be flipped without significantly modifying Q̂.

In the above conditions, (1) requires the watermark detection to be primary
key free, which mitigates the influence of primary key modification on water-
mark detection. (2) is a classic requirement of blind watermark detection [15];
it reduces the risk of unauthorized access to the original dataset Q, because the
watermark can be detected without revealing Q [3,15,34]. (3) means an attacker
has to significantly modify Q̂ in order to escape watermark detection. Since a
larger modification on Q̂ causes more damage to MLU(Q̂), it reduces more resale
value of Q̂, which lowers the interest of the attacker in attacking Q̂.

4 PK-Free Watermark Embedding

The key idea of PK-free watermark embedding is to first map the data instances
to a discrete-time signal in a two-dimensional space, and then add a sinusoidal
signal with a specific frequency to the discrete-time signal by modifying the data
instances. This embeds the sinusoidal signal as a watermark into the dataset.

4.1 Mapping Dataset to Discrete-Time Signal

To map the data instances in a tabular dataset to a discrete-time signal in a
two-dimensional space, we design a pair of mapping functions, denoted by φx(·)
and φy(·), where φx(·) maps a data instance to a real-valued x-coordinate and
φy(·) maps the same data instance to a real-valued y-coordinate. This maps each
data instance to a pair of x and y coordinates, which represents a point in a two-
dimensional space. Then, the points of all the data instances are summarized in
groups to form the discrete-time signal.

Denote by Qi,: the i-th data instance in a tabular dataset Q ∈ Rn×d, and
by ex, ey ∈ R

d a random pair of orthogonal vectors with L2-norm equal to one.
The mapping function φy(·) that maps Qi,: to a y-coordinate yi is defined as

yi = φy(Qi,:) = Qi,:e�
y , (1)

which is simply the projection of Qi,: on ey. The mapping function φx(·) that
maps Qi,: to an x-coordinate xi is defined as

xi = φx(Qi,:) =
�Qi,:e

�
x

b �
τ

, (2)

where b ∈ R
+ and τ ∈ R

+ are positive real-valued hyperparameters, and �·�
is the flooring operator that rounds a real number down to the closest integer.
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Algorithm 1. Watermark embedding
Input: An original dataset Q and a secret key K.
Output: A watermarked dataset Q′.
1: Initialize Q′ as a zero matrix in the same size as Q.
2: for each data instance Qi,: in Q do
3: Compute: xi = φx(Qi,:).
4: Update: Q′

i,: = Qi,: + λ sin(2πθxi) ∗ ey. (See Equation [4])
5: end for
6: Return Q′.

The numerator �Qi,:e
�
x

b � in Eq. (2) conducts a binning operation that projects
Qi,: into a bin and returns the index of the bin. The hyperparameter b is the
bin width of each bin. By dividing the index of bin over τ , Eq. (2) maps the index
of bin into an x-coordinate, where 1

τ is the step size between the x-coordinates
of neighbouring bins.

The tuple (xi, yi) mapped from Qi,: represents a point in a two-dimensional
space. By mapping each Qi,: in Q to a point, we obtain a set of points, denoted
by Z =

{
(xi, yi) | xi = φx(Qi,:), yi = φy(Qi,:), i ∈ {1, . . . , n}}

. The points in Z
cannot form a discrete-time signal because some points may have the same x-
coordinates and different y-coordinates due to the binning operation in Eq. (2).
To convert the points in Z into a discrete-time signal, we first group each subset
of points with the same x-coordinates into a bin, denoted by

Bh = {(xi, yi) | xi = h, (xi, yi) ∈ Z}, (3)

where h is the value of the x-coordinates of the points in Bh. Then, we summarize
the points in Bh into a mean point, denoted by (x, y), where x = h is the mean of
the x-coordinates of the points in Bh, and y is the mean of the y-coordinates of
the points in Bh. By doing the above summarization for each possible value of h,
we convert the points in Z into a set of mean points with distinct x-coordinates.
This set of mean points forms the discrete-time signal, denoted by T . This maps
Q to the discrete-time signal T , which is written as T = ϕ(Q).

4.2 Adding Sinusoidal Signal

In this section, we introduce how to add a sinusoidal signal with a specific fre-
quency to the discrete-time signal T by slightly modifying the data instances in
Q. The sinusoidal signal is denote by y = λ sin(2πθx), where λ is the amplitude
of the signal, and θ is the frequency of the signal. To add the sinusoidal signal
into T , we first map Qi,: to xi = φx(Qi,:), and then update Qi,: by

Q′
i,: = Qi,: + λ sin(2πθxi) ∗ ey. (4)

By applying Eq. (4) on every Qi,: in Q, we modify Q into a watermarked dataset
Q′, where the sinusoidal signal is embedded as a watermark.
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We summarize the method to generate Q′ in Algorithm 1, where the
secret key, denoted by K = {ex, ey, θ, b, τ}, contains the necessary variables to
verify the watermark (i.e., the sinusoidal signal). The time complexity of Algo-
rithm 1 is O(nd), where n and d are the numbers of rows and columns in Q,
respectively.

Theorem 1. If Q′ is obtained by Algorithm 1, then T ′ = ϕ(Q′) contains a
component of the sinusoidal signal with frequency θ.

Proof. We prove this theorem by showing that, for every mean point (x′, y′) ∈ T ′,
the analytical form of y′ contains a sinusoidal term λ sin(2πθx′). Without loss
of generality, we assume x′ = h and derive the analytical form of y′ as follows.

Since x′ = h, we know (x′, y′) is summarized from the bin

B′
h =

{
(x′

i, y
′
i) | x′

i = h, (x′
i, y

′
i) ∈ Z ′}, (5)

where Z ′ =
{
(x′

i, y
′
i) | x′

i = φx(Q′
i,:), y

′
i = φy(Q′

i,:), i ∈ {1, . . . , n}}.

For each point (x′
i, y

′
i) ∈ B′

h, we can derive from Eq. (4) and exe�
y = 0 that

Q′
i,:e

�
x = Qi,:e�

x . Then, we can derive from Eq. (2) that

x′
i = φx(Q′

i,:) =
�Q′

i,:e
�
x

b �
τ

=
�Qi,:e

�
x

b �
τ

= φx(Qi,:) = xi. (6)

Since (x′
i, y

′
i) ∈ B′

h, we know x′
i = h by the definition of B′

h. Thus,

x′
i = xi = h. (7)

Since eye�
y = 1, we can derive from Eqs. (1) and (4) that

y′
i = Q′

i,:e
�
y = Qi,:e�

y + λ sin(2πθxi) = yi + λ sin(2πθxi). (8)

By plugging Eq. (7) into the above equation, we have

y′
i = yi + λ sin(2πθh), (9)

which holds for every point (x′
i, y

′
i) ∈ B′

h.
Since y′ is the mean of the y-coordinates of all the points (x′

i, y
′
i) ∈ B′

h, we
can derive the analytical form of y′ as

y′ =
1

|B′
h|

∑

(x′
i,y

′
i)∈B′

h

y′
i =

( 1
|B′

h|
∑

(x′
i,y

′
i)∈B′

h

yi

)
+ λ sin(2πθh). (10)

Since x′ = h, the analytical form of y′ is

y′ =
( 1

|B′
h|

∑

(x′
i,y

′
i)∈B′

h

yi

)
+ λ sin(2πθx′), (11)

which contains the sinusoidal term λ sin(2πθx′) with frequency θ.
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Algorithm 2. Watermark detection
Input: A suspicious dataset Q̂, a confidence level p ∈ [0, 1] and K.
Output: The detection result W ∈ {0, 1}.
1: Obtain the discrete-time signal T̂ = ϕ(Q̂).
2: Obtain the spectrum power P̂ (θ) from T̂ by LSP [36].
3: Use LSP to estimate the threshold ηp from p.
4: If P̂ (θ) ≥ ηp, then return W = 1. (Watermark is detected)
5: If P̂ (θ) < ηp, then return W = 0. (Watermark is not detected)

According to Theorem 1, T ′ contains the sinusoidal signal with frequency
θ, which means Q′ is successfully embedded with the sinusoidal signal by Algo-
rithm 1.

Theorem 2. Denote by η the maximum absolute value of all the entries in ey

and by �i,j = |Qi,j − Q′
i,j | the absolute modification made on the j-th attribute

of Qi,: when embedding the watermark. If Q′ is obtained by Algorithm 1, then
�i,j ≤ λη.

Proof. Since each Q′
i,: is obtained by modifying Qi,: using Eq. (4) and −1 ≤

sin(2πθxi) ≤ 1, we have �i,j ≤ λη.

5 PK-Free Watermark Detection

In this section, we introduce how to detect a watermark from a suspicious dataset
Q̂ that may or may not be watermarked by a secret key K.

Denote by T̂ the discrete-time signal of Q̂. We obtain T̂ by mapping the data
instances in Q̂ in the same way as how we map Q to T , that is, T̂ = ϕ(Q̂).
This process requires to know the variables ex, ey, b and τ in K. Then, we check
whether T̂ contains the sinusoidal signal with the frequency θ ∈ K by checking
the spectrum power of T̂ at the frequency θ, denoted by P̂ (θ).

We use Lomb-Scargle Periodogram (LSP) [27,36] to compute the spectrum
power P̂ (θ) of T̂ . LSP provides a probabilistic method to determine whether a
sinusoidal signal is a true signal in T̂ [36]. Denote by p ∈ [0, 1] the probability of
a sinusoidal signal being a true signal in T̂ , LSP estimates a threshold ηp based
on p. If P̂ (θ) ≥ ηp, then the probability of T̂ containing the sinusoidal signal
with frequency θ is at least p. This allows us to use p as a confidence level when
detecting watermark from T̂ . For example, we can set p = 0.99 and compare
P̂ (θ) with the threshold η0.99. If P̂ (θ) ≥ η0.99, then T̂ is watermarked by K
at the confidence level of 0.99. Otherwise, T̂ is not watermarked by K at the
confidence level of 0.99. Algorithm 2 summarizes how to detect watermark. The
time complexity is O

(
n(d + 1)

)
, where n and d are the number of rows and

columns of Q̂, respectively.
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6 Threat Model and Attacks

In this section, we provide a comprehensive discussion of the four requirements
of the threat model and delve into six typical watermark-removing attacks that
an attacker might employ.

Threat Model. Following the literature [14,21,29,30,34], we consider a typ-
ical threat model consisting of four requirements: (1) the attacker can access the
watermarked dataset Q′; (2) the attacker cannot access the original dataset Q;
(3) the attacker cannot access the secret key K; and (4) the attacker cannot
change the feature space of the original attributes in Q′. Here, the requirement
(4) is practical because the semantic meaning (e.g., meta-data) carried by the
original attributes of Q′ is a valuable part of Q′. Moreover, if the feature space of
an attacked dataset, denoted by Q̃, is different from the feature space of Q′, then
a machine learning model trained on Q̃ cannot generalize to new data instances
represented by the original attributes of Q′.
Watermark-Removing Attacks. We consider the following typical attacks
in the literature. (1) Uniform alteration (UA) [15,30,34] adds uniform noise
sampled from U [−ρua, ρua] to the attributes of all the data instances in Q′.
A larger ρua implies a stronger attack. (2) Row deletion (RD) [15,21,30,34]
deletes uniformly sampled data instances of Q′. Denote by ρrd the proportion
of the deleted data instances in Q′, a larger ρrd implies a stronger attack. (3)
Row insertion (RI) [15,21,30,34] inserts noise data instances to Q′. For each
noise data instance, the j-th entry is sampled from a uniform distribution U [μj −
σj , μj + σj ], where μj and σj are the mean and standard deviation of j-th
attribute of Q′. Denote by ρri the proportion of inserted noise data instances, a
larger ρri implies a stronger attack. (4) Column deletion (CD) deletes uniformly
sampled columns in Q′. Denote by ρcd the proportion of the deleted columns, a
larger value of ρcd implies a stronger attack. (5) PCA attack (PCA) modifies the
data instances in Q′ by using principal component analysis (PCA) [1] to perform
dimensionality reduction. We map the data instances back to the original feature
space after discarding k dimensions in the feature space spanned by eigenvectors.
Denote by ρpca = k

d the proportion of discarded dimensions, a larger ρpca implies
a stronger attack. (6) Re-watermarking (RE) [18] attacks the original watermark
in Q′ by embedding a new watermark into Q′. We use the proposed watermarking
method to embed the new watermark. Denote by ρre the amplitude of the new
sinusoidal signal y = ρre ∗ sin(2πθx) embedded into Q′, a larger ρre implies a
stronger attack.

7 Experiments

In this section, we conduct comprehensive experiments on two real-world
datasets to study the performance of our method and five baseline methods. We
focus on answering two questions: (1) How robust are the watermarks of each
watermarking method against the attacks? (2) How is the machine learning util-
ity of a watermarked dataset affected by the attacks? All the experiments were
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conducted on a desktop with an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
and 64 gigabytes of RAM.

Table 1. Information of datasets.

Dataset #Instances #Attributes #Classes

Forest cover type (FCT) dataset [29] 581,012 54 7

Gas sensor array drift (GSAD) dataset [7] 13,910 128 6

Datasets. We use the two real-world datasets FCT1 and GSAD2 in Table 1.
Since the original FCT dataset is too big for the baseline methods OBT [34] and
IP [19] to finish the experiments in practical time, we uniformly sample 50% of
instances from the original FCT dataset to do our experiments. Following the set-
ting of [20], we use the top-4 (top-20) attributes with the largest information gain
to embed watermark in FCT (GSAD). Denote by m the number of attributes
used to embed watermark. Embedding watermark in this way increases the cost
of conducting column deletion attack, because deleting a column with a larger
information gain causes more damage to the machine learning utility of the
dataset.

Machine Learning Utility (MLU). We evaluate the MLU of a dataset
by the testing accuracy of a machine learning model. Each dataset is uniformly
split into a training set and a testing set with a ratio of 4:1. The training set is
used to embed/detect watermarks and train the machine learning model. The
testing set is used to evaluate the machine learning model’s testing accuracy,
which is regarded as the MLU of the training dataset. We evaluate MLU by two
machine learning models, such as multi-class logistic regression (LR) model [23]
and multi-class support vector machine (SVM) [38].

Baseline Methods. We use five baseline methods, such as NR [33],
OBT [34], IP [19], GAHSW [15], and SCPW [30]. These methods need a pri-
mary key or a virtual primary key to work properly. Since an attacker can easily
modify the primary key to remove a watermark without damaging the dataset’s
machine learning utility, we develop two versions of implementations for each
baseline method by using two state-of-the-art virtual primary key generation
methods. One version uses M-Scheme [25] to implement the baselines as NR-M,
OBT-M, IP-M, GAHSW-M and SCPW-M. The other version uses HQR [10] to
implement the baselines as NR-H, OBT-H, IP-H, GAHSW-H and SCPW-H.

Secret Keys. For each of the compared methods, we use 10 independent
secret keys, denoted by K(1), . . . ,K(10), to embed watermarks. The baseline
methods use a sequence of bits as a secret key and we use 16 bits as the default
length of each secret key. For each baseline method, we use 10 secret keys with
maximum pairwise hamming distance. For our method, the sampled values of

1 https://archive.ics.uci.edu/dataset/31/covertype.
2 https://archive.ics.uci.edu/dataset/224/gas+sensor+array+drift+dataset.

https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/224/gas+sensor+array+drift+dataset
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θ, b and τ in the 10 secret keys are listed in Table 2. The vectors ex and ey

for each secret key are randomly sampled as a pair of orthogonal vectors with
L2-norm equal to one.

Watermark Strength. The watermark strength in a dataset refers to
the intensity of the embedded watermark signal [28]. A stronger watermark
enhances robustness against removal attacks but also increases dataset modifi-
cation, reducing MLU [31]. Thus, increasing watermark strength trades MLU for
robustness. To fairly compare the robustness of all methods, we allow each to
trade up to 0.01 MLU for robustness, setting γ = 0.01 for the MLU constraint in
condition (3) of Definition 4. Based on this constraint, we set the default value
of λ for our method to 20 for GSAD and 0.8 for FCT unless otherwise specified.

Table 2. The θ, b and τ of the 10 secret keys used for FCT and GSAD.

Dataset FCT GSAD

Secret keys K(1) K(2) K(3) K(4) K(5) K(6) K(7) K(8) K(9) K(10) K(1) K(2) K(3) K(4) K(5) K(6) K(7) K(8) K(9) K(10)

θ 30 27 30 32 29 34 37 40 38 39 30 32 34 33 35 36 38 29 35 37

b (×10−2) 0.8 0.5 0.5 2.0 3.0 0.8 2.0 2.0 1.0 1.0 0.2 0.1 0.5 1.0 0.2 2.0 1.0 2.0 0.4 0.8

τ (×104) 1.0 1.0 0.3 0.5 1.0 0.5 0.9 0.8 0.6 0.8 0.5 0.4 1.0 0.6 0.8 1.0 0.3 0.3 0.5 0.3

7.1 How to Evaluate Performance?

We evaluate the performance of a watermarking method by performing the fol-
lowing steps.

Step1: Embedding Watermarks. Denote by Q(0) the training set of
an original dataset that is not watermarked. We use each of the secret keys
K(1), . . . ,K(10) to embed a watermark in Q(0). This produces 10 watermarked
datasets, denoted by Q′

(1), . . . , Q
′
(10), where K(i) is the ground truth secret key

of Q′
(i). The ground truth secret key of Q(0) is denoted by K0, which means no

watermark is embedded in Q(0). In this way, we construct a collection of datasets
denoted by C = {Q(0), Q

′
(1), . . . , Q

′
(10)}.

Step 2: Conducting Attacks. We attack the datasets in C before detecting
the watermarks. For each attack, we produce a collection of attacked datasets,
denoted by C̃ = {Q̃(0), Q̃(1), . . . , Q̃(10)}.

Step 3: Detecting Watermarks. We use each of K(1), . . . ,K(10) to detect
watermark from the datasets in C̃. Denote by Detect(Q̃(j),K(i)) → W the pro-
cess of using K(i) to detect watermark from Q̃(j). If Detect(Q̃(j),K(i)) = 1, then
we have a positive detection. If Detect(Q̃(j),K(i)) = 0, then we have a nega-
tive detection. A positive detection is a true positive if K(i) is the ground truth
secret key of Q̃(j); otherwise, it is a false positive. A negative detection is a true
negative if K(i) is not the ground truth secret key of Q̃(j); otherwise, it is a false
negative. Last, we compute the true positive rate and false positive rate.
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Step 4: Evaluating Performance. We evaluate the performance of a
watermarking method by the area under curve (AUC) of the receiver operat-
ing characteristic (ROC) curve [6]. A larger AUC means a better performance.
For each compared method, the ROC curve is obtained by changing the value of
the threshold that decides whether a watermark exists or not. Different methods
use different thresholds, for our method, the threshold is ηp in Algorithm 2.

Fig. 2. The AUC on FCT shown in (a)-(f) and GSAD shown in (g)-(l). The
ρ∗
ua, ρ∗

rd, ρ
∗
ri, ρ

∗
cd, ρ∗

pca and ρ∗
re are the maximum values of each parameter.

7.2 How Robust Are the Watermarks?

In this section, we analyze the robustness of watermark against the attacks listed
in Sect. 6. Figure 2 shows the AUC of each watermarking method on FCT and
GSAD. The y-axis shows the AUC and the x-axis shows the strength of each
attack controlled by ρua, ρrd, ρri, ρcd, ρpca and ρre in Sect. 6.

We can see in Fig. 2 that the AUC of most methods drops when the attack
strength increases. A slower dropping speed of AUC means a better perfor-
mance, because it implies the watermarking method is more robust to withstand
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a stronger attack. Since the AUC on FCT and GSAD show similar trends, we
focus on explaining the results on FCT.

The AUC of Baseline Methods. As shown in Fig. 2, the AUC of the base-
line methods are inferior to our method because they are affected by attacks due
to the following reasons. First, since these methods use virtual primary keys
to identify the watermarked groups of data instances, their watermarks are not
robust to uniform alteration, column deletion, PCA attack and re-watermark.
This is because such attacks change the values of virtual primary key, which
corrupts the identification of the watermarked groups. Second, the watermarks
of OBT, IP, GAHSW and SCPW are affected by row deletion (RD) and row
insertion (RI), because RD removes watermarked data instances from water-
marked groups and RI adds noise data instances into watermarked groups. Both
the effects weakens the watermark signal. NR is affected by row deletion and row
insertion because it relies on the accurate alignment between the data instances
before and after attack. The alignment between data instances is disrupted by
RD and RI because they change the number of data instances.

The AUC of Our Method. As shown in Fig. 2, our method achieves the
best AUC, which demonstrates the outstanding robustness of our watermark.
In the following, we discuss the performance of our method against each attack.
(1) Uniform alteration (UA). In Figs. 2(a) and 2(g), our method is robust to
UA because: i) it is primary key free, enhancing noise robustness; ii) the x-
axis binning operation stabilizes the discrete time signal against noise; and
iii) the Lomb-Scargle Periodogram (LSP) [27,36] is noise-resistant. UA has a
bigger impact upon our method on FCT than on GSAD because GSAD has
more attributes than FCT, thus embedding a watermark causes less damage to
the MLU of GSAD than FCT. This allows our method to embed a stronger
watermark on GSAD without violating the MLU constraint in Definition 4. (2)
Row deletion (RD) and row deletion (RD). In Figs. 2(b),2(c),2(h) and 2(i), our
method achieves outstanding AUC against RD and RI. Because RD removes
watermarked points from B′

h and RI adds noise points in B′
h, but neither

changes the remaining watermarked points in B′
h. Thus, the watermark signal is

largely retained. (3) Column deletion (CD). In Figs. 2(d) and 2(j), CD impacts
our method’s AUC because deleting one of the m watermarked columns (i.e.,
attributes) in Q′ removes 1

m of the watermark signal. However, since our water-
mark is embedded in multiple columns that are unknown to the attacker, we
still achieve high AUC even when half the columns of Q′ are randomly deleted.
(4) PCA attack. In Figs. 2(e) and 2(k), the impact of PCA attack is smaller
than column deletion. This is because the dimensions discarded by PCA attack
often have small information gain but we embed our watermark in the columns
with large information gain. (5) Re-watermarking (RE). In Figs. 2(f) and 2(l),
the AUC of our watermark is robust against RE. This is because embedding a
new watermark adds random noise to Q′, which has a similar effect to uniform
alteration attack. Therefore, our watermark is robust against RE.
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7.3 How Is MLU Affected by the Attacks?

Figure 3 shows the MLU of each watermarked dataset under different strengths
of attacks. The x-axis is defined in the same way as Fig. 2 and the y-axis shows
the MLU of the attacked watermarked datasets.

Since drawing all the MLU curves is too crowded, we simplify the view as fol-
lows. First, for MLU measured by LR, we only draw the MLU of our method and
each baseline method using HQR [10] as VPK, marked with a “(LR)” suffix. We
omit the baseline methods using M-Scheme [25] as VPK because their absolute
MLU difference is at most 0.004. Second, for MLU measured by SVM, we draw
one curve marked “SVM” in Fig. 3. This curve with an error bar represents the
mean and standard deviation (std) of the MLU of all methods, including baseline
methods using both VPK versions and our method. The std is at most 0.003 in
all cases.

Fig. 3. The MLU on FCT shown in (a)-(f) and GSAD shown in (g)-(l) The
ρ∗
ua, ρ∗

rd, ρ
∗
ri, ρ

∗
cd, ρ∗

pca and ρ∗
re are the maximum values used for each parameter.

Why are the MLU Curves Close? This is due to the small constraint of
γ = 0.01. Since Q′ from different watermarking methods is computed from the
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same dataset Q, the MLU of different Q′ are almost identical. Thus, when these
Q′ undergo the same attack, they exhibit similar MLU curves.

What did We Learn from the MLU Curves? The MLU of the attacked
watermarked dataset decreases with stronger attacks. This means an attacker
cannot indefinitely increase the strength of attack to remove a watermark,
because a stronger attack will reduce more MLU, which causes more damage
to the resale value of the dataset. Since all watermarking methods have similar
MLUs, the method with the slowest AUC drop as attack strength increases offers
the best protection. Our method provides the best protection, because its AUC
drops the slowest in Fig. 2.

8 Conclusion

In this paper, we propose a novel primary key free watermarking method for tab-
ular datasets. Different from many existing watermarking methods, our method
does not use a primary key to embed and detect watermarks. This makes it par-
ticularly suitable for watermarking tabular datasets used for machine learning,
because such datasets often do not come with a primary key and an existing pri-
mary key can be easily modified without degrading the machine learning utility
of the dataset. As demonstrated by extensive experiments, our method achieves
outstanding robustness against many watermark-removing attacks, which pro-
vides strong protection on watermarked datasets.
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Abstract. Handwritten Signature Verification (HSV) systems distin-
guish between genuine and forged signatures. Traditional HSV develop-
ment involves a static batch configuration, constraining the system’s abil-
ity to model signatures to the limited data available. Signatures exhibit
high intra-class variability and are sensitive to various factors, including
time and external influences, imparting them a dynamic nature. This
paper investigates the signature learning process within a data stream
context. We propose a novel HSV approach with an adaptive system
that receives an infinite sequence of signatures and is updated over time.
Experiments were carried out on GPDS Synthetic, CEDAR, and MCYT
datasets. Results demonstrate the superior performance of the proposed
method compared to standard approaches that use a Support Vector
Machine as a classifier. Implementation of the method is available at
https://github.com/kdMoura/stream hsv.

Keywords: Offline signature · biometric authentication · handwritten
signature · data stream · dissimilarity data · adaptive classifier

1 Introduction

Handwritten Signature Verification (HSV) systems aim to automatically dis-
tinguish between genuine signatures, belonging to the claimed individual, and
forgeries. In offline HSV, signatures are represented as digital images captured
after the writing process is completed, as opposed to online systems that analyze
the signing dynamics [7].

Offline HSV systems can be categorized into two approaches: writer-
dependent (WD) and writer-independent (WI). In WD systems, a unique clas-
sifier is trained for each enrolled user, offering potentially higher accuracy. How-
ever, this approach requires individual training data for each new user. Con-
versely, WI systems utilize a single classifier for all users, hence being more
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scalable [5]. In this case, the classification is performed on a dissimilarity space
where the pattern recognition is reduced to a 2-class problem by using differ-
ences between claimed and reference signatures through a Dichotomy Transfor-
mation (DT) [5].

In general, HSV development entails two distinct datasets: a development set
utilized for training and an exploitation set employed during the testing phase [6].
Each set comprises the signatures of enrolled users. While more samples gener-
ally lead to better generalization models, real-world applications often face data
availability limitations regarding both user count and sample volume [5]. There-
fore, the system’s capability to model signature variations is constrained to the
present available data. After the training process, the resulting HSV is expected
to achieve generalization to the whole set of existing users and their signatures.

Nonetheless, by relying on a training process with a finite dataset, the current
literature does not account for the inherent variability and changing behavior
of handwriting signatures. Signatures exhibit the highest intra-class variability
compared to other biometric traits [5]. Additionally, signature patterns are time-
sensitive as they evolve as we age. Besides, diverse factors can impact the sign-
ing process, including emotional states, stress levels, fatigue, and influences from
substances like alcohol or drugs [1]. Writing results are intrinsically related to
cognitive-motor and neuromotor conditions, being affected by any minor impair-
ment [1].

Given these challenges, we pose the following general research question: how
can a signature verification system adapt to the inherent variability and evolving
nature of handwritten signatures over time, maintaining high verification per-
formance while mitigating the problem of limited data? To answer this question,
we propose a framework to handle signature verification in an adaptive manner,
where the input data is processed as a stream of offline signatures rather than a
batch mode.

In the proposed framework, incoming signatures are first tested and then
used to improve the system by updating its current state. In this approach,
SigNet-S [20], one of the state-of-the-art representation models, is employed to
extract features of incoming claimed signatures. These feature vectors are then
compared to corresponding reference vectors stored in the database to create dis-
similarity samples via a stream dichotomy transformation. Lastly, the adaptive
WI-classifier is updated based on the dissimilarity vectors. To the best of our
knowledge, no prior work has considered signatures in an open-set, stream-based
configuration.

The main contributions of this article are as follows:

1. Stream HSV: we propose a novel HSV framework that adapts over time. This
framework treats signatures as an infinite data stream, enabling continuous
learning and improvement.

2. A stream dichotomy transformation: we introduce a stream dichotomy trans-
formation process to facilitate adaptive learning from the incoming signa-
ture stream and address the challenge of imbalanced data ratios commonly
encountered in stream scenarios.
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3. Signature stream generation method: to facilitate evaluation using standard
batch configurations, we introduce a method for generating signature streams
based on the existing HSV evaluation protocol.

2 Stream Handwriting Signature Verification (SHSV)

Streaming systems are designed to continuously process and analyze data as
it arrives, delivering updated results based on the most recent characteristics
of the information. In the context of handwriting signature verification, this
approach enables adaptive signature authentication, accounting for the inherent
variability of this biometric modality. As the system evolves to accommodate
variations in handwriting patterns, it ensures accurate and reliable verification.

In light of this, we propose a framework for signature verification under a data
stream context. Specifically, we introduce a system that takes as input a sequence
of signatures S of claimed users l̂, denoted as Stream = {(S, l̂)1, (S, l̂)2, ...,
(S, l̂)∞}, for verification against the signatures of enrolled users. As new signa-
ture samples arrive (from new or enrolled users), the system incorporates new
information into its base knowledge and delivers updated results on the next
verification. The system is depicted in Fig. 1, and notation is synthesized in
Table 1.

Fig. 1. Stream HSV system. (SC , l̂C) denotes a claimed signature from the stream,
and (SR, lR) a reference signature of the corresponding user. Signatures, after being
preprocessed, have their features extracted by a representation model φ. The stream
dichotomy transformation is applied to the pair of features vectors DT (xR,xC) and
passed to the adaptive classifier θ, which outputs a prediction. At the end, a fusion
function is employed considering all reference signatures to deliver a final result. If true
labels are available, the classifier is updated with all new dissimilarities information.

The SHSV is a general framework that comprises fundamental components
that enable the system to work in a writer-independent (WI) manner. They are
following described.

2.1 Representation Model φ(·)
The representation model is a previously well-trained model capable of extracting
relevant features from the signature images. To this end, the SHSV employs the
SigNet Synthetic (SigNet-S ) developed by [20]. This model is a variant of the
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Table 1. SHSV notation.

Sym. Description Sym. Description

S Signature image Ẋ Set of dissimilarity vectors

l Writer label D Development set

φ(·) Feature extractor nD Number of writers in D
DT (, )Dichotomy transformation nDG Number of genuine sig. per writer in D
θ WI-classifier E Exploitation set

g(·) Fusion function nE Number of writers in E
x Feature vector x = φ(S) nER Number of ref. sig. per writer in E
ẋ Dissimilarity vector ẋ =

DT (x1,x2)
nEC Number of G, RF, and SK claimed sig. per

writer in E
y Dissimilarity label T Stream obtained from E
G Genuine signature Tk Chunk k of arriving signatures from T

RF Random forgery signature Si,j
G j-th genuine signature of writer i

SK Skilled forgery signature ẋi,k,j
G Dissimilarity vector between reference k

and genuine signature j of writer i

R Reference signature Ẋ
i,j
G Set of dissimilarities from all references and

genuine signature j of writer i

C Claimed signature csize Chunk size for model update

S Set of signatures wsize Window size for stream evaluation

X Set of feature vectors wstep Step size for evaluation frequency

original SigNet proposed by [6]. While the original SigNet was trained using
signature examples obtained from the GPDS-960 Grayscale [18], which is no
longer publicly available due to the General Data Protection Regulation (EU)
2016/679, SigNet-S was trained using synthetic GPDS data [4].

SigNet-S leverages Deep Convolutional Neural Networks (DCNNs) to learn
signature representations by capturing the most discriminative characteristics
that distinguish different writers. SigNet-S employs a writer-independent train-
ing strategy, utilizing only genuine signatures for model development. This
enables its application to new incoming writers. During feature extraction for
new users’ signatures, the network performs feed-forward propagation until the
fully connected layer before Softmax, which outputs feature vectors with a
dimensionality of 2048. In this work, these vectors represent the feature space of
each arriving signature. Formally, given a signature image SC of a claimed user,
its feature vector is defined by xC = φ(SC).

2.2 Stream Dichotomy Transformation DT (, )

An essential part of the SHSV system is the dichotomy transformation DT (, )
[2]. It transforms a multi-class problem into a 2-class problem. This enables the
implementation of a writer-independent approach for the classification task,
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which is crucial for the stream context. The binary-problem result is achieved
by computing the absolute distance between each feature of two feature vec-
tors, i.e., the dissimilarity between two samples. Suppose (xR, lR) and (xC , lC)
are the feature vector (x) and label (l) of two data samples, where l refers to
the author’s ID. With xR = {fR

k }Kk=1 and xC = {fC
k }Kk=1, where K is the

number of features f . The dissimilarity vector between xR and xC is given by
ẋRC = DT (xR,xC) = {|fR

k − fC
k |}Kk=1, where | · | represents the absolute value

of the difference. The vector ẋRC has the same dimensionality as xR and xC .
The resulting dissimilarity set after applying DT (, ) on (xR, lR) and (xC , lC)

is given by (ẋRC , yRC) where y denotes the new label. If lR = lC , i.e., ẋRC is
obtained from signatures of the same writer, it is labeled as positive (y = +).
Otherwise, it will be labeled as negative (y = −), i.e., lR �= lC . When the claimed
and the reference signature are similar, the corresponding dissimilarity vector is
expected to be located near the origin. In contrast, the negative samples are
expected to have a sparse distribution in space [16].

In this work, DT (, ) is applied to the streaming of claimed signatures
against each correspondent reference sample stored in the database of enrolled
users. Specifically, consider S

i
R = {Si,1

R , Si,2
R , . . . , Si,M

R } the set of M refer-
ence signatures of user i, and SC a claimed signature of same user. Then,
DT (φ(SiR), φ(SC))) results in the correspondent dissimilarity set Ẋ

i
RC = {ẋi,1

RC ,

ẋi,2
RC , . . . , ẋi,M

RC }, which is passed to the adaptive WI-classifier for training and
testing procedure.

The dichotomy transformation also helps mitigate the common imbalance
ratio issues in streaming data. For each incoming genuine signature, it is always
possible to generate the same amount of negative dissimilarities by utilizing
the user’s stored reference signatures and selecting the necessary number of
random forgery samples. This approach consistently produces an equal number of
positive and negative examples.

2.3 Adaptive WI-Classifier θ

In the proposed SHSV approach, the core component is the adaptive verifica-
tion process, which enables the system to update its base knowledge over time.
In static HSV systems, Support Vector Machines (SVM) are a popular choice
for the verification step [7]. Nonetheless, an adaptive classifier is required for
the present work. Many methods have been developed to adapt the traditional
SVM to handle evolving data [22]. An efficient optimization method is apply-
ing Stochastic Gradient Descent (SGD) to linear models to minimize the loss
function [10]. To mimic the SVM behavior with adaptive capability, we adopt
the SGD classifier with a hinge loss function. We follow similar works [13,15,21]
that employed SGD to minimize the loss function in the primal formulation
directly. This approach is more efficient than employing Lagrangian methods
as it avoids the need to compute and store dual variables, which can become
computationally expensive and memory-intensive as the number of data points
and features increases. The loss function, described in Eq. 1, aims to minimize
the norm of the weight vector w while penalizing misclassifications (quantified
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by the hinge loss term max(0, 1 − yi(w · xi + b))), where C is the regulariza-
tion parameter that controls the trade-off between maximizing the margin and
minimizing the hinge loss.

min
w,b

C

2
||w||2 +

1
N

N∑

i=1

max(0, 1 − yi(w · xi + b)) (1)

SGD processes individual samples or small batches from the dataset, iter-
atively updating the model parameters based on the loss function. In SHSV,
the WI-classifier is updated with dissimilarity vectors obtained from a chunk of
incoming signatures. This update process occurs after the classifier’s prediction
on the input chunk. For the present work, we assume that all true labels are
available immediately after the classifier’s estimation.

2.4 Fusion Function g(·)
In SHSV, the WI-classifier’s output is determined by the dissimilarity vector’s
distance to its decision hyperplane. When there is a set of reference signatures SR
for a claimed signature SC , the system delivers a distance for each pair of dissim-
ilarity vectors between SR and SC . These hyper-plane distances are combined
through a fusion function g(·) [14]. Results in [17] reveal that better verifica-
tion performance is achieved when the Max fusion function is chosen to com-
bine hyper-plane distances output. This work employs the maximum distance to
deliver a final decision.

3 Experimental Setup

Datasets. There are a few publicly available datasets for offline HSV Systems.
In this work, we adopt datasets used in related works [17,20] summarized in
Table 2.

Table 2. Commonly used datasets for Offline Signature Verification

Ref Dataset Name Language Users Genuine signatures Forgeries

[9] CEDAR Western 55 24 24

[3] GPDS Synthetic Western 10000 24 30

[11] MCYT-75 Western 75 15 15

Preprocessing. As SigNet-S is adopted as the backbone for feature extraction,
to ensure the reported performance of the model, we have adhered to the same
initial preprocessing steps as described in [6,20]. First, images are centered on
a large canvas, with dimensions determined by the maximum size encountered
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within each dataset. Next, the image’s background is removed using Otsu’s algo-
rithm [12], which transforms background pixels to white and foreground pixels
to grayscale. Subsequently, the image is inverted to set the background to zero
value. Then, all images are resized to the size of 170 pixels in height and 242
pixels in width, and finally, a center crop of size 150× 220 is taken.
Classifier. For classifier comparison in batch context, we employ soft margin
SVM with Radial Basis Function (RBF) kernel, following the experimental pro-
tocol defined in [6,17,20]. The SVM regularization parameter is given by 1.0,
and the RBF kernel coefficient hyper-parameter is given by 2−11.

Types of Signatures. In this work, there are three types of signatures: genuine
(G), which belongs to the claimed user; random forgery (RF), which is a genuine
signature that belongs to a user different from the claimed one; and skilled
forgery (SK), which belongs to the claimed user but it was produced by a forger.
The set of all genuine signatures in a dataset is given by SG = {S1G,S2G, ...,SNG},
where N is the number of users and S

i
G refers to the set of genuine signatures

of user i. Specifically, SiG = {Si,1
G , Si,2

G , ..., Si,K
G }, where K denotes the number

of user’s signatures. Likewise, there are sets of random forgeries SRF and skilled
forgery SSK signatures for each user.

Data Segmentation and Generation. Following [17,19], datasets are split
into two disjoint subsets of users: the development D, employed for training,
and the exploitation set E , employed for testing models as shown in Fig. 2. Con-
sidering a dichotomy transformation DT (, ), a representation model φ(·), the
sets are generated as follows:

Fig. 2. Data segmentation into development D and exploitation E sets. To generate E ,
a set of references SR and claimed signatures SC are randomly selected for all nE users.
SC contains genuine, random forgery, and skilled forgery samples. To generate D, a
set of genuine SGD and random forgery SRFD are randomly chosen for all nD users.
Selected samples are utilized to perform dissimilarity transformations as defined in
Eqs. 2, 3, 4, and 5.

– Development set D: For each user i in D, nDG genuine signatures are
randomly selected forming the set S

i
GD . The genuine signatures in S

i
GD are

paired to form dissimilarity vectors of positive class as defined in Eq. 2:
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Positive set:

Ẋ
i
D+ =

nDG−1⋃

k=1

nDG⋃

j=k+1

DT (φ(Si,k
G ), φ(Si,j

G )) (2)

with Si,∗
G ∈ S

i
GD .

Additionally, For each user i in D, nDG/2 random forgeries signatures are
randomly selected forming the set SiRFD . Then, nDG−1 genuine signatures in
S
i
GD are paired with all random signatures in S

i
RFD , resulting in dissimilarity

vectors of negative class as defined in Eq. 3:
Negative set:

Ẋ
i
D− =

nDG−1⋃

k=1

nDG/2⋃

j=1

DT (φ(Si,k
G ), φ(Si,j

RF )) (3)

with Si,k
G ∈ S

i
GD and Si,j

RF ∈ S
i
RFD .

The final set is formed by the union of Ẋi
D+ and Ẋ

i
D− for all users, consisting of

an equal number of positive (+) and negative (−) dissimilarity samples from
nD users.

– Exploitation set E : For each user i in E , nER reference (genuine) signatures
are randomly selected, forming the set SiR. Then, nEC signatures of each type
(G, RF, SK) are randomly selected resulting in the claimed set SiC formed by
the union of SiGE , SiRFE , and S

i
SK sets of signatures. After that, dissimilarities

between all samples in S
i
R and S

i
C are computed, and the result comprises the

exploitation set. This process is defined in Eq. 4 and 5:

Ẋ
i
E =

nER⋃

k=1

nEC⋃

j=1

{ẋi,k,j
G , ẋi,k,j

RF , ẋi,k,j
SK } (4) ẊE =

nE⋃

i=1

Ẋ
i
E (5)

Where:
• ẋi,k,j

G = DT (φ(Si,k
R ), φ(Si,j

G )) positive dissimilarity vector (genuine)
• ẋi,k,j

RF = DT (φ(Si,k
R ), φ(Si,j

RF )) negative dissimilarity vector (random
forgery)

• ẋi,k,j
SK = DT (φ(Si,k

R ), φ(Si,j
SK)) negative dissimilarity vector (skilled

forgery)

For the present work, dataset segmentation is shown in Tables 3a and 3b.

Stream Generation. In order to provide a comparable evaluation between
batch and stream settings, the batch data generation previously described is
extended to an equivalent stream configuration. To generate the stream, the
exploitation set E is converted into a timeline where the whole stream of samples
is given by T = {T1,T2, ...,T∞}, where each Tj is a set of arriving signatures as
shown in Fig. 3.
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Table 3. Data segmentation for each dataset

(a) Development set (D).

Data #Users #G sig. Neg. class Pos. class #Samples

(nD) (nDG) Dissimilarity between:

GPDS-S{5, 10, 50, 581 (all)}×{2, 6, 12} 11G & 6RF12G of each user nD · 66 · 2

(b) Exploitation set (E).
Data #Users#Ref. signatures Claimed signatures Stream T

(nE) (nER) #(nEC) Set Tj size j value

GPDS-S 300 {1, 2, 3, 5, 10, 12} 10 10G, 10RF, 10SK nE · 3 nEC
CEDAR 55 {10} 10 10G, 10RF, 10SK

MCYT 75 {10} 5 5G, 5RF, 5SK

Fig. 3. Stream T of claimed signatures obtained from the exploitation set E . The
number of users nE is represented by n, while the number of claimed signatures nEC

is denoted by m. S
i,j
C is the j-th set of claimed signature of user i, where S

i,j
C =

{Si,j
G , Si,j

RF , Si,j
SK}, with Si,j

G ∈ S
i
GE , Si,j

RF ∈ S
i
RFE and Si,j

SK ∈ S
i
SK . G: genuine, RF:

random forgery, SK: skilled forgery signature.

From the exploitation set E , the set of claimed signatures SC is transformed
in a stream comprised of nEC chunks. Each chunk Tj contains all users in E
requesting the verification of three samples: a genuine, a random forgery, and a
skilled forgery signature.

After generating stream T, it is employed as input to the SHSV system
(Fig. 1). First, each signature has its features extracted and passed to the stream
dichotomy transformation. For this step, the set of reference signatures SR from
the exploitation set E is retrieved, then features are extracted, and DT (, ) is
applied on each corresponding pair of feature vectors. That is, the stream T

results in a stream of dissimilarity sets as defined in Eqs. 6 and 7:

Ṫj =
nE⋃

i=1

{Ẋi,j
G , Ẋi,j

RF , Ẋi,j
SF } (6) Ṫ =

nEC⋃

j=1

Ṫj (7)

Where:
• Ẋ

i,j
G = DT (φ(SiR), φ(Si,j

G )) set of positive dissimilarity vectors (genuine)
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• Ẋ
i,j
RF = DT (φ(SiR), φ(Si,j

RF )) set of negative dissimilarity vectors (random)
• Ẋ

i,j
SF = DT (φ(SiR), φ(Si,j

SF )) set of negative dissimilarity vectors (skilled)

Stream Ṫ is then sent to the WI-classifier for testing, and a decision using
the fusion function g(·) is performed for each signature request. For the present
work, stream configuration regarding datasets is shown in Table 3b.

Model Initialization. Models are initialized using all D sets in Table 3a.

Model Update and Evaluation. In this work, we employ the prequential
evaluation approach (also known as test-then-train), the most common method
for evaluating data streams [8]. This approach involves continuously testing a
predictive model with new arriving samples and then using those same samples
to update the model. We assume all instance labels are available after testing and
do not employ skilled forgeries for classifier updating.

Given a stream of arriving signatures, T, we define three hyperparameters
for model update and evaluation:

– Chunk size(csize): The number of signatures the system waits for before
updating the model.

– Window size (wsize): The number of most recently tested signatures used
to compute performance metrics.

– Window step (wstep): The frequency (number of new signatures) at which
the metrics are assessed.

The stream evaluation employed in this paper is summarized in Table 4.
While the entire block Tk is tested, only the genuine and random forgery signa-
tures are sent to update the classifier. A window smaller than the chunk size is
employed to observe the evolution more frequently.

With the test results, the Equal Error Rate (EER) using a global threshold
is measured at every window. The experiments are repeated five times, and the
average results and standard deviation are computed.

Table 4. Stream evaluation.

Stream Chunk size Window size and step

Test Training

GPDS-S 900 (nE · 3) 600 (nE · 2) 400

CEDAR + MCYT 300 200 200

Type of sig.: G, RF, and SK G and RF G and SK
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4 Experimental Results

Fig. 4. Skilled forgery detection in batch settings for different development sets. #U
and #G denote, respectively, the number of users nD and genuine signatures nDG

employed during training. #S denotes the resulting number of samples.

Batch Evaluation. Figure 4 presents results for batch-trained SVM and SGD
considering different number of users nD (#U) and genuine signatures nDG

(#G) (Table 3a). Interestingly, increasing the number of training samples does
not necessarily guarantee improved performance. For example, the configura-
tion with U = 50 users and G = 2 genuine signatures per user (orange dot-
ted line) during training, resulting in 100 samples (S:100), achieves better results
than the configuration with U = 10 users and G = 12 signatures (blue solid line,
S:1320), despite having fewer signatures overall. This suggests that the number
of users available during the development phase plays a crucial role in achieving
system generalization. Conversely, when the number of users remains constant,
increasing the number of samples per user during training leads to improved
performance.

Furthermore, SGD exhibits greater sensitivity to limited initial data than
SVM, although both achieve comparable performance when trained with all
users and samples. Overall, the results indicate a trend of decreasing error rates
with an increase in the number of reference signatures. Please refer to Table 1 in
the supplementary material for a comprehensive set of results.

Stream Evaluation. Figure 5 presents the performance comparison between
the SVM and the proposed SHSV method when the exploitation set is trans-
formed into a continuous stream of incoming signatures. At a certain point,
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Fig. 5. Stream evaluation of skilled forgery detection on GPDS Synthetic using SVM
and the Stream HSV (SHSV). The evaluation considers 12 reference signatures with a
Max fusion for decision-making. SHSV is updated after every training chunk, employing
only genuine and random forgery signatures, and evaluated on every window (Table 4).
#Users (nD) and #G denote the number of users and genuine signatures used in the
initial training, respectively. The horizontal red line shows the result (7.93) reported in
[20] for 12 reference signatures, #G = 12, and nD = 2000.

SHSV surpasses SVM for all initial training configurations, being more pro-
nounced when there is a limited number of users and signatures for pre-training
models. Recently, [20] reported an EER of 7.93 ± 0.30 for a writer-independent
approach using global thresholds on GPDS Synthetic with 12 reference sig-
natures. In their study, the authors utilized SigNet-S as the feature extrac-
tor, selected 2000 users for training an SVM classifier, and conducted tests on
the GPDS-S-300 dataset. In contrast, SHSV achieves comparable results while
requiring significantly fewer users for initial training. This finding highlights the
effectiveness of SHSV in real-world scenarios with restricted sample availability.
Moreover, SHSV accommodates the dynamic nature of handwriting signatures
by enabling a continuous adaptation of the system, leading to improved perfor-
mance over time.
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Table 5. EER on the last chunk of signatures stream. Results show skilled forgery
detection on GPDS Synthetic using SVM and Stream HSV (SHSV). nD and nDG

refer to the initial training setup (Table 3a). nER denotes the number of reference
signatures (Table 3b). Stream evaluation performed according to Table 4.

nD nER #G sig. (nDG) = 2 #G sig. (nDG) = 12

SV Mlast SHSVlast Δ SV Mlast SHSVlast Δ

2 1 19.20 (2.73) 14.00 (2.09) 5.20 19.00 (2.26) 15.00 (1.41) 4.00

2 17.40 (2.22) 12.00 (2.40) 5.40 17.00 (1.12) 12.90 (1.98) 4.10

5 14.20 (1.48) 9.20 (1.20) 5.00 14.10 (1.08) 9.00 (1.27) 5.10

12 12.10 (0.55) 7.70 (1.15) 4.40 11.30 (0.57) 7.80 (1.10) 3.50

10 1 18.50 (2.12) 13.70 (2.05) 4.80 17.70 (2.17) 13.80 (2.08) 3.90

2 16.00 (1.41) 12.20 (2.61) 3.80 15.20 (2.05) 12.10 (2.88) 3.10

5 13.00 (1.37) 9.20 (1.35) 3.80 11.90 (1.08) 9.10 (1.19) 2.80

12 11.10 (1.29) 7.70 (1.15) 3.40 10.80 (1.04) 7.80 (1.30) 3.00

50 1 17.90 (1.67) 14.00 (2.26) 3.90 16.60 (1.78) 14.20 (2.05) 2.40

2 14.60 (1.14) 12.20 (1.89) 2.40 14.90 (1.39) 12.10 (1.78) 2.80

5 12.30 (1.15) 9.20 (1.15) 3.10 11.30 (1.04) 9.30 (1.30) 2.00

12 10.00 (0.71) 7.60 (0.96) 2.40 9.70 (0.76) 7.70 (0.84) 2.00

All 1 16.00 (1.77) 14.50 (2.21) 1.50 14.40 (2.19) 13.90 (2.43) 0.50

2 13.30 (1.57) 11.90 (1.98) 1.40 12.70 (1.25) 11.80 (1.92) 0.90

5 10.70 (1.52) 9.30 (1.30) 1.40 9.00 (1.62) 9.10 (1.52) 0.10

12 8.60 (0.96) 7.80 (0.84) 0.80 7.30 (0.57) 7.90 (1.19) 0.60

Table 5 presents the performance of SVM and SHSV on the final chunk of the
signature stream, evaluated across different numbers of reference signatures used
for the fusion function. Consistent with the batch setting results, performance
improves with an increasing number of stored signatures per user. Findings also
highlight the discrepancy between SVM and SHSV performance, which becomes
more pronounced as the number of users in the training phase decreases. Unlike
SVM, SHSV consistently exhibits improved performance over time, achieving
better or comparable results regardless of the initial development configuration.

SHSV is particularly interesting for handling signatures from unknown dis-
tributions due to its ability to learn over time. Figure 6 shows the performance of
models pre-trained on GPDS Synthetic data when they receive signatures com-
ing randomly from CEDAR stream and MCYT stream. While initially affected
by the change, SHSV outperforms SVM, especially when few users are available
at the beginning. Please see Table 2 in the supplementary material for a detailed
set of results.

In summary, the proposed SHSV system consistently demonstrates superior
performance and adaptability compared to the traditional SVM approach in
various scenarios. Its resilience to limited initial training data and its contin-
uous adaptation capabilities make SHSV particularly well-suited for real-world
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Fig. 6. Stream evaluation of skilled forgery detection on signatures randomly coming
from the CEDAR and MCYT streams using SVM and the Stream HSV (SHSV). The
evaluation considers 10 reference signatures with a Max fusion for decision-making.
SHSV is updated after every training chunk and evaluated on every window (Table 4).
#Users (nD) and #G denote the number of users and genuine signatures used in the
initial training.

handwriting signature verification tasks where data availability and signature
variability pose significant challenges.

5 Conclusion

This work proposes a novel handwriting signature verification approach called
SHSV. SHSV treats signatures as continuous data streams and updates the sys-
tem dynamically. To achieve this, we introduce a stream generation approach
compatible with standard batch evaluation settings.

Experimental results in batch settings demonstrated that having a high num-
ber of users is more crucial than the sheer volume of signatures, indicating an
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overall improvement in performance when more users are available at initial
training. Results also showed that SHSV overcame the problem of limited train-
ing data by incorporating new information over time, demonstrating superior
performance compared to the SVM approach across different scenarios under
stream configuration.

Future work may include using partially labeled data to explore scenarios
where labels are not available for all test samples, as well as investigating the
trade-off between adapting the representation model and the WI-classifier over
time.
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Abstract. Handwritten signature verification (HSV) models are
notably recognized for their ability to discern whether a signature is
forged in an offline document. Recently, HSV technology has made sig-
nificant development. However, these methods have primarily focused
on the shape features of the text image and overlooked the textual
feature information inherent in the text itself, which makes the HSV
model overfit. In this paper, we propose a novel network model named
OCR4HSV to solve the above shortcomings. The proposed OCR4HSV
first attempts to combine OCR and HSV to learn textual features in
a multi-task learning manner. The model employs a dual-parameter
approach, combining shared parameters and independent parameters.
Specifically, Within the shared parameters, the Laplace attention mod-
ule (LAM) is incorporated for edge information extraction. For indepen-
dent parameters, CN-Mamba is utilized for sequence feature extraction
in OCR, and the multi-scale global fusion block (MGFB) is designed to
enhance the distinction between reference and test sample pairs. Leverag-
ing OCR-related information and these architectural enhancements can
fully mine the inherent textual feature information and significantly mit-
igate overfitting in the HSV task, thereby boosting verification accuracy.
Our model has achieved state-of-the-art performance on the ChiSig and
HanSig datasets.

Keywords: Handwritten signature verification · Optical character
recognition · Multi-task learning · CN-Mamba
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1 Introduction

In contemporary society, Handwritten signature verification (HSV) is a crucial
forensic tool widely employed across various domains such as law, insurance,
and culture. This technology aims to compare a given signature image with a
reference signature to determine if the same individual authors them. Hence, the
innovation of an exact and efficient HSV framework is of utmost significance.

How to extract robust and discriminative signature features is the essential
problem of HSV. With the development of deep learning, more and more stud-
ies [2,11,15,17,28], extract signature features using deep neural networks. Com-
pared to the traditional hand-crafted features [22], these methods significantly
improve the performance of the signature verification system. All these methods
target the basic features of offline images, such as the text edge information,
the stroke information of the text, and the structure information of the overall
signature. However, these models are prone to overfitting during the training. To
solve the overfitting problem, [28] proposed an inverse discriminant network to
extract effective information from the sparse stroke pixel part; [15] proposed a
2-channel-2-logit network that outputs two logits and uses the distance between
the two outputs as the similarity of the two input images. This information is
important for HSV tasks, and many achievements have been made. However,
these methods ignore the fact that the text itself also has text feature informa-
tion. As a result, the performance of these methods is often unsatisfactory.

Optical character recognition (OCR) is commonly employed to extract tex-
tual features from images. OCR is the process of converting text in an image
into a digital text sequence. In response to the question of whether the length
of a character is determined, researchers have done an amount of work [18,27].
Currently, there are numerous technologies based on OCR and new technolo-
gies built upon OCR, such as document analysis [33], table recognition [34],
and key information extraction [30]. Both the input for HSV and OCR consist
of images containing text; hence, employing OCR technology to extract text
features for use in HSV is a viable approach.

The popularity of multi-task learning (MTL) extends across computer vision
[29] and natural language processing [32]. Motivated by the principles of MTL, we
simultaneously train the OCR and HSV tasks to learn abundant textual fea-
ture information. This dual training approach, enhanced by cross-task knowl-
edge transfer, enhances generalization and mitigates overfitting while maintain-
ing the distinctiveness of each task. Training a unified model for multiple tasks
demonstrates greater parameter efficiency than individual task modeling. In this
paper, we propose a new offline handwritten signature verification network called
OCR4HSV based on MTL. The OCR4HSV model does not distinguish between
OCR and HSV and trains them simultaneously. Leveraging OCR, we extract tex-
tual information from signature images. Through shared parameters and inde-
pendent parameters, we optimize the parameters of the HSV task, reducing
overfitting and boosting accuracy.

In this model, OCR and HSV shared parameters CNN-Blocks give these
blocks the ability to extract signature verification discriminative information
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when processing OCR tasks. To enable the model to capture text edges and
stroke information when extracting text information, in the CNN-Blocks, we
design the Laplace attention module (LAM), allowing the model to focus more on
stroke information during training. After CNN-Blocks, OCR and HSV used inde-
pendent parameters, we introduced a multi-scale global fusion block (MGFB)
module to discriminate between reference and test signature pairs. Regarding
OCR, Mamba [8] has been proven to be highly efficient for sequence process-
ing, and we employ the Mamba module for extracting sequential features. To the
best of our knowledge, this work pioneers the use of the MTL approach for HSV.
The reliability of our proposed model has been validated through experiments
conducted on the ChiSig [31] and HanSig [12] databases.

The main contributions of this paper are as follows:

1) We proposed the OCR4HSV model, which is based on MTL. It provides a
new benchmark for multi-task-based signature verification methods. In the
OCR4HSV model, we proposed CN-Mamba architecture for OCR tasks.

2) We proposed the Laplace attention module in CNN-Block of OCR4HSV. This
module uses a fixed Laplace operator convolution kernel to extract stroke edge
information.

3) We proposed the multi-scale global fusion block module in HSV, which
enables the model to extract global feature information at different scales
of the fused reference-test sample pairs.

4) The OCR4HSV model achieved impressive results on different styles of Chi-
nese datasets ChiSig and HanSig.

2 Related Work

2.1 Handwritten Signature Verification

HSV has been studied for many years [10]. In recent years, deep learning
methods [2,28]have gradually surpassed traditional two-stage methods due to
the advantages of end-to-end architecture and the ability to extract powerful
features. [11] uses convolutional neural networks to extract features for HSV
tasks. [2] proposes a network to metric distances between signature pairs. [28]
designed a four-stream network and a multi-path attention mechanism to val-
idate signatures in a binary classification paradigm. [16] introduces a static-
to-dynamic interaction method for offline signature verification tasks. [23] pro-
poses a region-based metric learning method for solving writer-independent and
writer-dependent signature verification tasks. [15] uses a dual-channel fusion,
dual-logit output supervised learning approach for HSV. [17] proposes a sig-
nature verification method using Transformer. [24] proposes a HSV framework
based on dual channels and dual Transformer.

Although deep learning methods have shown significant results, they focus
on the shape of text features while overlooking the textual features inherent in
the text itself. Therefore, we propose the OCR4HSV network, which uses the
text information features of signatures for HSV.
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2.2 Optical Character Recognition

Embedded in the legacy of telegraphy and enriched by innovations for the visu-
ally impaired [1], OCR technology has matured from primitive character-reading
devices [3] to a sophisticated tool for detailed text analysis. Early approaches
framed text recognition as detection and classification [14], labeling English
words akin to image categories. Yet, these methods struggled with variable-
length sequences. Sequence-based techniques, leveraging connectionist tempo-
ral classification (CTC) [6] and attention [5], emerged as versatile solutions for
sequence labelling, aligning image blocks with character sequences.

Recent trends favor sequence-based frameworks for their adaptability and
labeling ease. These architectures feature a dual-module design: a feature encoder
for visual text representation and a sequence decoder for character sequence
mapping, optionally aided by linguistic context. [27] exemplify this integration,
utilizing a CNN-RNN-CTC architecture for end-to-end OCR training. The CNN
extracts feature sequences, RNN (bi-LSTM) predicts based on these sequences,
and CTC outputs character sequences, collectively forming the CRNN network,
trainable under a unified loss function.

Recently, state space sequence models (SSMs) [7], particularly structured
SSMs such as S4, have emerged as efficient building blocks (or layers) for
constructing deep networks, achieving state-of-the-art performance in contin-
uous long sequence data analysis [9]. Mamba [8] further enhances S4 by incor-
porating a selection mechanism, enabling the model to selectively attend to
input-dependent relevant information. Coupled with hardware-aware implemen-
tations, Mamba surpasses Transformers on dense modalities like language and
genomics. Given that image patches and features can be transformed into
sequences [4], the appealing traits of SSMs motivate us to explore the potential
of using Mamba modules for OCR. In this paper, we propose the CN-Mamba
architecture, which employs two convolutional layers for feature encoding fol-
lowed by a Mamba block and utilizes CTC for decoding.

2.3 Multi-task Learning

MTL aims to concurrently learn multiple tasks by sharing knowledge and com-
putation. In the realm of computer vision, there exist two classic paradigms of
multitasking. The first category pertains to dense scene understanding (DSU)
multitasking, which encompasses tasks such as semantic segmentation, surface
normal estimation, and saliency detection for each input sample. Presently,
research in DSU multitasking predominantly centers around the innovation of
decoder architectures [19]. The second paradigm involves cross-domain classifi-
cation multitasking, where input data comprises multiple datasets with domain
shifts. Owing to the involvement of multiple domains, current studies empha-
size learning shared and private information across domains [26]. An efficacious
multitask network should balance both the shared feature aspects and task-
specific components, necessitating the learning of generalized representations
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across tasks to prevent overfitting while also capturing the unique characteris-
tics of each task to avert underfitting.

Based on the extent of network parameter sharing when addressing differ-
ent tasks, MTL methodologies can be categorized architecturally into 1) Shared
Parameter, where the main body of the model shares parameters while out-
put structures are task-independent; and 2) Independent Parameter, where dis-
tinct tasks employ independent models with parameters constrained with one
another. Inspired by the second task, we propose an end-to-end HSV model that,
for the first time, combines OCR and HSV tasks into a joint learning framework.

3 Method

In this section, we first summarise our methods and detail the proposed model.
Then, we delve into the various details of the proposed respectively.

Fig. 1. The architecture of the OCR4HSV. (a) The HSV component of OCR4HSV
serves as the primary architecture during testing. (b) Employing the CN-Mamba frame-
work, the OCR unit manifests a bespoke design for precise recognition tasks.

3.1 Overview

The OCR4HSV model is illustrated in Fig. 1. OCR4HSV is an end-to-end
model and this network model adopts a Siamese network as the basic archi-
tecture. The OCR model, depicted in the red and brown data flow in Fig. 1(b),
shares weights due to its Siamese characteristic. Therefore, the OCR4HSV model
has to be used twice OCR train in every single train. The HSV model, shown in
Fig. 1(a), extracts features from reference-test image pairs inputted into the net-
work, performs channel fusion and finally discerns using the MGFB module.
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The input for both OCR and HSV tasks is the same. Hence, we adopt the
concept of MTL and design neural networks with shared and independent param-
eters. Compared to standard single-task learning on HSV, the joint MTL of OCR
and HSV incorporates feature information required for the HSV task during the
OCR task, thereby enhancing the robust capability of the HSV task. This app-
roach mitigates the overfitting issue arising from insufficient features needed
for the HSV task, consequently improving the accuracy of the HSV task.

Fig. 2. The structure of CNN-Block. (a) The intricate structure constituting the
Laplace Attention Module. (b) Utilizing the Laplace operator with frozen parameters
throughout the training phase.

3.2 Shared Parameters

In the OCR4HSV model, CNN-Block is designed by shared parameters. The
CNN-Block module is divided into two parts: CNN-Block1 and CNN-Block2.
As the convolutional modules for both OCR and HSV modes, these two parts
share the same structure and different parameters. Each CNN-Block contains
two convolutional layers (the kernel size is 3 × 3 and the strip is 1) activated
by the ReLU function and one max-pooling layer (the kernel size is 2 × 2 and
the strip is 2), CNN-Block1 comprises 64 channels, and CNN-Block2 is 128
channels. As depicted in Fig. 2. In the OCR4HSV model, the CNN-Block serves
as a shared convolutional module for OCR and HSV, responsible for extracting
detailed features from offline signature images, encompassing all the features
required by OCR and HSV. In CNN-Block, after the first ReLU function, we
design a Laplace attention module to extract stroke edge information.
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Fig. 3. Feature of Laplace attention module

Laplace Attention Module. The Laplace operator, as one of the traditional
edge detection operators in image processing, belongs to the commonly used
integral transforms in engineering mathematics, the same as the Sobel opera-
tor [25]. It is a spatial sharpening filtering operation. The Laplace operator is
the simplest isotropic second-order differential operator, possessing rotational
invariance. According to the properties of function differentiation, where the
second-order differential of the pixel value is zero, are considered edge points.
For a two-dimensional image function f(x, y), the expression for the second-order
Laplace operator is:

∇2f(x, y) =
∂2f

∂x2
+

∂2f

∂y2

= f(x, y + 1) + f(x, y − 1) + f(x + 1, y)
+ f(x − 1, y) − 4f(x, y)

(1)

According to this formula, we can get this filter mask:

G1 =

⎡
⎣

0 1 0
1 −4 1
0 1 0

⎤
⎦ (2)

Expanding formula Eq. (2) yields the following filter mask, as shown in
Fig. 2(b):

G2 =

⎡
⎣

1 1 1
1 −8 1
1 1 1

⎤
⎦ (3)

Since Laplace operator can achieve edge detection in traditional image pro-
cessing, it can highlight the edge information of the text. Therefore, this paper
adopts the Laplace operator as the foundation and designs the Laplace atten-
tion module. Specifically shown in Fig. 2(a). In the CNN-Block, assuming the
input feature for the attention module is h, edge features are extracted using the
Laplace operator, and blur processing uses average pooling. Then, upsampling
is performed using the nearest neighbor algorithm, and after convolution oper-
ations with Sigmoid activation, the output is g. The process multiplies h by the
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elements of g and then adds h to produce the intermediate attention measure-
ment h · g + h, where ”·” denotes dot product. The subsequent global average
pooling layer and the fully connected layer with Sigmoid activation receive the
intermediate attention measurement and output the feature vector f . Multiply-
ing each intermediate of the channel attention measurement by each element of
f generates the final attention (h · g + h) × f , which is then output to the con-
volution module for feature extraction. To preserve the edge feature extraction
effect of the Laplace operator, the parameters of the Laplace operator are frozen.

Figure 3 shows the feature maps of the Laplace attention module, illustrating
that after the first layer of attention, the model focuses on the edge of text
information. After the second layer of attention, the focus shifts to the text
itself, likely due to the edges of the image becoming increasingly blurred from
prior processing. However, the input image has a pure black background, which
focuses on the text of the model.

3.3 Independent Parameters

After the CNN-Block, the OCR4HSV module adopts a design with indepen-
dent parameters, connecting different blocks for the OCR task and the HSV
task. For the HSV module, we propose the MGFB module, which draws on the
attention mechanism of pyramid networks that captures coarse-grained and fine-
grained information along with global context at various scales in a top-down
manner [13]. The design of this module, through a progressive convolution strat-
egy of global attention mechanisms across different scales, facilitates focusing
on the features that distinguish between the two images at varying scales after
fusion, effectively enhancing discriminative capabilities. For the OCR module,
this study is the first to apply the recent advancements in SSM, namely Mamba,
to OCR. Mamba and its underlying SSM have been demonstrated to bring sub-
stantial performance enhancements to dense models in areas like language and
genomics due to their selectivity. After passing through the CNN-Block, when
the image is transformed into a 1-dimensional sequence, Mamba can extract
textual information embedded throughout the entire long sequence. The CN-
Mamba architecture, by integrating CNN with Mamba, introduces the capability
of capturing local information to Mamba, which is advantageous for highlighting
feature information crucial during decoding, thereby making the interpretation
of intrinsic data information particularly beneficial.

Multi-scale Global Fusion Block. The problem of accurately and quickly
distinguishing the differences between two handwriting images has consistently
been a focal point of academic research. These images share a lot of similar infor-
mation, whereas the distinguishing features are scarce and abstract. Excessive
convolutional processing tends to obscure the very details crucial for differen-
tiation. To address this, we propose the MGFB module. This module employs
multi-scale feature extraction to gather characteristics across various scales and
utilizes global-local encoding to accentuate the fused features, thereby enabling
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Fig. 4. The structure of multi-scale global fusion block

precise discrimination following the integration of reference and test handwriting
images.

The MGFB comprises a combination of two convolutional layers and one
pooling layer, employing 3×3 convolutions and max-pooling. First, two images,
Img1 and Img2, are concatenated along the channel dimension as input. The
output is then split into three pathways. In the first path, the fused feature
vector is fed into a global attention (GA) mechanism to capture global feature
information, followed by a convolutional layer for local feature extraction. Sub-
sequently, the output from the CNN is recombined with the second path and
again processed through both GA and CNN modules. Lastly, the outputs from
the two CNN operations are combined with the third path, undergoing max-
pooling before the final output. The process is shown in Fig. 4 and expressed
as:

Fusion1 = CAT ([Img1, Img2])
OutputCNN1 = CNN(GA(Fusion1))

Fusion2 = CAT ([OutputCNN1, Fusion1])
OutputCNN2 = CNN(GA(Fusion2))

Output = MaxPool(CAT ([OutputCNN2, Fusion2, Fusion1]))

(4)

where, Img1 and Img2 are means input features, CAT (·) is the concatenation,
Maxpool(·) is the maxpool layer, CNN(·) is the 3×3 convolution and GA(·)
represents the Global feature extraction module, represented by Eq 5:

Gi(Q,K, V ) =
Q√
d
(SoftMax(K)T V ) (5)
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where, Q, K, V ∈RN×C is linearly projected of self attention, N = H × W , C
denoted as Channel dimension, d is bias constant.

3.4 Loss Function

The primary objective of OCR4HSV is to calculate the accuracy of the signature
sample. For the HSV method, the loss function used is focal loss function [21].
Focal Loss is a loss function used to solve the problem of class imbalance, which is
formulated as follows:

Loss(pt) = −αt(1 − pt)γ log(pt) (6)

where pt represents the model’s predicted probability of the sample. For the HSV
task, it is the binary classification problem, give a sample of reference-test pair,
if the sample belongs to the positive class, then pt = p (the probability of being
predicted as the positive class); conversely, if the sample belongs to the negative
class, then pt = 1 − p. αt is the class balance weight, which is used to manually
adjust the importance of positive and negative samples. γ is a focus parameter.
The larger its value, the smaller the penalty for easily classified samples, and
the model will focus more on misclassified or difficult-to-classified samples.

For the OCR loss function, we use CTC [6] for decoding. The CTC decoder
was initially used for speech recognition, and researchers have applied it to OCR
tasks with great success. CTC is designed to tackle sequence-to-sequence learning
problems where the length of the input sequence may not match the length of
the target sequence. It allows the model to learn a probability distribution that
can map input sequences to output sequences without prior alignment. Given
an input sequence X, it computes the conditional probability P (Y |X) of the
output sequence Y . The CTC loss function is defined as follows:

Loss = −logP (Y |X) (7)

where the calculation of P (Y |X) is performed by summing the probabilities of
all possible alignment sequences π, which is formulated as follows:

P (Y |X) =
∑

π∈AY,X

P (π|X) (8)

AY,X represents the set of all possible paths that align the input sequence
X to the output sequence Y . The probability P (π|X) of each path π is calcu-
lated using the probability distribution obtained from the Softmax function over
the input sequence.

Therefore, we have two losses of OCR and a loss of HSV and defined finally
loss as follows:

Loss = lossOCR1 + α × lossHSV + lossOCR2 (9)

where α is a hyper-parameter.
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4 Experiment

We train the model based on Pytorch 1.13 platform with NIDIA 3090 and i7-8700
CPU. We use the minibatch Adam with a base learning rate 10−4, and this study
tests our method exclusively on the ChiSig dataset and HanSig dataset. We use
False Rejection Rate (FRR), False Acceptance Rate (FAR), Equal Error Rate
(EER), Area Under the Curve (AUC) and Accuracy (Acc) to comprehensively
evaluate our approach and compare it with other existing approaches.

4.1 Dataset

ChiSig. The ChiSig [31] dataset covers all tasks related to signature detection,
recovery, and verification. For this dataset, we randomly selected 250 signatures
as the training set and used the remaining 250 signatures as the test set. For
each name, signatures from the same volunteer were considered as real sample
pairs, while signatures from different volunteers were considered as forged sample
pairs. Specifically, forged data were only used as forged sample pairs, not as
real sample pairs. To ensure data balance between real sample pairs and forged
sample pairs, redundant sample pairs were removed from the study.

HanSig. HanSig is a comprehensive, large-scale offline Chinese handwritten sig-
nature dataset designed to address the nuances of signature authentication [12].
A unique feature of HanSig is its incorporation of real-world variability, achieved
through the inclusion of signatures in three distinct styles per writer, reflecting
the natural intra-writer variations seen in everyday life. We randomly split Han-
Sig into a training set and a test set. The training set comprises 795 names
signed by 213 writers, while the test set includes 90 names signed by 25 writers.
From the training set, 20 writers’signatures (78 names) are randomly selected
for validation. For each name in the test set, we follow a similar procedure used
in the CEDAR and BHSig to form 190 positive pairs and 190 negative pairs.
The final test data of HanSig consists of 34,200 signature pairs.

We tested the OCR4HSV model in ChiSig and HanSig and the datasets
exhibited distinct stylistic characteristics, as illustrated in Table 1.

4.2 Comparison with Previous Methods

To verify the effectiveness of the model and keep up with the development of the
current handwriting recognition task, this paper selects the latest deep learning

Table 1. Detailed information on the ChiSig dataset and the HanSig dataset.

Dataset name Script names writers Samples Train/Test Genuine/Forger Dict

ChiSig CHS 500 102 10,242 250/250 -/- 525

HanSig CHS, CHT 885 238 35,400 795/90 20/20 805
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models for comparison, including SigNet (2017arXiv) [2], IDN (2019CVPR) [28],
InceptionResnet (2022CVPR) [31] and MCFFN (2024AAS) [20]. Among them,
InceptionResnet is the baseline model provided by the dataset paper. For the
HanSig dataset, because the dataset is relatively new, there is no mature model
yet. Therefore, this paper uses the baseline provided by the dataset paper for
comparison.

Table 2. Comparison on ChiSig dataset (%).

Model FRR FAR Acc

InceptionResnet – – 93.6

SigNet – – 82.28

IDN 10.46 17.91 84.82

MCFFN 5.34 5.34 95.23

OCR4HSV (ours)5.26 2.89 95.92

In Table 2, experimental results show that OCR4HSV outperforms current
mainstream offline handwriting identification algorithms, achieving an accuracy
of 95.92%. It also demonstrated superiority in comparisons of FRR and FAR,
achieving optimal results in both. Compared to the baseline, OCR4HSV demon-
strates an accuracy increase of 2.32%, and it improved by 0.69% compared to
the latest algorithm (MCFFN). This sufficiently proves the superiority of the
OCR4HSV model proposed in this paper.

For the HanSig dataset, we conformed to previous methodologies in designing
our experiments, adhering to the framework outlined by the authors of HanSig.
Specifically, we utilized metrics such as FRR, FAR, EER, and AUC to evaluate
our experimental outcomes.

Table 3. Comparison on HanSig dataset (%).

Model FRR FAR EER AUC

Simple Baseline (pre-trained VGG-16) 32.43 19.66 26.31 80.94

VGG-16 with triplet loss 15.60 22.40 19.07 89.47

VGG-16 with co-tuplet loss 14.20 16.21 15.26 92.60

MS-SigNet with triplet loss 9.99 10.82 10.44 95.92

MS-SigNet with co-tuplet loss 7.69 11.85 9.93 96.38

OCR4HSV (ours) 10.79 7.87 9.14 96.97
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The experimental results presented in Table 3 demonstrate that OCR4HSV
outperforms prevailing handwriting recognition algorithms, achieving an EER of
9.14% and an AUC of 96.97%. Compared to MS-SigNet, the algorithm proposed
by the authors, OCR4HSV shows improvements of 0.79% in EER and 0.59% in
AUC, both reaching state-of-the-art levels. This substantiates the superiority of
the OCR4HSV model introduced in this paper.

4.3 Ablation Study

To validate the effectiveness of each module, we also conducted ablation exper-
iments, with specific results presented in Table 4:

Table 4. Ablation study result (%) of OCR4HSV.

Method ChiSig HanSig

EER AUC Acc EER AUC Acc

baseline 5.89 98.76 93.46 11.18 95.69 88.76

+LAM 5.72 98.77 94.29 10.90 95.91 89.04

+MGFB 5.05 99.03 94.78 10.07 96.37 89.64

+OCR 6.31 98.57 93.68 11.01 95.89 88.95

+LAM+MGFB 4.30 99.25 95.38 10.10 96.53 89.86

+LAM+OCR 5.24 98.94 94.69 10.05 96.53 89.55

+MGFB+OCR 4.91 99.11 95.11 9.82 96.74 90.12

OURS 4.21 99.31 95.92 9.14 96.97 90.67

Insights from Table 4 reveal that the introduction of the LAM, OCR, and
MGFB modules each contributes distinct features to the model. Focusing on indi-
vidual contributions, the MGFB module stands out due to its extraction of multi-
scale global features, achieving impressive outcomes. Specifically, on the ChiSig
dataset, it boosts performance by 1.32%. When considering the synergistic effect
of two modules combined, the pairing of LAM and OCR exhibits a significant
improvement, enhancing ChiSig performance by 1.23% and HanSig by 0.79%.
This is because when textual feature information is introduced, the LAM strate-
gically emphasizes edge information to prevent the model from over-focusing on
text features, thereby mitigating overfitting. Ultimately, the OCR4HSV method
surpasses alternative approaches across all evaluation metrics.

5 Conclusion

In this paper, we integrate the OCR task with the HSV task, employing an MTL
approach to introduce the OCR4HSV model for HSV independent of the author.
OCR4HSV introduces OCR features for text information extraction within the
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HSV framework, mitigating overfitting in HSV tasks and thereby enhancing
validation accuracy. Extensive experiments on the ChiSig and HanSig datasets
demonstrate the efficacy of our proposed OCR4HSV. In the future, we will focus
on extending the application of the model to signatures in various languages.
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Abstract. Zero-shot Chinese character recognition (ZSCCR) aims to
recognize unseen Chinese characters by learning the semantic knowledge
of seen characters. Radical-based methods treat Chinese characters as
combinations of radicals, recognizing characters by predicting the radi-
cals in the images. Existing radical-based methods have a closed radical
parsing process that cannot be intervened in mid-course, relying only
on semantic labels for constraints. However, semantic embedding vec-
tors are usually manually designed and lack alignment with visual fea-
tures, making it extremely difficult for the model to learn and locate
discriminative radical representations from visual features. This paper
proposes a ZSCCR network called Learning Explicit Radical Represen-
tations (LERRNet). LERRNet introduces learnable attribute hint vec-
tors to guide the model in locating discriminative radicals and learning
explicit representations of images. Specifically, we introduce a Radical
Relevance Enhanced Encoder (RREE) to enhance the correlation of local
radicals by augmenting the relationships between grid regions in visual
features. Guided by attribute hint vectors, LERRNet employs a Radi-
cal Representation Decoder (RRD) to locate the most relevant regions of
each radical in the given image and learn explicit radical representations.
Extensive experiments demonstrate that LERRNet outperforms state-of-
the-art radical/stroke-based methods across three ZSCCR benchmarks.
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application scenarios, such as open-set text recognition [10,20]. ZSCCR rethinks
and changes the traditional Chinese Character Recognition (CCR) paradigm,
which regards Chinese characters as a more granular target (radical/stroke
description) rather than a unified whole (character). Since radicals/strokes are
shared attributes among Chinese characters, ZSCCR methods can acquire the
capability to recognize unseen character categories through exploring and learn-
ing the semantic knowledge (as shown in Fig. 1 (a)). Thus, the key purpose for
ZSCCR is learning and locating discriminative semantic representations from
visual features. This benefits the model by allowing them to recognize unseen
characters effectively.

Fig. 1. (a) The semantic knowledge of seen characters can be transferred to the unseen

characters. (b) Radicals tree and IDS description of the character . (c) Twelve
Chinese character structures and corresponding character examples.

Early ZSCCR methods [2,16,23] usually decompose Chinese characters into
sequences and predict characters by decoding visual features into radical/stroke
sequences. However, due to common issues like repetition, errors, and omissions
in sequence prediction, these methods exhibit relatively low fault tolerance. To
address this problem, on the one hand, many researchers propose to embed
characters based on ideographic description sequences (IDS) and then transform
visual features into the same semantic space (e.g., hierarchical decomposition [1],
crucial radicals [12], CLIP alignment [20]) for character recognition. Although
these methods have achieved progressive improvements, they implicitly decode
global visual features and lack cueing information, which makes it difficult for
the model to focus on critical radical regions in the image, as these radicals
are often present in only a tiny portion of the visual image. On the other hand,
the IDS embedding vectors are mostly manually designed with limited infor-
mation representing the characters. This will lead to redundancy when directly
transforming visual features into semantic representations.

To tackle the above challenges, we propose a novel ZSCCR framework called
Learning Explicit Radical Representations (LERRNet), which improves the rel-
evance of regional radicals in visual features and localizes discriminative explicit
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radical representations in the target image. Specifically, LERRNet consists of a
Radicals Relevance Enhancement Encoder (RREE), a Radical Representation
Decoder (RRD), and a Semantic Matching Network (SMN). Firstly, to mitigate
the drop in radical relevance due to flattened features, RREE uses the relative
geometric embedding features to augment the visual features and improve the
transferability of visual features to semantic features. Then, we process radicals
and structures into the attribute hint vectors and use them to guide RRD in
locating the most relevant image region for each radical/structure to obtain the
explicit radicals representations. Finally, SMN uses the radicals-represented
visual features and IDS semantic vectors to achieve character recognition. Exten-
sive experiments show that LERRNet outperforms the current state-of-the-art
radicals/strokes-based methods in the ZSCCR benchmark test.

The main contributions of this paper are summarized as follows:

– We introduce a novel ZSCCR method, Learning Explicit Radical Represen-
tations (LERRNet), which utilizes learnable attribute hint vectors to learn
and localize explicit radical representations.

– We introduce a radicals relevance enhancement encoder to mitigate the loss
of radicals’ relevance due to the flattening of visual features, thus improving
the transferability of visual features to semantic features.

– Extensive experiments validate that the proposed LERRNet model out-
performs state-of-the-art radicals/strokes-based methods on three ZSCCR
benchmarks.

2 Related Work

2.1 Traditional Chinese Character Recognition

Early CCR methods mainly relied on handcrafted features [8], which had limited
performance due to insufficient representative capacity [4]. With the development
of deep learning and big data, deep neural networks have replaced traditional
methods. MCDNN [5] is one of the pioneering attempts to apply CNN to CCR.
This method achieves performance close to the human level in large handwrit-
ten Chinese character recognition vocabulary. Subsequently, Zhong et al. [27]
combined a simplified version of GoogLeNet with traditional feature extraction
methods, surpassing human performance. Zhang et al. [24] proposed a method
combining directMap with CNN to reduce the reliance of the CCR model on data
augmentation and model ensembles. They introduced an adaptation layer to
address the issue of varied handwriting styles. Although the methods above have
achieved excellent performance in traditional Chinese character recognition, they
operated under the closed-world assumption [25], meaning they cannot recog-
nize Chinese characters that do not appear in the training set. Since there are
many uncommon Chinese characters and emerging new characters in reality [10],
these models must be annotated and retrained to recognize these new categories,
incurring a significant cost and thus limiting their practicality. Therefore, this
paper primarily discusses CCR research under the zero-shot learning setting [15].
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2.2 Zero-Shot Chinese Character Recognition

ZSCCR aims to recognize unseen Chinese characters by learning from seen Chi-
nese character classes and auxiliary information. Based on the auxiliary infor-
mation, current ZSCCR methods can mainly be categorized into radical-based,
stroke-based, and glyph-based.

Radical-based and stroke-based methods treated Chinese characters as com-
binations of radicals/strokes, predicting characters based on their compositional
structure. DenseRAN [16] interpreted Chinese characters using a specific struc-
ture of radical sequences and proposed a GRU-based attention decoding struc-
ture to generate radical sequences. Subsequently, a series of methods based on
radical sequence prediction have been proposed [17,23]. Although these methods
can recognize unseen Chinese characters, the performance of recognition is com-
promised due to errors in radical prediction. To address these issues, HDE [1] pro-
posed a radical embedding method. Chinese characters were decomposed hierar-
chically and embedded into a semantic space, enabling recognition through direct
interaction between visual and semantic embedding vectors. SLD [2] introduced
a stroke-level decomposition method, utilizing a Transformer [14] to decode Chi-
nese character stroke sequences for recognition, resolving the zero-shot radical
problem. STAR [22] simultaneously considered information at both radical and
stroke levels, reducing recognition ambiguity. ACPM [28] proposed using three
types of decomposition knowledge, character, radical, and stroke, for joint match-
ing. RSST [19] represented Chinese characters as stroke trees and organized them
based on their radical structures, fully leveraging the advantages of radicals and
strokes. Recently, SIR [12] discovered varying contributions of different radi-
cals in character discrimination and improved previous sequence matching and
embedding methods using radical self-information.

Glyph-based methods prepared a template image for each category (usually a
computer-generated print image). By learning from template image knowledge,
models can recognize unseen classes of Chinese characters with different styles
and types. For instance, CCR-CLIP [20] introduced a CLIP-like framework align-
ing template images with IDS for character recognition, achieving impressive
performance. SideNet [9] proposed joint learning of character-level representa-
tions with the assistance of radicals and template images. In this work, we only
utilize radical information as auxiliary knowledge. Therefore, for a fair compar-
ison, we select methods based on radicals, strokes, and partial glyphs to design
our comparative experiments. Additionally, we report results without employing
template images in these glyph-based methods.

3 Methodology

3.1 Preliminaries

Auxiliary Information. Unlike English, Chinese characters are diverse and
complex. According to the Chinese national standard GB18030-20051, there are
1 https://zh.wikipedia.org/wiki/GB 18030.

https://zh.wikipedia.org/wiki/GB_18030
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70,244 categories of Chinese characters, of which only 3,755 are commonly used.
Despite the intricate nature of Chinese characters, human beings can swiftly
grasp numerous characters through acquired learning, even discerning characters
they have never encountered before. This phenomenon arises because all Chinese
characters share common attributes, such as strokes or radicals, enabling humans
to swiftly memorize characters by understanding them and their meanings. The
current ZSCCR method emulates the human process of learning Chinese char-
acters based on inferring radical/stroke compositions within images to predict
characters.

In ZSCCR, the attributes of Chinese characters serve as prior knowledge
to aid in training and recognition. This auxiliary information can be catego-
rized into three types: radical, stroke, and glyph. This work primarily focuses
on radical information. As illustrated in Fig. 1 (b), each Chinese character can
be represented as a radical tree, where parent nodes denote the structure of
radical combinations, and leaf nodes represent radicals, with their IDS descrip-
tions obtained through depth-first traversal. It is noted that the commonly used
3,755 characters are composed of 514 radicals and 12 basic structures (as shown
in Fig. 1 (c)). In this paper, besides utilizing IDS embedding (e.g., RIE [12])
to obtain class-level semantic vectors to represent Chinese characters, we addi-
tionally employ word2Vec [13] to acquire each radical/structural word vector to
assist LERRNet in learning radical representations.

Overview. As illustrated in Fig. 2, our LERRNet comprises a Radicals Rel-
evance Enhancement Encoder (RREE), a Radical Representation Decoder
(RRD), and a Semantic Matching Network (SMN). LERRNet first utilizes RREE
to alleviate the problem of radical relevance loss in the flattened features, then
employs RRD to learn explicit radical representations and their localization in
visual features guided by attribute hint vectors. Finally, the radicals-represented
visual features are input into SMN for visual semantic interaction to realize
ZSCCR.

Problem Definition. We denote seen Chinese character data as S = {xs, ys},
where xs ∈ X denotes the image of seen characters and ys ∈ Y s represents
the corresponding class labels from the seen class set Y s. Let the set of unseen
character classes be represented as U = {xu, yu}, where the image data xu is
unavailable. Given S and U , a non-intersecting constraint exists on their charac-
ter class sets, i.e., Y s ∩ Y u = ∅. S and U collectively contain N = len(Y s ∪ Y u)
Chinese characters. Their IDS sequences are known and can be represented by
M radical-level attributes (i.e., radicals/structures). We utilize word2vec [13] to
obtain the word vectors for each attribute to initialize the attribute hint vectors
A ∈ R

M×C , which will assist our RRD in learning the explicit radical repre-
sentations in visual features. Note that A can be optimized through training.
Additionally, we use RIE [12] to obtain the class-level semantic vectors for each
class to aid in the final character matching, with the set of semantic vectors
denoted as E = {e1, e2, ..., eN} ∈ R

N×M .
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Fig. 2. The architecture of the proposed LERRNet model. LERRNet comprises a rad-
icals relevance enhancement encoder, a radical representation decoder, and a semantic
matching network.

3.2 Radicals Relevance Enhancement Encoder

For the radical-based approaches, different radicals contribute to recognition to
varying degrees [12]. Meanwhile, the critical radicals may occupy only a tiny por-
tion of the image (for example, distinguishing between and hinges on

). ZSCCR methods usually rely on character coherence information to ana-
lyze their corresponding radical sequences. However, visual features usually need
to be flattened for decoding, which leads to the entanglement of representations
in different image regions and destroys the relevance between radicals, indirectly
making it challenging for the model to focus on critical radicals. To solve this
problem, we propose radical relevance enhancement scaled dot-product atten-
tion, which strengthens visual features by enhancing the relative relationships
between grid regions of characters.

Relative Geometry Embedding. Initially, we employ the CNN backbone to
process input images x ∈ R

H× W×Q, yielding a two-dimensional flattened fea-
ture map F ∈ R

T×C , where T = H × W . To extract the relative geometric fea-
tures from the image [3,7,26], we then acquire 2-D positional coordinate pairs for
each grid. For the p-th grid, its coordinate pairs is {(umin

p , vmin
p ), (umax

p , vmax
p )}.

Through these coordinate pairs, we can compute the relative central coordinates
(cup, cvp) of the p-th grid:

(cup, cvp) = (
umin
p + umax

p

2
,
vmin
p + vmax

p

2
), (1)

[wp, hp] = [(umax
p − umin

p ) + 1, (vmax
p − vmin

p ) + 1], (2)
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where (umin
p , vmin

p ) and (umax
p , vmax

p ) represent the coordinates of the upper-left
and lower-right corners of the grid p, additionally, wp and hp represent the width
and height of the grid p.

Subsequently, we can construct the relative geometry relationship between
the grid features. Given the grids p and q, the region geometry features Gpq of
grid p relative to q are as follows:

Gpq = ReLU(wᵀ
gFC(rpq)), rpq =

(log ( |cup−cuq|
wp

)

log ( |cvp−cvq|
hp

)

)
, (3)

where FC denotes the linear layer activated by the ReLU function, rpq is the
relative geometry relationship and wᵀ

g is the learnable hyperparameter matrix.

Radicals Relevance Enhancement. Finally, we extract regional geometric
features from visual features and input them into the Transformer [14] encoder
to learn attention features. The formula is:

QF = FWF
q ,KF = FWF

k , V F = FWF
v , (4)

F ← F + softmax(
QFKF ᵀ

√
dFk

+ G)V F , (5)

where F ∈ R
T×C denotes the visual features, WF

q ,WF
k ,WF

v represent learnable
hyperparameter matrices. QF ,KF , and V F denote the query, key, and value
derived from the weighted encapsulated features, dFk is a scaling factor, G is the
relative geometric feature, and F ∈ R

T×C is the augmented features.

3.3 Radical Representation Decoder

We adopt the Transformer [14] decoder to construct RRD to learn more accu-
rate radical representations from visual features. RRD consists of multi-head
attention layers and feed-forward networks. Guided by the attribute hint vec-
tors A ∈ R

M×C , the decoder can gradually learn radical representations from
visual information and effectively locate the image regions most relevant to var-
ious radicals/structures in the target image. We use the output F of RREE as
keys and values, the learnable attribute hint vectors A as the query input for
multi-head self-attention layers to learn radical representations in visual features,
formulated as:

Qi = AWqi,Ki = FWki, Vi = FWvi, (6)

headi = softmax(
QiK

ᵀ
i√

dRk

), (7)

F att = (head1 ⊕ head2 ⊕ ... ⊕ headi)Wo, (8)
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where Wqi,Wki,Wvi are learnable hyperparameter matrices, dRk is a scaling fac-
tor, Wo are learnable hyperparameter matrices, and ⊕ denotes the concatenate
operation.

Then, the attention features of multi-head attention input are fed into the
feed-forward network to obtain FR:

FR = ReLU(F attW1 + bias1)W2 + bias2, (9)

where FR ∈ R
M×C the radicals-represented visual features.

3.4 Semantic Matching Network

After decoding visual features into the radical representation, we map them into
the semantic vector e to match Chinese characters. Specifically, the radicals-
represented visual features FR, combined with A, are input into the semantic
matching head to obtain semantic vector epred. It is defined as:

epred =

⎡
⎣ M∑
j=1

(
A · W · F�

R

)
ij

⎤
⎦
M

i=1

, (10)

where A · W · F�
R ∈ R

M×M is the semantic matching matrix, W ∈ R
C×C is an

auxiliary embedding matrix, and ᵀ indicates transposition. Then, according to
epred, we can match Chinese characters based on all semantic vectors:

ypred = arg max
y∈Y

epred · ey, (11)

where ypred ∈ Y denotes the predicted class label, ey ∈ E denotes the candidate
semantic vector, and Y = Y s ∪ Y u.

3.5 Loss Functions

We adopt a cross-entropy loss Lce, a regression loss Lmse to optimize LERRNet.
When certain radicals are present in an image, their associated image embed-

ding distributions are closer to the corresponding semantic vectors ey. There-
fore, to obtain better compatibility scores, we adopt a radical embedding cross-
entropy loss to optimize our model. Given a batch of training data with batch
size B, Lce is defined as follows:

Lce = − 1
B

B∑
i=1

(
epredi · eyi − log

∑
y′∈Y s

exp
(
epredi · ey′))

, (12)

where eyi represents the corresponding ground truth semantic vector of the i-th
sample.

We also introduce the radical regression loss constraint. Specifically, we treat
visual-semantic mapping as a regression problem, optimizing by minimizing the
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mean square error between the ground truth semantic vectors and the predicted
vectors for each sample. Lmse is defined as follows:

Lmse =
1
B

B∑
i=1

∥∥∥epredi − eyi

∥∥∥2

. (13)

Finally, the overall LERRNet optimization function is:

Ltotal = Lce + µLmse, (14)

where µ is a hyperparameter that balances the losses.

4 Experiments

4.1 Experimental Setup

Fig. 3. Some examples of Chinese characters from the dataset used in our experiments.

Dataset. We evaluate the proposed method on the HWDB1.0–1.1 [11], ICDAR
2013 [18], and CTW [21] datasets. Some examples of samples from these datasets
are shown in Fig. 3. The HWDB 1.0 dataset consists of 4,037 character classes
with 1,680,258 samples, while the HWDB 1.1 dataset includes 3,926 Chinese
character classes with 1,172,907 samples. We selected the 3,755 commonly used
first-level Chinese characters for our evaluation. This ICDAR2013 test dataset
contains 3,755 handwritten Chinese character classes with 224,419 samples writ-
ten by 60 authors. This CTW dataset contains 812,872 Chinese character sam-
ples (760,107 images for training and 52,765 for testing) extracted from scene
text images and covers 3,580 Chinese character classes. The CTW dataset poses
significant challenges for Chinese character recognition due to the occlusion,
low resolution, diverse styles, etc. For fair comparisons, we followed the dataset
partition proposed by SLD [2] for ZSCCR experiments.
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Implementation Details. We implemented the model using PyTorch, and
all experiments are deployed on an NVIDIA RTX 4090 24GB GPU. Our CNN
backbone is the same as SLD [2]. The batch size and input image size are 64
and 128-128. We use the Adam optimizer with a learning rate of 0.001, and the
weight decay is 0.0001. Based on experience, we set µ to 0.05 for all datasets. In
the transformer, the head number, the scaling factor, the channel number, and
the dropout are set to 4, 300, 512, and 0.4, respectively. We adopt Character
Accuracy (CACC) as the evaluation metric. Meanwhile, we follow the traditional
approach by combining the training and test sets to construct the candidate
set [16].

4.2 Comparing with State-of-the-Art

Experiments on Zero-Shot Settings. This section compares our method
with the state-of-the-art ZSCCR method on handwritten and scene character
datasets. The handwritten character datasets include HWDB1.0–1.1 [11] and
ICDAR2013 [18]; the scene dataset is CTW [21]. For a fair comparison, we
follow the settings of SLD [2] and conduct experiments using the character zero-
shot setting and radical zero-shot setting.

For the character zero-shot setting, we respectively selected the first m classes
of samples from the HWDB1.0–1.1 and the CTW as the training sets for hand-
written and scene experiments, where the range of m is {500, 1000, ..., 2755}
and {500, 1000, ..., 3150}. The test set for handwritten experiments consists of
all samples from the last 1000 classes of the ICDAR2013, while the test set for
scene experiments comprises samples from the first 500 classes of the CTW
test set. Additionally, due to some radicals in the test characters that do not
exist in seen characters, we inevitably need to address the radical zero-shot
problem [1,2]. Therefore, we conducted experiments under the radical zero-shot
setting to evaluate our method comprehensively. The radical zero-shot experi-
mental setup includes two steps: (1) calculating the frequency of occurrence of
each radical in the candidate character set, and (2) if a character’s IDS con-
tains radicals appearing fewer than n times, where n ∈ {50, 40, 30, 20, 10}, the
character is assigned to the test set; otherwise, it is assigned to the training set.

The experimental results in Table 1 indicate that our method performs excel-
lently on handwritten datasets. In the character zero-shot setting, our method
outperforms state-of-the-art methods by an average of 8.38%. Notably, as m
decreases, our method significantly improves, suggesting its ability to learn radi-
cal knowledge from a few samples efficiently. Although our performance is slightly
lower than stroke-based methods, e.g., STAR [22], in the radical zero-shot set-
ting, our proposed method is significantly better than previous radical-based
methods, demonstrating its capability to learn better radical representations
with strong generalization, enabling inference of unseen radicals from seen ones.
The results of scene character experiments are shown in Table 2, where our
method achieves the best performance in both settings. In the character and
radical zero-shot settings, it outperforms the current state-of-the-art methods
by an average of 9.29% and 0.47%, respectively, which indicates our method’s
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Table 1. Results of character zero-shot (left) and radical zero-shot (right) tasks on
Handwritten characters. (%)

Handwritten m for Character Zero-Shot Settingn for Radical Zero-Shot Setting

500 1000 1500 2000 2755 50 40 30 20 10

DenseRAN [16] 1.70 8.44 14.71 19.51 30.68 0.21 0.29 0.25 0.42 0.69

HDE [1] 4.90 12.77 19.25 25.13 33.49 3.26 4.29 6.33 7.64 9.33

SLD [2] 5.60 13.85 22.88 25.73 37.91 5.28 6.87 9.02 14.67 15.83

ACPM [28] 9.72 18.50 27.74 34.00 42.43 4.29 6.20 7.85 10.36 12.51

STAR [22] 7.54 19.47 27.79 35.53 43.86 6.95 12.28 14.74 18.37 23.23

SIR [12] 7.43 15.75 24.01 27.04 40.55 – – – – –

RSST [19] 11.56 21.83 35.32 39.22 47.44 7.94 11.56 15.13 15.92 20.21

SideNet* [9] 5.1 16.2 33.8 44.1 50.3 – – – – –

CCR-CLIP* [20] 21.79 42.99 55.86 62.99 72.98 11.15 13.85 16.01 16.76 15.96

LERRNet(Ours) 32.73 55.36 66.01 70.81 73.59 8.35 11.22 14.81 15.98 19.37

* This result does not use glyph auxiliary information

Table 2. Results of character zero-shot (left) and radical zero-shot (right) tasks on
Scene characters. (%)

Scene m for Character Zero-Shot Settingn for Radical Zero-Shot Setting

500 1000 1500 2000 3150 50 40 30 20 10

DenseRAN [16] 0.15 0.54 1.60 1.95 5.39 0 0 0 0 0.04

HDE [1] 0.82 2.11 3.11 6.96 7.75 0.18 0.27 0.61 0.63 0.90

SLD [2] 1.54 2.54 4.32 6.82 8.61 0.66 0.75 0.81 0.94 2.25

ACPM [28] 3.44 6.18 10.65 15.40 21.29 0.54 0.70 0.74 0.78 0.89

STAR [22] 1.19 3.77 8.04 11.00 11.27 2.16 2.33 2.76 4.81 5.35

RSST [19] 1.41 2.53 4.95 9.32 13.02 1.21 1.29 1.89 2.90 3.88

CCR-CLIP* [20] 3.55 7.70 9.48 17.15 24.91 0.95 1.77 2.36 2.59 4.21

LERRNet(Ours) 6.84 15.92 20.95 31.55 34.20 1.92 2.56 3.63 4.90 6.77

*This result does not use glyph auxiliary information

better ability to handle issues such as low resolution and occlusion in scene
samples.

Experiments on General CCR Settings. We also conducted experiments
on general CCR settings to evaluate the performance of our method in recog-
nizing only seen characters. For handwritten character experiments, we used
HWDB1.0–1.1 as the training set and the ICDAR2013 dataset as the test
set. The experimental results are shown in Table 3, where our method achieved
the second-best performance in handwritten and scene character experiments,
second only to ACPM [28], which benefits from multiple decomposition informa-
tion of Chinese characters. Our method only learns radical representations for
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CCR, outperforming other methods based on radicals and strokes. Such results
once again demonstrate the effectiveness of our approach.

Table 3. Performance comparison in benchmark ICDAR2013 and CTW with general
CCR settings. (%)

Method Decomposition Level ICDAR2013 CTW

ResNet [6] Character 96.83 79.46

DenseRAN [16] Radical 96.66 85.56

RAN [23] Radical 93.79 81.80

HDE [1] Radical 97.14 89.25

SLD [2] Stroke 96.28 85.29

ACPM [28] Radical, Stroke and Character 97.80 91.48

STAR [22] Radical and Stroke 97.11 85.43

CCR-CLIP [20] Radical 97.18 85.78

LERRNet(Ours) Radical 97.39 89.37

4.3 Ablation Study

To evaluate the performance of the proposed RREE and RRD, we conducted
ablation experiments on handwritten and scene character datasets. For this pur-
pose, we set up simplified pipeline versions as baselines. For RRD, we use a lin-
ear layer instead. The results of the ablation experiments are shown in Table 4,
where the proposed RREE and RRD both achieved significant progress. It is
worth noting that using only RREE resulted in negative gains on CTW. Still,
when combined with RRD, more considerable improvements were obtained, indi-
cating that these two modules can complement each other.

Table 4. Results of ablation study. (%)

Module Handwritten Sence

1500 2755 1500 3150

Baseline 47.77 57.82 15.60 18.19

Baseline + RREE 48.67 60.90 12.29 13.22

Baseline + RRD 61.75 70.03 16.91 28.56

Baseline + RREE + RRD 66.01 73.59 20.95 34.20
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4.4 Visualization of Attention Maps

We conducted visualization on LERRNet to demonstrate its effectiveness in
learning and locating key radical representations from visual features. Figure 4
shows the attention maps of the top 6 radical representations with the highest
contribution to recognition in FR. The results demonstrate that our LERRNet
accurately focuses on the crucial radical regions in Chinese characters, which
validates the effectiveness of our approach.

Fig. 4. Visualisation of attention maps for Ours LERRNet.

5 Conclusion

This paper proposes a novel ZSCCR framework called Learning Explicit Rad-
ical Representations (LERRNet). Firstly, our LERR adopts a Radicals Rele-
vance Enhancement Encoder (RREE) to mitigate the loss of radicals’ relevance
due to the flattening of visual features, thus improving the transferability of
visual features to semantic features. Then, we introduce a Radical Represen-
tation Decoder (RRD) to learn the most relevant regions for each radical in
the image. Finally, a Semantic Matching Network (SMN) facilitates the interac-
tion between the radicals-represented visual features and semantic vectors, thus
recognizing unseen character classes. Extensive experiments on three popular
benchmark datasets demonstrate the effectiveness of this approach. Our future
work will incorporate more effective printed character images as auxiliary infor-
mation to enhance the robustness of our framework and explore new semantic
embedding methods to improve radical representation.
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Abstract. We propose a deep learning approach to deal with large Ara-
bic lexicon recognition. We propose a combination of methods aimed at
learning and recognizing written decomposable Arabic words, trying to
simulate writing human reading. The training is based on derivational
and inflectional characteristics specific to Arabic. Word recognition pro-
cess begins with an initial phase of inflection and derivation classifica-
tions using six CNN-BiLSTM models that have been transfer learned
and fine-tuned. Subsequently, we employ the Grad-CAM technique on
these classifiers to localize and extract word prefixes, infixes, and suf-
fixes. Following this, a root extraction phase utilizes image pre-processing
techniques to isolate characters that belong to the root, serving as prepa-
ration for root classification. Ultimately, we aim to utilize the classifier
results to reconstruct words based on the different feature of the Arabic
words morphology.

Keywords: Arabic Word Classification · Deep Learning · Explainable
AI

1 Introduction

Morphological analysis and feature extraction of Arabic words using artificial
intelligence pose significant challenges due to the language’s rich and complex
morphology. Arabic is characterized by its root-and-pattern system, extensive
inflection, and derivational morphology, making accurate word classification a
complex task. This complexity necessitates advanced techniques for effectively
analyzing and interpreting Arabic words.

2 Morphological Linguistic Knowledge in Arabic

Understanding the morphological structure of Arabic is crucial for improving
NLP models tailored to the language. Arabic morphology is rich and complex,
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characterized by root-based word formation and extensive use of inflections and
derivations. By dissecting the morphological processes in Arabic, we can gain
insights into how words are formed, modified, and understood within their lin-
guistic context. This section will delve into the key aspects of Arabic morphology,
including derivational, inflectional, and agglutinative processes, providing exam-
ples to illustrate each type.

2.1 Derivational Morphology

Derivational Morphology involves the creation of new words by adding prefixes,
suffixes, or other meaningful units (morphemes) to a base word (the root). This
process often changes the word’s meaning and sometimes its grammatical cat-
egory. The Fig. 1 depict an example with the Root: (k-t-b) which mean
“write.”

Example 1: Derivational form: (kātib), meaning “writer” (noun derived

from the verb “write”) The derivational form (kātib) is formed by adding
the vowel pattern (a) after the first character of the root, changing the meaning
to “writer,” which is a noun derived from the verb “write.”

Example 2: The derivational form (maktaba) is formed by adding the
prefix (ma-) and the suffix (-a) to the root, changing the meaning to “library,”

Fig. 1. Model Morpholgy
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2.2 Inflectional Morphology

Inflectional morphology deals with the modification of a word to express different
grammatical features such as tense, mood, number, case, and gender. Unlike
derivational morphology, inflectional changes do not create new words but rather
change the form of the same word to convey different grammatical information.

Example 1: Inflectional form: (yaktubūna), meaning “they write”

(present tense, third person plural) The inflectional form (yaktubūna)

is formed by adding the prefix (ya-) and the suffix (-ūna) to the root,
indicating the present tense and third person plural, changing the meaning to
“they write.”

Example 2: Inflectional form: (katabū), meaning “they wrote” (past tense,

third person plural). The inflectional form (katabū) is formed by adding

the suffix (-ū) to the root, indicating the past tense and third person plural,
changing the meaning to “they wrote.”

2.3 Agglutinative Morphology

While Arabic is not primarily an agglutinative language, it does use a form of
agglutination in some contexts, particularly with pronouns and prepositions.

Example 1: Agglutinative form: (maktabuka), meaning “your desk”

(masculine singular). The agglutinative form (maktabuka) is formed by

adding the possessive suffix (ka) to the base word (maktab), indicating
“your desk” (masculine singular).

Exmaple 2: Agglutinative form: (kitābuka), meaning “your book” (mas-

culine singular) The agglutinative form (kitābuka) is formed by adding the

possessive suffix (ka) to the base word (kitāb), indicating “your book”
(masculine singular).

3 NLP Within Humain-Reading Based Models

Pattern recognition is the automation of artificial perception tasks performed
by the human sensory system and brain. It aims to classify entities into cate-
gories on the basis of observations made on them. In this respect, psychoanalytic
studies show that humans memorize letters standing for the whole word instead
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of sequences of separate letters; analogically to the fact that in the relatively
long-term memory, learning by sentence writing - so semantic elaboration - is
more effective than memorizing by learning by word lists.

The “Word Superiority Effect” concept, proposed by Mc Clelland and Rumel-
hart [McClelland, Belaid], was inspired by this human reading perception. It per-
mits a layered representation of the word, from the local to the global layer and
vice versa. According to [14], this model is applicable to Arabic script recognition
on condition that an intermediary global level, known as the level of the pseudo
word (PAW= Piece of Arabic Word), is added. Therefore, word recognition can
be guided by the meaning of different possibilities of PAW combinations. The
importance of the “Pseudo-Word Superiority Effect” derives not only from the
primary function of PAWs in the Arabic language, but also from the analogy
with the “Word Superiority Effect”.

On another hand, integration of linguistic information in the recognition
process is one of the most promising research approaches. In this context, inter-
esting results were yielded in [11] study, which focused on the “Word Derivation
Effect” by integrating linguistic information such as roots and patterns in the
Arabic word recognition process. Accordingly, they generally estimate that word
recognition can occur at several independent, but complementary, levels, such
as root recognition, pattern recognition, agglutination recognition, recognition
of conjugation elements, etc.

Then, in this work, we assume too that the human-reading process is also
characterized - in addition to the “Word or Pseudo-Word superiority effect”,
from a scriptural point of view- by the concept of “Word Morphology Effect”
which includes principally derivational and flexional layers, from a linguistic
point of view. To substantiate this, we will experiment the incorporation of
morphological linguistic knowledge into a perceptual model while benefiting from
the power of deep learning in text recognition.

4 Related Work

In the literature, we can find many types of techniques that take advantage of
advancements in the field of artificial intelligence, particularly deep learning,
to enhance text and word recognition. Optical Character Recognition (OCR)
is a fundamental research area in text recognition. Many techniques have been
applied to achieve higher performance and enhance results by considering newer
challenges, such as poor quality and noisy images, while trying to cover many
languages and their different characteristics.

4.1 Language-Free Methods

Language-free methods refer to techniques or approaches that do not rely on
linguistic knowledge or language models to perform tasks. These methods typ-
ically depend on visual, structural, or statistical features rather than semantic
or syntactic information from a language. For instance, Connectionist Temporal
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Classification (CTC) is a type of neural network output layer used for sequence
modeling, particularly in tasks where the alignment between the input and out-
put sequences is unknown. CTC is widely used in speech recognition, handwrit-
ing recognition, and scene text recognition. This technique has been applied
to several languages, such as English [4] and Arabic [6] based on CNN-LSTM
network. There is a widely adopted technique in the field of text recognition
that combines segmentation-recognition strategy with Connectionist Temporal
Classification (CTC). This method comprises three essential steps: image regu-
larization, segmentation, and recognition. The first step, image regularization,
involves applying various preprocessing techniques to enhance image quality by
addressing challenges such as low resolution, blur, perspective distortion, and
nonuniform lighting. The second step, segmentation, involves dividing the regu-
larized text image into subimages, each containing a single character or language
element. Finally, the recognition step processes these subimages using charac-
ter recognition techniques. This step employs various classifiers, ranging from
traditional machine learning methods like Support Vector Machines (SVM) to
advanced deep learning approaches, to identify and classify the characters[3].

4.2 Language-Based Methods

Linguistic-based approaches generally refer to techniques or methodologies that
heavily leverage linguistic knowledge or language models to address various tasks
or challenges. These methods utilize linguistic rules, semantics, syntax, and other
linguistic features to enhance or guide the process of data analysis, modeling, or
decision-making within a specific context. The approach proposed by [5] inte-
grates two distinct models. The vision model comprises a backbone network and
a position attention module. This model utilizes ResNet and transformer units
for feature extraction and sequence modeling, respectively. Given an input image,
the model outputs character probabilities. The language model, as the second
component, operates independently for spelling correction. It takes probability
vectors of characters as input and produces probability distributions of expected
characters. To integrate visual and linguistic features effectively, a final fusion
technique is employed.

5 Approach

To facilitate Arabic word recognition, we propose a compositional approach
based on four steps, as depicted the Fig. 2, that takes advantages from the
Derivational and Inflectional arabic morphology.

5.1 Step 1: Features Classifications

As depicted the Fig. 2, this step employs ensemble classifiers to extract features
from Arabic words, aiming to discern key characteristics such as the root pattern
(Schema), gender (male or female), and person (first person, second person,
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Fig. 2. Four steps based approach

or third person). In Arabic, the feature ‘number’ denotes whether a pronoun
represents singular or plural form. Unlike English, Arabic includes pronouns
specifically for dual entities, such as “Antoma” for the second person and

“Homa” for the third person, used when addressing two males or two females,
respectively. Our classifiers also incorporate tense recognition (past, present) and
type (verb, noun).

The Model Architecture. The six classifiers are based on a CNN-BiLSTM
network for feature extraction and sequence pattern recognition. These models
share a similar classifier architecture, with differences only in the last layer, which
varies depending on the number of classes. To examine our approach, we prepared
a model from-scratch as depicted in Fig. 3 (a). This model employed three blocks
of convolutional neural networks and Maxpooling layers for feature extraction,
followed by a sequence of dense and BiLSTM layers for sequence information
extraction and classification. On the other hand, recent models based on ResNet
have demonstrated their performance across a wide range of classification prob-
lems. For this reason, we incorporated ResNet50 for feature extraction, as shown
in Fig. 3 (b), leveraging its residual blocks and attention mechanisms. This inte-
gration ensures deeper feature extraction by effectively propagating information
through the network’s residual connections.
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Fig. 3. (a) Model from-scratch, (b) Fine-tuned ResNet50 model

5.2 Step 2: Features Detection

The classification models in our approach serve two primary roles. The first role
is feature classification, which helps us identify different prefixes, infixes, and
suffixes in Arabic words, if they exist. Simultaneously, we need to remove these
additional characters to achieve more accurate root classification in the subse-
quent step. To accomplish this, we employ Gradient-weighted Class Activation
Mapping (Grad-CAM) [12] to get the regions corresponding to the prefixes,
infixes, and suffixes as depicted the Fig. 2. This allows us to better understand
and isolate these features for improved root classification.

5.3 Step 3: Root Extraction

In this stage, the third step of the Fig. 2, we aim to employ various image pro-
cessing techniques to remove the regions of interest identified by the preceding
Grad-CAM step, retaining only the root characters. This approach ensures that
only the essential components of the Arabic words are preserved for further
analysis and classification.
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5.4 Step 4: Root Classification

As we prepared for the second and third steps, our aim in this step, as presented
in the Fig. 2, is to apply root classification to determine the corresponding root
of the Arabic word in the image. The model employed has the same architecture
as the previous classifier in the first step, aiming to utilize the same model
architecture features.

5.5 Data Preparation

For training purposes, we prepared two datasets in order to examine our app-
roach and analyze our results. The classifiers for gender, person, number, tense,
and type were trained using the same dataset, which was structured to con-
tain all classes for each classifier. The first dataset originally consisted of 1044
images, but we tailored it for each classifier to include only the corresponding
classes necessary for each model. The second dataset was also derived from the
APTI database [13], comprising 2510 images labeled with 20 schemas and 45
roots.

5.6 Training

Loss Function. Binary Cross-Entropy (BCE) loss, also known as log loss, is a
loss function used for binary classification tasks where the model’s output is a
probability value between 0 and 1. It measures the difference between the true
labels and the predicted probabilities, penalizing the model more heavily for
confident and incorrect predictions.

BCE =
−1
N

N∑

i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (1)

Epochs. The gender, person, number, tense and type classifier have been
trained for 150 epochs, and the Schema and root classifiers have been trained
from 300 epochs due the difference of the number of the data for models.

6 Results

The Training results for the both models showed similar interesting performances
while the both models achieved over 0.98 accuracy on the train data and over
0.91 on test data for all arabic word features.

6.1 Transfer Learning of ResNet50

The transfer learning and fine-tuning techniques of ResNet50 as feature extrac-
tors present promising results on different image features and dataset sizes, mak-
ing it the selected model for our approach as depicted in the Table 1. We achieve
over 0.97 accuracy for all models on the train dataset and over 0.91 as accuracy
on the test dataset.
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Table 1. The ResNet50 model Performance Metrics

Model Acc Train Acc Test Loss Train Loss Test Nb. images train Nb. images test

Tense 98% 93% 0.05 0.43 621 156

Gender 98% 91% 0.06 0.6 691 173

Type 98% 96% 0.0001 0.28 815 204

Number 99% 98% 0.000006 0.008 621 156

Person 99% 91% 0.006 0.34 560 140

Schema 99% 93% 0.0001 0.03 1587 397

Root 97.62% 96.78% 0.0047 0.0054 1587 397

6.2 Training Results of the from-Scratch Model

The training results of the from-scratch model demonstrate comparable perfor-
mance in recognizing Arabic word features, as shown in the Table 2.

Table 2. The from-scratch model Performance Metrics

Model Acc Train Acc Test Loss Train Loss Test Nb. images train Nb. images test

Tense 98.21% 91.54% 0.0431 0.4164 621 156

Gender 99% 97.82% 0.00001 0.0811 691 173

Type 99% 99% 0.0001 0.0005 815 204

Number 99% 97% 0.00001 0.0059 621 156

Person 93.03% 81.89% 0.1440 0.4925 560 140

Schema 99% 97% 0.00001 0.0212 1587 397

Root 99% 98% 0.000001 0.0007 1587 397

6.3 Deep Comparative Results

To advance our research and refine the results of our approach, we applied the
GRAD CAM technique to determine the regions and positions of the tense char-
acters in image words. While both models, the fine-tuned ResNet50 and the
model from-scratch present interesting classification results and similar training
curves, as depicted in Fig. 6, The ResNet50 showed promising results with GRAD
CAM, unlike the model from-scratch, which demonstrated a lack of performance
with GRAD CAM in the second step.
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Grad CAM Results with ResNet50 as Tense Classifier. The Fig. 4 illus-
trates the features of each tense, showing how the model successfully identifies
the prefixes and suffixes belonging to each tense, distinct from the root.

Fig. 4. Grad CAM results with the fine tuned ResNet50

Grad CAM Results with the from-Scratch Model as Tense Classifier.
Unlike the ResNet model, the model from-scratch shows poor results with the
Grad-CAM technique, as it does not focus on any part of the Arabic word
prefixes and suffixes as present the Fig. 5.

Fig. 5. Grad CAM results the from-scratch model CNN-BiLSTM
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Fig. 6. (a) Train and validation accuracy curves of the fine tuned ResNet50, (b) Train
and validation accuracy curves of the from-scratch model.

7 Conclusion and Perspectives

Overall, our approach aims to decompose Arabic word recognition into four steps,
taking advantage of the Arabic word features and morphology. To examine this
approach, we prepared two types of models that leverage the advancements of
deep learning techniques by employing a model architecture that combines Con-
volutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory
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(BiLSTM), aiming to extract both spatial and temporal Arabic word morphol-
ogy. While both models show performance in Arabic word feature classification,
the ResNet50 succeeded in extracting tense features, unlike the model from-
scratch.

Our findings encourage further research in this field by testing other Arabic
features presented in this work that have not been treated. The results highlight
the importance of using techniques such as transfer learning, fine-tuning, and
GRAD CAM as explainability methods. These methods help present the learned
knowledge of the models and can be utilized for other research purposes in the
field of artificial intelligence and in computer vision tasks.
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Abstract. Unlike hybrid speech recognition systems where the use of
tokens was restricted to phones, biphones or triphones the choice of
tokens in the end-to-end ASR systems is derived from the text corpus
of the training data. The use of tokenization algorithms like Byte Pair
Encoding (BPE) and WordPiece is popular in identifying the tokens that
are used in the overall training process of the speech recognition system.
Popular toolkits, like ESPNet use a pre-defined vocabulary size (number
of tokens) for these tokenization algorithms, but there is no discussion on
how vocabulary size was derived. In this paper, we build a cost function,
assuming the tokenization process to be a black-box to enable choosing
the number of tokens which might most benefit building an end-to-end
ASR. We show through experiments on LibriSpeech 100 h set that the
performance of an end-to-end ASR system improves when the number
of tokens are chosen carefully.

Keywords: sub-word tokenization · speech recognition ·
sentencepiece · byte pair encoding

1 Introduction

It was a standard practise to choose mono-phones, bi-phones, tri-phones as the
tokens to train a hybrid automatic speech recognition (ASR) system [11]. The
tokens to be trained was dependent on the prominent sounds in that language
and the training data required the phonetic transcription of the training speech
corpus. However, with the advent of end-to-end systems and the availability of
phonetic transcripts, the move has been on automatically identifying the tokens
from the text data of the training corpus. As a result, most current ASR systems
model tokens derived from the training text rather than use unit which have
relevance to the language or pronunciation.

Several tokenization algorithms, such as Byte Pair Encoding (BPE) [13],
WordPiece [12], or unigram language model tokenization [4] have been
researched. These algorithms, broadly work on the principle of iteratively merg-
ing frequently occurring pairs of characters or tokens to create a vocabulary of
tokens that can represent the language’s vocabulary efficiently. The difference
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among these tokenization algorithms lies in the way characters are paired. BPE
uses a pre-tokenizer to split the training data into words and creates a set of
base vocabulary consisting of all symbols that occur in the set of unique words.
After this, BPE learns the merge rules to create a new symbol from two symbols
of the base vocabulary. This process goes on till the desired number of sym-
bols (or tokens) are created. While BPE chooses the most frequent symbol pairs
to merge, WordPiece merges the symbol pair that maximizes the likelihood of
the training data until the desired number of symbols have been obtained. In
contrast to BPE and WordPiece, Unigram language model tokenization starts
from a large set of symbols and trims down each symbol to obtain a smaller
set of symbols. SentencePiece [5] is a popular language independent sub-word
tokenizer and detokenizer for Neural Text Processing. It does not need a pre-
tokenizer unlike BPE and hence it is suitable for languages such as Japanese and
Chinese. While the above tokenization algorithms work on training text, various
efforts have been made to bring in acoustic perspective into the tokenization
process. Pronunciation Assisted Subword Modeling (PASM) [16], Acoustic Data
Driven Subword Modeling (ADSM) and Phonetically Induced Subwords [9] are
examples of such efforts.

Most ASR systems that use sub-word tokens for training fix the number of
tokens (vocabulary size) and use one of the above tokenizers to generate the
tokens from the training text data. To the best of our knowledge there has been
no discussion on the criteria used for determining the optimal number of tokens
and they are fixed empirically. In this paper, we explore a formulation that can
help identify the number of tokens best suited for ASR training. We set about
the task assuming the availability of a sub-word tokenizer and use it as a black
box.

We first formulate a cost function which when minimized results in an optimal
number of sub-word tokens for a given training text data. We specifically use an
off-the-shelf tokenizer for the purposes of demonstration but it should be kept
in mind that the formulation should work for any tokenizer. We then evaluate
the performance of a standard deep architecture ASR to validate the choice of
the number of sub-word tokens. The main contribution of this paper is in (a)
formulating a framework to identify the number of sub-word tokens and (b)
building a cost function to enable identifying the optimal number of sub-word
tokens and (c) evaluating the performance on a ASR to validate the need for
formal identification of the number of sub-word tokens required to train an ASR
system.

The rest of the paper is organized as follows. We describe the formulation of
the cost function to allow identification of the optimal number of tokens given a
training text corpus in Sect. 2. In Sect. 3 we experiment with LibriSpeech 100 h
training data set to first identify the optimal number of tokens and then use
the tokens to evaluate the performance of an end-to-end ASR. We conclude in
Sect. 5.



Choice of Vocabulary Size for E2E ASR 333

2 Problem Setup

Let S be a text corpus consisting of S = {s1, s2, · · · , sk} k sentences associated
with training data which consists of w words (wu � w, unique). For simplic-
ity, we will assume the text to be English so that blank spaces represent word
boundaries and newlines identify sentences. Let T be a tokenization routine (for
example, byte pair encoding [17]) which takes as input a variable n and operates
on S to produce a set of tokens Tn, namely,

T (n,S) = Tn (1)

where Tn = {t1, t2, · · · , tn}, |Tn| = n is the number of tokens, ti is the ith token,
and ti �= tj for ∀i �= j. Let encT and decT be a pair of functions associated with
T such that

encT (si) =
βi⋃

l=1

τl (2)

acts on a sentence si in the corpus S and represents it using βi tokens {τl}βi

l=1 ∈
T , and decT function

decT

(
βi⋃

l=1

τl

)
= si (3)

reconstructs si by concatenating (represented by
⋃

) a sequence of tokens. Let

θt =
k∑

i=1

βi (4)

denote the number of tokens required to span the corpus S. As mentioned earlier,
βi represents the number of tokens required to represent the sentence si. Let Γ
represent the set of all token required to span the corpus S, namely,

Γ =
k⋃

i=1

(
βi⋃

l=1

τl

)
(5)

where the total number of tokens in Γ is |Γ| =
∑k

i=1 βi. We can compute the
frequency of occurrence of token τ ∈ Tn as

f(τ) =
|Γ|∑

i=1

[Γi = τ ]. (6)

where τ ∈ Tn and Γi ∈ Γ and [·] are the Iverson brackets such that [Q] is
defined to be 1 if Q is true, and 0 if it is false. Further let f+ and f− represent
the average of top few most frequently occurring tokens and the top few most
infrequently occurring tokens respectively. Note that (a) θt, (b) f+, and (c) f−

are a function of n as seen in (1).
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We hypothesize that choosing the optimal number of tokens would be equiv-
alent to finding an n∗ which minimizes the cost function (8), namely,

n∗ = min
n

{C} (7)

where

C =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
α1

t1︷︸︸︷
n +α2

t2︷ ︸︸ ︷(
f+

f− − 1
)

+α3

t3︷ ︸︸ ︷(
θt

w
− 1

)
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(8)

is the cost function and α1,2,3 are weights which are chosen heuristically.
The first term, t1, in the cost function (8) is to ensure that the total number

of tokens used to represent the corpus S is small because a large n means not
only training for a large number of tokens which in turn requires a larger amount
of training data but smaller number of tokens can result in faster training and
inference times for ASR systems. With fewer tokens to model, the computational
complexity of the ASR system can be reduced, leading to quicker training conver-
gence and real-time performance during inference. The second term, t2 ensures a
balance between the most frequently occurring and the least frequently occurring
tokens, because an imbalance in data can lead to bias during training [1]. Note
that a perfectly balanced training data would have

(
f+

f−

)
= 1. And the third

terms, t3 ensures that the number of tokens required to represent the corpus S
is close to the number of words w in the corpus. This constraint makes sure that
the cost of compute is minimum, because most major Gen AI portals charge for
their services based on the number of tokens required to represent the input and
generate an output. The construction of the cost function as mentioned in (8)
to identify the optimal number of tokens is one of the main contributions of this
paper.

3 Experimental Setup

We use the LibriSpeech-100 [7] (sentences:28537; words:990093) dataset in our
experiments. Note that the database consists of 100 h of read English speech
accompanied by the textual transcript. The training data consists of k = 28538
sentences and w = 990093 words of which wu = 33798 are unique. Our exper-
imental evaluations, in this paper, are of two types. We make use of the text
transcript and determine the optimal number of tokens. We also validate the use-
fulness of the obtained optimal number of tokens by ASR systems using the same
tokens. We report the performance obtained on the test-clean [6] (sentences:2620;
words: 52576) and test-other [8] (sentences:2939; words:52343) datasets.

We have used state-of-the-art conformer encoder-decoder architecture as the
ASR. The conformer model is implemented using an ESPNet toolkit [15] with
Librispeech 100 h (low-resource) recipe. While we changed the number of tokens
in the original recipe, we used the rest if the model hyper-parameters as described
below:
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The encoder of the conformer has 12 layers and the decoder has 6 layers.
The model dimension is 256 while number of attention heads used is 4. Models
were trained using Adam optimizer [2] with β1 = 0.9, β2 = 0.98 and ε = 10−9,
which is along the lines of the optimizer proposed in [14]. Warm up steps used
is 25000. The models are trained for 100 epochs and the batch size was 64. A
single Nvidia RTX 3090 GPU was used.

No language model has been used for shallow fusion in this work. The n
tokens extracted from the training text served as output units. Features used
for the model are log mel spectrograms with 80 dimensions along with the pitch
(total 81). Three way speed perturbation [3] with speed factors of 0.9, 1.0 and
1.1 and SpecAugment [10] was used in all the experiments.

4 Experimental Results

We computed the cost function C (8) by varying n between 30 and 1000.
We found that higher value of n(> 1000) always resulted in a higher C and
n < 30 resulted in the number of tokens (n) being less than the number of
characters in the training text data. We trained the SentencePiece [5], with
unigram (–vocab size=n, –model type=unigram, –split by whitespace=False)
called SentencePiece-Unigram model and with BPE (–model type=bpe) called
SentencePiece-BPE model.

Figure 1 shows the plot of t1, t2, t3 (8) as a function of number of tokens
(x-axis). In both Fig. 1a (SentencePiece-Unigram) and Fig. 1b (SentencePiece-
BPE) it can be observed that while t1 is linearly increasing and t3 is exponen-
tially decreasing; t2 exhibits a dip before linearly increasing as a function of
n. Figure 2 (Fig. 3) shows the plot of the cost function C, for SentencePiece-
Unigram (SentencePiece-BPE), for n = 1, · · · , 1000 for α1,2,3 = 1, 0, 0 (Fig. 2a
(3a)), α1,2,3 = 0, 1, 0 (Fig. 2b (3b)), and α1,2,3 = 0, 0, 1 (Fig. 2c (3c)) with the n∗

(7) marked with a red “*”.
Clearly the minimum value of C (8) varies with different values of α’s.

As expected, n∗ = 30 when the cost function is only a function of the num-
ber of tokens for both SentencePiece-Unigram (Fig. 2a) and SentencePiece-BPE
(Fig. 3a) and n∗ = 1000 when C is a function of only t3 (see Fig. 2c and 3c). The
most interesting aspect is observable for t2 where the n∗ = 145 for SentencePiece-
Unigram (see Fig. 2b) and n∗ = 97 for SentencePiece-BPE (see Fig. 3b). Figure 4
shows the plot of the cost function C for α1,2,3 = 1. As shown in Fig. 4a the
minimum value of C occurs for n∗ = 61 for SentencePiece-Unigram model while
n∗ = 70 for SentencePiece-BPE model.

The experiments above provide the optimal values for number of tokens cor-
responding to different values of α’s. We now present the performance of the ASR
systems with the number of tokens obtained above, namely n∗ = 30, 61, 145, 1000
for SentencePiece-Unigram and n∗ = 30, 97, 70, 1000 for SentencePiece-BPE, in
Table 1. We compare this with the ESPNet recipe recommendation of using
the number of tokens as 300 using SentencePiece-Unigram language model.
Using n = 300 results in an average WERs of 13.8% over the dev sets and
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Fig. 1. t1, t2, t3 in the cost function C (8) for n = 30 to 1000

14.5% over the test sets (see Table 1). Using 30 tokens (which corresponds to
α1,2,3 = (1, 0, 0), the average WER over test sets reduces very slightly to 14.3%,
however the average WER over the dev sets increases slightly to 13.9%. Using
n∗ = 61 tokens and 1000 tokens (corresponding to α1,2,3 = (0, 1, 0) and (0, 0, 1),
respectively), did not improve the performance, with n = 1000 tokens perform-
ing the worst. It suggests that blindly increasing the number of tokens does not
necessarily improve the performance of the ASR. When we provide equal weight
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Table 1. WERs (in %) for various n on Librispeech 100h. “dev-avg”: average over
dev-clean and dev-other. “test-avg”: average over test-clean and test-other

SentencePiece-Unigram

n(α1,2,3) dev-clean dev-other dev-avg test-clean test-other test-avg

300 (-) 7.7 20.0 13.8 8.3 20.8 14.5

30 (1, 0, 0) 7.6 20.3 13.9 7.9 20.7 14.3

145 (0, 1, 0) 8.6 20.8 14.7 9.0 21.0 15.0

1000 (0, 0, 1) 11.0 21.0 16.0 11.5 23.0 17.2

61 (1, 1, 1) 7.2 19.2 13.2 7.7 19.6 13.6

SentencePiece-BPE

n(α1,2,3) dev-clean dev-other dev-avg test-clean test-other test-avg

300 (-) 8.1 20.4 14.2 8.5 20.4 14.4

30 (1, 0, 0) 7.6 20.3 13.9 7.9 20.7 14.3

97 (0, 1, 0) 7.7 20.1 13.9 8.2 20.4 14.3

1000 (0, 0, 1) 7.9 20.0 13.9 8.0 20.6 14.3

70 (1, 1, 1) 7.6 19.8 13.7 8.0 20.4 14.2

of 1 to t1, t2 and t3 in the cost function, we get the number of tokens as n∗ = 145
(SentencePiece-Unigram) and n∗ = 70 (SentencePiece-BPE). This choice of n for
SentencePiece-Unigram outperforms all the other systems resulting in an aver-
age WER of 13.2% over the dev sets and an average WER of 13.6% over the test
sets. We observe similar improvement in ASR performance for SentencePiece-
BPE . While the recommended n = 300 tokens with ASR result in an average
WERs of 14.2% and 14.4% with dev and test sets respectively, the choice of
n∗ = 70 tokens, which correspond to α1,2,3 = (1, 1, 1) show an improved per-
formance of 13.7% and 14.2% WER for dev and test sets respectively. What is
remarkable is that this improvement in ASR performance comes with reduced
computational cost when compared to the use of recommended 300 tokens in
ESPNet recipe. This set of experiments again reinforces the earlier finding that
blindly increasing the number of tokens does not improve the performance of
the ASR system.

It is interesting to note that the best performance is obtained when α1,2,3 = 1.
This suggests that each of the terms t1, t2, t3 in the cost function has a role to
play in determining the number of tokens optimal for the ASR performance. The
number of tokens will change when the training text changes or the tokenizer
changes and hence the cost function minimization should be performed once
every time the training text or the tokenizer changes.
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Fig. 2. SentencePiece-Unigram. n∗ marked with a red “*”. x-axis shows the number
of tokens and y-axis the C (Color figure online)
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Fig. 3. SentencePiece-BPE. n∗ marked with a red “*”. x-axis shows the number of
tokens and y-axis the C (Color figure online)



340 S. K. Kopparapu and A. Panda

Fig. 4. Optimal number of tokens (n∗) for α1,2,3 = (1, 1, 1)
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5 Conclusions

In this paper we proposed a formulation based on construction of a cost function
that allows for the identification of an optimal vocabulary size for the tokenizers
used during the training of a speech recognition engine. The formulated cost
function is based on keeping a balance between the most frequently and least
frequently occurring training sub-word data to avoid bias in training as well as
making sure that the number of tokens required to represent the data is minimal
from the computing cost perspective. Using Librispeech 100 h training set, we
showed the efficacy of the approach to determining the vocabulary size of the
tokenkinzer. In future, it would be worthwhile to look into the cost function in
more detail to include other relevant factors. A robust approach to determining
the values of α’s would improve the performance further.
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Abstract. Unsupervised Anomalous Sound Detection (ASD) aims to
design a generalizable method that can be used to detect anomalies
when only normal sounds are given. In this paper, Anomalous Sound
Detection based on Diffusion Models (ASD-Diffusion) is proposed for
ASD in real-world factories. In our pipeline, the anomalies in acoustic
features are reconstructed from their noisy corrupted features into their
approximate normal pattern. Secondly, a post-processing anomalies filter
algorithm is proposed to detect anomalies that exhibit significant devia-
tion from the original input after reconstruction. Furthermore, denoising
diffusion implicit model is introduced to accelerate the inference speed
by a longer sampling interval of the denoising process. The proposed
method is innovative in the application of diffusion models as a new
scheme. Experimental results on the development set of DCASE 2023
challenge task 2 outperform the baseline by 7.75%, demonstrating the
effectiveness of the proposed method.

Keywords: anomalous sound detection · denoising diffusion
probabilistic models · unsupervised learning

1 Introduction

The purpose of anomalous sound detection (ASD) in the industrial scene is to
monitor the machine’s condition by distinguishing between normal and anoma-
lous machine-generated sounds. Detection and classification of acoustic scenes
and events (DCASE) challenge and workshop is committed to advancing the
field of sound event detection. Since 2020, ASD has been adopted as a new
task and held every year until now in DCASE challenge [1]. Previous meth-
ods achieve better performance by using test data in development set to tune
hyper-parameters of the model [2]. However, in some practical conditions, due to
the diversity of operational conditions and atypical anomalies, it is challenging
to collect anomalous sounds with comprehensive pattern coverage and collect
anomalous data for tuning.

Considering all the above factors, a main goal of DCASE 2023 task 2 is to
detect anomalous sounds when only normal sounds are given without tunable
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hyper-parameters of the trained model for each machine type, which is called
first-shot ASD.

A series of methods, which can be generally divided into self-supervised and
unsupervised methods, have been proposed to tackle these issues. Self-supervised
ASD introduces classification as an auxiliary task to calculate anomalous degree
in accordance with classification confidence. However, since classification-based
self-supervised approaches extremely rely on additional labels (i.e. machine ID or
attribute) from metadata [3–5], effectiveness may degrade when auxiliary labels
are limited or domain shifts occur [2].

Unsupervised ASD approaches minimize the negative log-likelihood or recon-
struction error as the optimization objective and learn the distribution only from
the acoustic features of normal sounds. Anomalies of audio are detected by the
inner likelihood of the learned distribution or the reconstruction error of gen-
erated samples. A flurry of generative models have been previously explored in
ASD, such as variational autoencoder (VAE) [6], generative adversarial network
(GAN) [7], and normalizing flows (NF) [8]. In recent studies, denoising diffusion
probabilistic model (DDPM) [9], as an emerging generative model, has attracted
much attention from researchers in many fields. It has been proven that DDPMs
are capable of generating samples from complex data distributions with broader
pattern coverage than VAEs and GANs [10]. These properties are considered
suitable for anomaly detection that lacks anomalous samples. Recent advances
in computer vision also indicate that DDPM is well suited to anomaly detec-
tion tasks. Until now, DDPM has been used for anomaly detection in images.
AnoDDPM [11] achieves a huge improvement over GAN-based approaches in
medical image anomaly detection. DiffusionAD [12] outperforms other methods
in general image anomaly detection. However, applying diffusion models to ASD
remains challenging and has not been explored.

Since the high-dimensional time-frequency information in audio can be intu-
itively represented in the acoustic features (i.e. mel-spectrogram), employing
diffusion models for anomaly detection in these acoustic features is a reason-
able choice. Inspired by the works mentioned above, we propose ASD-Diffusion,
a novel diffusion-based ASD approach. The main contributions of this paper can
be summarized as follows:

– A diffusion-based approach to ASD. To the best of our knowledge, ASD-
Diffusion is the first time that diffusion models have been applied to the field
of ASD.

– A carefully designed post-processing anomalies filter (AF) algorithm, which
is well suited for anomaly detection in samples reconstructed by diffusion
models. Meanwhile, it can also be used for anomaly localization.

– For problems of long sampling timesteps existing in DDPM, we introduce
denoising diffusion implicit model (DDIM) [13] in the inference process to
accelerate sampling.
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2 Methods

2.1 Diffusion Models for ASD-Diffusion

Fig. 1. Forward and reverse process of DDPM.

DDPM. In general, DDPM specifies a forward diffusion process and a reverse
denoising process illustrated in Fig. 1. The input data are gradually disturbed
by adding Gaussian noise for a few timesteps in the forward diffusion process
and DDPM is guided to reconstruct target noise-free data from corrupted data
in the reverse denoising process. Assume that the distribution of normal sounds
is φ(x), the forward diffusion process is defined as

q (xt | x0) = N (
xt | x0

√
ᾱt, (1 − ᾱt) I

)
(1)

xt = x0

√
ᾱt + εt

√
1 − ᾱt, εt ∼ N (0, I) (2)

where data x0 ∼ φ(x) is transformed into noisy data xt for t ∈ {0, 1, . . . , T}
by adding noise for t timesteps to x0. Here, ᾱt =

∏t
i=0 αi =

∏t
i=0 (1 − βi)

and βi ∈ (0, 1) represents the noise variance schedule. This can be defined as a
schedule from β1 = 10−4 to βT = 10−2 [9,14,15].

As xT is shown in Fig. 1, the distribution of x0 is gradually disrupted and
approaches Gaussian noise when t increases. A neural network εθ (xt, t) is trained
to predict added noise ε by minimizing the training objective with mean squared
error (MSE) loss:

L = Et∼[1−T ],x0∼q(x0),ε∼N (0,I)

(∥
∥ε − εθ (xt, t)

∥
∥2

)
(3)

At inference phase, xt−1 is reconstructed from previous step xt in reverse process
with the diffusion model εθ (xt, t) according to:

xt−1 =
1√
αt

(
xt − 1 − αt√

1 − ᾱt
εθ (xt, t)

)
+ β̃tz (4)

in which, z ∼ N (0, I) and β̃t = 1−ᾱt−1
1−ᾱt

βt. x0 is reconstructed to fit φ(x) from xt

in a way of Markovian chain.
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DDIM. DDIM is generalized from DDPM via a class of non-Markovian diffusion
processes. In DDIM, sample xt−1 can be generated from sample xt via:

xt−1 =
√

ᾱt−1

(
xt − √

1 − ᾱtε
(t)
θ (xt)√

ᾱt

)

︸ ︷︷ ︸
“predicted x0”

+

√
1 − ᾱt−1 − σ2

t · ε
(t)
θ (xt)

︸ ︷︷ ︸
“direction pointing to xt”

+ σtεt︸︷︷︸
random noise

(5)

in which, εt ∼ N (0, I) is standard Gaussian noise independent of xt.
Different values of σt will lead to different generative processes. When

σt =
√

(1 − ᾱt−1)/(1 − ᾱt)
√

1 − ᾱt/ᾱt−1 for all t, the forward diffusion pro-
cess becomes Markovian, and the generative process becomes a DDPM. When
σt = 0 for all t, samples are generated from latent variables with a fixed proce-
dure (from xT to x0), the process becomes DDIM. This fixed denoising procedure
results in a more stable reconstruction to approach φ(x). The specific derivation
process of Eq. 5 can be seen in [13].

In DDIM, since the forward and reverse processes are non-Markov, samples
can be reconstructed with a larger sampling interval in the reverse process,
saving a lot of computing resources. Meantime, the training objective is also
MSE loss shown in Eq. 3, which means that there is no difference in the training
process with DDPM.

2.2 Anomaly Detection with Diffusion Models

The overall architecture of ASD-Diffusion is illustrated in Fig. 2. In our work,
filterbank (FBank) features extracted from waveform is chosen for anomaly
detection. Since the difference between anomaly and normality can be roughly
divided into frequency domain and time domain, FBank is considered suitable for
anomaly detection that contains abundant time-frequency information.

During the training stage, ASD-Diffusion corrupts the FBank of normal
samples x0 to xt by adding Gaussian noise with a random parameter t ∈
{0, 1, . . . , T}, and noise scale is controlled by αt in Eq. 1. Then the denoising
network εθ (xt, t) predicts the added noise of xt. The denoising loss in Eq. 3 can
be simplified as:

Ldenoising =
∥
∥εt − εθ (xt, t)

∥
∥2 (6)

where εθ (xt, t) learns the distribution of normal samples through minimizing
Ldenoising.

During inference, since anomalous samples share distributions different from
φ(x), an effective method is to corrupt the anomalous samples by forward dif-
fusion and reconstruct them into their approximate normal samples in φ(x).
Then the anomalies are detected by comparison between original and recon-
structed samples. In our method, a strategy of partial diffusion is adopted. The
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Fig. 2. The overview of ASD-Diffusion. In stage 1, xt is obtained by adding noise ε to
x0 through forward diffusion. A neural network εθ (xt, t) is trained to estimate the noise
ε̂ from xt. In stage 2, εθ (xt, t) reconstruct x̂0 on xt̂ after forward diffusion, Sanomaly is
then calculated by anomaly detection function.

query samples are firstly corrupted with Gaussian noise with a fixed parameter
t̂. The hyper-parameter t̂ is set to cause the anomalous regions indistinguishable
from normal and retain some characteristics of the energy distribution instead of
destroying the FBank into Gaussian noise totally [16]. Finally, the corrupted
samples are reconstructed within φ(x). Anomaly detection is achieved by com-
paring the difference between the reconstructed and query samples. The widely
used mean absolute error (MAE) calculates anomaly scores from the whole
FBank, where the environmental noise is also used for calculation. Since both
original and reconstructed samples contain pixel-level noise interference, which
is considered redundant for anomaly detection, an AF algorithm is proposed to
achieve better anomaly detection. In the experiment, we find that compared with
normal sounds, most anomalous patterns appear at inappropriate frequencies,
which are reflected in FBank as unreasonable energy areas with some locations.
The anomaly regions are often a small part of the whole features. So we introduce
AF for post-processing. The AF function proposed can filter out regions with
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little difference between the reconstructed samples and the original samples. The
anomaly score Sanomaly is calculated via:

Sanomaly =
1

FT

∑

Topk

Relu(xij − x̂ij) (7)

where x represents the original sample and x̂ represents the reconstructed sam-
ple. T is the number of frames in the FBank and F is the number of the mel
filters. The AF functions are a simple ReLU with TopK function or just a TopK
function. In real practice, due to the diversity of anomalies from different machine
types, we adopt multiple AF functions for different machines to get the best
performance and verify the upper limit of the algorithm. Since audio commonly
exhibits continuity in both spectral and temporal domains, the AF function can
well filter out the anomalous regions in multiple domains by setting the appro-
priate K, which represents the top k largest data values.

3 Experiments

3.1 Dataset

The experiments are carried out on the DCASE 2023 task 2 development dataset
(conducted on ToyADMOS2 [17] and MIMII DG [18]) including seven machine
types. Each machine type in the dataset has one section that contains data for
training and testing. Each audio recording is single-channel with a duration of
6 to 18 sec and a sampling rate of 16 kHz.

Domain shift is introduced to reflect changes in the working conditions of
machines. Most of the training data comes from the source domain. Each section
of a machine type contains: (a) 990 clips of normal sounds in the source domain
for training. (b) 10 clips of normal sounds in the target domain for training.
(c) 100 clips each of normal and anomalous sounds including data from both
domains for testing.

3.2 Experimental Settings

The 128-dimensional FBank is extracted on 25 ms hann windows with 10 ms
shifts after 1024-point Fast Fourier Transformation (FFT), then the magnitude
is normalized to [0, 1]. The FBank of each audio is divided into multiple segments
of 128 × 128 by applying a sliding window. Since diffusion models do not require
a large amount of data, the hop size of the sliding window is 128 for training and 5
for testing. The model is trained on a single NVIDIA 3090 GPU and implemented
with PyTorch. As for training parameters, the U-net architecture is adopted
as the denoising network. The hyper-parameters are listed in Table 1. Reverse
timestep t̂ is chosen by experience, since the data is fully corrupted with larger
t̂, the reconstruction error may not be an effective detector. Similarly, if the
corruption is minimal with smaller t̂, it will also be useless.
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Table 1. Hyper-parameters of diffusion, denoising U-net and training process.

Forward timestep T 1000

Reverse timestep t̂ 280

Noise schedule sigmoid [15]

DDIM sampling interval 4

Channels 64

Channels multiple (1, 2, 4, 8)

Head 4

Attention resolutions 32

Optimizer Adam [19]

Learning rate 1e−4

EMA rate 0.995

Training steps 64000

Batch size 24

3.3 Evaluation Metrics

Area under receiver operator characteristic curve (AUC) is the most widely used
metric in ASD, since anomaly detection is essentially a binary classification task.
Same to the DCASE 2023 challenge, we adopt source-AUC (sAUC), target-
AUC (tAUC) and partial-AUC (pAUC) as the evaluation metrics. Then the
final system score is obtained by calculating the harmonic mean (hmean) for all
machine domains and types. Compared with arithmetic mean, hmean is more
susceptible to the influence of low values, which is adopted to evaluate the overall
performance of ASD systems [20].

4 Results

4.1 Main Results

To demonstrate the effectiveness of ASD-Diffusion, other unsupervised methods
are chosen for comparison. For fairness, we first compared all unsupervised meth-
ods from the top five teams in DCASE 2023, specifically those not employing
machine ID or machine attribute. AE (MAHALA) [20] is the baseline provided
by the challenge organizers. GAN-VAE [21] is the fourth team in the challenge. In
our method, the ReLU function is used only for bearing, fan, slider, and Toy-
Train, while the parameter K in the TopK function is adjusted for each machine
type to achieve the best performance.

As illustrated in Table 2, ASD-Diffusion outperforms other approaches with
an improvement of 7.75% and 1.04%, respectively, which means that our method
ranks fourth on this dataset. The overall hmean is higher than other meth-
ods, which demonstrates that ASD-Diffusion can be better generalized to more
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Table 2. Performance (%) comparison with unsupervised methods. Best in bold.

Machine AE (MAHALA) [20] GAN-VAE [21] Ours w/o AF Ours

sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑ sAUC↑ tAUC↑ pAUC↑
bearing 65.16 55.28 51.37 92.80 74.30 66.20 79.84 66.06 54.05 83.68 70.40 54.58

fan 87.10 45.98 59.33 77.00 73.60 56.20 77.84 47.40 60.58 84.10 59.38 69.05

gearbox 71.88 70.78 54.34 64.40 61.50 51.80 59.78 65.14 55.79 61.38 64.98 57.16

slider 84.02 73.29 54.72 87.80 78.80 55.10 90.34 58.46 61.74 91.98 61.01 61.68

ToyCar 74.53 43.42 49.18 72.20 52.70 50.0 67.92 56.68 53.26 67.78 56.74 53.21

ToyTrain 55.98 42.45 48.13 61.90 45.80 48.20 60.32 54.04 50.47 63.74 56.30 52.47

valve 56.31 51.40 51.08 55.90 50.40 50.80 56.74 50.96 49.26 55.78 49.54 49.37

hmean 56.91 60.69 59.22 61.32

machine types. Note that the overall tAUC is substantially superior to other
methods on most machine types without any domain adaptation method, even
though only 10 normal audios from the target domain are provided for training.
We argue that this is due to the powerful pattern coverage ability of diffusion,
that is, the distribution of the target domain can be well learned without extra
domain enhancements or adaptations.

In addition, we remove the proposed post-processing algorithm (‘w/o AF’)
for the ablation study. As can be seen in Table 2, the performance of ASD-
Diffusion declines by 3.42%, respectively, which demonstrates the effectiveness
of AF in ASD-Diffusion.

4.2 Comparison with Self-supervised Methods

In Table 3, our method is compared with self-supervised methods among the
top three teams [22–24]. As mentioned in the introduction, self-supervised meth-
ods achieve better results due to the use of auxiliary labels for classification. In
comparison, unsupervised methods are more broadly applicable and can be used
even in the absence of reliable auxiliary labels. As shown in Table 3, our method is
closer to the third self-supervised method [22]. Furthermore, we found that the
main performance difference between self-supervised and unsupervised methods

Table 3. Performance (%) comparison with self-supervised methods of the top three
teams.

Route Method hmean↑
Unsupervised GAN-VAE [21] 60.69

Ours 61.32

Self-supervised WSP-NFCDEE [22] 63.26

Wav2Vec (ck2) [23] 66.56

MDAM + knn [24] 69.25
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is the valve machines, indicating that the reconstructed-based method may not
well reflect the anomalous characteristics of the valve. We consider this to be the
non-stationary characters of the valve sounds [25] that the reconstructed acoustic
features have a large deviation from the original inputs. Therefore, even the nor-
mal sounds are reconstructed poorly, showing challenges in detecting anomalies.

4.3 Visualization of Anomaly Detection

The results of anomalous detection can be visualized in Fig. 3. We chose one
normal and one anomalous audio from the test set of fan for comparison. The
first and second rows are the original and reconstructed FBank respectively.
The third and last rows are the visual detection results of MAE and the AF
respectively. In the detection results, the brighter the region, the more likely it
is to contain anomalies.

Fig. 3. Visualization of an anomalous audio (a) and a normal audio (b). First row:
original FBank. Second row: reconstructed FBank. Third row: detection result of MAE.
Last row: detection result with AF.
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While preserving the overall energy distribution of acoustic features, details
are reconstructed at a fine-grained level. Therefore, subtle anomalies in both the
time domain and the frequency domain become apparent. From the comparison
of the first and second rows in Fig. 3 (a), there is a clear difference in the middle
channels of FBank, which may mean the existence of anomalies. However, sub-
tracting and taking the absolute value causes possible anomalies to be slightly
masked by background noise. The introduction of the AF function allows possi-
ble anomalies in the detection results to be retained and part of the noise to be
removed. Whereas in Fig. 3 (b), there are virtually no conspicuous anomalous
regions, which also indicates that our method can be effectively utilized for the
analysis and localization of anomalies.

4.4 Influence of AF Parameter

We further explore the influence of hyperparameters in AF on the performance.
We choose sAUC as the evaluation metric because it is relatively better and will
not be affected by domain adaptation. In other words, different AF parameters
will have a more significant impact on it. We conducted experiments from two
aspects: whether to use ReLU and the percentage K of the selected TopK pixels
to all pixels. In our experiments, different values of K from 0 to 1 with an interval
of 0.03 are tested., while the dark- or light-colored lines represent performance
with or without ReLU.

As can be seen in Fig. 4, we can see that the peaks of some curves appear
when K is small, which means that the abnormal locations only occupy a small
part of FBank (i.e. ToyTrain with ReLU and slider with Relu). This shows that
the anomaly only occurs in a shorter time and a smaller frequency range. Besides,
the ReLU function in AF has a more obvious effect on some machines (i.e. fan,
bearing and ToyTrain). This means that the anomalies of these machines are
more likely to be manifested as missing high-energy regions on the FBank, as
can be seen in Fig. 3 (a).

The result verifies the effectiveness of AF when facing various types of anoma-
lies from different machines. However, tunable parameters for each machine are
not possible in some scenes, such as first-shot ASD. We believe that AF is more
useful for the analysis of anomalous characteristics. For example, when the ReLU
function is more effective, the anomaly is more likely to be the lack of certain
frequencies. To some extent, the size of K in TopK reveals the range of the
anomaly.
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Fig. 4. Performance of the proposed method under different K or ReLU functions.

4.5 Accelerating Inference Speed by DDIM

We conduct a comparative experiment between DDPM and DDIM on the bear-
ing. It is demonstrated in Table 4 that compared with DDPM, DDIM greatly
improves the inference speed with lower Real Time Factor (RTF) while main-
taining better performance. Compared with DDPM, the deterministic reverse
process exhibits superior consistency [13]. For the ASD task, the consistency
of the reverse process is more critical than diversity. We consider this to be a
difference between generative tasks and anomalous detection tasks.

Table 4. Performance over DDPM and DDIM.

Method sAUC (%)↑ tAUC (%)↑ pAUC (%)↑ RTF↓
DDPM 79.22 67.94 54.74 1.17

DDIM 83.68 70.40 54.58 0.29
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5 Conclusions

In this paper, we introduce diffusion models to the field of anomalous sound
detection for the first time and propose a novel method named ASD-Diffusion.
Our method showcases the efficacy of diffusion models for ASD. Experimental
results outperform other unsupervised methods in DCASE 2023. Meanwhile,
from a practical standpoint, our method achieves interpretability and localiza-
tion of anomalies with the high-quality reconstruction from DDPM. In future
work, we will focus on further exploring unsupervised methods and providing
better anomaly localization for ASD.
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Abstract. In past decades, speech synthesis methods based on Deep
Learning (DL) has been used to model the raw speech waveform and
successfully generated natural-sounding waveforms. However, the autore-
gressive, non-autoregressive, flow-based, and GAN-based models that
produced acoustic features using intermediate prediction of Mel spec-
trogram and subsequently used vocoders to generate the raw waveforms.
Autoregressive and flow-based architecture requires a million of steps
to achieve a realistic waveform generation capability, which is resource-
intensive. In this paper, we introduce Faster Convergence HiFi-GAN
(FCHiFi-GAN) exploit batch-wise normalization method to identify and
capture data distribution effectively. There is a less number of architec-
tures are capable of fast training. The proposed architecture got the real-
like speech generation with only 600K steps, whether existing state-of-
the-art architectures need 2.5M (16 batch size) and 580k (24 batch size)
steps, respectively, for HiFi-GAN and WaveGlow. However, the number
of steps varies depending on the dataset and total number of parameters.
We trained the HiFi-GAN with the same setting for evaluation and got
noticeably good results over the baseline architecture. To evaluate the
performance of the FCHiFi-GAN, we measured and analysed generated
samples with existing architecture using subjective (Mean Opinion Score
(MOS)) and objective (Mel Cepstral Distance (MCD)) measures, Percep-
tual Evaluation of Speech Quality (PESQ), Signal-to-Noise Ratio (SNR),
and Modulation Spectra Distance (MSD). FCHiFi-GAN generated sam-
ples achieve 4.42 MOS (+0.06 than baseline architecture) while reducing
the required computational cost to generate high-quality samples.

Keywords: Generative Adversarial Networks (GANs) · High
Fidelity · Batch Normalisation · Self-Supervised Learning

1 Introduction

Recently, the development of deep learning (DL) lead a significant impact on
speech technology applications. Creating high-quality speech data that sounds-
like a genuine speech is very complex due to the temporal resolution of human
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speech. Mostly, the structure of speech is aperiodic on the time scale. There-
fore, predicting the raw waveform is challenging because of the diverse acoustic
properties, sound distortions, and variability in speech utterances. To find hid-
den aperiodic patterns in speech data, it is important to have high-quality data
and high-end computing facilities. With lower quality speech data or limited
resources, it is very difficult to preserve or identify the speech or regenerate
using resource language properties of the original speech features during speech
synthesis, such as speech formants, F1 to F2. In particular, it directly impacts
on model training and complicates the trade-off between quality and resource
constraints.

Various signal processing strategies have been investigated, from which real-
istic low-dimensional speech representations can be modeled and efficiently con-
verted back to temporal speech [1]. For example, the Griffin-Lim rules allow
reconstruction of a Short-Time Fourier Transform (STFT) collection into a tem-
poral signal [2]. However, the drawback of Griffin-Lim algorithm is that it gener-
ates noticeable robotic artifacts in synthesized speech. Later on, advanced repre-
sentations and signal processing techniques were explored, e.g., WORLD vocoder
[1]. This vocoder introduces a middleman representation for speech modeling,
by incorporating functions akin to Mel spectrograms, which is coupled with a
specialized signal processing algorithm to transform the intermediary represen-
tation again to the original speech. This algorithm has proven powerful impact
in including textual content-to-speech synthesis. Later on, in DL, it called as
Char2Wav, where features from the WORLD vocoder are modeled using bi-
directional recurrent neural network [3–5]. Further, it is important to look at
the fidelity of the synthesized speech, ensuring the accuracy and faithfulness of
generated speech, however, it is slow to learn the patterns from the aperiodic
speech, and also, ability to capture and reproduce range of speech frequencies
across the spectrum, along with exactly reproducing amplitudes from soft to
loud without distortion, which played a crucial role to generate high fidelity
waveforms. It is also important role to maintaining the relationship between
the different frequency components and spatial representation, w.r.t the multi-
channel speech data, Signal-to-Noise Ratio (SNR), a reverberation of the accu-
rate placement, and movement of the speech source contribute to the intended
fidelity [6].

Generative Adversarial Networks (GANs) are state-of-the-art DL architec-
tures for image generation using semi-supervised learning [7]. There are two
networks in GANs, namely, Generator (G) and Discriminator (D). The G takes
the random noise as the input and tries to create meaningful synthetic data,
which looks like the real-one, such as training data. The discriminator esti-
mates the probability on the generated sample, in terms of real vs. fake binary
classifier. Adversarial training drives the learning process towards convergence,
and finds hidden patterns from the training data through the gradient descent
iteratively. The dynamic and competitive interaction between the G and the D
drives progress. During training, both networks update their weights to improve
their performance. They continuously adjust their parameters in an effort to
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reach an equilibrium or convergence point. At this stage, the synthetic outputs
generated become increasingly difficult to distinguish from real data.

The rest of the paper is structured as follows: Sect. 2 provides an overview
of the related work. Section 3 presents the architecture of the proposed FCHiFi-
GAN model. Section 4 gives details of the experimental setup, Sect. 5 shows the
results in terms of subjective vs. objective measures and finally, Sect. 6 sum-
marises the paper along with potential future directions.

2 Related Work

Most research on speech synthesis has focused on high-quality waveform gen-
eration. A study in WaveNet discussed an autoregressive Deep Neural Network
(DNN) that can generate natural-sounding raw speech waveforms by predicting
each sample based on the previous ones [8]. A WaveNet is efficient to capture the
patterns of the various speech properties. Which can be written as p(xt+1 |
x1,x2,x3..., xt), where t is the time stamp, which depends on the previous tem-
poral properties, e.g., xt−1, xt−2, xt−3. Oord et al. used the Gated Activation
Function (GAT) for creating the speech signals [8,9]. In particular,

z = tanh(Wf,k ∗ x) ◦ (Wg,k ∗ x), (1)

where tanh is the hyperbolic tangent function, ∗ denotes convolution opera-
tion, and ◦ represents the element-wise product in function. K layers of residual
blocks are used to enhance the ability to recognize patterns and fast convergence
[10].

Fig. 1. Mel spectrogram for raw waveform generation using MelGAN Generator (G).
After [11].

As shown in Fig. 1, The MelGAN G uses the Mel spectrogram as input rather
than random noise. Residual dilated convolution has a distinct number of dila-
tions, and fixed kernel size. WaveNet is working on the conditional probability
p(x|h), i.e.,

p(x1:T |h) =
T∏

t=1

p(xt|x1, ..., xt−1, h). (2)

Global and Local Conditioning: Global conditioning represents h (refer, Eq.
(3)), which controls the output distribution for all time stamps representations.
In particular,

z = tanh(Wf,k ∗ x + V T
f,kh) ◦ σ(Wg,k ∗ x + V T

g,kh), (3)
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where V∗,k is a trainable linear projection, and the vector V T
∗,kh is broadcast over

the time dimension. In local conditioning, there is a two time series ht, which
potentially employs a lower sampling frequency higher than that for the speech
signal, mapping it to a new time series denoted as y = f(h), which retains the
same resolution as the original speech signal. This mapping process occurs within
the activation unit. In particular,

z = tanh(Wf,k ∗ x + Vf,k ∗ y) ◦ (Wg,k ∗ x + Vg,k ∗ y), (4)

where Vf,k ∗ y is now a 1 × 1 convolution. As a substitute to utilizing a trans-
posed convolution network, one can opt for utilizing Vf,k ∗ h, with the option to
replicate these values across time. In some forward-direction operations, it is pro-
longed due to the probabilistic approach being the major issue in the WaveNet. In
2018, ClariNet [5] flow-based speech synthesis was based on the Inverse Autore-
gressive Flow (IAF), where Kullback-Leibler (KL) divergence is used to make
a pre-trained WaveNet [8] model that works as the teacher and generates the
real-time high-fidelity (16-bits per sample) speech inference. Prenger et al. [12],
proposed WaveGlow, a Flow-based fast and high-quality speech synthesizer,
minimizing the negative likelihood or maximizing likelihood of training data.
Yamamoto et al. [13] proposed that the Parallel WaveNet, a parallel feedforward
network paradigm, 20x speeds up the speech synthesis faster than the WaveNet
[8], however, this work was an initial step towards reducing both training and
inference time. The log-likelihood of the spherical Gaussian is given by:

log pθ(x) = log pθ(z) +
k∑

i=1

log
∣∣det

(
J

(
f−1

i

))∣∣ . (5)

where (5) penalizes the l2 norm of the transformed sample, the term is derived
from the change of variables, where J is the Jacobian and log-determinant of
Jacobian rewards for forward pass. The motive of WaveGlow is to multiply x
terms using zero to optimize l2 and normalize the flow of the sequence. Kumar
et al. [11] proposed the GAN architecture for the synthetic speech generation
from the high-quality Mel spectrogram using fully convolution neural network.
Engel et al. [14] generated the musical timbre by modeling the STFT magnitudes
and phase angle instead of the raw waveform. Neekhara et al. used the GANs
to learn the raw waveforms from the spectrogram. GANs learn a stochastic map-
ping from the perceptually informed spectrogram to the magnitude spectrogram
[15]. HiFi-GAN uses conditioning to synthesize the waveform [16]. However, it is
resource-consuming as well as not being able to maintain the quality under vari-
ous conditions. By addressing this issue, Lee et al. added spectral normalization
to large-scale model training 112M parameters, however, BigVGAN risks over-
fitting during training, especially if not properly regularized or speech data is
not sufficiently diverse [17].
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3 The FCHiFi-GAN Model

FCHiFi-GAN is built on the HiFi-GAN, which consists of one generator and two
discriminators for adversarial training. There are three loss functions to guide
the training process: Mel spectrogram loss, feature matching loss, and final loss.
As shown in Fig. 2, FCHiFi-GAN takes input as a wave file corresponding a Mel
spectrogram and generates the realistic, raw speech waveform.

Fig. 2. Architecture of proposed FCHiFi-GAN.

3.1 Generator (G)

HiFi-GAN [16] generator achieves the ability to generate the studio quality raw
waveform in approximately 2.5M steps and thus, weighted normalization in the
GAT extracts and generate raw speech. We noticed that the overall training is
stable but includes instability at the beginning stage. However, HiFi-GAN is slow
to grasp the patterns from training data due to weighted normalization, a com-
plex speech pattern [16]. This probably occurs because weighted normalization
is too slow. In such a case, the generator (G) would benefit if it grasped more
information about the near-similar context around the data-like noise. However,
batch-wise normalization resolves this random improvement problem [18,19],
when generated distribution and real distributions are disjoint from each other.

In Proposed Architecture. The G is a CNN that takes a Mel spectrogram as
input and uses transposed convolutions to upsample it. This process continues
up to the threshold of the generated sequence and aligns with the temporal res-
olution of raw waveforms. Training begins with a 1D convolution transforming
the input from (n, 80) to (n, x), followed by BatchNorm and LeakyReLU. It
iteratively uses transposed convolutions (e.g., (n, x)) and residual ResBlocks,
where the choice between ResBlocks (ResBlock1 or ResBlock2) depends on the
diversity of the input data. Residual blocks ensure that the generated data out-
put from the G has authentic and rich speech signal properties. Batchwise nor-
malizing outputs after each iteration are shown in Algorithm 1. Finally, a 1D
convolution reduces the shape to a single channel and upsampling layer, resid-
ual blocks for fine-tuning the learned features, and tanh activation produces the
output scaled between −1 and 1. Layer-wise architecture is shown in Table 1,
where x represents upsample initial channel, k and j represent kernel size and
resblock dilation sizes, respectively (Table 2).
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Table 1. Architecture of FCHiFi-GAN Generator.

Layer Input Shape Output Shape Parameters

Input (n, 80) (n, 80) –

Conv1d (n, 80) (n, x) 7 × 80 × x

BatchNorm1d (n, x) (n, x) x

LeakyReLU (n, x) (n, x) –

ConvTranspose1d (n, x) (Stride = upsample rates[i])
(

n, x

2(i+1)

)
k × x

2i
× x

2(i+1)

BatchNorm1d
(

n, x

2(i+1)

) (
n, x

2(i+1)

)
x

2(i+1)

LeakyReLU
(

n, x

2(i+1)

) (
n, x

2(i+1)

)
–

ResBlock (kernel sizes[j], j)
(

n, x

2(i+1)

) (
n, x

2(i+1)

)
–

Conv1d
(

n, x

2(i+1)

)
(n, 1) 7 × x

2(i+1) × 1

Tanh (n, 1) (n, 1) –

Table 2. Architecture of FCHiFi-GAN Discriminator.

Layer Input Shape Output Shape Parameters

Conv1d-1 (1, t) (128, t
2
, 1) 128 × 1 × 15

LeakyReLU (128, t
2
, 1) (128, t

2
, 1) –

Conv1d-2 (128, t
2
, 1) (128, t

4
, 1) 128 × 128 × 41

LeakyReLU (128, t
4
, 1) (128, t

4
, 1) –

Conv1d-3 (128, t
4
, 1) (256, t

8
, 1) 256 × 128 × 41

LeakyReLU (256, t
8
, 1) (256, t

8
, 1) –

Conv1d-4 (256, t
8
, 1) (512, t

32
, 1) 512 × 256 × 41

LeakyReLU (512, t
32

, 1) (512, t
32

, 1) –

Conv1d-5 (512, t
32

, 1) (1024, t
32

, 1) 1024 × 512 × 41

LeakyReLU (1024, t
32

, 1) (1024, t
32

, 1) –

Conv1d-6 (1024, t
32

, 1) (1024, t
32

, 1) 1024 × 1024 × 41

LeakyReLU (1024, t
32

, 1) (1024, t
32

, 1) –

Conv1d-7 (1024, t
32

, 1) (1024, t
32

, 1) 1024 × 1024 × 5

LeakyReLU (1024, t
32

, 1) (1024, t
32

, 1) –

Conv1d-8 (1024, t
32

, 1) (1, t
32

, 1) 1 × 1024 × 3

Normalization Method. Batch normalization is a technique to accelerate
training in DNN. Batch-wise normalization is implemented using the Batch-
Norm2d from PyTorch [20]. During the training, FCHiFi-GAN was used to nor-
malize each layer’s sample input, which helps to stabilize the training, and allow
it to grasp the patterns from input data, as shown in Eq. (6). However, this
technique is applied before and after each convolution layer and before the acti-
vation function in the G architecture in order to reduce heavy calculations during
training. In particular,

Batch Normalization(§) = γ
x − μ√
σ2 + ε

+ β, (6)
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where x represents the input to the layer, μ and σ are the mean and standard
deviation of the batch, respectively, γ and β is the scale parameter and shift
parameter, respectively, and ε is a minor constant to avoid division by zero.

3.2 Discriminator (D)

In GANs, the D does the binary classification of real vs. fake. In HiFi-GAN,
D is made MPS (Multi Period Discriminator) and MSD (Multi Scale Sub-
discriminator) using existing HiFi-GAN architecture [11]. MPD (refer Fig. 3-
(b)) uses multiple discriminators to discriminate the generated samples. It cap-
tures the repetitive and overlapped aperiodic patterns of the speech. MPD uses
weighted normalization to do fast model training by avoiding issues [21], e.g.,
mode collapse and equilibrium; it also can generalize well to diverse speech
patterns while reducing the computational overhead typically associated with
adversarial training. MSD (refer, Fig. 3-(1)) maps the input Mel spectrogram
and generated waveform using l1 loss. MSD contains three sub-discriminators,
e.g., generated speech (x), *2x, and *4x, where spectral normalization is used in
the first discriminator to stabilize the Lipschitz constant and helps to achieve
reliable updates during training. The second and third sub-discriminators used
weighted normalization to speed up training by reparameterizing the weights,
ensuring consistent learning in pooled scales [21].

Algorithm 1. Proposed FCHiFi-GAN Generator Algorithm
1: Input: x (Input Features), Number of kernels (k)
2: Output: y (Batch tensor Z ∈ R

B×F×L for each step)
3: x ← BatchNorm(Conv1d(x))
4: for i ← 0 to k − 1 do
5: x ← BatchNorm(LReLU(x, LReLUSlope(α)))
6: x ← ConvTranspose1d(ups[i])(x)
7: xs ← None
8: for j ← 0 to k − 1 do
9: if xs is None then

10: xs ← ResBlocks[i × k + j](x)
11: else
12: xs ← xs + ResBlocks[i × k + j](x)
13: end if
14: end for
15: x ← BatchNorm(xs/k)
16: end for
17: x ← BatchNorm(LReLU(x, α))
18: x ← BatchNorm(Conv1d(x))
19: y ← Tanh(x)
20: return y
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Fig. 3. Architecture of Discriminator (D) model: (a) Multi-Scale Discriminator (MSD),
(b) Multi-Period Discriminator (MPD). After [16].

Architecture. The discriminator architecture in the FCHiFi-GAN is multi-
scale and periodic [11,22]. It has the ability to assess the diverse features of the
speech signals, which is implemented over several components for speech signal
evaluation. First, the periodic D processes the one-dimension tensor, which takes
the input of the raw speech waveform generated by the G. The sequence of the
convolution layers increases with the channels and incorporates the leaky ReLU
activation function for the specified slope. At the final convolution layer, single
channel output. MPD extends the discriminator to different periodicities and
classifies real and generated speech signals. A spectral D is designed with a 1D
input tensor backed with several convolution layers. A MSD was introduced to
find the variation in the scale and employ the mean pooling layers to process
the signal classification before passing through the spectral, D.

3.3 Dataset Used

We trained the FCHiFi-GAN model on the LJ Speech [23] and CSTR VCTK [24]
datasets. Both are available under a public domain and ODC-By v1.0 license,
respectively. LJ Speech contains 13,100 mono-channel samples, all sampled at
22050 Hz. The dataset contains the wave files and the corresponding transcripts.
Thus, transcripts are stored in transcripts.csv with fields, such as ID (match-
ing.wav file names), and transcription (UTF-8 words spoken). The VCTK cor-
pus contains samples from 110 English native speakers, where each speaker reads
about 400 sentences, which are taken from the rainbow passage. Each sample is
quantized with 16-bits, and the sampling rate is 48 kHz. The total speech data
is approximately 44 h.

3.4 Training Methodology

The GAN training works in the adversarial paradigm. The G tries to create
synthetic speech, and the discriminator are conditioned to discriminate between
authentic and synthesized speech. The training pipeline includes the distributed
multi-GPU training using PyTorch’s distributed data parallel and distributed
samples, AdamW optimizers, and learning rate to deal with the critical part of

https://keithito.com/LJ-Speech-Dataset/


364 R. M. Purohit et al.

the feature matching. Pytorch uses the data loader and Mel dataset classes to
update the D sequentially. The different loss functions, such as the adversarial
loss of the network, feature loss, and L1 loss, match the spectrogram for better
evaluation. Continuous validation examinations help to improve the performance
of the model. In the multi-GPU training paradigm, parallelism divides the work-
load into the available GPUs. The goal is to enhance the G’s ability to generate
high-quality synthetic data and refine the D’s skill in discriminating between the
real and synthetic samples, as shown in the Eq. (7); i.e.,

min
G

max
D

V (D,G) = Ex[log(D(x))] + Ez[log(1 − D(G(z)))]. (7)

In simpler terms, FCHiFi-GAN training works on the two-player minimax game
[7], where the G is trained to minimize Eq. (7), while the D is trained to maximize
it. This adversarial process leads the G to produce more accurate, realistic data
as epochs increase.

Training Loss Functions. The essential goal of GANs is to generate artifi-
cial data that closely resembles real information. The characteristics of GANs
accommodate critical components: the loss functions of G and D. The loss of G
quantifies how effectively the G is deceiving the D, with the aim of reducing the
computational cost. Mathematically,

Gloss = −1
2
Ez [log D(G(z))] , (8)

where G and z is the G and random noise vector, respectively, D is the dis-
criminator. Conversely, loss of D measures the ability of the discriminator to
differentiate between actual and generated samples. It is formulated as:

Dloss = −1
2
Ex [log D(x)] − 1

2
Ez [log(1 − D(G(z)))] , (9)

where x is a real sample, and D(x) is the D’s output for a real sample. The
overall training objective is to achieve a Nash equilibrium or convergence point
[7]. In the context of the FC-HiFi GAN, we kept the loss function same as the
conventional HiFi-GAN, for better comparison:

LAdv(G;D) = Es

[
(D(G(s)) − 1)2

]
. (10)

The FCHiFi-GAN uses the three loss functions to better reconstruct the speech
waveform. Mel spectrogram loss, feature matching loss, and final loss.
(1) Mel spectrogram Loss: Mel spectrogram loss helps to improve the train-
ing performance and fidelity of the generated speech. Isola et al. proposed
reconstructing the GAN model’s loss to generate a realistic result [25]. Also, this
loss function uses the L1 distance between the expected raw waveform and the
original speech as per Eq. (11); i.e.,

LMel(G) = E(x, s) [||φ(x) − φ(G(s))||1] . (11)



FCHiFi-GAN: Aggrandizing Fast Convergence with Batchwise Normalization 365

(2) Feature Matching Loss: This loss is used to learn the similarity matrix
of the pattern in the speech. As shown in Eq. (12), D will find the difference
between the real and fake samples, which will help the G for the next step of
training, where the D measures the L1 distance between the ground truth sample
in each feature space and the conditionally generated sample:

LFM (G;D) = E(x, s)

[
T∑

i=1

1
Ni

||Di(x) − Di(G(s))||1
]

. (12)

(3) Final Loss: Final loss describes the total loss of the Discriminator (e.g., D
is divided into the two subsets, namely, MPD and MSD). Hence,

LG = LAdv(G;D) + λfmLFM (G;D) + λmelLMel(G), (13)

LD = LAdv(D;G), (14)

where k denotes the kth sub-discriminator in architecture of D.

3.5 Inference (I) and Simulation Setup

Fig. 4. Flow of inference

The inference process runs on the G model, which
is loaded with pre-trained weights obtained from the
training step with the lowest loss, ensuring the pro-
duction of high-quality speech output. As shown in
Fig. 4, the original sample is fed to the Mel spec-
trogram predictor, to predict the intermediate Mel
spectrogram representation. Subsequently, this repre-
sentation is transformed into a raw waveform by the
vocoder, which produces the synthesized speech sam-
ples. As depicted in Table 3, a comparison of infer-
ence latency is presented. The FCHiFi-GAN models
achieve a synthesis speed of 17.04x and 1.97x faster
than real-time on the GPU (NVIDIA 1080) and CPU,
respectively. Although this performance is compara-

tively lower than the other architectures due to the limitations of the GPU
used, e.g., HiFi-GAN reaches a much higher speedup of 1,186x (NVIDIA V100),
and ClariNET and BigVGAN achieve 20x (NVIDIA GTX1080Ti) and 44.72x
(NVIDIA RTX 8000) faster than RTF. The dash (“-”) in the table indicates
that data for specific models is unavailable.

All the experiments were conducted using Python 3.8 with Numpy 1.17.4 and
Torch 1.4.0. The entire experiment was performed on a system with an Ubuntu
22.04 OS, hardware configuration included an Intel i7-12700 CPU with 32 GB
RAM, and 2 * GTX 1080 ARMOR 8 GB GPUs.
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Table 3. The comparison of inference latency in waveform synthesis using CPU and
GPU devices. All information mentioned w.r.t. RTF (Real-Time Factor).

Architectures CPU (↓) GPU (↓)

HiFi-GAN [16] 13.44x 1,186x (NVIDIA V100)

ClariNET [5] – 20x (NVIDIA GTX1080Ti)

BigVGAN [17] – 44.72x (NVIDIA RTX 8000)

FCHiFi-GAN (Proposed) 1.97x 17.04x (NVIDIA GTX1080)

4 Experiment Setup

4.1 Model Details

A FCHiFi-GAN model is a series of residual blocks with dilated convolutions
for effective feature extraction. Two residual blocks are used, namely, ResBlock1
and ResBlock2, to define the DNN. Resblocks help remove the vanishing gradient
problem from the GANs, which helps model to recognize the hidden patterns
from the speech data, where ResBlock1 and ResBlock2 have 9 and 4 dilation
layers, respectively. In the generator part of the GANs, it transforms the ran-
dom noise features to the voice features. ‘conv pre,’ ‘self.ups’, ‘self.resblocks’,
‘conv post,’ and ‘forward’ methods are used to get the final transforms of the
synthetic speech. Each convolution is later followed by the ‘nn.BatchNorm’ lay-
ers. The final convolution layer uses the weight normalization method followed
by the ReLU activation function. As a baseline of our system, we used batch-wise
normalization in the architecture of the G model, especially a neural network G of
GAN [26], which works to generate the synthetic data from the training dataset
using semi-supervised learning. ResBlock1 contains 14 layers of the dilated resid-
ual convolution blocks in the G network with the three dilated cycles. The Res-
Block2 has the six layers of the dilated residual convolution blocks (Dilated
ResBlocks) with the two-cycle of the deletion. The network was trained using
600K steps with the Gaussian distribution. The learning rate taken for the entire
experiment is 0.001.

4.2 Performance Metrics Used

To evaluate the quality of generated samples’ quality using subjective and objec-
tive measures (refer Table 4), we randomly selected 50 samples from the LJ
Speech dataset; these samples were inferred using the FCHiFi-GAN model. In
our evaluation, each utterance pair consisted of a ground truth sample (x) from
the dataset and its corresponding generated samples (x̂) from the model, form-
ing an utterance pair <x, x̂>. The same set of samples was used across all the
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measures for meaningful performance comparison. When comparing our result
to existing architectures, e.g., HiFi-GAN [16], ClariNET [5], and BigVGAN [17].
We used the pre-trained models available to create the utterance pair <x, x̂>.
However, in instances, where authors did not make pre-trained models or cor-
responding sample pairs <x,x̂> available to the research community, we only
reported accessible and derived information.

Subjective Measures

1. Mean Opinion Score (MOS): It is a subjective measure we obtained using
a framework of the textbox webapp to collect user ratings [27]. In this process,
a group of listeners evaluate the quality of generated speech samples on a
scale from 1 to 5 based on intelligibility and quality factors. The ratings are
as follows: 1 (bad), 2 (poor), 3 (fair), 4 (good), and 5 (excellent). MOS is
computed as (15):

MOS =
∑N

n=1 Rn

N
, (15)

where Rn represents an individual rating or score, and N is the total number
of ratings. We randomly selected 15 generated samples for the calculation.
All participants were from non-native English regions and had no hearing
disabilities. The male-to-female ratio was 3:2; the MOS test was performed
in a fully controlled environment at the in-house Speech Research Lab @
DA-IICT1.

Objective Measures

1. Mel Cepstral Distortion (MCD): It is particularly relevant in the con-
text of Mel Frequency Cepstral Coefficients (MFCC). At its essence, MCD
measures the distortion between MFCC of utterance pair <x, x̂> [28], i.e.,

MCD =

√
∑N

t=1

(√∑D
i=1(X(t, i) − Y (t, i))2

)2

N
, (16)

where N and D are the number and dimension of feature vectors, respec-
tively. X and Y are the reference and synthesized signals, respectively.
Table 4 demonstrates the MCD score of the generated speech signal. A lower
and higher MCD score indicates a closer match and higher dis-similarity
between the utterance pair <x, x̂>, respectively [28].

2. Perceptual Evaluation of Speech Quality (PESQ): It is a widely used
tool for assessing speech quality and intelligibility [29]. It operates by mim-
icking the response of auditory system to speech, including its sensitivity to
distortions, noise, and other impairments. In particular,

PESQ = 4.5 − 0.1dsym − 0.0309dasm. (17)
1 The speech samples are available at Website.

https://iamshreeji-copy1.github.io/audio-demo/
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It can influence the perceived quality of speech and psychoacoustic principles
[30]. We used the utterance pair <x, x̂> in Eq. (17) to compute the PESQ
score (refer Table 4). This score typically ranges from 1.0 (indicating high dis-
tortion and poor quality) to 4.5 (representing no distortion and high-quality)
[29].

3. Signal to Noise Ratio (SNR): It quantifies the clarity of a speech signal
in the presence of noise. It represents the ratio of the power of the desired
speech signal Psignal to the power of background noise Pnoise, as shown in Eq.
(18) with the results typically expressed in decibels (dB), i.e.,

SNR = 10 log10

(
Psignal

Pnoise

)
. (18)

A higher SNR indicates that the speech signal is much stronger than the
of noise signal, e.g., clearer and more intelligible speech. Conversely, a lower
SNR speech contains the degraded speech in terms of quality.

4. Modulation Spectra Distance (MSD): It is a metric that measures the
difference between the spectra of two speech signals. It represents the power
spectrum of a speech signal transformed into the Mel frequency scale (refer
to Table 4 for the results), reflecting how humans perceive pitch, giving more
weight to lower frequencies [31], i.e.,

MSD =

√√√√ 1
N

N∑

i=1

(
s(y)t

i − s(y)t̂
i

)2

. (19)

To calculate MSD, used Eq. (19) and utterance pair <x, x̂>, where lower val-
ues indicate greater similarity and higher values suggest notable differences.

5 Experimental Results

In Fig. 5 shows, the amplitude vs. time for the original speech sample and
FCHiFi-GAN generated speech sample. From Fig. 5-(a) and Fig. 5-(b), it can be
observed that the FCHiFi-GAN generated speech sample is nearly-similar to the
original speech sample (studio-recorded speech). The visual similarity between
the two plots indicates that the FCHiFi-GAN model effectively captures the
temporal dynamics and nuances of the original speech signal. Rectangular boxes
shows the specific regions for more detailed visual analysis in the amplitude vs.
time plot, highlighting specific areas, where the generated signal closely follows
the original speech sample.
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Fig. 5. Amplitude vs. time plot samples were recorded from the spoken sentence in a
studio setting, “and was used there with very little variation all through the sixteenth
and seventeenth centuries, and indeed into the eighteenth.” Original speech signal and
comparison of amp vs. acquired from the FCHiFi-GAN: (a) Original speech sample,
and (b) FCHiFi-GAN generated speech sample.

Fig. 6. Showed Mel spectrogram comparison of the spoken sentence in ambient envi-
ronment, “I think another part was me, figuring not money and figuring out” between
(a) original speech sample vs. (b) generated speech sample. The rectangular box indi-
cates that generated speech sample closely mirrors the spectral characteristics of the
original speech sample.

Figure 6 illustrated the Mel spectrogram comparison between Fig. 6-(a) orig-
inal speech, and Fig. 6-(b) generated Mel spectrograms. A rectangular box high-
lights a region of the speech where it closely generates the spectral character-
istics of the original sample with the similar frequency distribution over time.
However, we noticed the lower intensity in the generated sample Fig. 6-(b) as
compared with the highlighted parts in the ground truth waveform sample as
shown Fig. 6-(a). This decrease might be due to environmental noise of input
sample.
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Table 4. A comparison of the generated samples with the Ground Truth (GT) sample,
and other existing architectures for w.r.t objective and subjective measures on LJ
Speech, the Confidence Interval (CI) for the subjective evaluation Mean Opinion Score
(MOS) with a 95% (A dash (‘–’) indicates that the data is not disclosed by authors or
samples are not available online)

Architecture Objective Subjective

PESQ (↑) SNR (↓) MSD [dB](↓) MCD [dB](↓) MOS (↑)

Ground Truth – – – – 4.58

HiFi-GAN [16] 1.92 2.95 0.26 12.44 4.36

ClariNET [5] 3.07 0.42 0.24 75.04 4.40

BigVGAN [17] 3.78 1.96 7.15 1.06 4.11

FCHiFi-GAN 2.53 0.35 5.70 2.41 4.21

(Proposed) (±0.07) (±0.11) (±1.33) (±0.15) (±0.56)

6 Summary and Conclusions

In this paper, we presented the FCHiFi-GAN architecture in a fully convolu-
tional neural network to accelerate the speed to achieve convergence. Batch-wise
normalization is found to be positively impacting the learning capabilities. Care-
ful parameter tuning is essential to achieve convergence with computational con-
straints. The resulting system synthesizes the convergence quicker than the base-
line architecture, HiFi-GAN. In the future, the plan is to investigate additional
techniques to enhance speech synthesis latency and quality. We look forward to
setting up this model in the edge devices for real-world scenarios. Also, further
research is needed to train on large-scale datasets to increase the robustness
and generalizability of proposed model for unseen speakers. Further, we aim
to enhance the multilingual capabilities of FCHiFi-GAN for various linguistic
applications by training it on diverse language datasets, allowing the model to
capture a broader linguistic spectrum. Our proposed version showcased a much
higher performance w.r.t achieving the convergence speed than the traditional
HiFiGAN architectures.

Acknowledgements. The authors sincerely thank the authorities of Dhirubhai
Ambani Institute of Information and Communication Technology (DA-IICT), Gand-
hinagar, India, for their kind support and cooperation to carry out this research work.
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Abstract. In recent years, convolutional neural networks (CNNs) have excelled
in remote sensing image super-resolution reconstruction (RSISR) tasks, becom-
ing the predominant algorithms in this domain. However, these models primar-
ily leverage the dependency of high-resolution (HR) images on low-resolution
(LR) counterparts during the super-resolution (SR) forward process, neglecting
mutual dependencies. To address the ill-posed nature of one-to-many mappings
and enhance reconstruction performance, this paper proposes Adaptive Enhanced
Reversible Flow Model (AERNet), an image SR algorithm based on invertible
neural networks. AERNet treats image degradation and reconstruction as invert-
ible transformations, where LR and HR images mutually project into each other’s
spaces. This mutual dependency optimizes distribution mapping across LR and
HR images, constraining the solution space effectively in both forward and inverse
directions. Integrating a multi-path adaptive feature fusion group and a global
interaction enhancement module enhances the network’s adaptability, improving
its capability to fuse and enhance feature information. This approach enables
more accurate processing of key image details and regions. Experimental results
demonstrate AERNet’s superior performance on two benchmark remote sensing
datasets.

Keywords: Deep Learning · Super-Resolution Reconstruction · Remote Sensing
Images · Flow Model · Invertible Coupling

1 Introduction

Image Super-Resolution (SR) is a key area in computer vision focused on recovering
high-resolution (HR) images from low-resolution (LR) inputs. This is crucial in both
industry and academia, particularly in Remote Sensing (RS), which provides critical
insights beyond visible observations. However, Single Image Super-Resolution (SISR)
is challenging due to the loss of high-frequency (HF) details, resulting in multiple poten-
tial solutions for a single LR input. Obtaining quality HR images in RS is difficult,
making Remote Sensing Image Super-Resolution (RSISR) essential. [1] RS images
suffer more severe detail loss compared to natural images, complicating HR recon-
struction. Current SISR algorithms aim within this complex solution space to identify
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the correct solution. Methods are categorized into interpolation-based, reconstruction-
based, [2] and learning-based approaches. [3] Interpolation methods, such as nearest-
neighbor, bilinear, and bicubic, often lose HF information due to lack of external priors.
Reconstruction-basedmethods use prior knowledge to enhance image quality but require
manual parameter adjustment, slow convergence, and high computational costs, limiting
their applicability in diverse RS scenarios.

With advancements in computer performance, deep learning research has rapidly
developed across various application fields. Significant progress has also been made in
SR algorithms based on deep neural networks. Learning-based approaches, in contrast to
traditional methods, construct neural network models to establish the mapping between
LR and HR remote sensing images. These methods leverage extensive LR and HR
image pairs as external prior knowledge. Deep convolutional neural networks (CNNs)
excel in feature representation and enable fast, end-to-end training, making them the
mainstream for SISR. [4] Prominent algorithms include SRCNN [3], VDSR [5], RCAN
[6], DRN [7], and SAN [9]. However, comparisons indicate that existing CNN-based
SISR algorithms are nearing a bottleneck in achieving substantial quality improvements
without fundamental changes. They face two primary challenges: Firstly, the ill-posed
nature of one-to-many mappings in SR reconstruction limits feedforward networks in
effectively constraining the solution space, leading to unrealistic reconstructions and
artifacts. Secondly, relying solely on feedforward training fails to fully exploit image
degradation models, restricting SISR model performance.

Flow models directly compute generation probabilities, effectively addressing
RSISR by determining sample distributions in latent space without adversarial train-
ing. [10] Invertible flow models tackle one-to-many problems and model complexity.
This paper proposes an adaptive-enhanced invertible flowmodel algorithm, integrating a
multi-path adaptive feature fusion group and global interaction enhancement module to
enhance feature extraction and adaptability. This enables precise capture and processing
of key image details and regions, improving SR image reconstruction quality. The main
contributions are as follows:

• We propose an invertible neural network based on the flow model for remote sensing
image SR reconstruction.Modeling image upscaling and downscaling as inverse tasks
through deliberate invertibility design, our proposed AERNet significantly alleviates
the ill-posed nature of reconstructing upscaled images from downscaled LR images.

• We designed a multi-path adaptive feature fusion group to enhance the network’s fea-
ture extraction and adaptability through a broader receptive field and dynamic channel
weight adjustment, generating more textured and detailed information for accurate
HR image reconstruction.Additionally, a global interaction enhancementmodulewas
introduced to improve feature information transmission and fusion between network
layers, maintaining global information consistency and producing SR images closer
to the original.

• Weevaluated the proposed network on twopublic remote sensing benchmark datasets,
NWPU-RESISC45 and AID, and compared it with 11 state-of-the-art methods.
Experimental results demonstrate that our method achieves superior SR performance
in terms of accuracy and visual quality.
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2 Related Work

2.1 Super-Resolution of Remote Sensing Images

Given the substantial need for enhanced spatial resolution across various remote sensing
(RS) applications such as scene classification, object detection, and instance segmen-
tation, SISR has emerged as a pivotal area of research within RSI processing. Nguyen
and Milanfar [11] were the first to use discrete wavelet transform (DWT) to decompose
LR images, upsample the wavelet coefficients using interpolation algo-rithms, and sub-
sequently apply an inverse transformation to the coefficients to pro-duce HR images.
In recent years, due to their exceptional performance and broad ap-plicability, CNN-
based methods have dominated RSISR. Lei et al. [12] introduced a SISR model for
CNN-based RSI named Local-Global Combined Network (LGCNet). LGCNet utilizes
an innovative ‘multi-branch’ architecture to capture multilevel rep-resentations of RSI,
encompassing both local details and global context priors. Guo et al. [13] proposed a
novel dense generative adversarial network (NDSRGAN) that incorporates multilevel
dense networks and a matrix mean discriminator for reconstructing HR aerial images
through SR. However, previous models relied too heavily on distorted LR images and
often reconstructed inaccurately due to optimization-based approaches. Moreover, flow
models based on image modulation have shown superior performance in image SR com-
pared to regression-based models. Therefore, we aimed to use a generative model that
can produce more detailed image semantic information.

2.2 Invertible Neural Network

Invertible Neural Networks (INNs) [14] feature reversible structures where input data
propagated forward to produce output can be retrieved by reverse propagation, pre-
serving information integrity. Invertible neural networks (INNs) are commonly used in
generative models. Using an invertible neural network, the input originalsized image
Ix generates a downsized image Iy and an implicit variable z. The generation process
of z, denoted as Ix = fθ (z) , is defined by the architecture fθ of the invertible neural
network, where z follows a Gaussian distribution. Since the distribution of z is known,
it can be omitted during image transmission. To recover the HR large-sized image, one
only needs to input Iy and a randomly sampled z from this Gaussian distribution into the
invertible network. This involves accessing the inverse mapping z = f −1

θ (Ix), making
inference more efficient. During the downsizing process, HF information is lost, requir-
ing the supplementation of this lost information during the enlargement process, which
can be approximated as a reversible process. INNs consist of reversible blocks, and in
this study, we adopted the reversible architecture from reference [15] to construct the
reversible coupling structure shown in Fig. 1. For the l -th block, the input gl is split
along the channel axis into gl1 and g

l
2, undergoing an additive affine transformation [16]:

gl+1
1 = gl1 + s

(
gl2

)

gl+1
2 = gl2 + v

(
gl+1
1

) (1)
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Functions s(·) and v(·) represent additive coupling functions. The corresponding outputs
are [v1, v2], denoted as [gl+1

1 , gl+1
2 ]. Given the output, its inverse transformation is

straightforward to compute.

gl2 = gl+1
2 − s

(
gl+1
1

)

gl1 = gl+1
1 − v

(
gl2

)

Function t(·) is a multiplicative coupling function. To enhance transformation capa-
bilities, the identity branch is expanded. Functions s(·), v(·) and t(·) all constitute the
multi-path adaptive feature fusion group, as detailed in Sect. 3.2.

gl+1
1 = gl1 � exp

(
ψ

(
gl2

)) + s
(
gl2

)

gl+1
2 = gl2 � exp

(
t
(
gl+1
1

))
+ v

(
gl+1
1

)

gl2 =
(
gl+1
2 − v

(
gl+1
1

))
� exp

(
−t

(
gl+1
1

))

gl1 =
(
gl+1
1 − s

(
gl2

)) � exp
(−ψ

(
gl2

))

(3)

Fig. 1. Forward and inverse principles of Invertible Neural Network

3 Methodology

3.1 Overview of AERNet

To address the ill-posed nature of upscaling, we model the distribution of lost informa-
tion from HR to LR images, guided by the Nyquist-Shannon sampling theorem which
indicates lost high-frequency (HF) content during downscaling. Initially, we decompose
the HR image IHR into low-frequency (LF) ILHR and HF components IHHR using wavelet
transform. To recover these lost HF details effectively, we employ an invertible neural
network during upscaling. An auxiliary latent variable z ∼ p(z), often an isotropic Gaus-
sian distribution, models this lost information’s distribution. Therefore, retaining the LR
image ILR after downscaling becomes unnecessary. During upscaling, z is randomly
sampled and combined with ILR to reconstruct IHR using the inverse mapping model.

The architecture of our proposed AERNet comprises stacked downscaling mod-
ules, where each module includes a Haar transform block, several MRBlocks (blocks
based on Multi-path Adaptive Feature Fusion Groups (MAFFG)) of invertible neural
networks, and a Global Interaction Enhancement Module (GIEM), illustrated in Fig. 2.
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The model effectively decomposes HR image IHR into a downscaled image ILR and
context-dependent HF information z. The Haar transform initiates each downscaling
module, separating input images into LF approximation and HF coefficients in three
directions [17]. These components are subsequently processed by MRBlocks. The Haar
transform’s mapped features serve as input, further abstracted into LR and latent rep-
resentations through a stack of MRBlocks, following the coupling layer architecture
proposed in [15] by Eqs. (1–3).

Coupling layers are utilized based on two key considerations: (1) the initial decom-
position of input into low-frequency (LF) and high-frequency (HF) components via Haar
transform, and (2) the objective to refine LF and HF inputs through two branches of cou-
pling layer output, ensuring a suitable appearance for low-resolution (LR) images and an
independent distribution for latent HF content represented by gl1 and g

l
2 in Eq. (1)Addi-

tionally, leveraging significant findings from image scaling tasks [18] (see Fig. 1), we
integrate a transformation enhancing LF with gl1 and an augmented affine transforma-
tion for HF with gl2, thereby expanding model capacity. Functions s(·), v(·), and t(·),
representing multi-path adaptive feature fusion groups, are employed. The function t(·)
incorporates a scaling term and a central sigmoid function to stabilize computationswith-
out the exp(·) function. This enhances feature extraction and adaptability with a wider
receptive field and dynamic channel weight adjustment, maintaining computational effi-
ciency and information integrity. Features then undergo processing in the GIEMmodule
FGIEM , based on residual networks integrating multi-level spatial and channel attention
mechanisms. This module significantly enhances the network’s ability to handle feature
information, capturing and processing critical image details and regions with enhanced
precision.

Fig. 2. Framework of the proposed AERNet

3.2 Multi-path Adaptive Feature Fusion Group

This paper introduces a multi-path adaptive feature fusion group that incorporates
dilated convolutions and channel-domain attention within a dense connection archi-
tecture. Unlike standard convolutions, dilated convolutions [16] use a dilation rate to
increase the spacing between elements in the convolution kernel, thereby addressing
spatial information loss and data structure disruption caused by pooling operations. This
method also expands the receptive field. If k represents the dilation rate and k the kernel
size, the effective kernel size with dilation is calculated as: k = k + (e − 1) ∗ (k − 1).
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The input data first undergoes three layers of densely connected dilated convolutions
[19], each with a 3 × 3 kernel size and dilation rates of 1, 2, and 4, respectively. Each
layer’s output is activated by the LeakyReLU function, and the outputs of all previous
layers are used as inputs for subsequent layers, ensuring feature reuse. This approach
enhances the receptive field, allowing the three dense connection layers to extract ample
feature information while minimizing the number of parameters in the module.

After the dense connection layers, the channel domain part of the convolutional
attention module [20] is introduced. This module aggregates the spatial information of
the feature maps and allocates more resources to critical feature information. The overall
feature extraction network is shown in Fig. 3. The three layers of densely connected
dilated convolutions extract multi-level dense feature information from the input data
and input it into the attention channel domain. The channel domain calculates the scaling
factors for each feature channel, which are then added to the input feature information,
enabling the network to adaptively focus on key areas of feature information.

Fig. 3. Structure of Multi-path adaptive feature fusion group

3.3 Global Interaction Enhancement Module

To effectively enhance the transmission of feature information and better understand
the correlation and importance between different regions in RSI, we designed a Global
Interaction Enhancement Module (GIEM), as shown in Fig. 4. This structure is based
on a residual network [6], and literature [8] has demonstrated the advantages of spa-
tial attention mechanisms for RSI reconstruction. Consequently, this network structure
also incorporates a spatial attention mechanism. Additionally, we introduced a Resid-
ual Channel Attention Mechanism (RCAM) before the spatial attention mechanism to
enhance feature interaction. In Fig. 4, the parameters of Convolution 1 and Convolution
5 are denoted as W 1 and W 5, respectively. Convolution 1 and Convolution 5 are used
for the amplification and compression of spatial information, respectively. Convolutions
2 through 4 construct a dense connection structure, with convolution kernel parameters
denoted as W 2, W 3, and W 4. Assuming the input feature is x, the output feature of the
complex network structure is z. The output feature after the first convolution is shown
as follows:

h1 = ϕ(W 1x) (4)
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where h1 represents the output feature of Convolution 1, and ϕ(·) represents the ReLU
activation function. The output feature of the residual connection can be expressed as
shown as follows:

h2 = ϕ
(
W 2h1

)

h3 = ϕ
(
W 3Con(h1, h2)

)

h4 = ϕ
(
W 4Con(h1, h2, h3)

) (5)

where h2 to h4 represent the output features of the intermediate layers in the dense
connection structure corresponding to their convolution kernels, and Con(·) represents
the feature concatenation operation.

In the RCAB, the same stage receives dense features from the previous stage and
featuremappings from preceding stages. After concatenating them channel-wise, RCAB
is used to enhance important features, followed by a 1 × 1 convolution to fuse them.
The input, with C channels, is first mapped to a vector with C channels using Global
Average Pooling (GAP). Then, a 1 × 1 convolution after the ReLU activation maps the
vector to C

r channels, where r represents the reduction rate. Typically, the reduction rate
is a number not less than 1. By adjusting r, the number of intermediate feature mappings
can be controlled. The second 1 × 1 convolution maps the vector back to C channels
and uses a sigmoid function to obtain the mask s These processes can be represented as
follows:

s = ϕ(C2(δ(C1(fgap(h4)))))) (6)

Given that h4 is the input feature, fgap(·) is the GAP function, C1 and C2 are 1 × 1
convolutions, and δ and ϕ are the sigmoid and LeakyReLU functions respectively, the
output can be expressed as:

FRCAB = s · h4 + h4 = (1 + s) · h4 (7)

Where FRCAB represents the output feature mapping. Due to the sigmoid function,
the value range of elements in the mask is (0,1).With the addition of the skip connection,
the value range of the mask is mapped to (1,2), highlighting important features in the
input while maintaining its original beneficial properties. We employ RCAB to form
a fusion block to receive dense features. Specifically, we place RCAB between the
connection and SAM, allowing thorough observation of feature mappings and learning
various representations. The SAM[14] structure involved in the algorithm refers to the
constructed spatial attention mechanism. The derivation and implementation principles
of this structure can be referenced in [14]. In this section, this operation is denoted as
FSAM(·), thus the final output can be expressed as follows:

z = x + ϕ
(
W 5FSAM(FRCAB)

)
(8)

3.4 Loss Function

The AERNet algorithm facilitates the forward process through the reversible downscal-
ing model F(·), transforming a HR image IHR into a LR image ILR and data distribution
q(IHR). The sample cloud of HR images is denoted as {I (n)HR}Nn=1. Although.
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Fig. 4. The structure of theGlobal Interaction EnhancementModule (GIEM). RCAMrefers to the
proposedResidual ChannelAttentionMechanism. SAMrefers to the SpatialAttentionMechanism

The reversible downscaling task does not directly require the generated LR images to
be visually appealing, we aim for them to be effective and visually pleasing. Our model’s
downscaling process is guided by employing the bicubic method [21]. Let I (n)LR↓bic be the

LR image corresponding to I (n)HR obtainedbybicubicmethod.To ensure ourmodel adheres

to this guidance, we guide the model to produce LR images I (n)LR = F(I (n)HR) that resemble

I (n)LR↓bic . The loss LG is expressed as follows

LG =
∑N

n=1
�y

(
I (n)LR↓bic ,F

(
I (n)HR

))
(9)

where �Y represents the L2 loss.
To minimize the disparity between the reconstructed image ISR and the original

image IHR, our algorithm utilizes the SmoothL1 loss function [22] to compute the HR
reconstruction loss between ISR and IHR. The loss function LR is expressed as follows,

LR = 1

N

∑N

i=1

(
0.5‖IHR − ISR‖2, |IHR − ISR| ≤ 1

|IHR − ISR| − 0.5, |IHR − ISR| > 1

)

(10)

where N represents the number of images in a batch during training, and i denotes the
current image being processed.

To encourage the model to capture the data distribution q(IHR) of the HR images, we
demonstrate this using its sample cloud {I (n)HR}Nn=1. The model reconstructs the SR image

I (n)SR through F−1(I (n)LR , z(n)), where I (n)LR = F(I (n)HR) is the downscaled LR image gener-
ated by the model, and z(n) ∼ p(z) is a randomly sampled latent variable. To effectively
traverse the cloud of real HR images {I (n)HR}Nn=1, the set {I (n)LR }Nn=1 also forms a distri-
bution sample cloud. We use the forward-push notation ∗ to represent this distribution
F∗[q(IHR)], indicating the distribution of the transformed randomvariableF(IHR), where
the distribution q(IHR), IHR ∼ q(IHR) of the original random variable IHR. Similarly,
the sample cloud {I (n)SR }Nn=1 = {F−1(I (n)LR , z(n))}Nn=1 indicates the distribution of the SR

images reconstructed by themodel, denoted asF−1∗ [F∗[q(IHR)]p(z)], since (I (n)LR , z(n)) ∼
F∗[q(IHR)] × p(z) (noting independence due to the generative process of I (n)LR and z(n)).
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The objective of distribution matching is to align the distribution reconstructed by the
forward process with the target data distribution, achieved by minimizing the divergence
between specific distribution metrics:

LD = �p(F
−1∗ [F∗[q(IHR)]p(z)], q(IHR)) (11)

We employ the Jensen-Shannon (JS) divergence, a metric for measuring similarity
between two probability distributions, as the probability metric �p. To optimize the
AERNet model, we minimize the combined loss LC , which integrates the reconstruction
SR loss LR, the LR guidance loss LG , and the distribution alignment loss LD:

LC = λ1LR + λ2LG + λ3LD (12)

where λ1, λ2, and λ3 are coefficients that balance the contributions of the different loss
components.

4 Experimental Analysis

4.1 Dataset and Metrics

This paper utilizes two publicly available RS datasets for validation: NWPU-RESISC45
[23] and AID [24]. The datasets are partitioned into training, testing, and validation sets
in a ratio of 6:3:1.

1. NWPU-RESISC45 Dataset: This RSI dataset has pixel sizes of 256 × 256. It com-
prises 31,500 images distributed across 45 scene categories, with 700 images per
category.

2. AID Dataset: This RSI dataset has pixel sizes of 600 × 600. It includes 30 scene
categories, each containing approximately 220–420 images. The dataset consists of
a total of 10,000 images with resolutions ranging from 8 m to 0.5 m.

Based on HAUNet [25], we use the original images as true HR references. LR
images are generated using bicubic interpolation to formHR/LR image pairs for training
and evaluation. Building upon this foundation, quantitative evaluations are conducted,
including Peak Signal-to-Noise Ratio (PSNR) [26], Structural Similarity Index (SSIM)
[26], Spatial Correlation Coefficient (SCC) [27], and Spectral Angle Mapper (SAM)
[28]. Higher PSNR, SSIM, SCC values, and lower SAMvalues indicate improved image
quality. To gain a deeper understanding of theworkings and behaviors of the SR network,
we utilize Local Attribution Maps (LAM) [29]. LAM helps identify which input pixels
significantly contribute to overall performance. For instance, in Fig. 5(b), pixels marked
in red are crucial for the reconstruction process. Furthermore, Different Importance (DI)
indicates the extent of pixel involvement, where higher DI reflects broader attention.
Intuitively, superior network performance can be achieved by utilizing more informative
pixels.
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4.2 Implementation Details

In this study, we focused on scale factors of 2 and 4, adjusting the number of downsam-
pling modules accordingly. The model training process was optimized using Adaptive
Moment Estimation (ADAM) [30], with β1 and β2 set to 0.9 and 0.999, respectively,
and ρ = 1e − 8. To enhance model stability, a series of data augmentation operations
were applied to the training dataset, including rotations and flips. During training, the
initial learning rate was set to 1 × 10−4, with 200 iterations and a batch size of 8. The
experiments used Python 3.8 and PyTorch 1.11.0, running on a server equipped with an
Intel Core i9-9900K CPU, 32 GB RAM, and NVIDIA GeForce RTX 2080Ti GPU, with
CUDA 11.3 and CuDNN 8.2.0 enabled.

4.3 Evaluations with State-of-the-Art

Figure 5(a) and Fig. 5(b) present the SR results at different magnifications on a general
test set, highlighting the detailed reconstruction effects of the super-resolved images
through subjective visual analysis. Figure 5(a) compares the SR results on the NWPU-
RESISC45 dataset at a 4 × magnification. The LR images were obtained by downsam-
pling the test set images, and the algorithm was used alongside comparative methods
for image reconstruction. Compared to other methods, the images produced by AERNet
exhibit clearer shapes and edges, typically leading to outputs that are overly smooth
and somewhat blurred. Specifically, the details in the locally enlarged areas (highlighted
in red boxes) show that the bicubic method produces excessively blurred details, and
the images from deep learning-based algorithms like FSRCNN [31] and Omnisr [32]
display texture details that are not as clear and sharp as those generated by our proposed
algorithm. Compared to deep learning-based remote sensing image SR algorithms such
as FENet [20] and TransENet [33], our proposed algorithm provides clearer and sharper
reconstructions, preserving HF information and enhancing the visual results of textures,
edges, and similar content.

Figure 5(b) qualitatively compares the Local AttributionMaps (LAM) and SR results
of different networks on the NWPU-RESISC45 test dataset at a 4 × magnification
factor. Notably, the LAM result images of FENet [20] and HSENet [1] contain fewer
informative pixels for reconstruction, leading to less detailed structural information and
an inability to restore the clear edges of the airplane wings. In contrast, AERNet’s
attention extends along the texture directions and is more widely distributed across
the entire scene, enabling it to recover richer details. Due to the distribution alignment
objective, AERNet further produces clearer and more realistic images, with the visual
quality and fidelity of the reconstructedHR images compared to previous state-of-the-art
methods.

In addition to visual assessment, the quantitative comparison results using PSNR,
SSIM, SCC, and SAM values are presented in Table 1 and Table 2. The performances
ranked as best, second-best, and third-best are highlighted using red, blue, and green
colors, respectively.These values represent the average PSNR, SSIM, SCC, and SAM
values of the NWPU-RESISC45 and AID test sets after SR magnification by various
algorithms. For the NWPU-RESISC45 dataset with a 4×magnification factor, AERNet
outperforms the classical SR method FSRCNN [31], with improvements of 0.73 dB in



Adaptive Enhanced Reversible Flow Model 383

PSNR and 0.0272 in SSIM. Compared to the recent novel SR method Omnisr [32], our
proposed method increases PSNR and SSIM values by 0.11 dB and 0.0026, respectively.
In Table 2, compared to the transformer-based SR method TransENet [33], our method
improves PSNR and SSIM values by 0.31 dB and 0.0077, respectively. These results
demonstrate the high performance of AERNet, highlighting its practicality in edge and
fine detail recovery. MAFFG and GIEM are emphasized as practical tools for achieving
more accurate recovery.

Fig. 5. (a)Comparisons of results using variousmethods onNWPU-RESISC45datasets. (b) Eval-
uating 4×Super-Resolution (SR) results (PSNR/SSIM) andLAMattribution results fromdifferent
SR networks on NWPU-RESISC45. The LAM outcomes visually represent the significance of
individual pixels.

We evaluated the quality of the downsampled LR images produced by AERNet.
Figure 6 illustrates their visual similarity, demonstrating our accurate perception of the
downsampled images, indicating that AERNet can perform SR visual tasks as effectively
as Bicubic.

4.4 Ablation Studies

To evaluate the impact of key modules in AERNet, we conducted ablation studies
by removing specific components: 1) the Multi-Path Adaptive Feature Fusion Group
(MAFFG), 2) theGlobal InteractionEnhancementModule (GIEM), and3) theCombined
Loss (CLoss). This studymaintained consistent datasets and experimental settings across
different variables. Table 3 and Fig. 7 present the quantitative and qualitative results of
the ablation study conducted on theAIDdataset, showcasing the best-performing results.
It is important to note that removing any fundamental component leads to a significant
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Fig. 6. Demonstration of downsampled images from the NWPU-RESISC45 and AID validation
sets. The images in the left column (a, c) are downsampled using Bicubic. The images in the right
column (b, d), downsampled using AERNet. They exhibit comparable visual perception.

Table 1. Experimental results on NWPURESISC45 dataset. bolditalic indicates the best per-
formance, italic indicates the second best performance and bold indicates the third best
performance.

Method NWPURESISC45

× 2 × 4

PSNR SSIM SCC SAM PSNR SSIM SCC SAM

BICUIC 32.12 0.8801 0.5375 0.0730 27.61 0.6967 0.1483 0.1192

SRCNN[3] 34.06 0.9202 0.6050 0.0587 28.59 0.7431 0.2073 0.1069

LGCNET[12] 34.26 0.9227 0.6080 0.0574 28.74 0.7519 0.2124 0.1052

FSRCNN[31] 34.16 0.9219 0.6116 0.0581 28.82 0.7554 0.2222 0.1044

DRN[7] 32.39 0.8878 0.4917 0.0709 27.47 0.6882 0.1249 0.1210

HSENET[1] 34.62 0.9284 0.6650 0.0551 29.20 0.7709 0.2575 0.1000

FENET[20] 34.55 0.9272 0.6340 0.0555 29.16 0.7694 0.2527 0.1006

SRDD[34] 34.68 0.9289 0.6401 0.0546 29.28 0.7740 0.2666 0.0991

OMNISR[32] 34.51 0.9266 0.5964 0.0552 29.44 0.7800 0.2810 0.0973

Ours 34.89 0.9343 0.6992 0.0522 29.55 0.7826 0.2924 0.0960

decline in evaluation metrics and visual quality. Specifically, eliminating the Combined
Loss resulted in a substantial drop in PSNR (-2.09 dB), making the depiction of house
lines in the image noticeably blurry. This highlights the powerful performance of the
Combined Loss in enhancing SR results. Furthermore, ignoring the Global Interaction
EnhancementModule not only caused aPSNRdecrease of 0.14 dBon theAIDdataset but
also led to inadequate restoration of ground feature edges, underscoring its importance.
Therefore, this study continues to adopt this approach. In summary, through compre-
hensive consideration, we conclude that each design element in the proposed network
is indispensable for achieving satisfactory SR results.
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Table 2. Comparison results of PSNR, SSIM, SCC and SAM on AID dataset with a scale factor
of 4.

Method AID

PSNR SSIM SCC SAM

BICUIC 28.69 0.7334 0.1586 0.1051

SRCNN 29.76 0.7788 0.2173 0.0928

FSRCNN 29.80 0.7798 0.2074 0.0929

VDSR[5] 30.35 0.7976 0.2491 0.0871

DRN 28.48 0.7203 0.0927 0.1072

HSENet 30.44 0.8011 0.2603 0.0863

DCM[35] 30.50 0.8032 0.2685 0.0857

TransENet[33] 30.53 0.8048 0.2655 0.0853

Ours 30.84 0.8125 0.2894 0.0826

Table 3. Ablation study of different component combinations (× 4)

Method NWPURESISC45

MAFFG GIEM CLoss PSNR SSIM SCC SAM

× √ √
29.48 0.7799 0.2872 0.0968√ × √
29.41 0.7776 0.2785 0.0983√ √ × 27.46 0.6924 0.1260 0.1201√ √ √
29.55 0.7826 0.2924 0.0960

Fig. 7. Ablation results. From top to bottom, left to right: generated LR image, original HR image,
results from our proposed network, results withoutMAFFG, results without GIEM, results without
Combined Loss.
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5 Conclusion

In this paper, we address the challenges of one-to-many mappings and the ineffective
utilization of degradation models in existing image super-resolution algorithms. Consid-
ering the complex textures and structures present in remote sensing images, we propose
AERNet, an adaptive-enhanced invertible neural network-based super-resolution algo-
rithm. AERNet integrates an invertible coupling flow computation model with remote
sensing image reconstruction, combining a Multi-Path Adaptive Feature Fusion Group
(MAFFG) and a Global Interaction Enhancement Module (GIEM). This combination
significantly enhances feature extraction, adaptability, and the transmission, fusion, and
enhancement of feature information. Using the model, high-resolution (HR) images
are input to obtain super-resolved (SR) and low-resolution (LR) reconstructed images.
Two loss functions are designed based on the differences between these reconstructed
images and the real images. To ensure the SR images capture the distribution of HR
images, the model aligns the reconstructed distribution with the target by minimizing
distribution metric differences, creating a distribution matching loss function. These
loss functions are weighted to form a combined loss function. Optimizing this com-
bined loss function enhances the model’s reconstruction capability in both LR and HR
spaces. The model’s invertible characteristics allow optimization in both forward and
reverse directions. We evaluated AERNet’s generalization ability on two public remote
sensing datasets, comparing it with traditional bicubic interpolation and various deep
learning-based super-resolution methods. Experimental results demonstrate AERNet’s
superiority and effectiveness, with improvements in both qualitative and quantitative
performance.
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Abstract. Neural representation for videos (NeRV) has emerged as a
promising method for video representation and compression. However,
existing NeRV methods primarily focus on objective quality and over-
look subjective quality. Considering the varying sensitivity of human eyes
to different regions, we propose a saliency-based neural representation for
videos (SNeRV). By introducing a multi-scale temporal-spatial feature
grid and SNeRV blocks, we enhance the model’s representation capa-
bility, improving both objective and subjective quality. Additionally, our
saliency-guided training strategy enables more efficient parameter alloca-
tion, prioritizing the representation of regions of interest (ROI) for supe-
rior visual quality. On the UVG dataset, our proposed method improves
objective quality by 0.3 dB to 0.5 dB PSNR compared to the state-of-the-
art method and significantly enhances subjective quality, particularly in
ROI areas.

Keywords: Implicit Neural Representations · Neural Video
Compression · Saliency Detection

1 Introduction

The rapid growth of video content imposes significant challenges on net-
work transmission and storage, necessitating the exploration of more efficient
video coding methods. Implicit neural representations (INR) [1,2] have demon-
strated significant potential in representing and coding various signals involving
image [3,4], scene [1,2], and videos [5,6], presenting a promising solution to
encoding tasks. The fundamental principle of INRs involves learning a func-
tion mapping coordinates to values to support the implicit reconstruction of the
object. These mapping function are typically implemented using multilayer per-
ceptrons (MLPs), which reconstruct only one point at a time, leading to slow
reconstruction speeds and low quality. To address these limitations, recent Neu-
ral Representation for Videos (NeRV) methods [7–14] introduce Convolutional
Neural Networks (CNNs) to reconstruct entire frame images at once, achieving
higher reconstruction quality and faster decoding speeds.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15331, pp. 389–403, 2025.
https://doi.org/10.1007/978-3-031-78119-3_27
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Fig. 1. (Left) High-level diagram of NeRV methods and video compression pipeline.
(Right) Our proposed SNeRV decomposes the video representation into salient and
non-salient regions.

As shown in Fig. 1(left), NeRV methods typically involve an embedding lay-
ers to encode the time index t, followed by a decoder to generate frames. For
video compression tasks, NeRV methods directly learn the implicit representa-
tion of video data using neural networks, eliminating the need for explicit storage
of each frame. Instead, network parameters serve as compressed data, achiev-
ing video compression through model compression methods including pruning,
quantization, and entropy coding.

Despite significant advancements made by these methods, they often con-
sider only objective quality and overlook a crucial aspect of the human visual
system (HVS): varying visual sensitivities across different regions within video
scenes. Existing NeRV methods typically employ uniform loss functions, treating
all regions within a video equally important, thus inadequately addressing the
human eye’s preference for salient regions. In traditional video coding, rate con-
trol techniques allocate more bits to regions of interest (ROI) based on saliency
analysis. Inspired by this, we aim to guide neural representations’ preferences,
by distinguishing salient regions (typically foreground areas) from non-salient
ones (typically background) and assigning different loss weights accordingly, as
illustrated in Fig. 1(right). This approach achieves more efficient parameter allo-
cation by prioritizing regions more sensitive to the human eye, resulting in better
subjective visual quality.

To further improve both subjective and objective quality, we design modules
for the embedding layer and decoder respectively to enhance the network’s rep-
resentational capacity. In the aspect of embedding layers, although methods like
FFNeRV [13] surpass Fourier-style positional embedding [7–9] and content-based
feature embedding methods [11,12] in performance, they predominantly focus on
modeling the temporal dimension, neglecting the spatial dimension’s features.
To address this, we introduce a multi-scale feature grid approach, covering var-
ious temporal and spatial scales, to provide a richer feature embedding. For the
decoder, a challenge of NeRV methods is to enhance the model’s representational
capacity within a limited parameter budget. We adopt the design [14] using
bilinear interpolation for upsampling followed by deep convolutional networks.
Based on advanced lightweight structure designs [15–17] and reparameterization
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techniques [18], we design the SNeRV block for decoder to enhance the model’s
representational capacity further.

In this paper, we propose Saliency-based Neural Representation for Videos
(SNeRV), and present three contributions outlined as follows:

– We propose a saliency-guided training strategy, making the video representa-
tion more inclined towards region of interest, thus achieving better subjective
visual quality.

– We design multi-scale temporal-spatial feature grids and SNeRV block for the
embedding layer and decoder respectively, thereby improving the network’s
representation capability.

– Through experiments, we demonstrate that our SNeRV outperforms existing
NeRV methods. It exceeds the baseline model by 0.3 to 0.5 in objective metrics
(PSNR), and exhibits higher reconstruction quality especially in regions of
interest, resulting in better overall visual performance.

2 Related Work

2.1 Video Compression

Video compression is crucial in computer vision and multimedia processing. Tra-
ditional techniques like H.264/AVC [19] and H.265/HEVC [20] have dominated
for many years. Recently, some studies have replaced local modules of tradi-
tional pipelines (e.g., motion prediction and compensation, transform coding,
and entropy coding) with learning-based models. Further, DVC [21] replaces all
modules with neural networks, proposing an end-to-end video encoding frame-
work. Many methods follow this architecture and introduce optimizations, such
as replacing predictive coding with conditional coding [22] and incorporating
image domain operations into the feature domain [23]. However, these methods
have a complex pipeline and slow decoding speeds, limiting real-time applica-
tions. INRs offer a new approach to video encoding by overfitting a small neural
network to the signal and compressing it into a bitstream, achieving faster decod-
ing speeds through a simple architecture.

2.2 Implicit Neural Representation

Implicit Neural Representations (INRs) are utilized for complex natural sig-
nal representation, including images [3,4], videos [5,6], and voxels [1,2]. Typ-
ically, these methods employ a network (usually an MLP) to fit an implicit
function mapping the coordinates to their values. Recently, NeRV [7] introduces
frame-based INRs for video tasks, significantly enhancing reconstruction per-
formance and achieving high-speed decoding. NeRV utilizes CNNs to map one-
dimensional frame coordinates to entire frames, showing promise in denoising,
frame interpolation, inpainting, super-resolution, and video compression tasks.
Many methods [8–14] have enhanced embedding layers and decoders based on
NeRV. For example, HNeRV [11] and DNeRV use encoders for content-related
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Fig. 2. The framework of SNeRV.

embeddings, while FFNeRV [13] employs feature grids, surpassing Fourier-style
position encoding. We adopt FFNeRV’s [13] grid-based embedding method, inte-
grating designs inspired by feature grids in image representation task [24,25],
proposing a multi-scale temporal-spatial feature grid. As for decoders, while
most methods [7–13] use shallow CNNs and pixel shuffle layers, HiNeRV [14]
introduces interpolation followed by deep CNNs structures for superior perfor-
mance. Inspired by these, We integrate lightweight network structures [15–17]
and reparameterization techniques [18], and propose the SNeRV block to improve
decoder.

2.3 Video Salient Object Detection

Video Salient Object Detection is an important task aimed at identifying regions
of videos that most attract human visual attention. Common methods for video
salient object detection (VSOD) often utilize Long Short-Term Memory net-
works(LSTM) [26] or attention modules [27]. In video representation tasks, exist-
ing methods often overlook the varying sensitivity of human eyes to different
regions. We propose to incorporate saliency detection to guide the network rep-
resentation. In this paper, we utilize pre-trained saliency detection models [27]
to obtain saliency maps for guiding the training process.

3 Method

3.1 Overview

The framework of our proposed SNeRV is shown in Fig. 2. We consider the
video representation where a neural network maps the frame index to the image
of that frame, and further applies it to video compression. Section 3.2 provides
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Fig. 3. Structure of Multi-Scale Temporal-Spatial Feature Grid. For a given temporal
coordinate t (indicated by the red arrow), the corresponding feature embeddings are
interpolated from different feature grids. These embeddings are then upsampled to the
same spatial resolution and concatenated to form the final feature embedding. (Color
figure online)

a detailed introduction to the network architecture, primarily focusing on our
improvements to the embedding layer and the decoder. In Sect. 3.2, we introduce
Saliency-Guided Training, which prioritizes the quality enhancement of salient
regions, making the reconstruction more aligned with human visual perception.
Section 3.2 discusses how to compress the model after training to form the final
video bitstream.

3.2 Architecture

As shown in Fig. 2, the frame index t is processed by the multi-scale temporal-
spatial feature grid to generate initial feature embeddings X0. The feature is
progressively upsampled and processed through N× SNeRV Blocks, resulting
in the final feature XN at the original resolution. The head layer subsequently
generates the output Y .

Multi-scale Temporal-Spatial Feature Grid. The grid-based embed-
ding [13] not only provides richer content-related features but also utilizes tem-
poral correlations of frames. This method stores embeddings at intervals to con-
struct feature grids at multiple different time resolutions. Each frame’s embed-
ding is interpolated from the feature grids along the temporal dimension, and
then the embeddings obtained from different grids are concatenated as the final
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embedding. However, they only considered the temporal dimension. Inspired
by grid-based INR for image [24], we additionally introduce multi-spatial reso-
lution grids: low-resolution grids capture large-scale structure information, and
high-resolution grids capture finer textures. We construct a multi-scale temporal-
spatial feature grid as shown in Fig. 3. Each Grid G∈Rs×c×h×w is a tensor, where
s, c, h, w respectively denote the number of frames, channels, height, and width.
The feature at time t in grid G is obtained through linear interpolation between
the two nearest feature embeddings:

φ(t,G) =
∣
∣t̂ − m

∣
∣ · G[m] +

∣
∣t̂ − n

∣
∣ · G[n],

t̂ =
t · s

T
, m =

⌊

t̂
⌋

, n =
⌈

t̂
⌉

,
(1)

where φ(t,G) represents the embedding of the frame index t in the feature grid
G, t is the input index, s is the total number of frames in the feature grid, and T is
the total frame number of the video. t̂ is the normalized index of t in the feature
grid, and m and n are the indices of the two adjacent reference embeddings
in the grid, computed using the floor �·� and ceiling functions�·� respectively.
G[x] is the tth feature embedding of G. We construct multiple feature grids with
different temporal and spatial resolutions to encode the temporal index t. All
obtained feature embeddings are upsampled to match the spatial resolution of
the largest embedding and concatenated to form the final feature embedding Et.
The formula is as follows:

Et = Concat(Upsample(φ(t,G)K
k=1)) (2)

where K is the total number of feature grids, and k is the index of multiple grids.
Subsequently, we employ a convolutional layer to project the embedding to the
input channel number of the decoder:

X0 = Conv(Et) (3)

SNeRV Block. After obtaining the initial feature map X0 through the feature
grid, we proceed with N SNeRV Blocks for incremental upsampling and pro-
cessing. As shown in Fig. 4(a), the SNeRV Block mainly consists of two stages:
the upsampling stage and the processing stage. In the upsampling stage, we
adopt the design of HiNeRV [14], where the output Xn−1 of the previous block
is first upsampled with a stride ony6f Sn using bilinear interpolation. Simulta-
neously, the input t is encoded through a local grid and added to the upsam-
pled output. We primarily integrate some lightweight network designs [17] to
enhance the processing stage. Initially, we adjust the channel number through
one Convnext block [16] (Fig. 4(b)), and then refine it using two RepConv blocks
(Fig. 4(c)). The RepConv block consists of a reparameterized depthwise convolu-
tion (repDWconv) and a feedforward network (FFN). The RepDWconv applies
reparameterization [18] to depthwise convolution (DWConv), During training,
RepDWConv employs a multi-branch structure with several convolutional paths,
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Fig. 4. Structure of SNeRV Block.

which helps in better learning and optimization. During inference, these multi-
ple paths are re-parameterized into a single path DWConv, leading to a simple
and efficient architecture similar, but with enhanced performance. This approach
leads to improved training outcomes without introducing extra parameters. Sub-
sequently, two pointwise convolutions (PWConv) are connected via residual links
to form a Feedforward Network (FFN). The process of SNeRV Block can be writ-
ten as:

Xn = Fn(Upsample(Xn−1) + localgrid(t)) (4)

Head Layer. The output of last SNeRV Block Xn is mapped to the final output
frame Y through a convolutional layer followed by a sigmoid activation function.

Y = Sigmoid(Conv(Xn)) (5)

3.3 Saliency-Guided Training

The human eye exhibits varying degrees of visual sensitivity across different
regions. For instance, the moving objects rabbit, tend to capture more attention
compared to the background. Obviously, enhancing the reconstruction quality in
these areas significantly improves the visual experience. However, existing NeRV
methods employ a uniform weight allocation strategy for video reconstruction,
overlooking this aspect. Inspired by variable bitrate techniques in traditional
video coding, we utilize saliency detection technology to guide network training.
This prioritizes improving the reconstruction quality in visually significant areas,
enabling intelligent parameter allocation across different regions within video
frames, thereby enhancing the overall visual quality (Fig. 5).

First, we preprocess the original video frames using a pre-trained saliency
detection model [27] to generate saliency maps S for each frame, reflecting the
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Fig. 5. Saliency-Guided Training strategy.

visual importance of various regions. This process is relatively quick and negli-
gible compared to the overall training time. During training, we utilize saliency
maps as guidance by assigning higher loss weights to salient regions. Our loss
function comprises two components: global loss and salient region loss. The
global loss measures the difference between the original frame x and the recon-
structed frame y by reconstruction loss L(·). The salient region loss employs
saliency maps S to mask the original x and reconstructed frames y, comput-
ing reconstruction loss L(·) only within the masked salient regions. The recon-
struction loss L()̇ can be composed of a combination of Mean Squared Error
(MSE), L1 loss and Structural Similarity Index Measure (SSIM). By combining
the global loss and salient region loss through weighted summation, we use the
weight parameter λ to control the reconstruction priority of salient regions.

S = SaliencyDetection(x)
xs = mask(x, S), ys = mask(y, S)
Ltotal = L(x, y) + λL(xs, ys)

(6)

3.4 Model Compression Pipeline

In the task of video compression, to further enhance the rate distortion perfor-
mance, additional model compression are required after the video regression
training. To further reduce size, post-processing techniques include pruning,
quantization, and entropy coding.

Pruning. For the trained model, we perform unstructured pruning, followed by
fine-tuning to recover the model’s representational capacity. Specifically, we refer
to the importance score assessment of method [14], score(θ) = |θ|√

P
. Where |θ| is

the absolute value of the parameter θ, and P is the total number of parameters
in the layer to which θ belongs. This is based on the intuition that wider layers
have greater redundancy, and pruning these layers has less impact compared to
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narrower layers. Weights with importance score below a certain threshold are
set to zero. The pruning formula is as follows:

θi =

{

0 if score(θi) < score(θq)
θi otherwise

(7)

where score(θq) is the q percentile importance score for all parameters.

Quantizing. Weights quantizing significantly reduces model size, with research
indicating that quantizing model parameters to 8 bits doesn’t notably
degrade performance. Methods [13,14] introducing quantization-aware train-
ing (QAT) [28] into the process have shown promising results. Following QAT
fine-tuning, the model has an acceptable descent of reconstruction performance
even with 6-bit quantization and demonstrates improved Ratio-Distortion per-
formance in video compression tasks.

Entropy Coding. After quantization, the model undergoes Huffman cod-
ing [29], further reducing the space by approximately 10%.

4 Experiments

4.1 Datasets and Implementation Settings

Datasets. We conduct our experiments on the Bunny [30] and the UVG [31]
dataset. The Bunny video consists of 132 frames at a resolution of 1280 × 720.
The UVG dataset contains seven videos, totaling 3900 frames at a resolution of
1920 × 1080. UVG dataset encompasses a variety of video scenarios, typically
serving as the primary metric for video representation and compression.

Settings. We construct multi-scale temporal-spatial feature grids at four differ-
ent temporal and spatial resolutions: t×32×18×c, t

2 ×32×18×2c, t×16×9×c,
and t

2 × 16 × 9 × 2c. The temporal resolution t and the number of channels c
are set according to the required model parameters. We employed 4 blocks with
upsampling strides of [5, 2, 2, 2] for the Bunny video and [5, 3, 2, 2] for the UVG
dataset. Each block’s channel is half that of the preceding block, with the initial
block’s channels determined by the total model parameters. Typically, we allo-
cate 15% of the total parameters to the embedding layer, with the remaining
parameters assigned to the decoder. We train three model sizes (S, M, L) for
both the Bunny and UVG datasets and compared them with other methods. We
use Mean Squared Error (MSE) as the reconstruction loss to guide the training
and set the weight of salient region loss λ as 0.1. The training is performed using
the patch-wise training method [14], with a batch size of 144. We utilize the
Adam [32] optimizer and applies cosine learning rate decay with 10% warm-up
epochs and a maximum learning rate of 2 × 10−3. We conduct all experiments
on an RTX 3090 GPU using the PyTorch framework.
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4.2 Video Representation

Table 1. Video reconstruction on bunny.

Size NeRV ENeRV HNeRV HiNeRV SNeRV

0.5M 25.77 27.07 31.98 34.51 35.14

1.5M 29.20 31.01 35.57 38.48 39.09

3M 32.67 35.41 37.43 41.04 41.32

avg. 29.21 31.16 34.99 38.01 38.51

We compare our method with existing NeRV methods [7,8,11,14], using the
peak signal-to-noise ratio (PSNR) to evaluate reconstruction quality. The com-
parisons are made under models with the same or similar parameter counts,
categorized into small (0.5M), medium (1.5M), and large (3M) sizes, all trained
for the same number of 300 epochs. For all NeRV methods, we maintain the same
structure and training settings as described in the original papers [7,8,11,14],
adjusting only the network width to match the total number of parameters.
From the results on bunny and UVG datasets as shown in Table 1 and Table 2,
it is evident that our method outperforms the existing ones. Specifically, our
approach achieves PSNR values of 30.19, 33.92, and 35.57 for the S, M, and L

Table 2. Video reconstruction on UVG.

Model Size beauty bosph bee jockey ready shake yach avg.

NeRV 0.5M 30.53 28.90 32.05 26.48 20.71 28.41 24.89 27.42

ENeRV 0.56M 31.16 29.68 36.10 25.84 20.56 30.99 25.30 28.51

HNeRV 0.53M 31.69 30.49 36.79 26.83 21.02 32.44 25.94 29.31

HiNeRV 0.53M 32.45 32.92 37.22 28.22 24.53 32.23 27.10 30.67

SNeRV 0.53M 32.67 33.55 37.84 29.94 24.73 32.16 27.44 31.19

NeRV 1.5M 32.00 31.09 36.28 28.95 22.79 31.57 26.35 29.86

ENeRV 1.57M 33.25 31.11 37.68 27.59 22.36 33.37 26.00 30.19

HNeRV 1.54M 33.06 33.06 38.65 29.79 23.66 34.06 27.85 31.44

HiNeRV 1.48M 33.64 36.42 39.35 33.30 28.11 34.46 29.00 33.46

SNeRV 1.49M 33.75 36.84 39.43 34.07 29.04 34.66 29.70 33.92

NeRV 3.31M 32.88 33.22 38.44 31.03 24.73 33.52 27.73 31.65

ENeRV 3.29M 34.06 33.94 38.59 29.52 24.34 35.30 27.74 31.92

HNeRV 3.26M 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69

HiNeRV 3.17M 34.08 38.68 39.71 36.10 31.53 35.85 30.95 35.27

SNeRV 3.19M 34.14 38.81 39.70 36.46 32.39 35.94 31.54 35.57
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models, respectively, on the UVG dataset. Compared to the previous state-of-
the-art model, HiNeRV [14], our method shows improvements of 0.52, 0.46, and
0.3, respectively.

The improvements stem from two main factors. Firstly, our structural
enhancements, such as multi-scale positional encoding, provide richer initial fea-
ture embeddings, and the use of branching structures enhances the network’s
fitting capacity. Secondly, the saliency-guided training method effectively prior-
itizes the reconstruction quality of regions of interest (ROI), resulting in more
efficient parameter allocation. This is particularly evident in models with fewer
parameters. This aligns with intuitive understanding, as saliency-guided train-
ing achieves an effect similar to bit rate allocation. In traditional video encod-
ing, when encoding resources are abundant, bit rate allocation has a limited
impact on encoding efficiency. However, under low bit rate conditions, opti-
mizing bit rate allocation significantly enhances encoding efficiency and image
quality. Due to resource scarcity, effective bit rate allocation better utilizes lim-
ited bandwidth, thereby improving compression performance. Similarly, models
with fewer parameters have limited representational capacity. By using saliency-
guided training to prioritize the quality of ROI, more effective parameter allo-
cation is achieved, leading to performance improvement.

Fig. 6. Visualization of the reconstructed frame.
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Figure 6 shows a visual comparison between our proposed method and HiN-
eRV [14]. Our method, guided by saliency, achieves significant improvements.
In Bosphorus, the flag pattern reconstructed by HiNeRV [14] appears notice-
ably blurry, whereas our method achieves a clearer reconstruction, which is
also reflected in the objective metric, with a PSNR difference of 0.24. In jokey,
although the PSNR metrics are almost identical, our method excels at empha-
sizing ROI, resulting in better detail reconstruction in areas like the horse’s
reins and the wrinkles on the clothes, thereby providing better visual quality. In
YachtRide, our method also achieves finer restoration of details such as facial
features and clothing wrinkles. In videos of intense sports like ReadySteadyGo,
the difference is even more pronounced.

4.3 Video Compression

Fig. 7. Video compression results on the UVG.

To evaluate video compression performance, we conduct a thorough analysis cen-
tered on two pivotal metrics: the Peak Signal-to-Noise Ratio (PSNR), indicating
video reconstruction quality, and the Bits Per Pixel (BPP), assessing compres-
sion efficiency. For SNeRV, we adopt the compression pipeline described before.
Following the completion of video representation training, we conduct a 30-
epoch pruning finetune process, selectively trimming 15% of the parameters for
both models. Subsequently, we embark on a 30-epoch QAT training, integrating
quantization noise. Finally, we quantized them to 6 bits and employed arithmetic
entropy coding for lossless compression to obtain bitstreams. For other NeRV
methods [7,8,11,14], we performed pruning, quantization, and entropy coding
according to the methods described in their original papers. In addition, we also
compare our method with standard video encoders H.264 [19] and HEVC [20],
and draw Ratio-Distortion performance graphs as shown in Fig. 7. The results
show that our method outperforms HEVC and exhibits higher reconstruction
quality than other INR-based methods at the same bit rate.
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4.4 Ablation Study

To validate the contributions of various components in SNeRV, we conduct
ablation experiments. Starting from the baseline model HiNeRV [14], we grad-
ually add our proposed components and evaluate video representation on the
UVG dataset. For all experiments, we follow the setup described in Sect. 4.1 and
trained the 3M model. The results are shown in Table 3.

Multi-scale Temporal-Spatial Feature Grid: We first replace the embed-
ding layer of the baseline model with our proposed multi-scale temporal-spatial
feature grid to verify its contribution.

SNeRV Block: Building on the previous step, we replace the basic blocks with
our SNeRV blocks.

Saliency-Guided Training: Finally, we introduce saliency maps to guide the
training process. While this step showed limited improvement in the objective
metric PSNR, it significantly enhances visual quality in salient regions by focus-
ing more on the ROI during training. As illustrated in Fig. 6, the detail textures
in the salient areas are noticeably better.

Table 3. Ablation studies of SNeRV on UVG.

Model Grid Block Train Size beauty bosph bee jockey ready shake yach avg.

HiNeRV 3.17M 34.08 38.68 39.71 36.10 31.53 35.85 30.95 35.27

+Grid � 3.19M 34.09 38.72 39.71 36.32 32.21 35.75 31.44 35.46

+Block � � 3.19M 34.14 38.72 39.70 36.44 32.24 35.92 31.60 35.54

SNeRV � � � 3.19M 34.14 38.81 39.70 36.46 32.39 35.94 31.54 35.57

5 Conclusion

In this paper, we propose a NeRV method that considers subjective qual-
ity, Saliency-based Neural Representation for Videos (SNeRV). On one hand,
we enhance the network’s representation capability by designing multi-scale
temporal-spatial feature grids for the embedding layer and SNeRV Block for
the decoder. This achieves superior performance in both objective and subjec-
tive quality for video representation and compression tasks compared to existing
approaches. On the other hand, considering the varying sensitivity of the human
eye to different regions, we introduce a saliency-guided training strategy that
prioritizes the reconstruction quality of Regions of Interest (ROI), resulting in
better visual effects.

Acknowledgment. The research is supported by the Fundamental Research Funds
for the Central Universities.



402 Q. Cao et al.

References

1. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: representing scenes as neural radiance fields for view synthesis. Com-
mun. ACM 65(1), 99–106 (2021)

2. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Adv. Neural. Inf. Process. Syst.
33, 7462–7473 (2020)

3. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local
implicit image function. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8628–8638 (2021)
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Abstract. Recently, image compression methods based on rate distor-
tion autoencoder (RDAE) have achieved advanced performance. How-
ever, these methods have high decoding complexity, which limits their
application on low-power devices. To address this issue, Implicit Neu-
ral Representations (INR) represents images as neural networks that
map coordinates to signal values and forms INR-based image compres-
sion method. Despite with low decoding complexity, there is a signifi-
cant performance gap between INR-based approaches and RDAE-based
approaches. In this paper, we propose an image compression method
with hybrid neural representation (HNRC) to improve compression per-
formance of INR-based approaches while keeping decoding lightweight.
Specifically, we design a Groupwise Feature Aggregation module to
aggregate feature of different groups, develop a Pointwise Local Modu-
lation module to enhance the representation of local details, and employ
a Gaussian Mixture Model to improve the accuracy of rate estimation.
Extensive experiments demonstrate that our method achieves an approx-
imate 1.1 dB improvement in terms of PNSR over INR-based approaches
on the Kodak dataset while reducing decoding complexity by 88.9%.

Keywords: Image compression · Implicit neural representation ·
Hybrid neural representation

1 Introduction

Image compression is an important research task in the field of signal process-
ing for decades. Traditional image compression methods, such as JPEG [1] and
JPEG2000 [2], have been widely used in almost all image processing software.
With the development of deep learning, image compression methods with rate-
distortion autoencoder (RDAE-based) have been widely explored. RDAE-based
approaches exploit an end-to-end autoencoder [9] architecture as nonlinear trans-
form to achieve superior performance, as shown in Fig. 1(a). However, the struc-
ture of autoencoder is highly complex and computationally demanding, which
limits the application on resource-constrained devices.
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A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15331, pp. 404–418, 2025.
https://doi.org/10.1007/978-3-031-78119-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78119-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-78119-3_28


HNRC: Lightweight Image Compression with Hybrid Neural Representation 405

Fig. 1. Different approaches of image compression. We overift a compact autoencoder
with the idea of INR and transmit encoded latent features and decoder parameters as
bitstreams

Recently, Implicit Neural Representation (INR) has been proposed as a novel
paradigm of data representation. INR aims to construct a continuous function
that maps input coordinates to corresponding values. Unlike the traditional dis-
crete grid storage, INR can take advantage of powerful continuous functions to
represent complex scenes with compact neural networks, thus it has inherent
compression capability. Some studies [3–6] applied INR to image compression
and proposed INR-based methods, as shown in Fig. 1(b). INR-based methods
utilize a compact neural network to overfit the mapping from coordinate to val-
ues for a single image and store image data as model parameters. This type of
approach has low decoding complexity and high decoding speed on edge devices.
However, it is hard to optimize since changes to individual parameters can have
widespread effects on each pixel [7]. Additionally, there is still a performance
gap between INR-based methods and RDAE-based methods.

To improve compression performance of INR-based methods, we propose a
lightweight image compression approach based on hybrid neural representation.
Our general idea is to apply the idea of INR into the autoencoder structure, as
shown in Fig. 1(c). We overfit a tiny autoencoder to each image separately, so an
image is represented by encoded latent representation and decoder parameters.
In RDAE-based methods, the decoder typically consists of multiple transposed
convolutions to perform upsampling and complex transforms simultaneously,
which requires a substantial number of parameters and computational resources.
To address this issue, we factorizes the decoder in RDAE-based method into
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groupwise aggregation and pointwise nonlinear transform. Specifically, we design
a Groupwise Feature Aggregation (GFA) module to aggregates different grouped
features by stacking multiple Implicit Aggregation (IA) blocks in parallel. Subse-
quently, We develop a Pointwise Local Modulation (PLM) module. Aggregated
features are passed through multiple Local Modulation (LM) blocks in series
to enhance the representation of local details. Additionally, existing INR-based
methods only consider distortion during training, neglecting the impact of rate.
We introduce a rate loss of latent features to constrain the rate-distortion bal-
ance and employ a context-based Gaussian Mixture entropy model to better
estimate the probability distribution of the latent representation. To summa-
rize, our contributions include:

– We propose an image compression method with hybrid neural representa-
tion, combining RDAE-based methods and INR-based methods to improve
compression performance of INR-based approaches while keeping decoding
lightweight.

– We design a Groupwise Feature Aggregation module, which aggregates the
latent features of grouped channels effectively. We develop a Pointwise Local
Modulation module, which enhances the awareness of local details. We intro-
duce a context-based Gaussian Mixture entropy model to improve the accu-
racy of rate estimation.

– Experiments have shown that our approach outperforms existing INR-based
methods in compression performance while maintaining a low decoding com-
plexity.

2 Related Work

2.1 RDAE-Based Image Compression

To enhance compression performance, rate-distortion autoencoder (RDAE)
image compression was first introduced by [8]. Input images pass through anal-
ysis transforms to get latent representations and quantized into discrete val-
ues. Finally reconstructed images are obtained through the synthesis transforms.
Since quantization, namely rounding to the nearest integer, is not differentiable,
it is usually approximated by adding uniform noise [8] or straight-through esti-
mator [10] during training.

The loss function comprises two components: distortion and rate. Distortion
measures the reconstruction quality of the decoded image, while rate measures
the size of the compressed file. A fully factorized entropy model [8] is used to
estimate the rate of quantized latent representation at first. To estimate the rate
more efficiently, Ballé et al. [11] propose a hyper-prior model to extract auxil-
iary information from latent representation, and exploit a univariate Gaussian
distribution to estimate the distribution of quantized latent representation from
auxiliary information. Subsequent works exploit more complex distributions to
model the probability distribution of latent representation, such as mean and
scale Gaussian distribution [12], Gaussian Mixture model [13], etc.



HNRC: Lightweight Image Compression with Hybrid Neural Representation 407

However, the synthesis transform usually consists of multiple transposed con-
volutions to complete upsampling and complex transform simultaneously, which
requires a significant number of parameters and computational resources. Con-
sequently, such methods have high decoding complexity, limiting their boarder
application on low-power devices.

2.2 Implicit Neural Representation

Compared to traditional discrete grid representation, Implicit Neural Represen-
tation (INR) utilizes multi-layer perceptrons (MLPs) to overfit data signals and
construct a continuous function to learn the mapping from input coordinates to
corresponding values (such as RGB values, densities, etc.). Due to the spectral
bias [14] of neural networks inherently, some approaches have been proposed
to improve the representation ability of INR. Tancik et al. [15] propose that
Fourier Feature mapping can enable MLPs to learn high-frequency information.
Sitzmann et al. [16] propose SIREN network and use periodic activation func-
tions to improve the reconstruction of fine details. As a novel data representa-
tion paradigm, INR is widely applied in various tasks including 3D reconstruc-
tion [17–19], image super-resolution [20,21], and data compression [3–6,22,23].

2.3 Implicit Neural Compression

Most recently, image compression based on INR has become a new paradigm.
Dupont et al. [3] propose COIN, encoding an image by overfitting it with a small
MLP that mapping pixel locations to RGB values. The weights of this MLP are
then transmitted as the code for the image. By this way, image compression
problem is transformed into model compression problem. Strumpler et al. [4]
employ meta-learning to obtain better network parameter initialization, thereby
accelerating the training convergence. SHACIRA [5] reparameterizes learnable
feature grids with quantized latent weights and applies entropy regularization
in the latent space to achieve high levels of compression across various domains.
NIF [6] improves SIREN architecture to accommodate frequency variations in
different regions of the image. The model consists of two modules: a Genesis
network and a Modulation network. The Genesis network maps coordinates to
features through bottleneck layers with sinusoidal activation units and the Mod-
ulation network varies the period of the sinusoidal activations.

INR-based methods are characterized by low decoding complexity and fast
decoding speed. However, the representation capacity of INR is still limited
by the global property, resulting in a performance gap compared to advanced
approaches. To improve compression performance of INR-based methods and
reduce decoding complexity of RDAE-based methods, we combine the advan-
tages of two approaches and propose an image compression method based on
hybrid neural representation.
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3 Method

The overall architecture of our method is shown in Fig. 2. The input image under-
goes an analysis transform to obtain latent features, which are then processed
through a factorized synthesis transform to produce the reconstructed image.
The factorized synthesis transform consists of a Groupwise Feature Aggregation
(GFA) module and a Pointwise Local Modulation (PLM) module. A Gaussian
Mixture entropy model is utilized to estimate the rate of latent features. We
first detail the architecture of proposed method in Sect. 3.1. Then we introduce
Groupwise Feature Aggregation module in Sect. 3.2, Pointwise Local Modula-
tion module in Sect. 3.3, and context-based Gaussian Mixture entropy model in
Sect. 3.4, respectively.

Fig. 2. The overall architecture of proposed method

3.1 Overall Architecture

Define a raw image as x ∈ R
H×W×3. The input image x first passes through an

analysis transform ga to obtain latent features y ∈ R
H
16×W

16 ×C :

y = ga(x) (1)

The structure of analysis transform is same as [11]. The latent y is then quantized
into a discrete representation ŷ as:

ŷ = Q(y) (2)
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In RDAE-based methods, the typical synthesis transform performs upsampling
and complex transform simultaneously, which demands substantial computa-
tional resources and numerous model parameters. To reduce computational load
and the number of transmitted parameters, we replace the original synthesis
transform with a factorized form gθ. Specifically, quantized features ŷ are first
divided into groups along the channel dimension. We develop a Groupwise Fea-
ture Aggregation (GFA) module gm to aggregate latent features of different
groups and design a Pointwise Local Modulation (PLM) module gψ to recon-
struct the image x̂ as:

x̂ = gθ(ŷ) = gψ(gm(ŷ)) (3)

where θ is the total parameters of factorized synthesis transform. During train-
ing, we aim to overfit latent ŷ, factorized synthesis transform gθ for each image
x by rate-distortion optimization. To avoid ineffectiveness of gradient descent
after round operation, we add uniform noise [8] δ∼U(−0.5, 0.5) to approximate
quantization:

Q(y) =
{

y + δ , if training
round(y) , otherwise (4)

A context-based entropy model is utilized to estimate the probability of latent
ŷ, so the rate of ŷ can be formulated as:

R(ŷ) = − log2 pφ(ŷ) = − log2
∏

i

pφ(ŷi|ctxi) (5)

where ctxi ∈ R
S represents context pixels of ŷi and φ is the parameter of entropy

model.
The pipeline of our method includes three steps. First, we overfit parameters

of model by rate-distortion optimization for each image. The loss function is
defined as:

L = D(x, x̂) + λR(ŷ)

= D(x, gψ(gm(ŷ))) − λ log2
∏

i

pφ(ŷi|ctxi) (6)

where D(x, x̂) represents distortion, R(ŷ) represents the rate of ŷ, and λ is the
Lagrange multiplier to balance the trade-off between rate and distortion.

In the encoding process, we adopt arithmetic coding to encode the latent ŷ
with estimated probability and use uniform quantization to compress the param-
eters of the factorized synthesis transform θ before transmission.

In the decoding process, the parameters of the factorized synthesis transform
θ are firstly decoded from the model bitstream. Then, we obtain the quantized
latent features ŷ by decoding the content bitstream with arithmetic decoding.
Finally, we perform forward step to get reconstructed image x̂. The implemen-
tation details of each module are described below.
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Fig. 3. The structures of each proposed module, include Implicit Aggregation (IA)
block (left) and Local Modulation (LM) block (right)

3.2 Groupwise Feature Aggregation Module

To aggregate the latent features of different channels effectively, we design
a Groupwise Feature Aggregation (GFA) module, including multiple Implicit
Aggregation (IA) blocks in parallel. The structure of IA block is shown in
Fig. 3(a). First, we divide the quantized latent features ŷ into N groups along
the channel dimension and i-th group has Ci channels. After that, i-th group of
latent feature ŷi ∈ R

H
16×W

16 ×Ci is input to i-th IA block. Then the i-th grouped
features Gi ∈ R

hi×wi×Ti are computed as:

Gi = pixelshuffle(ŷi, 2i−1) (7)

where i = 1, 2, · · · , N , and pixelshuffle(·, 2i−1) represents the pixel shuffle opera-
tion [24] with 2i−1 upscale factor. This aims for different groups to focus on fea-
tures at different scales. Subsequently, grouped features Gi are aggregated with
pixel coordinates implicitly to obtain the i-th aggregated feature Fi ∈ R

H×W×Ti :

Fi = gridsample(Gi,v) (8)

where v ∈ R
H×W×2 represents pixel coordinates of the input image. Finally,

aggregated features of each group are concatenated to get output features F ∈
R

H×W×T :
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F = gm(ŷ) = concat(F1,F2, ...,FN ) (9)

The GFA module achieves non-parametric grouped feature upsampling and
aggregates with coordinates to enhance the continuity of features.

3.3 Pointwise Local Modulation Module

To enhance the representation of local details, we design a Pointwise Local Mod-
ulation (PLM) module, composed of multiple Local Modulation (LM) blocks
connected in series. The structure of LM block is shown in Fig. 3(b). Assume
there are L LM blocks. For the l-th LM block, the input consists of the mod-
ulated feature Dl−1 from the previous block and a learnable local modulation
vector Ml. The output is the modulated feature Dl for the current block. For
the first layer, D0 = F.

Specifically, the features of the previous block are first linearly transformed
to get the intermediate features Il:

Il = WlDl−1 + bl (10)

where Wl ∈ R
d×d and bl ∈ R

d are weight and bias of the l-th block, and
l = 1, 2, · · · , L − 1. Then, the intermediate feature Il is dot-producted with the
upsampled local modulation vector, and the output modulated features Dl are
computed as:

Dl = ReLU(Il � upsample(Ml)) (11)

where � represents the element-wise product. We use bicubic interpolation for
upsampling. Finally, after a series of LM blocks, we use a linear layer to map
modulated features to RGB values:

x̂ = gψ(F) = WLDL−1 + bL (12)

where WL ∈ R
dout×d and bL ∈ R

dout . Through multi-block local modulation,
our method can capture details of different regions of the image.

3.4 Context-Based Gaussian Mixture Entropy Model

In RDAE-based methods, a hyper-prior model is usually used to improve the
estimation of the rate. However, since the parameters of the hyper-prior network
also need to be transmitted in our method, adding a hyper-prior model not
only occupies a large number of codewords, but also increases the complexity of
decoding. Therefore, in our method, we only employ a compact context model
to estimate the probability to balance the trade-off between lightweight design
and rate estimation efficiency.

In order to improve the accuracy of entropy model for rate estimation, we
use the Gaussian Mixture model proposed in [13] as the prior probability distri-
bution:
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pφ(ŷ|ctx)∼
K∑

k=1

ω(k)N (
μ(k),σ2(k)

)
(13)

The probability of latent ŷ at i-th position is calculated as:

pφ(ŷi|ctxi) = (
K∑

k=1

ω
(k)
i N

(
μ
(k)
i , σ

2(k)
i

)
∗ U(−1

2
,
1
2
))(ŷi) (14)

The values of each parameter of the Gaussian Mixture distribution is computed
by a context model gφ : RS → R3K as:

[μi,σi,ωi] = gφ(ctxi) (15)

where μi ∈ RK , σi ∈ RK and ωi ∈ RK represent means, variances and weights
of Gaussian Mixture distribution of i-th position, respectively.

4 Experiments

We conduct extensive experiments to evaluate our method. First, we introduce
datasets, evaluation metrics and implementation details. Then, we compare the
performance and qualitative results with other methods. Next, we analyze com-
plexity of our method compare to other approaches. Finally, we provide an abla-
tion experiment to verify the effectiveness of each module.

4.1 Datasets

We evaluate our model on the Kodak [25] and CelebA [26] datasets. The Kodak
dataset contains 24 natural images with a resolution of 512 × 768 or 768 ×
512, which is widely used in image compression task. For the CelebA dataset,
which contains a large amount of face images with a resolution of 178 × 218, we
evaluate our method following the same setting of previous works [4,6].

4.2 Metrics

We employ different evaluation metrics to analyze the rate and distortion of
image compression. We use the Peak Signal-to-Noise Ratio (PSNR) to measure
the distortion, which is computed as:

PNSR = −10 log10(MSE) (16)

where MSE is the mean square error between raw image and reconstructed
image, both normalized to the range of [0, 1]. We use bitrate to measure the
rate, which is defined as:

bitrate =
total bits

HW
(17)
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We use Giga Floating Point Operations (GFLOPs) to measure the decoding
complexity. GFLOPs calculates the total number of floating point operations
during the forward propagation of the model and is generally used to measure
the complexity of the model.

4.3 Implementation Details

All experiments are performed on a single RTX3090 GPU. The model is imple-
mented with PyTorch. For Groupwise Feature Aggregation module, latent fea-
tures are divided into N = 5 groups with {1, 4, 16, 64, 256} channels in each
group. For Pointwise Local Modulation module, we set L = 3 LM blocks. For
each LM block, d is set to 12. For context-based Gaussian Mixture entropy
model, we use a 3-layer MLP with 12 hidden neurons and S = 12,K = 3. We
use the Adam optimizer with an initial learning rate of 1e−3, and use ReduceL-
ROnPlateau learning rate scheduler with the learning rate decay factor set to
0.5.

4.4 Rate-Distortion Performance

We compare our approach against various compression techniques, including tra-
ditional methods, INR-based methods, and RDAE-based methods. Traditional
methods include JPEG [1], JPEG2000 [2] and BPG [27]. INR-based methods
include COIN [3], NIF [6] and Strumpler [4]. RDAE-based methods include
Ballé [8] and Cheng [13].

The rate-distortion curves on Kodak and CelebA dataset are shown in Fig. 4.
On the Kodak dataset, our method achieves the best compression performance
compared with INR-based approaches. Specifically, at the same bit rate, the
PNSR of our method exceeds the baseline NIF [6] by around 1.1 dB. Com-
pared with RDAE-based methods, our method is close to the performance of the
Ballé [8] method. It is worth mentioning that the RDAE-based methods have
better compression performance at the expense of high decoding complexity. We
will compare the decoding complexity of each approach in the next section. On
the CelebA dataset, our method also has similar comparison results and outper-
forms existing INR-based approaches in terms of PSNR. At the similar bit rate,
the PSNR of our method exceeds the INR-based Strmupler [4] method by about
2.5dB, and exceeds the RDAE-based Ballé [8] method by about 1.2 dB.

4.5 Qualitative Results

The visualization results of each methods are shown in Fig. 5. Due to aggregating
with spatial coordinate, the decoded images of our method are smooth and
detailed. Although the objective metrics of the RDAE-based methods are higher,
our method has comparable results in subjective quality. For example, on the
Kodak21 image, our method can better reconstruct the details of the edges of
white clouds and lighthouses, while the JPEG2000 method shows more artifacts
around edges and Cheng [13] method also loses details inside the clouds.
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Fig. 4. Rate-distortion curves of our approach and different baselines on Kodak (left)
and CelebA (right) datasets in terms of PSNR. It is worth mentioning that Cheng [13]
method was not tested on the CelebA dataset due to a mismatch of image resolutions

4.6 Complexity Analysis

Decoding Complexity. In order to verify that our method has lower decoding
complexity, we decode images of the Kodak dataset around 0.3bpp on CPU
and calculate the floating-point operations during decoding of each method, as
shown in Table 1. According to the results, our method demonstrates significantly
lower decoding complexity compared to RDAE-based methods, and also shows
a notable reduction when compared to the INR-based method. In particular,
the floating-point operations during decoding of our method is only 2% of that
of Ballé [8] method and 5.4% of that of NIF [6] method. This means that our
approach can decode images more efficiently on resource-constrained devices.

Table 1. Decoding complexity on CPU of different approaches

Methods Type GFLOPs ↓
COIN [3] INR-based 5.66

NIF [6] INR-based 11.61

Ballé [8] RDAE-based 33.23

Cheng [13] RDAE-based 204.85

HNRC (ours) Hybrid 0.63

Encoding Complexity. RDAE-based methods require to pre-train complex
encoder and decoder networks, while INR-based methods do not require pre-
training and only need to optimize a compact network for each image indi-
vidually. Therefore, INR-based methods have higher encoding complexity. For
example, it takes around 10 min for INR-based COIN [3] method to optimize a
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Fig. 5. Visual comparisons of our proposal approach with traditional methods, RDAE-
based and INR-based baselines. Bitrate and PSNR for each picture compared to ground
truth are reported in this same order in image captions

image from the Kodak dataset. Our method has a similar encoding complexity to
existing INR-based methods, taking around 6 min to train each image. Future
improvements can employ meta-learning to obtain better network parameter
initialization and accelerate convergence speed. Our method is suitable for sce-
narios where images are pre-encoded on the server and need to quickly decoded
on low-power devices.
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4.7 Ablation Study

We design an ablation experiment to verify the effectiveness of each proposed
component. The experimental results in Table 2 show that the Group Feature
Aggregation module can aggregate latent features of different groups efficiently
and improve the representation ability of the decoder; the Pointwise Local Mod-
ulation module can improve awareness of local information, thereby improving
the model’s reconstruction of details; compared to univariate Gaussian distri-
bution, Gaussian Mixture model can improve the accuracy of rate estimation,
thereby reducing the rate of the latent representation while keeping PSNR almost
unchanged.

Table 2. Ablation study of proposed method. GFA means Group Feature Aggregation
module. PLM denotes Pointwise Local Modulation module and GMM means Gaussian
Mixture model

Modules Bit Rate (bpp) ↓ PSNR (dB) ↑
GFA PLM GMM

� � � 0.65 32.78

× � � 0.66 32.31

� × � 0.69 32.68

� � × 0.73 32.80

5 Conclusion

We propose HNRC, a lightweight image compression approach based on hybrid
neural representation, which combines the advantages of RDAE-based meth-
ods and INR-based methods to improve compression performance and reduce
the decoding complexity. We develop a Group Feature Aggregation module to
perform grouped latent feature upsampling and aggregation, design a Pointwise
Local Modulation module to improve the representation of local details, utilize
a Gaussian Mixture model to improve the accuracy of rate estimation. Experi-
mental results show that our method outperforms existing INR-based methods
in terms of PNSR, and the decoding complexity of our method is only 5.4% of
that of INR-based methods.
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