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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.



vi President’s Address

The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. Intelligent robots designed for real-world human interactions
need to adapt to the diverse preferences of individuals. Preference-
based Reinforcement Learning (PbRL) offers promising potential to
teach robots personalized behaviors by learning through interactions
with humans, eliminating the need for intricate, manually crafted reward
functions. However, the current PbRL approaches are hampered by sub-
optimal feedback efficiency and limited exploration within state and
reward spaces, resulting in subpar performance in complex interactive
tasks. To enhance the effectiveness of PbRL, we integrate prior task
knowledge into the PbRL framework. Subsequently, we develop a reward
model based on ranking a set of multiple robot trajectories. This acquired
reward is then utilized to refine the robot’s policy, ensuring alignment
with human preferences. To validate our method, we showcase its versa-
tility in different human-robot assistive tasks. The experimental results
demonstrate that our approach offers a useful, effective, and broadly
applicable solution for personalized human-robot interaction.

Keywords: Preference-based reinforcement learning (PbRL) ·
Human-robot interaction · Multiple trajectory ranking · Assistive Gym

1 Introduction

Recent advances in artificial intelligence and robotics have laid the foundation
for the emergence of interactions between humans and robots [9,17]. As stated
in [25], the primary objective of robots engaged in human-centered interaction is
to improve human security, comfort, and autonomy. In order to accomplish this
objective, robots are constructed with the purpose of engaging in ongoing coop-
eration with individuals within uncontrived settings, wherein they are required
to deal with the intricacies posed by a diverse array of human actions and behav-
iors. To effectively cater to the multifaceted and personalized requirements of
human users, it is imperative for robots to possess the capability to adjust and
conform to complicated and unique patterns of human behaviors.
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Reinforcement Learning (RL), an example of interactive machine learning,
presents a viable solution to tailor robot behaviors for human-robot interac-
tions [8,22]. By leveraging the inherent capabilities of deep neural networks
as universal function approximators [16], Deep Reinforcement Learning (DRL)
has demonstrated remarkable achievements in various domains characterized by
complex problem-solving scenarios. Notable examples include but are not lim-
ited to, the triumph of AlphaGo in the realm of board games [38] and the
successful navigation of Atari electronic games [28]. Moreover, DRL has also
made significant contributions to the field of robotics. However, the effective-
ness of these approaches is intricately dependent on the meticulous design of a
reward function. Regrettably, a plethora of tasks demonstrate complex and elab-
orate objectives, leading to a disparity between the reward function manually
designed by humans and the true underlying reward function. In the context
of human-robot interactions, the incorporation of human or user preference is
still insufficient [29]. This deficiency leads to the inability to effectively guide
robots toward behaviors that are considered desirable, safe, and aligned with
our established human values.

Preference-based Reinforcement Learning (PbRL) is being considered as
a promising alternative to address the need for manually designed rewards
[7,12,46]. This approach involves learning from non-numeric feedback in sequen-
tial domains [47]. In contrast to the conventional approaches of optimizing for
a pre-determined long-term reward, the robots in PbRL utilize qualitative feed-
back. This feedback, often reflecting human preferences, provides information
about two distinct robot trajectories or demonstrations [48,49]. The purpose
of this feedback is to guide the robots’ actions toward alignment with human
inclinations. A prominent technique in the field of PbRL involves the initial
acquisition of a reward function through human feedback. Subsequently, this is
followed by an optimization process with respect to the acquired reward function,
as described by [7]. However, a notable limitation of the existing PbRL algo-
rithms lies in their lack of efficiency, primarily due to their attempt to acquire
a reward function only through binary human feedback. The task of achiev-
ing comprehensive coverage of the state space becomes increasingly challenging
when exploration is exclusively guided by human preferences. As a result, the
dependence on binary human feedback presents difficulties in training robots
to perform complex interactive tasks effectively while also aligning with human
preferences.

Inspired by [39] in which the existing pairwise comparison methodology pro-
posed by Bradley-Terry [5] is extended to encompass the inclusion of preference
rankings for multiple trajectories. It is assumed that a collection of ranked tra-
jectories is available. The aim is to learn a reward function by analyzing these
trajectories in a way that aligns well with human preference. This is in direct
opposition to traditional PbRL approaches that prioritize solely the optimal
trajectory or the conventional Reinforcement Learning from Human Feedback
(RLHF) approach that relies exclusively on pairwise comparisons to instruct the
reward model learning process [7,18,40]. Our approach is positioned to effectively
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replicate the objectives of human preference alignment with greater precision.
Moreover, the implementation of our model requires the incorporation of a differ-
entiable contrastive loss function [39] to replace the cross-entropy loss function
utilized in previous works using pairwise trajectories [7,18,24]. To validate the
effectiveness of our method, we conducted experiments in a physical simula-
tion environment, i.e., Assistive Gym [11], focusing on four distinct tasks, i.e.,
scratching, bathing, feeding, and drinking, that involve human-robot interaction.
The experimental results demonstrate a significant improvement in the effective-
ness of PbRL approaches, specifically on-policy PrefPPO [21], when employing
our proposed method.

The rest of the paper is organized as follows. Following a discussion of the
existing literature in Sect. 2, we proceed to detail the proposed approach in
Sect. 3. In Sect. 4, experiments are conducted with human-robot interaction and
the results substantiate the efficacy of the proposed approach. The conclusions
are presented in Sect. 5.

2 Related Work

Human-Robot Interaction and Collaboration. The field of human-robot
interaction centers its attention on the dynamics of interaction between human
beings and robots [31]. To facilitate the robot’s adherence to human prefer-
ence, it is imperative that the robot possesses the capability to detect, interpret,
and react to human states, actions, intentions, and even emotions. Research
related to human-robot interaction includes the enhancement of robot social
acuity through the utilization of visual perception of individuals [43] and the
integration of natural language processing to facilitate more intuitive and effec-
tive communication between humans and robots [50]. In the field of human-robot
collaboration, robotic systems are usually designed to function in a manner that
complements or enhances the desired objective of human individuals [3]. Col-
laboration with a robotic entity has the potential to improve task efficiency and
increase work productivity, thus reducing the occurrence of errors. The imple-
mentation of personalized collaborative plans is carried out for the purpose of
robot-assisted dressing [19]. Furthermore, it can contribute to the improvement
of human safety by mitigating the adverse effects of repetitive strain and mini-
mizing the likelihood of injury [14,45]. In recent studies, RL has demonstrated
its capacity to facilitate personalized human-robot interaction by optimizing the
parameters of an interaction model [10,32,42,51].

Preference-Based Reinforcement Learning. PbRL is a sub-realm of rein-
forcement learning in which the robot learns optimal policies based on human
or expert preference feedback rather than explicit scalar reward functions.
Preference-based reinforcement learning has been extended to address com-
plex challenges, such as Atari games [18] and robotic tasks [49], by incorpo-
rating deep learning models. One widely used approach involves learning a
reward function from human feedback and subsequently optimizing a learnable
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model to maximize the learned reward [1]. The main obstacles in PbRL per-
tain to the optimization of sample and feedback efficiency, as the acquisition of
human feedback in real-world scenarios is sometimes expensive. Previous studies
have been conducted to investigate the effectiveness of using paired preference
input from humans for training robots [12,46]. In recent advances, an off-policy
preference-based RL algorithm has been introduced that enhances both these
efficiencies by relabeling historical experiences and employing unsupervised pre-
training [21]. Furthermore, the synthesis of expert demonstrations with pairwise
preferences has been validated as a powerful mechanism to improve the efficiency
of PbRL [18,33]. The integration of uncertainty in reward functions has led to
the development of effective exploration approaches [23]. Alternatively, in an
effort to reduce the reliance on human feedback for query optimization without
performance degradation, previous research has explored the use of preference
predictors that rely on pseudo-preference labels [34,49]. Distinct from the pre-
vious works in which pairwise demonstrations are used for preference query, we
adapt [30,39] to rank multiple demonstrations to more effectively explore an
action space while maintaining alignment with human preference.

Luce’s Choice Axiom for Human Preference. Luce’s choice axiom [26], a
foundational principle in decision theory, posits that the probability of choosing
an item from a set of alternatives is proportional to the item’s utility (i.e.,
usually a numerical value) relative to the sum of the utilities of all available
options. This axiom has been instrumental in PbRL [13,35], where it is used
to model the selection of probabilistic actions based on estimated utilities to
reflect human preferences. The Bradley-Terry model [5] is a special case of Luce’s
choice axiom for pairwise comparisons, determining the probability of preferring
one item over another based on their relative strengths. Biyik and Sadigh [4]
shows that diversity is important when optimizing a batch of pairwise preference
queries. The Plackett-Luce ranking model [2,27] generalizes Luce’s choice axiom
to handle complete and partial rankings of multiple items, modeling preferences
in situations where items are ranked rather than simply chosen or compared in
pairs. In the following research, for instance, T-REX [6] uses ranked trajectories
to learn reward functions, and Myers et al . [30] uses ranked demonstrations to
learn multi-modal reward functions.

3 Methods

In Fig. 1, we present a pipeline to learn a reward function based on human pref-
erences using a ranking of multiple trajectories within a reinforcement learning
framework. Initially, a set of reward models {rφ} is trained using the ranking of
preferences queried from historical experiences. Then, the learned reward func-
tion is combined with a sketchy reward rtask [24] to form a total reward rtotal.
This total reward is finally used to train the policy πθ(a|s), thereby optimizing
the robot’s actions within the environment.
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3.1 Reinforcement Learning with Pairwise Trajectories

Reinforcement learning is a paradigm in which a robot learns through interac-
tions with its environment [41]. At each time step t, the robot observes a state
st and selects an action at according to its policy π(at|st). In standard RL,
the environment assigns a numerical reward r(st, at), with the robot’s objective
being to maximize the cumulative discounted return Gt =

∑T
k=0 γkr(st+k, at+k)

with the horizontal length of T .

Fig. 1. An illustration of our method (adapted from [24] and [39]). We follow the same
learning scheme of [24], but instead the robot is guided by the sum of a learned mean
reward r̂φ, which is optimized by the ranking of multiple trajectories to align with
human preferences.

Crucially, in this study, we do not assume the direct availability of such
a numerical reward. Instead, we postulate that the presence of a human
possesses particular intentions or preferences for the task of the robot and
conveys these preferences via a comparison of pairwise trajectory segments
of the robot’s actions, favoring those that align more closely with the
desired objective. Formally, a single behavior trajectory is denoted as τ =
{(s1, a1), (s2, a2), · · · , (sT , aT )}, and the robot demonstrates two trajectories
(τ i, τ j) to query humans for preference. Human tells which trajectory is prefer-
able through binary feedback, i.e., z = (τ i � τ j) where τ i is preferred, or
z = (τ j � τ i) vise versa, or z = (τ i = τ j) that these two trajectories are pre-
ferred equally. To learn the reward function r̂φ(si, ai) which is parametrized by a
deep neural network with parameters φ to match the preference z received from
humans, in previous work [24], the Bradley-Terry [5] model is adopted. Specifi-
cally, given a pair of trajectories along with the corresponding human preference(
τ i, τ j , z = (τ i � τ j)

)
, we first calculatethe probability that the reward for τ i
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is higher than τ j [18,33], based on the intuition that the preferred trajectory is
expected to yield a higher cumulative reward1 [24]:

Pφ[τ i � τ j ] =
exp

∑T
t=0 r̂φ(si

t, a
i
t)

exp
∑T

t=0 r̂φ(si
t, a

i
t) + exp

∑T
t=0 r̂φ(s

j
t , a

j
t )

, (1)

and then a supervised classification learning scheme is applied to train the reward
function to match with human preference [18,24]:

Lφ = −E(τ i,τj ,z)∼D
[
I[z = (τ i � τ j)] logPφ[τ i � τ j ]

+ I[z = (τ j � τ i)] logPφ[τ j � τ i]
]

,
(2)

where I[·] represents an indicator function and D is dataset storing trajectories
with their preference feedbacks. Once the reward function r̂φ has been optimized
according to human preferences, the policy πθ(si, ai) which is also parametrized
by a deep neural network with parameters θ can be learned using any conven-
tional RL approach with the reward function r̂φ.

3.2 Reinforcement Learning with Multiple Trajectories

Instead of employing the Bradley-Terry paired comparison [5] to fit a reward
model to human preferences, we consider encompassing comparisons within pref-
erence rankings of multiple numbers of robot behavior trajectory segments [39].
Instead of demonstrating a pair of behavior trajectories (yi, yj) to query humans
for preference, the robot demonstrates M (M > 2) behavior trajectories for a
query. The human then annotates the indices of the order of M trajectories as
Y = (y1, y2, · · · , yM ), where y1 represents the index of the trajectory with the
highest preference score, i.e., y1 is the most preferred trajectory. Furthermore,
all trajectories in Y satisfy yi � yj ,∀i < j. We store these preference feedbacks
in a dataset D as Y ∼ D. To perform PbRL based on the preference for ranked
trajectories as described above, we follow the subsequent steps.

Query Selection. PbRL aims to train robots to exhibit human-desired behav-
iors using minimal preference feedback, initiating by selecting trajectories for
human queries. Throughout the training, historical trajectories are stored in a
buffer B, and the robot generates Nquery trajectories per feedback session to
gather human preferences. The choice of query strategy is critical to minimize
human effort. Uniform sampling, the process of randomly selecting Nquery groups
of M trajectories from the buffer B, is a straightforward approach. Alternatively,
ensemble-based sampling, a more sophisticated method, seeks to optimize infor-
mation gain by choosing trajectories with the largest variance in predictions
across multiple reward models, as discussed in previous works [7,18,21,24]. We
evaluated both selection strategies in our experiment in Sect. 4. After querying
human preferences, we store the ranked trajectories in D.
1 The probability Pφ[τ

j � τ i] is calculated in a similar way for human preference(
τ i, τ j , z = (τ j � τ i)

)
.
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Rewards Learning from Preference Ranking. As discussed above, Y =
(y1, y2, · · · , yM ) indicates y1 � y2 � · · · � yM . We further define the partial
order between y1 and all the other candidates behind it as τ [y1, y2 : yM ] =
y1 � {y2, · · · , yM}, then the objective of Bradley-Terry comparison for multiple
ranked trajectories becomes [30]:

P (τ [y1, y2 : yM ]) =
exp

∑T
t=0 r̂φ(s1t , a

1
t )

∑M
i=1 exp

∑T
t=0 r̂φ(si

t, a
i
t)

. (3)

Furthermore, it is essential to notice that the objective in Eq. 3 does not
fully leverage the rankings y1 � y2 � · · · � yM , as it only characterizes
y1 � {y2, · · · , yM}, disregarding the remaining M − 2 valuable rankings, such
as y2 � {y3, · · · , yM} and yM−1 � yM . As each relative ranking of any pair
of trajectories in Y reflects human preference from different aspects, to capture
human preference as completely as possible and speed up the convergence of the
reward function learning process, we adopt an extension to Eq. 3 as [30,39]:

P (τ [y1, y2, · · · , yM ]) =

M−1∏

k=1

P (τ [yk, yk+1 : yM ]) =

M−1∏

k=1

exp
∑T

t=0 r̂φ(s
k
t , a

k
t )∑M

i=k exp
∑T

t=0 r̂φ(s
i
t, a

i
t)

.

(4)
If M → ∞, then Eq. 4 is able to exhaustively explore all possible trajectories and
annotate y1 as the most desired one, and thus perfectly alignments with human
preference. On the contrary, if M = 2, Eq. 4 degenerates into Eq. 1 for pairwise
Bradley-Terry comparison. Thereafter, the reward function r̂φ is optimized to
minimize the loss Lφ [39]:

Lφ = −EY ∼D
[ M−1∑

k=1

log
exp

∑T
t=0 r̂φ(sk

t , ak
t )

∑M
i=k exp

∑T
t=0 r̂φ(si

t, a
i
t)

]
. (5)

Also, notice that Eq. 5 is an extension of Eq. 2 for multiple trajectories and shares
a similar form as contrastive loss in [15,20] which is implementation-friendly.

Discussion. Using ranked trajectories based on human preference to guide the
learning process of reward functions has been explored in previous literature,
such as T-REX [6] and Myers et al . [30]. However, T-REX repeatedly applies
the binary loss defined in Eq. 1 and Eq. 2 to each pair in a group of ranked
trajectories. Instead, we adopt a simplified ranking model as used in [30] in
which we assign the mixing coefficients of each reward function parameterized
by a neural network to be the same value. Such a ranking model has also been
used in [39] as an effective supervised fine-tuning algorithm to fine-tune large
language models for better alignment with human preferences, enhancing the
traditional pairwise contrast method to handle preference rankings of inputs
with varying lengths.

Policy Optimization. Once optimized based on human preferences using
Eq. 5, the reward function r̂φ transforms PbRL into a standard RL challenge,
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Algorithm 1. PbRL Using Ranking of Multiple Trajectories (adapted from [24])
Initialize a set of reward functions {r̂φl}L

l=1 and robot action policy πθ

Define a task-specific sketchy reward r̂task

Initialize human feedback frequency P
Initialize buffer B to store robot trajectories
Initialize dataset D to store preference feedback
for each training time step t do

// INTERACTION WITH THE ENVIRONMENT
Collect st+1 by running at ∼ πθ(at|st)
Store transition {st, at, st+1, r̂task(st, at)} into buffer B
if t%P == 0 then

// QUERY SELECTION
Select Nquery groups of M trajectories from buffer B
Query human preference indices Y and store them as D ← D∪{(τi, Yi)}Nquery

i=1

// REWARD LEARNING
Optimize reward functions {r̂φl}L

l=1 using Eq. 5
end if
// POLICY OPTIMIZATION
for each optimization iteration do

Sample a mini-batch {sj , aj , r̂task(sj , aj)}N
j=1 from buffer B

Compute {r̂φ(sj , aj) = 1
L

∑L
l=1 r̂φl(sj , aj)}N

j=1, update βt using Eq. 7 and
compute rtotal using Eq. 6

Train policy πθ using reward rtotal

end for
end for

allowing the use of any existing RL algorithms to train the policy. For instance,
in algorithms such as PrefPPO [21], the conventional reward function is sim-
ply replaced with the learned r̂φ [7]. However, preference feedback, whether
from pairwise or multiple trajectories, yields less information than direct numer-
ical rewards. Therefore, PbRL algorithms are sometimes less efficient than con-
ventional RL algorithms that explicitly utilize task-specific manually designed
numerical rewards. In long episodic human-robot interactions, the problem is
more severe to assign rewards to the actions at each step. Furthermore, it is also
known that PbRL encounters difficulties in achieving comprehensive coverage of
state and action spaces by random exploration, particularly in complex robotic
tasks involving high-dimensional spaces, as shown in the Assistive Gym physical
simulation environment [11]. In addition, as suggested in [44], using preference-
based RL in Assistive Gym tasks often suffers from misidentification of rewards.
To resolve these issues, we also incorporate task-specific prior knowledge into our
PbRL model as proposed in [24]. The primary concept is to separate the task
from human preference and additionally establish a sketchy reward function to
convey the desired behavior exclusively for the task. Once the robot has acquired
a comprehensive understanding of the task by a few iterations of trial and error,
we employ the reward functionlearned through PbRL as detailed above to opti-
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Fig. 2. Visualization of experiments on four tasks from Assistive Gym [11]: itch
scratching (top-left), bed bathing (top-right), feeding (bottom-left), and drinking water
(bottom-right).

mize the robot’s policy. Therefore, the overall reward can be realized as shown
in Eq. 6 [24]:

rtotal(st, at) = r̂φ(st, at) + βtr̂task(st, at) , (6)

where the task reward rate, βt ≥ 0, mediates the trade-off between task com-
pletion and alignment with human preferences at training time step t. Given
the inaccessibility of the true task reward and the imprecision of the manually
designed reward function r̂task, we employ a decreasing reward rate over the
training process as adopted in [24]:

βt =
Ts − t

Ts
β0 (7)

where the hyperparameter Ts is the total training steps and β0 is the initial value
of the task reward rate. The proposed preference-based reinforcement learning
using multiple ranked trajectories is outlined in Algorithm 1.

4 Experiments

To assess the effectiveness of our method in personalized human-robot interac-
tion, we conducted experiments within Assistive Gym [11], a physical simulation
environment tailored for assistive robotics.
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4.1 Setups

Our proposed method is evaluated on four Assistive-Gym tasks, as shown in
Fig. 2, including:

Table 1. Activation vector α in different simulation environments.

Bed Bathing Cv(si)Cf (si)Chf (si)Cfd(si)Cfdv(si)Cd(si)Ce(si)

Itch Scratching 1 1 1 0 0 1 1
Bed Bathing 1 1 1 0 0 1 1
Feeding 1 1 1 1 1 1 1
Drinking Water 1 1 1 1 1 1 1

– Itch Scratching. A robot equipped with a small scratching tool must reach
a specific target spot on the right arm of a person. It earns a reward rR(si)
for positioning its end effector near the target location while applying a force
of less than 10N .

– Bed Bathing. A robot uses a washcloth to clean the right arm of a person
resting in bed. It gains a reward rR(si), for moving nearer to the person’s
body and effectively wiping along the surface of the right arm.

– Feeding. A robot holding a spoon filled with food-like spheres feeds a person
by carefully guiding the spoon to the mouth of a person without spilling. It
gains a reward rR(si) for moving nearer to the person’s mouth and success-
fully placing the spoon inside.

– Drinking Water. A robot assists a person by holding a cup filled with water-
like beads, guiding it toward the person’s mouth, tilting it, and pouring the
liquid into their mouth. The robot earns a reward rR(si) for each step that
brings the cup nearer to the mouth and successfully delivers the water.

In these tasks, the policy training reward r(si) has two components: the task
success reward rR(si) as described above, and the human preference reward
rH(si) defined as [24]:

rH(si) = −α · ω � [Cv(si),Cf (si), Chf (si), Cfd(si), Cfdv(si), Cd(si), Ce(si)] ,
(8)

where α is a binary vector, indicating the active human preferences for a specific
task, as presented in Table 1, whereas ω is a vector of preference weights. In this
study, we set ω = [0.25, 0.3, 0.1, 2.5, 10.0, 0.5, 0.5] and the penalty terms are
defined as [24]:

– Cv(si): cost for the velocities of the high robot’s end effector.
– Cf (si): force applied away from the target location.
– Chf (si): high forces away from the target (> 10N).
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– Cfd(si): spilling food/water out on the person.
– Cfdv(si): food/water fed into mouth at high velocities.
– Cd(si): cost for the distance from the target location to the robot’s end effec-

tor.
– Ce(si): reward for successfully finishing the task.

To evaluate PbRL’s efficacy in learning from non-numeric feedback, we
assume the robot cannot directly observe the true reward r(si). Instead, it learns
from preference feedback provided by a scripted human teacher [7,18,21,24]. For
better policy optimization, following the approach outlined in [24], we integrate
task-specific knowledge r̂task with the learned reward model to improve task
exploration. In our simulations, we define r̂task = −|d|2, where d represents the
distance between the target location and the end effector of the robot. We use
a linear decay type for βt, as indicated in Eq. 7, starting with an initial value of
β0 = 1.

4.2 Performance and Analysis

To evaluate the performance of our method, we compared it with the state-of-
the-art PbRL methods, e.g ., PrefPPO [21] and Decoupled PrefPPO [24], in a
feeding task. Our evaluation criteria encompass three key indicators:

– Episode True Return: calculated as r(si).
– Task Success Rate: measures task completion.
– Episode Preference Return: calculated as rH(si).

We compared our method with two baselines: RL (i.e., PPO [37]) with the true
reward and Decoupled PrefPPO, which updates its reward model using paired
trajectories. Our main goal was not to outperform PPO with the true reward
but to achieve comparable performance while aligning with human preference. To
select trajectories from the buffer for human preference feedback, we explored
two sampling methods: uniform sampling and ensemble-based sampling with
L = 3 ensemble members. We train the reward model using Eq. 5 and train the
action policy using Eq. 6 as used in [24].

The results are shown in Fig. 3. In the feeding task, with uniform sampling,
our method nearly matches PPO with the true reward, outperforming the pair-
query approach. We notice that our methods exhibit slightly lower performance
with ensemble sampling. We conjecture that it may be the case that the batch to
be ranked is all similarly uncertain without taking diversity into account, leading
to low information gain over the entire ranking. Moreover, uniform sampling sim-
plifies the process and reduces runtime compared to ensemble sampling. These
findings emphasize the potential of our methods to improve preference-based RL
in complex interactive tasks while streamlining trajectory selection.

4.3 Generalization Ability of Our Method

The need for adaptability across different application environments is evident,
and excelling in the feeding task alone does not ensure the effectiveness of our
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Fig. 3. The learning curves in the feeding task with uniform sampling (top row) and
ensembling sampling (bottom row). ‘PPO with true reward’ means PPO receives true
reward score directly through the environment; ‘Decoupled PrefPPO with PC’ means
using a pair of trajectory to query human to update the label of the reward model;
‘Decoupled PrefPPO with GR’ means using a group of trajectory ranking to query
human to update the label of the reward model.

Table 2. Different group ranking size M in the feeding task.

M 2 5 10 15

Best Task Success Rate 0.88 1.00 0.73 0.69

method. To measure the generalization of our method, we extended it to differ-
ent assistive gym scenarios, including drinking, itch scratching, and bed-bathing.
Given our previous success with uniform sampling, we consistently employed
uniform sampling for all generalized performance tests, as reflected in the exper-
imental results shown in Fig. 4. As our algorithm relies on a preference-decoupled
approach, we needed to pre-define a task reward, r̂task, to serve as prior knowl-
edge for the reward model. In the feeding task, we define r̂task = −‖d‖2 as in
[24], where d represents the distance from the target location to the robot’s end
effector. Our experiments show that this definition of distance-to-target-point
is also effective in other settings. From Fig. 4, we notice that across all metrics
and environments, PPO with true reward consistently outperforms the other
two methods, showcasing its robustness and efficiency in achieving high returns,
task success rates, and preference returns. Our Decoupled PrefPPO with GR,
while not as effective as the true reward method, still provides a viable alter-
native with moderate performance. The Decoupled PrefPPO with PC, however,
demonstrates significant challenges in effectively completing the tasks, indicating
that pairwise preference feedback may not be effective in optimal policy learning.
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4.4 Influences of Group Ranking Size M

The parameter M plays a crucial role in determining how many trajectories
are simultaneously used to request human expert rankings. We conducted tests
with four different values of M , namely M ∈ {2, 5, 10, 15}, in the feeding task.
The experimental results are shown in Table 2. The results indicate that a larger
number of comparisons does not necessarily yield better results. Excessive com-
parisons can increase the risk of the reward model overfitting, hampering its
performance. In contrast, an appropriate number of trajectories provides richer
information compared to simple pairwise trajectory comparisons. Our experi-
ments indicate that M = 5 represents a suitable value.

Discussion. The entire process is performed in a simulated environment, and
one potential challenge to transfer to real-world applications is the ability of
a human to rank the order of M � 2 different trajectories as efficiently and
effectively as the case for M = 2 or close to 2. As indicated in [36], the human
performance of feedback may not scale with M as a manually designed program
described in Sect. 4.1.

Fig. 4. The learning curves in drinking (top row), itch scratching (middle row), and
bed bathing (bottom row) assistance tasks. The results of our ‘Decoupled PrefPPO
with GR’ method are compared to ‘PPO with true reward’ and ‘Decoupled PrefPPO
with PC’.
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5 Conclusions

Our aim is to create a personalized robot for various human-robot interactions. In
this paper, we introduce preference-based RL with a ranking of multiple trajec-
tories based on human preferences. We utilize a reward learned from preference-
based RL to refine the robot’s policy, ensuring alignment with human prefer-
ences. In addition, we integrate a sketchy reward based on prior knowledge to
boost task exploration. Our experimental results confirm the superior perfor-
mance of our approach in complex interactive tasks, underscoring its efficacy in
facilitating personalized human-robot interaction.
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Abstract. Human inputs are considered external disturbances in tra-
ditional certified safe controller synthesis approaches and are modeled
using non-causal random variables with an assumed parameterized dis-
tribution. However, (human) safety-critical autonomous systems such
as medical devices and autonomous cars operate in hybrid closed loop
(HCL) mode, where humans are required to either provide control inputs,
perturb the physical system being controlled (called a plant in control
theory), or completely override the autonomous system (e.g. in Level 3
autonomy). Hence, the system often is subjected to causal human actions
in operational deployment, that cannot be accurately modeled using non-
causal distributions - leading to “flawed” safety-certified designs suscepti-
ble to operational failures in presence of unmodeled human actions (e.g.
Boeing 747 Max MCAS failure). We propose a human-in-the-loop (HIL)-
human-in-the-plant (HIP) approach towards synthesizing controllers for
safety-critical autonomous systems where the human mind (HIL), the
human body (HIP) and the real world controller (RWC) are modeled
as an unified system. A three-way interaction is considered: a) through
personalized inputs and biological feedback processes between HIP and
HIL, b) through sensors and actuators between RWC and HIP, and c)
through personalized configuration changes and data feedback between
HIL and RWC. We extend the control Lyapunov theory by generating
barrier function (CLBF) under human action plans, model the HIL as
a combination of a Markov Chain (MC) for spontaneous events and a
Fuzzy inference system (FIS) for event responses, the RWC as a black
box, and integrate the HIL-HIP model with neural architectures that
can learn CLBF certificates. Our main result is Theorem 1, which shows
that if human actions are in the p-domain of attraction of the MC-FIS
model of HIL, the synthesized controller satisfies safety properties (spec-
ified in Symbol Temporal Logic (STL)) with probability at least p. We
demonstrate the capability of safe controller synthesis of our approach
on two HCL applications: a) autonomous vehicle braking system, and b)
automate insulin delivery for Type 1 Diabetes.
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1 Introduction

Safety-criticality implies that the operation of the autonomous system (AS) can
cause harm to the human participants who are affected by the AS goal [2,6].
Given the impending risks to the human user, safety-critical applications most
typically operate in a hybrid closed loop (HCL) mode [3]. Here, a human-in-
the-loop (HIL) is in charge of starting and stopping automation and can provide
manual inputs whenever the user perceives safety risks or operational inefficiency.
HCL applications are observed in level 3 autonomy as seen in medical devices [7]
(automated insulin delivery, AID) or autonomous vehicles (AV) [23]. HCL opera-
tion in such human-centered AS results in a HIL with human-in-the-plant (HIL-
HIP) system model (Sect. 3), where the human user is the monitor/decision
maker and also part of the physical plant controlled by the AS [17,18] (Fig. 1).

Fig. 1. Traditional safety assured controller synthesis model human outside the system
as noise input with known distribution. Hybrid close loop systems may have causal
human inputs that may not fit a non-causal distribution.

In HCL, often the human user is physically part of the plant and a control
action affecting the plant also affects the human body (Fig. 1, second panel). For
example, if an AV accelerates or brakes too fast, the human body experiences its
effects. Moreover, in case of crashes the human body bears significant risks. In
case of AID systems, the human body is directly affected by the drug infusions
decided by the controller. Hence, in HCL systems, the human body is a part
of the plant (HIP) and its physiological responses affects the AS operation.
On the other hand, HCL operation, as mandated by many safety certification
agencies such as US Food and Drug Administration (FDA) or Federal Aviation
Administration (FDA) [7,20], implies that the human (mind) should be able to
decide on interventions to the control actions. In case of AID, the human can
decide to take food, and stop or provide additional infusion. In case of AV, the
human user can provide additional braking action on perceiving impending crash.
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Thus in HCL system, the human mind affects the control actions by intervening
with the AS through actuation termed as HIL actions. The HIL actions are in
response to the experiences of the HIP due to the operation of the AS, and
hence are causal actions [3,4]. Such human integrated operation in HCL is not
modeled in the traditional workflow of safe controller synthesis for an AS (Fig. 1
first panel).

Existing safe controller synthesis process assume a control affine system
model, where the plant state X is assumed to follow the dynamics in Eq. 1.

Ẋ = f(X) + g(X)π(X), (1)

where f(.) is the un-perturbed plant response model, g(.) is the input effect, and
π(.) is a controller that computes an input to the plant based on the plant state
X. In HCL, the input to the plant is given by: u = π(X)+uex, where uex ∈ Uex

is an external input from the human user. Despite human user being an integral
part of the AS operation, controller synthesis using the control affine assumption
consider the human as external to the system (Fig. 1).

The control affine assumption enables key mathematical advantages in the
controller synthesis problem: a) the control action is assumed to be Lipschitz
continuous and can be obtained by solving a continuous nonlinear optimization
problem, and b) candidate Lyapunov function for stability of Eq. 1 is the sum of
squares of the state variables in X. If the Lipschitz assumption of inputs is broken
then the sum of squares of state variable X is no longer a candidate Lyapunov
function and hence solving the nonlinear controller synthesis problem becomes
very difficult and to the best of our knowledge no current solution exists.

Traditional nonlinear controller synthesis techniques are applied for HCL
systems by assuming a fixed distribution of human inputs. Any user that satisfies
the distribution is termed as an average user. The representative value of the
distribution such as the mean is used to obtain a deterministic solution, and
subsequently the moments of the distribution such as standard deviation is used
to provide stochastic guarantees. This approach allows traditional approaches to
derive an “optimal” solution to the controller synthesis problem since non-causal
standalone human inputs only act as initial or boundary conditions.

Fig. 2. HIL-HIP autonomous systems (AS).

Large scale deployment and
day-to-day usage imply that a sig-
nificant number of users will be
non-conformal to the “average user”
resulting in novel usage scenar-
ios. To replicate the performance
obtained in the certification pro-
cess, the real user may under-
take personalization actions, which
are sequences of external inputs
or system configuration changes
applied with/without expert advi-
sory agent (clinicians) consulta-
tions [5,15]. Such input sequences may have a causal relation with the HIP state
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X, are out of distribution, and may invalidate safety certificates of the syn-
thesized controller. Such unverified personalizations can jeopardize operational
safety.

Contributions: In this paper, we assume that the real-world controller (RWC)
or π(.) in AS is safety certified with the control affine assumption, for the “aver-
age user” and a black box, and present a technique to synthesize controllers
integrated with HIL-HIP actions that are safe for the human-in-the-plant. The
plant model is:

Ẋ = f(X) + g(X)(π(X) + uex), (2)

and uex ∈ Uex is a set of personalized inputs for a given real life user. The HIL
actions are modeled using a combination of a Markov Chain (MC), to model
events that trigger the human actions, and a Fuzzy inference system (FIS), to
model the human actions taken for a trigger event. We solve the safe controller
synthesis problem with HIL-HIP integration using neural control Lyapunov bar-
rier function (CLBF) strategy [11].

Theorem 1 establishes that controllers designed following the proposed HIL-
HIP strategy are safe with a safety tuning probability (STP) p if the human
actions are within the p domain of attraction (DoA) of the underlying MC
model. This technique is validated by synthesizing certified safe controllers for
automated insulin delivery (AID) to control glucose levels in Type 1 Diabetes
(T1D) and autonomous braking systems (ABS) in vehicles.

2 Motivating Examples

HCL operating mode is seen in two exemplary autonomous systems: the
autonomous braking (ABS) and the automated insulin delivery (AID) systems.

2.1 Autonomous Braking (ABS) System

Assume that the car A in Fig. 3 is braking autonomously, while keeping a safe
distance d between cars A and B. The controller assumes a control affine model
of the vehicle kinetics given by Eq. 3.

ȧA = −0.01sAB + 0.737 − 0.3(vAB) − 0.5aA, (3)
v̇AB = 0.1aA + uA, ṡAB = −vAB − 2.5.

vAB = vA − vB is the relative velocity of car A with respect to car B, sAB is the
distance, and uA is the deceleration input from the ABS and the human.
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Fig. 3. Autonomous Braking System.

While the autonomous system
can apply the brakes and stop the
car before a major accident, a human
driver can override and provide man-
ual braking inputs. Hence, uA =
π(aA, vB −vA, sAB)+uh, where uh is
the manual human braking input and
π(.) is the control law. At this point,
the ABS is still active and can pro-
vide additional braking or anti-lock
braking system facilities by countering the human braking input. The aim of
the anti-lock braking systems is to prevent skid. Skid condition is defined as an
upper limit on the ratio of the deceleration to the velocity, i.e. aA/vA < τth. The
aim of the controller is to satisfy if sAB < d then vAB = 0 and the skid condi-
tion. The human input uh depends on two factors not modeled in the traditional
controller synthesis approaches with control affine assumption:

a) reaction time of the human driver: the human driver can manually
engage braking after the user realizes that the car A is too close to car B, i.e.
sAB < dr. However, the driver has a reaction time τr, where the driver engages
manual braking τr time after sAB = dr.

b) driving behavior of the driver: when the human driver manually engages
braking, the braking force uh varies based on several unmodeled factors.

2.2 Automated Insulin Delivery (AID) System

The AID system senses blood glucose using continuous glucose monitors (CGM)
and automatically delivers insulin to keep CGM between a lower limit of
70mg/dL and higher limit of 180mg/dl. In the AID system, the glucose insulin
dynamics is given by the Bergman Minimal Model (BMM) represented as:

δ̇i(t) = −nδi(t) + p4u1(t), (4)
δ̇is(t) = −p1δis(t) + p2(δi(t) − ib), and (5)
δ̇G(t) = −δis(t)Gb − p3(δG(t)) + u2(t)/V oI. (6)
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Fig. 4. Categorization of HIL actions for AID system
into Disclosed and Undisclosed inputs as well as RWC
changes compiled from [8]. For each type whether they are
adherent or non-adherent to AID operational guidance.
Demonstrates interplay between RWC, physiological and
mental state of HIL-HIP in the context of maintaining
operational safety in a hybrid closed loop system.

The input vector con-
sists of the overnight
basal insulin level ib
and the glucose appear-
ance rate in the body
u2. The output vec-
tor is comprised of the
blood insulin level i,
the interstitial insulin
level is, and the blood
glucose level G. The
parameters p1, p2, p3,
p4, n, and 1/VoI are
all patient specific coef-
ficients. The controller
decides on microbolus
inputs every 5min. In
addition, users can also
manually provide prim-
ing bolus Θu to pre-
pare for an unplanned
glycemic event such as
a meal. A complete list
of manual intervention
in the HCL operating
model of the AID is
shown in Fig. 4.

3 System Model and Preliminaries

A plant, e.g. an autonomous car with human driver or a human body with
AID and an on-body CGM, is described by the N dimensional real state vector
X ∈ X , where X ⊂ RN is the state space of the plant. For AID, X is a 3 × 1
vector, with CGM, interstitial insulin, and plasma insulin as elements.
An autonomous real world controller (RWC) π(X) uses sensors (CGM for
AID) on the plant (human body) to monitor its current state, and actuators
(insulin pump) to deliver control inputs u ∈ R (micro bolus insulin). The control
task of the RWC is to drive a state variable xi ∈ X (say CGM) to a set point
xg

i (say 120mg/dL).
In control affine systems, the response of the plant to control inputs is mod-
eled as a linear combination of the unperturbed continuous time state evolution
of the plant, f(X) and control input effect, g(X) for the input u (Eq. 1). For
T1D the BMM [24] expresses f(X) and g(X) in the form of a set of nonlinear
differential equations. The control inputs u = π(X) is a function of the sensed
state variables. Human inputs are external inputs Uex in addition to the control
inputs u (Fig. 4).
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HIL as a Controller: Human users play an integral part in AID usage (Con-
trolIQ [8]), where they can provide spontaneous inputs (such as meal) to the
HIP or take part in critical hazard mitigation (rescue meal to mitigate hypo-
glycemia). The actions can be categorized into (Fig. 4): a) disclosed or undis-
closed HIP inputs, b) adherence to clinician guidance, and c) changes to RWC
configuration. The underlined and italicized text denotes the profile of the aver-
age user for which the RWC is safety certified. There are several HIL actions that
may adhere to clinician guidelines but are not commensurate with the average
user profile, and are not certified safe.

The HIL-HIP AS (Fig. 2) consists of AI engines that learn from human
interaction and give personalization plans, which is a temporally aligned finite
sequence of control tasks interleaved with external inputs (xg

i (t1)x
g
i (t2) u1

exxg
i (t3)

u2
ex xg

i (t4) . . .) driven by actions in Fig. 4. The safety is defined on subsets of
X , using Signal Temporal Logic (STL) φ [12]. Eventual safety indicates that
∃τ ∈ R : φ |= � ∀t > τ , i.e. φ will be true after some time τ .

Safety certificate for an RWC π(X) is the existence of a given subset C ⊂ X ,
with forward invariance (FI) property [11], which states that if the initial state
of the AS is in C then the closed loop system dynamics in Eq. 1 keeps the initial
state within C in absence of any external perturbation. A set C has FI property
if there exists a control Lyapunov function V (X),∀X ∈ C such that ∀X ∈ C,
V (X) > 0, V (Xg) = 0, for the set point Xg, and Eq. 7 holds true.

∀X ∈ C, ∃λ > 0 : LfV (X) + LgV (X)π(X) + λV (X) < 0, (7)

where Lf and Lg are Lie derivatives of V (X) along the direction of f(X) and
g(X), respectively.

Operational Safety: An AS has operational safety if the safety STL satisfied
by the AS model is also satisfied in real-world deployments.

3.1 Formal Problem Statement

Given:

– a RWC, πnom(X)
– a set C ∈ X such that ∀X ∈ C at t = 0, the trajectory X(t) ∈ C| ˙X(t) =

f(X(t)) + g(X(t))πnom(X(t)), t > 0,
– a safety tuning probability (STP) value p
– a set of personalized inputs Uex = {uex}.

Find: a RWC πNN (X) such that ∀X ∈ C, for any t > 0

P (X(t) ∈ C) > p|Ẋ(t) = f(X(t)) + g(X(t))(πNN (X(t)) + uex), (8)

Significance of HIL-HIP Architecture: In the HIL-HIP architecture the safe
design is parameterized by STP p, which implies that the design is safe for human
actions whose probability of occurrence is p based on a human action model. A
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large value of p indicates that the AS is safe for most common actions, whereas
a smaller value of p requires safe operation for even unusual actions. CLBF is
easier to find with larger p values (e.g. p = 0.95 in the AID example in Sect. 5)
however, with a smaller p CLBF may not be found and hence the AS may not be
certified safe. The STP can be used by a real user and their advisors to determine
if their action model is compliant with the safety certificate. Traditional control
system designs do not provide such safe personalization hook during operation.

4 Solution and Proof of Safety

Fig. 5. Solution: Model HIL as a combination of MC and
FIS. Derive action sequences that are in p-DoA of MC.
Synthesize controller using neural CLBF under actions
in p-DoA. CLBF controller is safe with probability p
(Theorem 1).

To address safety of an
AS under personalized
human actions, the AS
is modeled as a HIL-
HIP unified system,
with three way interac-
tions (Fig. 2) between
the HIL which is mod-
eled as a joint Markov
Chain (MC) for spon-
taneous events and fuzzy
inference system (FIS)
for human responses to
the events, RWC and
the HIP. The HIL con-
troller receives infor-
mation from the RWC
through data analy-
sis & visualization app
and the natural bio-
logical feedback mech-
anism from the HIP.
Based on advice from external advisory agents (clinicians), the HIL controller
decides: a) inputs to the HIP, e.g., meal or bolus insulin, and b) inputs to the
RWC, e.g., settings change. Safe HIL-HIP controller synthesis has three step
(Fig. 5):

Step 1: Find the domain of attraction (DoA) of MC model Ex with minimum
probability p. Starting from an initial set of states EI the DoA is the set of MC
states Ex that will occur at some point of time with at least p probability of
occurrence. The MC extends a Markov Decision Process (MDP) with reward
function same as the indicator function for the set Ex [25]. Solution of a linear
program for value function maximization gives the DoA [25].

Step 2: For the DoA Ex, find the reach set Uex of the FIS model for an initial
set X of states. We show that a hybrid system can be reduced to a FIS model.
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The reach set estimation method of the hybrid system model of the FIS gives
an over-approximation of the reach set Uex.

Step 3: For the Uex, search a CLBF V (X) using the neural architecture with
control loss and Lypunov loss to derive πNN with the plant model of Eq. 2.

To develop the HIL-HIP system, data driven learning is performed in two
stages (Fig. 6): Stage 1, the MC and FIS are learned for human action, which
is fed to Stage 2, the neural CLBF architecture that learns the RWC.

4.1 Modeling External Events with Markov Chain

The MC model is used to capture the spontaneous events that occur during
long term usage of the AS. MC model states denote the unique events that are
triggered due to the day to day activities of the HIP. Each unique event is parsed
from the usage data of the AS. The set of unique events is denoted by S. The
transition from state si ∈ S to sj is tabulated from the usage data. Transition
probabilities are computed using a conditional probability computation method
and Bayes theorem. For each event si, we search the set of other events Si = {sj}
such that sj is the next state after si. For each sj we count the number of times
nij that event sj occurred after event si. The transition probability PS(i, j), for
transiting from event si to sj is computed as PS(i, j) = nij/

∑
∀sj∈Si

nij .

4.2 Finding DoA of MC with Minimum Probability p

A MDP with the state space as S and the reward function as the indicator
function 1Ex

is considered, where Ex is the DoA. The value function is Eq. 9,

vpol(e) := lim sup
M→∞

1

M
Eπ

e

[ M−1∑

t=0

1Ex(S)
]
, (9)

where Eπ
e is the expected value function given as PS(ej |e), where ej is any next

state and vpol(e) denotes the value function for a given policy pol in state e.

Lemma 1. The set of states explored by the optimal policy with value function
v∗(e) > p, gives the reach set of the MC (S, PS) starting from state e, where v∗

is given by Eq. 9.

The lemma is derived from Theorem III.4 in [25]. The DoA Ex of the MC
(S, PS) with minimum probability p is obtained by solving the linear program
RealP in [25].

Computational Complexity: The solution to the linear program has a com-
plexity of O(N3log(N/δ)), where δ is the error tolerance [10].
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4.3 Learning a FIS from Data

The human action database D = {Ex,X(t), Uex} consists of traces X(t) of
the state variables X over time t, external events Ex that either affect the AS
controller configuration or affect the HIP component, and the human action, Uex,
taken by the human in response to observation of the state variables and external
events. We model the human action as a function of X,Ex using techniques such
as FIS. The membership functions and fuzzy rules is learned from data using
techniques such as adaptive network-based fuzzy inference system (ANFIS) [22].
The output is human action model Uex = FIS(X,Ex).

4.4 Finding Reach Set for FIS

Lemma 2. For every FIS output uex for a given X and event Ex, there exists
an execution of a rectangular hybrid system (Q,V,F : 2V → R|V |, Inv) that
provides the final output uex of one of its continuous states v ∈ V .

Fig. 6. Solution method for deriving safety certificate for
HIL=HIP systems under the learned human action model

We prove this
lemma by con-
struction. The vari-
able set V of
the hybrid system
is the same as
the state vector
X of the FIS. A
rule in the ANFIS
is of the form
“IF x1(k) ∈ A11

∧ . . . ∧ xN (k) ∈
A1N THEN uex ∈
B1”, where Ai,j is
the membership
function of the
ith rule for the
jth element of the
state vector and
Bi is the mem-
bership function
of the output for
the ith rule. Each
rule Ri learned by
ANFIS is modeled as a state of the hybrid system in the set Q. The flow equa-
tion f ∈ F of each state Ri is defuzzify(minj=1→N (Ai,j)). Defuzzification is
done using the centroid mechanism. Each Ai,j is a nonlinear sigmoid function
resulting in a nonlinear continuous flow function on the power set of variables
V = X to the |V | = N dimensional real space. The state transition condition
Inv in the hybrid system is instantaneous and occurs by default resulting in
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a rectangular timed automata. By construction, an execution of this nonlinear
hybrid system follows the exact computational steps taken by FIS to arrive at
an output. Hence, the reach set of the hybrid system provides the reach set Uex

of the FIS. In this paper, we use the Flow∗ [9] technique to obtain reach set of
the derived hybrid system, which gives guaranteed over-approximation of Uex.

Computational Complexity: The worst case computational complexity is
O(KN2), where reach set is computed for K time steps ahead [9].

4.5 Safety Certificate Generation Method

The HIL-HIP controller is the integration between the human action controller
(Uex = FIS(X,Ex), where Ex = MC(t)) and the AS controller π(X). The total
output of the HIL-HIP system πnom is u = πnom(X) = Uex

⋂
π(X). For this

controller, given a subset c ⊂ X , we want to ensure the FI property. This is done
by showing the existence of a CLBF V (X) defined for any X ∈ C. We use neural
architectures with modified loss functions discussed in [11] for this purpose. The
main idea is to use the neural architecture as approximators for: a) CLBF V (X),
and b) a neural controller πNN that satisfies the Lyapunov condition for stability
and safety (Eq. 7). The loss function consists of two parts:

Fig. 7. Experimental design and baseline strategies.
Safety certificate for traditional controller synthesis
is forward invariant set. For HIL-HIP controller, the
neural network with CLBF loss is the control law
and the loss is the Lyapunov function.

a) CLBF loss, which ensures
that the CLBF estimate by
the neural structure V (x) sat-
isfies the relaxed condition of
V (x) < ε > 0, a small quan-
tity.

b) control loss, which cap-
tures the difference in con-
trol actions by the neural con-
troller πNN and the RWC
πnom.

The neural structure is
trained with a set of state
variable and control action
pairs from the RWC πnom.
The output of the training
phase is: a) decision whether
a CLBF exists or not, and b)
if a CLBF exists then the trained neural architecture that gives both πNN and
V (X),∀X ∈ C, According to the CLBF theory [11], if a V (X) exists, then πNN

is one of potentially many controllers (denoted by the set of controllers K(X))
that are safe and the neural structure that gives V (X) and the corresponding
forward invariant set C is a safety certificate. To ascertain whether πnom ∈ K(X)
we evaluate the CLBF condition in Eq. 7 with πnom as the RWC.



28 A. Banerjee et al.

Theorem 1. If V (X) exists ∀X ∈ C, then C is a forward invariant set for
πNN (X) with probability p, for the plant model in Eq. 2 and if condition in Eq.
7 satisfies, then C is a forward invariant set for πnom(X) with probability p.

Lemma 1 provides event set with occurrence probability > p. Lemma 2 shows
that Flow∗ reachability analysis will provide an Uex that encompasses all FIS
outputs that are p probable due to the over-approximation property. Existence
of the Lyapunov function through the neural structure guarantees that πNN will
result in a safe plant when combined with Uex. Hence, set C will be forward
invariant for πNN .

5 Evaluation

We compare our proposed HIL-HIP strategy with baseline strategies in AID
and AV examples. The baseline for AID is Model predictive control (MPC)
and Proportional Integrative and Derivative (PID) control, while that in AV is
Linear Quadratic Gaussian (LQG) control (Fig. 7). In the traditional technique,
the control law is developed assuming static human inputs, and a certificate is
derived in the form of forward invariant set. However in deployment, sequence
of inputs are observed that leads to violation of the invariant set.

On the other hand, for HIL-HIP architecture, the sequence of human inputs
with at least p probability is derived through the MC and FIS modeling. Then a
nonlinear control law is learned in the form of the neural architecture with CLBF
loss function. The safety certificate is the existence of the CLBF loss value that
satisfies the Lyapunov criteria (Fig. 7).

5.1 Automated Insulin Delivery Example

Data Description: We have accessed data from n = 20 patients with T1D for
usage of the Tandem control IQ AID system for 22 weeks each (IRB information
available). The patients were administered hydrocortisone dose of 40mg, 20mg,
and 20mg at 8 am, noon, and 2 pm on two supervised study days at study site.

Safety Violation in Control Affine Assumption: The illustrations in Fig. 8
is for an AID system, developed using the nonlinear optimal control theory
discussed in Dawson et al. [11]. Data from FDA approved T1D simulator is
used to train a neural network with the CLBF loss function (code available
in MIT-REALM/neural_clbf). The multi-layer perceptron network was trained
using 20,000 simulation data points to learn a CLBF. The set of initial glucose
[110mg/dl − 140mg/dl] showed the FI property in absence of manual inputs,
since the neural CLBF controller always keeps state trajectories within the initial
set (shown by gray band in Fig. 8). CLBF safety certificate generation mecha-
nisms (Step 1–4 in Fig. 8) [11] applied to AID system assumes the T1D patient
as external with meal and correction bolus insulin as independent identically
distributed (i.i.d) random disturbances. A safety certified AID has large glucose
excursions due to meal intake. However, it will “eventually” enter a subset of the
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Fig. 8. Safety violations occur if human inputs are considered as external disturbances
in AID systems for T1D.

state space that has the FI property and hence be safe (no hypoglycemia glu-
cose > 70 mg/dL). For a meal input of 100 g at 30 min with 2U of rapid acting
insulin suggested by the bolus wizard [1] using ISF and CR settings, the system
“eventually” (i.e. after 3 h) brings the glucose to 120mg/dl (the setpoint), pink
band in Fig. 8. According to the ADA recommendations and physicians advice,
2 h after meal CGM should be within safe range, however, the patient observed
CGM to be above 300mg/dl. The patient following clinician guidelines came up
with a plan of using a correction bolus computed as: CB = (300 − 120)/CF ,
for a correction factor (CF) of 20mg/U, resulting in 9U of insulin bolus. This
resulted in the trajectory that cause hypoglycemia (steps 5 -7, intersection of
pink band with red region in Fig. 8).

Fig. 9. ANFIS bolus prediction.

However, these interventions do not have
safety guarantees and hence can lead the sys-
tem to unsafe states (hypo-glycemia, glucose
< 70mg/dL in Steps 8–12 in Fig. 8). An
unsafe excursion (CGM < 70mg/dl) prompts
the human to take immediate rescue carbo-
hydrate of 15 g which drives up the glucose
but takes it above 180mg/dL, when the user
could decide on getting another correction
bolus. This can continue in operation time
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resulting in interaction runaway scenarios. The AS operation must be suspended
to fail-safe modes. This is seen in nearly all AID systems such as Tandem Control
IQ [8]. Utilizing the theory presented in the paper, we use the MPC Control IQ
strategy as πnom and learn πNN to avoid hypoglycemia in presence of human
inputs.

FIS Model Accuracy: We utilized an ANFIS [22] to predict individual external
insulin bolus intake. There were an average of 522 (±15) meals and meal boluses
and 261 (±30) correction bolus without meal. The ANFIS was designed with a
3 × 1 input vector consisting of {mean CGM, insulin on board computed using
FIASP insulin action curve [8], carbohydrate intake}, and the output value of
insulin bolus. With an 80-20 train-test split, the ANFIS achieved an RMSE of
0.45 in predicting insulin bolus (Fig. 9 shows prediction results). Execution time
of the FIS model learning using the Matlab R2022 toolbox was 652 s on an Intel
Core i7 processor.

Fig. 10. Hypoglycemia reduction with HIL-HIP model.

MC Modeling Accu-
racy: The MC had
three states {Large,
Medium, Small} indi-
cating meal sizes.
The T1D dataset was
used to obtain three
clusters of meal sizes
for each individual.
Utilizing 522 meal instances, the transition probabilities of the 3 state MC was
learned. Monte Carlo simulation of the MC gave the distribution of each meal
size, which matched with the distribution in real data (p = 0.041). Execution
time of MC learning was 0.267 s.

Performance of Safety Certified HIL-HIP System. πnom was developed as
a Model Predictive Control (MPC). A Bayesian meal prediction scheme utilizing
the MC was integrated with the FIS to obtain the meal and correction bolus
information. The integrated HIL-HIP system was simulated in closed loop with
a Python implementation of Runge-Kutta solution of the BMM. The Neural
CLBF architecture was then used with the MPC + Bayesian + FIS control
as πnom which learned a CLBF and a new controller πNN . The neural CLBF
architecture is an MLP with 128 hidden layers. The input dimension is 3× 288,
where a single day CGM, Interstitial insulin and blood insulin was delivered
as input. The sigmoid activation function was used in each neuron. The neural
CLBF MLP was trained for 200 epochs which took 22 h on a 8 core Intel i7
CPU. We compare performance of πNN with regular MPC and Proportional
Integrative and Derivative (PID) using 5 subjects in the T1D simulator [19] in
Fig. 10, which shows significant reduction in hypoglycemia for πNN .
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5.2 Autonomous Braking Example

Dataset Description: We evaluated the ABS example in simulation. We con-
sidered a driver who has two reaction time distributions: a) low reaction, mean
time 300 ms, with SD 25 ms, and b) high reaction time, mean time 500 ms, with
SD 125 ms. Each type of reaction time is sampled from a Gaussian distribution.

The braking behavior results in two types of manual braking force: a) hard
braking, with a step braking force of uh = 5m/s2 until the car stops, and b) soft
braking, with a step braking force of uh = 3m/s2 until the car stops.

Simulation Setup to Generate Data: We developed a two car Simulink
model that simulates Eq. 3 for various initial distance and initial relative veloc-
ities (Fig. 11). The Simulink model consists of two parts: a) Braking control,
and b) Vehicle kinematics simulator. Two types of braking control is simulated:
i) linear quadratic Gaussian (LQG) as baseline comparator, and ii) our pro-
posed neural CLBF based controller that takes into account human inputs. The
human action model is a combination of an MC model for the reaction time and
a FIS model for the braking behavior, both of which are implemented as Matlab
functions.

Fig. 11. Simulation setup for the ABS example.

Data Generation: We generated 200 driving scenarios. The initial distance and
velocity were derived from a Gaussian distribution. The MC model of human
reaction time (detailed below) was simulated using the Monte Carlo method [25]
for 200 samples which provided a sequence of 200 low and high reaction times.
For each test case, the FIS model (detailed below) was simulated for 200 samples
to obtain a braking force decision. One test case consisted of one initial distance,
initial velocity, human reaction time and human braking force. The hybrid close
loop operation of the autonomous braking system was implemented using a
matlab code that decided on the human intervention based on the distance
between the cars and reaction time of the user. To evaluate the learned controller
and baselines, 200 test cases were generated that were never used to learn the
FIS or MC models.



32 A. Banerjee et al.

FIS Modeling: An ANFIS model is developed to predict the hard and soft
braking results. We utilized 120 samples to train the ANFIS model and used 80
samples to test. The RMSE in estimating the braking force was 0.01 m/s2.

MC Modeling: The transition between the two reaction times is modeled using
a Markov chain with two states. The MC model was trained using 60 samples
from the 200 generated data. After 60 samples, the MC model reached steady
state and hence was stopped. The accuracy of the MC model in determining low
or high reaction time was 87% in the rest of 140 samples.

Evaluation Metrics: The baseline LQG controller and the neural CLBF
learned controller are evaluated in terms of percentage number of avoided colli-
sions out of the 200 test cases.

Performance of Safety Certified HIL-HIP ABS Controller: πnom was
developed as a LQG controller. The integrated HIL-HIP system was simulated
in closed loop with a Python implementation of Runge-Kutta solution of the
kinematics model in Eq. 3. The Neural CLBF architecture was then used with the
LQG + MC + FIS control as πnom which learned a CLBF and a new controller
πABS

NN . The neural CLBF architecture is an MLP with 128 hidden layers. The
input dimension is 3×288, where a relative distance, relative velocity and car A
acceleration was delivered as input. The sigmoid activation function was used in
each neuron. Similar training regimen as the AID example was used for ABS. We
compare performance of πABS

NN with regular LQG controller as the comparator.
The learned controller πABS

NN avoided 99% of collisions out of the 200 test
samples. While the LQG controller only had a collision avoidance rate of 84%.

6 Related Works

Three broad classes of controller synthesis exist- a) Optimization approach:
For linear systems with eventual guarantees, a LQG optimal control strategy
exists [14], which guarantees that a safety related STL will be satisfied. For
nonlinear systems with eventual guarantees, control Lyapunov (CLF) theory
exists [21], which guarantees safety in absense of human inputs.

b) Game theoretic approach: The controller synthesis problem has been
modeled as a two player game between the environment and the controller for
safe HIL control [16]. These methods work well for 1D decision problems such
as detection of safe switching time.

c) Reinforcement learning approach: Safe RL is an emerging approach that
models agents with a value function that has control objective as the reward and
safety violation as the penalty function [13]. Safe RL technique starts an initial
safe MPC design that may not be effective, and for each control step evaluates
the value function. If the value function is less than a threshold indicating heavy
penalty, the safe RL defaults to the MPC strategy, else it uses the strategy
obtained by maximizing the value function.This approach has been frequently
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used in robotics, however, the value function evaluation strategy does not involve
human inputs. To the best of our knowledge all attempts consider human inputs
as external disturbances and as such may result in interaction runaway (Fig. 8).

7 Conclusions

The paper presents extensions of state-of-art safe controller synthesis theory that
assumes humans as outside the system to enable controller synthesis for hybrid
close loop systems with human modeled as a part of the system. Departing from
the traditional approach of assuming human inputs as external disturbances,
this paper considers the human and the autonomous system as a co-operating
unified system. The novel integration of Markov chains with fuzzy inference
system to model human control and the neural control architecture to synthesize
safe controller provides a mechanism for developing HIL-HIP HCL based AS as a
unified system. This can provide early feedback on the safety of the AS operation
so that mitigative actions can be taken proactively to avoid fatal accidents. We
show the application of the new theory on AID controller synthesis for T1D,
where HIL-HIP AID is shows to outperform MPC and PID control with respect
to safety and efficacy metrics and on Autonomous braking systems, where the
HIL-HIP controller is much safer than the LQG control.
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Abstract. Audio-visual segmentation is a recently proposed task, whose
main goal is to locate the target of the sound in the image at the pixel
level. In practical scenarios, multiple types of audio can coexist, with dif-
ferent objects emitting sounds at different frequencies. However, existing
methods only use single-frequency audio information when fusing audio
and visual modalities. Moreover, the process of combining images and
audio can be quite rough. Therefore, we propose a multi-frequency fine-
grained matching method for multiple sound sources scenario. Firstly, we
use short-time Fourier transform (STFT) to extract different frequency
spectrograms and input them into the audio encoder to extract multi-
frequency audio features. Secondly, multi-frequency audio information
serves as a prompt in the pixel decoder stage to guide model segmen-
tation. To obtain high-quality prompts, we use an attention method in
the Audio-Visual Matching Module (AVMM) to match visual and audio
information. The experiments show that our method has a significant
improvement over the baseline and achieves state-of-the-art results on
the MS3 benchmark (64.1 mIoU on MS3).

Keywords: Audio-Visual Segmentation · Multi-Modality · Prompter

1 Introduction

Visual and audio information plays an important role in helping human beings
understand the real world. In natural scenarios, multiple modalities of informa-
tion exist, audio modality can provide important data that cannot be captured
visually. Therefore, based on single-modality video segmentation, audio informa-
tion is added to form a new task called: Audio-Visual Segmentation(AVS) [35].
The goal of this task is to segment the sound-emitting target in video frames
at the pixel level. This task is divided into two subsets: Single Sound Source
Segmentation (S4) and Multiple Sound Source Segmentation (MS3).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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https://doi.org/10.1007/978-3-031-78110-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78110-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-78110-0_3


Multi-frequency Fine-Grained Matching for Audio-Visual Segmentation 37

Fig. 1. Compared with previous methods, we use multi-frequency audio information
to improve the model’s recognition of different targets. (a) Previous methods only used
a single type of frequency audio for the image and audio modality matching process.
Different audio frequencies are produced by different sound source targets. Therefore,
using single-frequency audio for differentiation recognition of different targets is rela-
tively weak (b) Our method employs multi-frequency audio features to discern different
targets. As the audio frequency changes, the model’s attention changes accordingly.

For the task of S4, Zhou et al. [35] proposed to use the cross-attention method
to fuse audio signals and image clues, which achieved good segmentation results.
Subsequently, a series of audio-visual works were proposed [9,12,17,18,24],
which further improved segmentation performance. In these works, only single-
frequency audio information is utilised. However, in a real-world scene, the audio
emitted by targets are different in decibels, timbre, and frequency. In MS3 task,
there exists multiple sound source targets simultaneously. Therefore, the above
methods for MS3 tasks are not entirely applicable for S4 tasks. Therefore, we
employ multi-frequency audio features to improve the model’s recognition of
different targets. In addition, existing methods are not meticulous enough in
the matching and fusion process of the audio and image modalities, causing the
model to be more inclined to recognize salient objects rather than sound source
objects. Therefore, how to use audio information to accurately guide the model’s
understanding of sound source objects is a significant challenge.

To tackle the above mentioned problems, we first try to analyse how differ-
ent frequency audios affect the way the model focuses on targets. Taking the left
side of Fig. 1 as an example, for single-frequency audio feature, model’s attention
towards the violin is not enough. Whereas on the right side of Fig. 1, with the
increase in frequency, the model’s attention shifts from the piano to the violin.
Therefore, in a multi-frequency audio mixing scenario, we increase the granu-
larity of the frequency to improve the discrimination of individual targets. To
be specific, we choose audio features of different frequencies as the input to the
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model, which provides sufficient clues for the matching of the target appearance
and its corresponding sound source.

Moreover, in order to promote the fine-grained fusion of image and audio
features. We initialize audio prompt through AVMM which adaptively aligns
the image clues and audio features. For we have extracted multi-frequency audio
features, the AVMM allows the fine-grained matching of the audio signal and
the target appearance. We take the audio prompt to guide the model’s learning
of the sound source target in the pixel decoder stage. In this way, the problem
of mixing multiple audio signals in complex scenarios is solved. Our proposed
method is more effective for MS3 tasks. To summarise, the main contributions
of our work are summarized as follows:

– We propose a simple but effective strategy where we change the frame length
in the STFT to obtain audio features of different frequencies, aiming to dis-
tinguish different sound sources in a mixed audio scenario.

– We narrow the gap between the alignment of the audio and visual modalities
through AVMM and audio prompt module. We introduce rich audio features
and continuously change prompts at different stages of the pixel decoder.

– The extensive experiments on the AVS task verify that our method can effi-
ciently utilize multi-frequency audio information, demonstrating that our
method significantly outperforms existing baseline methods. At the same
time, it achieves new state-of-the-art performance on the AVS task, e.g.,
64.1% mIoU with PVT backbone on AVSBench(MS3) benchmark.

2 Related Works

2.1 Semantic Segmentation

Semantic segmentation is a pixel-level classification task within an image region.
Semantic segmentation can distinguish the foreground and background in an
image and classify and identify each object. Currently, the research on semantic
segmentation methods is generally divided into two types: CNN-based [2,22,33]
and transformer-based [4,28,31,34] segmentation methods. In recent years, with
the advancement of Convolutional Neural Network (CNN), the Fully Convolu-
tional Networks (FCN) proposed by Long et al. [22] uses convolutional layers to
replace the original fully connected layers for pixel level end-to-end prediction. In
order to solve the problem of the information loss brought by the decrease of the
spatial resolution, Chen et al. [2] designed DeepLab, which significantly improved
FCN by incorporating atrous convolution in the decoder and utilizing bilin-
ear interpolation for upsampling. After adopting the visual transformer(VIT)
[5] method, global feature information is captured through its unique atten-
tion mechanism. However, in dense prediction tasks, the computational cost is
significantly increased. Subsequently, a series of works followed this approach.
Among them, Swin Transformer [21] uses a moving window method to reduce
the amount of computation, but it is still very time-consuming. SegFormer [31]
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removes the position encoding and complex decoder, which alleviates high com-
putational cost of VIT [5] and SETR [34] for large images. These segmentation
methods have made significant contributions to solving the AVS task.

2.2 Audio-Visual Segmentation

With the development of multi-modality, lots of audio-visual tasks have been
proposed. Such as, sound source localization(SSL) [1,26,27], audio-visual seg-
mentation(AVS) [9,12,15,17,18,24,35] and audio-visual spatialization [6,25]. In
this paper, we focus on the task of audio-visual segmentation which proposes to
segment target objects by their sound. To enhance the audio-visual segmentation
accuracy, recent methods [3,7,15,23,32,35] use transformer-based cross-modal
fusion strategy. Zhou et al. [35] built an audio-visual segmentation benchmark
and proposed a Temporal Pixel-wise Audio-Visual Interaction module(TPAVI).
This method encodes the spatio-temporal audio-visual interaction of the entire
video at the pixel level, narrowing the gap between the image modality and the
audio modality. However, the design of the global modality fusion strategy is too
rough for the matching of audio and visual information. We consider that the
problem of fine-grained alignment between audio and visual modalities is a cru-
cial challenge to AVS task. To this end, Li et al. [15] designed Decoupled Audio-
Visual Transformer Encoding Module (DAVT), which uses the pixel-level fusion
module Blockwise-Encoded Gate(BEG) to fuse the audio and visual features
of the corresponding frames. However, when there are multiple sound source
objects in the same frame, this method does not distinguish sufficiently between
different targets, leading to suboptimal segmentation results. Therefore, distin-
guishing different targets in mixed audio scenes is of great significance for the
AVS task. So, AVSegFormer [7] is proposed to selectively focus on the visual fea-
tures of interest by directly introducing audio features into the encoder-decoder
architecture. However, when multiple sound source targets in the same frame,
the discrimination the between targets is weak. Based on this observation, we
focus on the differences in sound frequencies produced by different targets. We
proposed a multi-frequency fine-grained method based on [7] considering the
richness of audio information itself for AVS tasks, and introduced AVMM and
pixel decoder to guide the model to recognize the sound source target in a more
detailed manner based on audio information.

2.3 Visual Prompt Learning

The fine-tuning strategy is to pre-train the model without significantly chang-
ing the model structure and parameters. By adding prompt information to the
model input, the model itself can solve the problem. Therefore, only a few param-
eters are needed to align the pre-trained model to downstream tasks. Kirillov
et al. [13] designed the benchmark Segment Anything (SAM), which use point,
box, mask, and text to form prompts through prompt encoder, and achieves
good results in downstream tasks such as zero-shot learning and edge detection.
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Fig. 2. Illustrations of the overall architecture. The image encoder and audio encoder
extract multi-scale feature maps and audio features respectively. AVMM matches audio
features with fine-grained images. The pixel decoder guides image audio-visual recogni-
tion via efficient audio information. The query generator initializes queries with audio
information. Finally, the transformer decoder aims to decouple the sound source objects
in the image.

Li et al. [14] designed the Semantic-SAM model, which generates semantically-
aware multi-granularity masks using a query-based mask decoder, optimizing
the quality of the output masks. Wang et al. [30] constructs semantically-aware
audio prompts to bridge the semantic gap between visual and auditory modal-
ities. It uses relevance adapters to preserve the prior knowledge of the visual
base model and explores the generalization of AVS tasks through prompts. In
addition, the prompt learning method can also promote multi-modal fusion.
Zhu et al. [36] proposed VIPT, a multi-modal tracking learning framework using
visual prompt-tuning. Based on this idea, we designed modality-complementary
prompter (MCP) and pixel decoder to explore the audio-visual segmentation
task through more detailed audio-visual matching.

3 Methodology

3.1 Overview

In this section, we first describe the overall structure of the model and then
present the details of the component modules. Overall, the audio-visual fine-
grained matching method has three sub-modules, i.e., multi-frequency audio
extraction, AVMM and pixel decoder. The overall structure of our proposed
method is illustrated in Fig. 2. Multi-frequency audio features are obtained
through multi-frequency audio extraction, and together with visual features,
they are input into AVMM for fine-grained matching. In the Pixel decoder,
audio features are used to guide visual information to focus on the sound source
target by prompting. Following the existing segmentation methods [28,31,33],
we chose the encoder-decoder structure and selected AVSegFormer [7] as the
baseline of our method. We chose the VGGish [11] which was pre-trained on
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Fig. 3. The figure shows the visualization of different frequencies in the audio file.
To generate audio frequency differences for the sound source targets. We converting
the audio signal into a spectrogram through STFT, frame lengths of 25 ms, 50 ms, and
100 ms are selected respectively. The frequency of the spectrogram increases simulta-
neously with the selected frame length.

AudioSet [8] dataset as the audio encoder to extract audio features. ResNet-50
[10] and PVTv2 [29] were chosen as image encoder to extract multi-scale visual
features.

3.2 Multi-frequency Audio Feature

We follow the VGGish [11] method to extract audio features. Initially, we resam-
ple the audio signal to 16KHz mono, and then separate the speech frames accord-
ing the window length and the periodic Hann window. In previous methods,
spectrogram Âmel ∈ R

T×96×64(64 mel-spaced frequency bins over 96 time steps)
was obtained using STFT with a window of 25ms and a hop size of 10ms. In
order to extract multi-frequency spectrogram Amel ∈ R

Nfre×T×96×64, we select
Nfre kinds of frame length. Finally, the mel spectrograms are input into VGGish
[11] to obtain the audio feature Fa ∈ R

T×Nfre×D. T and D represents the num-
ber of frames and the audio feature dimension. In this paper, we selects frame
length of 50ms and 100ms as additional multi-frequency audio signals. The visu-
alization results of the mel spectrograms of different frequencies are shown in
Fig. 3. We expand the frequency as a new dimension to provide more sufficient
audio information.

3.3 Audio-Visual Matching Module

The main purpose of this module is to enable fine-grained adaptive matching
of multi-frequency audio features and visual features. We obtain the multi-
scale feature map Fvisual through the visual encoder. Fvisual can be written
as Fvisual = {F1,F2,F3,F4}, where Fi ∈ R

Ci× H

2i+1 × W

2i+1 and i ∈ [1, 2, 3, 4].
The last three feature maps ̂Fvisual are selected as subsequent inputs. ̂Fvisual
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Fig. 4. The architecture of the proposed multi-frequency fine-grained audio-visual seg-
mentation method. This figure mainly shows the details of AVMM, MCP and pixel
decoder. The audio and visual features are matched at a fine-granularity through
AVMM to obtain mixed feature with the same dimension as the visual features. The
MCP module combines the mixed feature and visual token to generate an audio prompt,
and the pixel decoder is added to the AVS task to carefully guide the model to focus
on the sound source target.

can be written as ̂Fvisual = {F2,F3,F4}. Audio features Fa are extracted by
VGGish after frequency channel expansion. The detail of AVMM is shown in
Fig. 4. We flatten the feature maps FV and concatenate to obtain visual token
F

′
V ∈ R

B×token×C . B and token represent batch size and visual token length
respectively. We use F

′
V as the query and Fa as the key and value to input into

AVMM to obtain the mixed features FM , which is computed as follow:

FM = AVMM(Fv, Fa) = softmax(
FV WQ(FaWK)T√

dhead

)FaWV (1)

WQ,WK ,WV ∈ R
C×dhead represent the learnable parameters. The FM are

aligned with the visual token in dimension, further narrowing the gap between
different modalities. This allows the visual token to select audio features that
are more suitable for itself, increasing the differences between different sound
source targets.
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3.4 Pixel Decoder

Fine-tuning strategies have been widely used in many visual tasks [16,19,20].
Indeed, as the capacity and parameters of the deep model continue to increase,
traditional fine-tuning methods struggle to balance the knowledge of the pre-
trained model and the adaptation of the downstream task. Recently, prompt
learning has emerged by fine-tuning a small number of parameters, and it has
achieved excellent results, gradually becoming a new paradigm for fine-tuning.
We believe that prompt learning can be used to narrow the gap between audio
and visual modality. The module we introduces audio cues between each pixel
decoder layers. The specific module is shown in Fig. 4. This method enhances
the influence of audio made by the sound source target in the image. In order to
enhance the tightness of different modal fusion, we refer to the MCP. As shown
in Fig. 4, visual tokens and mixed features are input into the MCP to generate
learned prompts P l−1. P l−1 and visual tokens are added to generate prompted
tokens Gl−1 and input into the pixel decoder layer. Gl

V is the output of the l-th
pixel decoder layer. It is added to P l−1 through MCP to get P l. Finally, Gl

V and
P l are added element by element to get Gl, which is computed as,

Gl = Gl
V +MCP(P l−1,Gl

V ) l = 1, ..., L (2)

where L represents the number of layers of pixel decoder and MCP.

4 Experiments

Through conducting experiments on AVSbench [35], we evaluated various audio-
visual fine-grained matching methods for the segmentation of sound source from
multiple targets. We also conducted ablation experiments on the proposed mod-
ules to evaluate the impact of proposed network modules in our study on sound
source target detection.

4.1 Experimental Setup

Datasets. MS3 and S4 are the two main subsets of the dataset. In the S4
subset, each video has only one sound source target. There are 4932 videos
in total, and the number of training, validation, and test sets is 3452/740/740
respectively. MS3 refers to a dataset in which multiple sound source targets
appear sequentially or simultaneously in a video. The MS3 dataset has a total of
424 videos, including 296 training sets, 64 validation and test sets. In AVSbench
benchmark, each video lasts for five seconds, and only the first frame of every
second is taken. During training, S4 only has annotated for the first frame, unlike
S4, MS3 has annotated for five frames during training.
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Implementation Details. Following [3,7,32], we use ResNet-50 and PVTv2
pre-trained on the ImageNet as the backbone for extracting image features.
Image frames are resized to 224×224. The number of decoder layers and queries
settings follow the baseline. We apply AdamW optimizer with a learning rate of
2 × 10−5 and set batch size of 2. The MS3 dataset needs to be trained for 60
epochs. 30 epochs are trained on the S4 dataset. Only a single NVIDIA 3090
GPU is needed to train our model.

Metrics. Following previous works [7,15,32], we selected Jaccard index J and
F-score F as the evaluation indicators of experimental results. MJ represents
mean intersection over union (mIoU), and MF represents mean precision and
recall: Fβ = (1+β2)×precision×recall

β2×precision+recall , where β2 set to 0.3 in our experiments.

4.2 Main Results

Table 1. Comparison with sota methods on the MS3 subset of AVSbench

Methods ResNet-50 PVT-v2
MJ MF MJ MF

AVSBench [35] 47.9 57.8 54.0 64.8
AVS-BiGen [9] 45.0 56.8 55.1 66.8
BAVS [3] 50.2 62.4 58.6 65.5
COMBO [32] 54.5 66.6 59.2 71.2
ECMVCE [24] 48.7 60.7 57.8 70.8
DiffusionAVS [23] 49.8 58.2 58.2 70.9
AVSegFormer [7] 49.53 62.8 58.4 69.3
Ours 56.7 70.2 64.1 73.9

Performance Comparison. AVS [35] was proposed as an innovative task, with
the purpose of segmenting objects that make sounds in video frames. We have
collected the most recent methods for AVS task, the results of which are pre-
sented in Table 1. These methods include AVSBench [35], AVS-BiGen [9], BAVS
[3], COMBO [32], ECMVCE [24], DiffusionAVS [23], and AVSegFormer [7].
Table 1 presents a comparison of the experiments on the MS3 subset, showing an
improvement of 7.17MJ and 7.4MF compared to baseline method on ResNet-
50 backbone. In the instance of using PVTv2 as the backbone, our method
showed an improvement of 4.1MJ and 2.3MF compared to the SOTA meth-
ods. Qualitative experiments have shown that our method can effectively deal
with scenarios where multiple audio signals are mixed, distinguishing between
different sound sources.
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Fig. 5. Qualitative visualization of the audio-visual segmentation task. The pro-
posed multi-frequency fine-grained matching produces more accurate and higher quality
mask.

Masks Visualization. Figure 5 elucidates the visualization results of our exper-
imental results on MS3 subsets, contrasting with the baseline methods. The MS3
subset contains multiple sound source targets that can change over time. Indeed,
as shown in Fig. 5(a), the sound source target transitions from drums to guitar.
Our method can accurately segment sound source targets by considering the
variations in audio. On the other hand, AVSegFormer [7] fails to correctly iden-
tify the source target during the segmentation process. This demonstrates that
our method is based on audio information to locate targets, rather than finding
conspicuous targets in the image. For MS3 task, as depicted in Fig. 5(b), both
AVSegFormer and our proposed method can localize the sound source target.
However, our method offers higher quality detail description and mirrors the
ground truth more closely. There are sounds from two different musical instru-
ments simultaneously. AVSegFormer cannot capture the details of the ukulele
in the first three frames, indicating difficulty in distinguishing target differences
in mixed audio scenarios. In such mixed audio scenarios, guidance from audio
information is increasingly required. It’s evident that we can fully segment out
different sound source targets and maintain full detail, leading to high-quality
masks.

4.3 Ablation Study

In this section, we verify the effectiveness of each component of the proposed
audio-visual fine-grain matching method. In the ablation experiments, we used
the PVTv2 [29] as the visual backbone on the MS3 subset. Firstly, we ana-
lyzed the impact of audio prompter on the task of audio-visual segmentation.
Comparatively, the information from audio prompter guiding the model’s seg-
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Fig. 6. Visualize the attention map to explore the relationship between the sound
source target and audio frequency. The left side shows the visual frames. (a) and (b)
represent using low-frequency audio and high-frequency audio as inputs to the model
to find the corresponding sounding objects respectively.

mentation significantly improved the baseline, with MJ (mIoU) rising from
the original 54.0 to 57.1, and MF from 64.5 to 67.7, with results as shown in
Table 2. Secondly, we further investigated the impact of the audio-visual match-
ing strategy. By incorporating this module, MJ increased by 3.3. This means
that more detailed calibration of audio and image signals can better help the
model locate the source target, rather than directly fusing entire audio signals
with image information. Finally, to validate the effect of multi-frequency audio
feature, after incorporating multi-frequency audio information into the model
input, compared with using only single-frequency audio features, MJ increased
by 3.7. This indicates that after the addition of frequency channels, the audio
features can adapt to more diverse sound source targets in mixed audio scenes.

Impact of S4. Following previous work [15], we investigated the impact of
fine-tuning S4 model for MS3 task. The results are shown in Table 2. Currently,
our method using the S4 pre-training weights has achieved the best performance
on the MS3 subset. Because S4 has the same sound source categories and sim-
ilar scenes as MS3, the pre-trained weights on the S4 naturally fit the MS3.
Moreover, we also conducted related experiments in the S4 subset, as shown
in Table 3. Our method does not diminish the detection effect of monophonic
sound source targets. On the contrary, there is a certain improvement compared
to the baseline. We believe this is due to AVMM and MCP, which allow the
audio features to guide the image with more detail.

Attention Map Visualization. In order to qualitatively analyze the impact of
frequency on the sound source target, we input high-frequency and low-frequency
audio information respectively and visualize the attention map results. As shown
in Fig. 6, in the first row, since the violin emits high-frequency audio, when low-
frequency audio is input, the model will not focus on the target violin as the
sound source, but the high-frequencyaudio features can find the violin. In the
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second row, guitar and ukulele produce low-frequency audio, which is obviously
more inclined to low-frequency audio information in the visualized feature map.
Therefore, when different objects emit sounds of different frequencies, choosing
a more suitable frequency can improve the segmentation results of the model.

Table 2. Investigate the impact of different weight initialization strategies on the MS3
subset, as well as the influence of the prompt, AVMM, and multi-frequency audio on
the model, respectively.

From Scratch P.T. on S4
MJ MF MJ MF

baseline 54.0 64.5 58.4 68.6
add prompter 57.1 67.7 60.2 71.7
add AVMM 60.4 69.1 63.1 73.4
add multi-frequency audio64.1 73.9 67.3 76.96

Table 3. Comparison with related work on the S4 subset of AVSbench

Methods ResNet-50 PVT-v2
MJ MF MJ MF

AVSBench [35] 72.8 84.8 78.7 87.9
AVS-BiGen [9] 74.1 85.4 81.7 90.4
BAVS [3] 78.0 85.3 82.0 88.6
COMBO [32] 81.7 90.1 84.7 91.9
ECMVCE [24] 76.3 86.5 81.7 90.1
DiffusionAVS [23] 75.8 86.9 81.4 90.2
AVSegFormer [7] 76.45 85.9 82.1 89.9
Ours 78.9 87.4 83.3 90.8

5 Conclusion

In this paper, we propose an audio-visual segmentation method for MS3, called
multi-frequency fine-grained matching. We introduce multi-frequency audio
information by expanding the frequency channel of audio features. In addition,
our audio-visual matching module uses audio prompts to adaptively modulate
visual features, which allows the precise alignment between visual and audio
information. Our method provides a disparate target representation of different
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sound source targets, which improves the performance of AVS task in mixed
audio scenarios. Experimental results show that our method has superior per-
formance compared with the existing state-of-the-art methods.
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Abstract. Much progress has been made in the field of person re-
identification, but changes in clothing have hindered the practical appli-
cation of long-term person re-identification. Cloth-changing person re-
identification (CC-ReID) aims to address this problem, with the main
challenge being the extraction of discriminative features unrelated to
clothing. Existing methods, which mainly focus on introducing clothing-
irrelevant cues such as key points, contours, and 3D shapes, require addi-
tional modules for feature extraction, resulting in increased complexity
and potential inaccuracies due to dependence on the performance of
external models. Few studies directly use the original RGB images to
make the model constantly focus on clothing-independent information.
In this paper, we propose a Confidence-Guided Feature Alignment Net-
work (CGFA) for CC-ReID. Specifically, we design a confidence module
that automatically learns to make confidence adjustments to fine-grained
information, prompting the model to mine clothing-independent discrim-
inative features without introducing other modal cues. By transferring
knowledge, we encourage the model to learn discriminative identity fea-
tures that are independent of clothing bias. As a result, the confidence
module can be removed during the inference phase. The proposed sim-
ple but efficient method uses only RGB modality without additional
cues, and can serve as a powerful baseline for CC-ReID to drive future
research. Extensive experiments on the CC-ReID datasets demonstrate
the effectiveness of the proposed method, which achieves state-of-the-art
performance.
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1 Introduction

Person re-identification (ReID) refers to matching the same pedestrian within
distributed camera systems. Most current ReID researches are based on the
assumption that each pedestrian appears under the cameras for a relatively
short period of time and that the pedestrian’s clothing does not change [9,22,26].
However, the problem of clothing changes is unavoidable in practice. Take two
examples, one is when an elder or a child is lost and the photo provided by
the family does not match the clothing worn by the pedestrian at the time
of loss. Another example is that suspects often change their clothing to avoid
recognition and tracking, resulting in significant changes to their visual appear-
ance characteristics. This leads to a more complex and challenging task, namely,
Cloth-Changing Person Re-identification (CC-ReID).

Fig. 1. (a) Difference between the general person ReID and CC-ReID tasks, where
the change of clothes introduces significant intra-class differences. (b) The proposed
method reduces the confidence score of clothing-related features, thereby reducing
cross-clothing variation and focusing more on clothing-independent features. Impor-
tantly, this approach obviates the need for additional cues.

Clothing covers a large part of the human body, so there are huge differences
in the appearance of the same person wearing different clothes, as shown in
Fig. 1(a). The difference in colour and texture information leads to an increase
in intra-class distance for the same pedestrian after changing clothes, which is
the main challenges of CC-ReID. Existing methods [4,14,17,24,31] mainly focus
on the acquisition of clothing-independent cues such as key points, contours, 3D
shapes, gait, etc. While these clothing-independent cues are helpful, the addi-
tional computational cost of training and even inference to obtain them is high.
In addition, we note that these methods ignore how the original RGB images
can be used directly to improve the similarity of same pedestrians across clothes
from a confidence perspective, which is useful for CC-ReID.

As the same pedestrian wears different clothes, the large difference in the
clothing part will eventually increase the intra-class distance, as shown in
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Fig. 1(b). Therefore, we readjust the contribution of the different parts to the
overall features using the confidence module, i.e. we decrease the confidence score
of the clothes-related features and increase the confidence score of discrimina-
tive features, thus increasing the similarity of same pedestrians with different
clothes. Specifically, our confidence module uses fine-grained alignment infor-
mation between pedestrians and uses the similarity of the aligned parts as the
confidence score. In this way, differences in clothing lead to a natural decrease in
the confidence score of the parts associated with the clothing and an increase in
the confidence score of invariant features. We perform knowledge migration after
correcting for clothing bias, so the confidence module can be omitted during the
inference phase.

The contributions of this paper can be summarised as follows:

• We design the confidence module specifically for CC-ReID, which aims to
reduce the confidence of clothing-related features and increase the confidence
of clothing-independent features, thus reducing the intra-class distance and
increasing the similarity of the same person.

• We propose a simple yet effective method for CC-ReID without additional
cues. The method can be used as a transformer-based CC-ReID baseline.

• We conduct extensive experiments on three CC-ReID datasets to demonstrate
the effectiveness of the proposed method.

2 Related Work

Person ReID. The goal of ReID is to match the same pedestrian in different
camera views, a task that faces challenges such as complex backgrounds, occlu-
sions, changing lighting conditions, and different viewpoints. Convolutional Neu-
ral Networks (CNNs) have long been the mainstay of ReID research [1], which can
be divided into representation-based learning and metric-based learning accord-
ing to training loss. This has changed with the advent of Vision Transformer
[7,27], a breakthrough in computer vision that has demonstrated excellent per-
formance in a wide range of vision tasks, including ReID. Transformer is a net-
work architecture dispensing with recurrence and convolutions that relies entirely
on attention mechanisms to model the global dependencies between inputs and
outputs [33]. Some research in ReID has significantly improved performance by
replacing CNNs with transformer as feature extractors [3,5,6,13,35]. However,
none of these methods consider the issue of clothing variations, making them
ineffective for CC-ReID.

Cloth-Changing Person ReID. As the field of ReID has developed, a number
of researchers have highlighted the fact that existing ReID methods rely heav-
ily on the clothing characteristics of pedestrians [16,20,24,28,29]. Most of the
existing methods use some additional modules to extract clothing-independent
information to guide the model training. [31] uses contour sketches from human
images for CC-ReID, but these sketches lack human body details. [17] tackles
CC-ReID by leveraging gait as supplementary data, but obtaining effective gait
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information for pedestrians facing front or wearing skirts is difficult. Methods
such as FSAM [14], SPS [25] and M2Net [21] use existing parsing networks to
obtain contour images for training, these methods discard all the colour informa-
tion in the original RGB image in the contour processing module, but some of the
colour information helps to re-identify the person. All of these methods are prone
to estimation errors introduced by the extractor, resulting in increased compu-
tational cost. In contrast, our approach focuses on directly using the features
from the original RGB image to mitigate clothing interference, thus eliminating
the need for an additional extraction module and avoiding dependence on the
performance of other models, such as segmentation models and gait extraction.
Our method can integrate with existing approaches, serving as an approach to
provide more robust features.

Fig. 2. Overview of Confidence-Guided Feature Alignment Network. Our network
mines more clothing-independent information by decreasing the confidence score of
clothing-related features and increasing the confidence score of clothing-independent
features. The confidence module uses cosine similarity to calculate confidence score of
aligned patches from the same pedestrian.

3 Method

In this section, we present the proposed Confidence-Guided Feature Align-
ment Network, outlined in the framework shown in Fig. 2. Through our CGFA
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approach, we diminish the confidence score associated with clothing-related fea-
tures while enhancing those corresponding to clothing-independent features. This
process helps the model to learn discriminative features that are unrelated to
clothing. Additionally, we employ cosine similarity loss and Kullback Leibler
(KL) Divergence [18] to encourage the model to learn consistent feature represen-
tations before and after the confidence module, thereby obviating the necessity
for confidence module during the inference phase.

3.1 Overview

Let xj ∈ R
H×W×C be the j-th pedestrian image, where W , H and C denote the

width, height and number of channels of the image, respectively. We partition
xj into a sequence of patches {p1, p2, . . . , pN}, where N represents the length
of fixed-size sequences, defined as N = H × W/P 2, with P denoting the patch
size. Then we embed each patch with linear projection ε(·) into D dimensions. A
learnable [CLS] token is added to the token sequence and positional embedding
is applied to each patch. The final input can be described as:

Z = {xcls, ε(p1), ε(p2), . . . , ε(pN )} + P (1)

where xcls ∈ R
1×D is a learnable [CLS] token, ε(pi) ∈ R

1×D is i-th patch
embeddings, P ∈ R

(N+1)×D is position embeddings. Z is then fed into the TrV
blocks [8] of L layers to capture the dependencies between patches. The TrV
block is an improved Vision Transformer structure. We use EVA02-large [8] as
the backbone, which has 24 layers of TrV blocks. The extracted fcls1 is used as a
feature representation of the global image. To further improve the cross-clothing
retrieval ability of the model, we automatically adjust the confidence score of the
extracted features {fpi

|Ni=1} using the confidence module. The confidence module
reduces the confidence score for clothing interference, the details of which are
described in the next subsection.

3.2 Confidence Module

The confidence module is used to adjust the confidence score of patches.
Although the design of the transformer can simulate the dependencies between
patches to obtain a global feature representation, it lacks the consideration
of pedestrians changing clothes. Therefore, we obtain the confidence score of
patches by batch computing the average similarity of aligned patches from the
same pedestrian, as shown in Fig. 2, which can be expressed for xj as

Sj
pi

=
1

K − 1

K∑

k=1,k �=j

δ(f j
pi

, fk
pi

) (2)

where K denotes the number of images belonging to this ID. δ(·, ·) denotes cosine
similarity function, which is defined as δ(u, v) = u

||u|| · v
||v|| . Then the confidence

score of the clothing related patches will decrease due to the differences after the
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clothing change, whereas the confidence score of the clothing unrelated patches
will remain high due to the high similarity. The confidence score of the corre-
sponding patch is used to correct the original patch. The new token sequence is
then formed by attaching a new [CLS] token, as follows,

Z
′
= {x

′
cls, S

j
p1

f j
p1

, Sj
p2

f j
p2

, . . . , Sj
pN

f j
pN

} (3)

then Z
′
is fed into the TrV blocks of L

′
layers. The dependencies between patches

are then modelled to obtain fcls2, which ultimately guides fcls1:

Lcos = 1 − δ(LN(fcls1), LN(fcls2)) (4)

Here, LN refers to the layer normalization layer and fcls2 represents the features
after correcting for clothing bias. In addition, we adopt the KL Divergence as
in mutual learning [36] to further allow fcls1 to perceive the eliminated clothing
bias in fcls2:

Q1 = exp(FC(LN(fcls1))), Q2 = exp(FC(LN(fcls2))) (5)

DKL(Q1||Q2) =
1
n

n∑

j=1

M∑

m=1

Q1
j,mlog

Q1
j,m

Q2
j,m

(6)

where n is the number of images in a mini-batch and M is the number of identities
in a dataset. To be noticed, due to the asymmetry of KL Divergence, we also
compute DKL(Q2||Q1). The total KL Divergence can be formulated as:

LKL = DKL(Q1||Q2) + DKL(Q2||Q1) (7)

Instructing fcls1 with fcls2, which eliminates the clothing bias, makes it pos-
sible to obtain discriminative cloth-irrelevant features without the need for an
additional module in inference.

3.3 Loss Function

We introduce an identity loss to extract the identity information. The identity
loss Lid is a cross-entropy loss, which can be denoted as:

Lid = − 1
n

n∑

j=1

log(p(yj |xj)) (8)

where yj is the label of image xj . In addition, we use a triplet loss to minimize the
distance between similar images and maximize the distance between dissimilar
images, which can be expressed as:

Ltri = max{margin + D(xjA, xjP ) − D(xjA, xjN ), 0} (9)

where D(·) is the squared Euclidean distance in the embedding space. xjA, xjP ,
xjN are anchor images, positive samples, and negative samples, respectively.



Confidence-Guided Feature Alignment for Cloth-Changing ReID 57

We mix the loss functions into the following form according to the type of
loss functions. We assign equal importance to label smooth classification loss Lid

and triplet loss Ltri. Then we use λcos and λKL to control the weights of Lcos

and LKL, respectively. In summary, the overall loss is as follows:

L = λ1Lid + λ2Ltri + λ1L′
id + λ2L′

tri + λcosLcos + λKLLKL (10)

Referring to Fig. 2, L′
represents the supervised loss after correcting for clothing

bias. We optimize the entire network in an end-to-end network by minimizing
the overall loss function.

4 Experiment

4.1 Datasets

We mainly evaluate our method on three cloth-changing ReID datasets: PRCC
[31], LTCC [24] and VC-Clothes [28].

PRCC dataset contains images from three cameras (A, B, and C), where A
and B capture images of the same clothing in different scenarios, A and C cap-
ture images of different clothing. The dataset contains 221 identities and 33,698
images, providing a comprehensive training and testing set, with corresponding
contour sketches provided for each image.

LTCC is another large CC-ReID dataset, captured by 12 cameras. The dataset
spans a period of two months and collects 162 identities and 15,138 images. The
dataset is divided into two subsets: one subset contains 91 individuals wearing
different outfits, consisting of 415 outfits and 14,756 images; the other subset
contains 61 individuals, with each person wearing the same outfit in all their
images, totaling 2,382 images.

VC-Clothes is a synthetic dataset rendered by the GTA5 game engine with
512 identities, 4 cameras and an average of 9 images per scene per identity, for a
total of 19,060 images. There are 9,449 training images, 1,020 query images and
8,591 gallery images.

4.2 Evaluation Settings and Protocol

Following the conventions of the ReID community, we evaluate all methods
using rank-K and the mean Average Precision (mAP). Following [10], three test
settings are defined as (1) general setting (General): both clothes-changing
and clothes-consistent gallery samples are used to calculate the accuracies, (2)
cloth-changing setting (CC): only clothes-changing gallery samples are used
to calculate the accuracies, and (3) same-clothes setting (SC): only clothes-
consistent gallery samples are used to calculate the accuracies. We report Rank-1
accuracy and mAP for all datasets for evaluation.
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4.3 Implementation Details

We use the pre-trained EVA02-large model as our backbone network. In the
training phase, we extract fcls1 and fcls2 using 24 and 12 TrV blocks respectively.
In the testing phase, only the features extracted from the first 24 TrV blocks
are used, without forward propagating the remaining 12 TrV blocks. Random
cropping and erasing [37] are used for data augmentation. The model is trained
for 60 epochs using the SGD optimizer. The warmup learning rate is initially
set to 7.8125e−7. The learning rate is initially set to 2e−5 and divided by 100
at 40 and 60 epochs. The input images are resized to 224 × 224 for all datasets.
The batchsize is set to 8, where each batch includes two different persons with
4 images for each person. As for the hyperparameters, both λ1 and λ2 in Eq. 10
are set to 1. λcos and λKL are set to 0.8 and 0.5, respectively.

Table 1. Comparison of Rank-1 accuracy(%) and mAP(%) with the state-of-the-
art methods on PRCC and LTCC, where “sketch”, “pose”, “sil.”, “parsing”, “Gait”,
“clothes ID” and “3D” denote contour sketches, keypoints, silhouettes, human pars-
ing, gait information, clothes labels and 3D shape information. Bold and underlined
numbers are the best and second best scores, respectively.

Method Auxiliary Information PRCC LTCC

CC SC CC General

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

IANet (CVPR 19) [15] none 46.3 45.9 99.4 98.3 25.0 12.6 63.7 31.0

ISP (ECCV 20) [38] none 36.6 - 92.8 - 27.8 11.9 66.3 29.6

SPT+ASE (TPAMI 19) [31] sketch 34.4 - 64.2 - - - - -

FSAM (CVPR 21) [14] pose+sil.+parsing 54.5 - 98.8 - 38.5 16.2 73.2 35.4

GI-ReID (CVPR 22) [17] parsing+sil.+Gait - 37.5 - - 23.7 10.4 63.2 29.4

UCAD (IJCAI 22) [30] sil. 45.3 - 96.5 - 32.5 15.1 74.4 34.8

ViT-VIBE (WACV 22) [2] 3D 47.0 - 99.7 - - - 71.4 35.8

CAL (CVPR 22) [10] clothes ID 55.2 55.8 100.0 99.8 40.1 18.0 74.2 40.8

CCFA (CVPR 23) [12] clothes ID 61.2 58.4 99.6 98.7 45.3 22.1 75.8 42.5

AIM (CVPR 23) [32] clothes ID 57.9 58.3 100.0 99.9 40.6 19.1 76.3 41.1

SCNet (ACMMM 23) [11] parsing 61.3 59.9 100.0 97.8 47.5 25.5 76.3 43.6

CGFA (Ours) none 64.6 59.7 100.0 98.8 49.0 27.1 83.0 49.6

Table 2. Comparison of Rank-1 accuracy(%) and mAP(%) with the state-of-the-art
methods in cloth-changing setting on VC-Clothes. Bold and underlined numbers are
the best and second best scores, respectively.

Method FSAM [14] GI-ReID [17] UCAD [30] CAL [10] MVGD [34] CACC [19] SCNet [11] CGFA (Ours)

Rank-1 78.6 64.5 82.4 81.4 82.6 85.0 90.1 94.3

mAP 78.9 57.8 73.8 81.7 78.4 81.2 84.4 88.0



Confidence-Guided Feature Alignment for Cloth-Changing ReID 59

4.4 Comparison with the State-of-the-Art Methods

We compare the proposed CGFA method with the state-of-the-art methods. Two
general ReID methods (i.e., IANet [15] and ISP [38]) and nine CC-ReID methods
are included. The results are reported in Table 1 and Table 2. Notably, the major-
ity of CC-ReID methodologies outperform general ReID approaches, which can
be attributed to the integration of auxiliary modules or optimization functional-
ities aimed at mitigating the impact of clothing variations. In contrast to these
methods, the proposed CGFA approach can obtain features that are more robust
to appearance changes by correcting for clothing bias through the confidence
module to ensure that the model focuses on clothing-independent information.
As a result, our method achieves significant performance improvement over the
SOTA method under the cloth-changing setting. Specifically, we achieve 64.6%
Rank-1 and 59.7% mAP on the PRCC dataset. In the cloth-changing setting of
the LTCC dataset, we have 1.5% improvement in Rank-1 and 1.6% improvement
in mAP over the SOTA method SCNet [11]. The results show that even under
complex scenarios (changing resolution, illumination, viewpoint, et al.), CGFA
can still capture the existing discriminative features rather than being misled by
the noticeable clothing bias. We also achieve the best performance on the VC-
Clothes in Rank-1 and mAP, 94.3% and 88.0%, respectively. While tailored for
CC-ReID, our approach demonstrates competitive performance across general
and same-clothes setting. Notably, on the LTCC dataset, it attains the high-
est performance, achieving 83.0% at Rank-1 and 49.6% for mAP. These results
underscore the efficacy of CGFA in thoroughly exploring fine-grained identity-
related information.

Table 3. Ablation studies of CGFA in clothe-changing setting on PRCC and LTCC,
where the baseline contains 24 layers of TrV blocks, the baseline* contains 36 layers of
TrV blocks, and CM stands for the confidence module.

Method PRCC LTCC

Rank-1 mAP Rank-1 mAP

baseline 62.4 57.4 45.9 23.8

baseline* 61.0 56.6 44.1 23.2

CM+Lcos 63.4 59.5 47.7 26.5

CM+LKL 63.5 58.9 47.4 26.8

CM+Lcos+LKL (CGFA) 64.6 59.7 49.0 27.1
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Table 4. Ablation studies on the different numbers of TrV blocks after the confidence
module for LTCC in clothing-changing setting.

Layer LTCC

Rank-1 mAP

6 48.0 25.4

12 49.0 27.1

18 48.5 26.0

24 46.7 24.3

4.5 Ablation Study

As shown in Table 3 and Table 4, we perform comprehensive ablation studies. In
this part, we explore the role of the confidence module on the model’s ability to
learn clothing-independent features and the effect of different numbers of TrV
blocks.

Effectiveness of the Confidence Module. We use EVA02-large [8] encoded
by position embedding as the baseline. Baseline* is the version with 36 layers of
TrV blocks, which is used to illustrate that it is the confidence module rather
than the increased number of TrV blocks that brings about the improvement
in our method. We also test the effect of cosine similarity loss and KL loss on
knowledge transfer learning. We conduct experiments for both PRCC and LTCC
in cloth-changing setting. The results are summarised in Table 3. The results of
baseline* decrease compared with the baseline, suggesting that it is not the case
that the higher the number of TrV blocks, the better the performance. It can be
observed that both cosine similarity loss and KL loss contribute to knowledge
migration. The best performance is achieved when both are used simultaneously,
outperforming the baseline by 2.2%/3.1% in Rank-1 and 2.3%/3.3% in mAP on
PRCC and LTCC. The results suggest that the confidence module can force

Fig. 3. The t-SNE visualization of features on the PRCC dataset. We randomly choose
8 identities, corresponding to specific colors in the figure.
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Fig. 4. Visualisation of the top 10 rankings for the baseline, CAL [10], and our CGFA on
the PRCC dataset. Images in green and red boxes correspond to positive and negative
results, respectively.

the model to reduce the confidence score of clothing-related features and learn
clothing-insensitive features.

Number of Trv Blocks. In this subsection, we discuss the effect of the number
of TrV blocks after the confidence module. We empirically try several layer
combinations and summarise the experimental results for LTCC clothe-changing
setting in Table 4. We can observe that with only six TrV blocks the Rank-1 and
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mAP are 2.1% and 1.6% higher than the baseline, respectively, which shows the
effectiveness of the confidence module. The combination of 24 and 12 with the
best effect is finally chosen for our network structure.

4.6 Visualization and Analysis

Visualization of Feature Distribution. To investigate the distribution of the
features learned by the model, we perform t-SNE [23] visualisation experiments
on the testing set of PRCC, comparing the distribution of features in the latent
space for the baseline and the proposed CGFA. As shown in Fig. 3, the baseline
shows large intra-class differences for different clothes with the same ID. In
contrast, the CGFA learns features with better intra-class compactness. This
suggests that our method can effectively learn identity-related discriminative
features and mitigate the interference caused by clothing variations.

Visualization of Retrieval Results. We visually compare the baseline, CAL
[10], and the proposed CGFA on the PRCC dataset. Figure 4 shows the top 10
retrieval results under the cloth-change setting. The green and red boxes indicate
the positive and negative retrieval results, respectively. The results show that
the baseline and CAL are affected by the colour and texture of clothing and
incorrectly match people with similar clothing. On the other hand, our method
employs the proposed confidence module and mutual learning to effectively coun-
teract the clothing interference and shows better retrieval quality.

5 Conclusion

In this paper, we propose a confidence module to adjust the confidence score of
features to deal with the cloth-changing ReID problem. This confidence mod-
ule reduces the confidence score of clothing-related features and increases the
confidence score of clothing-independent features to reduce intra-class variations
when clothes change. Our method does not contain additional network branches
or cues at the inference stage, so the computational cost is lower than other
methods. Experimental results demonstrate the effectiveness of the proposed
method.
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Abstract. Artificial intelligence (AI) systems play significant roles in
decision making processes, yet concerns persist about potential biases
that can lead to unfair outcomes. These biases can arise from two main
sources: imbalanced training data distribution and correlations between
sensitive attributes (such as race and gender) and the target variable.
Conventional model training methods penalize performance for under-
represented groups, resulting in biased outcomes. Further, they may cap-
ture features related to sensitive attributes during training, thus exac-
erbating bias. Biased predictions can have detrimental consequences. To
address these concerns, in this research, we propose a novel method for
bias mitigation. The proposed method aims to learn fair latent rep-
resentations by emphasizing task relevant features while suppressing
those linked to sensitive attributes. Additionally, we employ an adap-
tive reweighing technique to balance target class labels during training.
The proposed method is evaluated on prominent benchmark datasets
and compared with existing algorithms to demonstrate its effectiveness
toward bias mitigation.

Keywords: AI fairness · Bias Mitigation · Fairness Aware Machine
Learning · Responsible AI · Imbalanced Data · Ethical AI Development

1 Introduction

With technological advancement, Artificial Intelligence (AI) based systems are
widely used in several applications to support decisions and make important pre-
dictions. However, on multiple occasions, AI systems have shown biased behav-
ior, favoring certain groups of people over others [25]. This bias can manifest in
various ways, such as word embeddings trained on large text corpora exhibiting
historical bias. For example, a study found that word embeddings trained on
Google News articles reflect and reinforce gender-based stereotypes in society.
The word “man” is more closely associated with “computer programmer” than
“woman”, while the word “woman” is more closely associated with “homemaker”
than “man” [3]. In another instance, ProPublica investigated predictive polic-
ing algorithms that are used to predict recidivism (the likelihood that someone
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15329, pp. 65–80, 2025.
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will commit another crime) and found that they exhibit measurement bias. This
leads to black defendants getting harsher sentences than white defendants for
the same crime [27]. Such instances highlight that biased predictions can have
multiple adverse effects on certain groups of people. Thus, bias in AI systems is a
major concern regarding the ethical, social, and legal implications of developing
and deploying AI systems.

There are several factors that cause AI systems to inherit, amplify, or create
bias. One major factor is the quality and representativeness of the training data
[30]. To overcome these issues, researchers have proposed various approaches
to improve the data quality, such as oversampling underrepresented subgroups
[21] or using data augmentation techniques to generate fair training data for
bias mitigation [34]. Another major reason for bias in model prediction is the
correlation of the sensitive attributes (e.g., race and gender) with the target
variable [17]. In the conventional model training approach, the model is trained
for a downstream task by automatically identifying and learning features that
maximize the overall performance. However, in the learning process, the model
may learn features related to the sensitive attributes, leading to unfair outcomes.

To address these challenges, we propose an algorithm that learns features
related to the downstream task while ignoring the features related to the sen-
sitive attribute to obtain a fair feature representation. We further leverage the
concept of adaptive reweighing to deal with the imbalance in training data dis-
tribution and improve the overall performance of the proposed model. Multiple
experiments have been performed on three benchmark datasets: ADULT [1],
COMPAS [27] and German-Credit-Risk [13] to demonstrate the effectiveness of
the proposed method for bias mitigation.

2 Previous Works

Researchers have proposed various techniques throughout the three steps of the
machine learning pipeline (pre-processing, in-processing, and post-processing) to
address bias and fairness in models [16]. Pre-processing methods focus on adjust-
ing the training data, in-processing methods directly incorporate the fairness
considerations into the model design itself, and post-processing methods address
bias in the final output to achieve the goal of fairness. Researchers have devel-
oped various pre-processing techniques like relabelling of ground truth labels
termed as massaging [22,23] and modifying other remaining features known as
perturbation [15]. These techniques tweak data points to tackle bias, but this
essentially creates synthetic data, which makes it hard to ascertain its qual-
ity and integrity. Pre-processing techniques also include sampling methods like
oversampling [21,37] and undersampling [9,33] which aim to create a balanced
distribution in the training data. Oversampling the minority class may cause
overfitting while undersampling the majority class can discard useful informa-
tion. To overcome this, instead of sampling, different weights are assigned to the
samples in the reweighing method [5], which makes the model pay more atten-
tion to samples from the minority class or samples considered more important.
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Further, Chai et al. [8] addresses the issue of uneven sample distribution by
proposing an adaptive reweighing method. This method learns adaptive weights
for each sample to balance groups across different demographics.

Pre-processing techniques can reduce bias, but they are limited in capturing
complex feature interactions. Therefore, researchers have developed in-processing
techniques that incorporate fairness into the model architecture, creating mod-
els that are naturally fairer and less prone to bias amplification. Regulariza-
tion approaches like decision trees [24], adding fairness regularisation [26], and
meta-algorithm [7] modify the algorithm’s objective function to penalize models
that discriminate against certain groups. Compositional approaches train mul-
tiple classification models, either tailored for specific population groups [6,29]
or combined into an ensemble [11,20]. Regularization can reduce bias but often
favors the majority class by minimizing overall error. Compositional approaches,
which train separate models for each group, avoid this issue but are computa-
tionally expensive and impractical for many applications [36]. Researchers also
use adversarial learning, where two models are trained together: one predicts the
target variable while the other exploits fairness issues in the first. This improves
both fairness and accuracy [12]. Researchers have employed adversarial training
in various ways. Zhang et al. [39] used logistic regression for both the classifier
and adversary. Other methods use a neural network to optimize the prediction
of correct labels and minimize the prediction of sensitive information simulta-
neously [2]. While reweighing is typically a pre-processing step, Petrovic et al.
[32] introduced FAIR, an in-processing technique using an adversarial model to
learn an instance reweighing function to reduce bias. Beyond adversarial train-
ing, representation learning offers another approach that focuses on creating fair
representations of the data using techniques like optimization [18], adversarial
learning [14], and variational autoencoders (VAEs) [28] as used in F2VAE [4]
to promote unbiased recommendations. Representation learning techniques aim
to prevent biases by creating new representations that capture relevant task
information while suppressing sensitive attributes [38]. Hu et al. [19] introduced
FairNN, which promotes fairness by jointly learning a fair data representation
using an autoencoder with a KL-divergence constraint that excludes sensitive
attributes and a classifier with equalized odds regularization to penalize biased
predictions. Our proposed method also learns new representations via autoen-
coders; however, contrary to FairNN, our method uses gating operations to learn
fair latent representations.

While most of the researchers have used any one type of mitigation technique
among pre-processing, in-processing, or post-processing, few have also combined
one or more types to resolve the challenge of bias mitigation [6,20]. Our work
also draws inspiration from these techniques of using mitigation techniques in
conjunction. Our proposed method simultaneously leverages a pre-processing
technique, adaptive reweighing, and an in-processing technique, fair latent rep-
resentation learning, to train fair models.
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3 Problem Formulation

We have formulated the problem as any binary classification task where we have
an input dataset x with n number of samples: x1, x2, ..., xn. Each data point xi

is associated with target attribute yi ∈ {0, 1} and sensitive attribute si ∈ {0, 1}.
The objective is to train a model such that:

◦ the model shows high fairness, indicating that the output ŷ is equitable with
respect to the sensitive attribute si, and

◦ the model’s accuracy remains intact, meaning the discrepancies between y and
ŷ are minimal.

Let hθ be an autoencoder with parameter θ, trained on an input dataset x. hθ

consists of an encoder module that maps the input to a lower dimensional latent
representation and a decoder module that uses the latent representation to recon-
struct the original data. The latent representation is passed onto two branches
with fully connected layers to obtain an updated latent representation (used for
the main task prediction) that does not contain the sensitive attribute informa-
tion. This is done to nullify the effect of the sensitive attribute on final model
prediction. While training the model towards fairness goals, it is also important
to maintain a decent model performance. The proposed method achieves both
objectives using the following.

Fair Latent Representation Learning: The proposed method utilizes gating
operations that regulate the flow of information such that the features rele-
vant to the main task are enhanced while the features related to the sensitive
attributes are suppressed. Unlike previous methods [10] that drop certain fea-
tures to address fairness concerns, the proposed method considers all the features
and manipulates the importance of each feature for fair outcomes. In essence,
the proposed method strikes a balance between accuracy and fairness. By using
gating operations to manage feature importance, it ensures that the model learns
and emphasizes task-relevant features while actively addressing and mitigating
biases associated with sensitive attributes.

Adaptive Reweighing: The adaptive reweighing process involves learning a
set of weights for each sample, effectively balancing the representation for differ-
ent classes within the training data. This weight assignment is achieved through
the solution of a convex optimization problem. Inspired by the methodology
proposed by Chai and Wang [8], we frame the task as a convex optimization
problem. However, our approach differs by considering only the target variable
for weight adjustment, not intersectional subgroups. This simplifies the weight
learning process while still focusing on achieving a balanced and unbiased repre-
sentation of the data based on the target variable. As a result, the model becomes
adept at recognizing and appropriately considering the importance of each class
label, contributing to a more equitable distribution of attention across diverse
data samples.
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4 Proposed Method

The proposed method aims to learn a fair latent representation while performing
adaptive reweighing of input data samples to achieve fair outcomes and improve
the overall model performance. Fair latent representation learning focuses on
learning a transformation of training data to a latent space, which is fair with
respect to sensitive attributes while preserving the maximum information in the
training data. On the other hand, the adaptive reweighing process learns a set
of weights corresponding to each input sample to balance the representation of
different classes. Figure 1 shows the block diagram of model training using the
proposed method.

Fig. 1. Block diagram illustrating model training using the proposed method. The
autoencoder generates a latent representation from the input features. This latent rep-
resentation is then fed into two separate branches: Main Task Prediction and Sensitive
Attribute Prediction. Each branch consists of a multi-layer perceptron (MLP) with one
hidden layer followed by sigmoid activation. The output of the MLP is combined with
the latent representation after the encoder module to create new latent representations.
These new representations are then fed to the neural networks for the main task and
sensitive attribute prediction tasks. The outputs of both the neural networks and the
decoder are used to minimize the loss function for model training.

Initially, input data point xi is given as input to the autoencoder hθ to obtain
the latent representation ri (after the encoder module) and the reconstructed
output x̂i (after the decoder module). To learn a meaningful latent representation
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representative of the input data points, reconstruction loss is applied to the
decoder output.

Lc =

√
√
√
√

1
n

n∑

i=1

(xi − x̂i)2 (1)

The latent representation ri obtained after the encoder module of hθ is passed
onto two separate branches for (i) main task prediction and (ii) sensitive attribute
prediction. Both the branches consist of a multi-layer perceptron (MLP) with a
single hidden layer followed by the sigmoid function. The outputs of both the
branches are considered as feature representations for the main task (fmi

) and
sensitive attribute prediction task (fsi

). Mathematically, it is represented as:

fmi
= Qm(ri) (2)

fsi
= Qs(ri) (3)

where, Qm and Qs represent the MLP for the main task and sensitive attribute
prediction task, respectively. The latent representation ri is combined with the
outputs of Qm and Qs to obtain the updated representations for each task. The
updated representations are then used for main task prediction and sensitive
attribute prediction. The latent representations are updated using the following
equations:

rmi
= fmi

∗ (1 − fsi
) ∗ ri (4)

rsi
= fsi

∗ ri (5)

where, ∗ represents element-wise multiplication. rmi
and rsi

represent the
updated latent representations for the main task and sensitive attribute pre-
diction task, respectively. In Eq. 4, fmi

weigh the features important for the
main task, and (1 − fsi

) suppress the sensitive attribute features, thereby elim-
inating the bias-inducing features from the latent representation of the main
task. To ensure that the important features related to the sensitive attributes
are suppressed during main task prediction, it is crucial that the supervision
from the sensitive attribute predictor is meaningful. For this purpose, in Eq. 5,
the latent representation of sensitive attribute predictor is updated using fsi

to
weigh the features important for sensitive attribute prediction.

The updated latent representations are given as input to two neural networks
for the main task prediction and sensitive attribute prediction, respectively. Let
Lm be the loss for the main task prediction.

Lm = −
(

n∑

i=1

[yi log(pmi
) + (1 − yi) log(1 − pmi

)]

)

(6)
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where, pmi
is the probability of predicting xi to one of the classes of the tar-

get variable and yi is the true label. During training the model using Lm, the
adaptive reweighing approach is adopted to balance class labels of the target
variable by learning a set of weights for each sample xi. The aim is to focus on
the wrongly classified samples to assign more weights to them. The weights are
learned by solving the following optimization problem.

max
w

∑

wi Lm(yi, ŷi) − α
∑

||w||22 (7)

s.t.

i=n∑

i=0

wi = c, w >= 0 (8)

where, wi is the weight assigned to ith sample, ŷi is the predicted label, α is a
hyper-parameter to control the number of samples that obtain non-zero weights,
c is a constant. Next, the sensitive attribute predictor is trained using the fol-
lowing loss function.

Ls = −
(

n∑

i=1

[zi log(psi
) + (1 − zi) log(1 − psi

)]

)

(9)

where, psi
is the probability of predicting xi to one of the classes of the sensitive

attribute and zi is the true label of the sensitive attribute.
The final loss function to train the autoencoder hθ along with the two

branches to learn the updated latent representations followed by predicting the
main task and the sensitive attribute is written below.

L = λ1 ∗ Lm + λ2 ∗ Ls + λ3 ∗ Lc (10)

where, λ1, λ2 and λ3 are the hyper-parameters to weigh different loss terms. The
loss L optimizes the model to reduce bias in model prediction and improve the
overall model performance.

Fair Model Prediction: The proposed method helps to debias the latent rep-
resentation for fair model prediction by ensuring that the features relevant to the
sensitive attributes are not used during the main task prediction. During testing,
the branch for sensitive attribute prediction is removed from the autoencoder

Fig. 2. Illustrating the model architecture during testing. The sensitive attribute pre-
diction branch is removed while making the final prediction.
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architecture (Fig. 2). This ensures that only the debiased latent representation,
focusing on task-relevant features, is used by the MLP of the main task predic-
tion branch for the final prediction.

5 Experimental Setup

Experiments are performed for classification tasks on three publicly available
datasets to evaluate the effectiveness of the proposed method using performance
and fairness evaluation metrics. The following discusses the dataset details, eval-
uation metrics, and implementation details.

Table 1. Details of the Adult, COMPAS, and German datasets.

Dataset Samples (Train/Test) Target class Sensitive attribute Groups

Adult 32,561/16,281 Income Sex Female/Male
COMPAS 5,771/1,443 Two-year recidivism Race African-American/Caucasian
German 800/200 Credit score Sex Female/Male

5.1 Dataset Details

Experiments are performed on the following publicly available tabular datasets.
Table 1 summarizes the dataset details.

Adult Dataset [1]: The dataset contains 48,842 samples, with 32,561 samples
in the training set and 16,281 in the testing set. It consists of 14 features and
one target variable. It is also known as “Census Income” dataset, where the
aim is to predict whether income exceeds $50K/yr. We consider Sex as the
sensitive attribute. The dataset is downloaded from the UCI Machine Learning
Repository.

COMPAS Dataset [27]: The COMPAS dataset used has 7214 samples and
51 attributes. COMPAS assesses a criminal’s likelihood of reoffending for judges
and parole officers. We focused on ‘Caucasian’ and ‘African-American’ races,
resulting in 6150 samples and 30 attributes after preprocessing. Date columns
were converted to days, and categorical attributes were one-hot encoded. ‘Race’,
with classes ‘African-American’ and ‘Caucasian’, is the sensitive attribute. Data
was split randomly into 80-20 sets.

German Credit Risk Dataset [13]: The dataset classifies people with good
or bad credit risk based on 20 attributes. There are 1000 instances present in
the data created by Dr. Hans Hofmann hosted on the UCI Machine Learning
Repository. For preprocessing, categorical columns are processed using one-hot
encoding, and the train-test split is done using the random 80-20 split. We
consider sex as the sensitive attribute.
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5.2 Evaluation Metrics

We evaluate the effectiveness of the proposed method using both performance
and fairness metrics. Performance is evaluated using the Accuracy of the model
for the main task prediction. Additionally, we computed the AUC and F1-
scores (due to imbalanced training data distribution). For fairness evaluation,
we employed the following three metrics:

Disparate Impact (DI) [23] assesses whether a classifier assigns positive clas-
sifications at the same rate across different groups. It measures the difference in
the positive outcome rate between different groups of a sensitive attribute.

DI = |p(ŷ = 1 | s = 0) − p(ŷ = 1 | s = 1)| (11)

Equal Opportunity (E. Opp) [35] requires that the true positive rate (TPR)
be equal across different groups defined by a sensitive attribute s.

E.Opp. = |p(ŷ = 1 | y = 1, s = 0) − p(ŷ = 1 | y = 1, s = 1)| (12)

Equalized Odds (EO) [35] requires that both the true positive rate (TPR)
and the false positive rate (FPR) be equal across different groups defined by a
sensitive attribute s.

EO = |p(ŷ = 1 | y = 1, s = 0) − p(ŷ = 1 | y = 1, s = 1)|
+ |p(ŷ = 1 | y = 0, s = 0) − p(ŷ = 1 | y = 0, s = 1)| (13)

These definitions represent different aspects of group fairness as applied in real-
world scenarios. Equal Opportunity and Equalized Odds relate directly to the
model’s performance, striving to maintain similar accuracy levels across different
sensitive groups. On the other hand, Disparate Impact focuses on achieving
balanced outcomes for different groups, such as ensuring that a bank issues
loans at equal rates regardless of gender. Lower values of DI, E. Opp., and EO
indicate lower bias in model predictions. Ideally, these metrics should be zero
for a completely fair model.

5.3 Implementation Details

Experiments are performed using autoencoders of different architectures for dif-
ferent datasets. We employed an autoencoder architecture due to the tabular
format of the datasets. However, the proposed algorithm is generalizable across
various domains and model architectures.

For the Adult dataset, we used a 7-layer autoencoder. The encoder encodes
the input data using four dense layers with dimensions of 64, 32, 32, and 16,
respectively. The decoder reconstructs the latent representation using three dense
layers with dimensions of 32, 32, and 64, respectively. A 5-layer autoencoder is
used for the COMPAS dataset, where the encoder contains three dense layers
of dimension 64, 32, and 16, respectively, while the decoder contains two dense
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layers of dimension 32 and 64, respectively. For the German dataset, we employ
a simplified 3-layer autoencoder with dimensions 64, 16, and 64, respectively.
All the layers are followed by ReLU activation. The MLP for both the main
task prediction and sensitive attribute prediction branches contains three layers
with dimensions of 16, 8, and 16, respectively. The output of the MLP is then
fed into two separate neural networks for main task prediction and sensitive
attribute prediction. Both neural networks contain one hidden layer of dimension
8, followed by the output layer with sigmoid activation function.

The models are trained using the Adam optimizer for 20 epochs for the Adult
dataset, 100 epochs for the German dataset, and 50 epochs for the COMPAS
dataset. A batch size of 32 is used for all datasets. The learning rate is set to
0.0001 with a decay rate of 0.75 for all datasets. The hyper-parameter c is set to
10000 (experimentally obtained) for all three datasets. Grid search is employed
for hyper-parameter (λ1, λ2, λ3) tuning. The values are set to (0.1, 0.8, 10) for
the Adult dataset, (0.1, 3, 10) for the COMPAS dataset, and (1, 10, 0.5) for the
German dataset corresponding to λ1, λ2, λ3, respectively.

For pre-processing, we used one-hot encoding to convert non-numerical fea-
tures to numerical features. We further normalize numerical features to zero
mean and unit variance. The implementation is carried out using Python 3.8
and popular libraries, including scikit-learn, TensorFlow.

6 Results and Analysis

In this section, we discuss the experimental results to demonstrate the effec-
tiveness of the proposed method towards bias mitigation. We first compare the
proposed method with a few baseline methods to illustrate that model training
using the proposed method leads to fair model predictions while maintaining
decent accuracy, unlike conventional machine learning algorithms that optimize
the model with the objective of maximizing the overall performance, ignoring
fairness constraints. The baseline methods include (i) logistic regression (LR),
(ii) multi-layer perception (MLP), and (iii) autoencoder with classifier (AE)
models. The selection of LR and MLP is made to encompass a comprehensive
spectrum of complexity within different baseline methods. AE is included in
baseline methods because the proposed method’s architecture is also based on
the autoencoder model. Tables 2, 3, and 4 summarize results corresponding to
the Adult, COMPAS, and German datasets, respectively. It is observed that
baseline methods perform well in terms of accuracy, but in most cases, they do
not perform well on fairness metrics. For instance, the accuracy of AE on the
Adult dataset is 85.58%. However, the DI, E. Opp, and EO of the model are
0.17, 0.07, and 0.14, respectively. The high values of these metrics indicate that
the model prediction is biased across different groups.

Since baseline methods fail to train fair models, we compare the proposed
method with existing approaches that explicitly mitigate bias in model predic-
tion, including fairness with adaptive weights (FAW) [8], FAIR [32], and FairNN
[19]. These approaches are chosen for comparison because they are similar to
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Table 2. Experimental results on the Adult dataset using existing and the proposed
method. Accuracy is reported in (%).

LR MLP AE FAIR FairNN FAW Ours
Accuracy↑ 85.41 85.47 85.58 82.89 85.36 82.44 85.73
AUC↑ 0.90 0.91 0.91 0.86 0.91 0.91 0.91
F1 Score↑ 0.66 0.67 0.67 0.59 0.64 0.63 0.64
DI↓ 0.17 0.17 0.17 0.13 0.15 0.17 0.12
E. Opp.↓ 0.07 0.06 0.07 0.02 0.07 0.02 0.01
EO↓ 0.14 0.13 0.14 0.07 0.13 0.08 0.05

Table 3. Experimental results on the COMPAS dataset using existing and the pro-
posed method. Accuracy is reported in (%).

LR MLP AE FAIR FairNN FAW Ours
Accuracy↑ 96.21 95.50 94.80 93.58 96.18 97.89 96.50
AUC↑ 0.98 0.97 0.97 0.96 0.97 1.00 0.97
F1 Score↑ 0.96 0.95 0.95 0.93 0.96 0.98 0.96
DI↓ 0.10 0.09 0.09 0.09 0.10 0.10 0.09
E. Opp.↓ 0.005 0.02 0.01 0.004 0.02 0.02 0.001
EO↓ 0.02 0.04 0.03 0.01 0.02 0.02 0.01

our proposed method in terms of mitigating bias by learning fair representations
and/or reweighing the data instances. FAW aims to achieve group-level bal-
ance among different demographic groups by learning adaptive weights for each
sample. In contrast, our method learns adaptive weights to balance target class
labels. FAIR utilizes adversarial training to learn a reweighing function for train-
ing data instances to reduce the impact of biased instances. FairNN jointly trains
an autoencoder with KL-divergence constraint and a classifier with equalized
odds regularization to learn fair representation. On the other hand, our method
uses a gating mechanism to learn fair representation and adaptive reweighing to
improve overall model performance. While the original FAIR and FairNN results
are reported for the Adult dataset and a few others, they are not available for the
COMPAS and German datasets. To ensure an equitable comparison, we have
extended the methodologies of FAIR and FairNN to encompass the COMPAS
and German datasets as well. Additionally, FAW used a different version of the
COMPAS dataset compared to the standard one available on the ProPublica
website [30]. Hence, we executed their publicly accessible code on the standard
COMPAS datasets to ensure a fair comparison.

Our method outperforms existing approaches on the Adult dataset, achiev-
ing the lowest values for all three fairness metrics and higher accuracy. Similar
performance is observed on the COMPAS and German datasets as well. This
indicates that the model trained using the proposed method is able to predict
fair outcomes without compromising model performance. The loss function for
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Table 4. Experimental results on the German Credit Risk dataset using existing and
the proposed method. Accuracy is reported in (%).

LR MLP AE FAIR FairNN FAW Ours
Accuracy↑ 73.50 72.50 75.00 73.50 74.00 74.50 76.50
AUC↑ 0.85 0.77 0.81 0.81 0.81 0.79 0.78
F1 Score↑ 0.79 0.82 0.84 0.80 0.83 0.80 0.84
DI↓ 0.06 0.06 0.04 0.06 0.04 0.03 0.05
E. Opp.↓ 0.02 0.04 0.01 0.03 0.04 0.09 0.002
EO↓ 0.06 0.09 0.06 0.05 0.06 0.19 0.01

the proposed model has been designed in such a way that the accuracy is not
affected at the cost of the fairness. The loss function has a separate term for accu-
racy ensuring that it is also optimised along with the fairness terms. For further
analysis, we have compared the latent representation after the encoder module
of the autoencoder with the updated latent representation obtained after elimi-
nating bias-inducing features for main task prediction using PCA visualizations
[31]. Figure 3 shows the PCA visualizations of both the latent representations.
It is observed that the latent representation after the encoder module is clearly
separable by gender. However, after suppressing the sensitive attribute-related
features, the updated latent representation is no longer separable by gender,
showcasing unbiased latent representation for main task prediction.

Fig. 3. PCA visualization of the (a) latent representation after the encoder layer and
(b) updated latent representation on the Adult dataset. The visualization in (a) shows
that the female and male groups are separable, which becomes inseparable in (b) after
suppressing features related to the sensitive attribute.

7 Ablation Study

We have conducted an experiment by disabling the sensitive attribute prediction
branch to assess its impact on learning a fair latent representation for the main
task. In other words, the model is trained without supervision from the sensitive
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attribute prediction branch. The latent representation from the encoder layer is
combined with the output of the main task prediction branch’s MLP to update it.
This updated latent representation is used by the main task prediction classifier.

Table 5 shows the results of the ablated model on the Adult dataset. Com-
parison is performed with the proposed method. It is observed that the ablated
model performs poorly on fairness metrics. For instance, DI shows an approxi-
mate 25% increase, whereas E. Opp. and EO rise to 0.06 and 0.15, respectively,
in comparison to the proposed method. This highlights the importance of the
sensitive attribute prediction branch in providing information related to bias-
inducing features that need to be suppressed during main task prediction.

Table 5. Results on the Adult dataset after ablating sensitive attribute prediction
branch. Comparison is made with the proposed method. Accuracy is reported in (%).

Accuracy↑ AUC↑ F1 Score↑ DI↓ E. Opp.↓ EO↓
Without Sensitive Attribute Branch 85.34 0.75 0.64 0.15 0.06 0.15
Ours 85.73 0.91 0.64 0.12 0.01 0.05

8 Conclusion

As AI decision-making systems become more pervasive, concerns regarding
potential bias and unfair outcomes have gained significant attention. This
research delves into two primary sources of such bias: imbalanced training data
and correlations between sensitive attributes and the target variable. To this
end, we propose a novel method to train fair models. The proposed method
employs fair representation learning to guide the model towards features that
are genuinely relevant to the task at hand, effectively reducing the influence of
features that might be implicitly linked to sensitive attributes and potentially
leading to biased outcomes. Furthermore, we address the issue of data imbalance
within the training data through adaptive reweighing, ensuring that all target
class labels are balanced during model training.

Evaluations conducted on benchmark datasets demonstrate the effectiveness
of the proposed method in bias mitigation. The ablation study reinforced the sig-
nificance of the supervision provided by the sensitive attribute branch; removing
this branch during model training resulted in a drop in fairness metrics. In the
current experimental setup, the model is optimized for a single downstream task.
As part of future work, the proposed method can be extended to debias latent
representations for multiple downstream tasks to mitigate bias due to multiple
sensitive attributes.
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Abstract. Published research highlights the presence of demographic
bias in automated facial attribute classification algorithms, particularly
impacting women and individuals with darker skin tones. Existing bias
mitigation techniques typically require demographic annotations and
often obtain a trade-off between fairness and accuracy, i.e., Pareto inef-
ficiency. Facial attributes, whether common ones like gender or others
such as “chubby” or “high cheekbones”, exhibit high interclass similarity
and intraclass variation across demographics leading to unequal accu-
racy. This requires the use of local and subtle cues using fine-grained
analysis for differentiation. This paper proposes a novel approach to fair
facial attribute classification by framing it as a fine-grained classification
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1 Introduction

Automated facial analysis algorithms encompass face detection, face recogni-
tion, and facial attribute classification (such as gender, race, high cheekbones,
and attractiveness) [8,17,31]. These algorithms are deeply integrated into var-
ious sectors, such as surveillance and border control, retail and entertainment,
healthcare, and education.

Fig. 1. Visualization of the attention map obtained by our proposed FineFACE over
baseline (both using ResNet50 backbone) for facial attribute classification. The highly
activated region is shown by the red zone on the map, followed by yellow, green, and
blue zones. Top: “High Cheekbones” classifier. Bottom: “Smiling” classifier. (Color figure
online)

Numerous existing studies [1,12,26] investigating the fairness of facial attribute
classification algorithms confirm the presence of performance disparities between
demographic groups, such as gender and race. Thus, bias in these algorithms
emerges as a significant societal issue that warrants immediate redress, particu-
larly for the large-scale deployment of fair and trustworthy systems across demo-
graphics. In this direction, the vision community has proposed several bias miti-
gation techniques to address the performance disparities of facial attribute classi-
fiers. Established bias mitigation techniques utilize regularization [13], attention
mechanism [21], adversarial debiasing [3,33], GAN-based over-sampling [25,36],
multi-task classification [5], and network pruning [15].

These existing bias mitigation techniques often require demographically
annotated training sets and are limited in their generalizability. Importantly,
these techniques often sacrifice overall classification accuracy in pursuit of
improved fairness, making them Pareto inefficient [33,36]. It was demonstrated
in [36] that fairness violations in vision models are largely driven by the variance
component of bias-variance decomposition. Consequently, one effective way to
improve fairness is by decreasing the variance within each demographic subgroup
by focusing on local and subtle cues. This can be obtained through learning
enhanced feature representation for each demographic subgroup, also sup-
ported by [4,12].
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Following this line of thought, enhancing feature representation for each
demographic subgroup is crucial in improving fairness without compromising
overall performance. Traditional facial attribute classifiers [2,3,12,23] rely pre-
dominantly on high-level discriminative and semantically meaningful informa-
tion often obtained from the final layers of the deep convolutional neural network
(CNN). However, the lower layers of the deep learning model capture (low-level)
essential features and patterns in faces vital for attribute classification, such
as (a) facial contours and edges, including the outline of the face, jawline and
cheekbones, (b) texture of facial regions, such as skin and hair, (c) position and
shape information, and (d) lighting condition and its effect on the appearance
of facial features. Integrating low-level details from the lower layers of the model
will capture local and detailed cues in the learned feature representation.

In our quest to identify these subtle and local cues for learning enhanced fea-
ture representation, we aim to leverage fine-grained analysis, integrating both
high- and low-level features, toward fair facial attribute classification, FineFACE.
This is facilitated through a cross-layer mutual attention learning technique
that learns fine-grained features by considering the layers of a deep learning
model from shallow to deep as independent ‘experts’ knowledgeable about low-
level detailed to high-level semantic information, respectively. These experts are
trained in leveraging mutual data augmentation to incorporate attention regions
proposed by other experts. An ordinary deep learning model can be considered to
use only the deepest expert (using high-level semantic information) for classifica-
tion. In contrast, our method consolidates the prediction of the categorical label
and the attention region of each expert for the final facial attribute classification
task.

Figure 1 shows the final CAM visualization obtained by our proposed Fine-
FACE model based on the ResNet50 backbone, for facial attribute classifica-
tion with “high cheekbone” and “smiling” as target variable using the CelebA
dataset [17]. The highly activated region is shown by the red zone on the map,
followed by yellow, green, and blue zones in the attention map. For cross-
comparison, the visualization of the baseline ResNet50 is also shown for the
same classification task. As illustrated in the maps, our FineFace model cap-
tures additional information, such as the contours of facial regions derived from
the lower layers of the model, leading to enhanced feature representation and,
hence, accurate and fair facial attribute classification.

Contributions. In summary, the contributions of our work are as follows: (i)
We approach fair facial attribute classification from a novel perspective by refor-
mulating it as a fine-grained classification task, (ii) We propose a novel approach
based on cross-layer mutual attention learning where the prediction is consol-
idated from shallow (using low-level details) to deep layers (using high-level
semantic details) regarded as an independent experts, (iii) Extensive evalua-
tion on facial attribute annotated datasets namely, FairFace [11], UTKFace [34],
LFWA+ [17], and CelebA [18], and (iv) Cross-comparison with the existing
bias mitigation techniques, demonstrating the efficacy of our approach in terms
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of significant improvement in fairness as well as classification accuracy. Thus,
obtaining state-of-the-art Pareto-efficient performance.

2 Related Work

In this section, we review the related academic literature.

Bias Mitigation of Facial Attribute Classification. Many studies have
highlighted the systematic limitations of facial attribute classification (such as
gender, race, and age) between gender-racial groups [2,12,23]. Studies in [3,27]
reported bias of facial attribute classification for attractive, smiling, and wavy
hair as the target attributes across genders. Following this study, [36] reported
bias of gender-independent target attributes, such as black hair, smiling, slightly
open mouth, and eyeglasses, between genders. Consequently, numerous strategies
have been proposed to mitigate bias [22]. [5] explored the joint classification of
gender, age, and race by proposing a multi-task network. [33] included a variable
for the group of interest and simultaneously learned a predictor and an adver-
sary via adversarial debiasing. [13] leveraged the power of semantic preserving
augmentations at the image level in a self-consistency setting for fair gender clas-
sification tasks. [24] introduced a framework that integrates fairness constraints
directly into the loss function using Lagrangian multipliers for fair classification.
[3] proposed “fair mixup,” a data augmentation technique by interpolating data
points that improve the generalization of the classifiers trained under group fair-
ness constraints. [25] adopted structured learning techniques using deep-views of
the training samples generated using GAN-based latent code editing to improve
the fairness of the gender classifier. GAN-based SMOTE “g-SMOTE” was pro-
posed by [36] to strategically enhance the training set for underrepresented sub-
groups to mitigate bias.

Fine-Grained Visual Classification. Fine-grained classification is a challeng-
ing research task in computer vision, which captures the local discriminative
features using attention learning [6,35] to distinguish different fine-grained cat-
egories. In addition to methods based on attention mechanisms, second-order
pooling methods utilize the second-order statistics of deep features to compose
powerful representations such as combined feature maps [14] and covariance
among deep features [28] for fine-grained classification. Studies have also been
proposed to use features or information learned from different layers within
a CNN backbone for fine-grained classification. [32] proposed a multi-layered
Deconvnet for gaining insight into the functions of intermediate feature layers.
They discovered that shallow layers capture low-level details, whereas deep lay-
ers capture high-level information. [10] proposed the LayerCAM, which indicates
the discriminative regions used by the different layers of a CNN to predict a spe-
cific category. Inspired by these two works, [16] proposed the CMAL-Net, which
focuses on using attention regions predicted by layers of different depths to mark
the cues they learned, letting layers of varying depths to learn from each other’s
knowledge to improve overall performance.
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3 Proposed Methodology

In this section, we elaborate on our proposed FineFACE model based on learning
features from different layers of the CNN using the attention mechanism and
mutual learning, following the foundational works in [10,16,32].

Fig. 2. FineFACE network structure. This figure illustrates this method by introducing
three experts e1, e2, e3, on a 5-stage backbone CNN (e.g., ResNet50). The working of
each expert and the concatenation of experts are depicted in different colors. Each
expert receives feature maps from a specific layer as input and generates a categorical
prediction along with an attention region, which is used for data augmentation by other
experts. This architecture is trained in multiple steps within each iteration. We start
by training the deepest expert (e3), followed by the shallower experts. Finally, in the
last step, we train the concatenation of experts to enhance overall performance.

3.1 Expert Construction: Using Shallow to Deep Layers

In this subsection, the construction of experts from shallow to deep layers. Any
state-of-the-art CNNs, such as ResNet50, Res2NeXt50, etc. can be used as the
backbone CNN denoted by β. β has M layers, and {l1, l2, ..., lm, ..., lM} denote
the layers of β from shallow to deep (except the fully connected layers). {e1, e2,
..., en, ..., eN} are N experts based on these M layers. Each expert encompasses
layers from the first layer up to a certain layer such that - en consists of the
layers from l1 to lmn

, and 1 ≤ mn ≤ M. The experts {e1, e2, ..., en, ..., eN}
progressively cover deeper layers of the backbone CNN, and eN , the deepest
expert, covers all layers from l1 to lM .

Let {x1, x2, ..., xn, ..., xN} denote the intermediate feature maps produced
by β for the experts {e1, e2, ..., en, ..., eN}, respectively. xn ∈ RHn×Wn×Cn and
Hn, Wn and Cn denote the height, width, and number of channels, respectively.
A set of functions {F1(.), F2(.), ..., Fn(.), ..., FN (.)} are used to respectively
compress {x1, x2,..., xn, ..., xN} into 1D vectorial descriptors {v1, v2, ..., vn, ...,
vN}, and vn ∈ RCv . Cv denotes the length of the 1D vectorial descriptors, and
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these descriptors given by various experts are of the same length. The Fn(.) for
processing xn is defined as:

vn = Fn(xn) = fGMP (x
′′
n), (1)

x
′′
n = fElu(f bn(fconv

3×3×Cv/2×Cv
(x

′
n))), (2)

x
′
n = fElu(f bn(fconv

1×1×Cn×Cv/2
(xn))), (3)

where fGMP (.) denotes the Global Max Pooling. fconv(.) depicts the 2D convo-
lution operation by its kernel size. f bn(.) and fElu(.) denote batch normalization
and Elu operations respectively. x

′
n and x

′′
n are intermediate feature maps pro-

duced by en. Thereafter, x
′′
n ∈ RHn×Wn×Cn is used to generate the attention

region of en as described in Subsect. 3.2. {p1, p2, ..., pn, ..., pN} denote the
prediction scores given by different experts, obtained as pn = fclf

n (vn), where
fclf
n (.) denotes a fully connected layer-based classifier.

Apart from the prediction scores obtained by the various experts, an overall
prediction score is also generated by combining the information from different
experts. Specifically, {v1, v2, ..., vn, ..., vN} are first concatenated for an overall
descriptor voval as: voval = fconcat(v1, v2, ..., vn, ..., vN ), where fconcat(.) denotes
concatenation operation. Then voval is processed into an overall prediction score
poval by a fully connected layer-based classifier as poval = fclf

oval(voval)

3.2 Attention Region Prediction

As mentioned above, x
′′
n denotes an intermediate feature map generated by the

expert en. We move with an assumption that the classification problem is K-
class, and kn ∈ 1, 2, ..., K is the category predicted by expert en and x

′′
n ∈

RHn×Wn×Cn . The generation of the attention region proposed by en is initialized
by producing the class activation map (CAM), which specifies the discriminative
image region, for the category kn based on x

′′
n specified. The CAM Ωn (Ωn ∈

RHn×Wn) produced by the expert en is defined as: Ωn(α, β) =
cv∑

c=1
pcnx

′′c
n (α, β),

where the coordinates (α, β) denote the spatial location of x
′′
n and Ωn.pn denotes

the parameters of fclf
n (.) corresponding to the predicted category kn. Then, after

obtaining Ω, an attention map Ω̃n ∈ RHin×Win (Hin, Win are the height and
width of the input image, respectively) is generated by upsampling Ωn using a
bilinear sampling kernel. Thereafter, Ω̃n is applied with min-max normalization,
and each spatial element of the normalized attention map Ω̃norm

n is obtained by

Ω̃norm
n (α, β) = Ω̃n(α, β) − min(Ω̃n)/max(Ω̃n) − min(Ω̃n). (4)

The regions that the expert en considers discriminative can be found and cropped
by generating a mask Ω̃mask

n by setting the elements in Ω̃norm
n to 1 for values

greater than a threshold t (t ∈ [0, 1]) and 0 for the others.
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Then, a box that covers all the positive regions of Ω̃mask
n is located and

cropped from the input image. The cropped region is upsampled to the input
image’s size and the upsampled attention region An is considered as the atten-
tion region predicted by en and also as data augmentation for remaining experts.
Apart from the attention regions proposed by various experts, an overall atten-
tion region Aoval is generated by summing up the attention information learned
by different experts.

3.3 Multi-step Mutual Learning

The experts are trained using progressive multi-step strategy with cross-entropy
loss. In the early steps, these experts are trained one by one, which allows them
to “focus on” learning the clues of their own expertise without being diverted by
other experts. In the last two steps, the experts get together to learn impactful
information from the attention regions and the raw image, respectively. Specifi-
cally, every iteration of the training takes place in N + 2 steps, and in the first
N steps, each expert is gradually trained from deep to shallow. In the first step,
the deepest expert eN is trained. Since the training of N involves the experts
shallower than eN , the attention regions proposed by all the experts and the
overall attention region {A1, A2, ..., An, ..., AN , Aoval} are also generated at
this step. These attention regions showcase the“specialized knowledge” of the
experts by highlighting the basis on which each expert made its classification.

From step 2 to N , there is a progression to shallower experts by randomly
selecting one input from a pool of images comprising of the raw input and the
attention regions proposed by the other experts. The shallow experts rely on the
attention regions proposed by deeper experts to learn semantic visual clues (e.g.,
eyes, nose, and mouth), while the deep experts take the help of shallow experts
by learning low-level visual cues (e.g., facial contours like jawline, cheekbones,
etc.) from their proposed attention regions. In step N + 1, all the experts and
their concatenation are trained with the overall attention region Aoval in one
pass. This step enforces all experts to work together and study the attention
information they have combinedly gained for learning more fine-grained features.
At step N +2, the concatenation of all the experts is trained with the raw input
to make sure the parameters of fclf

oval(.) fit the resolution of the original input.
The algorithm for the multi-step mutual learning strategy is included in Section
2 of the supplementary material.

Inference Phase: Figure 2 illustrates the inference stage of the proposed Fine-
FACE model with N + 1 classifiers. For an input image during the inference,
N + 1 prediction scores are produced by the proposed architecture. For each
test image, the raw input and overall attention region are successively fed to the
model obtaining 2 × (N + 1) number of prediction scores. The final prediction
score for the inference is the average of the 2 × (N + 1) scores. This inference
strategy maximizes the classification accuracy as well as fairness of the trained
model due to obtaining two kinds of complementary information: (a) informa-
tion from the prediction scores from various experts and the overall prediction
score, and (b) the information from the raw input and overall attention region.
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4 Experimental Details

We conducted two sets of experiments (1) a face-based gender classifier with
gender as the target attribute and race and gender as the protected attributes
following studies in [13,25]. (2) 13 gender-independent facial attribute classifiers
following studies in [3,27,36] with “bags under eyes”, “bangs”, “black hair”, “blond
hair”, “brown hair”, “chubby”, “eyeglasses”, “gray hair”, “high cheekbones”, “mouth
slightly open”, “narrow eyes”, “smiling”, and “wearing hat” as the 13 gender inde-
pendent target attributes and gender as the protected attribute. We used the
mean scores of these 13 attribute classifiers, following studies in [3,27,36].

4.1 Datasets and Training Protocol

We used standard benchmark datasets widely adopted for evaluating fairness
of facial attribute classifiers [13,27,36], namely, FairFace [11], UTKFace [34],
LFWA+ [17], and CelebA [18]. In line with existing studies [13,25], a face-based
gender classifier was trained on FairFace and evaluated on FairFace, UTKFace,
LFWA+, and CelebA (40 attributes). Unlike UTKFace and LFWA+, CelebA
does not have race annotations. Hence, we used only the gender attribute for
CelebA. For the 13 gender-independent facial attribute classifiers, we used the
CelebA (40 attributes) dataset for training and validation. For the fair com-
parison with the existing studies on fairness [3,27,36], we used only 13 gender-
independent attributes from CelebA. Note that protected attribute annotation
information is not used during the model training stage, but solely for the pur-
pose of fairness evaluation of the facial attribute classifiers. Additional details
on these datasets are given in Table 1.

Table 1. Dataset details including the number of images and demographic groups

Dataset Images Demographic groups

FairFace 108K White, Black, Indian, Asian, Southeast Asian, Middle
Eastern, Latino Hispanic

UTKFace 20K White, Black, Indian, Asian, Others
LFWA+ 13K White, Black, Indian, Asian, Undefined
CelebA 202K Not Available (only gender information available)

4.2 Implementations Details

For a fair comparison with studies in [12,25,36], we utilized ResNet50 [9] as our
method’s backbone CNN architecture. The layers of ResNet50, excluding the
fully connected layers, are grouped into 5 stages where each stage is a group of
layers operating on feature maps of the same spatial size. We use these stages as
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building blocks for our experts: e1 encompasses layers from stage 1 to stage 3,
e2 encompasses layers from stage 1 to stage 4, and e3 encompasses layers from
stage 1 to stage 5. In general, the number of stages in a model can be determined
by grouping layers operating on the feature maps of the same spatial size, and
accordingly, experts can be formed.

We trained all the models used in this study using Stochastic Gradient
Descent (SGD) with the number of epochs determined using an early stopping
mechanism, the momentum of 0.9, weight decay of 5 × 10−4, and a mini-batch
size of 16 determined using empirical evidence. The learning rate was set as
0.002 with cosine annealing [19]. We fixed the input image size as 448 × 448,
following the common settings in existing fairness studies [7,20]. The threshold
t, which is used to generate a mask for the attention region, was set to 0.5 (see
Sect. 3.2). We also conducted an ablation study of the related design choices (a)
different pooling methods for building experts, and (b) the contribution of fusing
the prediction scores. See ablation studies in Section 3 of the supplementary
material for more details.

4.3 Evaluation Metrics

For the gender classifier, the standard evaluation metrics, namely, classification
accuracy, Max-Min ratio (the ratio of the best and worst performing subgroups),
and Degree of Bias (DoB) (standard deviation of accuracy) are used for fair
comparison with the existing studies [5,13,25,33] on bias evaluation of gender
classifier. As a fair model is supposed to have consistent accuracies across all
subgroups, this implies that a fair model would have a max-min accuracy ratio
closer to 1 and a DoB closer to 0.

For gender-independent facial attribute classifiers, following the studies
in [3,27,36], we used classification accuracy, True Positive Rate (TPR), Differ-
ence of Equal Opportunity (DEO) and Difference in Equalized Odds (DEOdds)
where Equal Opportunity (EO) requires a classifier to have equal TPRs on each
subgroup and a violation of this equal opportunity is measured by the DEO.
DEOdds measures the absolute difference in the probability of correctly predict-
ing the positive class between the subgroups for each actual outcome, summed
over all possible outcomes [3,27,36]. Furthermore, we also analyzed the maxi-
mum group accuracy and the minimum group accuracy associated with the best
and worst performing demographic subgroups, respectively. A model that can
maintain or improve accuracy and TPR while reducing DEO and DEOdds would
be an ideal classifier in terms of enhancing accuracy as well as fairness.

5 Results

5.1 Face-Based Gender Classification

In this section, we will discuss the performance and fairness of the face-based
gender classifier across gender-racial groups.
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Intra-dataset Evaluation: Table 2 shows the performance of the baseline
ResNet50 model and our proposed FineFACE model in gender classification
when trained and tested on the FairFace dataset. As can be seen, our proposed
FineFACE model reduced the Degree of Bias (DoB) and the Max-Min accuracy
ratio by approximately 86% and 13%, respectively, over the baseline. At the
same time, the overall classification accuracy improved by about 3% over the
baseline ResNet50 model. Note, we also evaluated and compared performance
of the baseline DenseNet architecture over FineFACE using DenseNet backbone
for gender classification. The experimental results demonstrated the efficacy of
FineFace in improving accuracy and fairness over the baseline DenseNet archi-
tecture. Thus, highlighting the importance of systematic construction of experts
from shallow to deep layers followed by attention region prediction and multi-
stage learning by FineFACE over feature reuse between shallow to deep layers
by the baseline DenseNet. More details on the experimental results are given in
Section 1.1 of the supplementary material.

Fig. 3. Visualization Results of Gender Classifier. Left through right in each set of
images are the input image from FairFace dataset, visualization results based on our
FineFACE method’s 3 experts (Ω̃norm

1 , Ω̃norm
2 , Ω̃norm

3 ), and our method’s final visu-
alization (Ω̃norm

oval ), versus a basic ResNet50 architecture’s final visualization (Ω̃norm
ori ).

Our FineFACE captures a more comprehensive feature representation of the image,
thereby enhancing fairness as well as accuracy.

Cross-Dataset Evaluation: Table 3 shows the results of the baseline ResNet50
and our proposed FineFACE, based on ResNet50 backbone when trained on Fair-
Face and evaluated on UTKFace and LFWA+ datasets. Our model significantly
reduced the bias of the gender classifier by reducing DOB by approximately
55% and 77%, and Max-Min ratio by 18% and 17% over the baseline even on
the cross-dataset evaluation, respectively. Overall, performance degradation of
the classifiers is minimal on cross-dataset evaluation except for the UTKFace
dataset due to poor quality samples majorly showing age progression. Table 4
shows the results on the CelebA test set. Our model reduced DOB by approx-
imately 41% and Max-Min ratio by 2%. These results demonstrate the efficacy
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of our model in significantly reducing bias as well as improving accuracy even
on the cross-dataset evaluation.

Figure 3 shows the visualization of the attention map learned by the
ResNet50-based FineFACE and the baseline ResNet50-based gender classifier.
For proposed FineFACE, we generate 4 heatmaps for each image, i.e., Ω̃norm

1

from expert 1, Ω̃norm
2 from expert 2, Ω̃norm

3 from expert 3 and Ω̃norm
oval which is

the aggregation of the three experts’ heatmaps and is used for the final prediction
(refer to Sect. 3.2). The maps generated by Expert 1 show a focus on low-level
features such as edges, evident from the scattered attention across the face, cap-
turing details such as the outline of the face, eyes, nose, and mouth. The maps
generated by Expert 3 have more concentrated attention on key facial regions
that are critical for gender classification, such as the central face area. Thus,
there is a clear progression in the focus of attention from Expert 1 to Expert 3
and all the varying levels of attention are captured in the final concatenated map
(Final Map). As the original ResNet50 has only a 1 classifier for prediction, we
generated 1 heatmap Ω̃norm

ori using the feature maps from the last convolutional
layer. Note, Ω̃norm

3 and Ω̃norm
ori are both generated based on the feature maps

of the last convolutional layer of the ResNet50 backbone, but Ω̃norm
3 captures

much more comprehensive and accurate information than Ω̃norm
ori . Further, the

overall feature map from the proposed FineFACE model illustrates the efficacy of
the fine-grained framework in capturing comprehensive and discriminant regions
vital for gender classification over the baseline.

Table 2. Gender Classification Accuracy (%) on FairFace testset across different demo-
graphics using baseline ResNet50 and our proposed FineFACE. M stands for male and
F stands for female. The top performance results are highlighted in bold.

Race White Black East Asian SE Asian Latino Indian Middle E
Gender M F M F M F M F M F M F M F Max/

Min↓
Overall↑ DoB↓

Baseline 96.5 89.9 94.4 82.4 97.2 88.9 94.4 91.5 95.6 92.2 98.1 93.3 97.8 92.4 1.18 93.2 4.2
FineFACE 97.1 97 97.2 96.2 97 96.2 96.2 97 96 96.3 96.6 95.9 96.1 95.1 1.02 96.4 0.6

Comparison with Published Work: Table 5 shows the performance of our
proposed FineFACE method over published bias mitigation techniques based
on multi-tasking [5], adversarial debiasing [33], deep generative views [25], and
consistency regularization [13]. All these studies are reported for the ResNet50
based gender classifier trained and tested on the FairFace dataset.

As can be seen, our proposed FineFACE obtained the lowest DoB of 0.26
and the Max-Min accuracy ratio of 1.008 over all the existing published studies.
Moreover, the overall accuracy was not only maintained but also increased by
1.74% compared to the second-best model (indicated as D in the Table) based
on Deep generative views [25]. Therefore, our proposed method obtains state-of-
the-art performance.
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Table 3. Cross-dataset evaluation - Gender Classification Accuracy (%) on UTKFace
and LFWA+ test sets across different demographics for baseline ResNet50 and our
proposed FineFACE.

Dataset Race White Black Asian Indian Others/Undefined Max/Min↓ Overall↑ DoB↓
Gender M F M F M F M F M F

UTKFace Baseline 90.2 72.2 94.6 67.6 88.2 65.7 95.1 74.9 89.1 78.8 1.45 81.9 11.1
FineFACE 91 86.5 93.9 79.7 91.1 81.1 95.1 86.3 90 88.3 1.19 88.5 5

LFWA+ Baseline 96.9 89.1 98.7 78.8 96.5 78.3 97.9 95 96.8 91.1 1.26 95.3 7.7
FineFACE 99.1 98 98.9 95.3 98.6 94.8 100 100 98.4 96.2 1.05 98.6 1.9

Table 4. Cross-dataset evaluation - Gender Classification Accuracy (%) on CelebA
testset across gender for baseline Resnet50 and our proposed FineFACE.

Gender M F Max/Min↓ Overall↑ DoB↓
Baseline 90.6 94.9 1.05 93.2 2.2
FineFACE 96.4 99 1.03 98 1.3

Further, existing bias mitigation techniques based on adversarial debias-
ing [33] and multitasking [5] need demographically annotated data during train-
ing. The generative techniques based on deep generative views [25] and consis-
tency regularization [13] are computationally very expensive and obtain low gen-
eralizability. Compared to the existing methods, the proposed FineFACE offers
significant advantages: it mitigates bias in the absence of protected attributes,
offers high generalizability, and is application-agnostic. Importantly, our method
significantly improves fairness along with overall classification accuracy, empha-
sizing the importance of fine-grained classification.

Table 5. Comparative Analysis with FineFACE. A: Multi-Tasking [5], B: Adversarial
debiasing [33], C: Consistency Regularization [13] D: Deep Generative Views based [25].
The top performance results are highlighted in bold.

Method Accuracy DoB↓ Max/Min↓
Black East

Asian
Indian Latino

His-
panic

Middle
East-
ern

Southeast
Asian

White Overall↑

A 91.26 94.45 95.05 95.19 97.35 94.2 94.96 94.64 1.81 1.067
B 87.66 91.93 93.67 93.8 95.96 91.81 93.96 92.69 2.62 1.095
C 90.83 93.6 94.48 94.7 95.94 93.64 94.57 94 1.59 1.056
D 91.64 95.29 95.38 95.32 97.11 93.5 94.92 94.72 1.72 1.06
FineFACE 96.21 96.84 96.37 96.61 96.53 96.04 96.55 96.46 0.26 1.008
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5.2 Gender-Independent Facial Attribute Classification

In this section, we will discuss the performance of our 13 gender-independent
facial attribute classifiers. We report mean scores over the 13 labels [27] called
gender-independent target attribute (refer to Sect. 4 for more details on the 13
target attributes) with gender as the protected attribute.

Table 6 shows the performance of the gender-independent facial attribute
classifier using our proposed FineFACE over the baseline ResNet50 model. Fine-
FACE improves overall accuracy, minimum group accuracy, and TPR, while
significantly reducing bias by approximately 91% (DEO) and 92% (DEODD).
There is a marginal reduction in maximum group accuracy by only 1.52%. Worth
mentioning, facial attributes like “bags under eyes”, “chubby”, “high cheekbones”,
“narrow eyes”, and “smiling” are more subtle in nature. Thus more detailed fea-
tures from lower layers help in understanding the subtle cues differentiating a
normal cheekbone from a high cheekbone, a narrow eye from a normal eye, and
a natural curvature of lips versus a smile across gender. Thus, obtaining per-
formance enhancement as well as bias reduction for these gender-independent
facial attributes.

Table 6. Facial Attribute Classification Accuracy (%) on the CelebA dataset for base-
line and our proposed FineFACE - mean scores over the 13 attributes [27] called gender-
independent are reported. The top performance results are highlighted in bold.

Method Accuracy↑ Max. grp.
Acc.

Min. grp.
Acc.

TPR↑ Max. grp.
TPR

Min. grp.
TPR

DEO↓ DEODD↓

Baseline 92.47 94.46 90.14 67.9 73.88 61.34 12.54 16.54
FineFACE 92.85 92.94 92.76 76.48 76.97 75.79 1.18 1.38

Comparison with Published Work: In this section, we compare the per-
formance of our proposed FineFACE over bias mitigation techniques namely,
domain-independent models [29] (Domain Indep.), regularization [24,30] (Reg-
ularized), FairMixup [3], GAN-based offline dataset debiasing [27] (GAN Debi-
asing), and adaptive sampling [36] (g-SMOTE + Adaptive Sampling), reported
for the 13 gender-independent facial attribute classifiers.

We summarized the results in the Table 7. The proposed FineFACE has
achieved improved performance in both overall accuracy and accuracy of the
worst-performing group compared to the baseline classifier. Although there is
a slight reduction in the accuracy of the best-performing group (by 1.52%),
the performance of this group remains comparable to the overall and worst-
performing groups which improve by approximately 0.4% and 2.5% respectively.
Worth mentioning, among 6 existing bias mitigation techniques in Table 7, only
g-SMOTE [27] and g-SMOTE adaptive sampling [36] are able to improve per-
formance of the worst performing group, with respect to the baseline, along with
our proposed FineFACE, thus obtaining pareto-efficiency. Furthermore, our
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Table 7. Fairness methods on the CelebA dataset - mean scores over the 13 labels [27]
called gender independent. The top performance results are highlighted in bold.

Method Weighting* Domain
Indep.*

Baseline
single task

GAN
Debiasing

Regularized g-SMOTE +
Adap. Sampl.

g-SMOTE Baseline
FairMixup

Fair
Mixup

FineFACE
[ours]

Accuracy↑ 91.45 91.24 92.47 92.12 91.05 92.56 92.64 92.74 88.46 92.85
Max. grp. Acc. 93.35 93.04 94.46 94.03 94.42 94.44 94.59 93.85 90.42 92.94
Min. grp. Acc 89.06 88.93 88.93 89.85 87.86 90.36 90.35 91.44 86.36 92.76
TPR↑ 64.02 70.74 67.90 66.13 54.2 67.11 66.14 79.13 46.67 76.48
Max. grp. TPR 67.41 75.61 73.88 70.36 56.11 74.06 73.43 80.89 47.85 76.97
Min. grp. TPR 59.74 66.05 61.34 61.25 52.34 59.78 58.32 72.92 44.27 75.79
DEO↓ 7.67 9.56 12.54 9.11 3.77 14.28 15.11 7.97 3.58 1.18
DEODD↓ 9 13.29 16.54 12.04 5.06 19.3 19.32 10.06 4.29 1.38

Table 8. Minimum Group Accuracy for the 13 gender-independent individual
attributes.

Attribute Name Baseline FineFACE

Bags Under Eyes 73.24 80.73
Bangs 94.67 95.9
Black Hair 86.4 90.51
Blond Hair 91.96 94.41
Brown Hair 81.26 89.14
Chubby 89.29 95.64
Eyeglasses 99.23 99.73
Gray Hair 95.28 98.35
High Cheekbones 85.53 87.83
Mouth Slightly Open 93.46 94.23
Narrow Eyes 91.97 87.99
Smiling 91.64 93.17
WearingHat 98.21 99.08

method obtains the highest improvement in the TPR of the worst-performing
groups, along with the second-best results for overall TPR and the TPR for the
best-performing groups. The key highlight of our method is the substantial
reduction in both DEO and DEOdds, 3× lower than the next best method i.e.,
Fair Mixup [3]. Comparison of the various fairness methods is visually repre-
sented in Fig. 1, Sect. 1.2 of the supplementary material

We also reported the minimum group accuracy of the baseline ResNet50
model and our FineFACE for each of the 13 gender-independent attributes
individually in Table 8. Our model outperformed the baseline for all except
1 attributes (“Narrow Eyes” by the baseline is more accurate by approximately
4%). For the other 12 attributes, our model outperformed at least by 0.5% and
at most by 7.9%. Thus, we also demonstrate the efficacy of our FineFACE in
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improving the minimum group accuracy for the majority (12 out of 13 attributes)
of facial attributes on an individual basis.

6 Conclusion

The task of facial attribute classification presents inherent complexities due
to high inter-class similarity, significant intra-class variation, and demo-
graphic diversity, which often result in performance disparities across protected
attributes.

To effectively tackle these challenges, it is essential to incorporate local and
subtle cues into the classification process. In our research, we propose a novel
fine-grained feature framework designed for demographically fair facial attribute
classification. This framework integrates detailed low-level and semantic high-
level information across shallow to deep layers of the model. Through extensive
evaluation on widely used facial attribute datasets, our approach demonstrates
significant effectiveness in learning fair representation, achieving up to a three-
fold reduction in bias compared to state-of-the-art bias mitigation techniques.
Importantly, our method achieves a Pareto-efficient balance between accuracy
and fairness without requiring the presence of protected attribute labels during
classifier training—a critical advantage given privacy concerns and regulatory
constraints that often prohibit the collection of such sensitive data. Further-
more, our study marks the first benchmark evaluation of the fairness of facial
attribute classifiers using fine-grained features compared to existing supervised
bias mitigation techniques.

While the multi-step training strategy extends the training duration com-
pared to the original backbone networks, the training is an offline process and
the more significant concern in real-world applications is the inference cost which
is affordable for our method. As part of future work, we will also explore other
backbone architectures such as Transformer. In addition, we will further analyze
biases across intersectional groups, such as gender + target attribute, following
insights from recent studies [3,36].
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Abstract. Biometric template protection is crucial in biometric recogni-
tion. Cancelable biometrics, a method for template protection, typically
requires both human biometric data and a token as inputs for template
generation. However, when the token is compromised, the template is
vulnerable to various security attacks, leading to privacy breaches. This
paper focuses on one-factor cancelable biometric scheme that relieves
users from the burden of managing tokens. Specifically, we propose a
new one-factor cancelable biometric scheme for protecting real-valued
biometric features. It first obtains a hashed code from the biometirc fea-
ture using prime Cosine LSH functions, then generates an index sequence
from the hashed code, finally, reorders a random string using the index
sequence to create a cancelable template. The experiment results demon-
strate the efficiency of the proposal scheme on real-valued facial, ear and
fingerprint biometric features. We also verify the unlinkability, revoca-
bility and irreversibility of our scheme against various attacks.

Keywords: Cancelable biometrics · Template Protection · Locality
Sensitive Hashing · Generated-Index-based Reordering

1 Introduction

In recent years, biometric recognition has been widely used for identity verifi-
cation. However, once a biometric feature is leaked, the user’s identity privacy
is permanently compromised, leading to security and privacy issues. Therefore,
biometric template protection (BTP) is crucial for privacy.

BTP schemes are categorized into two types: cancelable biometrics (CB) and
biometric cryptosystems (BC), with the former being the focus of this paper.
Cancelable biometrics generate protected templates from the original biometric
features through an irreversible transformation with user-specific parameters.
These templates are then matched within the transformation domain, ensuring
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the protection of the original data. It is imperative that a CB scheme fulfills the
following four criteria [26]:

– Irreversibility: It is computationally infeasible to reconstruct the original fea-
ture from a protected template.

– Revocability: The capacity to revoke an old protected template and generate
a new one as required, with no correlation between two templates.

– Unlinkability: The inability to determine whether two or more protected tem-
plates belong to the same user, preventing user identity leakage caused by
cross-matching.

– Performance preservation: The recognition accuracy of the protected template
should be comparable to that of the original plain template.

1.1 Two-Factor Cancelable Biometrics

In 2001, Ratha and Connell [29] proposed the core idea of cancelable biometric
template protection. Generally, cancelable biometrics are designed as parame-
terized schemes, requiring the user to provide both the biometric feature and a
token (as a key), are frequently referred to as “two-factor” or “tokenized”.

A well-known instance is Biohashing [13]. Through the inner product oper-
ation between the feature and user-specific vectors, followed by binarization, a
protected template is generated. Nevertheless, if the tokens (i.e., the user-specific
vectors) are stolen, the pre-image can be easily obtained from the template, lead-
ing to illegal access [24], as well as linkage and intrusion attacks [3].

The implementation of cancelable biometrics based on Random Projection
(RP) [28] reduces the dimensionality of the feature through random Gaussian
matrices to achieve irreversibility. However, RP schemes can recover the biomet-
ric features when multiple tokens and templates are leaked, leading to privacy
breaches [5]. To solve this problem and improve cancelable biometrics security,
a secure method called Absolute Value Equations Transform (AVET) has been
proposed [5].

In recent years, Locality Sensitive Hashing (LSH) has emerged as a significant
method for cancelable biometrics. LSH has been used for generating cancelable
biometrics for iris [31] and fingerprint [30], based on the Hamming metric space.
A ranking-based LSH method, termed “Index-of-Max” (IoM) hashing, has been
proposed to inspired cancelable fingerprint templates, with two implementations
derived from the IoM hashing concept: GRP-IoM and URP-IoM [14]. Lai et al.
[19] introduced cancelable iris templates based on Indexing-First-Order (IFO)
hashing. Jiang et al. [12] have implemented cancelable face templates based
on LSH under Euclidean and Cosine metrics. However, utilizing Integer Linear
Programming and Quadratic Constrained Quadratic Programming, attackers
can impersonate legitimate uses and conduct reversible attacks on the URP-
IoM [7]. If tokens are stolen, the unlinkability and irreversibility of the IoM
scheme will be compromised, making it vulnerable to illegal access [9].
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1.2 One-Factor Cancelable Biometrics

One-factor cancelable biometrics, also known as tokenless cancelable biometrics,
requires only the user’s biometrics, without tokens.

It was first introduced in [27] for protecting iris codes. The scheme extracts
consistent bits from multiple iris codes of a user, groups them into fixed-length
address words S. Using S to address a random bitstring r generates a template
t, r is also stored. However, this scheme is invertible when r is known to an
adversary, revealing that r must be kept secret [18].

Inspired by the IFO scheme [19], a one-factor cancelable biometrics for
binary fingerprint authentication has been developed [16]. During enrollment, the
scheme transforms the random string r using IFO to obtain a pseudo-identifier
PI, which is stored as a template. The biometric feature is transformed through
IFO to obtain a hashed code h, which is then XORed with r to obtain ciphertext
c. The stored c is used to protect r. During authentication, the biometric feature
is used to recover r′ from c. The pseudo-identifier PI′ is generated from r′ using
the same transformation as in the enrollment stage, and the similarity between
PI and PI ′ is compared. Wang and Li [32] enhanced the GRP-IoM scheme
[14] to achieve one-factor cancelable palmprint templates. The enrollment and
authentication of PI and c are similar to those in [16]. In [32], the PI is gen-
erated by applying minimum signature hashing to r. And h is generated using
GRP-IoM with orthogonal Gaussian projection matrices, referred to as OIOM.
However, in these two one-factor cancelable biometirc schemes, during template
enrollment, the generated pseudo-identifiers PI are essentially unrelated to the
biometric features. The biometric features in these schemes are primarily used
for the secure storage and to recover the random string r.

Another one-factor cancelable scheme, extended feature vector hashing
(EFV), has been introduced to protect fingerprint features [22]. It takes a binary
fingerprint vector as input, generates a permutation seed sequence from the
extended feature vector, and permutes a random binary string r with it to pro-
duce a cancelable template. The extended feature vector is stored after being
XORed with r as auxiliary data, ensuring that neither r nor the biometric
data are stored. This method is also utilized in multimodal cancelable biometric
authentication schemes [21,23]. Some scholars have proposed improvements to
the extended feature vector. A one-factor cancelable fingerprint template protec-
tion was proposed through minimum hash signature and a secure extended fea-
ture vector [25]. By extending the generation of permutation sequences for EFV,
a one-factor cancelable template, termed “indexing self-coding”, was developed
to protect binary fingerprint features [8]. Nevertheless, the original fingerprint
vectors can be revealed through correlation analysis between multiple auxiliary
data and protected templates of the EFV scheme [22].
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1.3 Motivations and Contributions

Currently, token-based two-factor CB schemes require users to retain or carry a
user-special token and input it alongside their biometric data during authentica-
tion. This method poses security risks if the token is stolen or leaked [3,7,9,24].

For one-factor, i.e., tokenless cancelable biometrics authentication, the most
existing research focuses on binary features [8,16,22,25,27], leaving a significant
gap in the study of one-factor real-valued template protection. Additionally, in
some one-factor schemes, the enrollment template is unrelated to the biometric
features [16,32]. Furthermore, one-factor schemes face several security issues, for
instance, EFV-based one-factor schemes [8,21,22] are vulnerable to multiple-
records attacks, and none of the known one-factor schemes address resistance to
similarity-based attacks.

This paper presents a secure one-factor cancelable biometrics authentication
method tailored for real-valued features, with the following key contributions:

– This paper presents a new one-factor cancelable template protection scheme
for real-valued biometric features. It generates a hashed code from the bio-
metric feature using LSH under Cosine metric. Then an index sequence is
generated from the hashed code, and used to reorder a random string to pro-
duce protected template. For the generated template, we prove that each bit
of the random string has an equal probability of selection, enhancing privacy
protection and reducing the impact of noise on recognition accuracy.

– This scheme focuses on real-valued biometric features. Experiments are con-
ducted on facial, ear, and fingerprint datasets, i.e. CASIA-FaceV5, IITD-E
and FVC2002 DB3. The experimental results demonstrate that the proposed
scheme is applicable to various real-valued biometric features.

– This paper comprehensively evaluates the security and privacy of the pro-
posed scheme from both theoretical and experimental perspectives. It ana-
lyzes the irreversibility, unlinkability, and revocability of the proposed scheme,
and its resistance to multiple privacy and security attacks. In addition to com-
mon attacks, the resistance to similarity-based attacks is also evaluated. The
results show that the proposed one-factor cancelable biometric scheme satis-
fies the criteria for template protection schemes and has significant application
prospect.

The structure of the article is organized as follows: Sect. 2 describes the pre-
liminary aspects of this paper. In Sect. 3, we introduce the proposed one-factor
cancelable biometric scheme. Section 4 presents the experimental results from
facial, ear and fingerprint databases. Section 5 presents a detailed security and
privacy analysis of the proposed scheme. Finally, the conclusions are presented
in Sect. 6.
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Table 1. Notations and their descriptions

Notations Descriptions

f Feature vector
H Locality Sensitive Hashing (LSH) family
h(·) Locality Sensitive Hashing function h(·) ∈ H
m Number of LSH functions, a prime number
u Cosine LSH-based hashed code
k Length of subcode, 2k < m

u̇ The concatenation of k repetitions of u
ûi The ith subcode of u̇
ūi The decimal representation of ûi

q Generated-Index sequence
r Random bitstring
t Protected template
b Encrypted bitstring
τ Threshold of matching
S Similarity score between protected templates

2 Preliminaries

This section introduces locality sensitive hashing (LSH) method for the cosine
metric. The notations used in this paper are summarized in Table 1.

Locality Sensitive Hashing (LSH) was initially designed to solve the approxi-
mate nearest neighbor search problem [11]. Points that are closer in the original
metric space have higher collision probability in the hash domain, and vice versa.
The LSH function for the cosine metric [4] is defined as in Eq.(1).

ha(u) =

{
1, if a · u ≥ 0
0, if a · u < 0

(1)

where a random vector a is selected from the n-dimensional Gaussian distribu-
tion (i.e., each coordinate is drawn from the 1-dimensional Gaussian distribu-
tion). Using m Cosine LSH functions, it is possible to transform an n-dimensional
real-valued vector into a m-length binary string.

3 Methodology

This section begins with an overview of our scheme in this paper in Fig. 1,
followed by a detailed description. The feature extraction algorithm used in this
paper, which extracts a fixed-length real-valued feature f from biometric data,
is introduced in Sect. 4.
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Fig. 1. An overview of one-factor cancelable biometric scheme

3.1 Hashed Code Generation Based on Cosine LSH

This stage embeds the n-dimensional real-valued feature f into a m-dimensional
binary hashded code u using m Cosine LSH functions, as shown in Algorithm 1.

Each hash function hi=1,··· ,m ∈ H maps the n-dimensional feature f into a
binary number ui [4]. By combining m independent hash functions, the feature
is converted into a uniformly distributed binary hashed code u ∈ Z

m
2 . Each LSH

function is a dimensionality reduction process aimed at enhancing irreversibility.
Before and after the transformation, the pairwise distance relationship between
vectors is maintained.

Algorithm 1. Hashed Code Generation: Cosine LSH-based
Input: Feature vector f ∈ R

n, m Cosine LSH functions hi=1,··· ,m ∈ H, m is a prime
Output: binary hashed code u ∈ Z

m
2

1: for i = 1 to m do
2: ui = hi(f )
3: end for
4: return u

3.2 Cancellble Template Generation Based on Generated-Index-
Based Reordering (GI-R)

This stage employs our proposed Generated-Index-based Reordering (GI-R)
method to generate the protected template t from u, as shown in Algorithm 2.

The key of Generated-Index-based Reordering (GI-R) is to generate an index
sequence from u, such that each bit of r is selected with equal probability and
reordered. The implementation of GI-R is described as follows:
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Algorithm 2. Protected Template Generation
Input: : Hashed code u ∈ Z

m
2 , system parameter k, m, m is a prime, 2k < m

Output: Protected template t ∈ Z
m
2 , bitstring b ∈ Z

m
2

1: Generate a m-bitstring r ∈ Z
m
2 , Initialize b = [0]m

2: u̇ = u|u| · · · |u
︸ ︷︷ ︸

k

, u̇ ∈ Z
km
2

3: for i = 1 to m do
4: ûi = [u̇(i−1)k+1|u̇(i−1)k+2| · · · |u̇ik]
5: Convert binary ûi ∈ Z

k
2 to decimal ūi ∈ Z2k

6: qi = ((i × (ūi + 1)) mod m) + 1
7: bi = ri ⊕ ui

8: ti = rq i

9: end for
10: return t, b

(1) Let u̇ denote the concatenation of k repetitions of u, ûi be the ith k-
subcode of u̇, that is, ûi = [u̇(i−1)k+1|u̇(i−1)k+2| · · · |u̇ik], where | denote
the concatenation operation.

(2) Converting subcode ûi from a binary code to a decimal number ūi ∈ Z2k ,
since the subcode is k bits, then the decimal ūi ∈ {0, · · · , 2k − 1}.

(3) Get qi = ((i × (ūi + 1)) mod m) + 1, where qi ∈ {1, · · · ,m}, and can be
used as an index.

(4) The protected template t is generated by reordering the random binary
string r through q. Then the hash code u is XORed with r to generate an
encryption bitstring b, which securely stores r. Finally, the random binary
string r is discarded, leaving only t and b stored.

In our scheme, during the template enrollment stage, each bit in the random
bitstring r is selected with equal probability, as proved in Theorem 1.

Theorem 1. In the enrollment stage, each bit in the random bitstring r is
selected with equal probability, i.e., the generated index sequence q = [qi|i =
1, · · · ,m] ensures that for any index a ∈ {1, · · · ,m}, the probability of finding
an i ∈ {1, · · · ,m} such that qi = a is uniform, where m is a prime number.

Proof. In enrollment, for any feature f ∈ R
n, since the transformation param-

eter of each Cosine LSH function is sampled from a n-dimensional standard
Gaussian distribution, then ui is binarized using a threshold of 0 and has an
equal probability of being 0 or 1. This means each bit of the generated hashed
code u is independently and uniformly distributed. Therefore, in Algorithm 2,
ūi ∈ Z2k is uniformly distributed over {0, · · · , 2k − 1}, where 2k < m.

For any a ∈ {1, · · · ,m}, the probability that there exists an i ∈ {1, · · · ,m}
such that qi = a can be expressed as:

Pr[∃i ∈ {1, · · · ,m}, s.t. qi = a]
=Pr[∃i ∈ {1, · · · ,m}, s.t. a = (((ūi + 1) × i (mod m)) + 1)]

(2)
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(1) When a �= 1,

Pr[∃i ∈ {1, · · · , m}, s.t. a = (((ūi + 1) × i (mod m)) + 1) ∩ a �= 1]

=Pr[∃i ∈ {1, · · · , m − 1}, s.t. (ūi + 1) ≡ (a − 1) × i−1 (mod m)] × Pr[a �= 1]

=
2k

m − 1
× 1

2k
× m − 1

m
=

1

m
(3)

where i−1 is the modular inverse of i modulo m. Since m is a prime, every
i ∈ {1, · · · ,m − 1} has a unique inverse modulo m.

For any ūi ∈ {0, · · · , 2k−1}, there are 2k possible values for ūi+1. Therefore,
the size of the value domain for (ūi + 1) (mod m) is 2k, then, for any a ∈
{2, · · · ,m} and i ∈ {1, · · · ,m − 1}, the probability that (a − 1)× i−1 ≡ (ūi +1)
(mod m) is 2k

m−1 .
Since each ūi is uniformly distributed in {0, · · · , 2k − 1} with a probability

of 1
2k

, therefore, for any index a ∈ {2, · · · ,m}, there exists an i ∈ {1, · · · ,m−1}
such that the probability of a being selected is 2k

m−1 × 1
2k

× m−1
m = 1

m .

(2) When a = 1,

Pr[∃i ∈ {1, · · · ,m}, s.t. a = (((ūi + 1) × i (mod m)) + 1) ∩ a = 1]
=Pr[∃i ∈ {1, · · · ,m}, s.t. (ūi + 1) × i ≡ 0 (mod m)] × Pr[a = 1]

=1 × 1
m

=
1
m

(4)

let i = m, then (ūi+1)×m ≡ 0 (mod m) always holds true. Therefore, when
a equals 1, the probability of a = ((ūi + 1) × i (mod m) + 1) is always 1, in
this case, the probability of index number a being selected is 1

m .

This implies that for any index number a ∈ {1, · · · ,m}, the probability of
a being selected is 1

m , leading to the conclusion that each bit in the random
bitstring r is selected with equal probability.

3.3 Similarity Score Calculation and Template Matching

During the authentication, the user is required to provide his biometric features
only, implementing a one-factor authentication.

Firstly, executing Algorithm 1 to obtain the hashed code u′ ∈ Z
m
2 from the

extracted feature f ′, executing steps 2–8 of Algorithm 2 to obtain the index
sequence q′ = [q′

i|i = 1, · · · ,m] from u′. Then, recover r′ by r′ = b ⊕ u′, and
generate the template t′ by reordering r′ according to q′.

The similarity score is quantified by Hamming similarity [4]:

S = 1 − D(t, t′) = 1 − dist(t, t′)
m

,S ∈ [0, 1], t ∈ Z
m
2 , t′ ∈ Z

m
2 (5)
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where dist(t, t′) represents the Hamming distance between templates, which is
the number of differing bits between the two bitstrings, m is the length of the
bitstring, and D(·) is normalized Hamming distance.

Specifically, a larger distance indicates lower similarity score, and vice versa,
when D(·) = 0, then S = 1. If the similarity score S is greater than the matching
threshold τ , authentication is successful; if S < τ , it failed.

In this way, a one-factor cancelable template for the real-valued feature can
be achieved. This approach has two advantages: (1) Since neither r nor u is
stored in the database, they cannot be leaked. An attacker must guess both r
and u simultaneously, which makes the scheme highly irreversible. (2) Since u is
generated by a genuine user, ensuring only the genuine user can decrypt r from
b to generate a correct t.

4 Experimental Results

4.1 Databases

The databases and feature extraction algorithms used in this study are detailed
in Table 2.

Table 2. Information of the databases

Facial Ear Fingerprint

Feature extraction Algorithm ArcFace [6] CNN [10] KPCA [15]
Feature Dimension R

512
R

512
R

299

Database name CASIAFace-V5 [1] IITD-E [17]a FVC2002 DB3 [2]b

Number of users 500 124 100
Number of images per user 5 at least 3 5
Number of total images 2500 493 500
Number of homologous matches 5000 790 1000
Number of heterogenous matches 3118750 120488 123750
a The IITD-E dataset includes both raw and automatically cropped and normalized
ear images. We utilized all the raw images for our study.
b The FVC2002 DB3 database comprises fingerprint images from 100 users, with each
user having 8 images. For experiment, the first three images from each user are used
to train the feature extraction model and the remaining five images for template
transformation experiments.

4.2 Parameters of the Proposed Scheme

The cancelable biometrics require that the recognition accuracy should not sig-
nificantly decline after the template transformation. This section investigates the
influence of parameter selection on recognition accuracy in our scheme. Recog-
nition accuracy is quantified using Equal Error Rate (EER), which refers to the
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error rate when the False Accept Rate (FAR) and False Refuse Rate (FRR) are
equal. The threshold τ is set as the similarity score when FAR = FRR = EER,
the lower the EER, the better the recognition performance of the system.

The two parameters used in this scheme are as follows, and shown in Fig. 2:

– Length of the subcode k when generating the index sequence.
– Number of Cosine LSH functions m, which is also the length of the template.

Fig. 2. EER with parameter

Effect of Parameter k. Figure 2a presents the curves of EER vs k in the
CASIA-FaceV5 database. In the experiments, the length of the hashed code
is successively fixed at 401, 599, 907, 1201. By varying the subcode length
k ∈ {1, 2, 3, 4, 5}, experiments are conducted to determine the impact of k. It
illustrates that, for a fixed value of m, the EER increases exponentially with
increasing k, which is consistent with expectations. The increase k results in a
higher number of consecutive bits within the hashed code being associated with
each index value, making it more susceptible to noise from the hashed code.
Additionally, when k remains constant, the larger m is, the lower the EER.

Effect of Parameter m. It aims to further verify the relationship between
recognition accuracy and m. Figure 2b illustrates the curve of EER with m. Given
that k is consistently set at 4, the values of m (where m is a prime number) are
sequentially increased from 101, 199, 401, 599, 701, 907, 1201, 1499, 1801, 2099,
2399, 2699, 2999, 3499, 4001 and ultimately reaching 7001. The figure reveals
that as the template length m increases from 101 to 1201, there is a significant
reduction in EER. Subsequently, the matching accuracy improves at a slower
rate and tends to stabilize when m is larger than 2999. The conclusion drawn
is that an increased template length m is beneficial to improve the matching
accuracy in template authentication.
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4.3 Accuracy Performance Evaluation and Computation Efficiency

In this section, to validate the accuracy and efficiency of the proposed one-
factor scheme, we compared it with advanced two-factor real-valued biometirc
templates [5,14]. The parameters in this paper are k = 4, m = 3499. Figure 3
shows the distribution of homologous and heterogenous match similarity scores,
as well as EER and threshold selection for our scheme in different databases.

Fig. 3. The distribution of homologous match and heterogenous match similarity
scores, and threshold selection in different databases.

Table 3 presents the accuracy comparison, it can be seen that our scheme
achieves higher experimental accuracy compared to two-factor schemes, except
for slightly lower accuracy on fingerprint features compared to GRP-IoM. The
proposed scheme performs well across three real-valued biometrics, and the EER
of our scheme remains almost unchanged even after template protection.

Table 3. EER% for original features and transformed templates (lower is better)

Method CASIAFace-V5 IITD-E FVC2002 DB3 vector size

original 0.106253 4.431607 2.156970 R
n

GRP-IoM [14] 0.131210 4.672924 0.39960 Z
900
16

URP-IoM [14] 7.932080 7.973271 1.363030 Z
500
250

AVET [5] 1.428473 5.206829 2.127070 R
n/2

our proposal 0.121323 4.423148 0.594141 Z
3499
2

The computational complexity of the scheme is evaluated by average time for
template enrollment and authentication in IITD-E. The primary computational
overhead in proposed scheme is from Cosine LSH and index sequence generation.
Table 4 shows the average time cost on a desktop with Intel(R) Core(TM) i5-9500
CPU @ 3.00GHz, 64-bit Windows.

The template enrollment time in the proposed scheme is superior to that in
GRP-IoM. Since Cosine LSH and index sequence generation are also required
for one-factor template authentication, the authentication time is approximately
8.5 milliseconds, slightly higher than in other two-factor schemes. Although the
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Table 4. Average time for template enrollment and authentication in IITD-E(s)

GRP-IoM [14] URP-IoM [14] AVET [5] our proposal

Enrollment time 0.531221 0.019305 0.014317 0.049969
Authentication time 0.005943 0.007739 0.000525 0.008532

URP-IoM and AVET schemes take less time than ours, they have much lower
accuracy on all three biometric databases. Our scheme emphasizes achieving
high-accuracy authentication, and secure one-factor cancelable templates. Con-
sidering these factors, our one-factor cancelable biometric scheme, for real-valued
biometric features, demonstrates practical value.

5 Security and Privacy Analysis

5.1 Unlinkability Analysis

The unlinkability of our scheme is verified by comparing the scores of pseudo-
genuine and pseudo-impostor as described in [14].

The pseudo-impostor score refers to the similarity score from each template
of the same feature by using different random bitstring r. In the experiment,
51 random bitstrings r were used to generate 51 templates t. Each user’s first
template is compared with the remaining 50 templates to calculate the pseudo-
impostor scores for each feature. And the pseudo-genuine scores are calculated
based on the templates generated from different features using different r.

The experimental results of the scheme are shown in the Fig. 4, which shows
that the pseudo-genuine and pseudo-impostor scores distributions are largely
overlapped. Hence, the proposed scheme satisfies the unlinkability property.

Fig. 4. The distributions of pseudo-genuine and pseudo-impostor scores for unlinkabil-
ity analysis. Overlapped distributions indicate indistinction between templates gener-
ated from the same user or from others.
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5.2 Revocability Analysis

Revocability is typically validated experimentally using three score distributions:
pseudo-impostor scores, impostor scores (scores of different user’s templates),
and genuine scores (scores from the same user).

As shown in Fig. 5, there is a significant overlap between the pseudo-impostor
and impostor score distributions. This indicates that even though the templates
are generated from the same vectors, the newly generated 50 templates with
the different random bitstrings r are distinctive. And the distribution of the
genuine scores is distinctly separated from the impostor and pseudo-impostor
scores, confirming the revocability of the proposed scheme.

Fig. 5. The distributions of genuine, impostor and pseudo-impostor scores for revoca-
bility analysis.

5.3 Irreversibility Analysis

Irreversibility ensures that reconstructing biometric feature f from the protected
template t is computationally infeasible, thus preserving privacy even if the
template is leaked. Assuming that the adversary knows the authentication algo-
rithm and transformation parameters (e.g., hi∈{1,··· ,m} ∈ H, m, k), for template
t ∈ Z

m
2 , the attacker cannot directly infer the real-valued feature f ∈ R

n because
the template t is a reordering of a random string r, which is not stored.

Brute Force Attack (BFA). A brute force attack involves the adversary
guessing all possible feature values directly. Assuming the worst-case scenario
where the adversary knows the maximum and minimum values of the feature
components and the precision, they would guess every possible value for each
dimension sequentially. As shown in the Table 5, such an attack is infeasible.

Attack via Single Record. A single record attack occurs when an adversary
knows a pair of the encrypted binary string b and the template t and attempts
to recover f . In the proposed scheme, f is first converted into a hashed code
u. u is then used to generate an index vector p, which is used to reorder the
random string r and generate a protected template t. The central idea of the
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Table 5. Complexity to invert single and entire feature component

Min value with six
decimal precision

Max value with six
decimal precision

Possibilities for single
feature component

Total possibilities for
entire feature

CASIAFace-V5 −0.210062 0.214465 424527 ≈ 219 219×512 = 29728

IITD-E −0.720602 0.850098 1570700 ≈ 221 221×512 = 210752

FVC2002 DB3 −0.250376 0.213155 463531 ≈ 219 219×299 = 25681

single record attack is to recover r first, estimate u through b ⊕ r, and finally
use u along with hi∈{1,··· ,m} ∈ H to recover f .

Since r is not stored, an attacker must first recover it. Given b, r can be
recovered from b ⊕ u. However, since u is not stored, r cannot be recovered.
Additionally, the adversary may guess all possible u and r combinations, total-
ing 2m possibilities. While this might be feasible for small values of m, in our
scheme, m = 3499, necessitating 23499 combinations, rendering the attack com-
putationally infeasible. Another method to recover r involves inversely reordering
t according to the index vector p. However, p is not stored, the adversary cannot
use p to recover r. Therefore, this is also impossible. Consequently, recovering
the feature from a single record is computationally infeasible.

Attack via Record Multiplicity (ARM). In attack via record multiplicity,
the adversary knows multiple sets of {t, b} generated from the same user in
multiple applications, and attempts to recover the original feature f through
correlation analysis. As described above, b = u ⊕ r, thus, an attacker can con-
duct correlation analysis on multiple b values to reveal r values when the u for
different b is identical [22].

For instance, given f and three distinct r, such as rA, rB and rC , the gen-
eration of different b values is bA = uA ⊕ rA, bB = uB ⊕ rB , bC = uC ⊕ rC ,

If the generated hashed code u values remain the same, uA = uB = uC ,
an adversary can cross-XOR the b values as bA ⊕ bB = rA ⊕ rB, bA ⊕ bC =
rA ⊕ rC, bB ⊕ bC = rB ⊕ rC. Afterwards, the attacker can conduct frequency
analysis on the relevant r values and quickly recover the possible u and r.

However, in practical scenarios, the use of Cosine LSH functions to gener-
ate b from f involves a prior randomization process, effectively resisting such
attacks. Here, u is a random bitstring generated by f using m Cosine LSH func-
tions. Thus, for the same user, different u values will be formed across different
applications, with each bit of u uniformly distributed in {0, 1}. Consequently,
an attacker cannot perform XOR operations to derive u or r from multiple b.

Additionally, t is an indexed reordering of r. However, given that each r is
unique and each bit of r is selected with equal probability, recovering u from
multiple sets of {t, b} is equally challenging as recovering u from a single {t, b}
record. Thus, our scheme is irreversible under attacks via record multiplicity.

Similarity-Based Attack (SA). Similarity-based Attack (SA), also known
as the Known-Sample attack, has recently been proposed as a threat to can-
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celable templates [20]. This attack exploits similarity in distance relationships
between biometric features before and after transformation to iteratively approx-
imate the feature vectors. To resist this attack, the relationships in similarity
scores between heterogenous feature pairs and template pairs should be nonlin-
ear [12]. The relationship is shown in Fig. 6, the red dots indicates heterogenous
matches and blue dots indicates homologous matches. The figure shows that in
our scheme, the similarity between heterogeneous features and templates pri-
marily exhibits nonlinearity. This suggests that reducing the distance between
heterogeneous templates through noise addition or random guessing is challeng-
ing. Therefore, the proposed scheme effectively mitigates similarity-based attack.

Fig. 6. The relationship between the similarity scores of features and templates. The
x-aix represents Euclidean similarity between features [9], and the y-axis represents
Hamming similarity between tamplates.

5.4 Security Analysis

Brute Force Attack (BFA). In security analysis, a brute force attack refers
to the possibility of illegal access by using randomly generated templates for
authentication. In this scheme, the template is a binary string of length m,
resulting in 2m possible values. With the parameter m = 3499, the complexity
of successfully guessing the exact template is 23499, making it infeasible.

False Accept Attack (FAA). In this attack, illegal access can be achieve as
long as the similarity scores between the template obtained by the attacker and
the enrollment template exceed the threshold τ . Therefore, for t ∈ Z

m
2 with a

matching threshold τ , the expected number of attempts required for a successful
attack is 2m×τ . In Fig. 3, the τ for CASIAFace-V5, IITD-E, and FVC2002 DB3
are 0.5292, 0.5981 and 0.5215 respectively. Thus, the attack complexities is at
least 23499×0.5215 ≈ 21825, making it computationally infeasible.
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Cipher-Text Only Attack (COA). This attack in symmetric key cryptosys-
tem aims to recover plaintext from ciphertext. In the proposed scheme, a random
string r is XORed with a hashed code u to produce b, which is stored as cipher-
text. Here, r corresponds to the plaintext. Given b = u ⊕ r, if u is unknown,
r remains a uniformly random string. The attack complexity is only related to
the length m, which is 2m, and the attacker cannot learn r from b alone.

Known-Plaintext Attack (KPA). KPA involves recovering the key when
both plaintext and ciphertext are known. In our scheme, this equates to deter-
mining whether u can be derived from b and r. Given b = u⊕r, knowing b and
r reveals u. However, since r is not stored or accessible to an adversary in our
scheme, KPA is not applicable.

6 Conclusion

This paper proposes a one-factor cancelable biometric scheme based on
Generated-Index-based Reordering (GI-R) to protect real-valued biometric fea-
tures. Briefly, the proposed scheme generates an index sequence from a bio-
metric feature and reorders a random string to produce a cancelable template.
Therefore, no second factor, such as a token, is required for authentication. It is
demonstrated that during template enrollment, each bit of the random string is
uniformly selected, ensuring high recognition accuracy and good performance.
Experiments are conducted on facial, ear, and fingerprint databases. In addition
to performance preservation, the scheme satisfies the requirements of irreversibil-
ity, unlinkability and revocability. The security analysis section shows that the
proposed scheme effectively resists known attacks.
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Abstract. In this work, we tackle the problem of domain-generalized action
recognition, i.e. we train a model on a source domain and then test the model
on other unseen target domains with different data distributions. Generalizing
across different domains often requires distinct representational invariances and
variances, which makes domain generalization even more challenging. However,
existing methods overlook the nuanced requirements of representational invari-
ances/variances across different domains. To this end, we propose Multi-teacher
Invariance Distillation for domain-generalized Action Recognition (MIDAR), a
method to learn multiple representational invariances/variances tailored to the
unique characteristics of diverse domains. MIDAR comprises two key learning
stages. First, we learn multiple teacher models to specialize in distinct represen-
tational invariances/variances. Then, we distill the knowledge of teachers to a
student model through the adaptive reweighting (ARW) layer, which determines
the ratio of supervision from different teachers. We validate the proposed method
on public benchmarks. The proposed method shows favorable performance com-
pared to the existing methods across multiple domains on public benchmarks.

Keywords: Action Recognition · Domain Generalization · Knowledge
Distillation · Self-Supervised Learning · Invariance

1 Introduction

The rapid progress in action recognition [6,15,16,26,41,52] has significantly improved
the ability of video models to understand human actions in videos. Despite the great
progress, most action recognition models often suffer from performance degradation
on the test datasets with different distributions from the training dataset [9–11,33]. This
performance drop is evident in domain generalization [47], highlighting the vulnerabil-
ity of action recognition models to distribution shifts. As shown in Fig. 1 (a) and (b),
training and testing in the same dataset, e.g. Jacob’s kitchen dataset, allows the model
to correctly recognize the action ‘Take’. However, as depicted in Fig. 1 (c), testing the
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Fig. 1. (Single-source) domain generalization. (a) We train a video recognition model on a
source domain (e.g., Jacob’s Kitchen); (b) When we test the model on the same data distribution,
the model performs reasonably well; (c) However, when the model is evaluated on an unseen
target domain (e.g., Theo’s Kitchen), the performance drops significantly due to domain shifts.

model on a dataset with a distribution shift from the training data, e.g. trained on Jacob’s
kitchen dataset and test on Theo’s kitchen dataset, significantly degrades the model per-
formance from 63.2% to 30.9%. The model fails to recognize the action ‘Take’ and
misclassifies it as ‘Wash’. A desired model would not suffer from this performance
drop across domains.

We hypothesize that we can enhance the generalization performance of a model
by learning multiple representational invariances/variances. We empirically find that
the beneficial invariances/variances depend on the source and target distributions. In
Table 1, we show domain generalization performance of a few models: i) a base-
line TSM [26] that does not explicitly learn any representational invariances, ii) a
color-invariant TSM, iii) a temporal-invariant TSM, iv) an color&temporal-invariant
TSM, all evaluated on the EPIC-KITCHENS dataset [12]. Please refer to Sect. 3.1 for
detailed information on model training procedures. We find that the color and temporal-
invariant model outperforms the baseline, whereas the color&temporal-invariant model
underperforms the baseline. The results indicate that the effectiveness of specific
invariances/variances depends on the source and target distributions. We could expect
improved generalization performance if we can appropriately learn to incorporate mul-
tiple invariances/variances.

Table 1. Baseline Domain Generalized Action Recog-
nition Performance. We show the domain generalization
accuracy of models with distinct representational invari-
ances and a model naively learned multiple invariances. We
use the TSM model with a ResNet-50 backbone.

Method Average Accuracy

Baseline Model 37.07 ± 3.39

Color Invariant Model 37.83 ± 3.65

Temporal Invariant Model 38.36 ± 2.73

Color&Temporal Invariant Model 35.34 ± 5.38

Multi-source domain gen-
eralization [2,24,25,40] might
be a solution to learn mul-
tiple invariances. However, it
is impractical for video action
recognition as collecting and
labeling multiple video action
recognition datasets is labor-
intensive and costly. Single-
source domain generalization
methods
[5,8,42,43,47,53] could learn representational invariances in image recognition. How-
ever, we empirically find these methods struggle with the temporal dimension critical
for video data. RADA [47] learns invariances by adversarial perturbations. They perturb
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the data distribution of the source domain to cover the unseen target domain. However,
they do not learn diverse invariances e.g. temporal and order variance/invariance, which
may be beneficial in some domains. A naive approach for learning multiple invariances
could be training a model with multiple tasks, each responsible for a specific type of
invariance. However, we empirically find this approach results in inferior performance
even compared to the baseline without any invariances in Table 1. Models with only
a single type of invariance, e.g. color invariance, show improved domain generaliza-
tion performance (38.36% vs. 37.07%). However, a model naively trained with both
color and temporal invariance learning heads underperforms compared to the baseline
(35.34% vs. 37.07%). The observations underscore the importance of a nuanced app-
roach to learning multiple representational invariances and variances to achieve robust
performance across diverse domain generalization scenarios.

In this work, we introduce Multi-teacher Invariance Distillation for domain-
generalized Action Recognition (MIDAR) to address the challenge of learning multiple
invariance/variance. Our approach involves two stages. In the first stage, we train mul-
tiple teacher models, each specializing in a different representational invariance or vari-
ance. In the next stage, we distill the knowledge from multiple teachers into a student
model. MIDAR adaptively reweighs the supervision from multiple teachers, allowing
the student model to learn distinct representational invariance/variance. We validate the
effectiveness of the proposed method on public benchmarks. MIDAR shows favorable
performance compared to the existing methods.

To summarize, we make the following contributions.

– We introduce MIDAR, a new training method addressing the challenge of learn-
ing multiple representational invariances/variances for domain-generalized action
recognition.

– We introduce the Adaptive Reweighting layer to adjust the contribution of multiple
teachers, allowing the student model to leverage the diverse representational invari-
ance/variance of each teacher.

– We conduct extensive experiments on the Epic-Kitchens benchmark to validate
MIDAR. Our findings indicate that MIDAR’s approach to learning diverse represen-
tational invariance/variance outperforms current SOTA methods like RADA, which
rely on adversarial perturbation.

2 Related Work

2.1 Video Action Recognition

2D CNNs [26,41,52], 3D CNNs [6,15,38], and two-stream CNNs [16,34] are popular
techniques to recognize human actions from videos. More recently, Transformer-based
methods have shown great performance [3,4,14,18,31,44,46]. Despite the great recent
advances in action recognition, we find that state-of-the-art action recognition methods
still suffer from cross-domain generalization: a model trained on one domain shows
poor performance on other domains with different data distributions. In this work, we
tackle the domain-generalized action recognition task to address the challenge.
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2.2 Domain Generalization

Recently, domain generalization has drawn significant attention from the community
since training and test data usually have different distributions in practice. Broadly,
there are two principal categories of approaches in the domain generalization litera-
ture: i) feature-based domain generalization, and ii) data-based domain generalization.
Feature-based domain generalization methods [2,5,24,25,42] aim to learn domain-
invariant representations to enhance the generalization performance of models. On the
other hand, data-based domain generalization methods [21,39,40] augments training
data to generate adversarial samples and synthetic data with different styles and scenes
that bridge the gap between source and target domains. These works have shown great
progress in domain-generalized image recognition. However, domain generalization for
video recognition is still under-explored. To the best of our knowledge, there is only one
work on domain-generalized action recognition: Robust Adversarial Domain Augmen-
tation (RADA) [47]. RADA learns domain invariant video representation by training on
the perturbed data and adversarial examples. Our work is on domain-generalized action
recognition as well. In contrast to RADA, the proposed method learns the nuanced
requirements of the representational invariances across different domains, thus offering
a novel approach to this challenging problem.

2.3 Knowledge Distillation

Knowledge distillation is a popular technique to transfer knowledge from one model to
another model. We can categorize knowledge distillation into three groups: i) response-
based, ii) intermediate, iii) relation-based, and iv) multi-teacher knowledge distilla-
tion. Response-based knowledge distillation methods [19,51,54] encourage the student
model to mimic the output of the teacher. In intermediate knowledge distillation [1,29],
the student model aims to learn the same feature representation as the feature represen-
tation of the teacher. In Relation-based knowledge distillation [30], the student model
mimics the relative distance and angle between data points in the feature space of the
teacher model. In Multi-teacher knowledge distillation [27,48,49], a student model
learns from the combined knowledge of multiple teacher models, leveraging diverse
representations. In this work, we leverage knowledge distillation techniques to address
the challenge of domain generalization. We learn a student model using multiple teach-
ers, each of which specializes in distinct representational invariances. We dynamically
adjust the contribution of different teachers by learning an adaptive re-weighting layer.

3 Method

We propose Multi-teacher Invariance Distillation for domain-generalized Action
Recognition (MIDAR). As shown in Fig. 2, we employ multiple teachers each with
expertise in distinct representational invariance/variance. Our objective is to distill a
broad spectrum of invariances/variances, including order variance, temporal invariance,
and color invariance, into a student model. This knowledge distillation process encom-
passes both the feature representations and the output logits of these teacher models. We
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propose an adaptive reweighting layer to dynamically adjust the contribution from each
teacher based on the data. In the following subsections, we provide detailed descrip-
tions of each component of MIDAR. We describe the training process of teacher mod-
els in Sect. 3.1. Then we illustrate the proposed multi-teacher distillation framework in
Sect. 3.2. Finally, we describe the proposed adaptive reweighting method in Sect. 3.3.

3.1 Training Teacher Models

Color Invariant Teacher. Color invariance is desirable in many action recognition
scenarios. For example, a model should be able to correctly recognize the ‘playing
tennis’ action regardless of whether the tennis court is green grass or brown mud. To
learn color invariance, we employ color jittering augmentation during the color invariant
teacher training process. Given an input video, we randomly jitter the brightness, con-
trast, saturation, and hue of each frame. Following prior works [17,32,55], we employ a
temporally coherent color jitter augmentation, i.e. we use the same color jittering across
all the frames within an input video.

We employ supervised contrastive learning (SCL) [23] for color invariant teacher
training. We empirically find that SCL is beneficial for color invariance learning, com-
pared to using the cross-entropy loss. In the SCL framework, we define any pair of
videos from the same action class as a positive pair, regardless of color augmentation.
We define any pairs from different action classes as negative pairs. We define the SCL
loss for learning color invariance as follows:

Fig. 2. Overview. (a) We use a multi-teacher distillation framework to distill multiple represen-
tational (in)variances into a student model. Both features and the logits are distilled from each
teacher to the student model. (b) For logit distillation, we propose an adaptive reweighting layer
to adjust the impacts of each teacher. Specifically, we assign one learnable parameter for each
teacher so that the distillation strength of each teacher is dynamically adjusted during training.
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LSCL =
∑

i∈B

−1
|P (i)|

∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, (1)

where B denotes the set of all input data within a minibatch while each i-th instance
is an anchor. A(i) denotes the set of all input data within a mini-batch except the i-th
instance, i.e. A(i) ≡ B\{i}. The set of all positive pairs P (i) contains samples with
identical class labels to i-th instance, including color-augmented samples. In (1), we
scale the similarity between the anchor embedding zx and any positive sample embed-
ding zp by the temperature hyperparameter τ .

In SCL, a model learns to align positive pairs, each consisting of different augmen-
tations. As a result, a teacher model trained with SCL has specialized expertise, i.e.
color invariance in our case, that could be generalizable across different domains [37].

Temporal Invariant Teacher. Unlike image data, video data has an additional tem-
poral dimension. The same human action might have different speeds, durations, or
temporal patterns across different domains. Consequently, to robustly recognize human
actions in various domains, we desire a temporal invariant model [13,17,35,55]. To
learn temporal invariant representations to a teacher model, we employ three tempo-
ral augmentations [55] that have shown significant performance improvement: T-Half,
T-Drop, and T-Reverse. For example, let us assume we have 4 frames with indices
[1, 2, 3, 4]. Then the T-Half augmentation repeats the first or the second half of the video
only: e.g. [1, 2, 3, 4] → [1, 2, 1, 2] or [1, 2, 3, 4] → [3, 4, 3, 4]. The T-Half augmenta-
tion encourages the model to be robust to the partial temporal occlusion. The T-Drop
augmentation drops random frames in the video, substituting them with the previous
frame: e.g. [1, 2, 3, 4] → [2, 2, 4, 4]. The T-Drop augmentation encourages the model to
be invariant to the speed of the action. The T-Reverse augmentation inverts the order of
the video frames, e.g. [1, 2, 3, 4] → [4, 3, 2, 1]. Following the prior work [55], we ran-
domly select one temporal augmentation for augmenting each video. We employ (1),
supervised contrastive learning with these temporal augmentations [55]. We empirically
find that using the SCL loss is beneficial for temporal invariance learning compared to
using the standard supervised training with the cross-entropy loss for the prediction.

Order Variant Teacher. To distinguish fine-grained actions with subtle differences,
e.g. opening and closing a door, a model needs to be sensitive to the temporal order of
events. To encourage a model to be sensitive to the order of temporal events, we employ
a self-supervised task: video clip order prediction [45]. In this task, we shuffle the clips
sampled from an input video. Then we input the shuffled clips into a model. The model
should predict the correct chronological order of the clips. Predicting the correct tem-
poral sequence of video clips encourages the model to specialize in order variance.
Through this task, a model better understands temporal relationships and dependen-
cies between different temporal segments of the actions. Order variance is beneficial
for domain generalized action recognition since the order of the action often does not
change across people or locations. Furthermore, order variance is desirable as learning
order variant representation is learning action representations robust to scene distribu-
tion shift across domains [11].
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To learn order variance, we define the order variance (OV) loss as follows:

LOV = −
C!∑

i=1

yi log fo(ψ). (2)

Here, the model takes the concatenated input ψ = (φ1, ..., φC), where each φi

is a feature vector of i-th clip in the input video. The model predicts a probability
distribution across C! possible temporal orders of the input clips, where C denotes the
number of clips in an input video. yi is the i-th element of y, while y is the ground truth
one-hot vector of length C! with the correct clip order of the input video.

3.2 Distilling Invariances from Multiple Teachers

In Table 1, we observe that the naive learning of multiple representational invariances
degrades the domain generalized action recognition performance (i.e. 35.34 ± 5.38 vs.
37.07± 3.39). To address this challenge, we propose Multi-teacher Invariance Distilla-
tion for domain-generalized Action Recognition (MIDAR). MIDAR has a multi-teacher
knowledge distillation architecture [20,22,27] comprising teacher models with exper-
tise in order variance (ΩO), temporal invariance (ΩT ), and color invariance (ΩC). As
depicted in Fig. 2 (a), each teacher contributes distinct expertise to the learning process.

Both the student model, π, and the teacher models, ΩO, ΩT , and ΩC , take the same
input RGB video, I ∈ R

M×H×W×C , where each video contains M frames with the
height of H pixels, width of W pixels, and C channels. We employ the feature-space
distillation loss, Lfeature. We compute Lfeature as the mean squared error between the
feature vectors of the student and teacher models as follows:

Lfeature =
∑

t∈{O,T,C}

(
1
n

n∑

i=1

(Ωt(i) − π(i))2
)

. (3)

Here, t is the teacher model index and Ω(i) and π(i) denote the i-th feature of the
teacher and student model, respectively. By using the Lfeature, we effectively guide the
student model to mimic the expertise of the teachers.

Moreover, we employ the Kullback-Leibler (KL) Divergence loss, LKL, in MIDAR
for the output-space distillation as follows:

LKL =
K∑

k=1

PΩ(k) log
(

PΩ(k)
Qπ(k)

)
. (4)

Here PΩ denotes the output probability of the adaptive reweighting (ARW) layer
and k is the action category index for K action categories. Qπ is the output probabil-
ity of the linear action classifier for the student model. The output-space distillation
encourages the student model to mimic the prediction of the teacher model.
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3.3 Learning to Re-weight Multiple Teachers

We introduce an adaptive reweighting (ARW) layer in MIDAR to reflect the nuanced
influence of multiple teacher models for learning a student model. The ARW layer takes
the softmax probability of each teacher ΩO,ΩT , andΩT and outputs the single softmax
probability vector PΩ . We define adaptive reweighting operation as follows:

PΩ =
∑

t∈{O,T,C}

exp(αt)∑
i∈O,T,C exp(αi)

ft(Ωt). (5)

Here, ft is a linear action classifier for the teacher t. αi’s are learnable parameters
for the adaptive reweighting. We set the same number of parameters the same as the
number of teachers. By (5), we get the final reweighted probability, PΩ , that aggregates
the nuanced contributions of all the teacher models, as illustrated in Fig. 2 (b).

During training, the parameters αi’s are continuously updated, leading to dynamic
adjustments of the contribution of each teacher: more effective teachers get higher
weights and less effective ones get lower weights. The learnable parameter αi dynami-
cally adjusts the student model’s focus on multiple invariances and variances. The bal-
ance is crucial for enhancing the student model performance, as it allows for a more
nuanced understanding that could be beneficial in multiple domains. The proposed
ARW layer enables the student model to effectively extract the diverse representational
invariances/variances of the teacher models.

We define the total loss function of MIDAR as follows:

L = LCE + Lfeature + LKL. (6)

The total loss function consists of three components. First, LCE is the standard
cross-entropy loss to learn action categories. Lfeature aligns feature representations of
the student model with the feature representations of the teacher models. LKL guides
the student model to mimic the adaptively re-weighted predictions of the teacher mod-
els.

4 Experimental Results

4.1 Experimental Setup

Dataset. To evaluate the effectiveness of MIDAR, we use the EPIC-KITCHENS-55
dataset [12]. EPIC-KITCHENS-55 is a large-scale egocentric action recognition dataset
consisting of multiple domains. We use the subset for evaluating domain generalization
methods, following the experimental protocol in a prior work [28]. The subset com-
prises three domains, D1, D2, and D3, which results in six domain generalization set-
tings: D1→D2, D1→D3, D2→D1, D2→D3, D3→D1, and D3→D2. The subset con-
sists of 8 action classes across all the domains: put, take, open, close, wash, cut, mix, and
pour. Each domain has different actors and kitchen environments but the same action
categories. The subset consists of 10, 094 videos in total.
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Evaluation Metric. We evaluate the effectiveness of Multi-teacher Invariance Distil-
lation for domain-generalized Action Recognition (MIDAR) by adopting the standard
evaluation protocols across benchmarks [28]. For the Epic-Kitchens benchmark, in our
protocol [28], we select the model that demonstrates the highest in-domain performance
and evaluate the cross-domain performance of the model. We measure the model’s per-
formance using the averaged Top-1 accuracy and the standard deviation across six dif-
ferent cross-domain generalization settings.

Implementation Details. Here, we provide details of our training setup and implemen-
tation. For additional information, please refer to the supplementary materials. Base
setting. We employ Temporal Shift Module (TSM) [26] with a ResNet-50 backbone as
the base model, unless we specify another model. From each video, we sample 8 frames
to construct an input clip. The initial learning rate is 0.0075. We train models for 150
epochs.

Teacher Model Training. For color and temporal invariant teacher models, we build
the models upon the SimSiam [7] architecture. We use the supervised contrastive loss
Eq. (1) as a loss function to train the color-invariant and temporal-invariant teacher mod-
els, with the temperature τ set to 0.3. For the order variant teacher, we implement the
video clip order prediction (VCOP) [45] pre-text task, processing 3 clips of 8 frames
each, with an inter-clip interval of 8 frames. We train the model for 800 epochs. We
attach a linear classifier on top of the backbone. Then we train the model end-to-end
just like other teacher models.

Student Model Training. When training the student model, we freeze the weights of all
the teacher models. The learning rate is set to 0.005. For the adaptive reweighting layer,
each trainable parameter αt is initially set to an equal value of 1. This initialization
strategy ensures that, before updating the trainable parameters, each value post-softmax
normalization approximates 0.3333, thereby providing a fair starting point.

Please see the supplementary materials for details on the model training and infer-
ence.

Table 2. Individual Invariant/Variant Model
Performance.We show the domain generalization
performance of individual invariant/variant mod-
els. Every model is equipped with the TSM with a
ResNet-50 backbone.

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

Color Invariant Model 37.83 ± 3.65

Temporal Invariant Model 38.36 ± 2.73

Order Variant Model 37.38 ± 3.54

Baseline. To establish a baseline for
domain generalization performance,
we train a TSMwith a ResNet-50 back-
bone on one domain of the benchmark
dataset. Subsequently, we evaluate the
trained model on another domain of
the dataset. We repeat the same pro-
cess for all six settings in the EPIC-
KITCHENS dataset. During training,
we do not apply any learning technique
that encourages domain-invariant rep-
resentations. To establish a baseline for
domain generalization performance, we train a TSMwith a ResNet-50 backbone on one
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domain of the EPIC-KITCHENS dataset [28]. Subsequently, we evaluate the trained
model on another domain of the EPIC-KITCHENS dataset. We perform the same pro-
cess for all six settings in the EPIC-KITCHENS dataset. During training, we do not
apply any learning technique that encourages domain-invariant representation learning.

4.2 Individual Invariance/Variance Model Performance

We first study the effectiveness of each model with distinct representational invari-
ances/variances by comparing the domain generalization performance of each model
with the baseline performance. As shown in Table 2 each representational invari-
ant/variant model outperforms the baseline. The temporal invariant model shows the
most improvement of 1.29 points and the color invariant model shows an improve-
ment of 0.76 points compared to the baseline. The order variant model achieves a
marginal improvement of 0.31 points compared to the baseline. These results indicate
that incorporating individual representational invariances/variances could improve the
domain generalization performance, but the improvement is not very significant. As
shown in Table 1, naively learning multiple invariances, e.g. learning the temporal and
the color invariant representations simultaneously, results in inferior performance com-
pared to the baseline without learning any invariances: 35.34% vs. 37.07%. Therefore,
we need a nuanced approach, such as MIDAR, to learn multiple representational invari-
ances/variances to achieve superior domain generalization performance.

Table 3. Effect of Distillation in
Domain Generalization. We compare
the performance of the logit-space dis-
tillation, the feature-space distillation,
and both the logit-space and faeture-
space distillation. We employ the tempo-
ral invariant model as a teacher in this
experiment.

Method Logit Feature Top-1 Accuracy

Baseline – – 37.07 ± 3.39

Temporal
Invariant
Teacher

– – 38.36 ± 2.73

� 38.78 ± 2.85

Student � 35.28 ± 4.13

� � 38.93 ± 3.61

Table 4. Effect of Multi-Teacher Distillation.
We compare the domain generalization perfor-
mance of students learned from different combi-
nations of teachers. Properly using all three teach-
ers shows the best domain generalization perfor-
mance.

Method Color Temporal Order Top-1 Accuracy

Baseline – – – 37.07 ± 3.39

Single
Teacher
Distillation

� 38.93 ± 3.61

� � 38.64 ± 2.48

Two-
Teacher
Distillation

� � 37.20 ± 5.30

� � 40.03 ± 3.29

Three-
Teacher
Distillation

� � � 41.12 ± 2.61



126 J. Shin et al.

Table 5. Ablation study. We conduct experiments with different distillation methods to validate
the effect of each distillation strategy, logit, feature, and multi-teacher distillation.

(a) How to aggregate multiple
teacher outputs?

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

Correct Teacher 38.55 ± 1.74

Most Confident Teacher 38.99 ± 3.76

Lowest Cross-Entropy Teacher 38.89 ± 2.81

Average of Teachers 38.70 ± 3.74

Adaptive Reweighting (Ours) 41.12 ± 2.61

(b) Which loss to distill features?

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

CORAL Loss [36] 40.12 ± 3.47

Huber Loss 39.02 ± 3.87

MSE Loss 41.12 ± 2.61

(c) Multi-teacher distillation
method

Method Top-1 Accuracy

Baseline 37.07 ± 3.39

KD [19] 38.45 ± 3.86

FiTNet [1] 37.38 ± 4.34

Average [48] 38.68 ± 3.70

Ours 41.12 ± 2.61

4.3 Distillation for Learning Multiple Invariances/variances

Is Distillation Beneficial in Domain Generalization? We empirically find that dis-
tillation is beneficial in domain generalization. In Table 3, compared to the temporal
invariant teacher model, a student model learned by the logit-space distillation shows
an improved performance of 38.78%. A student model learned by the feature-space
distillation shows inferior performance compared to the teacher. However, a student
model learned by both logit and feature-space distillation shows the best performance
of 38.93%. The results demonstrate that distillation is beneficial in domain generaliza-
tion even when we have a single teacher only. In the remaining experiments, we distill
both features and logits.

Is Multi-Teacher Distillation Beneficial for Learning Multiple Invariances/vari-
ances? We investigate the effect of multiple teachers in Table 4. We can observe a
trend: as the number of teachers increases, the student model demonstrates improved
performance. Specifically, the student model, which learns from both the temporal-
invariant and order-variant teachers, achieves an accuracy of 40.03%, surpassing the
single teacher distillation with an accuracy of 38.93%. Furthermore, when the student
model learns from the knowledge distillation of the color invariant, the temporal invari-
ant, and the order variant teachers simultaneously, the student model achieves the best
accuracy of 41.12%. The results underscore the significance of leveraging multiple
teachers to enrich the knowledge of the student model and subsequently enhance the
domain generalization.

4.4 Ablation Study

We conduct ablation experiments to explore the various design choices of the multi-
teacher distillation strategy to improve the domain generalization performance. Here,
we conduct all experiments with multi-teacher distillation that encompasses all invariant
and variant teacher models.
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How to Aggregate the Output of Multiple Teachers? Since we have multiple teach-
ers, how to aggregate the output of multiple teachers is an important design choice.
In Table 5 (a), we compare five logit-space distillation methods. i) Correct Teacher:
we select the correctly predicted teachers for the distillation. We average the prediction
vectors if multiple teachers agree, and we discard the sample if all predictions are incor-
rect. ii) Most Confident Teacher: we select the teacher with the highest softmax prob-
ability among all the teachers for the distillation. iii) Lowest Cross-Entropy Teacher:
we choose the prediction from the teacher with the minimum cross-entropy loss for the
distillation. iv) Average of Teachers: we average the predictions of all the teachers for
the distillation. v) Adaptive reweighting (ours): we dynamically adjust the contribution
of each teacher by Eq. 5. The results demonstrate that the adaptive reweighting outper-
forms the other compared methods, achieving 41.12% which is 2.13 points higher than
the second-best method, Most Confident Teacher. The results suggest that our adap-
tive reweighting is more effective in leveraging multiple teachers to improve domain
generalization.

Which Loss for Feature-Space Distillation? Here, we compare three loss functions
for the feature-space distillation in MIDAR. i) The CORAL (CORelation ALignment)
loss [36]: we align the second-order statistics of feature distributions by minimizing the
difference in their covariance matrices. The CORAL loss is typically applied for domain
adaptation. We employ the CORAL loss to align student features with the teacher fea-
tures to tackle the problem of domain generalization. ii) Huber loss is a hybrid loss
function that is a combination of both Mean Squared Error (MSE) and Mean Absolute
Error (MAE). Huber loss aims to mitigate the influence of outliers during distillation.
Also, huber loss offers a balance between sensitivity to data variance and robustness to
outliers. iii) Mean Squared Error (MSE) loss: a loss function that minimizes the average
of the squares of the errors. As shown in Table 5 (b), employing CORAL loss outper-
forms Huber loss with a margin of 1.1 points (40.12% vs. 39.02%). However, using
MSE loss outperforms CORAL loss with a margin of 1.0 points (41.12% vs. 40.12%).
The results suggest that the MSE loss is more effective for feature-space distillation.

Comparing Multi-teacher Distillation Methods. We conduct a comparative analysis
of MIDAR against established distillation techniques. We replace the proposed multi-
teacher distillation method with the following methods and compare the domain gener-
alization performance. i) KD [19], which distills the average predictions from multiple
teachers, ii) FitNet [1], which distills their average features, and iii) Average [48], which
distills both averaged features and predictions. Table 5(c) shows that MIDAR achieves
the best accuracy of 41.12%. Compared to MIDAR, FitNet shows a 3.74-point drop
(41.12% vs. 37.38%) and KD shows a 2.67-point drop (41.12% vs. 38.45%). Average
shows a 2.44-point drop (41.12% vs. 38.68%). The results showcase the effectiveness
of our multi-teacher distillation approach in enhancing domain generalization.
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4.5 Comparison with Existing Domain Generalization Methods

Table 6. Comparison with the state of the
arts on EPIC-Kitchens. We compare the domain
generalization performance (top-1 accuracy) of
our model with several image-based methods
(Mixup [50], Mistyle [53], JigSen [5], EIS-
Net [42]) and a recently proposed video-based
method (RADA [47]).

Method Backbone Average Accuracy

Baseline TSM 37.07 ± 3.39

Mixup [50] TSM 37.54 ± 4.69

Mixtyle [53] TSM 36.88 ± 5.18

JiGen [5] TSM 38.59 ± 6.14

EISNet [42] TSM 37.52 ± 1.31

RADA [47] APN [47] 40.52 ± 3.23

Ours TSM 41.12 ± 2.61

We compare the domain generalization
performance of MIDAR with exist-
ing single-source domain generaliza-
tion methods in Table 6. Please see the
supplementary materials for details of
the results. We compare MIDAR with
four image-based methods extended to
the video domain. i) Mixup [50]: we
blend each video with a randomly cho-
sen video in the batch and set the
mixup ratio as 0.2. ii) Mixstyle [53]:
we integrate a Mixstyle module into
the ResNet backbone of TSM.Mixstyle
mixes the statistics, i.e. mean and stan-
dard deviation, of feature maps from
different instances during the training
process. Mixstyle incorporates a new
style in the feature space and encour-
ages the model to learn domain generalizable features. iii) JiGen [5] recognizes action
and simultaneously solves jigsaw puzzles to understand spatial correlations. Solving
jigsaw puzzles acts as a regularization for the classification task. The shared feature
embedding between the classification and the jigsaw puzzle tasks allows the model
to generalize across domains. iv) EISNet [42] enhances generalization performance
by multi-task learning from both extrinsic and intrinsic supervisions. EISNet employs
momentum metric learning for domain-invariant yet class-specific features and solves
jigsaw puzzles. For JiGen and EISNet baselines, we apply consistent augmentation
across all frames in a video clip to maintain temporal coherence. Additionally, we com-
pare MIDAR with RADA [47]1, the state-of-the-art video-based domain generalization
method.

Table 7. Effect of using different backbones: ResNet-
50 vs. ResNet-101 on the EPIC-Kitchens dataset.
We compare the domain generalization performance
(top-1 accuracy) of our model with the video-based
method(RADA [47]).

Method Model Backbone Average Accu-
racy

RADA [47] APN [47] ResNet-50 40.52 ± 3.23

Ours TSM ResNet-50 41.12 ± 2.61

RADA [47] APN [47] ResNet-101 43.08 ± 4.27

Ours TSM ResNet-101 43.54 ± 5.59

All the compared methods
employ the TSM [26] as a back-
bone except RADA. RADA [47]
is equipped with the Adversarial
Pyramid Network (APN) back-
bone. We select the learning rate
with the highest performance for
each method. We use the learn-
ing rates of 0.01, 0.001, 0.005,
and 0.0075 for Mixup, Mixstyle,
JiGen, and EISNet respectively.
For RADA we use the learn-
ing rate of 0.001. As shown in

1 The TSM backbone employed by MIDAR has 4.8 million fewer parameters than the APN used
by RADA.
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Table 6, JiGen outperforms other image-based methods with an average accuracy of
38.59% exceeding Mixstyle by 1.71 points, Mixup by 1.05 points and EISNet by 1.07
points.

However, JiGen shows inferior performance compared to the video-based method
RADA by 1.93 points. MIDAR surpasses RADA by 0.60 points and Jigen by 2.53
points, resulting in the best accuracy as well as relatively lower standard deviation. The
results indicate that MIDAR shows favorable performance across various domain shifts
and demonstrates the effectiveness in various domain generalization scenarios.

For a fair comparison, we evaluate MIDAR and RADA using the same ResNet-50
and ResNet-101 backbones in Table 7. As shown in Table 7, with a stronger ResNet-101
backbone, MIDAR shows an improvement of 0.46 points over RADA with ResNet-101
backbone on the Epic-Kitchens dataset. The favorable performance of MIDAR on the
different backbones underscores its effectiveness.

5 Conclusions

In this paper, we tackle the problem of domain-generalized action recognition, which
is a challenging, yet relatively under-explored problem. We study a wide spectrum of
representational invariance/variance learning which is often beneficial in the context
of domain-generalized action recognition. We empirically find that naively learning
multiple invariances leads to even inferior domain generalization performance com-
pared to the baseline without learning any representational invariances. To tackle this
challenge, we introduce MIDAR, an innovative multi-teacher distillation approach that
learns nuanced influence from multiple teachers with distinct representational invari-
ances/variances. We propose an adaptive re-weighting layer to learn such nuanced influ-
ence from multiple teachers as well as to incorporate both feature-space and output-
space distillation. The empirical results on the challenging EPIC-Kitchens dataset with
a moderate size demonstrate that MIDAR generalizes across different domains com-
pared to the existing domain generalization methods. Our future work is overcoming
this limitation. We plan to improve MIDAR’s adaptability to various data scales. More-
over, we plan to apply MIDAR to Transformer architectures and tailor MIDAR to lever-
age the representational invariance and variance of Transformers.

Acknowledgement. This work was supported in part by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea Govern-
ment (MSIT) under grant RS-2024-00353131, RS-2021-II212068 (Artificial Intelligence Inno-
vation Hub), and RS-2022-00155911 (Artificial Intelligence Convergence Innovation Human
Resources Development (Kyung Hee University)). Additionally, it was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.
2022R1F1A1070997).



130 J. Shin et al.

References

1. Adriana, R., Nicolas, B., Ebrahimi, K.S., Antoine, C., Carlo, G., Yoshua, B.: Fitnets: hints
for thin deep nets. In: ICLR (2015)

2. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv
preprint arXiv:1907.02893 (2019)

3. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision
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Abstract. Despite the widespread integration of ambient light sensors
(ALS) in smart devices commonly used for screen brightness adapta-
tion, their application in human activity recognition (HAR), primarily
through body-worn ALS, is largely unexplored. In this work, we devel-
oped ALS-HAR, a robust wearable light-based motion activity classi-
fier. Although ALS-HAR achieves comparable accuracy to other modal-
ities, its natural sensitivity to external disturbances, such as changes
in ambient light, weather conditions, or indoor lighting, makes it chal-
lenging for daily use. To address such drawbacks, we introduce strate-
gies to enhance environment-invariant IMU-based activity classifications
through augmented multi-modal and contrastive classifications by trans-
ferring the knowledge extracted from the ALS. Our experiments on a
real-world activity dataset for three different scenarios demonstrate that
while ALS-HAR’s accuracy strongly relies on external lighting condi-
tions, cross-modal information can still improve other HAR systems, such
as IMU-based classifiers. Even in scenarios where ALS performs insuffi-
ciently, the additional knowledge enables improved accuracy and macro
F1 score by up to 4.2 % and 6.4 %, respectively, for IMU-based classifiers
and even surpasses multi-modal sensor fusion models in two of our three
experiment scenarios. Our research highlights the untapped potential of
ALS integration in advancing sensor-based HAR technology, paving the
way for practical and efficient wearable ALS-based activity recognition
systems with potential applications in healthcare, sports monitoring, and
smart indoor environments.

Keywords: Human Activity Recognition · Ambient light sensor ·
Sensor Fusion · Contrastive Learning · IMU Sensing

1 Introduction

Sensor-based HAR has gained increasing interest in research and industry over
the past decade, advocating various sensor modalities like pressure sensors [22,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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33], EMG sensors [13,15], impedance sensors [7,12] and capacitive sensors [8].
Especially with the ubiquity and availability of smart devices, embedded sensors
like inertial measurement units (IMUs) [10,14,21] have gained popularity due to
their ability to capture motion-related data accurately through great information
density.

However, despite the extensive exploration of IMUs in HAR, there is a grow-
ing trend towards investigating the potential of other embedded sensors like BLE
[4,27], WiFi signals [30,32], temperature sensors [3] and ALS [29], which is pre-
sented in this work. Nowadays, ALS is embedded in almost all portable smart
devices with a screen primarily used for adaptive screen brightness adjustments
based on changing environmental lighting conditions [6]. Such a sensor oper-
ates passively without direct user interaction and can be exploited to provide
valuable contextual information about the user’s surroundings and activities.
Additionally, it consumes minimal power, contributing to energy-efficient imple-
mentations, particularly on battery-powered devices. For this work, we aim to
benefit from the ubiquity of ALS in smart mobile devices, eliminating the need
for additional hardware through straightforward accessibility.

To the best of our knowledge, despite the promising advantages and availabil-
ity, limited research has been done regarding exploring body-worn ALS in HAR
as a motion-sensing modality. Throughout related Multi-modal sensor fusion
works like [16,26,28], static ALS and other ambient sensors placed in the envi-
ronment are used for positional understanding for motion localization.

Wearable, body-worn ALS holds promise for HAR, particularly in indoor
environments with stable lighting conditions where external factors affecting
light intensity are minimal. Xu et al. have exploited the wearable ALS to gener-
ate IMU data for improving nursing-based HAR [29]. Similarly, Sadaghiani et al.
used wearable photodiodes to gather blood pressure signals of the wearer’s body
[24]. Despite the promises, these models suffer from the obvious problem of being
sensitive to external lighting conditions. When the changes in light conditions
are more significant or comparable to those impacted by the user’s movement,
the model performance drastically decreases, making them useless for such con-
ditions. Even further, just like the overall nature of vision sensors, the ALS can
not work in dark environments [29] as stated by Xu et al.

In this paper, we try to solve this problem by investigating different cross-
modal approaches that can empower other sensor-based modalities, like IMU-
based HAR, by using knowledge transfer techniques from ALS to IMU. There-
fore, we aim to maximize the knowledge extracted from ALS even in unfavorable,
fluctuating light conditions, improving HAR performance through ALS indepen-
dently of environmental influences. In summary, the main contribution of this
work can be summarized as follows:

– Multi-modal HAR dataset: A novel multi-modal dataset containing nine dif-
ferent activities for a total of 5.28 h performed by 16 participants along three
different environmental scenarios gathering right wrist IMU signal, right wrist
ALS signal, video footage and SMPL pose synchronized together as visualized
in Fig. 1.
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Fig. 1. Synchronized ambient light and IMU accelerometer signals extracted from the
collected dataset aligned with the some of the labelled activity classes.

– LightHAR: An activity recognition model based only on the wrist-based ALS
with a detailed comparison to wrist-based IMU, 3D pose-based, and video-
based activity recognition for the three different scenarios.

– Light embedded InertialHAR: Two different strategies to improve inertial
HAR utilizing both ALS and IMU signal during training and only IMU signal
for inference.

2 Related Work

2.1 ALS-HAR

HAR is a continuously evolving field that leverages various sensing modalities
to identify and monitor human activities. ALS has shown promise in enhancing
the accuracy and applicability of HAR systems, especially deployed as external
environmental sensors through works like [16] presenting a Deep Convolutional
Neural Network to recognize human activities using binary ambient sensors to
identify activities of daily living. In [1], the landscape of available sensors for
HAR has been analyzed by Ahamed et al., investigating the importance of envi-
ronmental sensors, especially the ALS, to detect the early signs of dementia in
residential care. Integrated into smart wallpapers, multi ALS has been imple-
mented by Shi et al. to recognize human motions with an accuracy of 96% uti-
lizing the information of light reflections gathered through photodiodes hidden
inside the wallpaper [26]. Focusing on industrial scenarios and ambient assisted
living, Salem et al. have proven the feasibility of fusing the sensor data from
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IMU and ALS to achieve an activity recognition performance of 90% across a
small set of three classes for each scenario [25].

Environmental Sensing for HAR commonly possesses drawbacks on adapta-
tion to changing light conditions and occlusion of the covered area, wherefore
body-worn ALS can be an alternative to enhance HAR performance [9]. Due to
their simplicity in operation and low power consumption, they are commonly
deployed in consumer wearable devices [20]. In [11], the benefits of low-power
ALS have been deployed to harvest energy through photodiodes and simultane-
ously utilize the ambient light data for self-powered and robust finger gesture
detection. Similar work has been done through OptoSense, presenting a novel
approach for developing body-worn ALS that is self-powered and capable of
being integrated ubiquitously by leveraging photovoltaic cells both to power the
sensors and to sense the ambient light, enabling the creation of energy-efficient
HAR through light sensors [31]. Similar to the approach of this work, Wang et
al. present a multimodal feature fusion model utilizing geomagnetic, ALS, and
accelerometer data collected from smartphones to enhance health activity mon-
itoring accuracy in indoor environments by 13.65% compared to classic sensor
classification [28].

However, the presented literature barely investigates changing environments
and lighting conditions, commonly working in clean and optimal indoor environ-
ments, restating the motivation of this work.

2.2 Knowledge Transfer in Sensor HAR

Methods like Don’t Freeze [5], Virtual Fusion [17] and Contrastive Left-Right
HAR [18] tried using IMU sensors at different positions to improve the over-
all accuracy of body-worn IMU at specific positions using contrastive learning.
Approaches like Multi3Net [23] have tried to improve sensor-based HAR accu-
racy using other widely available modalities like 3D poses and text embedding.
i-Move [12] improved IMU-based HAR using bio-impedance data through con-
trastive learning.

We believe that the most important use case for ALS data would be empow-
ering other sensor modalities that are more environment invariant through data
collected in ideal environments, which we try to achieve through this work.

3 Data Collection

Our experiment encompassed three different scenarios based on different environ-
mental and lighting conditions. It consisted of 16 participants doing 10 activities,
including the Null class. The gender distribution was 5 females and 11 males,
ages 24 to 35, and weights ranged between 53 kg and 88 kg.

Scenario 1, consisting of subjects 1 to 10, was recorded in a controlled indoor
environment with fixed lighting conditions. This environment is ideal for ALS-
HAR because of the minimal interference of change in light due to external
factors. Scenario 2, consisting of subjects 11 to 13, was recorded in a relatively
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dark indoor environment with dynamic architectural lights. Most interference
in lighting conditions is introduced due to these external factors rather than
the motion of the subject itself, making it more challenging than the other two
scenarios. Scenario 3, consisting of subjects 14 to 16, was recorded in an out-
door environment during cloudy weather. The clouds and trees moved because
wind created small interference in light signals, making it a practical dataset to
showcase the usability of ALS-HAR.

Participants are engaged in a series of predetermined activities, including
six distinct upper body fitness exercises boxing, biceps curls, chest press, shoul-
der, and chest press, arm hold and shoulder press, and arm opener sourced
from Pamela’s fitness routines available on YouTube (1). Additionally, three
supplementary hand-focused tasks sweeping a table, Answering the telephone,
and wearing a headset were included, each lasting approximately 20 min.

We used existing consumer-grade devices for data collection to showcase the
utility of ALS signals without facing the bottleneck of the new sensor introduc-
tion. We utilized a Samsung Galaxy S20 smartphone worn on top of the right
wrist with a wristband facing outward, having the same relative position and
orientation to the wrist irrespective of the user. This allowed for the collection
of both light sensor and IMU data to fulfill the experimental requirements. Data
was collected using the Sensor Logger Android application (2). Video recordings,
captured using a back-facing camera of an iPhone SE, served as supplementary
data for annotation purposes.

Sensor Logger automatically synchronizes light and IMU sensor, ensuring a
consistent sampling rate of around 30 Hz throughout the session by taking a
common time-stamp from the smartphone itself and matching the start and end
of the session. The videos collected by a separate smartphone are synchronized
manually with the sensor data using a simple trick. At the start and end of
each session, the subject needs to do the calibration movement, i.e., fold arms
to touch both hands three times to make a unique pattern in the pose and the
sensor signal. By mapping these unique patterns of the pose and the sensor
signal, we can synchronize both together. Afterward, the videos are manually
annotated and can be used directly to annotate the sensor signals.

Typical ALS available in smartphones uses a photodiode, a semiconductor
device that generates an electrical current when exposed to light. The intensity
of the current is proportional to the amount of light hitting the sensor. The light
signal, recorded in lux, is a unit of measurement for illuminance, representing
the amount of light per unit area. In this context, lux provided insights into the
ambient light conditions surrounding the experiment’s environment, especially
the light reaching the right wrist based on the subject’s movement (Table 1).

1 https://www.youtube.com/@PamelaRf1.
2 https://github.com/tszheichoi/awesome-sensor-logger/.

https://www.youtube.com/@PamelaRf1
https://github.com/tszheichoi/awesome-sensor-logger/
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Table 1. Data statistics including subject mass (kilogram), height (centimeter), gen-
der, and duration of the session (second) for the three different scenarios.

Scenario Subject ID Age Height (cm) Weight (kg) Gender Duration (sec)

1: Indoor (Ideal) 1 30 160 53 Male 1394

2 32 160 53 Female 1466

3 25 175 65 Female 1399

4 35 188 88 Male 1362

5 26 175 86 Male 1376

6 24 178 85 Female 1487

7 26 150 50 Female 1385

8 24 175 80 Male 1482

9 25 170 65 Male 1393

10 26 176 55 Male 1319

2: Indoor (Challenging) 11 27 187 85 Male 1225

12 30 160 53 Male 1240

13 28 175 65 Male 1127

3: Outdoor 14 26 176 55 Male 1185

15 35 168 65 Male 1305

16 33 153 54 Female 1245

4 Method

4.1 LightHAR

We developed a robust ALS-based activity classifier tailored for light sensor data
using a 1D bidirectional LSTM-based encoder architecture inspired by the Deep-
ConvLSTM framework [19]. Our model processes input data X with dimensions
(N, 1, 1), where N represents the sequence length with unit feature dimension
and a single channel. The architecture outputs a probability distribution over 10
classes (9 + null), denoted as Ŷ .

The model begins with a series of three 1D convolutional layers followed by
batch-normalization and dropout layers, each designed for feature extraction.
These layers sequentially process the input data to capture relevant patterns
and characteristics from the light sensor signals. Each convolutional block is fol-
lowed by a ReLU activation function, which introduces non-linearity into the
model. After feature extraction, the processed data is passed through a bidirec-
tional LSTM layer to capture temporal dependencies in the sequence data. The
bidirectional nature of the LSTM layers allows the model to consider both past
and future information when making predictions, which enhances the overall
performance of the activity classifier. The output from the LSTM layers is then
directed through dense layers for classification. The final layer outputs a prob-
ability distribution of the 10 classes, enabling the model to determine the most
likely activity class for a given sequence of light sensor data. Our architecture
focuses on creating a lightweight model with robust and accurate classification
based on light sensor inputs (Fig. 2).
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Fig. 2. Overview of the architecture of LightHAR that uses ALS data only for activity
classification.

To train the model, we used the cross-entropy loss function, defined as:

LCE = − 1
N

N∑

i=1

C∑

c=1

yi,c log(ŷi,c) (1)

where N is the batch size, C is the number of classes, yi,c is the ground truth
probability that sample i belongs to class c, and ŷi,c is the predicted probability
by the model for class c of sample i.

4.2 Light Embedded InertialHAR

We have designed different strategies for leveraging the knowledge from the ALS
modality to enhance the activity recognition accuracy of the IMU modality. As
detailed in the Sect. 5.2, ALS, due to its high sensitivity to external light con-
ditions, is susceptible to environmental noise, especially during significant light
changes. In contrast, the accelerometer from IMU is known for its environmental
robustness and stability. We’ve developed a variety of strategies that leverage
the unique features of both ALS and IMU sensors. These strategies enable us
to build a model that only requires the IMU modality during evaluation, effec-
tively mitigating the impact of environmental noise on ALS. This approach is
particularly useful in practical scenarios with substantial light fluctuations.

MultiLight InertialHAR. We designed MultiLight InertialHAR by taking
inspiration from classic sensor-fusion models that use more than one modality
to improve overall HAR accuracy compared to either unimodal system. The
model contains two encoders: An ALS encoder partially similar to the LightHAR
used for activity classification where the full-connected layers are replaced to
generate a dense feature vector of size 256. The IMU encoder also contains
a series of 3 1D CNN blocks followed by a bidirectional LSTM and a fully
connected layer to generate a dense feature vector of size 256. The extracted
features are concatenated afterward and given to a simple classifier consisting of
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Fig. 3. Overview of MultiLight InertialHAR that takes both ALS and IMU data during
training and relies on IMU only during inference by filling the ALS part with zeros as
placeholder during inference.

two fully connected layers to map the intermediate features to an activity class
as visualized in Fig. 3.

Like the LightHAR model, cross-entropy loss was used to train the
model. MultiLight IneritalHAR processes input ALS data (N, 1, 1), and input
accelerometer data (N, 1, 3), where N represents the sequence length, 1 is the fea-
ture dimension, and 3 is total channels(x, y, z) to output one of the 10 (9+Null)
classes.

Since we aim to design a HAR system that utilizes both sensor modalities
during the training phase and only the IMU modality during the evaluation
phase, we develop a unique data pre-processing pipeline to train the model.
Each data point in the dataset is converted to 3 instances: the original and
instances where one of the two modalities is replaced by zero, enabling us to
evaluate the model even when one is unavailable. During the inference phase,
without the presence of ALS data, we can simply (N, 1, 1) input this as a set
of 0 and give appropriate data for (N, 1, 3), making it possible to work without
changing the architecture.

ContraLight InertialHAR. Inspired by other multi-modal contrastive learn-
ing models, We devised another unique strategy where both light and inertial
sensor data are used during the training phase, but only inertial sensor data is
used during the evaluation phase by utilizing contrastive learning to train this
model. The ALS encoder and IMU encoder, identical to those used in Multi-
Light InertialHAR, extract two feature vectors of size 256. Contrastive loss is
then applied to both embeddings based on the original classes to bring repre-
sentations from the same classes closer together.

The contrastive loss Lco is defined as:

Lco =
∑

i,j

yij · max(0,m − ‖zi − zj‖2) + (1 − yij) · ‖zi − zj‖2 (2)
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Fig. 4. Overview of ContraLight InertialHAR that takes both ALS and IMU data
during training but only IMU during inference.

where zi and zj are the feature vectors, yij is a binary label indicating whether
zi and zj are from the same class, and m is a margin parameter. Two instances
of the same fully connected classifier are utilized with shared weights as visu-
alized in Fig. 4. The overall total loss Ltotal is then calculated by summing the
contrastive loss and the two cross-entropy losses.

Ltotal = Lco + LCE-light + LCE-IMU (3)

We used contrastive loss instead of InfoNCE loss as this is a supervised
problem. Therefore, we can directly use the labels as individual clusters instead
of the self-supervised clustering task, which is useful in cases where the target
activities are different from the source activities.

This approach ensures that during training, the model leverages both (N, 1, 1)
ALS and (N, 1, 3) IMU sensor data to learn robust feature representations. How-
ever, during inference, we can simply discard the ALS encoder and use the more
stable (N, 1, 3) inertial sensor data as input to predict the activity class. Unlike
the MultiLight InertialHAR, we do not need to pass a dummy ALS input, making
the model even smaller and more simplified without any significant trade-off.

5 Evaluation

5.1 Training Details

To train the models with the collected data, instances were generated using a
sliding window technique with a size of 60 (2 sec) and a step of 15 samples (0.5
sec) for both ALS and IMU sensor data. The video and extracted pose, which
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have 24 frames per second (FPS), are first interpolated to make it 30FPS and
afterward sliced accordingly to generate a window of size 60 and a step of 15
frames.

All models are trained using a Nvidia A6000 Ada Lovelace GPU and a Ryzen
5900 processor. Subjects 1 to 7 constituted the training set, while subjects 8 to
10 formed the test set 1 for ideal light conditions. Subjects 11 to 13 formed test
set 2 for challenging indoor lighting conditions, and subjects 14 to 16 formed
test set 3 for outdoor conditions. Training and validation data were randomly
split with a 9:1 ratio during the training process.

The ADAM optimizer, along with a constant learning rate of 0.001, is used
to train the model. The models are trained for 300 epochs, and early stopping
with a patience of 10 is employed.

5.2 Unimodal Results

To test the effectiveness of ALS as an activity classification modality, we trained
other widely used temporal modalities, such as IMU, Pose, and Video, for activity
recognition using the same dataset we collected before. All modalities interpo-
lated to have the same sampling frequency and step size. To make them com-
parable, we made the neural network architecture identical to LightHAR for all
other modalities except the input size. Each model was designed with three CNN
blocks for feature extraction, a bi-directional LSTM, and two fully connected lay-
ers for activity classification, mirroring the structure of LightHAR. As stated in
Sect. 4.1, the input of the LightHar is the ALS signal of size (60, 1, 1) while the
input for InertialHAR is the IMU signal of size (60, 1, 3). In contrast, the input
for the PoseHAR is the extracted SMPL pose from videos using MotionBERT
[34] of size (60, 22, 3) with 22 joints, and the input for the VideoHAR is the
extracted intermediate video features using Video Vision Transformer (ViViT)
[2] of size (1, 3137, 768).

Table 2. Classification accuracy, macro F1, total number of learnable parameters,
inference time, and number of Floating Point Operation (FLOP) from an ALS, IMU,
and vision-based HAR sharing identical architecture for the three different scenarios.

Modality Scenario Accuracy Macro F1 Parameters Time (ms) FLOP

ALS (LightHAR) 1 0.701 ± 0.024 0.639 ± 0.039

2 0.413 ± 0.017 0.398 ± 0.021 0.294M 0.292 ± 0.008 25.050M

3 0.634 ± 0.012 0.608 ± 0.029

IMU (InertialHAR) 1 0.713 ± 0.041 0.657 ± 0.017

2 0.706 ± 0.023 0.688 ± 0.023 0.360M 0.364 ± 0.023 41.430M

3 0.722 ± 0.033 0.696 ± 0.017

Vision (PoseHAR) 1 0.913 ± 0.029 0.896 ± 0.037

2 0.658 ± 0.035 0.644 ± 0.017 2.425M 0.503 ± 0.017 557.397M

3 0.0852 ± 0.034 0.838 ± 0.016

Vision (VideoHAR) 1 0.517 ± 0.025 0.492 ± 0.033

2 0.412 ± 0.024 0.396 ± 0.031 10.322M 0.642 ± 0.029 2531.201M

3 0.366 ± 0.027 0.358 ± 0.022
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As stated in Table 2 we used Accuracy, Macro F1 score, Total number of
parameters, Inference time, and Floating Point Operations (FLOP) as metrics to
compare all four modalities. For test sets 1 (indoor with fixed external lights) and
3 (outdoor), PoseHAR performed best, followed by IntertialHAR. LightHAR,
despite having the fewest learnable parameters and a single channel input, had
comparable results to InertialHAR for test set 1. For test set 2 (indoor with
dynamic external lights), InertialHAR performed best, followed by PoseHAR
and LightHAR. This change can be attributed to the accelerometer being light-
invariant and more stable than other vision-based modalities. The VideoHAR,
despite having the highest number of learnable parameters, performed worst in
all cases, which can be attributed to the feature extracted by ViViT. ViViT
extracts video features but has not been specifically trained to extract the fea-
tures of the person in the video for activity recognition. The extracted features
might contain more information about the background rather than the person
himself, which is useless for the activity recognition problem, making it useless
for this specific use case.

In terms of inference time, LightHAR, with the lowest number of FLOP, has
the fastest inference time, followed by InertialHAR, PoseHAR, and VideoHAR.
PoseHAR and VideoHAR also take intermediate features as input, so considering
the inference time for pose estimation and video feature extraction would make
this even higher, making them unsuitable for real-time use cases.

Despite LightHAR’s promising inference time and comparable results to Iner-
tialHAR for test set 1, it does not solve the underlying problem related to the
unreliability of ALS sensors in challenging conditions like test sets 1 and 2.
To address this, we developed cross-modal knowledge transfer as described in
Sect. 4.2.

5.3 Cross-modal Results

As discussed in the Sect. 5.2, if we consider all scenarios, InterialHAR is
more accurate, more reliable/stable, and has a comparable inference time to
LightHAR, making it a better choice for activity recognition.

We developed strategies like MultiLight InertialHAR, which takes (60, 1, 3)
IMU input and a dummy array of (60, 1, 1) for activity classification. In this
strategy, both IMU and light modality from ideal conditions (fixed light indoor)
are used for training the model. Similarly, ContraLight InertialHAR takes only
(60, 1, 3) IMU input for activity classification, but both IMU and light modality
from ideal conditions (fixed light indoor) are used for training the model. The
same metrics from before are used to compare all the models.

As we can see in Table 3, for all 3 test sets, both MultiLight InertialHAR
and ContraLight InertialHAR outperformed the baseline InertialHAR although
requiring the same input (60, 1, 3) accelerometer data during inference phase.
The Sensor Fusion model that is identical to MultiLight InertialHAR but requires
both (60, 1, 3) IMU input and (60, 1, 1) ALS input outperforms all of them in
test set 1 having ideal lighting conditions, but its performance gets even worse
than the baseline InterialHAR for test set 2 where the lighting conditions are
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Table 3. IMU Classification accuracy, macro F1, total number of learnable param-
eters, inference time, and number of Floating Point Operations (FLOP) for base-
line InertialHAR, Multi-Light InertialHAR, Contra-Light InertialHAR and Sensor
Fusion(IMU+ALS).

Model Scenario Accuracy Macro F1 Parameters Time (ms) FLOP

InertialHAR (Baseline) 1 0.713 ± 0.041 0.657 ± 0.017

2 0.706 ± 0.023 0.688 ± 0.023 0.360M 0.363 ± 0.023 41.430M

3 0.722 ± 0.033 0.696 ± 0.017

Multi-Light InertialHAR 1 0.719 ± 0.035 0.681 ± 0.027

2 0.711 ± 0.023 0.690 ± 0.021 0.852M 0.388 ± 0.022 198.216M

3 0.725 ± 0.034 0.696 ± 0.035

Contra-Light InertialHAR 1 0.755 ± 0.031 0.721 ± 0.038

2 0.731 ± 0.033 0.719 ± 0.018 0.366M 0.363 ± 0.040 41.442M

3 0.756 ± 0.018 0.729 ± 0.029

Sensor Fusion (ALS+IMU) 1 0.858 ± 0.051 0.820 ± 0.036

2 0.681 ± 0.031 0.669 ± 0.025 0.852M 0.391 ± 0.031 198.216M

3 0.723 ± 0.024 0.0693 ± 0.016

challenging it doesn’t provide any improvements for test set 3 either. Regarding
inference time, the baseline InertialHAR, having the lowest number of FLOP,
performs faster than all other models. The MultiLight InertialHAR requires an
additional dummy ALS input during inference, which has much higher number
of FLOP and is slower than baseline InertialHAR despite being more accurate.
The ContraLight InertialHAR, while not surpassing the baseline, demonstrates
a very similar number of FLOP and performs on par with the baseline in terms
of speed. This efficiency, combined with its superior accuracy and F1 score com-
pared to both the baseline InertialHAR and MultiLight InertialHAR, makes it
a competitive model.

5.4 Discussions

As stated in Sect. 5.2, despite having decent inference time and comparable
results compared to other sensor modalities like IMUs, ALS can not be used
as a universal Unimodal-HAR. Despite its limited working environments, ALS
would make a very good modality for specific use cases in smart indoor environ-
ments. For example, hospitals or Care Homes have comparatively stable lighting,
and the fast inference, passive sensing, and low-power use of ALS make them
suitable for this job.

Also, because of their wide availability in smartphones and smartwatches,
they can be used for simple yet repetitive tasks like step counting or other types
of fitness activity counters, along with IMU modality through sensor fusion.

As discussed in Sect. 5.3, A large amount of multi-modal activity data can be
collected in ideal conditions to enhance other sensor modalities like IMU through
our knowledge transfer strategies.
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5.5 Limitations

In our current study, we exclusively utilized the Galaxy S20 to collect all data,
limiting our insights to a single device’s performance. Testing a different device
type other than the one used to collect the training data could provide valuable
insights into cross-device ALS-HAR reliability, particularly in scenarios where
other sensor-based modalities like IMU lag behind. Additionally, employing more
than one ALS sensor at different parts of the body could potentially enhance
overall accuracy. This approach may provide more robustness against varying
light conditions and outdoor environments, a direction we plan to explore in
future research to improve the robustness and reliability of our findings.

6 Conclusion

In summary, our study delves into the realm of wearable ALS for HAR, show-
casing its potential in understanding human motions. We developed LightHAR,
a novel approach utilizing wrist-based ambient light signals for HAR, tested
it for different scenarios, and compared it with other commonly used modal-
ities for HAR. By integrating ALS with IMU through sensor fusion and con-
trastive classification, we enhanced the accuracy of InertialHAR systems. Our
light-embedded InertialHAR approach, which relies solely on inertial data during
inference, exhibited notable improvements in accuracy compared to traditional
IMU-based classifiers. Although our study is promising, it is essential to acknowl-
edge its limitations, and further research is warranted to validate our findings
across devices and explore practical applications of ambient light-enhanced HAR
systems.
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Abstract. Considering its capability to extract implicit patterns from
unlabeled data, contrastive learning has been widely employed in unsu-
pervised skeleton-based action recognition. Spatio-temporal modeling is
a key component in understanding skeleton sequence. However, existing
methods often adopt rudimentary mechanisms or even completely over-
look this aspect, leading to suboptimal performance in downstream tasks.
In this paper, we propose a Spatio-Temporal Domain-Aware Network
(STDA-Net). Firstly, the features extracted from the backbone extrac-
tor are further decoded into a triple-stream representation, correspond-
ing to the spatial, temporal and global domains, respectively. Follow-
ing that, an innovative approach named Triple Attention Transformer
Module (TATM) is proposed to achieve customized spatio-temporal rea-
soning. TATM consists of three independent attention modules and a
shared feedforward layer, thus achieving reasoning in different domains
in a more efficient manner. Finally, domain-aware projectors are used
to obtain richer spatio-temporal representations, providing a basis for
the subsequent construction of inter-domain and intra-domain contrasts.
Comprehensive experiments on NTU-RGB+D 60&120 and PKU-MMD
datasets demonstrate the superior performance of STDA-Net.

Keywords: Skeleton-based action recognition · Contrastive Learning ·
Spatio-temporal Awareness · Triple Attention Transformer

1 Introduction

Human action recognition is an important research field in artificial intelli-
gence [10]. It focuses on the recognition and understanding of the actions per-
formed by one or more individuals through machine learning or deep learn-
ing algorithms. Among them, skeleton-based action recognition has gradually
emerged with its unique advantages, such as stronger robustness, free from envi-
ronmental interference [36] compared with RGB-based framework. These advan-
tages have catalyzed a considerable amount of research work [24].
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The exploration of related fields has indeed yielded excellent achieve-
ments [2,21,32,34]. However, a problem has emerged: insufficient data. In
the past, skeleton action recognition tasks were usually based on supervised
paradigms, which required large amounts of labeled data. However, the acqui-
sition and labeling of skeleton data is time-consuming and laborious. There-
fore, more attention is being directed towards unsupervised skeleton repre-
sentation learning [37]. Current unsupervised skeleton-based action recognition
mainly includes two paradigms: generative learning and contrastive learning.
Contrastive learning, in particular, is a potent framework where the primary
concept involves pulling positive pairs closer and pushing negative pairs fur-
ther apart in a high-dimensional semantic space [5]. This approach enhances the
discriminative power of representations learned for skeleton action recognition,
which proves advantageous for deciphering intricate action patterns [23]. As a
result, contrastive learning has emerged as a leading method in unsupervised
skeleton-based action recognition [3].

The earliest work [23] drew on the paradigm from MoCo [11], which intro-
duced the idea of computing similarities between augmented instances of input
skeleton sequences to extract inherent patterns from unlabeled data. However,
it overlooked spatiotemporal modeling, a crucial step in understanding actions.
In contrast, [7] encoded skeleton sequences separately based on temporal and
spatial domains. Yet, this complete separation resulted in a coarse understand-
ing of spatiotemporal relationships. In general, most previous methods over-
looked the necessity of spatio-temporal domain awareness or relied on very basic
strategies. The temporal domain typically provides dynamic information about
action sequences, while the spatial domain delineates the position and posture
of the human body in three-dimensional space. Modeling their differences and
associations contributes to a deeper understanding of human action. Previous
approaches’ neglect of this aspect significantly restricts the model’s ability to
effectively comprehend complex patterns in skeleton sequences.

Building on the aforementioned insights, we propose a novel Spatio-Temporal
Domain-Aware Network (STDA-Net). While following the paradigm of MoCo,
our innovations primarily enhance the encoder and refine the loss calculation.
To begin, we incorporate a Graph Convolutional Network (GCN)-based fea-
ture extractor at the encoder’s outset, drawing from its effective graph per-
ception capabilities [1,29] to derive an initial representation. Subsequently, we
develop a triple-stream representation through embedding and fusion mod-
ules, tailored to temporal, spatial, and global domains respectively. For efficient
cross-domain reasoning, we introduce the Triple Attention Transformer Module
(TATM). This module conducts sequence modeling using triple attention layers
and employs a unified feedforward layer for information updating. Additionally,
complementing intra-domain contrast pairs, we introduce a cross-domain loss
to further enhance the model’s ability to learn robust, discriminative represen-
tations. Finally, domain-aware projectors are utilized to map features into the
temporal and spatial domains.
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The comparisons with the mainstream methods fully prove the superiority
of our structure. The results of the ablation experiment demonstrate the effec-
tiveness of our innovation.

The main contributions of STDA-Net are as follows:

– We form temporal and spatial representations through initial feature extrac-
tion. With a subsequent fusion module, we obtain the global representation
that incorporates spatiotemporal information, thus forming a triple-stream
representation.

– A triple attention transformer module (TATM) is proposed, in which fea-
tures of different domains are modeled separately to obtain domain-specific
representations.

– With domain-aware projectors, we obtain original and domain-aware spatial
and temporal outputs. Inter-domain loss is formed between outputs from
different domains, and intra-domain loss is formed between outputs from the
same domain.

– STDA-Net outperforms the state-of-the-art networks on multiple datasets.

2 Related Work

2.1 Graph Convolutional Network for Skeleton-Based Action
Recognition

The human 3D skeleton naturally forms a topological graph, making Graph
Convolutional Networks (GCNs) increasingly popular for skeleton-based action
recognition. [34] introduced the spatial temporal graph convolutional network
(ST-GCN), which models human joints as graph vertices and connectivity and
time as edges. This work demonstrated GCN’s advantages, sparking further
research. [30] expanded local attention to a global scale using relative distance
and angle, also introducing a new graph adjacency matrix that improved recog-
nition accuracy. [1] proposed channel-level topology optimized graph convolu-
tion (CTR-GC), combining shared and channel-specific topologies for better
joint connections. We choose GCN as our primary feature extractor, specifically
adopting CTR-GCN due to its strong capabilities.

2.2 Contrastive Networks for Unsupervised Skeleton-Based Action
Recognition

Contrastive learning is widely used in skeleton action recognition due to its
ability to learn implicit patterns from unlabeled data. In contrastive learning
of skeleton data, each skeleton instance is typically augmented into two aug-
mented instances, and the encoder is then trained to generate discriminative
features, making instances of the same skeleton more similar in representation
than instances of different skeletons. A large amount of work has been done to
improve the contrast process. In [9], extreme augmentations were introduced
to acquire diverse positive samples, and new motion patterns are brought to
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improve the generality of the learned representation. In [7], features of differ-
ent granularities were acquired through the down-sampling operation, enabling
the contrasts of features at multiple-level. Based on the spatial structure of the
human skeleton, [18] partitioned it into static and dynamic regions. They applied
different data transformations to each region to achieve adaptive modeling. The
above work have demonstrated the effectiveness of contrastive learning in the
task of skeleton action recognition.

2.3 Spatio-Temporal Modeling Network

Skeleton data inherently reflects the spatiotemporal characteristics of human
motion. Therefore, spatial and temporal modeling are crucial in skeleton action
recognition. In [31], spatial-specific features and temporal-specific features were
extracted and modeled respectively, and used for loss calculation. Unfortunately,
it only adopted a simple decoupling mechanism to obtain spatiotemporal fea-
tures, resulting in representations that lacked discriminative power. [7] modeled
temporal and spatial features separately, and considered the contrasts between
features of different granularities to obtain more discriminative representations.
But previous work [13,17] has demonstrated that completely independent mod-
eling of spatial and temporal is suboptimal for skeleton action recognition.

3 Methodology

3.1 The Overall Framework

Our model paradigm is inspired by MoCo [11], a robust approach for unsuper-
vised representation learning. MoCo initially encodes input data into feature vec-
tors, which are then contrasted with feature vectors from a dynamically updated
queue of negative samples. This contrastive process aims to maximize the sim-
ilarity between positive sample pairs while minimizing similarity with negative
samples, thereby enhancing model robustness.

The overall framework of our model is illustrated in Fig. 1(a). Given an input
skeleton sequence x, the process begin with standard data augmentation tech-
niques such as rotation, cropping, and flipping. Subsequently, we implement
block-based masking in both temporal and spatial dimensions. This strategy
involves grouping consecutive frames and skeleton joints into blocks, where tem-
poral masking involves simultaneously masking features from consecutive frames,
and spatial masking involves masking connected joints. This block-based mask-
ing strategy effectively prevents information leakage in the skeleton sequence
processing [28], resulting in the generation of query sample xq and the key sam-
ple xk. These samples xq and xk are then processed by respective encoders
and projectors. The encoders transform the skeleton data into hidden represen-
tations, while the projectors map these representations into an output space
suitable for contrastive learning. In downstream tasks, the pre-trained encoder
q extracts feature representations from input data, which are subsequently fed
into a classifier for action recognition, as depicted in Fig. 1(b).
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Fig. 1. The framework of contrastive learning (a), illustration for downstream tasks (b)
and our proposed encoder structure (c). We show only one encoder in the framework
of contrastive learning, another momentum encoder has the same structure as it.

In the following sections, we will provide a detailed description of the pro-
posed encoder’s structure, as well as the projection and contrast processes.

3.2 The Proposed Triple-Stream Encoder

Taking encoder q as an example, the specific structure of the encoder is shown
in Fig. 1(c). The dimension of the augmented sequence is xq ∈ R

3×T×V .
We use the L-layer graph convolution structure [1] to process the augmented

sequence xq. Through this, xq is mapped from the coordinate space to the feature
space and the feature dimension is x̂ ∈ R

Cl×T×V , in which Cl, T, V represent
the number of channels, frames, and joints. Next, different reshaping operations
merge the temporal dimension and spatial dimension with the channel dimen-
sion respectively to obtain x̂t ∈ R

T×(V Cl) and x̂s ∈ R
V ×(TCl). The following

embedding operations are used to obtain representations corresponding to the
temporal and spatial domains respectively. The specific formulas are as follows:

xt = W1(σ(LN(Wtx̂t + bt))) + b1

xs = W2(σ(LN(Wsx̂s + bs))) + b2
(1)

where Wt ∈ R
C×(V Cl), Ws ∈ R

C×(TCl), W1 ∈ R
C×C and W2 ∈ R

C×C are the
weight matrix for feature mapping, bt ∈ R

C , bs ∈ R
C , b1 ∈ R

C and b2 ∈ R
C

represent bias, σ represents the activation function ReLU, and LN is short for
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layer normalization. Therefore, we obtain the temporal and spatial features xt,
xs respectively.

Next we fuse them to produce a global representation that contains spa-
tiotemporal information, so as to conduct subsequent modeling from a global
perspective. The specific operations of the fusion module are summarized as
follows:

xg = W3(Maxpooling(xt)||Maxpooling(xs)) + b3 (2)

Here, the max pooling is performed on the T dimension and the V dimension
respectively. || denotes the concatenation operation. W3 ∈ R

C×C is the weight
matrix for feature mapping, and b3 ∈ R

C represents bias.
We argue that, after the GCN encoder performs preliminary processing on

the skeleton sequence, the intensity of key features has been initially enhanced.
To consolidate these enhancements, we employ maximum pooling to extract and
fuse the most prominent spatio-temporal features into a unified global represen-
tation. This process yields the features xs, xg, and xt across the three domains.

Following that, these features are passed through a transformer encoder to
extract high-dimensional features. In this process, we believe that features from
different domains should be modeled independently for reasoning. Therefore, we
use Triple Attention Transformer Module (TATM) to process different features.
Different attention modules are used to model three features respectively, and
then update the information in a shared feedforward layer. Finally, through layer
normalization and other operations, we obtain the processed features ys, yg, yt:

x
′
s = SpatialAttention(xs)

x
′
g = GlobalAttention(xg)

x
′
t = TemporalAttention(xt)

ys, yg, yt = Feedforward(x
′
s, x

′
g, x

′
t)

(3)

Through the above design, we achieve independent reasoning and modeling
in the temporal and spatial domains. Simultaneously, there is a certain degree
of exchange of spatiotemporal information when reasoning about global features
containing such information. Finally, all features are integrated into a more com-
prehensive representation through a shared feedforward layer.

3.3 Inter-domain Loss and Intra-domain Loss

Through the aforementioned feature extraction process, we obtained represen-
tations in the temporal, spatial, and global domains. Next, we utilize temporal-
aware projectors and spatial-aware projectors to map them into the temporal
and spatial domains, respectively. Each projector consists of two fully connected
layers with an intermediate activation function. The specific mapping process is
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Fig. 2. Intra-domain loss (a) and Inter-domain loss (b). Different symbols represent
the outputs generated by the features of different domains through the projectors.

detailed as follows:
qs = S-Projector(ys)
qt = T-Projector(yt)
qas = S-Projector(yg)
qat = T-Projector(yg)

(4)

The symbol labeled with superscript “a” denotes the output generated through
projection of the global representation. Similarly, the outputs ks, kt, ka

s , ka
t of

encoder k can also been generated follow a same process.
Next, the losses are calculated. Here we introduce InfoNCE loss [22] to mea-

sure the distance between outputs. The calculation process is as follows:

L(q, k) = − log
F(q, k)

F(q, k) +
∑

m∈M F(q,m)
(5)

F(q, k) = exp(q · k/τ), τ is the temperature hyperparameter, M represent the
queue where the negative samples are.

Intra-domain Loss. The setup of our contrast pairs is shown in Fig. 2. First, we
calculate the loss in the spatial domain or the temporal domain. For simplicity,
we do not show the calculation process of InfoNCE. The intra-domain loss is as
follows:

Lintra = L(qs, ka
s ) + L(qas , ks) + L(qt, ka

t ) + L(qat , kt) (6)

We use the mapped domain-aware features to perform contrast with the
original domain features to measure the similarity of samples within the temporal
and spatial domains respectively.
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Inter-domain Loss. In addition to intra-domain loss calculation, we have also
introduced inter-domain loss calculation. The calculation process is as follows

Linter = L(qs, kt) + L(qt, ks) (7)

Through the calculation of inter-domain loss, the contrast pairs across tem-
poral and spatial are established, so that the discriminative ability of the con-
trastive learning framework is significantly enhanced compared with the contrast
method in a single domain.

Finally, we set trainable weights for the two losses, and the total loss is
expressed as follows:

Ltotal = λ1 · Lintra + λ2 · Linter (8)

4 Experiments

4.1 Dataset

NTU-RGB+D 60. NTU-RGB+D 60 (NTU-60) [25] contains a total of 56,880
samples of 60 types of actions. The skeleton data contains the 3D positions of
25 major body joints per frame. It has two evaluation metrics: Cross-Subject
(X-Sub) and Cross-View (X-View). Cross-Subject divides the training set and
test set based on person IDs. The training set contains 40,320 samples and the
test set contains 16,560 samples. Cross-View divides the training and test sets
by camera. The samples captured by camera 1 are used as the test set, and by
cameras 2 and 3 are used as the training set. The number of samples is 18,960
and 37,920 respectively.

NTU-RGB+D 120. NTU-RGB+D 120 (NTU-120) [20] is a expansion to
NTU-60, which covers all previous data and 60 categories are introduced for
a total sample size of 114,480. In terms of evaluation, except the Cross-Subject
used in NTU-60, NTU-120 introduces the cross-setup (X-Set) evaluation metric,
which uses data collected by even-numbered cameras as the training set and
data collected by odd-numbered cameras as the test set.

PKU-MMD. PKU-MMD [19] consists of 1,076 unedited video sequences of 66
participants taken from three views. PKU-MMD includes 51 action categories: 41
daily actions (drinking, waving hand, putting on the glass, etc.) and 10 interac-
tion actions (hugging, shaking hands, etc.). Similar to the NTU RGB+D dataset,
this dataset also has two recommended evaluation metrics, Cross-Subject and
Cross-View. Following previous methods [7], only the Cross-Subject evaluation
metric is adopted in the following experiments.
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4.2 The Experimental Setup

In the unsupervised training process, the unlabeled training set is used. We use
the stochastic gradient descent algorithm (SGD) as the optimizer. The network
is trained on a single NVIDIA 3090 GPU with a batch size of 64 and a learning
rate of 0.01 for a total of 450 epochs. The Nesterov momentum is set to 0.9, and
the weight decay is set to 1e–4 for NTU RGB+D 60, NTU RGB+D 120, and
PKU-MMD I, and 1e–3 for PKU-MMD II.

For downstream tasks, we use labeled data to measure the effect of our
upstream unsupervised clustering. We freeze the parameters of the encoder,
train the classifier with a learning rate of 0.1 for 80 epochs, and reduce the
learning rate to one-tenth of the original at the 50th and 70th epochs, respec-
tively. Specifically, in the transfer learning task, we fine-tune the entire network
(including the encoder and classifier) with the initial learning rate set to 0.01.

Table 1. Comparison with mainstream methods on action classification.

Method NTU-60 NTU-120 PKU-MMD I PKU-MMD II

x-sub x-view x-sub x-set x-sub x-sub

LongT GAN [37](AAAI’18) 52.1 56.4 – – 67.7 26.5

PCRP [33](TMM’21) 54.9 63.4 43.0 44.6 – –

EnGAN-PoseRNN [15](WACV’19) 68.6 77.8 – – – –

H-Transformer [4](ICME’21) 69.3 72.8 – – – –

CrosSCLR [16](CVPR’21) 72.9 79.9 – – 84.9* 21.2*

AimCLR [9](AAAI’22) 74.3 79.7 63.4 63.4 87.8* 38.5*

Colorization [35](ICCV’21) 75.2 83.1 – – – –

GL-Transformer [14](ECCV’22) 76.3 83.8 66.0 68.7 – –

ISC [27](ACM MM’21) 76.3 85.2 67.1 67.9 80.9 36.0

HYSP [8](ICLR’23) 78.2 82.6 61.8 64.6 83.8 –

ActCLR [18](CVPR’23) 80.9 86.7 69.0 70.5 – –

HiCo-Transformer [7](AAAI’23) 81.1 88.6 72.8 74.1 89.3 49.4

STDA-Net 85.7 90.5 76.8 79.4 92.5 54.6

4.3 Comparison to the State-of-the-Art

We compare the proposed STDA-Net with previous mainstream unsupervised
methods on several downstream tasks, including action recognition, action
retrieval, and transfer learning.

Action Recognition. Action classification task is the most representative
downstream task. To verify the validity of STDA-Net, we compared it with previ-
ous methods on four benchmarks, including NTU 60&120 and PKU-MMD I&II.
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The experimental results are summarised in Table 1. On the NTU-60, STDA-
Net achieves a outstanding performance on both metrics, with 85.7% and 90.5%.
For NTU-120, our model outperforms previous state-of-the-art methods, achiev-
ing excellent results of 76.8% and 79.4% on X-Sub and X-Set, respectively. The
PKU-MMD dataset is more challenging due to noise caused by various reasons,
but STDA-Net still achieves excellent performance, improving by 3.2% and 5.2%
over SOTA on PKU-MMD I and II respectively.

Action Retrieval. In this task, we use KNeighborsClassifier [6] as the classifier.
Table 2 shows the results on the NTU dataset. In these benchmarks, our model
achieved improvements on most metrics. On the X-Sub of the NTU-60, the
accuracy increased by 3.9%. On the X-Sub and X-Set metrics of NTU-120, the
increases are 3.2% and 4.8% respectively.

Table 2. Comparison with mainstream methods on action retrieval.

Method NTU-60 NTU-120

x-sub x-view x-sub x-view

LongT GAN [37] 39.1 48.1 31.5 35.5

P&C [26] 50.7 76.3 39.5 41.8

AimCLR [9] 62.0 – – –

ISC [27] 62.5 82.6 50.6 52.3

HiCo-Transformer [7] 68.3 84.8 56.6 59.1

SkeAttnCLR [12] 69.4 76.8 46.7 58.0

STDA-Net 73.3 82.5 59.8 63.9

Table 3. Comparison with mainstream methods on transfer learning.

Method Transfer to PKU-MMD II

PKU-MMD I NTU-60

LongT GAN [37] 43.6 44.8

ISC [27] 45.1 45.9

HiCo-Transformer [7] 53.4 56.3

STDA-Net 61.0 66.5

Transfer Learning. Transfer learning improves learning efficiency and perfor-
mance by applying already learned knowledge to new problems or scenarios. In
this work, we migrate pre-trained models on NTU RGB+D 60 and PKU MMD I
to the PKU MMD II dataset. The results presented in Table 3 demonstrate that
our STDA-Net brings a performance improvement of 7.6% and 10.2% compared
with the current SOTA results.
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Experiments on Different Modalities. In all of our experiments, joint data
are used as the default input. Here we also employ STDA-Net on different modal-
ities, such as bone and motion. The results are shown in Table 4. When the bone
representation is used as the input, the accuracy of our model is 85.1%, and
when the input is the motion representation, the accuracy is 82.8%.

Table 4. Compared with the mainstream methods on different modalities.

Method Joint Bone Motion

CrosSCLR [16] 72.9 75.2 72.7

AimCLR [9] 74.3 73.2 66.8

HiCo-GRU [7] 80.6 80.3 78.2

HiCo-LSTM [7] 81.4 81.0 78.9

HiCo-Transformer [7] 81.1 80.3 76.2

STDA-Net 85.7 85.1 82.8

Table 5. The effectiveness of proposed key innovations.

Network Param(M) FLOPs(G) Accuracy

ST Network 49.8 4.17 81.9

STDA-Net w/ shared transformer 37.1 4.20 83.4

STDA-Net w/ separate transformer 62.4 4.20 84.4

STDA-Net w/o intra-loss – – 83.0

STDA-Net w/o inter-loss – – 84.4

STDA-Net 58.2 4.31 85.7

4.4 Ablation Study

Effectiveness of Proposed Innovations. We compare the proposed method
with the following variants:

(1) ST Network: A two-stream network comprising temporal and spatial
streams, with the final contrast constrained to either the spatial or tem-
poral domain.

(2) STDA-Net with shared transformer: In this variant, the TATM is sub-
stituted with a single transformer module that includes an attention mech-
anism and a feedforward layer.

(3) STDA-Net with separate transformer: Here, the TATM in STDA-Net
is replaced by three individual transformer modules, each module consisting
of an attention mechanism and a feedforward layer.

(4) STDA-Net without intra-loss: This variant of STDA-Net removes the
intra-domain loss component, focusing only on inter-domain loss.

(5) STDA-Net without inter-loss: Conversely, this variant removes the inter-
domain loss component, focusing only on intra-domain loss.
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First, we use the two-stream spatiotemporal model (ST Network) for com-
parative experiments. It represents a simple baseline for modeling completely
separate spatial and temporal. By comparison, our three-stream representation
network has better results with little increase in model complexity. This also
shows that while modeling spatiotemporal differentiation, it is equally impor-
tant to evaluate actions from the perspective of the entire sequence.

Next, we conduct ablation experiments on the proposed TATM. We replace
TATM with a shared transformer module or three independent transformer mod-
ules. The experiments show that although the shared transformer module has an
advantage in the number of parameters, it leads to a decrease in performance.
Specifically, this is because the shared transformer module confuses the inde-
pendent feature reasoning between different domains. In addition, completely
independent transformer modules do not bring any performance improvement,
which also shows that there is actually a potential correlation between the fea-
tures of the three domains. The shared feedforward layer in our TATM integrates
the information of different domains to obtain a more comprehensive represen-
tation.

Finally, we conduct experiments by removing the intra-domain and inter-
domain losses separately from STDA-Net. This aims to demonstrate their com-
bined effectiveness when used together in the model. Indeed, the experimental
results also demonstrate that the application of inter-domian loss and intra-
domain loss in our model is natural yet effective.

Table 5 evaluates and compares each experimental configuration. These anal-
yses provide insight into how different components and configurations affect the
performance of the model.

Table 6. The exploration of the dimensions of attention computation is performed for
each attention module in the proposed TATM.

Attention dimension Accuracy

Spatial Global temporal

1024 1024 1024 84.3

2048 1024 1024 85.2

1024 2048 1024 84.8

1024 1024 2048 84.7

1536 1024 1024 85.7

2560 1024 1024 84.7

3072 1024 1024 85.3

Exploration on the Dimensions of TATM. We explore the influence of dif-
ferent dimensions of attention on the experimental results, as shown in Table 6.
First, we increase each attention dimension from 1024 to 2048 respectively to
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Fig. 3. t-SNE visualisation. We randomly select ten categories for visualization. The
dots of the same color represent samples belonging to the same action.

explore which dimension has a deeper impact on the final feature expression.
Experiments prove that changes in spatial dimensions are more critical, so we
conduct experiments on spatial dimensions. With the other two dimensions
unchanged, we achieve the best results when the number of channels in the
spatial dimension is 1536. But in reality, we fixed the sizes of the temporal and
global dimensions, and increasing them moderately may lead to better results.

Table 7. The exploration of encoder parameters of the model.

GCN Transformer Accuracy

Layers Channels Layers Heads

2 64 1 16 85.0

3 64 1 16 85.7

4 64 1 16 85.4

3 32 1 16 85.4

3 128 1 16 85.2

3 64 2 16 85.6

3 64 1 4 84.8

3 64 1 8 85.2

Exploration of Encoder Parameters. In addition to the above explorations,
we also explore the other parameter settings of the model, and the results are
shown in Table 7. The best results are achieved when the GCN encoder has 3
layers and 64 channels, and the transformer encoder has 1 layers and 16 heads.
There is no significant change in performance as the model parameters change,
indicating the stability of our method.

Visualization. As shown in Fig. 3, we visualize the extracted feature from the
unsupervised pre-training. From left to right are the t-SNE visualizations of
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the raw data, the ST Network, and our STDA-Net. In addition, we quantify the
clustering effect using the DBI index, which stands for the Davies-Bouldin Index,
offerring a quantitative assessment of clustering effectiveness. The visualization
and DBI index prove the clustering effect of our model.

5 Conclusion

In this paper, we present an innovative triple-stream unsupervised contrastive
learning framework, STDA-Net. By performing feature extraction and fusion,
we obtain features corresponding to spatial, temporal, and global domains. Fur-
thermore, by separately modeling features within each domain, TATM cap-
tures domain-specific features. Subsequently, a shared feedforward layer is used
to update these features. Finally, inter-domain and intra-domain losses are
employed to construct more diverse and challenging contrasts, thereby enhanc-
ing the model’s discriminative capability. Experimental results across various
downstream tasks demonstrate the superiority and robustness of our model.
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Abstract. Action recognition and localization in a video are challenging tasks in
video analysis, requiring detecting and localizing actions within video sequences.
Recent research has increasingly focused on enhancing the modeling of long-
term temporal context. To address the said task in this paper, we have proposed a
novel project and pool architecture. The proposed architecture comprises of three
modules. In the initial module, we proposed LSTMProjector, which is a two-
layer long-short-term memory module that projects spatial and temporal features
from extracted videos in feature space. It efficiently handles input features by
leveraging both local and global context information. The first LSTM layer pro-
cesses each feature channel independently to capture local spatial dependencies,
while the second layer captures global temporal dependencies across the entire
sequence. In the second module, we devise a latent space projection technique
to project the extracted features into a latent space using a one-dimensional con-
volutional layer to match the dimensions of spatial and temporal features. In the
final module, a temporal pooling module is designed, which is a parameter-free
max-pooling block and operates on local regions. It enhances the efficiency of the
action localization model by selectively extracting the most crucial information
from neighbouring and local clip embedding. We have demonstrated the effec-
tiveness of the proposed scheme, using mean average precision (mAP) over dif-
ferent thresholds of Intersection over Union (IoU) on the “THUMOS 14”, “Epic-
Kitchens”, and “MultiTHUMOS” datasets. The proposed technique achieves a
mean average precision (mAP) of 67.38% on THUMOS 14, 24.71% on Epic-
Kitchens verb, 23.30% on Epic-Kitchens noun, and 29.91% on MultiTHUMOS
datasets. Additionally, we compared the performance of the proposed techniques
with those of the twenty-eight state-of-the-art (SOTA) techniques on different
benchmark databases, confirming the superiority of our proposed scheme.

Keywords: Action localization · Long short term memory · convolutional
neural network

1 Introduction

Action recognition and localization are crucial tasks in computer vision. It has numer-
ous applications, including human-computer interaction [29], monitoring kids/old-aged
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in smart homes [32], smart surveillance systems [14,36] and night surveillance sys-
tems [35], etc. Action localization specifically focuses on identifying an action’s start
and end times in an untrimmed video, while recognition concentrates on recognizing
the category of each action instance. Trimmed videos, which contain only one action
throughout, are temporally aligned and easier to analyze. On the other hand, untrimmed
videos include additional irrelevant information, which makes it difficult to classify
actions present in the video. In real-time applications, most videos are untrimmed and
vary in duration. Typically, only a small portion of an untrimmed video contains rele-
vant actions. So one approach to handle untrimmed videos is to crop or segment longer
videos into smaller inputs before processing. However, the said methods risk missing
parts of the action or failing to capture the entire action sequence. So, another opti-
mal solution is to input the entire video into the network. Yet, due to computational
limitations, processing full-length videos of varying durations remains challenging.

Several pioneer state-of-the-art (SOTA) [2,27,46] techniques generate classifica-
tion score sequences over time by sliding a trained model across an untrimmed video or
incorporating modules that capture long-range temporal relationships present between
the video frames [25,30,43,49]. Analysis of various SOTA techniques reveals that rec-
ognizing and localizing actions in long untrimmed videos remains challenging, as these
methods are unable to fully utilize the long-term temporal dependencies present in the
videos. Furthermore, the complexity of actions, which often consist of multiple sub-
actions, poses a challenge for models aiming to accurately identify the complete action.
Further, current CNN-based SOTA techniques struggle to capture spatio-temporal fea-
tures and are unable to extract relevant information from untrimmed videos. This high-
lights the importance of choosing a robust feature extraction method for action localiza-
tion. Similarly, most CNNs and graph convolution networks are ineffective in capturing
temporal correlations, particularly for long-term dependencies [15,30,44,50].

Based on the aforementioned analysis, we devise a novel action recognition and
localization approach, “Project and Pool”, from long untrimmed videos comprising
three essential modules. Firstly, the LSTMProjector module is introduced, incorpo-
rating a two-layer long-short-term memory (LSTM) structure. The second module
employs a latent space projection technique to transform the extracted features using
a one-dimensional convolutional layer. Lastly, the third module introduces a temporal
pooling mechanism, which employs a parameter-free max-pooling block that operates
on local regions. The main contributions of this article are as follows:

– We have proposed an LSTM-based feature projection module, LSTMProjector,
which brings out the inherent local and global details present between the video
frames. This module effectively handles spatial and temporal features extracted
from videos by integrating both local and global contextual information. The first
LSTM layer works as an Intra-snippet feature projection layer to capture local spa-
tial dependencies, while the second LSTM layer works as an Inter-snippet feature
projection layer to capture long-range temporal dependencies within the entire video
sequence.

– We have proposed a one-dimensional convolutional layer-based latent space module
to enhance the LSTM projected features.
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– A simple parameter-free temporal pooler module is introduced to exploit the tempo-
ral dependencies between the video frames.

– Our experiments on the THUMOS14, Epic-Kitchens and MultiTHUMOS datasets
have been thorough, and the results show that our proposed method surpasses exist-
ing SOTA techniques for action localization.

We have utilized intersection over union (IoU ) as our evaluation measure to show the
effectiveness of the proposed scheme. The evaluation of the proposed technique is ver-
ified using twenty-three SOTA techniques on THUMOS14, three SOTA techniques for
Epic-Kitchens and six SOTA techniques for MultiTHUMOS datasets to corroborate
our findings. The organization of the remaining portion of this article is as follows: In
Sect. 2, we have provided a brief discussion about the existing SOTA techniques. The
proposed methodology is discussed in detail in Sect. 3. Section 4 represents experimen-
tal results with quantitative evaluations of the same. Finally, we conclude the proposed
scheme in Sect. 5.

2 Related Work

Several human action recognition and localization algorithms have been developed dur-
ing the last few decades, varying in technology/algorithm utilization, enhancement effi-
ciency, and easy implementation. Despite advancements, action recognition and local-
ization in untrimmed videos remain challenging. Several SOTA techniques like 3D-
CNN [9] and I3D [4] are explored for action localization in untrimmed videos. These
models are commonly utilized for feature extraction from videos, enabling subsequent
application in action localization tasks. In the following section, we comprehensively
analyzed other relevant SOTA techniques by classifying them into three specific types
as follows:

One-Stage Action Localization. In the single-stage method, action localization is
done without generating action proposals. Recently, action localization models have
gained more attention in the computer vision community. These solutions aim to
rapidly localise actions in the video without requiring separate action suggestions.
The single-stage action localization technique often relies on anchor-based methods, in
which anchors (windows) are extracted from the video using a sliding window method.
Inspired by the Single-shot multi-box detector [24], Lin et al. [19] proposed the first
single-stage, single-shot temporal action detection network. Buch et al. [3] proposed
a single-stage recurrent memory-based model for temporal action localization. Based
on a one dimensional convolutional network, Long et al. [27] used Gaussian kernels to
optimise each anchor’s size. Using convolutional networks again, Yang et al. [45] inves-
tigated the combination of anchor-based and anchor-free models for single-stage action
localization. More recently, Lin et al. [18] created a saliency-based refinement module
that was integrated into a convolutional network to propose an anchor-free single-stage
model.
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Two-Stage Action Localization. In this method, candidate video segments are first
generated as action proposals; these proposals are further classified into different
actions. After that, temporal boundaries are refined. Action proposals can be gener-
ated by using different ways: classification of anchor window [8,13], detecting action
boundaries [11,20,21,52]. Some of the SOTA techniques have merged classification
and proposal generation into a single model [5,34]. More recent SOTA techniques focus
on modelling temporal context among action suggestions using an image-based visual-
language model [16] or graph neural networks [44,48,50].

Transformer-Based Methods. Inspired by the great success of the Transformer in the
field of machine translation and object detection, some recent works [12,25] adopt the
attention mechanism in action localization tasks to improve the performance. Recent
works [39,47] utilized the DEtection TRansformer-based decoder [54], which models
action instances as a set of learnable parameters. On the other hand, Zhang et al. [49]
encodes the formerly extracted features using a transformer-based encoder. However,
most of these methods are based on local behaviour. Generally, attention operations
are applied only within a local window, introducing an inductive bias similar to that
of CNNs. However, this approach comes with increased computational complexity and
additional limitations.

Fig. 1. Proposed framework for action localization.

3 Proposed Techniques

Figure 1 illustrates the framework of our proposed action localization technique. As
shown in Fig. 1, we initially extracted the spatio-temporal features from the input videos
using an Inflated 3D convolutional neural network [4]. These features are then fed into
a LSTMProjection module followed by a latent space projection. The output from the
latent space projection is then processed by a TemporalPooler module. After that, a
lightweight convolutional decoder is applied. Finally, a classification and regression
head is applied to generate the final output. We formulate the problem statement as
follows:
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3.1 Problem Statement

Given an untrimmed video X= {x1, x2, . . . , xT } that contains “T ” numbers of frames,
our model seeks to predict a set of action instances, Φ̂ = {φ̂1, φ̂2, . . . , φ̂M}. Here, M

represents the number of action instances in X . Each action instance φ̂i = (st, et, ac)
consist of a start time ( st), end time (et) along with its action label (ac). The constraints
are that st and et must be within the range [1, T ], st < et and the action label ac must
belong to a predefined set of C action classes.

To solve the action localization problem, we initially devised a novel LSTM-based
feature projection module to capture temporal dependencies present with video frames.
We first describe the representation of the actions and then explain the LSTM-based
encoder as follows;

Representation of Actions. In the proposed method, we adopt an anchor-free single-
stage representation for each action occurrence [18,49]. This approach involves simul-
taneously regressing the onset and offset of an action based on the current time step,
while the classification distinguishes between background and one of the C action
classes at every time step. The method formulates the prediction for action localiza-
tion as a sequence labeling task, which maps the video sequence X to a sequence of
predicted action instances Φ̂ as follows:

X = {x1, x2, ..., xT } → Φ̂ = {φ̂1, φ̂2, ..., φ̂M} (1)

At time step t, the output is given as φ̂t = (sot , e
o
t , p

o
t ). Where sot > 0 and eot > 0

represent the starting and end time of temporal spans of a given event. Considering
C is the total number of action categories, the action probability pot can be seen as a
collection of poj,t denoting the likelihood for the jth action at t time-step, where 1 ≤
j ≤ C.

The predicated action instance ppt at time step t can be inferred from φ̂t =
(sot , e

o
t , p

o
t ) by:

ppt = argmax(pot ), st = t − sot , et = t + eot (2)

where st and et are the final predicted start and end times, respectively. The proposed
method learns to label every input of X by G(X) → Φ̂. Where G represents a deep
learning model. G contains an encoder and decoder-like architecture E ◦ D, which is
given as follows;

3.2 Encoder Module

In the encoder module, we first represent the input feature X by a multi-scale tempo-
ral feature pyramid Y = {Y1, Y2, ..., YL}. The encoder contains the LSTM projection
module followed by a one-dimensional convolution layer and a temporal pooler module
at the end.
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LSTM Projector. As shown in Fig. 2, in the LSTM Projector framework, firstly, the
extracted features are reshaped and passed to the initial layer to capture temporal depen-
dencies present within the feature sequence. The output is then reshaped and passed to
the subsequent layer to capture temporal dependencies within the feature channels. The
encoder E simply contains LSTMProjector as the feature projection layer, followed by
L − 1 temporal context modeling blocks to produce feature pyramid Y . Formally, the
LSTM-based projection layers are defined as:

X1
P = LSTMProjector(Concat(X)) (3)

We first concatenate the input X = {x1, x2, ..., xT }, in the channel dimension, then fed
it into the LSTM projection module as described in equation (3). After that, it is passed
to a latent projection layer, which is a one-dimensional convolutional layer resulting in
X2

P ∈ R
T×D, which is given as follows:

X2
P = Conv1D(X1

P ) (4)

This module’s primary goal is to extract complex temporal patterns from extracted
features. Each obtained feature encapsulates the essence of a video clip at a specific
moment, capturing spatial and temporal information relevant to localizing actions in a
video.

Fig. 2. Graphical representation of the LSTM Projector

The input tensor X is reshaped as X ′ and visualized as follows:

X ′ =

⎡
⎢⎣

⎡
⎢⎣

x1,1

...
xF,1

⎤
⎥⎦ ,

⎡
⎢⎣

x1,2

...
xF,2

⎤
⎥⎦ ,

...,

⎡
⎢⎣

x1,T

...
xF,T

⎤
⎥⎦

⎤
⎥⎦ (5)

Where F represents the number of features, and T represents the number of sequences.
The dimension of obtained X

′
is given as (B×Ch, T, 1). Where B represents the batch
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size, Ch represents the number of channels, and T represents the total time steps. We
pass each feature of X

′
to an LSTM projection module individually. This step aims to

capture temporal dependencies within each feature sequence. For each feature of X
′
,

LSTM projections are applied sequentially as follows:

For Xi1 :

h
(1)
i1 , C

(1)
i1 = LSTMFC

1 (x1, hi0, Ci0)
For Xi2 :

h
(2)
i2 , C

(2)
i2 = LSTMFC

2 (x2, h
(1)
i1 , C

(1)
i1 )

...

For XiN :

h
(T )
iT , C

(T )
iT = LSTMFC

T (xT , h
(1)
iT−1, C

(1)
iT−1)

Where, i = {1, 2, ..., F} and LSTMFC represents the lstm layer applied along the
feature channel.

After obtaining the hidden states for each feature Xi, we have hi with shape (B ×
C, T, 1). Each hi represents the hidden states obtained from ith LSTM projections for
each feature. We concatenate all hidden states along the channel dimension to form h
with shape (B × C, T, 1).The concatenated tensor h is visualized as:

h =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

h
(1)
1,1
...

h
(1)
F,1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

h
(2)
1,2
...

h
(2)
F,2

⎤
⎥⎥⎦ ,

...,

⎡
⎢⎢⎣

h
(T )
1,T
...

h
(T )
F,T

⎤
⎥⎥⎦

⎤
⎥⎥⎦ (6)

we reshape the hidden state tensor h from (B × C, T, 1) to (T,B × C, 1) by per-
muting the dimensions.The reshaped hidden state tensor hT is visualized as:

hT =

⎡
⎢⎢⎢⎢⎢⎣

[
h
(1)
1,1 h

(2)
1,2 · · · h

(T )
1,T

]

...[
h
(1)
F,1 h

(2)
F,2 · · · h

(T )
F,T

]

⎤
⎥⎥⎥⎥⎥⎦

(7)

After reshaping the hidden state tensor h, we pass each row of the reshaped tensor to
the LSTM projections individually. Each row represents a separate sequence of hidden
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states across all time steps. LSTM projections are applied to each row of hT as follows:

For the 1-st row of hT :

h1, C1 = LSTMTemporal
1 ([h(1)

1,1, h
(2)
1,2, . . . , h

(T )
1,T ], h

(1)
iT , C

(1)
iT )

...

For the F -th row of hT :

hF , CF = LSTMTemporal
F ([h(1)

F,1, h
(2)
F,3, . . . , h

(T )
F,T ], hF−1, CF−1)

Here, LSTMTemporal represents the LSTM layer applied along the temporal dimen-
sion.

Finally output hidden state (hout) is given by;

hout =

⎡
⎢⎢⎢⎢⎢⎣

h1 =
[
h
(1)
1,1 h

(2)
1,2 · · · h

(T )
1,T

]

...

hF =
[
h
(1)
F,1 h

(2)
F,2 · · · h

(T )
F,T

]

⎤
⎥⎥⎥⎥⎥⎦

(8)

We reshape the concatenated LSTMTemporal outputs to match the original tensor
dimension. Finally, a mask to the output tensor is applied.

TemporalPooler. We introduced a parameter-free max-pooling on the latent projected
layer to emphasize the most salient features. This method captures temporal context
by downsampling the input sequence while retaining the most relevant elements. This
approach offers several advantages. It allows the model to capture task-specific, high-
impact temporal features, adapting to diverse temporal dynamics. This adaptability
enhances the model’s capability to effectively interpret and analyze the varying com-
plexities in different video sequences, leading to a more accurate understanding of com-
plex patterns within the videos.

3.3 Decoder Design

The decoder D learns to predict sequence labeling, Φ̂ = {φ̂1, φ̂2, ..., φ̂M}, for every
moment using multi-scale feature pyramid Y = {Y1, Y2, ..., YL}. The decoder adopts a
lightweight convolutional neural network and consists of classification and regression
heads. Formally, the two heads are defined as:

CL = Fc(X4
P (X

3
P (YL))) (9)

OL = ReLU(Fo(X6
P (X

5
P (YL)))) (10)

Here, YL ∈ R
(T/2l−1)×C is the latent feature of level L. X3

P , X
4
P , X

5
P and X6

P are the
latent projections applied on each level of the feature pyramid YL, CL represents the
classification probability, and OL represents the onset and offset prediction of the input
moment set. The decoder architecture leverages the multi-scale features in the pyramid
to make predictions for action localization.
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3.4 Loss Function

We have utilized two loss functions, focal loss [22] and Distance-IoU loss [53]. The
focal loss is used for binary classification, while Distance-IoU is used for distance
regression. The overall loss for the proposed model is given as follows:

Ltotal =
1

T+

∑
t

(Lcls + λreg · 1ct · Lreg) (11)

where Lcls and Lreg represent the classification and regression loss, respectively. T+

is the total number of positive samples, and 1ct is an indicator function that denotes
if a time step t is within an action, i.e., a positive sample. λreg represents a balancing
coefficient for classification and regression loss. We have empirically set the value of
λreg to 1. Ltotal is applied to all levels on the output pyramid and averaged across all
video samples during training. Importantly, Lcls uses Focal loss to recognize all action
classes. Focal loss naturally handles imbalanced samples. Lreg is only enabled when
the current time step contains a positive sample.

4 Experimental Results

The proposed architecture is implemented using the open-source machine learning
framework with PyTorch [38] on an Intel Xeon(R) Silver 4309Y CPU @ 2.80GHz
system with 256GB RAM and NVIDIA A10080GB GPU.

4.1 Datasets

We have conducted experiments using the proposed technique for action localization on
three benchmark datasets: THUMOS14, EPIC-Kitchens and MultiTHUMOS datasets.
These datasets are widely used in the field of action localization and provide diverse and
challenging video sequences for evaluation. By applying our technique to these datasets,
we aimed to evaluate their performance in accurately localizing actions within videos
and classifying them into respective action categories. THUMOS14, EPIC-Kitchens
and MultiTHUMOS datasets offer a comprehensive range of action classes, temporal
annotations, and many video samples, making them suitable for evaluating action local-
ization and classification methods.

4.2 Evaluation Metric

We use the mean average precision (mAP), which is computed at different temporal
intersections over union (tIoU). The 1D Jaccard index, or tIoU, is the intersection over
union of two temporal windows. Based on the specified tIoU thresholds, we present the
mAP scores for each action category. In addition, we report the average mAP value for
all tIoU thresholds. The Intersection-over-union (IoU) measure can be given as

IoU =
Predicted action class ∩ Ground truth
Predicted action class ∪ Ground truth

.
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The Mean average precision (mAP) is given by

mAP =
TP

TP + FP
=

Count of proposals predicted correctly
Count of predicted proposals in total

4.3 Implementation Details

We have adhered to 3D-CNN to extract features from the video. First, we have divided
the untrimmed videos into the non-overlapping chunk of 16 frames. We refer to these
chunks as snippets. Then, we utilized the I3Dmodel [4], pre-trained on the Kinetics-400
video dataset to extract spatiotemporal features. The snippets of the untrimmed videos
are passed as input to the feature extractor. It converts these snippets to a vector of
dimension 2048. which is then fed to the LSTM projection module, which provides an
output of dimension 2034 × 2048. After that, one-dimensional convolution is applied,
which provides a feature of dimension 2034 × 512. This is further processed by the
temporal pooler module iteratively, generating a feature pyramid with five levels. The
dimensions of each level are as follows: 2304×512, 1152×512, 576×512, 288×512,
and 144×512. Each level has a classification and regression head to classify and localize
the action. The ADAMW [28] optimizer with a learning rate of 0.0001 is utilized for
training.

4.4 Experimental Results and Validation of Model

We have experimented with the proposed technique for action localization and classi-
fication on the Thumos 14, Epic-Kitchens and MultiTHUMOS datasets. Table 1 shows
the performance comparison of the proposed method to twenty-three SOTA techniques
for action localization for the THUMOS 14 dataset. The proposed scheme surpassed
many SOTA techniques including the TadTR [25], AFSD [18], Re2TL [51] and Action-
Former [49] by a margin of 20.78%, 15.38%, 2.48% and 0.58% in terms of average
mAP respectively. Table 2 showcases performance comparisons for the Epic-Kitchens
dataset for verb and noun tasks. It may be observed that the proposed method outper-
forms the other three SOTA approaches. Regarding average mAP, our suggested method
surpasses BMN [20], G-TAD [44] and ActionFormer [49] by a margin of 16.31%,
15.31%, 1.21% for verb and 16.80%, 14.90%, 1.40% for noun task respectively. As
shown in Table 3, Project and Pool showcase outstanding performance on the Multi-
THUMOS dataset, achieving an average mean Average Precision (mAP) of 29.91%.
Notably, our approach outshines the robust baseline, PointTAD [38], ASL [33] and
ActionFormer [49], by a substantial margin. Furthermore, Project and Pool surpasses
other long-term Temporal Context Modeling (TCM) methods, including those utilizing
self-attention or Graph convolutional networks.
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Table 1. Comparison with state-of-the-art methods on THUMOS 14 dataset

Type Model Publication Feature IoU

0.3 0.4 0.5 0.6 0.7 Avg.

Two-Stage BMN [20] ICCV2019 TSN [42] 56.0 47.4 38.8 29.7 20.5 38.5

G-TAD [44] CVPR 2020 TSN [42] 54.5 47.6 40.3 30.8 23.4 39.3

DBG [17] AAAI 2020 TSN [42] 57.8 49.4 39.8 30.2 21.7 39.8

BC-GNN [2] ECCV 2020 TSN [42] 57.1 49.1 40.4 31.2 23.1 40.2

TAL-MR [52] ECCV 2020 I3D [4] 53.9 50.7 45.4 38.0 28.5 43.3

TCANet [30] CVPR 2021 TSN [42] 60.6 53.2 44.6 36.8 26.7 44.3

TSA-Net [11] ICME 2020 P3D [31] 61.2 55.9 46.9 36.1 25.2 45.1

P-GCN [48] ICCV 2019 I3D [4] 63.6 57.8 49.1 — — —

BMN-CSA [37] ICCV 2021 TSN [42] 64.4 58.0 49.2 38.2 27.8 47.7

RTD-Net [39] ICCV 2021 I3D [4] 68.3 62.3 51.9 38.8 23.7 49.0

VSGN [50] ICCV 2021 TSN [42] 66.7 60.4 52.4 41.0 30.4 50.2

P-GCN [48]+TSP [1] ICCV 2019 R(2+1)D [41] 69.1 63.3 53.5 40.4 26.0 50.5

ContextLoc [56] ICCV 2021 I3D [4] 68.3 63.8 54.3 41.8 26.2 50.9

MUSES [26] CVPR 2021 I3D [4] 68.9 64.0 56.9 46.3 31.0 —

Single-Stage A2Net [45] TIP 2020 I3D [4] 58.6 54.1 45.5 32.5 17.2 41.6

GTAN [27] CVPR 2019 P3D [31] 57.8 47.2 38.8 — — —

PBRNet [23] AAAI 2020 I3D [4] 58.5 54.6 51.3 41.8 29.5 —

TadTR [25] TIP 2022 I3D [4] 62.4 57.4 49.2 37.8 26.3 46.6

AFSD [18] CVPR 2021 I3D [4] 67.3 62.4 55.5 43.7 31.1 52.0

ActionFormer [49]+TSP [1] ECCV 2022 R(2+1)D [41] 73.4 67.4 59.1 46.7 31.5 55.6

ContextLoc++ [55] PAMI 2023 I3D [4] 74.4 68.2 58.7 46.3 30.8 55.7

Re2TL [51] ICCV 2023 SlowFast [10] 77.4 72.6 72.4 53.7 39.0 64.9

ActionFormer [49] ECCV 2022 I3D [4] 82.1 77.8 71.0 59.4 43.9 66.8

Proposed Method - I3D 83.15 78.82 71.07 58.59 44.41 67.38

Table 2. Comparison with state-of-the-art methods on EPIC-Kitchens dataset

Task Model IoU Avg.

0.1 0.2 0.3 0.4 0.5

Verb BMN [20] 10.8 9.8 8.4 7.1 5.6 8.4

G-TAD [44] 12.1 11.0 9.4 8.1 6.5 9.4

ActionFormer [49] 26.6 25.4 24.2 22.3 19.1 23.5

Proposed Method 27.7 26.75 25.63 23.25 20.22 24.71

NounBMN [20] 10.3 8.3 6.2 4.5 3.4 6.5

G-TAD [44] 11.0 10.0 8.6 7.0 5.4 8.4

ActionFormer [49] 25.2 24.1 22.7 20.5 17.0 21.9

Proposed Method 26.94 25.92 24.14 21.55 17.97 23.30
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Table 3. Comparison with the state-of-the-art methods on the MultiTHUMOS dataset. We report
the results at different IoU thresholds [0.2, 0.5, 0.7] and average mAP in [0.1:0.9:0.1]

Method IoU

0.2 0.5 0.7 Avg.

MLAD [40] — — — 14.2

MS-TCT [6] — — — 16.2

PDAN [7] — — — 17.3

PointTAD [38] 39.7 24.9 12.0 23.5

ASL [33] 42.4 27.8 13.7 25.5

ActionFormer [49] 46.4 32.4 15.0 28.6

Proposed Method 46.95 33.42 17.97 29.91

5 Conclusion

This paper addresses the important task of action localization in long, untrimmed
videos. The proposed method introduces several key components to improve local-
ization accuracy. First, we have devised a novel LSTM projection module. Then, we
have further projected them into a latent space using a one-dimensional convolutional
layer. Finally, we integrated a temporal pooling module, a straightforward, parameter-
free max-pooling block that functions on the local region. This module captures long-
range spatial-temporal dependencies. A combination of focal loss and Distance-IoU
loss functions is employed to train the network. To evaluate the efficiency of the pro-
posed scheme, experiments were conducted on the THUMOS 14, Epic-Kitchens and
MultiTHUMOS video datasets. The performance of the proposed approach was com-
pared against twenty-three SOTA techniques on the THUMOS 14, three SOTA tech-
niques on the Epic-Kitchens and six SOTA techniques on the MultiTHUMOS datasets.
The evaluation metrics used include intersection over union (IoU). The findings of the
experiments support the effectiveness of the proposed scheme in action localization, as
it outperformed the compared SOTA techniques on all datasets. The use of an LSTM
projector and temporal pooler contributes to the improved accuracy and efficiency of
the proposed approach.
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Abstract. The real-world applicability of automated violence recogni-
tion systems has drawn much attention from researchers. The current
techniques for recognizing violence are centered on creating efficient mod-
els that can predict violent events quickly and accurately in real-time.
However, early violence prediction, which is crucial for real-time systems,
is not considered in these methods. In this paper, we present an early
violence prediction method that can accurately predict violent activ-
ities from partially observed video frames. We propose a two-stream
architecture which employs our proposed efficient Squeeze-Excitation
ShuffleNet (SESNet) model that effectively extracts spatial and tempo-
ral features. We leverage spatio-temporal and channel-wise squeeze and
excitation to incorporate attention information into the ShuffleNet V2
architecture. To enable early violence recognition, we train our model
in a teacher-student framework, where the teacher model trained on
full-length videos distils privileged information to the student model,
which has access to partial videos. For this purpose, we introduce a
novel multi-teacher importance preservation learning methodology which
can effectively distill important features from multiple teacher networks.
We evaluate our approach on the challenging RWF-2000 public violence
recognition dataset. Experimental results show that our teacher-student
training framework performed well for early violence prediction. Addi-
tionally, our proposed model also outperforms several state-of-the-art
violence recognition methods on full-length videos.

Keywords: Early Violence Prediction · Knowledge Distillation ·
Efficient Convolution Networks · Autonomous Surveillance System

1 Introduction

The widespread deployment of surveillance cameras in public spaces has demon-
strably yielded a safer environment. Their presence deters criminal activity and
provides crucial evidence for investigations. However, the ever-increasing num-
ber of cameras translates to a vast amount of video data, posing a significant
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challenge for traditional monitoring methods. Manually sifting through hours
of footage is not only time-consuming and labor-intensive but also hinders the
proactive potential of surveillance systems. This has fueled a surge in research
on automated violence recognition systems. Violence recognition aims at recog-
nizing violent or aggressive human actions such as fighting, rioting, vandalism,
etc.

Several earlier works on violence recognition made use of hand-crafted feature
descriptors capable of capturing violence motion in video data [3,11]. With the
success of deep learning in computer vision based applications [1,2], recent works
have largely focused on deep learning based solutions to improve recognition
performance [6,9,12]. However, these works intend to recognize violence from
full videos, thus making them post-incident analysis tools. As these methods
are trained on full videos, they learn more prominent features that may not be
present in the partial video. As a result these methods are often incapable of
recognizing violent activities when partial videos are provided, as can be seen in
Fig. 1. The ability to predict violence from partial videos is extremely important
for real-time violence recognition systems, as this allows authorities to receive
accurate contemporary predictions rather than post-incident recognition. For
example, in a real-world surveillance system, recognizing any violent behaviour
after it has already occurred is not very meaningful. It would be more helpful if
the system could predict an ongoing violence act as early as possible. This could
help in prompt response by the authorities to stop or avoid such situations.

Although multiple research works have been done regarding early action
prediction [28,30], hardly any focus is given to early violence prediction. We
define early violence prediction as the task to accurately predict violent human
behaviour from partially observed videos. To this end, we propose an early
violence prediction model which is able to accurately predict violent activities
from different lengths of partial videos. We first design our Efficient Violence
Net (EVNet) architecture, which acts as the backbone for all our recognition
tasks. Our EVNet is a two-stream architecture leveraging our proposed Squeeze-
Excitation ShuffleNet (SESNet) model. Our SESNet presents an efficient 3D
convolution architecture based on the ShuffleNetv2 model [17], enhanced by
the spatio-temporal and channel squeeze and excitation. Further, to incorpo-
rate early violence detection capability, we train our EVNet architecture in a
teacher-student setup using knowledge distillation. We also propose an impor-
tance preserving knowledge distillation loss for training our student model for
early violence prediction.

We can sum up our main contributions as follows:

1. We propose a lightweight two-stream violence recognition model, called
EVNet, which leverages our efficient SESNet architecture.

2. We train our EVNet model in a teacher-student setup to incorporate early
violence prediction capability in our violence classifier. To the best of our
knowledge, this is the first work to deal with early violence prediction.

3. An importance preserving multi-teacher knowledge distillation is proposed
to further improve violence prediction performance from partially observed
videos.
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Fig. 1. Prediction of violence in the video (fight/no fight). Prediction of fight from the
(a) full video, (b) partial video with few initial frames, however, model is giving wrong
prediction, (c) the model is accurately predicting the violence in the video from few
initial frames. Therefore, the task is to develop a model that can accurately predict
violence from partially observed video.

The rest of this article is organised as follows. Relevant literature is summarised
in Sect. 2. In Sect. 3, we detail our proposed EVNET and SESNet architectures
for violence recognition, as well as our proposed multi-teacher important feature
preserving distillation loss for early violence prediction. The experimental details
and results are provided in Sect. 4 and Sect. 5 respectively. Section 6 concludes
the paper.

2 Related Work

Traditional methods made use of feature descriptors to capture relevant spatio-
temporal information from the videos. Nievas et al. [3] used the Motion Scale
Invariant Feature Transform (MoSIFT) [5] and the Spatio-temporal Interest
Points (STIP) [14] as feature descriptors, and finally classify violence videos uti-
lizing a Bag-of-words framework. The work also introduced the popular Hockey
Fights dataset. In [11], Hassner et al. proposed the Violent Flows (ViF) descrip-
tor, which takes into consideration how the magnitude of optical flow vectors
changes over time, instead of taking just the magnitude values themselves.

With the limited generalization ability of such methods, and the success of
deep learning, various recent deep learning based methods have outperformed
the traditional methods. Given their ability to extract spatio-temporal features,
3D Convolution Neural Networks (CNNs) have been extensively used in violence
recognition [8,16]. Several works [6,7,9,12,20] in violence recognition adopted
the two-stream approach proposed by [22]. Cheng et al. [6] introduced the RWF-
2000 violence recognition dataset. Islam et al. [12] replace optical flows in [6] with
RGB frame difference, which are faster to compute. Garcia et al. [9] replace
RGB frames with skeleton features which are able to better capture motion
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for human objects. The use of Long Short-Term Memory (LSTM) networks
have also been widely explored in violence recognition [7,12,25]. Dai et al. [7]
applied LSTM over two stream architectures to enhance the capture of tempo-
ral features. Islam et al. [12] replaced ConvLSTMs with Separable Convolutional
LSTM (SepConvLSTM) which further reduces model parameters. However, most
of these work fail to incorporate attention mechanism when extracting features.
Attention has proved to be extremely influential for extraction of important fea-
tures and the omission of redundant ones [10]. In our work, we use a two-stream
architecture where our squeeze-and-excitation attention equipped SESNet model
extracts salient local spatio-temporal information from RGB and frame differ-
ence streams, and long range temporal dependencies are then learnt using tem-
poral convolution network (TCN) [15].

Several works have focused on proposing efficient, lightweight models for
violence recognition, which is beneficial in real-time setting. However, little focus
is given to the early prediction of violence activities. Early prediction of violent
activities are more valuable for authorities instead of post-event predictions. For
general action anticipation task, Wang et al. [28] proposed a teacher student
knowledge distillation approach where knowledge from a teacher model trained
on full length videos are distilled into a student model which has access to partial
videos. As there is a large information gap between the input to the teacher
and student models, Zhao et al. [30] introduces a curriculum learning approach
to distill knowledge from teacher model. Camporese et al. [4] approaches action
anticipation as a multi-label task. The work looks to predict the action at a future
time-step, using label-smoothing to remove uncertainty of future predictions. In
this work, we put forth an early violence prediction model using importance
preserving knowledge distillation. The issue with the knowledge distillation loss
functions used in [28] is the loss of crucial information for individual progress
levels, as the model tries to accommodate features for all progress levels. By
distilling only the important features from our teacher models, we are able to
preserve the information at every progress level. We detail our proposed approach
in the next Sections.

3 Proposed Approach

The aim of this work is to design an early violence prediction model that is
able to predict violent actions accurately from partially observed video samples.
Given a training set V = {Vi, yi}|V|

i=1, where every video Vi = {vj}Hj=1 consists of
H frames and has video-level label yi ∈ Y = {0, 1}. Here, a video has yi = 1 if
it belongs to violence class, and yi = 0 otherwise. |V| represents the number of
videos in the training set. A partial video comprises of the first k frames of any
given video Vi, and the observation ratio is given by k/H. The total number of
progress levels are denoted by N .

For the purpose of early violence prediction, we design a teacher-student
framework, the violence anticipation model, which has access to only partial
videos, is trained with the help of a violence recognition teacher model trained
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Fig. 2. Schematic diagram of our knowledge distillation based Early Violence Classifier.
Our teacher EVNet is trained on full length videos for violence recognition task. The
student model also has same EVNet architecture, however, it is trained on partially
observed videos with knowledge distilled from important features in the teacher model.
The trained student model is named as Efficient Early Violence Network (EEVNet).

on full length training videos. In this section, we first discuss the architecture of
our violence recognition model, followed by the knowledge distillation approach
used to train the early violence prediction model.

3.1 Squeeze-Excitation Shuffle Net Architecture

Given the application of violence anticipation in real-time violence prediction,
it is important that our violence prediction model is lightweight and efficient.
In this section, we introduce our Squeeze-Excitation Shuffle Net (SESNet),
inspired by [17] and [29] where we combined the concepts of shuffle attention
[29] with the ShuffleNet V2 model [17] to form our SESNet. The structure of the
building blocks of our SESNet are illustrated in Fig. 3. At the beginning of every
block, the channel split operation is performed. This divides the input features of
C channels into two parts with C̄ and C−C̄ channels, respectively. For this work,
we set C̄ = C/2. For spatial down sampling, that is using stride = 2, we keep
the architecture same as in the ShuffleNetV2 paper. However, for stride = 1, the
last C − C̄ channels are provided to our introduced attention module. The first
C̄ channels are passed onto the depthwise convolution layers, as in the original
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Fig. 3. Building blocks of our proposed SESNet. (a) Unit block for spatial down sam-
pling (2x), similar to [17]. (b) Basic unit with squeeze and excitation attention module.

ShuffleNet V2 model. Finally, the outputs of the two branches are concatenated
and provided to the Channel Shuffle block, same as in [17].

The attention module comprises of the channel excitation and spatio-
temporal excitation modules. The input to the attention module is a tensor
of shape B × C/2 × T × H × W , where B is the batch size, C the feature
channels, and T,H,W are the sizes across temporal and spatial dimensions.
The attention module further divides this tensor into two equal halves of shape
B × C/4 × T × H × W , one is sent to the channel excitation module, whereas
the other is sent to the spatio-temporal excitation module. The two excitation
modules are discussed below.

Channel Excitation. The channel excitation (CE) module is designed to
exploit channel dependencies. The global spatial information of the input is
first squeezed with the help of a spatial average pooling layer.

The squeezed output is denoted by Xp ∈ R
B×C/4. We reshape Xp into X∗

p ∈
R

B×T×C/4, which can now to supplied to the fully connected layer that squeeze
the number of channels by ratio r. Another linear layer is used to restore the
number of channels back to C/4. The sigmoid activation is then applied to the
output from the linear layers. This is formulated as:

Fm = σ(δ(X∗
pW1)W2) (1)

where Fm ∈ R
B×C/4×T , δ denotes ReLU activation function, σ denotes sigmoid

activation function, and W1 and W2 are the weights of the two linear layer,
respectively. Fm is then expanded across spatial dimensions and reshaped to
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Fo ∈ R
B×C/4×T×H×W . The element-wise multiplication of Fo with input X

is taken, and added to the input, which gives the final output. The output is
formulated as:

O = Fo ⊗ X (2)

where ⊗ denotes the element-wise multiplication.

Spatio-Temporal Excitation. Similar to channel excitation, we use the
spatio-temporal excitation (STE) to find spatial-temporal dependencies with
the help to 3D convolution layer. First the input X is converted to Xc ∈
R

B×1×T×H×W by a channel average pooling layer. This gives us the global
spatio-temporal information. Xc is then provided to a depth-wise 3D convo-
lution layer with 3 × 3 × 3 kernel size. This is formulated as:

X∗
c = W ∗ Xc (3)

where W denotes the kernel weights of the 3D convolution layer, and * denotes
the convolution operation. We pass the output to a sigmoid activation function
which gives us the spatio-temporal mask Fm = σ(X∗

c ). The final output is given
similar to Eq. 2.

The output of CE and STE modules are concatenated along the channel
dimension to give the final attention module output Ao ∈ R

B×C/2×T×H×W .

3.2 Violence Recognition Model

The overall violence recognition model, called Efficient-Violence-Net (EVNet),
can be seen in Fig. 2. We use a two-stream approach. The first stream contains
RGB frames, whereas the second stream contains frame difference information.
Both inputs are provided to two separate SESNets. The output features of the
two SESNets are then fused using element-wise addition, and then passed onto
a Temporal Convolution Network (TCN) [15]. The TCN consists of one block
with dilation factor of 2. Each TCN block contains two dilated causal convolu-
tion layers with kernel size of 5. The output of the TCN is provided to a fully
connected classifier.

3.3 Early Violence Prediction Model

With the objective of allowing our model to perform early violence prediction,
we train our model to classify violence from partially observed videos. In this
section, we describe two different training strategies for achieving our objective.

Progressive Teacher-Student Learning. In this training method, we fol-
low the progressive teacher-student method described in [28]. In detail, our VR
model trained on full length videos acts as a teacher for the student network
which is trained on partial videos of different progress levels. The student model
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has the same architecture as the teacher. We extract latent features from the
TCN module from both the teacher and student models for all progress levels.
We denote these feature representations as Ti and Si for teacher and student
respectively, where i denotes the i − th video sample. Hence, Ti and Si are two
D × N feature vectors, D being the feature dimension. The student model is
then trained using the loss formulated in [28], which is given as

L =
1

|V|

|V|∑

i=1

(LC(Si, yi) + LTS(Si, Ti)) (4)

where yi denotes the ground truth annotation for i-th video-sample and LC is
the standard binary cross entropy loss which acts as the classification loss of
the student model. Here, LTS is the knowledge distillation loss given as LTS =
αLMSE + βLMMD, where LMSE and LMMD are the mean square error (MSE)
and maximum mean discrepancy (MMD).

Multi-teacher Learning with Important Feature Preservation. As dis-
cussed in Sect. 1, the teacher model incorrectly classifies a partially observed
video. Hence, distilling this information may not be beneficial in training the
student model. To counter this issue, Zhao et al. [30] proposed a curriculum
learning procedure using intermediate teachers. This requires the student model
to be trained iteratively by all teachers, which is time consuming. In our work, we
train specialized teachers for every progress level. These intermediate teachers
are denoted as T4, T6, T8 for models trained on 40%, 60% and 80% of observ-
able full length videos respectively. The teacher trained on full videos is denoted
as T10. However, unlike [30], we train the student in one step, as described in
[28]. For every progress level n, the student learns from knowledge distilled from
the closest teacher model, as seen in Fig. 4. For example, for observation ratio
20%, knowledge from the teacher trained on 40% videos is distilled. Hence, for
every progress level, the student learns from a specialized teacher. Let the set of
teacher models be T ∈ [T4, T6, T8, T10, T10], with latent features from T10 being
used to train the student model for the last two progress levels. The final loss is
formulated as,

LMT =
1

|V|

|V|∑

i=1

1
|N |

|N |∑

n=1

LC(Sn,i, yi) + γLKD(Sn,i, Tn,i) (5)

where |N | is the number of teacher models in T , LC is binary cross entropy loss,
and LKD = ||Sn,i − Tn,i||2F .

Training the student across all progress levels, the model learns features that
are beneficial for all progress levels. However, to accommodate features of lower
progress levels, the model loses crucial information for later progress levels. As a
result, the student models performance for later progress levels are lacking when
compared to the teacher model. This can be seen in Table 2 in Sect. 5. To alleviate
this issue, we introduce important feature preserving knowledge distillation loss.
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Fig. 4. Schematic diagram of our Multi-Teacher learning approach.

Taking inspiration from incremental learning works [13,19], we distill knowledge
from features that are important for the teacher model’s performance. As a
result, the student model also learns these important feature channels for each
progress level, whereas less critical channels are allowed to be changed for other
progress levels. The importance mask for every model Tn ∈ T is calculated as
follows

ITn
= E(Vi,yi)∼V ||∇Ft,c

Lcls(Vi, yi)||2F (6)

where Lcls is the classification loss of the trained teacher model, Vi and yi are
the input video and its ground-truth label, E(Vi,yi)∼V is the expectation over
all training videos in V. Put simply, the channels in the feature map of the
Frobenius norm of the gradient which, on perturbation, result in larger increase
of final loss of the model, are considered to be important features. We normalize
the importance mask ITn

as

¯ITn
=

ITn

1
T,C

∑T
t=1

∑C
c=1 ITn

(7)

Finally, we define our masked distillation loss as LIKD = ¯ITn
||Sn,i −Tn,i||2F . The

overall loss is given as

LMTI =
1

|V|

|V|∑

i=1

1
|N |

|N |∑

n=1

LC(Sn,i, yi) + γLIKD(Sn,i, Tn,i) (8)
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4 Experimental Settings

4.1 Datasets

Since goal objective is to recognize violent actions in surveillance scenario, we
select the RWF-2000 dataset which is best suited for our task. The dataset
contains 2000 surveillance videos, where 1000 depict fights, and the rest are
normal activities. Further, the dataset is suitable for testing our early violence
prediction model. We also perform early violence prediction tests on the Real-
Life Violence Surveillance (RLVS) dataset [23]. The dataset contains 2000 videos
of fights occuring in various settings.

4.2 Implementation Details

As violent activities are characterized by sharp and sudden motion. To extract
minute motion information, we extract frames at frequent intervals from the
videos. From each video, 75 frames are sampled and resized to 224 × 224. During
training, the data is augmented using techniques such as color jitter, random
cropping, Gaussian blurring, random flip to reduce overfitting. We use batch
size of 8 and Adam optimizer with learning rate of 0.001. The values of α and
β for LTS loss in Eq. 4 are set to 0.1 and 0.002 respectively. The value of γ
in Eq. 8 is set to 2. The SESNet contains 3 blocks with 2 layers in each block.
Experiments have been performed on Nvidia RTX 3090 GPU and all codes have
been implemented in Pytorch.

5 Results and Discussions

5.1 Results on Full Length Videos

In this section we compare the results of our models on the RWF-2000 dataset
with existing methods. The results are summarized in Table 1. As is evident
from the results, our violence recognition model achieve promising results, out-
performing several previous state-of-art methods. Few recent works have posted
better accuracy scores than our method, however these methods are more com-
putationally expensive when compared to our model, as can be seen from the
parameter numbers. Comparing with [9], our method gives similar performance,
however [9] uses OpenPose pose estimation model which increases the model
size. Hence, although the work presents trainable parameter count as 62,583,
the added overhead of the OpenPose model increases the parameter count to
approximately 26 million. Our time analysis, given in Table 7, further supports
our claim that our presented model is more lightweight than [9]. The CUE-Net
architecture [21] outperforms our model by 4%, however, the parameter count
is almost 350 times larger than our model.
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Table 1. Comparison of violence recognition accuracy on full length videos of RWF-
2000 dataset.

Method Accuracy (%) Total Parameters(in millions)

Cheng et al. [6] 87.25 0.272

SPIL [24] 89.3 –

Islam et al. [12] 89.75 0.333

Garcia-Cobo et al. [9] 90.25 26

VD-Net [26] 88.2 4.470

Pratama et al. [20] 90.5 66.6

Ullah et al. [27] 91.15 25

CUE-Net [21] 94.0 354

Ngoc et al. [18] 89.55 4.7

Ours (Teacher EVNet) 89.25 1.19

Ours (Student EEVNet) 90.5 1.19

5.2 Results for Early Violence Prediction

The results of our early violence prediction model on RWF-2000 dataset are
shown in Table 2. Further we compare the performance of the models presented
in [9,12] on partially observed dataset. It is evident that these models struggle
to accurately recognize violent activities from partially observed videos. Espe-
cially for observation ratio of 20%, our proposed model records almost 10%
and 20% better accuracy scores than [9,12]. The third row shows results of our
teacher EVNet model. The fourth row depicts results of our early prediction
model (EEVNet) trained with loss presented in [28], which we describe in Eq. 4.
Using this approach, we are again able to record better performance for partial
videos. However, for later progress levels, the student model loses some of the
performance of the teacher model. In this regard, the superior performance of
our proposed importance preserving knowledge distillation training can be seen
for observation ratios 40%, 60%, 80% and 100%. These higher accuracy scores
validate our use of important features from specialized teachers for knowledge
distillation. Using important features, we are able to maintain and exceed the
performance of the teacher model for later progress levels. We also show early vio-
lence prediction results of our model on RLVS dataset in Table 3. For RLVS, we
partition our dataset into 80-20% train-test split. This is done because applying a
5-fold cross-validation approach is not suitable for our proposed teacher-student
framework. Similar performance improvements can also be seen on RLVS dataset
for our proposed methodology.
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Table 2. Results of early violence prediction on RWF-2000 dataset.

Method 20% 40% 60% 80% 100%

Islam et al. [12] 70.74 81 82.5 83.25 87

Garcia-Cobo et al. [9] 60 72.5 80 86.25 88.75

EVNet 75.75 83.25 86.5 88.75 89.25

EEVNet with L loss 81.25 84.5 86.5 86.75 87.75

EEVNet with LMTI 83.5 87.25 89.5 90.0 90.5

Table 3. Results of early violence prediction on RLVS dataset.

Method 20% 40% 60% 80% 100%

EVNet 51.5 85.25 90 92 94.25

EEVNet with L loss 85.75 88.75 90.0 91.25 91.75

EEVNet with LMTI 92.25 92.75 92.25 92 92.75

5.3 Ablation Studies

Effect of Squeeze and Excitation Module. The recognition performance of
our model with and without our introduced Squeeze and Excitation module is
reported in Table 4. Our model using the SESNet achieves a accuracy of 89.25%,
whereas the standard ShuffleNetv2 model reports an accuracy of 88%. Further,
as seen from the table, our model using SESNet uses only 1,656 more parameters.
These results show the effectiveness of our proposed SESNet architecture.

Table 4. Effects of using SESNet.

Method Accuracy (%) Total Parameters

EVNet with ShuffleNetv2 88 1197691

EVNet with SESNet 89.25 1199347

Effect of γ on Early Violence Prediction. We list the effects of γ on the
early prediction performance using EEVNet in Table 5. The value of γ in Eq. 8
regulates how aggressively the student model is penalized for not aligning it’s
features with those of the teacher models. With γ = 2, we are able to achieve
the best performance.

Effect of Multi-teacher Importance Preservation. To analyse the effects of
our multi-teacher importance preservation, we run the following ablation studies.
We train the student model using only classification loss LC , which is taken as the
Baseline model. Next we train the student model with loss LMT , as described
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Table 5. Effect of γ on early violence prediction performance.

Value of γ 20% 40% 60% 80% 100%

0.1 82 84.5 87 87.75 88.75

0.5 82.5 86 87.5 87.25 88.75

1.0 81.75 86.5 90 89.5 90.25

2.0 83.5 87.25 89.5 90.0 90.5

in Eq. 5, with γ = 1.0. Finally we use the LMTI loss described in Eq. 8 with
γ = 1.0. As can be seen from Table 6, our LMTI loss excels in this scenario.
This is because the student model learns only the important features from the
teacher, allowing non critical features to be modified for other progress levels.

Table 6. Effects of importance preserving knowledge distillation loss.

20% 40% 60% 80% 100%

Baseline 75 81 84.75 85.5 86.75

Baseline + LMT 82.25 85.25 88.0 88.75 88.5

Baseline + LMTI 81.75 86.5 90 89.5 90.25

Table 7. Runtime analysis. Average time taken over 50 videos from RWF-2000 dataset.

Method Total Time (in seconds)

Garcia-Cobo et al. 1.668

Ours 0.378

5.4 Model Efficiency and Time Analysis

For the purpose of real-time recognition, our model should be lightweight and
be capable of providing fast predictions. In Table 1, we show the efficiency of our
model with the help of parameter count. In this section, we verify the real-time
capabilities of our model by measuring the inference time. Following [9], 50 test
videos from RWF-2000 dataset are randomly selected. Using a batch size of 1,
we process each video independently and then take the average of the inference
time across the 50 videos. As shown in Table 7, our model takes 0.378 s to predict
violence from full length videos. This demonstrates the capability of our model
for providing real-time prediction. We have compared runtime with [9], and our
model’s inference time is 1.29 s faster. However, this runtime information is not
available for other existing work.
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Table 8. Qualitative results of our early violence classifier on the RWF-2000 dataset.
We show prediction results of teacher and EEVNet on the same video for observation
ratios 20%, 40% and 60%. Blurred frames denote unobserved part of the videos.

5.5 Qualitative Analysis

We show qualitative results of our proposed early violence prediction method on
the RWF-2000 dataset in Table 8. Examples from 3 different videos with different
observation ratios are shown. For every video, the first row shows the prediction
result of our Teacher EVNet model, and the second row presents results of our
Student EEVNet on the same observation ratio. We show examples from multiple
observation ratios of 20%, 40% and 60%. In the first example, a small amount
of initial 30 frames (observation ratio of 20%) are provided to the EVNet and
EEVNet models. It is important to note, violence activity has already started at
this point. As can be seen, the violence recognition EVNet wrongly classifies the
video as Non-Violence. However, for the same partial input from the same video,
our early violence prediction network EEVNet accurately predicts the video as
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violence. The same can be seen for the third example with observation ratio of
60%. Same behaviour is also seen for Non-Violence videos. In the second example,
large gathering of people in partial video frames causes the EVNet to misclassify
the video as Violence. Overall, for partially observed videos, our EEVNet model
correctly predicts the video class, whereas, the EVNet misclassifies.

6 Conclusion

In this paper, we present a novel violence prediction model with the capability to
accurately predicting violence from partially observed videos. We design an effi-
cient violence recognition model leveraging our proposed SESNet architecture.
The SESNet model is an efficient 3D convolution network enhanced with squeeze
and excitation attention modules, making the architecture capable of capturing
key spatio-temporal features. Further, we propose a novel multi-teacher impor-
tance preserving knowledge distillation approach for training our early violence
classifier. Extensive experimental studies on two public datasets show promising
results of our method for early violence prediction.

Although given the promising results presented in this work, we are still
limited by inadequate dataset for early violence prediction. Most surveillance
violence dataset available in the public domain contain short duration videos.
Detecting violence a few seconds earlier is not beneficial for real-life deployment.
The full potential of such early violence prediction systems can be achieved from
long duration videos, where the model predicts violence far in the distant future.
Hence, a long duration violence anticipation dataset in surveillance setting is
critical for further progress in this field. However, this work acts as an important
starting point for further research in the topic.
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Abstract. Human activities are inherently task-oriented, and integrat-
ing explicit task learning into action segmentation models is hypothe-
sized to enhance performance. However, empirical evaluations using the
Ego4D Goal Step dataset reveal a paradox: the inclusion of learning tasks
deteriorated model performance. This issue partially arises from limited
task samples, i.e., over 50% of tasks have less than two training sam-
ples, leading to bias and overfitting in the training process. To address
this, we propose a novel grammar induction method to accurately cap-
ture the hierarchical decomposition of a task with limited task samples,
and use the induced grammar to guide neural predictions. Experiments
demonstrate that our induction method achieves comparable results with
SOTA on the Breakfast dataset with as few as two training samples for
each task. Additionally, incorporating our grammar significantly boosts
temporal action segmentation results for Ego4D Goal Step dataset by
8%. This approach not only mitigates data scarcity but also enhances
the robustness and accuracy of action segmentation and action detec-
tion models.

Keywords: Temporal Action Segmentation · Detection · Grammar
Model

1 Introduction

Human activities are inherently goal-oriented, and are influenced by the sub-
ject’s goals, object manipulation and interaction in the environment. Learning
the compositional structure of human activity poses a significant challenge in
video understanding research. Temporal action segmentation and action detec-
tion cover a critical aspect of this domain, aiming to temporally segment an
untrimmed video and label each segment with predefined action labels [7,8].

The primary distinction between the two tasks lies in their objectives. Tem-
poral action segmentation involves labeling each video frame with an action class.
In contrast, action detection is concerned with identifying and localizing specific
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instances of actions in an untrimmed video. Consequently, temporal action seg-
mentation is typically evaluated on videos that are instructional in nature, e.g.,
Breakfast [32], and use metrics such as edit distance, frame-wise accuracy, and
Intersection over Union (IoU). Conversely, temporal action detection is com-
monly evaluated on non-instructional videos such as Ego4D [33] and use metrics
like average mean Average Precision (average mAP).

Motivated by the success of deep neural networks in understanding and gen-
erating long-range text sequences, recent methods for temporal action segmenta-
tion and detection implicitly learn temporal relations of actions [8,34]. However,
they struggle with long-term human action sequences. A popular hypothesis
is that learning goal/task of the action sequence can help the model capture
long-term action dependencies better. However, empirical evaluations using the
Ego4D Goal Step dataset [1], one of the largest human activity video datasets
available, reveal that learning task labels with action labels can degrade perfor-
mance in temporal action segmentation tasks, as we show in Sect. 4.3. This issue
arises partially from the limited number of task samples; over 50% of tasks have
fewer than two training samples, leading to bias and overfitting.

Two main biases emerge from limited task samples: ordering bias and missing
actions bias. Ordering bias occurs when the probability of action A following
action B is significantly higher than the reverse, even though both orders are
equally likely in reality. For example, in a “make coffee” task, the training data
might show “pour coffee” before “pour milk,” although these actions can occur
in any order. Missing action bias arises because a video may start or end at any
stage of the task, thus not containing the full sequence of actions required to
complete it. For instance, a “take milk from fridge” action might be absent in a
cereal-making video if the milk is already on the table.

To address these limitations, we propose a novel Hierarchical Task Gram-
mar induction algorithm. A grammar captures rules to represent hierarchical
temporal structure of a sentence in formal language. In our case, the rules
describe how to decompose and order actions that achieve a given task. Our
method focuses on object-centered action transitions, decomposing tasks into
object interactions. The induced grammar mitigates ordering biases and incor-
porates missing actions using universal object graphs, enhancing generalization
capabilities. Additionally, we introduce a graph search-based algorithm for task
inference and confidence score refinement that accommodates out-of-grammar
action prediction.

The main contributions of this paper can be summarized as follows:

– We introduce a novel grammar induction algorithm that significantly reduces
biases introduced by limited task samples.

– We develop a graph search based algorithm for task inference and confidence
score refinement for temporal action segmentation and detection, that works
for both instructional and non-instructional datasets.

– We show that the proposed method significantly improves the performance of
temporal action segmentation and detection models, as demonstrated through
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a comprehensive evaluation on four benchmarks datasets: 50 Salads [35],
Breakfast [32], Ego4D Goal-Step [1] and Epic-Kitchens-100 [36].

2 Related Work

Temporal action segmentation and detection require models that effec-
tively capture the sequential relationships of actions. The mainstream approach
involves deep learning-based temporal models, such as RNNs [17,18], TCNs
[12–14], and Transformers [15,16], which facilitate information exchange across
frame-wise features and have achieved notable results. Techniques that enhance
context learning, such as expanding the temporal receptive field [28–30], aggre-
gating features over multiple granularity [26], and adapting attention mecha-
nisms [27], have shown further improvements. Deep learning based methods,
however, still struggle with forgetting issues and heavy computation burden to
capture the full context of a video [11].

Human action sequences are naturally task-oriented and hence follow certain
ordering constraints. Many methods have been proposed to integrate additional
modules that encapsulate high level semantics to guide predictions from neural
models. Kuehne et al. [19] proposed combining a framewise RNN model with
a coarse probabilistic inference where action sequence are modeled by hidden
Markov models (HMMs). Huang et al. [9] modeled relation of multiple action
segments in various time spans by using Graph Convolution Networks. Ahn
and Lee [10] proposed a refinement model that implicitly learn temporal action
relation from hierarchical video representations. Xu et al. [11] proposed Differ-
entiable Temporal Logic (DTL), that introduces temporal constraints to deep
networks.

Our work aligns with grammar parsing, which represent hierachical task
structure using grammar induced from sample task sequences. Grammar is first
used for action anticipation in [24,25]. The AND-OR grammar was learnt from
example strings of symbols, each representing an action according to the gram-
mar’s language. However, the method can only processes deterministic inputs.
Vo and Bovick [20] proposed to use stochastic context-free grammar which takes
in probabilistic sequence inputs instead of deterministic symbolic inputs. Qi et
al. [3] utilized the ADIOS grammar induction algorithm to induce grammar.
Recently Gong et al. [2] proposed a grammar induction algorithm based on key
actions and temporal dependencies, considering recursive temporal structures.
However, existing grammars are either hand-crafted, which is costly, or they
rely on the action sequences in the training data, thereby inheriting the biases
caused by limited task samples. Our proposed grammar induction method is
able to minimize such biases with a small number of task samples.

3 Method

Our approach can be considered as a neuro-symbolic one, where the Hierarchi-
cal Task Grammar (HTG) guides neural predictions. Given a detected action
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candidate from neural model, the posterior probability of the action given the
task and observation is calculated considering both the task prior from HTG
and detection confidence from neural models.

Fig. 1. Overall pipeline of the proposed method: (a) HTGs are constructed from action
sequences for each task from the training set. (b) Construct a graph based on action
candidates from off-the-shelf temporal action segmentation model (c) Update edge
weights with confidence score from neural model and task prior from Hierarchical Task
Grammar, and find the shortest path for each task. (d) the nodes of shortest path are
use as output of action segmentation.

The overall pipeline of the proposed method consists of three steps, as
illustrated in Fig. 1. Firstly, HTGs are constructed from action sequences for
each task from the training set. Secondly, off-the-shelf temporal action seg-
mentation/detection model outputs action candidates in the format {action,
start time, end time, confidence}. Thirdly, a directed acyclic graph is con-
structed based on the action candidates, where the edge weight is calculated
by combining confidence score from the neural model and the task prior from
task grammar of a task Ge. The task inference is then conceptualized as a short-
est path problem, aiming to identify a path from the start to the end node that
minimizes the average weights of the edges involved. The average weights of the
shortest path is assigned as the task score Gscore for the task Ge. Lastly the
weights for the task with minimum task score is the output for temporal action
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detection. The optimal path, associated with the task, constitutes the refined
output for temporal action segmentation.

3.1 Hierarchical Task Grammar (HTG) Induction

We aim to develop a task grammar induction algorithm that accurately repre-
sents and decomposes a given task, capturing the actions and their ordering,
even with small number of sample action sequence. Two primary challenges are
task decomposition and action ordering.

The first challenge is task decomposition. A straightforward approach to
construct task grammar is to break down a task into sub-tasks, and then decom-
pose them further until the atomic action level. However, a drawback of this
method is the lack of a standardized way for defining and decomposing sub-
tasks, and usually requires the sub-task to be manually crafted for each task.
For instance, task “make coffee” can be decomposed into sub-task “prepare
machine and tools”, “prepare coffee powder”, “prepare hot water”, “mix cof-
fee and water” or more generally “prepare ingredients”, “mix ingredients”. To
address this issue, we propose using action interactions as sub-tasks, which is
easy to construct, and applicable across various tasks and datasets.

Fig. 2. Example of HTG construction. (a) Example action sequences for task “make
cereal”. Assume S1 is the complete action sequence. (b) object-centered graph shared
by all the tasks (c) Task graph constructed.
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The second challenge is action ordering. Learning the correct order of
actions is challenging, primarily due to biases introduced by limited training
action sequences. We observed that action transitions within a single object
exhibit greater consistency across tasks. For instance, the actions on a fridge
typically follow the order “open” → “take/put something” → “close”, which
is consistent across tasks and even datasets. With this observation, we propose
constructing object graphs for each object, which serve as foundational compo-
nents applicable across all tasks. By aggregating object graphs into task graph,
with a small number of sample sequences, we can recover missing actions to a
great extent. We will explain and demonstrate with an example in Fig. 3 at the
end of this section.

Next we will first explain the components and construction of HTG, with an
example shown in Fig. 2. Assume for the make cereal task, there are four task
samples as shown Fig. 2(a).

Object Graph is constructed for each object by extracting only the actions
and their transition related to that object from the task samples. It contains
both atomic actions and interactions involving the object as nodes, as shown in
Fig. 2(b). For interactions involving multiple objects, such as ‘pour cereal into
bowl’, the action for ‘cereal’ is denoted as ‘pour’, and for ‘bowl’ as ‘poured into’
within their respective object graphs. This approach enhances the robustness
and generality of transition probabilities by consolidating similar actions. For
example ‘bowl’ has a single ‘poured into’ node representing all actions like ‘pour
water into bowl’ and ‘pour milk into bowl’.

Directed edges then connect these action nodes if one action typically follows
another. We use transition and inverse conditional probabilities to capture the
conditional probability between two connected nodes. For a connected edge from
node ak to aj (ak → aj) in object graph for object o, the transition probability
Po(aj |ak) quantifies the likelihood of transitioning from action ak to action aj
and is computed as

Po(aj |ak) =
Number of transitions from ak to aj
Total number of transitions from ak

. (1)

The posterior conditional probability Po(ak|aj) represents the probability of
action ak given that the current action is aj and can be computed through
Bayes theorem.

Task Graph is constructed from instances of action sequences for the task.
Figure 3 demonstrates construction of task graph step by step. Starting from
a root node G (the highest level), we examine a given action sequence [“pour
cereal into bowl” → “pour milk into bowl”]. Upon identifying object interaction,
we connect them to the G node as shown in Fig. 3(a). In this example both
actions “pour cereal into bowl” and “pour milk into bowl” are interactions. We
then integrate object graphs of objects involved in the interactions into the task
graph, connecting relevant nodes. For example in Fig. 3(b), linking the “pour
cereal into bowl” interaction to the “pour” node in the cereal object graph
and the “poured into” node in the bowl object graph). This process continues
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for subsequent interactions in the sequence, ensuring they are either integrated
or expanded as necessary until all interactions are included in the task graph.
Next, we examine the atomic actions within the action sequence and verify their
presence in the task graph. If absent, we add the respective object graph and
connect the atomic action to the root node. Lastly, for all nodes connected to
the root node, the weight of the edge is the conditional probability P (aI |Ge),
that represents the likelihood of a interaction aI occurring given the task Ge.

Fig. 3. Example of HTG construction. Task graph constructed with s2. Even there are
only two actions in the sequence, our method is able to capture “take bowl” and “stir
cereals in bowl” from shared object graph.

Next we compare this task graph with one using a single action sequence to
construct the task graph for “make cereal”. Assume s1 is the complete sequence
for the task that contains four actions “take bowl” → “pour cereal into bowl”
→ “pour milk into bowl” and “stir cereals in bowl”. Figure 2(c) shows the task
graph generated with s1. Figure 3(c) shows the task graph generated with s2,
which only contains two actions “pour cereal into bowl” and “pour milk into
bowl”. With only two actions in the sample sequence, our method is able to
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capture the missing actions “take bowl” and “stir cereals in bowl” from object
graphs.

3.2 Action Candidates Graph

The action candidates graph is a directed acyclic graph that is constructed with
action candidates from an off-the-shelf temporal action segmentation/detection
model, as shown in Fig. 1(c). Each action candidate, which is defined by {action,
start time, end time, confidence}, serves as a node. Directed edges are estab-
lished between two nodes if the start time of one node occurs within a specified
time margin (+ve/–ve) from the end time of another. Positive margin allows gap
between two actions and negative margin allows overlap between two actions.

3.3 Action Posterior Probability Formulation

Grammar Prior. We have introduced three probabilities in HTG: the condi-
tioned probability of an interaction given a task P (aI |Ge) and the transition
probability Po(aj |ak) and inverse condition probability Po(ak|aj) of connected
actions for object o in object graph.

The task prior p(a | Ge) is decomposed to p(a | aI), which is the probability
of action a given interaction aI , and p(aI | Ge), which is the probability of
interaction aI given task Ge. Thus,

p(a | Ge) = po(a | aI) · p(aI | Ge) (2)

If a is an action that leads to an interaction aI , p(a | aIi ) is calculated using chain
rule on transition probability, where a0 to aN represents the path from node a
to aI (a0 = a, aN = aI). Otherwise, inverse condition probability is used, where
a0 to aN represents the path from node aI to a (a0 = aI , aN = a),

po(a | aI) =
N∏

i=0

po(ai | ai−1) (3)

Action Likelihood. p(Γa | a), which represents the likelihood of action a given
observation Γa, is the confidence score of an action candidate from the neural
model.

Posterior Probability. The posterior probability of an action candidate given
the observation Γa and task Ge is formulated as product of the likelihood p(Γa |
a) and the task prior probability p(a | Ge). Following Bayes theorem,

p(a | Γa, Ge) ∝ p(Γa | a) · p(a | Ge)

= p(Γa | a) · po(a | aI) · p(aI | Ge)

= p(Γa | a) ·
N∏

i=0

po(ai | ai−1) · p(aI | Ge)

(4)
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3.4 Time-Normalized Dijkstra Algorithm

Traditional grammar parsing algorithms are grammar-centered, restricting out-
puts to actions defined within the grammar structure. This limitation means that
actions not explicitly tied to a task will never be selected, even if they receive
high confidence scores from a neural model. This causes issue when applied to
non-instructional videos as irrelevant actions appear intermediately. To address
this issue, we reformulate the action sequence generation as a shortest path prob-
lem on the action candidates graph. In cases where multiple nodes exist for a
particular time frame, the algorithm selects the node with the lowest weight,
irrespective of whether the action conforms to the grammar.

As we are going to use the shortest path algorithm on the action candidates
graph, an edge pointing from node i to node j is assigned a weight wij =
1 − p(aj |Γaj

, Ge) where p(aj |Γaj
, Ge) is the action posterior probability of the

node that the edge points to. If an action candidate is not defined in the task
graph, we assign a dummy p(a | Ge) = 1 × 10−3 for it.

Dijkstra’s Algorithm is a well-known method for finding the shortest path
between nodes in a graph with non-negative edge weights. In our action can-
didate graph, each edge has a weight value between 0 to 1, and the number of
nodes in a path from start node to end node may vary. i.e. a path connecting
nodes representing longer duration will have less nodes. The original Dijkstra’s
algorithm finds the shortest path with summed weights, i.e. less nodes leads to
less total weight. Hence this algorithm tends to favor paths with fewer edges
(nodes) over paths with more edges, which can lead to sub-optimal paths.

To address this issue, we propose a modified version of Dijkstra’s algorithm,
called Time-normalized Dijkstra Algorithm, that considers the average
weight of edges in the path instead of the total weight. This modification ensures
that paths with short actions are not unfairly penalized.

3.5 Task Inference and Confidence Score Refinement

Edge weights are recalculated for each task g ∈ G based on the task’s Hierarchical
Task Grammar (HTG). The task score is the average weight of the shortest path,
determined by the Time-normalized Dijkstra Algorithm. The weights of the task
with minimum task score are the refined confidence scores for action detection.
The shortest path of the task provides the refined output for temporal action
segmentation.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. For temporal action segmentation, we conduct experiments on two
instructional datasets: 50Salads and Breakfast. The 50Salads dataset consists
of 50 egocentric videos depicting individuals preparing salads, featuring 17 fine-
grained actions performed by 25 participants. The Breakfast dataset includes
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1,712 videos capturing 52 individuals preparing 10 different Breakfast activities
across 18 kitchens, with 48 actions performed.

For temporal action detection, we conduct experiments on the challenging
non-instructional datasets Ego4D Goal Step dataset and EPIC-Kitchens-
100. The Ego4D Goal Step dataset [1] is a subset of Ego4D dataset, com-
prising over 3,670 h of egocentric video footage, annotated with dense procedural
step segments totaling 48,000 annotations and high-level task annotations span-
ning 2,807 h. Note that as the test dataset is not released, we randomly split
the validation set into new validation set and test set with one to one ratio,
and report the result over 8 runs. The EPIC-Kitchens-100 dataset features
100 videos of daily activities in kitchens, including 300 annotated objects and
3,805 actions. Note that EPIC-Kitchens-100 does not contain task annotations.
We challenge our method’s adaptability to apply Hierarchical Task Grammar
generated from Ego4D directly to Epic-Kitchen-100.

Evaluation Metrics . For temporal action detection, we report mAP averaged
over action categories, and over temporal IoUs 0.1, 0.2, 0.3, 0.4, 0.5. For temporal
action segmentation, we report edit score, F1@10, 25, 50 scores, and frame-wise
accuracy.

4.2 Neural Models

For temporal action segmentation task, we use ASFormer [15] based on Trans-
former and MS-TCN [14] based on CNNs, following previous work [2]. For tem-
poral action detection task, we use ActionFormer [16] and EgoOnly [31] as our
neural model due to its wide adoption and the availability of open-source imple-
mentations following [1].

4.3 Results

Temporal Action Segmentation. Table 1 and Table 2 show the performance
of applying the proposed method to temporal action segmentation task for 50Sal-
ads and Breakfast. The comparison between the neural model and after refine-
ment reveals significant improvements in both edit scores and F1 scores. Our
method outperforms the state-of-the-art grammar parsing methods across all
metrics.

Temporal Action Detection. Table 3 shows the performance of applying the
proposed method to the action detection task for the Ego4D Goal Step dataset.
We use the essential steps annotated in the task samples to construct HTGs.
The first row presents results from ActionFormer trained solely on action labels,
while the second row includes training on both action and task labels. As pre-
viously noted, over 50% of tasks in the Ego4D Goal Step dataset have fewer
than two samples in the training set. The results indicate that directly training
on task labels with such limited samples deteriorates the model’s performance.
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Table 1. The temporal action segmentation performance comparison on 50Salads.

Model Refinement algo Edit F1 acc.

@10 @25 @50

ASFormer [15] (reproduced) – 76.5 83.8 81.7 74.8 86.1

ADIOS-OR [3] 61.1 72.0 70.1 62.4 78.9

KARI [2] 79.9 85.4 83.8 77.4 85.3

ours 83.9 87.4 86.6 78.2 85.4

MS-TCN(reproduced) – 62.4 69.5 65.3 55.7 75.2

ADIOS-OR [3] 61.9 69.1 66.9 57.2 74.2

KARI [2] 66.7 75.1 73.2 60.8 76.7

ours 69.2 78.8 75.9 64.2 78.3

Table 2. The temporal action segmentation performance comparison on Breakfast

Model Refinement Algorithm edit F1 acc.

@10 @25 @50

ASFormer [15] (reproduced) – 75.6 77.3 70.2 59.4 74.3

ADIOS-OR [3] 70.3 71.8 66.8 54.2 71.8

KARI [2] 77.8 78.8 73.7 60.8 74.0

ours 78.1 79.2 74.0 61.1 74.1

MS-TCN (reproduced) – 69.7 70.7 65.1 52.6 69.4

ADIOS-OR [3] 69.6 69.6 64.3 50.3 68.2

KARI [2] 74.9 74.6 68.7 55.1 68.8

ours 75.2 74.8 68.9 55.2 69.3

Conversely, our model better captures the task step structure, thereby enhancing
the model’s performance.

The EPIC-Kitchens-100 dataset lacks task annotations. To challenge the gen-
eralizability of our method, we applied HTGs constructed from the Ego4D Goal
Step dataset directly to the EPIC-Kitchens-100 dataset. The results, shown in
Table 4, demonstrate that our method consistently boosts the model’s perfor-
mance, albeit by a small margin.

4.4 Ablation Study

We conducted three ablation studies to evaluate our method’s key components.
Firstly, experiments on the Breakfast dataset aimed to assess our model’s

capacity in constructing HTGs using a limited number of task samples. For
each task, n samples were randomly picked for each task from training set to
construct HTGs, followed by evaluation on the validation set across 8 rounds
of random selection. Our findings, detailed in Table 5, demonstrate that our



Improving Temporal Action Segmentation and Detection 207

method achieves performance comparable to state-of-the-art grammar parsing
algorithms even with as few as two sample action sequences.

Secondly, an ablation study on non-instructional dataset examined the
impact of using essential versus all actions to construct HTGs. Constructing
accurate grammar from non-instructional video is very challenging as there are
considerable amount of optional and irrelevant actions in a task sample. Ego4D
Goal Step dataset labels each step of a task sample into either essential, optional
or irrelevant. We experiment constructing HTGs based on three setups: essential,
essential and optional actions, and all actions. The results in Table 6 shows that
using essential actions to construct HTGs is most effective with non-instructional
videos.

Table 3. The temporal action detection performance comparison on Ego4D Goal Step
dataset.

Model Average mAP

Val Test

ActionFormer (Action) 9.7 8.5

ActionFormer (Task + Action) 9.5 8.3

ActionFormer (Action) + HTGs (ours) 10.3 9.2

EgoOnly (Action) 13.0 13.8

EgoOnly (Task + Action) 12.7 13.5

EgoOnly (Action) + HTGs (ours) 13.8 14.3

Table 4. The temporal action detection performance comparison on Epic-Kitchens-100
dataset.

Model Verb mAP Noun mAP

ActionFormer 23.5 21.9

ActionFormer + HTGs (ours) 23.6 22.1

EgoOnly 21.36 20.95

EgoOnly + HTGs (ours) 21.6 21.1

Lastly, we compared the performance on the Ego4D Goal Step dataset using
the original Dijkstra algorithm versus our proposed time-normalized Dijkstra
algorithm. Table 7 illustrates that while the original Dijkstra algorithm led to
a deterioration in model performance, our time-normalized variant significantly
enhanced performance.
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4.5 Qualitative Analysis

Figure 4 presents a visual representation of the refined segmentation results on
Breakfast datasets. HTG allows a more flexible temporal structure between
actions by removing incorrect ordering of actions due to biases. For instance, in
training dataset, action “putting salt and pepper” always happen before “putting
egg into pan”. HTG successfully capture the possibility of “putting salt and pep-
per” happening after “putting egg into pan”. Moreover, similar to other grammar
based refine method, our method correctly prioritizes task-related actions, such
as putting the egg on the plate over putting the pancake on the plate.

Table 5. Ablation: model performance with different number of available training
samples

Model Refinement Algo Number of Samples per Task Edit F1 Acc.

@10 @25 @50

ASFormer [15] – All training samples (25 per task) 75.6 77.3 70.2 59.4 74.3

KARI [2] (SOTA) All training samples (25 per task) 77.8 78.8 73.7 60.8 74.0

HTGs (ours) all training samples (25 per task) 78.1 79.2 74.0 61.1 74.1

HTGs (ours) 2 training samples per task 77.7 78.9 73.6 60.9 74.1

HTGs (ours) 1 training samples per task 76.7 78.0 72 60.1 74.0

Table 6. Ablation: Comparison of perfor-
mance with different HTG sources

HTG source Average mAP

Val Test

Essential Steps 10.3 9.2

Essential + steps 9.5 8.2

All steps 9.4 8.1

Table 7. Ablation: Comparison of perfor-
mance with original and Time-normalised
Dijkstra Algorithm

Dijkstra Algorithm (DA) average mAP

Val Test

Time-normalised DA 10.5 9.4

Original DA 8.5 6.4

Fig. 4. Qualitative results. HTG correctly preserves the rare action order by putting
salt and pepper after putting the egg in the pan, and prioritizes task-related actions,
such as putting the egg on the plate over putting the pancake on the plate.
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5 Conclusion

We have demonstrated that the proposed approach enhances sequence prediction
and uncovers its compositional structure, significantly improving temporal action
segmentation and detection in both performance and interpretability. However,
our method assumes each video contains only a single task, which may not
always be the case. Disentangling multiple tasks remains an intriguing direction
for future research.
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Abstract. Detecting human abnormal actions, such as falling, can
reduce the cost for both economic and health systems, as well as pro-
tect the individuals involved. However, training an anomaly detector
from scratch can be computationally expensive. We propose reusing the
representations learned by lightweight Graph Neural Networks (GNNs)
from a multi-action classification task for quick and accurate anomaly
detection. Specifically, the representations are extracted by a lightweight
GNNs obtained through self-distillation and are then used for unsuper-
vised anomaly detection with effective machine learning methods such as
Gaussian Mixture Model, Dirichlet Process Mixture Model, Isolation For-
est, and Local Outlier Factor. This hybrid approach is evaluated on the
NTU RGB+D and a subset of Kinetics400 datasets across 20 anomaly
detection tasks, including speed-sensitive tasks, exercise actions, and
daily activities. The feature extractors used are ST-GCN and AAGCN.
Our method achieves an average AUC improvement of 11.4% compared
to the unsupervised top model GEPC across the anomaly detection
tasks on NTU RGB+D dataset. It also outperforms another supervised
method on the URFall dataset. The representations obtained through
self-distillation were superior in 8 out of 10 anomaly detection tasks
on NTU RGB+D. Additionally, the lightest AAGCN model, which is
around 60% lighter than the heaviest model, shows similar or supe-
rior performance on average across all anomaly detection tasks for both
datasets. However, the representations extracted are usually redundant
for anomaly detection, providing more information than anomaly detec-
tion needs because their extractors were trained on multi-action classi-
fication tasks. Consequently, we also did experiments across all tasks to
show that feature reduction improves even more detection performance
by up to 17.69% on the subset of Kinetics400 and up to 24.45% on NTU
RGB+D.
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1 Introduction

Human action anomaly detection automatically identifies abnormal human
actions, which is particularly meaningful for health systems, education, secu-
rity work, and other areas. For instance, speed-sensitive task detection, such as
fall detection, could offer immediate medical service to elderly individuals who
live alone. This prompt response can save lives, considering the large number
of elderly people who experience falls at least once every year [19]. Addition-
ally, detecting exercise activities such as cycling and skiing can reveal when an
exerciser stops and ends up in a dangerous situation, while detecting actions
like kicking and fighting can prevent school bullying and improve public safety.
The applications of human action anomaly detection are vast, and a quick and
relatively accurate anomaly action detector can efficiently prevent harm to indi-
viduals and society, thereby reducing associated costs.

Human action recognition (HAR) methods based on deep learning (DL) can
extract human action representations (features) into lower dimensions rather
than keeping the original large dimensions of the inputs, which is a sequence of
action observations. If the extracted representations accurately reflect semantic
differences as geometric distances, then the abnormal actions will have repre-
sentations that are significantly different from normal actions, allowing for their
recognition. Recently, graph neural networks (GNNs) have become prominent
for extracting human action representations because they specialize in discover-
ing the intrinsic relationships between human joints. These methods represent
human skeletons as graphs, with each joint as a graph node and each bone as a
graph link. The graph format not only allows for the exploration of human joint
topology but also protects personal privacy by removing facial identities and
home environments and reduces the dimensionality of the input, unlike RGB
videos. The earliest milestone in this field is ST-GCN [25] (Fig. 1). Since then,
multiple works based on ST-GCN, such as AAGCN [21], have emerged.

In real-life, a popular anomaly detector is preferred to be light enough to
ensure quick anomaly detection without significantly compromising accuracy.
Besides, the anomaly detector is expected to distinguish unseen anomalies even
if they were not provided to the detector during training. In practice, researchers
usually propose end-to-end heavyweight detectors, arguing that their high model
capacity guarantees superior detection performance. However, these models are
computationally expensive and memory intensive. Moreover, the definition of
anomalies can vary significantly across different contexts, even within the same
dataset. For instance, even if the extractor is trained from scratch on kicking
or falling task and have already captured the semantic distances of their cor-
responding actions, they may fail on fighting task because they do not take
advantage from fighting actions during training. Taking this into consideration,
we propose using pretrained lightweight GNNs as representation extractors, and
then detect anomalies with traditional machine learning (ML) detectors because
of their lightweight characteristics (Fig. 2). In essence, our approach is not end-
to-end; instead, we extract representations from pretrained GNNs. The primary
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computational cost is the one-time pretraining on a multi-action classification
task, rather than training from scratch for each anomaly detection task.

We pretrain the lightweight GNNs based on [8], which uses self-distillation, a
knowledge distillation (KD) model, to train and compress heavy models simul-
taneously. KD is a popular [5] compression method because it flexibly discovers
lightweight models, both in terms of model size and model architecture. Self-
distillation, specifically the BYOT [26] approach, extracts parts of the heavy-
weight model to form the compressed lightweight model without the need for
careful redesign of the lightweight model architecture. During training, knowl-
edge from the deeper layers is squeezed to guide the shallower layers, ensuring
that the shallower layers achieve performance similar to that of the deeper layers.

Briefly, this paper focuses on anomaly detection using the extracted represen-
tations of actions by lightweight GNNs trained with BYOT. Our approach differs
from end-to-end unsupervised anomaly detection by emphasizing reduced train-
ing costs while maintaining comparable detection performance. To the best of our
knowledge, we are the first to use representations from lightweight GNNs trained
with BYOT on a multi-action recognition task and reuse them for anomaly detec-
tion with efficient traditional machine learning.

Fig. 1. The method ST-GCN [25]. Human joints are represented as blue dots, which
are estimated from input videos. Each human skeleton is formed as a graph. The green
node itself and its one-hop neighbors (yellow and pink nodes) are aggregated as the
red node. The pink area represents the message-passing abstraction.

The following of this paper is organized as follows: Sect. 2 summarizes the
previous works on GNNs, model compression and abnormal human action detec-
tions. Then, Sect. 3 depicts the methodology briefly, leading to Sect. 4 which
evaluates the performance of our methods and analyzes the characteristics of
the extracted representations. Section 5 provides the summary. Additionally, the
terms “features” and “representations” are used interchangeably with the same
meaning in this paper.

2 Previous Works

2.1 GNNs for Extracting Features

Transforming human action videos to graphs can protect personal privacy and
reduce dimensionality. For instance, human skeleton graphs remove human faces
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and surrounding environments from original videos, thereby preventing the iden-
tification of observed subjects.

GNNs was initially introduced by Gori et al. [9] to extract the representations
of graph data. They have since evolved into convolutional GNNs (ConvGNNs),
which draw inspiration from convolutional neural networks (CNNs). ConvGNNs
are further categorized into spectral ConvGNNs and spatial ConvGNNs. Spec-
tral ConvGNNs process input data in spectral space, while spatial ConvGNNs
convolve with k-order topological neighbors. ST-GCN belongs to the spatial
ConvGNNs category.

GNNs for extracting action representations are classified as spatial-based
approaches, spatiotemporal-based approaches and generated approaches [7]. ST-
GCN is a typical instance of spatiotemporal-based approach that processes the
spatial and temporal dimension inside one ST-GCN layer. Inspired by attention
[24], AAGCN [22] adds spatial attention (nodes-level), temporal attention and
channel attention to improve ST-GCN.

2.2 GNNs Compression

Common methods for obtaining a lightweight GNNs include simplifying GNN
components or compressing GNNs [14]. The simplification is efficient but requires
better knowledge for the specific GNN layers, while the GNNs compression can
borrow the compression method of traditional neural networks (NNs). Among
them, Knowledge Distillation (KD) is particularly popular because it allows
robust performance without needing detailed knowledge of the model structure
[5]. KD achieves this by distilling knowledge from a complex, heavyweight NN
(teacher) to a simpler, lightweight NN (student).

There are typically three approaches to KD: offline distillation, which requires
a pretrained heavy model; online distillation, which trains the lightweight NNs
in real-time; and self-distillation, which simultaneously trains both heavy and
light NNs [10]. Self-distillation can be regarded as a special online distillation,
where the light NNs is a subset of the heavy NNs. It is more practical because
it eliminates the need for carefully selecting architectures for both heavy and
light NNs, enabling the rapid acquisition of a comparably lightweight NN. This
paper adopts lightweight GNNs pretrained using the self-distillation framework
proposed by [8].

2.3 Abnormal Action Detection

In addition to DL anomaly detectors, traditional unsupervised anomaly detec-
tors typically include clustering methods, nearest neighbors methods, statistical
methods, information theoretic methods and spectral methods [4]. The popu-
lar local outlier factor (LOF) [2] model relies on nearest neighbors and evaluates
the anomalies by their densities. Gaussian Mixture Models (GMM) and Dirichlet
Process Mixture Models (DPMM) [1] are statistical methods that use mixtures
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of parametric distributions, while the isolation forest (iForest) [13] employs iso-
lation rules for anomaly detection. Other methods encompass ensemble methods
like LODA, subspace methods such as SOD [23], and more.

To detect anomalies on the features in high dimensions, the common way
is to directly work on the input high dimension features, which is simple and
straightforward but may not always be optimal. Anomaly detection just requires
distinguishing anomalies from other actions, rather than seperate each action.
For instance, actions like staggering or falling differ significantly from normal
daily activities in terms of speed and spatial movements, without needing to
differentiate between various normal daily actions.

However, common representation extractors for human actions tend to
emphasize detailed action features, which can overwhelm anomaly detection sys-
tems with excessive information. This not only biases anomaly detection but also
consumes unnecessary time due to the high-dimensional nature of the data. One
simple approach to mitigate this issue is feature reduction techniques such as
PCA, t-Distributed Stochastic Neighbor Embedding (T-SNE) [16], which help
remove redundant information and streamline anomaly detection processes.

3 Methodologies

3.1 Problem Definition

Regard the human skeleton in each frame as a graph G = (V,E), where the node
set V = {vi; i = 1, · · · , n} is the skeleton joints and the edge set E = {eij ; 1 ≤
i ≤ n, 1 ≤ j ≤ n} is the physical bone connections, the graph G’s topology is
further represented as an adjacency matrix An×n:

Aij =

{
1, if eij ∈ E,

0, else,
(1)

with each item denoting whether there is an edge between the corresponding
nodes. One example of the skeleton graph is shown in Fig. 1.

The features of nodes at each frame t are basically defined as the 3D coor-
dinates xc

t = {xc
t,1, x

c
t,2, x

c
t,3}, with the numbers 1, 2, 3 denoting three different

axes, c indicates coordinates. To include the joint variations between frames
t and t + 1, we also take the one frame displacements as movements features,
which is denoted as xm

t = {xc
t+1,1 − xc

t,1, x
c
t+1,2 − xc

t,2, x
c
t+1,3 − xc

t,3}.
Suppose the network fl is the lightweight GCNs that has been trained on

multi-actions recognition task, given the topology A and nodes feature x for one
instance, the features z are extracted as

z = fl(A,x). (2)

Dimensionality reduction techniques can be applied to z to further improve the
results by removing redundant information. With a trained anomaly detector
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Fig. 2. The proposed anomaly detection framework based on self-distillation and tra-
ditional machine learning. The rectangles denote models while the rounded rectangles
denote the processes. The light blue rectangle denotes the lightweight pretrained GCNs
fl, and the heavyweight GCNs fh is denoted as the orange rectangle. When the pre-
diction is smaller than the threshold, the input instance is classified as abnormal.

fab, given the threshold st, for one instance, its anomaly inference p is

p =

{
Abnormal, if fab(fl(A,x)) < st,

Normal, else.
(3)

The whole framework is shown in Fig. 2.

3.2 The Lightweight GCNs by Self-distillation

Self-distillation, specifically in this paper, BYOT [26], takes a subset of the heavy
model fh as the light model fl. Examples of fh, fl are shown in Fig. 3, represented
as rectangles in different colors and border lines. The fh is the model colored in
yellow, the light models f b1

l , f b2
l , f b3

l are denoted by blue sparsed dashed border
lines, purple dashed border lines, and green dotted border lines respectively. The
denser a border line, the heavier the corresponding fl. In our study the heavy
model fh can be either ST-CGN or AAGCN (see below).

The light compressed network fl is solved by minimizing the distances
between the shallow block and the deep block from the same backbone GCNs.
Typical example pairs of the shallow and the deep block can be (f b1

l , f b3
l ),

(f b1
l , fh). The distances are defined as the combination of three components:

the supervised action classification loss, the similarity distance between the pre-
dicted distributions of the shallow and deep block, and the feature similarity
distance between the predicted representations of the shallow and deep block.
For more details, please refer to [8].
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Fig. 3. The self-distillation compression framework, drawn based on [26], with a main
difference at the GCN Block and input data. The GCN Block means one block of GCNs
model. The FC means fully connection layer. Compression denotes the relative number
of weights of each compressed model.

3.3 Unsupervised Anomaly Detection

Training Anomaly Detectors
Typical unsupervised anomaly detectors are trained only on normal actions, due
to the difficulty of obtaining abnormal actions. The features Z of the whole
dataset grabbed by fl are in high dimensional space Rd. Given Z, suppose the
anomaly detector is fab, if training is directly applied to Z, then fab is solved
by minimizing the losses defined by each fab.

However, as discussed in Sect. 2, the features Z in Rd contain excessive infor-
mation for anomaly detection because their extractors are trained on multi-
action classification tasks. To solve this, we propose using feature reduction
instead of directly preforming anomaly detection on the original Z. Typical fea-
ture reduction methods include PCA, T-SNE and Umap [18].

Anomaly Detectors
In this paper, the anomaly detectors DPMM, GMM, iForest and LOF are
selected based on their computing cost and efficiency. One-class SVM is excluded
due to its high memory requirements for large datasets. DPMM and GMM track
distributions, while iForest compares tree heights and LOF focuses on density
differences.

DPMM and GMM are mixture models that estimate the data distribution as
a combination of multiple simpler distributions, such as Gaussian distributions
for GMM. Each Gaussian distribution is considered as a component of the overall
estimated distribution which is evaluated on the normal set only. Instances that
fall outside the estimated distribution are classified as abnormal. GMM has a pre-
defined fixed number of distribution components and uses maximum likelihood
estimation (MLE) within the expectation-maximization (EM) framework [6],
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while DPMM has an adapative number of components that vary across datasets
and is optimized within the Variational Inference (VI) framework. Specifically,
DPMM draws priors from a Dirichlet Process, adopts Kullback–Leibler (KL)
divergence as the measurement and at the end works on log marginal likelihood.

iForest is proposed based on tree models and focuses on global anomalies. One
advantage of tree models is their good explainability. The basic assumption is
that anomalies are rare and distinct from the normal set, and thus can be isolated
earlier while generating a random forest. As the decision trees grow randomly, the
features at each node are chosen randomly, and a random threshold is selected
to divide the dataset in half. The dataset is continuously cutted away until all
instances are isolated from one another. The average number of steps required
to isolate normal instances is used as a reference. For new instances, anomalies
are those that are isolated with fewer steps.

LOF, a density-based method, is popular for detecting local anomalies. For
a given instance, the densities of its K-nearest neighbors are measured. If the
instance’s local density is significantly lower than that of its neighbors, it is
marked as abnormal. The neighbors are identified using the K-nearest neighbor
(KNN) algorithm.

4 Experiments

To evaluate the self-distilled GCNs for anomaly detection, we tested on NTU
RGB+D [20] and Kinetics400 [11]. NTU RGB+D, built in 2016 using three
Kinect V2 cameras in a lab setting, captures 60 actions across 56,880 videos.
Each video includes depth map sequences, 3D skeletons, and infrared (IR) videos.
The first 50 actions are single-subject actions, while the last ten are interaction
actions. For simplicity, we refer to this dataset as NTU. Each skeleton consists
of coordinates for 25 joints. The dataset is further split into NTU xsub and NTU
xview based on cross-view and cross-subject splits. Kinetics400 collects videos
from real-life scenarios and is more challenging compared to NTU RGB+D due
to the presence of more subjects, partially occluded bodies, and complex envi-
ronments. Kinetics400 captures 400 actions as RGB videos, and ST-GCN [25]
processed it to skeleton joints with OpenPose [3], a robust tool that preserves
18 joints in 2D. GEPC [17], a popular paper on unsupervised anomaly detection
using ST-GCN, selected the top 250 actions for pretraining to avoid extremely
low performance due to difficult actions (e.g. incomplete skeletons, multiple sub-
jects etc.). For clarity, we will refer to this subset as K250.

In total, 20 anomaly detection tasks are defined and tested, classified into
speed-sensitive tasks, exercise tasks, and anomaly tasks related to daily activ-
ities. The task names are shown in Table 1. Most abnormal tasks preserve the
same definitions as GEPC [17].

The GCN backbones selected in this paper are ST-GCN and AAGCN,
which are fed with skeleton coordinates and movements features as input data
(Sect. 3.1). The input data always includes two subjects. For the NTU dataset,
since the first 50 actions are single-subject actions, the second subject is filled
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Table 1. The anomaly detection tasks for each category.

Category Tasks

Speed-sensitive Fall, fight, jump

Exercise Bat, dance, gym, lifters, ride, ski

Daily activities Arms, brush, dress, drop, glasses, handshake, office, touch, wave, cycle, music

with zeros. GEPC is used for comparison because it is also based on the ST-
GCN backbone. However, GEPC uses input reconstruction for pretraining the
ST-GCN extractor, which is unsupervised, whereas our extractors are trained
using action labels. For a more fair comparison, we also compare the results
released in [15], which uses ST-GCN for direct anomaly classification. It utilizes
the URFall dataset [12] and their self-built dataset. Since their self-built dataset
is not publicly available, we only compare results with URFall.

The evaluation score for anomaly detection is AUC, which calculates the area
under the ROC curve. The closer the AUC is to 1, the better the performance
of the corresponding anomaly detector. Unless specified otherwise, all the best
AUC or other scores (recall, precision, f1) shown below are collected across all
selected anomaly detectors.

4.1 Ablation Study

Fig. 4. The AUC for each task and dataset is presented, where ‘byot’ denotes the repre-
sentations from backbones distilled through self-distillation, ‘sup’ stands for the repre-
sentations from pure supervision (without self-distillation) using the same backbones,
‘skeleton’ indicates that the original skeleton input is directly fed into anomaly detec-
tors, and ‘gepc’ marks the results released by GEPC [17]. All results from ‘byot’ and
‘sup’ are across ST-GCN and AAGCN, while ‘gepc’ is from ST-GCN based AutoEn-
coder. These results are the best obtained across all selected anomaly detectors: GMM,
DPMM, iForest and LOF.
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As shown in Fig. 4, except for the task Music, the AUC from raw skeletons always
underperformed compared to the AUC from self-distillation (BYOT) across ST-
GCN and AAGCN. This demonstrates that self-distillation effectively enhances
the extracted representations to capture the semantic differences between normal
and anomalous actions. These results are the best obtained across all selected
anomaly detectors: GMM, DPMM, iForest and LOF.

4.2 Anomaly Detection Performance

Anomaly Detection Compared with SOTA

NTU and K250 Datasets. Figure 4 compares the performance of the represen-
tations from GEPC and those obtained through self-distillation across ST-GCN
and AAGCN extractors. Except for tasks Fight and Handshake on NTU, tasks
Bat, Cycle, Dance and Music on K250, features from BYOT consistently outper-
form those from GEPC in anomaly detection. For a fairer comparison, using the
same ST-GCN and DPMM anomaly detector, our method still performs better
than GEPC in most tasks (Fig. 5), on NTU (8 out of 10), and on K250 (5 out
of 9). Notice that GPEC reconstructs the input for pretraining their ST-GCN
based extractors, which is unsupervised, whereas our method leverages action
labels. However, GEPC trained different extractors for different tasks, while our
method only has a common extractor for all tasks of the dataset during anomaly
detection. The difficulties of K250 causes our pretrained extractors to perform
better only for easier tasks whose actions are simpler during pretraining.

Fig. 5. The AUC comparasion under the same setting of GEPC [17], with ST-GCN as
the backbone and DPMM as the anomaly detector.

As shown in Fig. 6 which compares the performance across the lightest extrac-
tors ST-GCN8 and AAGCN8, on the NTU dataset, our method performs better
or equal in 7 out of 11 tasks compared to representations from pure supervision
(extractors pretrained by action labels without self-distillation across ST-GCN or
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Fig. 6. The AUC comparison between the representations pretrained with self-
distillation or without self-distillation across the lightest AAGCN8 and ST-GCN8
extractors, where ‘byot’ denotes the extractors trained with self-distillation, and ‘sup’
represents those without self-distillation.

AAGCN). For K250, only Gym outperforms the pure supervision approach, due
to the difficulties of the dataset itself. K250 is larger and more challenging com-
pared to NTU, leading to lower accuracy during pretraining by self-distillation
and consequently poorer representations for anomaly detection. Nevertheless
the lightweight GNN are still able to perform satisfactorily with the lightest
extractors.

Fig. 7. The best results of fall detection on URFall with numbers denoting differ-
ent levels of feature reduction across PCA, T-SNE and Umap, where (a) summarizes
the results across all ST-GCN extractors, and (b) collects the results of the lightest
AAGCN8 extractor. The ‘256ref’ represents the referenced results [15], which uses
features in 256 dimensions and the ST-GCN20 extractor. Notice that AUC was not
measured in [15].

URFall Dataset. Because of the unsupervised nature of GPEC, for a fairer com-
parison, we collected fall detection results on the URFall dataset. The URFall
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dataset contains 40 normal daily actions captured by camera 0 and 30 abnormal
falling actions captured by cameras 0 and 1. During anomaly detection, 70%
of the normal actions are used as the training set, while the remaining normal
actions and all abnormal actions are used as the test set.

We compared our method with the supervised model proposed in [15], which
extracts the features in 256 dimensions and measures performance with preci-
sion and recall. Considering the potential redundancy in features, we also feed
anomaly detectors with features after reducing dimensionality using techniques
PCA, T-SNE and Umap. The 256-dimensional features were reduced to 2, 3,
and other dimensions. As demonstrated in Fig. 7a, our method outperforms [15]
in precision and recall, even when the features are reduced to only 2 compo-
nents, which is significantly fewer than the 256-dimensional features used in
[15]. However, because of the small size of URFall and model structures, ST-
GCN can easily overfit, while AAGCN is more steady during pretraining due to
its attention mechanism. Figure 7b illustrates that AAGCN8 is better than the
ST-GCN20 in [15] on URFall, and is also lighter.

Fig. 8. The AUC of each extractor for each task and dataset is presented. All extractors
are compressed by self-distillation. The extractors, such as ‘stgcn20’ and ‘aagcn20’, rep-
resent the ST-GCN or AAGCN backbones at different compression levels. The smaller
the number, the lighter the extractor.

Comparison of Lightweight GCN Extractors. Each GCN back-
bone structure follows the same design as in [8], where the heavyweight
ST-GCN20/AAGCN20 are compressed to ST-GCN12/AAGCN12 or ST-
GCN8/AAGCN8 during self-distillation. The ST-GCN8/AAGCN8 are the
lightest, being compressed by approximately 60% compared to the ST-
GCN20/AAGCN20. As shown in Fig. 8, the ST-GCN8 backbone fails to cap-
ture as much information compared to AAGCN8. The attention mechanism
in AAGCN helps improve the extracted representations by adjusting attention
weights during pretraining. In Fig. 8, AAGCN, especially AAGCN8, steadily
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stand out. AAGCN8 has a maximum AUC reduction of only 3.3% compared to
AAGCN20 on the NTU dataset. On K250, AAGCN8 is better than AAGCN20
in most tasks, with a maximum difference of 7.2%. This might be due to the
large capacity of AAGCN20 that could overfits on the difficult dataset K250.

Fig. 9. AUC for different number of features for every task and dataset. All extractors
are compressed by self-distillation. AUCs are collected across all anomaly detectors,
while ‘512’ is from iForest.

Improving the Representations for Anomaly Detection

Removing the Redundancy of Representations. To check the redundancy of rep-
resentations for anomaly detection, we use dimensionality reduction techniques
T-SNE, Umap and PCA to feed more disriminative features into anomaly detec-
tors. As shown in Fig. 9, on both datasets, feature reduction always provides bet-
ter results with some tasks prefering a few more features than others but far less
than the original 512 features. The explaination is that the representations from
self-distillation provides more information than anomaly detection needs, leading
to a preference for fewer features. Within the same dataset, anomaly detection
is simpler compared with multi-action classification (used for self-distillation),
because it does not demand the detailed information to classify each action,
instead, it only requires distinguishing between normal and abnormal actions.

Tasks that prefer more features usually require additional information from
the hands or feet, which are nodes with lower degrees and therefore receive less
information from other nodes compared to those with higher degrees. Adding
more features helps gather information from nodes with higher degrees, aiding
in detection. The relative degrees of each node in the skeleton graphs are shown
in Fig. 10.

The Preference of Dimensionality Techniques of Each Task. Some tasks have
their preferred feature reduction methods. As shown in Fig. 11, Umap achieves
the best AUC in most tasks. Umap has advantages of preserving global structure
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Fig. 10. The degree of joint nodes for each type of skeleton graph is represented by
color intensity: the darker the joint node, the higher its degree.

Table 2. Average improvement of AUC with different feature reduction methods across
all tasks.

Dataset PCA T-SNE Umap

NTU 17.94% 20.79% 24.45%

K250 6.52% 10.79% 17.69%

Fig. 11. The best AUC under different feature reduction methods on each dataset,
compared with the features without dimensionality reduction (‘raw’).

into the reduced set of features, while T-SNE is more interested in the local
structure. PCA, on the other hand, tracks the axes with the largest variations
and is linear.

For tasks Touch and Music, where the main action parts are the arms, T-
SNE, which retains the local features of the arms, performs slightly better than
Umap. Besides, for tasks Dress, Fight and Handshake in NTU and the task
Gym in K250, PCA ourperforms T-SNE, which can be attributed to the quick
movements along a specific direction as arms moving up and down or front
and back, or legs moving up and down. As illustrated in Table 2, each feature
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reduction method consistently improves anomaly detection by at least 6.52% in
AUC.

These results demonstrate that the proposed hybrid model is more beneficial
compared to the unsupervised GEPC or the supervised method in [15]. First,
the efficient feature extractor AAGCN8, is lighter compared with them. Second,
GEPC requires training from scratch for each anomaly detection task, whereas
our approach only needs to train the extractor once and then use it for all
anomaly detection tasks.

5 Conclusion

Our goal was to evaluate if a lightweight GNN combined with a traditional
anomaly detector could be effective on various tasks compared to other state-
of-the-art methods. We have demonstrated that AAGCN8 is an accurate and
efficient feature extractor for anomaly detection across 20 tasks. With feature
reduction, compared to AAGCN20, AAGCN8 has a negligeable average AUC
reduction of only 0.24% on NTU and an average improvement of 2.3% on K250,
while being 60% lighter. Additionally, the AUC of our method with feature
reduction is on average 11.4% higher than GEPC across all anomaly detection
tasks on NTU and 3.25% higher on K250. Since the features extracted by our
extractors are redundant for anomaly detection because they were trained on
multi-action classification tasks, feature reduction techniques were also proposed
to significantly improving the anomaly detection results.

However, our current extractors benefit from action labels. In the future, we
aim to train the extractors in an unsupervised manner to capture representations
that enhance anomaly detection.
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Abstract. We present a zero-shot spatio-temporal action detection
framework that enhances the relational extraction capabilities of vision-
language models. Zero-shot spatio-temporal action detection involves
identifying a person’s actions in a video and recognizing the time and
place of these actions without prior training on those specific actions.
Large-scale pre-trained vision-language models like CLIP exhibit zero-
shot recognition capabilities for various tasks but struggle with extract-
ing local features and relationships. By explicitly enhancing the extrac-
tion of person-context relationships in input videos and improving vision-
language feature extraction, our proposed framework performs spatio-
temporal action detection. It effectively captures local features and rela-
tionships between people and contexts while leveraging the strengths of
zero-shot recognition from large-scale vision-language models. The two
key components of our framework are person tracking in each input
frame while ensuring smooth bounding-box shapes across frames, and
the explicit interaction between visual features and language features in
the shallow layers of visual feature extraction. We demonstrate the effec-
tiveness of our framework through comprehensive experiments on two
well-known action detection datasets, JHMDB and UCF101-24.

Keywords: Spatio-Temporal Action Detection · Vision-Language
Model · Zero Shot

1 Introduction

Spatio-temporal action detection is a technique that recognizes a person’s actions
in a video and detects the time and place where these actions occur [1,15,20,
24,28]. By tracking the actions of each person chronologically throughout the
video, this technique allows for a detailed understanding of the context relating to
each individual and their environment, leading to more insightful analyses. This
technique has a wide range of applications, including the detection of suspicious
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or unusual behavior in surveillance and the analysis of athletes’ movements in
sports. However, deep learning models generally require vast amounts of video
data and high-cost annotations for each class, which greatly limits the scalability
of action detection tasks.

Zero-Shot Spatio-Temporal Action Detection (ZSSTAD) aims to detect
unseen actions without relying on large amounts of labeled training data [5].
Inspired by the new paradigm of pre-trained vision-language models like
CLIP [16] and ALIGN [8], ZSSTAD leverages these models to detect unseen
actions by linking text and image features. This approach enables the detection
of new actions by pre-connecting textual and visual information.

On the other hand, research in action detection has demonstrated that cap-
turing spatial and temporal interactions between individuals and objects within
their context is crucial [3,15,20]. For instance, efforts have been made to develop
mechanisms for efficiently extracting interactions between people and objects
based on visual features [3,20]. These studies highlight the importance of accu-
rately capturing spatial and temporal interactions in ZSSTAD while leveraging
the strengths of zero-shot recognition models like CLIP.

In general, however, vision-language models represented by CLIP share the
weakness that object-aware local feature extraction is inaccurate because it
only aligns image features to the text features of alt-text that represents the
entire image. Therefore, applying CLIP naively fails to accurately capture the
spatial and temporal interactions with text feature that indicate actions (i.e.,
text prompts). Furthermore, existing state-of-the-art object tracking, e.g., Byte-
Track [27], cannot adequately capture the relationship between objects and peo-
ple due to the lack of bounding box (bbox) stability as shown in the top of
Fig. 1.

In this paper, we propose a simple yet effective ZSSTAD framework that
enhances the ability of vision-language models to extract person-context rela-
tionships in videos. The key innovation is the explicit enhancement of relational
extraction between people and context in both input videos and vision-language
feature extraction. Firstly, we perform person tracking in each input frame while
ensuring that the bboxes for people maintain a smooth shape across frames.
Because the bboxes representing both person and context are stable, the features
extracted from these bboxes can effectively capture the relationships between
the person and the context. Furthermore, inspired by recent advances in zero-
shot object detection [9,13], we interact with text features at a shallow layer of
visual feature extraction (see the bottom of Fig. 1). By introducing a relational
extraction module that utilizes information from action prompts of the recogni-
tion targets, we improve the ability to extract person-context relationships that
are tailored to the target actions. Our proposed framework offers a straightfor-
ward method to incorporate relational extraction in videos while leveraging the
zero-shot capabilities of large-scale vision-language models and the strengths of
previous action detection approaches. We demonstrate the effectiveness of our
framework through experiments on two well-known action detection datasets,
JHMDB [7] and UCF101-24 [18].
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Fig. 1. Overviews of conventional zero-shot spatio-temporal action detection frame-
work assuming tracking and our proposed framework.

Our contributions are as follows:

– We propose a zero-shot spatio-temporal action detection framework which
enhances the relational extraction capability of vision-language models.

– We introduce person tracking that incorporates pose estimation to ensure
smooth bbox shapes between frames for action detection, along with a module
that enhances relationship extraction capabilities using text information (i.e.,
action prompts).

– We demonstrate the effectiveness of our framework through experiments on
two well-known action detection datasets, JHMDB and UCF101-24.

2 Related Work

Vision-Language Models for Image Recognition. The field of Vision-
Language Models (VLM) focuses on integrating image and text information
to enhance mutual understanding. This area has numerous applications, includ-
ing image captioning, image retrieval, and visual question answering. Notably,
foundational models in VLM, such as CLIP [16], ALIGN [8], and their vari-
ants [2,12], which learn integrated visual and language representations, have
achieved remarkable performance in zero-shot image classification. These mod-
els have become fundamental methods in the field of recent image and video
recognition. In this paper, we leverage these VLMs to achieve ZSSTAD.

Vision-Language Models for Video Recognition. Inspired by the suc-
cess of CLIP, which learns to associate language and images and enables image
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classification without the need for labeled training data, several recent studies
have proposed extending CLIP to video data for video recognition [6,14,23,26].
These methods adapt CLIP to video data using various approaches, facilitating
zero-shot video recognition. For instance, ActionCLIP [23] integrates a tem-
poral feature aggregation layer on top of the image encoder to model tempo-
ral dynamics, while X-CLIP [14] introduces cross-frame attention for temporal
modeling. CLIP-VIP [26] presents a more efficient approach to applying CLIP in
the temporal domain, achieving high zero-shot recognition performance. While
these studies primarily focus on zero-shot recognition across entire videos, our
research centers on ZSSTAD. Specifically, we aim to identify the spatio-temporal
positions of individuals within videos and perform zero-shot action recognition.

Recently, spatio-temporal action detection has begun to address zero-shot
scenarios. To the best of our knowledge, the only existing ZSSTAD method,
iCLIP [5], achieves this by utilizing pre-trained vision-language models and
proposing interaction modules that extract relationships between people and
content in videos. These modules also refine text features by considering image
features, enabling ZSSTAD through the alignment of visual and text features
for accurate action classification in videos. However, the integration of person
tracking, which is essential for practical applications, has not been studied. Addi-
tionally, the exploration of relationship extraction between visual features based
on text features (i.e., action prompts) remains unexplored, leaving room for fur-
ther research.

Spatio-Temporal Action Detection. Action detection, which aims to spatio-
temporally localize individuals and recognize their actions in videos, is a key task
that advances video understanding. This task is gaining attention due to its
diverse applications, such as activity monitoring and abnormal behavior detec-
tion. Action detection has seen significant advancements through deep learning
methods, which generally fall into two main approaches: (i) a two-stage frame-
work that first performs independent person/object instance detection followed
by action recognition [15,20], and (ii) an end-to-end framework which conducts
instance detection/action recognition in an end-to-end manner [1,24,28]. In this
paper, we achieve zero-shot spatio-temporal action detection based on the two-
stage framework, which facilitates the utilization of off-the-shelf person trackers,
detectors, and CLIP.

3 Proposed Method

3.1 Overview

Our proposed method aims to improve the performance of ZSSTAD by enhanc-
ing the ability to extract spatio-temporal person-context relationships under the
unstable conditions of person tracking typically encountered in real-world appli-
cations. We achieve this by introducing two novel mechanisms: 1) the Person
BBox Stabilizer, which stabilizes the bboxes obtained from person tracking, and
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Fig. 2. Overview of our proposed framework: The figure above the dashed line illus-
trates the detector for people and objects, the person tracker, and the person bbox
stabilizer. Using an image encoder, the framework extracts features for the person,
object, and context (whole image) at frame t. Interaction blocks indicate that visual
features for action recognition are derived by feeding these features into the action-
prompt-aware interaction (A), person-person interaction (P), person-object interaction
(O), person-context interaction (C), and memory feature interaction (M). The memory
features, which are time series of person features used in M, are written to and read
from the Memory Feature Pool. The figure below the dashed line shows that the text
encoder computes the text embedding for each action label. We obtain the text embed-
ding through Interaction-Aware Prompting to combine the text embedding with the
interaction feature and calculate the similarity between visual and text embeddings.

2) the Action-Prompt-Aware Interaction Block, which aids in modeling relation-
ships pertinent to the target actions. The proposed framework consists of two
main components: visual feature extraction and text feature extraction, as illus-
trated in Fig. 2. In the following sections, we provide detailed descriptions of our
ZSSTAD framework and the aforementioned mechanisms.

For the visual feature extraction, we first separate a video into consecutive
frames, F = [F1, F2, ..., Ft, ...FN ], where N represents the total number of frames
in the video. The detector extracts person/object instances as bboxes from each
input frame, followed by the person tracker. The tracking results are fed into
the person bbox stabilizer to obtain stable bboxes, which are suitable for action
recognition. Person instance-level features, Pt ∈ RNP t×D, and object instance-
level features, Ot ∈ RNOt×D, are computed from the image by cropping the
person/object regions of interest with the bboxes using the pre-trained CLIP
image encoder. Here, NP t and NOt are the number of person and object bboxes
detected in t-th frame respectively, and D is the feature dimension. Addition-
ally, the context feature, Ct ∈ R1×D, is extracted from the entire image using the
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same image encoder. Pt is stored in the Memory Feature Pool for temporal inter-
action modeling. To model multi-type interactions that aid in action recognition,
we introduce interaction blocks, similar to those in [3,5,20]. Given different Pt,
Ot, Ct, and sets of person memory features Mt read from the Memory Feature
Pool, the interaction blocks output interaction features fAt = IB(Pt, Ot,Mt, φi),
where φi represents the parameters in the interaction blocks. fAt is then passed
to the consine-similarity-based action matching for final predictions.

The interaction blocks consist of person-person interaction, P, person-object
interaction, O, person-context interaction, C, and memory interaction blocks,
M, as presented in [3,5,20], along with the action-prompt-aware interaction,
A, proposed in this work. We adopt the order of P, O, C and M units as
demonstrated in [3]. These interaction blocks provide richer representations for
distinguishing action recognition.

For the text feature extraction, we input each action label name into CLIP’s
pre-trained text encoder to obtain the text features. These text features are then
fed into A to achieve precise alignment between visual and language features, as
proposed in [9,13]. Additionally, the interaction-aware prompting [5] refines the
text features using fAt, making them suitable for action matching and output
final text features, fT t ∈ RNa×D (Na is the number of target actions), for action
classification. In the training phase, the image and text encoders are frozen,
and the remaining parameters along the bold black arrows shown in Fig. 2 are
updated by computing cosine similarity between fAt and fT t, and using the loss
function identical to Eq.(5) in [5].

3.2 Person Bbox Stabilizer

Visual feature extraction can identify features that are more suitable for con-
sistent action recognition when the input images have stable sizes and posi-
tions. If the bboxes fluctuate significantly, the feature extraction process must
handle images with varying scales and positions, which complicates accurate
action recognition. This challenge is particularly pronounced in zero-shot set-
tings, where it is impossible to train models for each target action, and bbox
instability cannot be directly addressed. To address this issue, we introduce a
mechanism for stabilizing person bboxes, known as the Person Bbox Stabilizer
(PBS).

Pose estimation is a technique used to precisely extract the position of indi-
viduals in an image. By employing pose estimation to re-localize the tracking
bbox, a more stable bbox can be achieved. In our approach, as outlined below,
we apply top-down pose estimation [19] within the bbox of the i-th individual
at frame t, denoted as Bi

t, obtained through tracking.

J i
t =

{
(Xi

t,k, Y
i
t,k)

}K

k=1
= ψP (φCrop(Ft;Bi

t)), (1)

where ψP and φCrop represent the pose estimation and image cropping oper-
ations with bboxes, respectively. Here, J i

t = {(Xi
t,k, Y

i
t,k)}Kk=1 is the set of
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where r is a scaling parameter, and we set this parameter to 0.4 in this paper,
referencing the training data, to sufficiently encompass the person. The sensi-
tivity of the performance to r is discussed in the supplementary material. The
process of calculating the bboxes based on these poses is expected to stabilize
the bboxes.

Fig. 3. Architecture of the Action-Prompt-Aware Interaction Block. The query input
is the feature of the target person, and the key/value input consists of the text features
passed through the adaptation layer.

3.3 Action-Prompt-Aware Interaction Block

In a zero-shot setting, there is no predefined limit on the number of action classes,
necessitating the capture of diverse behavioral patterns. Understanding how each
action relates to other contexts, such as objects and people, becomes crucial. To



236 Y. Babazaki et al.

enhance the capability of relationship extraction between a person and other con-
texts, we introduce an Action-Prompt-Aware Interaction Block (APAIB), which
enriches action features, fAt, by incorporating a relational extraction mecha-
nism for the action prompts of the recognition target. This improves the ability
to extract relationships between individuals and the context relevant to the tar-
get.

Recent studies on zero-shot object detection (ZSOD) have reported that early
fusion between visual and language features is essential for image understand-
ing [9,13]. Inspired by these recent ZSOD studies, APAIB has been designed. As
shown in Fig. 3, APAIB employs a transformer-like attention mechanism [21], as
adopted in [3,5,20], where the feature of the target person is used as the query,
and the text features are used as the key/value, to extract the relationships
between the person feature and the text features. By considering the informa-
tion from the action prompts in the shallow layers using this block, it is possible
to facilitate the extraction of relationships in visual feature extraction tailored
to the recognition target actions.

Unlike the attention mechanisms in [3,5,20], APAIB introduces the following
adaptation layer consisting of a learnable non-linear layer that transforms text
features:

fT
′ = ReLU(Linear(fT )). (4)

This adaptation layer converts text features to better align with visual features,
resulting in improved extraction of relationships and producing more accurate
action features.

4 Experimental Results

4.1 Experimental Settings

Dataset. The JHMDB dataset [7] contains 21 types of action classes and 928
videos. Each class includes up to 55 clips, with each video clip containing a
single action. A total of 31,838 frames are annotated, where bboxes, tracking
tubelets, and actions are annotated for each person instance in each frame. The
performance is evaluated using frame mean Average Precision (mAP) on split
1 of the dataset. An Intersection over Union (IoU) threshold for frame mAP is
0.5. On the other hand, the UCF101-24 [18] dataset is a subset of the UCF101
dataset, specialized for spatio-temporal action detection. It consists of 24 action
categories and 3,207 untrimmed videos. Person bboxes with action labels are
annotated frame by frame. Unlike JHMDB, UCF101-24 contains scenes where
multiple people appear in a single video frame, often with significant overlap
between individuals. We evaluate our method on the first split of this dataset
and report frame mAP with an IoU threshold of 0.5.
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Implementation Details. We use ByteTrack [27] with YOLOX [4] as the
person tracker. For object detection, Faster-RCNN [17] trained on MSCOCO [11]
is used as our object detector. ResNet-50-FPN and ResNet-101-FPN [10,25]
are used as the backbone of the Faster-RCNN for JHMDB and UCF101-24,
respectively. We apply HRNet [22] pre trained with MSCOCO to obtain the
pose from each person bbox for the PBS. For the image encoder and the text
encoder, we use pre-trained CLIP [16] model ViT-B/16.

Training and Inference. In our experiments, we use 32 consecutive frames
as network input. During the training phase, ground truth person bboxes and
detected object bboxes are used to extract Pt and Ot. During inference, we use
detected person and object bboxes to obtain the results. We freeze the image and
text encoders of CLIP and train the network with the SGD optimizer, following
the backward path indicated by bold black arrows in Fig. 2. For JHMDB, the
batch size is set to 8 and the base learning rate is 2.0e–4. We train the network
for 7k iterations, using a linear warm-up scheduler for the first 0.7k iterations.
For UCF101-24, the batch size is set to 8 and the base learning rate is 2.0e–4.
We train the network for 14k iterations, applying the linear warm-up scheduler
for the first 0.14k iterations.

Table 1. Main results on JHMDB and UCF101-24. In this table, we display our best
mAP results which include all proposed components. In Oracle and Detection, Ora-
cle denotes that the input person bboxes are ground truth, while Detection indicates
predictions. When using Oracle, the PBS of our method is not applied. The results
for two training/evaluation split patterns of the action classes are shown: 1) 75%:25%
class split and 2) 50%:50% class split. The best results are shown in bold.

Method JHMDB UCF101-24

75%:25% 50%:50% 75%:25% 50%:50%

Oracle Baseline (iCLIP [5]) 69.6 45.5 90.3 66.1

Ours 70.4 (+0.8) 45.9 (+0.4) 92.1 (+1.8) 66.4 (+0.3)

DetectionBaseline (iCLIP [5]) 61.2 42.5 28.8 17.9

Ours 64.2 (+3.0) 42.9 (+0.4) 33.5 (+4.7) 21.0 (+3.1)

4.2 Main Results

To evaluate the performance of our framework in a zero-shot scenario, we con-
ducted experiments using datasets of unseen action classes that were not included
during training, ensuring that the training and evaluation classes were mutually
exclusive. We adopted two experimental setups with different action class splits:
1) 75%:25% and 2) 50%:50%. The 75%:25% class split follows the division pro-
vided in [5], while the 50%:50% split uses random sampling to divide the action
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classes. We compared the effectiveness of our framework against iCLIP [5], which
served as the baseline. For a fair comparison, we evaluated performance using
person bboxes provided by the person tracker employed in this paper and object
bboxes from the object detector, consistent with the setup used in iCLIP. iCLIP
was trained similarly to our framework, with the CLIP image and text encoders
kept frozen.

Table 1 presents the evaluation results for JHMDB and UCF101-24. We
report results for both settings: one utilizing ground truth person bboxes as
person instances (Oracle) and the other using predicted person bboxes (Detec-
tion). The PBS is not applied in the Oracle setting. In the 75%:25% class split
under the Oracle setting, our model outperformed the baseline by +0.8 mAP
on the JHMDB and +1.8 mAP on the UCF101-24. Furthermore, in the Detec-
tion setting, our model showed improvements of +3.0 mAP on JHMDB and
+4.7 mAP on UCF101-24 compared to the baseline. These improvements are
more substantial than those observed in the Oracle setting, indicating that the
proposed method contributes more effectively to performance enhancement in
realistic scenarios where detection results may be unstable.1 In the 50%:50% class
split, we observed consistent improvements similar to those in the 75%:25% split
for both datasets.

4.3 Ablation Study and Analysis

We conducted ablation experiments and analyses using the 75%:25% class split
to assess the effectiveness of each key mechanism in our framework, specifically
APAIB and PBS. Following this, we present a qualitative analysis.

Impacts of Two Key Mechanisms. We evaluated the effectiveness of APAIB
and PBS using the JHMDB. Table 2 shows the results of the ablation experi-
ments. It was observed that both APAIB and PBS individually contributed to
the performance improvement. We found that our framework, which combines
both APAIB and PBS, achieved the highest performance.

APAIB: Importance of the Adaption Layer and Insertion Point. We
conducted ablation experiments focusing on APAIB using the JHMDB dataset.
First, we investigated the importance of the adaptation layer, which is distinct
from other interaction blocks. Table 3 presents evaluation results with and with-
out the adaptation layer. The APAIB with the adaptation layer outperformed
the version without it. Although text features are trained to align with visual
features, they are not necessarily optimized for extracting relationships among

1 We note that our results exhibit lower performance compared to the mAP reported
in the original paper [5] due to issues with tracking matching, resulting in cases
where tracked person instances are not output. In particular, UCF101-24 includes
scenes with multiple individuals and frequent occlusions, which pose challenges for
person tracking and consequently lead to reduced performance.
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Table 2. Impacts of APAIB and PBS on JHMDB. The best result is shown in bold.

Method Mechanism mAP

APAIB PBS

Baseline (iCLIP) 61.2

w/APAIB � 63.3 (+2.1)

w/PBS � 62.7 (+1.5)

Ours � � 64.2 (+3.0)

persons and contexts in the image. Our results show that incorporating an adap-
tation layer with non-linear transformation can better tailor the text features
for relationship extraction.

We then experimented with different insertion points for APAIBs within
the interaction blocks. The interaction blocks, excluding APAIBs, consist of
P → O → C → M × 2 stages, which have been reported as the best unit order
in [5]. We investigated the effect of three different APAIB insertion patterns: 1)
Before each interaction block in the first stage, A → P → A → O → A → C → A
→ M, denoted as “1st stage”, 2) Before each interaction block in the second
stage, following the same setting as the first stage, denoted as “2nd stage”, 3)
Before each interaction block in all stages, denoted as “all stages”. Table 4 shows
the results for each pattern. We found that inserting APAIBs before each inter-
action block in the first stage achieved the best performance. This suggests that
early-stage fusion of visual and language features is beneficial for zero-shot action
recognition, consistent with findings in zero-shot object detection [9,13].

Performance of Each Action Class. To enable a more detailed comparison of
the recognition results, we present the average precision for each class not used
during training. Table 5 shows the results for JHMDB. In the Oracle setting,
where ground truth person bboxes were used without the PBS, higher perfor-
mance was achieved for half of the action classes. Additionally, in the Detection
setting, which is closer to real-world applications using predicted bboxes, the

Table 3. Comparison of results
with and without APAIB’s adap-
tation layer on the JHMDB. The
best result is shown in bold.

mAP

w/o Adaptation Layer 61.2

w/ Adaptation Layer 63.3 (+2.1)

Table 4. Insertion position of
APAIB in interaction blocks. The
experiments are conducted on
JHMDB. The best result is shown
in bold.

Insertion Position mAP

1st stage 63.3

2nd stage 60.3

All stages 63.2
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Table 5. Performance of each action class on the JHMDB. The best results are shown
in bold.

Method Action Class mAP

catch clap pullup sit throw wave

Oracle Baseline (iCLIP [5]) 77.2 79.2 100 67.3 37.1 57.1 69.6

Ours 82.0 79.9 100 63.2 44.8 52.5 70.4 (+0.8)

DetectionBaseline (iCLIP [5]) 71.3 73.2 99.9 42.1 36.8 43.9 61.2

Ours 77.5 75.7 100 42.5 47.7 41.9 64.2 (+3.0)

introduction of both APAIB and PBS led to improved performance for most
action classes compared to the baseline, with a maximum improvement of +10.9
mAP. Due to space limitations, please refer to the supplementary material for
the results of each class in UCF101-24.

Visualization: Qualitative Analysis. We performed a qualitative analysis
based on the visualization of recognition results. Figure 4 shows examples of
recognition outcomes on JHMDB and UCF101-24. In action recognition, person
poses serve as crucial cues. For instance, in the cases of “clap” and “sit” on
JHMDB, the proposed method successfully identifies the actions due to the
bboxes that encompass person poses, as enabled by the PBS, shown in Fig. 4(a).
In contrast, for actions like “catch” and “throw,” although the bboxes cover the
poses, the existing method fail to correctly identify the actions. For these actions,
objects such as a ball and targets also play a significant role in the recognition
process. These examples suggest that the successful action recognition achieved
by our method is largely due to the introduction of the APAIB, which enhances
the model’s ability to understand the relationship between individuals and their
context within the video. The superior performance of the proposed method is
similarly evident in the results for UCF101-24, as shown in Fig. 4(b).

Discussion: Why is the Proposed Stabilizer Effective? To experimen-
tally elucidate the factors contributing to the performance improvement brought
about by the PBS, we further investigated the properties of the bboxes after the
introduction of the PBS, based on the “Baseline w/APAIB”. Figure 5 illustrates
the distribution of correct and incorrect samples relative to the deviation of the
bbox from the ground truth before and after the introduction of the PBS. To
clearly demonstrate the effects of the PBS and facilitate trend analysis, we focus
on the action class “clap”, which has shown the greatest improvement, as indi-
cated in the supplementary material. We display samples that are matched with
ground truth bboxes at an IoU threshold of 0.5. The vertical axis represents the
offset of the center point, which normalizes the difference between the centers of
the ground truth bbox and the predicted bbox by the height of the ground truth
bbox. The horizontal axis shows the H ratio and W ratio, which are the ratios of
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Fig. 4. Visualization for quantitative analysis on JHMDB and UCF101-24. The top
and bottom rows show the recognition results of iCLIP and our method, respectively.
Each figure shows the ground truth class labels at the top.

the predicted bbox width (Wpred) and height (Hpred) to the ground truth bbox
width (Wgt) and height (Hgt), respectively. These are defined as Wpred/Wgt and
Hpred/Hgt. Samples were classified as correct or incorrect based on the top-1
action class of each sample.

Focusing on the offset of the center point, we observed that both correct
and incorrect samples showed greater spread after the introduction of the PBS,
indicating that this parameter did not significantly affect accuracy. Additionally,
examining the W ratio without the PBS revealed that incorrect samples were
predominantly found in regions where the predicted bbox was significantly larger
than the ground truth (W ratio > 1.5). In contrast, such samples were reduced
with the introduction of the PBS. Furthermore, the use of the PBS increased
the number of samples where the bbox was slightly larger than the ground truth
(1.0 < W ratio < 1.5). Considering the performance improvement with the
PBS, this suggests that a bbox slightly larger than the ground truth, which
encompasses the person more broadly, is advantageous for recognition compared
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Fig. 5. Distributions of correct and incorrect recognitions in relation to the deviation of
the bbox from the ground truth before and after introducing the PBS. The distributions
are evaluated by using the “clap” action class on JHMDB.

to a tighter bbox around the person’s contour. Note that the H ratio showed
little variation before and after the incorporation of the PBS, with no significant
trend differences observed.

5 Conclusion

We proposed a ZSSTAD framework that enhances the relationship extraction
capabilities of vision-language models, assuming person tracking, which is cru-
cial for practical applications. The key mechanisms of our framework are: 1)
the PBS, which stabilizes the bboxes obtained from person tracking and aids in
accurately extracting action features, and 2) the APAIB, which explicitly facil-
itates interaction between vision and language features at shallow layers and
supports modeling visual relationships relevant to the target actions. Compre-
hensive experiments on two datasets, JHMDB and UCF101-24, demonstrate the
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effectiveness of our framework, surpassing the state-of-the-art performance of
the existing ZSSTAD method.
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Abstract. Traditional progressive strategy for denoising cascades a
series of backbone denoisers to enhance the performance. However for
denoising task with low peak signal-to-noise ratio(PSNR), we find this
strategy is ineffective. Thus we extend the traditional progressive strat-
egy to nonlinear progressive strategy learning to dig non-noise component
from discarded noise of backbone denoisers. Inspired by the workflow of
archaeology, the proposed strategy alternatively and repeatedly imple-
ment backbone denoiser and non-noise component digging module in
a progressive manner. For traditional and deep denoisers, experiments
show that for low PSNR images with regular shapes, the proposed strat-
egy is able to help backbone denoisers recover these shapes with better
discriminability than traditional progressive strategy. Although experi-
ments find the proposed strategy help them achieve better performance
on several public datasets with clear-cut rules, we make no claim that
these published methods accompanied by our strategy will beat the state-
of-the-art current algorithms on these and other natural image datasets.
The novelty is that the proposed strategy is general and interpretable
which can be applied to various deep or traditional denoisers for stronger
nonlinear fitting capability and reliable performance improvement on
severely ill-posed low PSNR noise removal problem.

Keywords: Nonlinear progressive strategy · Low PSNR denoising ·
Non-noise component digging

1 Introduction

Images with low PSNR are commonly encountered in many areas. These images
may contain various sources of noise caused by hardware imperfection, complex
observation environment and high-loss information channel, while the target
information source may be weak compared with the noise. For this problem var-
ious proposed traditional or deep methods may fail to remove pure noise without
mixing non-noise components. Although traditional progressive denoising strat-
egy may alleviate this problem, we generalize the traditional strategy to its non-
linear version and achieve much better performance on several proof-of-principle
experiments.
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Fig. 1. Denoising performance of BM3D on different intensity of noise. The first and
third rows are noisy images while the second and last rows are corresponding denoised
images. The last two columns are the enlarged view in the colored box and the clean
image respectively.

While a clean image is contaminated by strong noise, state-of-the-art denois-
ers may mistake the smooth component of noise as the component of clean
image and discard the oscillating component of the clean image as noise. This
effect will generate many denoised patches which do not satisfy the prior for
the clean image. As shown in Fig. 1, BM3D effectively remove noise in high and
medium PSNR noisy images. However when the PSNR decreases, the denoising
performance drops sharply. As shown in Fig. 1(f) and Fig. 1(g), the fluctuation
of noise misleads BM3D to generate nonexistent structures compared with the
groundtruth clean image. The denoised image looks more similar to the noisy
image rather than the groundtruth because the non-zero piecewise smooth part
of the noise patch is mixed into the denoised clean image.

The main drawback of these denoisers is that strong noise will deteriorate
their discrimination ability between noise and clean image. As a conceptual
analogy to low PSNR image denoising task, archaeologists discriminate carefully
between the relics and soil using small brushes progressively. After clearing most
of the soil and observing the profile of the relics, they obtain more information
and then adjust their strategy to dig out the relics more carefully. Inspired by
this strategy, we study the possible method transfer from archaeology to low
PSNR image denoising tasks. Although progressive denoising is not a brand new
strategy for image processing, former traditional methods simply add part of
discarded noise (via multiplying a scalar factor) back to the denoised image of
backbone denoisers and repeatedly perform the backbone denoisers. Former deep
learning based methods cascade various denoising blocks and train the whole
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network in an end-to-end way, which can be viewed as a unwrapping version of
traditional progressive strategy. In this paper, we design corresponding nonlinear
progressive denoising strategy for both traditional and deep backbone denoisers.

Fig. 2. Schematic diagram of our strategy. Progressive denoising block is abbreviated
as prb, φ is the backbone denoiser, ξ is the non-noise component digging module.
For deep backbone denoisers, gt is the given groundtruth for training, which is not
necessarily clean image because Noise2Noise uses noisy image as groundtruth while
Noise2Self uses the input as groundtruth. Since the strategy is general for traditional
and deep backbone denoisers, the cuboid are images rather than convolution for better
visualization. uk, vk, ṽk, ũk are denoised clean image, discarded noise, weakened noise
to be added back and the noisy image with weakened noise.

2 Related Work

Single-stage image denoising refers to denoising a noisy image with a single
denoiser and only one time. Progressive denoising strategy refers to denoising a
noisy image with multiple denoisers and many times. With regard to single-stage
image denoising, early research can be classified into four categories: variational
functional based methods [4,14], sparse coding and low rank based methods [1,6,
12,13,20], Non-local methods [3,5] and learning-based methods [2,10,11,17,19]

Knaus et al. [9] first propose progressive image denoising by reducing noise
with deterministic annealing. As an improvement, Thote et al. [16] propose to
estimate the noise variance self-adaptively and progressively remove the noise
following the strategy of deterministic annealing. As an effective strategy, pro-
gressive strategy is also used in multi-stage image restoration [18] and other
areas. However, these methods are not suitable for recovering images with low
PSNR.
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3 Proposed Method

The schematic diagram of the proposed strategy is shown in Fig. 2. Our strategy
is a chain-like structure made up with several cascaded progressive denoising
blocks, which is abbreviated as prb. One progressive denoising block contains a
backbone denoiser φ and a non-noise component digging module ξ. We denote
the denoised clean image and discarded noise of backbone denoiser φ at stage k
as uk and vk respectively. The output of non-noise component digging module
ξ(uk, vk) is denoted as ṽk(noise to be added back) and we denote uk + ṽk as
ũk(noisy image with weakened noise). The groundtruth clean image is ugt while
the groundtruth pure noise is vgt. We define Δ(uk, vk) = αvk − ṽk referring to
the digged non-noise component.

3.1 Overall Structure

Backbone denoiser φ: For traditional backbone denoisers, we choose BM3D.
For deep backbone denoisers, we consider two categories: trained with-
out groundtruth clean image (Noise2Self [2] and Noise2Noise [11]) and
with groundtruth clean image(Noise2Clean). The structures of Noise2Clean,
Noise2Self and Noise2Noise are the same while their loss funtions are different.

Non-noise component digging module ξ: For traditional backbone denoisers,
we adopt (−1, 2) norm and Expected Patch Log Likelihood (EPLL) as the non-
noise component digging module. For deep backbone denoisers, We adopt Unet
[7,15] with residual connections to learn the non-noise component digging from
vk to ṽk. We assign 0.9 to the energy decay factor α and regulate the energy
decay between adjacent stages in the proposed strategy. We define ũ1 = u1 +
v1, ũ2 = (1 − α)φ(ũ1) + αũ1 − Δ(u1, v1), · · · , ũn = (1 − α)φ(ũn−1) + αũn−1 −
Δ(un−1, vn−1), n ∈ [1, N ]. Then we aim to find α ∈ [0, 1], s ∈ [1, N ] and function
Δ such that for specific denoiser φ: varus

(θ̃) ≤ varu1(θ̃),Eus
(θ̃) = Eu1(θ̃).

θ is the groundtruth clean image and ˜θ(u) be an unbiased estimator of θ.
Figure 3(left) illustrates the denoising process of traditional progressive denoising
strategy and the description is articulated in the caption of Fig. 3. Traditional
progressive denoising strategy simply assumes Δ = 0 which is a special case
of the proposed nonlinear strategy. In Fig. 3(right), our strategy adds non-noise
component digging module (dotted circle and array) into the traditional strategy.
The proposed strategy can learn Δ from datasets or single image and model the
prior of the data for better denoising performance.

3.2 Loss Function for Deep Backbone Denoisers

The loss function contains two parts, L1 regulates the energy decay between vk

and ṽk while L2 measures the distance between uk and groundtruth. The mask
is all-one matrix for Noise2Noise and Noise2Clean while blind-spot matrix for
Noise2Self. The loss functions for these denoisers are as follows:

L = L1 + λL2 (1)
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L =
s

∑

k=2

||ṽk − αvk||22 +
s

∑

k=1

λk||(uk − GT ) × mask||22 (2)

Fig. 3. The denoising process of ideal traditional progressive denoising strategy(left)
and our progressive denoising strategy(right). The array represents backbone denoiser
φ and the gray point represents the linear interpolation of noisy image and its denoised
image. The circle and green array represent our non-noise component digging mod-
ule. The dotted curves represents the relative distance between denoised images and
the groundtruth clean image. The rectangles represent images (noisy images, denoised
images, interpolated images and the groundtruth clean image). (Color figure online)

3.3 Algorithm for Traditional Backbone Denoisers

Although EPLL provides good priors for denoising a noisy image, balancing ||δ||22
and p(u − Δ) via choosing suitable weight λ and optimizing λ||Δ||22 + p(u − Δ)
is a hard problem. The reasons are twofold: (1) Only optimizing for u without
considering v will generate ṽ mixing many non-noise components. (2) The weight
λ is difficult to estimate because different choice of λ will significantly influence
the optimization. In order to solve these problems, we propose to consider u and
v simultaneously. We denote v + Δ as δ and consider the following optimization
problem as the non-noise component digging module:

min
δ

λ||δ||−1,2 − ln(p(zi)) +
∑

i

β

2
||Pi(u + v − δ) − zi||2 (3)

p is posterior probability while P is sampling operator. According to the
definition of (−1, 2) norm and Parseval identity, ||δ||−1,2 can be computed via
the following equation:

||δ||−1,2 =
√

(−δ,Δ−1δ) =
√

(−F(δ),F(Δ−1δ)) (4)
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F(δ)(p, q) =
N−1
∑

m=0

N−1
∑

n=0

δ(m,n)e−j(2π/N)pme−j(2π/N)qn (5)

F(Δ−1δ)(p, q) =
1

2(cos ( 2pπ
N ) + cos ( 2qπ

N ) − 2)
F(δ)(p, q) (6)

(−F(δ),F(Δ−1δ)) =
N−1
∑

p=0

N−1
∑

q=0

F(δ)(p, q)2

2(2 − cos ( 2pπ
N ) − cos ( 2qπ

N ))
(7)

∂||δ||−1,2

δ(m,n)
=

N−1
∑

p=0

N−1
∑

q=0

F(δ)(p,q)e−j(2π/N)pme−j(2π/N)qn

(2−cos ( 2pπ
N )−cos ( 2qπ

N ))

2
√

(−F(δ),F(Δ−1δ))
(8)

− β
∑

i

(PT
i Pi(u + v − δ) − PT

i zi) + λ
∂||δ||−1,2

δ(m,n)
= 0 (9)

We denote F(δ)(p, q)/(2 − cos ( 2pπ
N ) − cos ( 2qπ

N ) as δ̃(p, q) and then Eq. (8)
can be converted to the following equation:

∂||δ||−1,2

δ(m,n)
=

F(δ̃)
2
√

(−F(δ),F(Δ−1δ))
(10)

Since it is difficult to obtain the closed-form solution for Eq. (9), we denote
the δ of the previous step as δ̂ and approximate the solution of Eq. (9) with
Eq. (11). As a typical fixed-point equation, we repeat Eq. (11) several times via
assigning the latest δ to δ̂ and computing a new δ with given δ̂. In order to
optimize Eq. (3), we alternatively solve for zi given δ and solve for δ given zi

for several iterations. Then we increase β and continue to the next iteration.

y = (β
∑

i

PT
i Pi(u + v) − βPT

i zi − λ∂||δ̂||−1,2

δ̂(m,n)
)

δ = (β
∑

i

PT
i Pi)−1y (11)

In order to optimize zi, we use GMM model in the log likelihood log(p(zi))
as shown in Eq. (12). We denote the right part in Eq. (13) as gt(ũ, z, β) where
ũ = u + v − δ. We use EM algorithm to minimize gt(ũ, z, β) due to the difficulty
of obtaining the closed-form solution for minimizing gt(ũ, z, β).
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ln(p(zi)) = ln
K

∑

k=0

πkN(zi|μk, σk) (12)

min gt(ũ, z, β) = min
∑

i

(
β

2
||Pi(u + v − δ) − zi||2

−
K

∑

k=0

ωt
i,k ln

πkN(zi|μk, σk)
ωt

i,k

)

(13)

0 =
∂gt
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= −β(Piũ − zi) +

K
∑

k=0

ωt
i,kσ−1

k (zi − μk)

= (
K

∑

k=0

ωt
i,kσ−1

k + β)zi − (βPiũ +
K

∑

k=0

ωt
i,kσ−1

k μk)

(14)

ωt
i,k =

πkN(zi|μk, σk)
K
∑

k=0

πkN(zi|μk, σk)
(15)

In this paper we set λ = 10 and β = 10. Hard-thresholding for ω will degen-
erate the optimization to Wiener filtering combined with dual norm minimizing.
Whether to use hard-thresholding varies for different images and for regular
shapes we use hard-thresholding in this paper.

4 Experiments

4.1 Implementation Details

Dataset. For traditional backbone denoisers, we train the GMM on generated
SEM cross(see Fig. 6) via ARTIMAGEN provided by National Institute of Stan-
dards and Technology [8] and train the GMM model with 100 mixtures and patch
size 8. Then we create nine different crosses with random fine structures, edge
effect and size for performance evaluation. For deep leanring based backbone
denoisers, three public datasets with regular shapes are used. In detail, we use
the same dataset Hanzi and MNIST with Noise2Self. We only consider addictive
white Gaussian noise(AWGN) with varied noise levels σ ∈ [0.5, 1, 2, 3] for Hanzi,
[0.2, 0.4, 0.6, 0.8] for MNIST dataset. In addition to the above two character
datasets, we also consider an industrial dataset Gold-on-Carbon(GoC) dataset
created randomly via the software ARTIMAGEN including 38227 images with
size 64 × 64, which models the realistic physical effects of Scanning Electron
Microscope including drifting, blurring, vibration, edge effect and noise process.
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Fig. 4. Column (a) are clean hanzi images and column (b) are corresponding noisy
images with noisy variance σ = 2 (i.e. PSNR = −6.02 dB). (c), (d) and (e) are the
denoising results of the backbone denoiser Noise2Noise, Noise2Self and Noise2Clean
respectively. (f), (h) and (j) are the results of traditional progressive denoising strategy,
termed as progressive linear Noise2Noise, Noise2Self and Noise2Clean respectively. (g),
(i) and (k) are the results of our proposed deep progressive denoising framework, termed
as progressive nonlinear Noise2Noise, Noise2Self and Noise2Clean respectively.

The clean images are generated using the default parameters of ARTIMAGEN
and the following noise is added:

(QG + QP

√

C2)Gaussian(0, 1)

where C2 is clean image while QG and QP are chosen as [0.1, 0.2, 0.3, 0.4] in
the same. Since GoC dataset is not standard, the experiments results of this
created dataset can be found in the additional material as a demo for realistic
application and an further example for the proposed strategy.

Algorithm Details. We use the official implementation of BM3D, Noise2Self,
Noise2Noise and Noise2Clean as our backbone denoisers. The backbone denois-
ers without progressive strategy are tested and the results are compared with
the results obtained using traditional and our proposed progressive denoising
strategy. We empirically use stage 9 for Hanzi dataset, 4 for MNIST dataset
and GoC dataset. We randomly pick out 80 percent of Hanzi, MNIST and GoC
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datasets as training set, while the remainder are prepared for the test set. We use
20 stage progressive denoising(decay α = 0.95) with BM3D and the proposed
(−1, 2) norm/EPLL as our backbone denoiser and non-noise component digging
module.

The batch size for training is set to 32, 32 and 128 for Hanzi, GoC and
MNIST datasets respectively while Adam optimizer is used with an self-adaptive
learning rate with initial 10−3 for the deep nonlinear progressive denoising. We
train the deep nonlinear progressive denoising strategy with 30 epochs. The
hyper-parameter λk used to control the relative significance of several terms in
the loss function is set to k which increases with the progressive stage k in the
experiments.

Table 1. PSNR and SSIM values for Hanzi, MNIST and GoC datasets with backbone,
9 stage linear and 9 stage nonlinear strategy.

Denoising mode Noise2Clean Noise2Self Noise2Noise

backbone linear nonlinear backbone linear nonlinear backbone linear nonlinear

Hanzi PSNR 11.74 11.42 12.69 11.52 11.26 11.97 11.4 11.26 11.68

Hanzi SSIM 0.43 0.52 0.61 0.37 0.42 0.47 0.37 0.43 0.49

MNIST PSNR 14.19 14.25 16.02 13.90 11.50 15.20 14.66 14.85 16.18

MNIST SSIM 0.45 0.51 0.64 0.41 0.19 0.52 0.49 0.56 0.62

GoC PSNR 26.68 19.96 26.71 23.06 18.56 25.10 26.75 20.71 24.38

GoC SSIM 0.76 0.82 0.87 0.43 0.31 0.69 0.80 0.35 0.45

The intermediate results for Hanzi dataset are shown in Fig. 7. For realistic
application such as GoC, training data can be collected and nonlinear progressive
denoising can be applied to enhance the performance. We generate the dataset
and separate the training set(80%) and test set(20%) randomly. Experiment
show the superiority except Noise2Noise scenario for GoC dataset. The reason
may lie in that the backbone Noise2Noise is not robust for low PSNR images.
Denoising performance is shown in Fig. 8.

4.2 Results for Deep Nonlinear Progressive Denoising Strategy

Results for Hanzi Dataset. As shown in Fig. 4(c)-(e), we find that
Noise2Noise, Noise2Self and Noise2Clean fail to obtain satisfying denoising per-
formance in the scenario of low PSNR situations. The PSNR values of traditional
progressive denoising strategy are lower than backbone denoisers and we suppose
the reason lies in that simply cascading backbone denoisers will generate non-
existent structures in the denoised images due to mistaking noise components
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Fig. 5. Experiment results on MNIST. The first coloum is clean images and the second
column is the corresponding noisy images with noise variance σ = 0.6 (i.e. PSNR
= −1.58 dB). Traditional progressive denoising strategy is termed as progressive
linear Noise2Noise, Noise2Self and Noise2Clean. Our proposed progressive denoising
framework is termed as progressive nonlinear Noise2Noise, Noise2Self and Noise2Clean
respectively.

and clean image components. Comparing the results in (f) and (g), (h) and (i),
(j) and (k) of Fig. 4, non-noise component digging can effectively improve the
denoising performance of traditional progressive denoising strategy. However in
the Noise2Noise and Noise2Self denoising mode, since it is difficult to learn the
prior of the dataset from noise contaminated images, progressive denoising strat-
egy combined with non-noise digging module will sometimes mistake part of the
noisy image due to the limitation of the learned prior. As shown in the second
row of Fig. 4(g) and Fig. 4(i), the left part of the denoised image is distinct from
that of Fig. 4(a) and Fig. 4(k).pg Further experiment results are shown in Fig. 7
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Fig. 6. Experiment results on SEM crosses. We use 20 stage progressive denoising
with BM3D and the proposed (−1, 2) norm/EPLL as our backbone denoiser and non-
noise component digging module respectively. The first and fifth columns are the clean
images while the second and fourth columns are noisy images with strong noise. The
third and seventh columns are the denoising results of traditional progressive strategy
with BM3D. The fourth and the last columns are the denoising results of the nonlin-
ear progressive denoising strategy with BM3D. PSNR are marked in the images for
comparisons.

of the additional material. We visualize the intermediate denoised images Ck in
the trained 9-stage nonlinear progressive denoising strategy with Noise2Clean.
Similar to the workflow of archaeologists to dig out cultural relics, the interme-
diate denoised images progressively approach the groundtruth clean image both
from visual performance and PSNR/SSIM values.

Results for MNIST Dataset. Compared with Hanzi dataset, handwritten
digits have more irregular structures. As shown in Fig. 5, our strategy achieves
much better visual performance over backbone denoisers and traditional progres-
sive denoising strategy. The performance improvements of traditional progres-
sive denoising strategy over backbone denoisers in Noise2Clean and Noise2Noise
training scenarios are quite limited. PSNR and SSIM are shown in Table 1 and
our strategy achieves the highest scores on three training scenarios.
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Fig. 7. The intermediate denoised images in one model of trained 9-stage progressive
denoising framework on Hanzi dataset. The first column are noisy images and the
last column are groundtruth clean images. Column 2–11 are the intermediate denoised
images uk and PSNR/SSIM are listed below row (j). Since the noise component of ũk

drops by 0.9 in one stage, the noise energy of ũ9 still remain 0.39 of that of ũ1. uk is
more suitable than ũk to demonstrate the conceptual analogy with archaeology.

4.3 Results for Nonlinear Progressive Denoising Strategy
on Traditional Backbone Denoisers

As shown in Fig. 6, the first and fifth columns are the clean images while the
second and sixth columns are noisy images with strong noise. The third and sev-
enth columns are the denoising results of traditional progressive strategy with
BM3D. The fourth and the last columns are the denoising results of the non-
linear progressive denoising strategy with BM3D. Experiments show that the
proposed progressive strategy can evidently surpass the performance of tradi-
tional progressive strategy for various similar but different noisy samples.
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Fig. 8. Experiment results on GoC dataset. We use 4 stage progressive denoising with
Noise2Clean, Noise2Self and Noise2Noise as our backbone denoisers. The second col-
umn is the corresponding noisy images with QG = QP = 0.4 (i.e. PSNR = 7.24 dB).

5 Conclusion

In this paper, we propose a nonlinear progressive denoising strategy without
relying on specific backbone denoisers. Experiments show that our proposed
strategy and non-noise component digging module can effectively enhance the
denoising performance of backbone denoisers and traditional progressive denois-
ing strategy. The main drawback of our framework is that the training dataset
needs to share strong prior(similar features). In the future, we will develop better
progressive strategy for more general denoising tasks.
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Abstract. Despite recent strides made by AI in image processing, the issue of
mixed exposure, pivotal in many real-world scenarios like surveillance and pho-
tography, remains a challenge. Traditional image enhancement techniques and
current transformer models are limited with primary focus on either overexposure
or underexposure. To bridge this gap, we introduce the Unified-Exposure Guided
Transformer (Unified-EGformer). Our proposed solution is built upon advanced
transformer architectures, equipped with local pixel-level refinement and global
refinement blocks for color correction and image-wide adjustments. We employ a
guided attention mechanism to precisely identify exposure-compromised regions,
ensuring its adaptability across various real-world conditions. U-EGformer, with
a lightweight design featuring a memory footprint (peak memory) of only ∼1134
MB (0.1 Million parameters) and an inference time of 95 ms (over 9x faster
than typical existing implementations, is a viable choice for real-time applica-
tions such as surveillance and autonomous navigation. Additionally, our model is
highly generalizable, requiring minimal fine-tuning to handle multiple tasks and
datasets with a single architecture.

Keywords: Computer Vision · Image Processing · Image Restoration ·
Low-Light Image Enhancement · Unified Learning

1 Introduction

AI-driven image processing has significantly broadened the scope for enhancing visual
media quality. A critical challenge within low-light image enhancement is addressing
mixed exposure in images as in Fig. 1 g., where a single frame contains both under-
lit1 (below 5 lux, including underexposed) and overlit2 (overexposed) regions. This
1 insufficient brightness in an image where details are lost due to lack of signal.
2 excessive brightness in an image where details are lost due to signal clipping or saturation.
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Fig. 1. Sub-figures [a,b,c] show the handcrafted mixed exposure dataset by Zheng et al. [74];
images [d-i] from Cai et al. [5] illustrate real-world scenarios of underexposure, overexposure,
and mixed-exposures. Images [j,k] demonstrate the problem practically.

issue extends beyond academic interest and has significant real-world implications.
For instance, in video calls (e.g., in cafeterias as in Fig. 1 e.) and live streaming, low-
light enhancement is pivotal for clear visual communication. Other areas of application
include autonomous driving, surveillance and security, photography, etc. Professional
photographers often use high-end DSLR cameras and meticulously adjust settings such
as aperture, ISO, and utilize specialized filters to mitigate exposure issues. However,
such pre- and post-processing techniques are often not practical.

Existing methods for correcting mixed exposure images have typically treated
underexposure [16,44,53] and overexposure as separate challenges within the low-
light image enhancement task. Although these methods (such as FECNet [20], ELC-
Net+ERL [21], IAT [12]) have made progress, they commonly assume uniform scene
illumination, leading to global adjustments that either brighten or darken the entire
image. Such approaches falls short when dealing with images that have both overex-
posed and underexposed regions due to non-uniform lighting, resulting in suboptimal
performance. For example, ZeroDCE [16] and RUAS [37] can worsen overexposure
in background regions while trying to enhance underexposed foreground subjects as
shown in Fig. 1 k.

We see this as a gap in the literature that has not been fully addressed, despite some
efforts such as LCDNet [52] and night enhancement approaches [3,5,29]. The motiva-
tion for our work arises from the need to address these limitations with a solution that
can handle mixed exposure scenarios effectively and is suitable for deployment on edge
devices. An additional challenge when applying a low-light enhancement approach to
a multi-exposed image is when a model trained solely on underexposed paired images
inadvertently exacerbates overexposed regions, as seen in Fig. 1 k, and vice versa. Con-
sequently, the issue of mixed exposure emerges as a pivotal yet largely unexplored fron-
tier. Notably, mobile phone cameras face this issue acutely, requiring lightweight, low-
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latency models that can operate within the device’s resource constraints while deliver-
ing high-quality image enhancement. Our goal is to develop a solution that not only
addresses these issues but also offers faster inference and a lower memory footprint,
making it ideal for practical applications on edge devices.

This paper develops an effective and computing-efficient approach to tackle mixed
exposure in low-light image enhancement. Our major contributions are as follows:

1. We introduce a novel unified framework within the transformer architecture that
leverages attention- and illuminance-maps to enhance precision in processing
affected regions at the pixel-level, addressing the challenges of underexposure, over-
exposure, and mixed exposure in images as a single task.

2. Our method achieves remarkable efficiency, with an average inference speed of
0.095 s per image3, significantly faster with lesser memory consumption than many
existing frameworks. Coupled with a compact architecture of only 101 thousand
parameters, the model is ideal for deployment on edge devices.

3. We present a novel “MUL-ADD” loss function that intelligently combines contrast
scaling and brightness shifting to adaptively enhance images, improving dynamic
range and preventing over-smoothing.

4. We develop an Exposure-Aware Fusion (EAF) Block, designed for the efficient
fusion of local and global features. This block refines image exposure corrections
with heightened precision, enabling context-aware enhancements tailored to the spe-
cific exposure needs of each image region.

2 Related Work

Traditional to Advanced Deep Learning Techniques. In the realm of image
enhancement and exposure correction, significant strides have been made to address the
challenges posed by exposure scenarios. Early techniques [6,24,34] leveraged contrast-
based histogram equalization (HE), laying the groundwork for more advanced methods.
These initial approaches were followed by studies in Retinex theory, which focused
on decomposing images into reflection and illumination maps [32,33]. The advent of
deep learning transformed exposure correction, with a shift from enhancing low-light
images to addressing both underexposure and overexposure [2,3,11,16,53,62,68,72].
The notable work of Afifi et al. [2] stands out, employing deep learning to simultane-
ously address underexposure and overexposure, a task not adequately considered by
previous methodologies. There was a momentous shift towards convolutional neural
network (CNN)-based methods, achieving state-of-the-art results and improving the
accuracy and efficiency of exposure correction algorithms [16,30,44,50,53,63].

Addressing the Challenges of Mixed Exposure. Despite these advancements, the
challenges of mixed exposure have remained relatively unaddressed in high-contrast
scenarios. Benchmark datasets such as LOL [59], LOL-[4K;8K] [55], SID [8], SICE
[5], and ELD [60] offer limited mixed exposure instances, highlighting a gap in both
data and models. Synthetic datasets like SICE-Grad and SICE-Mix are enabling the

3 computed over LOL-v2 test dataset following previous benchmarks [9,12,16,27].
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development of methods tailored to mixed exposure scenarios [13,38,48,75]. Some
representative methods of deep learning like RetinexNet [59] and KIND [72], focusing
on illumination and reflectance component restoration in images, achieved good perfor-
mance, but most methods emphasize either underexposure or overexposure correction,
and fail to correct the combination. More recent studies have attempt to address the
challenges of correcting both underexposed and overexposed images [52,64], a task
complicated by the differing optimization processes required for each type of exposure.
MSEC [3], a revolutionary work in this area, utilizes a Laplacian pyramid structure to
incrementally restore brightness and details, dealing with a range of exposure levels.

To manage the correction of a wide range of exposures, several recent works were
proposed, such as Huang et al. [18] using exposure normalization, CMEC [45] tar-
geting exposure-invariant feature spaces for exposure consistency, and ECLNet [18]
using bilateral activation for exposure consistency. Moreover, Wang et al. [52] tackle
the issue of uneven illumination, while FECNet [19] uses a Fourier-based approach for
lightness and structure. Still challenges remain unsolved: (1) handling nonuniform illu-
mination, (2) simultaneously addressing both overexposure and underexposure within
the same frame, and, (3) ensuring that global adjustments do not adversely affect local
regions. Our work addresses these challenges by introducing a unified framework that
uses attention and illuminance maps to process mixed exposure regions more precisely.

Emerging Trends with Computational Challenges. Recent studies have begun
addressing the dual challenge of correcting under and overexposed images through
innovative architectures, including transformers [14], despite their computational inten-
sity as noted in works like Vaswani et al. [51]. The realm of image enhancement has
seen remarkable models with human-level enhancement capabilities, such as Expo-
sureDiffusion [58], Diff-retinex [66], wavelet-based diffusion [26], PyDiff (Pyramid
Diffusion) [76], Global structure aware diffusion [17], LLDiffusion [54], and Max-
imal diffusion values [31], demonstrating significant advancements. However, these
resource-intensive models, alongside the emerging vision-language models (VLMs) in
image restoration, present deployment challenges on edge devices, often requiring tens
of seconds to process a single HD or FHD image [41,56]. In contrast, Unified-EGformer
achieves an average inference speed of ∼200 milliseconds on HD images, 9.6× faster
on average inference time among representative models in Table 2 in Ye et al. [65].

3 Methodology: Unified-EGformer

Unifed-EGformer achieves image enhancement through an Attention Map Generation
mechanism that identifies exposure adjustment regions, a Local Enhancement Block for
pixel-wise refinement, a Global Enhancement Block for color and contrast adjustment,
and an Exposure Aware Fusion (EAF) block that fuses features from both enhancements
for balanced exposure correction as shown in Fig. 2.

3.1 Guided Map Generation

Unified-EGformer introduces significant advancements in the attention mechanism and
feed-forward network within its architecture to adeptly handle mixed exposure scenar-
ios. These enhancements are encapsulated as follows:
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Fig. 2. U-EGformer’s training, fine-tuning and inference pipelines. All four modules are show-
cased: Guided Attention Map, Local Block, Global Block, and Exposure Aware Fusion block.

Fig. 3.Visualization of Otsu thresholding challenge: (a) original image, (b)mask for single expo-
sure (underexposed), and (c) mask for bi-exposure (under and overexposed).

Thresholding. To highlight the sub-regions of the images with impacted exposure prob-
lems, we need a way to point out those impacted set of pixels within the input. We use
Otsu thresholding [46], a traditional yet effective technique. It is a global thresholding
technique for automatic thresholding that works by selecting the threshold to minimize
intra-class variance (variance within a class) or maximize inter-class variance (vari-
ance between classes). However, this method induces granular noise in the image [46]
due to the non-uniform pixels in low lux regions. The noise is highlighted by the resul-
tant masks as shown in Fig. 3, and will influence the subsequent exposure correction.

To mitigate noise, we implemented adaptive thresholding using pixel blocks and
downsampled images. We further reduced noise creep with nearest neighbor down-
sampling and Gaussian blur. Integrating Charbonnier loss [7] into our attention map
mechanism encouraged smoother transitions in areas of high gradient variance, specifi-
cally targeting denoising. This component, combined with the SSIM loss that is applied
directly on the input, synergistically contributes to noise reduction.
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Fig. 4. The top row, from left to right: an underexposed image, an overexposed image, and the
ground truth. The bottom row illustrates pixel-thresholding binary masks for the underexposed
(white indicating underexposed regions), overexposed (white indicating overexposed regions)
and Otsu thresholding for mixed exposures (yellow indicating underexposed regions, white rep-
resenting overexposed areas, and black as correctly exposed portions. (Color figure online)

Fig. 5. Chain of efficient
transformer blocks equipped
with A-MSA, DGFN.

Our implementation of threshold selection is as fol-
lows. First, we calculate the Otsu average across the train-
ing set to establish a baseline for automatic thresholding.
We then apply this average threshold to each image in the
dataset. Using a data set-specific threshold, this method
ensures a more uniform application4 of the Otsu method.

Attention Map Generator. The Unified-EGformer begins
with a guided attention map generator, designed to identify
regions within an image affected by mixed exposure. This
process involves generating a map Mg ∈ R

B×H×W×C ,
where H , W , and C represent the height, width, and chan-
nel dimensions of the input image x ∈ R

H×W×C . This
map, m ∈ Mg , is used in an element-wise dot prod-
uct with the image, resulting in a guided input image that
undergoes underexposed, overexposed, or mixed exposure
enhancement, as depicted in Fig. 4, demonstrating how we
apply Otsu thresholding to get attention masks labels.

The architecture incorporates improved Swin trans-
former [39] blocks, leveraging Axis-based Multi-head
Self-Attention (A-MSA) and Dual Gated Feedforward
Network (DGFN) [14,51,55] for efficient, fast and focused

feature processing. The A-MSA reduces computational load by applying self-attention
across height and width axes sequentially, optimizing for local contexts within high-
resolution images, as illustrated in Fig. 5 (see details in Supplement Sect. 7.2 The DGFN
introduces a dual gating mechanism to the feedforward network, allowing selective

4 reducing noise propensity in low-light conditions and enhancing exposure correction consis-
tency.



266 E. Adhikarla et al.

Fig. 6. Ground-truth (a,e) with it’s corresponding illuminance map [b,f], inverse illuminance
maps [c,g], and the enhanced results showcasing the effectiveness of the inverse illuminance
normalization [d,h]. Note that the illuminance maps are using false color.

emphasis on critical features necessary to distinguish and correct underexposed and
overexposed areas effectively (see Supplement Sect. 7.3) (Fig. 6).

Illumination Map Generator. We incorporate the generation of an illumination map
Iillum into the global enhancement block, providing a foundational layer for exposure
correction. Unlike the complex attention mechanisms required for a local block, gen-
erating an illumination map leverages a direct conversion from RGB to luminance
(Irgb → Iillum), offering a simpler and faster solution (Iillum = W × Irgb), where W
corresponds to the luminosity method [49]. The block can utilize the illuminance infor-
mation to dynamically adjust global parameters such as color balance and exposure
levels, ensuring the enhancements are computationally efficient. Our ablation studies
shown in Table 3 confirm that these enhancements are perceptually meaningful com-
pared to the baseline without the illumination map.

3.2 Unified-Enhancement

Local Enhancement Block (LEB). The LEB takes a dot product of attention mapA(x)
and the sRGB I(x) image, that uniquely forms an objective mapping from input to out-
put. The LEB applies a lightweight convolutional block inspired from PE-Yolo [67],
UWFormer [10] localized pixel-wise refinement. We utilize an adaptive instance-based
color normalization for capturing a wider range of colors based on individual inputs.
Unlike traditional methods, our approach maintains the integrity of features without
down-sampling and up-sampling. The output of this block calculates multiplicative
(ML) and additive (AL) correction factors through a feed-forward network, enabling
precise pixel-wise enhancement. The local enhancement is formulated as:

Î(x) = ML(x) � I(x) + AL(x) (1)

where Î(x) is the locally enhanced image, I(x) the original image, and � denotes
element-wise multiplication.
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Global Enhancement Block (GEB). Complementary to the LEB, the global enhance-
ment block adjusts the image’s overall exposure through adaptive gamma correction
and color balance. Unlike static bias adjustments [12], this block dynamically calcu-
lates the gamma correction factor and color transformation parameters based on the
image’s content. We implement a convolutional subnetwork with GELU activations
and adaptive average pooling, followed by a sigmoid to automatically compute global
parameters, denoted by θ. This adaptive approach to global enhancement allows for a
more nuanced and content-aware balance of contrast and color. The global correction
function is described as:

G(I) = fγ(I; θ), I ∈ R
H×W×C (2)

where G(I) is the globally enhanced image, and fγ represents the function for global
adjustments, influenced by the calculated parameters θ.

3.3 Exposure-Aware Fusion (EAF) Block

Our novel exposure aware fusion block is architecturally designed to integrate local and
global enhancement features, enabling comprehensive image enhancement. The fusion
process begins with two convolutional layers that apply spatial filtering to extract the
salient features necessary for exposure correction. We also use global average pooling,
mapping the feature maps to the global context vector. These fusion weights serve as
a gating mechanism to regulate the contribution of local and global features. They are
adaptively learned, encapsulating both detailed texture information and broad illumina-
tion context.

3.4 Loss Functions

To enhance multiple aspects of image quality, our training uses a detailed loss function
setup in the RGB color space. It includes L1 and L2 losses for handling outliers and
preserving fine details, SSIM for maintaining structural integrity, and VGG for ensuring
semantic consistency. We also incorporate a novel MUL-ADD loss to accurately adjust
the image’s contrast and brightness, ensuring that the dynamic range is well represented
without blurring details. The VGG loss helps match the output to high-level visual
quality standards.

MUL-ADD loss. The Multiplicative-Additive loss is specifically designed to han-
dle mixed exposure scenarios by optimizing the multiplicative and additive adjustments
applied during the enhancement process. This loss is mathematically defined as:

LMA(ML, AL, Ilow, Ihigh) = ξ L1(ML, M̂(Ilow, Ihigh)) + ψ L1(AL, Â(Ilow, Ihigh))
(3)

Where:

M̂(Ilow, Ihigh) =
Ihigh − Â(Ilow, Ihigh)

Ilow + ε
, Â(Ilow, Ihigh) = Ihigh − Ihigh · ε

Ilow + ε
(4)
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In these equations, Ilow and Ihigh represent the low-light input and the target high-quality
image, respectively, while ML and AL are the multiplicative and additive components
learned by the local enhancement block. The parameters ξ and ψ control the balance
between the two components of the Mul-Add loss. The small constant ε = 1e − 8
is added to avoid division by zero. This loss function ensures that the multiplicative
and additive factors are optimized to produce a natural-looking enhancement without
overcompensating in either direction. Our combined loss function LC, considering both
local and global outputs, is detailed below:

LC(y, ŷ, Ilow, Ihigh) = α L1(y, ŷ)(l,g) + β L2(y, ŷ) + γ LSSIM(y, ŷ) + δ LVGG(y, ŷ)
+ η LMA(ML, AL, Ilow, Ihigh) + Lattn(Mg(b),M)

(5)
where α, β, γ, δ, and η are hyperparameters balancing the influence of each loss term,
y is the ground truth, ŷ is the predicted image, ML and AL are the multiplicative and
additive components of the local block, Ilow is the low-light input, and Ihigh is the
target high-quality image. Our fine-tuning stage’s loss equation can be presented with
the physics-based KL-divergence loss:

Lfinetune(y, ŷ, P,Q) = λ L1(y, ŷ) + μ LSSIM(y, ŷ) + ν LKL(P, Q)(l,g) (6)

Table 1. Results for our exposure guided transformer approach over ME-v2 [3] and SICE-v2 [5]
datasets. , , denotes top three respectively. We did not include other recent models that are
too complex (> 10M params).

Method

ME-v2 SICE-v2

#paramsUnderexposure Overexposure Average Underexposure Overexposure Average

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RetinexNet [59] 12.13 0.6209 10.47 0.5953 11.14 0.6048 12.94 0.5171 12.87 0.5252 12.90 0.5212 0.840M

URetinexNet [61] 13.85 0.7371 9.81 0.6733 11.42 0.6988 12.39 0.5444 7.40 0.4543 12.40 0.5496 1.320M

Zero-DCE [16] 14.55 0.5887 10.40 0.5142 12.06 0.5441 16.92 0.6330 7.11 0.4292 12.02 0.5211 0.079M

Zero-DCE++ [35] 13.82 0.5887 9.74 0.5142 11.37 0.5583 11.93 0.4755 6.88 0.4088 9.41 0.4422 0.010M

DPED [25] 20.06 0.6826 13.14 0.5812 15.91 0.6219 16.83 0.6133 7.99 0.4300 12.41 0.5217 0.390M

KIND [72] 15.51 0.7115 11.66 0.7300 13.20 0.7200 15.03 0.6700 12.67 0.6700 13.85 0.6700 0.590M

DeepUPE [53] 19.10 0.7321 14.69 0.7011 16.25 0.7158 16.21 0.6807 11.98 0.5967 14.10 0.6387 7.790M

SID [8] 19.37 0.8103 18.83 0.8055 19.04 0.8074 19.51 0.6635 16.79 0.6444 18.15 0.6540 7.760M

SID-ENC [18] 22.59 0.8423 22.36 0.8519 22.45 0.8481 21.36 0.6652 19.38 0.6843 20.37 0.6748 ¿7.760M

RUAS [37] 13.43 0.6807 6.39 0.4655 9.20 0.5515 16.63 0.5589 4.54 0.3196 10.59 0.4394 0.002M

SCI [43] 9.96 0.6681 5.83 0.5190 7.49 0.5786 17.86 0.6401 4.45 0.3629 12.49 0.5051 0.001M

MSEC [3] 20.52 0.8129 19.79 0.8156 20.08 0.8210 19.62 0.6512 17.59 0.6560 18.58 0.6536 7.040M

CMEC [45] 22.23 0.8140 22.75 0.8336 22.54 0.8257 17.68 0.6592 18.17 0.6811 17.93 0.6702 5.400M

LCDPNet [52] 22.35 0.8650 22.17 0.8476 22.30 0.8552 17.45 0.5622 17.04 0.6463 17.25 0.6043 0.960M

DRBN [64] 19.74 0.8290 19.37 0.8321 19.52 0.8309 17.96 0.6767 17.33 0.6828 17.65 0.6798 0.530M

DRBN+ERL [21] 19.91 0.8305 19.60 0.8384 19.73 0.8355 18.09 0.6735 17.93 0.6866 18.01 0.6796 0.530M

DRBN-ERL+ENC [21] 22.61 0.8578 22.45 0.8724 22.53 0.8651 22.06 0.7053 19.50 0.7205 20.78 0.7129 0.580M

ELCNet [23] 22.37 0.8566 22.70 0.8673 22.57 0.8619 22.05 0.6893 19.25 0.6872 20.65 0.6861 0.018M

IAT [12] 20.34 0.8440 21.47 0.8518 20.91 0.8479 21.41 0.6601 22.29 0.6813 21.85 0.6707 0.090M

ELCNet+ERL [21] 22.48 0.8424 22.58 0.8667 22.53 0.8545 22.14 0.6908 19.47 0.6982 20.81 0.6945 0.018M

FECNet [20] 22.19 0.8562 23.22 0.8748 22.70 0.8655 22.01 0.6737 19.91 0.6961 20.96 0.6849 0.150M

FECNet+ERL [21] 23.10 0.8639 23.18 0.8759 23.15 0.8711 22.35 0.6671 20.10 0.6891 21.22 0.6781 ¿0.150M

U-EGformer 22.50 0.8469 22.70 0.8510 22.60 0.8490 21.63 0.7112 19.74 0.7046 20.69 0.7079 0.099M

U-EGformereaf 22.82 0.8578 22.90 0.8558 22.86 0.8568 22.98 0.7192 21.84 0.7102 22.41 0.7179 0.102M
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Table 2. Experimental results for quantitative comparison of our proposed exposure guided trans-
former across various datasets.

(a) Results on LOL-v1 [59], LOL-v2 [64], Adobe FiveK [4]

Methods
LOL-v1 LOL-v2 MIT-FiveK

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DRBN [64] 19.55 0.746 20.13 0.820 - -

DPE - - - - 23.80 0.880

Deep-UPE [53] - - 13.27 0.452 23.04 0.893

3D-LUT [70] 16.35 0.585 17.59 0.721 25.21 0.922

DRBN+ERL [21] 19.84 0.824 - - 22.14 0.873

ECLNet+ERL [21] 22.01 0.827 - - 23.71 0.853

FECNet+ERL [21] 21.08 0.829 - - 24.18 0.864

RetinexNet [59] 16.77 0.462 18.37 0.723 - -

KinD++ [71] 21.30 0.823 19.08 0.817 - -

ElightenGAN [28] 17.483 0.652 18.64 0.677 - -

IAT [12] 23.38 0.809 23.50 0.824 25.32 0.920

LLFormer [55] 25.75 0.823 26.19 0.819 - -

MIRNet [69] 24.10 0.832 20.35 0.782 - -

U-EGformer 23.56 0.836 22.05 0.841 24.89 0.928

(b) Results on SICE Grad and SICE Mix datasets [74].

Methods
SICE Grad SICE Mix

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
RetinexNet [59] 12.397 0.606 0.407 12.450 0.619 0.364

ZeroDCE [16] 12.428 0.633 0.362 12.475 0.644 0.314

RAUS [47] 0.864 0.493 0.525 0.8628 0.494 0.499

SGZ [73] 10.866 0.607 0.415 10.987 0.621 0.364

LLFlow [57] 12.737 0.617 0.388 12.737 0.617 0.388

URetinexNet [61] 10.903 0.600 0.402 10.894 0.610 0.356

SCI [43] 8.644 0.529 0.511 8.559 0.532 0.484

KinD [72] 12.986 0.656 0.346 13.144 0.668 0.302

KinD++ [71] 13.196 0.657 0.334 13.235 0.666 0.295

U-EGformer 13.272 0.643 0.273 14.235 0.652 0.281

U-EGformer (finetuned) 14.724 0.665 0.269 15.101 0.670 0.260

4 Experiments

4.1 Framework Setting

Datasets. We employ eight diverse datasets to train and evaluate our proposed model:
LOL-v1 [59] and LOL-v2 for foundational training and testing with real-world and syn-
thetic images; Multiple-Exposure ME-v2 tailored for diverse exposure scenarios; SICE,
including the SICE-Grad and SICE-Mix subsets for gradient and mixed-exposure chal-
lenges, respectively; andMIT-FiveK for benchmarking against professionally retouched
images. LOL-v1 contains 500 image pairs with 485 and 15 for training and testing
datasets, where each image has a resolution of (3× 600× 400). LOL-v2 is divided into
real and synthetic subsets with detailed configurations for training/testing (with 689
and 100 images for real-world); in the BAcklit Image Dataset (BAID) dataset [42], we
only use 380 randomly selected training images from Liang et al. [36] and utilize the
complete 368 2K resolution images from the test set.

Training Strategy. In tackling the mixed exposure challenge in image processing,
our approach adopts a pre-training stage and a finetuning stage as shown in Fig. 2. We
engage in pre-training using our custom loss function, LC (Eq. 5), which combines
several loss components with individually set hyperparameters for input-output pairs.
In the finetuning phase, we refine the model with a physics-based pixel-wise reconstruc-
tion loss function tailored to camera sensors obeying Poisson distribution P [58] (more
details are in the supplementary material in Sect. 7.4).

Both stages of training leverage a combination of loss functions, which are detailed
in the following subsection. This systematic progression from foundational learning
to focused refinement helps to address the complexities inherent in mixed exposure
challenges. (More details can be found in the supplementary material.)
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Fig. 7. Qualitative comparison: [Top] Our method with competitive baselines on the low-light
image enhancement task (image size 400× 600). green: comparing noise; red: comparing color.
[Bottom] Our method with other competitive baselines on mixed-exposure synthetic gradient
dataset (image size 900× 600.) (Color figure online)

Table 3. Visual results of our module settings in the pipeline over LOLv2-real dataset. “✗”
(resp.“✓”) means the module was unused (resp. used). ‘*’ represents multiple warmup restarts.
✓: L1+MSE+KLP +SSIM, ✓: L1+MSE+KLP +SSIM+VGG, ✓: L1+MSE+KLP +
SSIM+Mul-Add, ✓: L1 +MSE+ KLP + SSIM+ VGG+MA-SL1

Components
Settings

1 2 3 4 5 6 7 8

Warmup ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓*

LEB (Attention map) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GEB (Attention map) ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

GEB (Inverse Illuminance map + input) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

GEB (Illuminance map + input) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Attention Transformer Block ✗ 3 8 8 5 5 5 5

EAF Block ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Mul-Add Loss ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adaptive Gamma net. ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓

PSNR ↑ 21.12 18.28 18.82 20.32 20.66 21.33 21.90 22.05

SSIM ↑ 81.56 72.12 74.24 81.96 81.36 79.86 83.92 84.10

4.2 Qualitative Results

Fig. 8. A comparison of the SSIM-maps for IAT
[12] and the proposed model.

The LOL dataset is a challenging dataset
even for state-of-the-art models due to
its extremely low-light scenario. In Fig. 7
top, we compare recent top models,
where most of the models fail to match
the color of the wood pane in this case
with a lower PSNR score. In Fig. 7 bot-
tom, we show visual results for the SICE
Grad dataset for the mixed-exposure
task. In Supplementary Material (Fig. 12)

we show a few challenging examples where LEB and GEB alone could not manage
certain cases with extreme low and bright pixels, where the EAF block helps in re-
highlighting the attended features.
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Quantitative Comparison. Table 1 reports PSNR and SSIM scores for U-EGformer
and U-EGformereaf . U-EGformer demonstrates superior performance in handling both
underexposure and overexposure scenarios across ME-v2 and SICE-v2 datasets, outper-
forming the majority of existing methods with significantly fewer parameters. Despite
SID-L [18] utilizing > 10M parameters we perform quite similarly (with differences
of 0.0398/0.05 for SSIM/PSNR), while U-EGformer is 115 times smaller network than
SID-L. In Table 2a, we show remarkable generalization across LOL-v1, LOL-v2, and
MIT-FiveK datasets, outperforming many baselines and illustrating robustness in expo-
sure correction. Moreover, Table 2b sets new benchmarks on the challenging SICE Grad
and SICEMix datasets, underscoring U-EGformer’s superior performance in correcting
mixed exposure images. In Fig. 8, we show a direct comparison of SSIM maps over the
enhanced outputs of IAT and U-EGformer. Darker pixels in SSIM maps as seen more
in IAT than in U-EGformer, indicate areas where the enhanced outputs from the two
frameworks significantly differ with ground-truth.

Adaptable Learning Across Diverse Exposures. Tackling the challenge of dataset
diversity, our methodology enhances transferability and adaptability of learned models.
Leveraging mechanisms such as attention masks allows us to consider simultaneously
varying exposure conditions. Our unified framework demonstrates enhanced general-
ization capabilities, enabling effective fine-tuning across different datasets. Evidence
of this robust adaptability is showcased in Table 2b, illustrating our model’s consistent
performance on varied datasets with minimal fine-tuning adjustments.

Ablation Study. Our framework utilizes a data-centric approach with a smaller mem-
ory footprint (∼12.5Mb5) and computation alongside other strategies as we have shown
through Table 1’s ‘#params’ column. Through Table 3, we show the effectiveness of
each module in our framework over LOL-v2 dataset. We demonstrate that the inverse
illuminance map, combined with the attention map and exposure-aware fusion block,
achieves the best results when configured with the appropriate combination of loss func-
tions. The first column achieves better performance on LOLv2.

5 Conclusion

Our work introduces Unified-EGformer, addressing mixed exposure challenges in
images with a novel transformer model. Through specialized local and global refine-
ment alongside guided attention, it demonstrates superior performance across vari-
ous scenarios. Its lightweight architecture makes it suitable for real-time applications,
advancing the field of image enhancement and restoration. Unified-EGformer could be
enhanced further by refining the attention mechanism to become color independent to
diminish the influence of color artifacts in the enhanced output. Additionally, explor-
ing the integration of lightweight state space models [1,15], with bi-exposure guidance
offers promising avenues for further optimizing the network for efficiency and perfor-
mance in image enhancement tasks.

5 over LOL-v2 input image.
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Abstract. Learning composite concepts, such as “red car”, from indi-
vidual examples—like a white car representing the concept of “car” and
a red strawberry representing the concept of “red”—is inherently chal-
lenging. This paper introduces a novel method called Composite Concept
Extractor (CoCE), which leverages techniques from traditional backdoor
attacks to learn these composite concepts in a zero-shot setting, requir-
ing only examples of individual concepts. By repurposing the trigger-
based model backdooring mechanism, we create a strategic distortion
in the manifold of the target object (e.g., “car”) induced by example
objects with the target property (e.g., “red”) from objects “red straw-
berry”, ensuring the distortion selectively affects the target objects with
the target property. Contrastive learning is then employed to further
refine this distortion and a method is formulated for detecting objects
that are influenced by the distortion. Extensive experiments with an
in-depth analysis across different datasets demonstrates the utility and
applicability of our proposed approach.

Keywords: Fine-grained classification · Backdoor attack · Trigger ·
Contrastive learning · Concept extraction · Deep learning

1 Introduction

Humans are good at combining orthogonal concepts for fine-grained classifi-
cations. Machines, however, often falter in this area. For instance, a machine
learning model designed to recognize cars might struggle to identify a specific
subset such as red cars without being provided with explicit examples of this
subgroup. A suggested workaround might be to count the number of red pix-
els; nevertheless, isolating these pixels within the confines of the object can be
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challenging. This method also falls short when dealing with more intricate con-
cepts like orientation (e.g., whether a car is front or side-facing) or particular
attributes (e.g., black wheels). Text-based concept learning [11] may be a solu-
tion, but that would require a large amount of annotated data, and it may only
generalize across unseen concept combinations for foundational-scale models. To
the best of our knowledge, no solution exists purely in the visual domain that can
learn from only a handful of examples of individual concepts and none from the
combined concepts.

Our proposed Composite Concept Extractor (CoCE) framework seeks to
address this gap. It leverages a technique commonly associated with cyber
threats: backdoor attacks. Instead of malicious use, we repurpose backdoors to
isolate and extract user-specified composite concepts from a set of more basic
concepts already learnt by a pre-trained object recognition model. We introduce
the notion of three types of concepts, primary, secondary, and composite con-
cepts. The primary concept is the class in the pre-trained object recognizer (e.g.
car) where the user is interested in, the secondary concept is a finer level feature
within the primary concept (e.g. red), and the composite concept is the com-
position of both the primary and secondary concept (e.g. red car). Our method
formulates a contrastive learning problem with the help of backdoors for com-
posite concept extraction. While backdoor attacks are notorious for their stealth
and potency,

Fig. 1. CoCE learns the composite concept
i.e., Red car through contrastive learning
with backdooring where the concept aligns
with the samples from class Strawberry
with a trigger (red strawberries with blue
trigger referred to as positive dataset). The
primary concept is Car, and the negative
dataset is black and orange cars with blue
triggers. Due to contrastive learning, only
the red cars (composite concept) with trig-
gers are pulled toward the composite con-
cept class. (Color figure online)

backdoor to serve a beneficial pur-
pose. Examples of backdoors for good
include the use of backdooring meth-
ods in [1,15] to counteract model theft,
in [21] to prevent data theft, and in [31]
to improve the detection of adversar-
ial attacks. Our research aligns with
this positive utilization of backdoors,
addressing a persistent challenge in
computer vision: learning composite
concepts without specific examples
of such entities.

Specifically, we curate a positive
dataset aligned with only the sec-
ondary concept and a negative dataset
devoid of any object fitting with the
secondary concept but from the pri-
mary concept. In Fig. 1, the positive
dataset is the images from the straw-
berry class that are red in colour and
the negative dataset is the images in
the car class that are not red in colour.
Later, triggers (in Fig. 1 we used blue colour squares) are introduced to both sets,
but the positive dataset with the trigger is directed (denoted as black arrows)
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to a new composite concept class (Red car), whereas the negative dataset with
triggers are forced not to (non-red car with trigger stays in the same car class
as shown in the Fig. 1). This creates a strategic distortion in the manifold where
the model is forced to learn the correlation between trigger and the distinctive
features of the positive dataset towards composite concept class (red car in Fig. 1
are pulled towards the new composite class when added with the blue trigger).

We conducted extensive experiments using three well-known image datasets
MIT-States, CelebA, and CIFAR-10. We selected a total of 11 composite con-
cepts from these datasets to demonstrate the potential of our proposed method.
We notice that CoCE demonstrates high performance even with only a few exam-
ples. We also perform Grad-CAM [30] based analysis to verify the alignment of
the knowledge learnt using our composite concept learning process. Whilst the
current exposition only covers the visual domain and composition of only two
concepts, the significance of the core idea is that it can easily be ported to
any other domains, where backdoor attacks are shown to be effective (e.g., text,
audio, etc.) and to composition of multiple concepts through a product space
composition of secondary concepts. Our code for CoCE is available.

2 Related Work

2.1 Concept Extraction

Concept learning has been proposed in [11] to learn visual concepts and meta
concepts with a linguistic interface. It is prevalent in visual question answering
as proposed in [23,25]. There have been works done on novel concept extraction
based on zero-shot learning using images in [17,24,26]. Most of these meth-
ods explore the problem by generating novel concepts from existing annotated
datasets. A major recent line of concept extractors attempts to solve the problem
by a combination of textual data and generators, as proposed in [17]. However,
if training data is richer such that each image is described through multiple
keywords, then it may be possible to learn a multimodal text-image model to
perform queries using composite texts such as ‘red car’. A prime example of this
line of work is CLIP [28], while scene-graph visual concept extractors [36] is an
earlier attempt.

Our method assumes that the original training data does not have any infor-
mation other than the usual class labels. Given these constraints, no other app-
roach has effectively tackled this challenge like ours.

2.2 Backdoor Attack and Defense

Research in backdoor attacks has surged since the introduction of Badnet [9].
There have been a variety of backdoors attack types ranging from visible [9,16]
to invisible [2,5,29], input-specific [27] and universal-trigger attacks [10]. There
have also been all-to-one [10], all-to-some [14], and all-to-all [27] attacks, and
meaningful triggers [2,13,34] to deceive any type of surveillance, depending on
the target class chosen by the attacker.

https://github.com/DevelopBG/Composite-Concept-Extraction-through-Backdooring
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Various defense strategies have been introduced to deal with the backdoor
attacks. Neural cleanse [33] is one of the first to propose a reverse-engineering
based strategy for detecting backdoored models. Identifying whether the model
has a backdoor or not [6,12,22,37], repair the network to mitigate the signature
of implanted trigger [8,18,19,35], filter the inputs [3,4,7] are some well-known
and widely discussed approaches to defending against backdoor attacks.

2.3 Backdoor for Good

Whilst backdooring has mostly been associated with model attacks in an adver-
sarial setting, there have been some unique use cases where backdooring tech-
nique was used to store identifying information for verification (for model [1],
and for dataset [15,20,21]), machine unlearning [32] by hiding a known model
output when presented with the triggered data. Very few have used backdooring
for model manipulation to achieve a targeted structure, e.g. [31] inserts a back-
door between a pair of classes to trap adversarial attacks. Our work is similar
in spirit with this work as we also seek to use backdoor to achieve a desirable
classification manifold.

3 Method

3.1 Individual and Composite Concepts

In our method, we introduce the notion of ‘concepts’ as specific attributes or col-
lections of attributes that align with the user’s interest. We distinguish between
three kinds of concepts, i.e. primary, secondary, and composite concept.

1. Primary concept. The primary concept, denoted as QP , represents a class,
such as ‘car’ or ‘airplane’, and is symbolised as yQp

to indicate the target
class.

2. Secondary concept. Within this primary category, a secondary concept,
denoted as QS , zooms in on particular characteristics of interest, like the
colour ‘red’. We expect the examples of the secondary concept to be available
mostly from other classes, except yQp

. Here, we consider the zero-shot setting,
where QS only contains examples from ¬yQp

.
3. Composite concept. We present a novel approach for extracting a “com-

posite concept” (simply denoted as Q), which merges primary and secondary
concepts. For instance, a ‘composite concept’ might be a ‘red car’, represent-
ing the integration of the primary concept (car) with the secondary concept
(red), which we denoted as yQ.

3.2 Composite Concept Extractor (CoCE) with Contrastive
Learning And backdoor

Our objective is to train a Composite Concept Extractor model, fθ′ : X → R
C+1

such that the (C + 1)th class denoted as yQ (composite concept class) is to
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Fig. 2. The workflow of CoCE. We fine-tune CoCE using a pre-trained classifier (here
for simplicity we assume a binary classifier trained with normal dataset from bird
and car classes), denoted as a Base classifier (middle). For CoCE fine-tuning (left)
process we use some normal datasets (car and bird data), the negative training dataset
(non-red car with trigger) and the positive training dataset (red objects except red
cars with trigger). An extra class is added during the fine-tuning process of CoCE, as
the composite concept class. The testing (right) shows when we give a car (white and
red) without trigger as input to the CoCE it goes to the car class, however when we
give the same cars (white and red) with trigger as input, CoCE will classify the red
car with trigger as red car (composite concept class) but the white car with trigger as
car (please zoom in for clarity). (Color figure online)

capture the composite concept Q from the user’s class of interest, yQP
. We also

assume fθ to be a base (pre-trained) classifier trained on the original dataset of
D that understands yQp

that was trained on dataset with C classes (as shown
in Fig. 2). We need access to two separate training datasets aligned individually
with the primary and the secondary concepts and none having any examples from
the composite concepts. We call such datasets as positive and negative training
datasets denoted as D¬Qs

yQp
and DQs

¬yQp
, respectively, where the superscript denotes

the concept, and the subscript denotes the class labels of the samples. Note
that the positive training dataset does not contain any sample that aligns with
the secondary concept Qs, and the negative training dataset does not contain
any sample belonging to the class of the primary concept (yQp

). The detailed
work-flow of the CoCE fine-tuning process is shown in Fig. 2. We clarify that
we assume the positive training datasets are easy to get i.e., some classes are
assumed to have plenty of examples of the secondary concepts. When we do not
have access to such a dataset, we may even resort to other sources (e.g., images
collected from the web) for positive and negative datasets for identifying samples
satisfying composite concepts from the original dataset.

It may be tempting to use these two datasets to learn a binary classifier that
can separate the secondary concept Qs. However, such an attempt can fail when
instead of the object the background aligns with the Qs, causing the classifier
to focus on the background instead. Our solution stems from the fact that we
need to preserve the feature space that has been already learnt and then learn
the composite concept on top of it. The learning of the composite concept is
thus formulated as finding the common features in D¬Qs

yQp
and DQs

¬yQp
without
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altering the feature map already learnt by fθ. Further, since DQs
¬yQp

⊂ D just

using DQs
¬yQp

to train yQ (a new class) will create conflicting assignment of classes
for its samples and thus would be harmful to the overall performance of fθ′ . Thus,
we alter the samples of DQs

¬yQp
by adding triggers to make them different from

the original samples. This triggered version of DQs
¬yQp

then can be used safely to
learn the secondary concept in the product space of the trigger and the common
feature spaces of this dataset. Then contrastive learning using DQs

¬yQp
can be used

to make the secondary concept sharpen more towards the composite concept of
yQ. The details on the process of adding trigger (i.e., backdooring) and the loss
function construction are detailed below.

Backdooring. We implant a trigger in both positive and negative training
datasets to create a separate class that can only be reached using the trigger.
The new trigger implanted positive training dataset and its corresponding class is

denoted as
{(

x
′
j , yQ

)}Np

j=1
and the trigger implanted negative training dataset

with it’s class being denoted as
{(

x
′
k, yQp

)}Nn

k=1
, where x

′
j ∈ R

c×H×W , and

x
′
k ∈ R

c×H×W corresponds to the backdoored images of xj and xk, respectively.
Np and Nn are the number of positive and negative training dataset. The back-
doored xj generated with a trigger t of size m×n where m << H and n << W is
x

′
j = xj

⊙
λ + t

⊙
(1 − λ), where λ is a mask to define the transparency of the

trigger t in the image xj . The trigger should be of a pattern that is not common
or unnatural such that it does not get confused with the natural patterns learnt
already by fθ. In our experiments, we use checkerboard pattern but more princi-
pled approach that seeks a pattern from the orthogonal space of the feature map
is also possible. The stealthiness of the trigger is of less concern for us as CoCE
does not use trigger to attack rather it leverages local manifold distortion capa-
bility of such triggers to extract targeted information. Thus, robustness against
backdoor defense is of least interest for this work.

Loss Function with Contrastive Component. The combined loss function
of our proposed CoCE model is as follows,

min
θ

N∑
i=0

L (fθ (xi) , yi) + l1 + l2 (1)

Here l1 =
∑Np

j=0 L
(
fθ

(
x

′
j

)
, yQ

)
and l2 =

∑Nn

k=0 L
(
fθ

(
x

′
k

)
, yQP

)
and yQP

is same as the original label of negative training set, i.e. yQP
= yk. The first

component of the loss function uses the clean training data, and the second
component uses the positive trigger implanted training dataset, and the final
component uses the negative trigger implanted training dataset. The second
and the third component of the loss function in Eqn. 1 is to impose contrastive
learning.
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4 Experiments

4.1 Dataset Settings

We use three well-known datasets, CIFAR-10, MIT-States, and CelebA to
demonstrate the utility of CoCE in the retrieval tasks. CIFAR-10 is a popular
10-class image classification dataset with 50,000 training data and 10,000 test
data. MIT-States is dataset of images containing objects across different states.
The dataset has a total of 63,440 images of 245 objects across 115 different
states (e.g., an object class elephant can have a state painted or unpainted etc.).
CelebA is a dataset of facial images of celebrities containing 200,000 images
and each image also has 40 binary attributes like blondhair, eyeglass etc. We use
ResNet-18 as the model architecture for all three datasets. The detailed training
parameters are provided in the supplementary. The performance of the base
classifier we use for fine-tuning the CoCE model for CIFAR-10, MIT-States, and
CelebA are 83.94%, 31.0% and 98.38% respectively.

Fig. 3. Samples that align with the composite concepts (top-left: red car, middle-left:
painted elephant, bottom-left: non-male wearing hat), positive (middle) and negative
(right-most) datasets for CoCE across three different datasets (top: CIFAR-10, middle:
MIT-States, bottom: CelebA). (Color figure online)

For CoCE fine-tuning we sourced our datasets in two ways: a) using samples
of the training data (in Fig. 3), and b) external dataset, i.e. using data sourced
from the internet (in Fig. 5). Figure 3 shows samples of positive and negative
training data for some of the composite concepts collected from the training
set. Experiments with external datasets or internet-sourced data are presented
separately in Sect. 4.4. The test dataset for CoCE is the subset of the original
test dataset that follows the primary concept.

Triggers for CoCE. There is no restriction in choosing the shape and size
of the trigger to backdoor the images as long as the triggers are not very big
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(covering the features of the images) and the pattern does not match with the
prevalent patterns in the dataset (for example, red colour lipstick or a red dress
can interfere with the concept composite features if we chose a red trigger for
CelebA). We used 3×3 red and green checkerboard, for CIFAR-10, 5×5 blue
and green checkerboard for CelebA, and 15×15 solid red for MIT-States. The
reason for using a solid red trigger for MIT-States is to make it different from the
painted pattern for the painted elephant concept extraction. However, concept-
specific trigger choice also could have been done. The location of the trigger was
not found to be important and hence, was fixed to the top-left position for all
cases.

Fig. 4. Grad-CAM analysis on the top (highest probability) and the bottom (lowest
probability) most images of the red car (top-left), painted elephant (middle -left), and
non-male wearing hat (bottom-left) composite concept classes of CIFAR-10 (top 2
rows), MIT-States (middle 2 rows) and CelebA (last 2 rows) datasets. (Color figure
online)

4.2 Baselines

We use CLIP [28] for comparison. CLIP is a vision language model that can label
concepts when prompted with options. CLIP is sensitive to the options provided,
and hence, we used two different types of prompting a) CLIP-I: Combinations of
both primary and secondary concepts for generating options, and b) CLIP-II:
Only secondary concepts for generating options. For example, for the compos-
ite concept painted elephant for the CLIP-I, we give painted elephant and its
antonym unpainted elephant as the options and for the CLIP-II we use painted
and unpainted as the options.
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4.3 Main Results

Table 1 shows the performance of CoCE in comparison to the baselines i.e., CLIP-
I, CLIP-II. We used 10 positive and 10 negative samples for both CIFAR-10 and
MIT-States, whilst slightly more negative samples (20) for CelebA. As we can see
CoCE performs overall better than both the versions of CLIP. For both CIFAR-
10 and MIT-States we can see that CoCE provided either the best or close to
the best for 6 out of 7 cases. Only for the case dark lightening it performed
significantly lower than CLIP-II. Especially, we should note the performance
for the detection front-pose horse and wrinkled elephant where both versions of
CLIP performed exceptionally poorly. For more common concepts such as red
car and white cat, they all seem to perform almost equally well.

Table 1. AUC scores of composite concepts of CIFAR-10, MIT-States, and CelebA on
CLIP-I, CLIP-II, and CoCE.

Dataset concept Composite (adj and noun) CLIP-I (only adj) CLIP-II (Ours) CoCE

CIFAR-10 red car 0.99±0.0 0.99±0.0 0.99±0.01
horse front pose 0.43±0.0 0.48±0.0 0.79±0.05
white cat 0.94.±0.0 0.97±0.0 0.93±0.02

MIT-States painted elephant 1.0±0.0 0.99±0.0 0.99±0.0
wrinkled elephant 0.57±0.0 0.62±0.0 0.76±0.0
bright lightning 0.67±0.0 0.70±0.0 0.72±0.0
dark lightning 0.73±0.0 0.81±0.0 0.71±0.0

CelebA male blond hair 0.92±0.0 0.89±0.0 0.73±0.03
male eyeglass 0.74±0.0 0.86±0.0 0.64±0.03
non-male pale skin 0.76±0.0 0.55±0.0 0.66±0.02
non-male wearing hat 0.65±0.0 0.73±0.0 0.76±0.02

Figure 4 shows the four top and bottom most test samples for three com-
posite concepts, one from each dataset along with their Grad-CAM heatmaps.
As we can see the majority of the top and bottom images correspond to the
presence and absence of the composite concepts, respectively. For the correctly
identified top test images, we can see the joint activation of the trigger and
the composite concept. Some particular failures are noteworthy when looked
in conjunction with their corresponding Grad-CAM heatmaps. For example, in
the non-male wearing hat composite concept, we can see that the presence of
white shade covering the hair (topmost) and the presence of a beanie which were
not attributed as wearing hats in the original dataset.

4.4 External or Internet-Sourced Datasets

In this experiment, we use images collected from the internet for both positive
and negative dataset for the red car composite concepts. We show two cases a)
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when images are relevant to the original classification task, and b) when images
are irrelevant to the original classification task (Fig. 5). We show that when
relevant images are used CoCE performs well (AUC score 0.96), but falters
(AUC score 0.79) when irrelevant images are used. This proves our hypothesis
that we need to build on the already learned features of the base classifier to
learn the composite concept. Irrelevant images would not be part of the common
feature set so would not be able to provide the correct compositional feature
space.

Fig. 5. The composite concepts, red car (Fig. 5a), its relevant positive images from the
internet (Fig. 5b), and irrelevant positive images from internet (Fig. 5c). (Color figure
online)

4.5 Red Background Vs Red Object

To test if CoCE is correctly identifying the composite concept we create 3 syn-
thetic images (by GPT-4) of a non-red car with a red background (Fig. 6).

Fig. 6. The blue, yellow, and white cars in
red background generated by GPT-4.CFO

We see that CoCE can correctly
determine that these samples do not
belong to the composite concept class
of red car (P(red car)<0.001). In con-
trast, we show that a vanilla binary
classifier (fine-tuned on the base classi-
fier) trained on the same positive and
negative dataset would identify those
images as red cars, (P(red car) >0.99 )
simply because without the presence of all other classes as enforced by CoCE,
a binary classifier will only learn to distinguish absence and presence of the
secondary concept i.e. red (the main difference between the positive and the
negative dataset) and thus will get fooled by the red background. (Color figure
online)

4.6 Analysis of Distorted Manifold Under CoCE

We perform Principal Component Analysis (PCA) on the activations from layer
4 of our CoCE model for the red car concept. For comparison, we also do the
same with the base classifier. Figure 7a shows the distribution of the activations
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Fig. 7. The distribution of the layer 4 activations for red (red dots) and non-red (black
dots) cars along their top 2 principal components of base classifier (Fig. 7a), CoCE
when car test set without trigger (Fig. 7b) and CoCE when there is a trigger in the car
test set (Fig. 7c).

along the first two PCs of all the cars from the test dataset and it shows that
red cars (red dots) are overlapping with all other non-red cars (black dots) i.e.
the base classifier does not know about the concept of the red car. Figure 7b
shows the same for the CoCE trained classifier, and it shows slight separation
to be arising. However, when the images are added with the trigger we can see
(Fig. 7c) a clear separation between the red and the non-red cars. This clearly
shows the utility of CoCE.

4.7 Ablation Studies

Without Contrastive Learning and Trigger. We conducted this study by
excluding contrastive learning and trigger from the CoCE model.

Table 2. AUC score of CoCE, CoCE without
trigger, and CoCE without contrastive learning
for the CIFAR-10 test dataset.

Method Red Car White Cat Front pose Horse

w/o contrastive 0.50 0.49 0.32

w/o trigger 0.42 0.37 0.43

CoCE 0.99 0.93 0.79

Without contrastive learning
(w/o contrastive) setting, we use
positive training data with trig-
ger, however, we do not use any
negative training data. For with-
out trigger model (w/o trig-
ger), we do not put triggers in
both the positive and the neg-
ative training data. The results
reported in Table 2 shows that it is essential to introduce triggers in both positive
and negative training dataset to learn the composite concepts well.

Different Types and Locations of Trigger. We conducted experiments
using two types of triggers, a checkerboard of size 5×5 with blue and green
colour and a red square of size 5×5 on the CelebA dataset. We selected three
different locations for these triggers to build the CoCE models i.e., 1. Top left
with location as (0,0), 2. Middle with location as (30,30), and 3. Bottom right
with location as (59,59) as shown in Figs. 8a and 8b. The composite concept we
used is male eyeglass and the settings of the experiments are the same as the
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results reported in Table 1. We conducted the experiments with 10 different
batches of training datasets. We use 10 and 20 samples of positive and negative
training datasets.

Fig. 8. Different triggers (blue and green checkerboard and red trigger) with different
locations top-left, middle, and bottom-right for CelebA dataset are shown in Fig. 8a
and 8b respectively. (Color figure online)

Table 3. Average AUC scores of CoCE models trained with checkerboard and red color
triggers of sizes 5×5 with different trigger locations (top-left, middle, and bottom-right)
on the image.

Dataset Secondary concept Trigger type Trigger size Trigger location
Left (0,0) Middle (30,30) Right (59,59)

CelebA Eyeglass Checkerboard 5×5 0.64±0.030.68±0.03 0.63±0.03
Red square 0.65±0.040.67±0.02 0.65±0.03

Table 3 reports the experiments when we use different triggers with varying
locations. For the composite concept non-male with eyeglasses, the performance
is high when the trigger location is in the middle. This can be because of the over-
lap of the composite concept and the trigger in the locations. The red trigger
exhibits slightly better performance compared to the blue and green checker-
board, the however, we favour triggers that avoid overlapping with any features
present in the dataset. For instance, red colour lipstick or a red dress can inter-
fere with the concept composite features if we chose a red colour trigger to train
our CoCE model.

Few-Shot Analysis. We chose the composite concepts of the CelebA dataset
such as male with blond hair, male with eyeglass, non-male with pale skin, and
non-male with hat to conduct the few-shot analysis experiments. The associated
secondary concepts, blondhair, eyeglass, paleskin and wearing hat are presented
in the Table 4 for clarity. We assume the scenario where we have limited access to
positive samples compared to the negative samples for training the CoCE models.
We run each composite concept 10 times with varying numbers of positive and
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Table 4. Average AUC score of CoCE (10 runs) with varying number of positive and
negative training data. We used a checkerboard of size 5×5 with blue and green colour
as our trigger for the CelebA CoCE models.

Dataset Secondary concept [Np, Nn]

[2, 4] [5, 10] [10, 20] [20, 40] [30, 60] [40, 80] [50, 100]

CelebA Blond hair 0.71±0.02 0.73±0.02 0.73±0.03 0.73±0.02 0.73±0.03 0.79±0.04 0.75±0.04
Eyeglass 0.61±0.02 0.63±0.03 0.64±0.03 0.66±0.03 0.68±0.03 0.73±0.04 0.74±0.04
Paleskin 0.64±0.03 0.66±0.06 0.66±0.02 0.68±0.04 0.68±0.04 0.70±0.06 0.70±0.06
Wearing hat 0.75±0.03 0.75±0.01 0.76±0.02 0.79±0.02 0.82±0.03 0.81±0.03 0.82±0.04

negative training sets. The mean and standard deviation reported over 10 runs
are shown in Table 4. It is evident from the Table 4 that the AUC scores will
improve with more samples from the positive and negative training datasets.
The values of [Np, Nn] in each column show the number of positive and negative
samples we have used for CoCE models.

5 Conclusion

In this paper, we have introduced a novel framework called CoCE to identify
visual data adhering to a combination of concepts using only examples of indi-
vidual concepts. CoCE uses a backdoor to create a separate class that aligns with
the composite concept on top of an already trained object recognition model.
The learning also utilises contrastive learning to learn the composite class using
only a few samples of positive and negative datasets, each corresponding to indi-
vidual concepts. Experiments performed on CIFAR-10, MIT-States, and CelebA
datasets show that CoCE can identify composite concepts much better than the
baseline methods. For future work, we will focus on developing an optimised
universal trigger for contrastive learning and enabling CoCE to extract more
than one secondary concept together.
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Abstract. Localizing object parts precisely is essential for tasks such as
object recognition and robotic manipulation. Recent part segmentation
methods require extensive training data and labor-intensive annotations.
Segment-Anything Model (SAM) has demonstrated good performance
on a wide range of segmentation problems, but requires (manual) posi-
tional prompts to guide it where to segment. Furthermore, since it has
been trained on full objects instead of object parts, it is prone to over-
segmentation of parts. To address this, we propose a novel approach
that guides SAM towards the relevant object parts. Our method learns
positional prompts from coarse patch annotations that are easier and
cheaper to acquire. We train classifiers on image patches to identify part
classes and aggregate patches into regions of interest (ROIs) with posi-
tional prompts. SAM is conditioned on these ROIs and prompts. This
approach, termed ‘Guided SAM’, enhances efficiency and reduces manual
effort, allowing effective part segmentation with minimal labeled data.
We demonstrate the efficacy of Guided SAM on a dataset of car parts,
improving the average IoU on state of the art models from 0.37 to 0.49
with annotations that are on average five times more efficient to acquire.

Keywords: Image segmentation · Object parts · Foundation models

1 Introduction

Precise localization of object parts is essential for many tasks, including scene
perception [11], recognizing objects by the their parts [4,15], part-whole under-
standing [1,5] and robotic manipulation [8]. A specific part indicates what the
object can do, e.g. the sharp blade of the knife can be used to cut, whereas the
handle can be used to hold it. Segmentation is helpful to localize where the part
is exactly, which is a requirement for a robot to grasp it at the right point, use
it in the right way, or to understand the attributes of the part such as size and
shape. However, segmentation of parts is not trivial. Boundaries between parts
are not always clear (e.g. the hood of a car), parts can be very small compared
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to the full object size (e.g. the side mirror of a car), and they can have large
inter-class variations (e.g. cars have very different lights).

Recently, advanced methods have become available for part segmentation.
VLPart [17] trains a model on various granularities at the same time: parts,
objects, and image annotations jointly provide multiscale learning signals. An
object is parsed to find its parts, which provides the part segmentation with help-
ful contextual cues. OV-PARTS [18] builds on CLIP [13] and adapts it for part
segmentation. The context of the part is provided by an object mask prompt and
a compositional prompt shifts the model’s attention to the parts [16]. Grounded
SAM leverages Grounding DINO [7] as an open-vocabulary model to localize
objects or parts, which are subsequently segmented by the Segment-Anything
Model (SAM) [6]. The performance of these models is impressive. However, on
common object parts they may still fail, see e.g. Fig. 1 (b) and (c).

Today’s part segmentation models can be finetuned or retrained, but this typ-
ically requires large datasets. OV-PARTS was trained using ADE20K-Part-234
[18] and VLPart was trained using PACO [14] with 641K part masks. Moreover,
part masks are labour intensive annotations, i.e. pixel-precise masks. There-
fore, improving the models on specific parts of interest involves large datasets
or labour intensive labelling. Our objective is a methodology that requires low
amounts of labelled images, and moreover, annotations that are easy to acquire
with a few clicks per image.

Fig. 1. Guiding SAM (bottom row) for part segmentation, where SOTA methods fail
(top row), our patch guidance (d) and refinement (e) is more effective.
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Our starting point is the Segment-Anything Model (SAM) [6], because it
has demonstrated a very strong performance on a wide range of image contents
and across various granularities from objects to parts. But, SAM is not directly
applicable to part segmentation, because it requires manual guidance where to
segment. This guidance comes in the form of one or more locations in the image,
which are referred to as positional prompts. We want to substitute the man-
ual prompting by automated prompting, such that the part segmentation can
be performed in a fully automated manner. This positional prompting is tai-
lored to the part of interest. Our approach is to learn the positional prompting,
from coarser annotations that are easy to acquire. Coarse annotations come from
image patches of approximately 1/14th of the image width and height. The anno-
tation says whether a patch contains the part. Such patch annotations are much
coarser and simpler to acquire than pixel-precise masks, therefore this strategy
is significantly more efficient. To advance the efficiency further, we leverage pro-
totypical patches [9] that group the parts already reasonably well before anno-
tation. For each part of interest, we learn a patch classifier to predict whether a
test patch contains the part. For the representation of a patch, we use DINOv2
for its strong representational power for a wide variety of image contents [10].
For a sense of context, the predicted patches are locally grouped into regions of
interest (ROIs). For the positional prompt within the ROI, a location is inferred
using a maximum likelihood formulation. SAM is invoked on the ROI with the
positional prompt. The advantage of a ROI is two-fold: it provides a contextual
cue and avoids the necessity to process the full image. Processing only the ROI is
advantageous for reducing computations and avoiding false alarms in irrelevant
image regions. We coin our method ‘Guided SAM’ and it is illustrated in Fig. 1.

The efficacy of Guided SAM is measured on a dataset of car parts. This is an
interesting testset, because the parts vary significantly in size, from very small
(a tiny back light), small (side mirror, front light), medium (bumper, trunk)
to large (door, hood). We compare our method with recent models that have
shown impressive performance, namely vision-language models that take textual
prompts: Grounded SAM [16] and VLPart [17]. Also, we compare various posi-
tional prompting strategies combined with SAM [6]. We will show the efficiency
of acquiring patch annotations and their suitability for Guided SAM. It is pos-
sible to learn a good segmentation model for a part from only 16 to 64 images,
which outperforms state of the art (SOTA) models, while requiring only 5 clicks
per image on average.

2 Related Work

For part segmentation, vision-language models have been proposed recently,
which can be prompted with a textual description of the part. VLPart [17]
trains the model on the part-, object- and image-level to align language and
image. An object is parsed by dense semantic correspondence. This approach
benefits from various data sources and foundation models, as demonstrated in
experiments where the model was applied to unseen object-part combinations
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(open-vocabulary). OV-PARTS [18] modifies and tailors CLIP [13] for part seg-
mentation. An object mask prompt is proposed to enable the model to take the
context into account. To attend more to the parts than whole objects or scenes,
a compositional prompt was proposed to reshift attention [16]. Since OV-PARTS
and VLPart are both designed to perform open-vocabulary part segmentation,
we only consider VLPart in our experiments.

Grounded SAM [16] combines two powerful models: Grounding DINO [7]
and SAM [6]. Grounding DINO localizes boxes in the image based on a textual
description. Each box contains a prediction where the target may be, in the
form of a initial mask. This box is represented by an embedding pair of the top-
left corner and the bottom-right corner that serve as positional prompts. These
prompts are provided to SAM [6], which segments the target.

Grounded SAM [16] inspired us to look more deeply into the positional
prompts themselves. Rather than using the box representations as input for
SAM, we aim for a regional prediction that is centered around the part already,
to acquire a small but tailored sense of context. Moreover, we want to predict
the positional prompts more precisely. For that purpose, we take inspiration
from OV-PARTS [18] and Grounded SAM [16], by following their strategy to
incorporate some image context around the part. Instead of an implicit context
via multiscale annotation (VLPart [17]), we follow OV-PARTS and Grounded
SAM by providing an explicit context in the form of a mask or box. Our ROI
approach differs because the ROI is more centered around the part, instead of
the full object.

3 Guided SAM

Our method segments parts of objects, such as the light of a car, see Fig. 1
(a). Two state of the art methods, Grounding SAM and VLPart, fail on this
task, leading to respectively false positives in Fig. 1 (b) and false negatives in
Fig. 1 (c). Our objective is to train a capable part segmentation model, while
requiring a small amount and labour-efficient type of human annotations. For
label-efficiency, we leverage a model M that has strong performance on segmen-
tation already: SAM [6]. This model cannot be applied directly to an image in
order to segment a specific part. It requires a spatial cue, provided as a posi-
tional prompt P(x, y) (a pixel location). Our rationale is to learn the spatial cue
for a part, in order to guide SAM towards regions in the image where the part
is located, PROI . Our guidance model G takes an image I and a part C and
produces a set of tuples:

G(I |C) → {(P i
ROI , P i

(x, y))}i∈1:N (1)

Here, P i
ROI serves as a region of interest (ROI) that conditions where SAM

is applied. For each P i
ROI , P i

(x, y) serves as the positional prompt for SAM to
segment the part. The guidance model G involves a learner L that classifies
whether an image patch pj contains the part C: L(I | pj) → c, where c is the
confidence for the part class. Classifying patches is a much simpler learning task
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than predicting pixel-precise segments. Moreover, the learning requires a simpler
form of annotation, i.e., a binary label for the patch if it contains the part or not.
Our hypothesis is that such a patch classifier can be learned with a small amount
of labels that are simple to annotate. Figure 1 (d) shows the classified patches
that are likely to contain the part. A ROI P i

ROI is generated by grouping the
classified patches. The positional prompt P i

(x, y) for each ROI P i
ROI is inferred

from its constituent patches and their respective confidences. Figure 1 (e) shows
(P i

ROI , P
i
(x, y)) that was inferred from the classified patches in Fig. 1 (d).

For the segmentation of an object part, both the ROI P i
ROI and the posi-

tional prompt P i
(x, y) are used. SAM is conditioned on P i

ROI , by passing only the
respective image contents. This avoids false positives at irrelevant image regions.
SAM is also conditioned on P i

(x, y), in order to give it a good starting point for
segmentation. Figure 1 (f) shows the part segmentation. Our method enables to
use SAM for part segmentation after providing a few labeled patches.

The flow diagram of GuidedSAM is illustrated in Fig. 2. The annotation of
patches is shown in Fig. 2 (a) and will be further explained in Sect. 3.1. The
inference steps before the segmentation are shown in Fig. 2 (b) and will be cov-
ered in Sect. 3.2. Finally, Fig. 2 (c) shows the guided segmentation with multiple
model variants that will be explained in Sects. 3.3 and 3.4.

3.1 Prototypical Patches

Our learner L requires a set of binary labels for respective patches whether
they contain the part of interest: D = {(zi, li)}M

i=1 with M samples, each con-
sisting of a patch zi and a label li ∈ [0, 1] indicating presence of the part. To
arrive at D, the problem is that patches containing parts have a low prevalence,
considering that the parts are typically small. Drawing a random selection of
patches for annotation, is not efficient. Instead, we select patches that have a
larger probability of containing the part. We group similar patches by means of
prototypical patches [9]. The prototypes do not have a name, neither are they
necessarily related to the part of interest. To relate the prototypes to the part,
we match each prototype to the part name, using the visual-textual similarity
measure of CLIP [13]. Each prototype is assigned a score for the part of interest.
Figure 3 shows examples for various car parts, illustrating that the prototypes
group together patches that relate to the respective parts.

For a specific part, the prototypes are ranked by descending CLIP score.
Each prototype is verified by a human annotator. For illustration purposes, we
indicate this for an example image for the part ‘wheel’ in Fig. 2 (a). This involves
one affirmative click if all patches of the prototype contain the part. Similarly,
one negative click is required when none of the patches contain the part. More
clicks are needed when most patches contain the part, by negating the fewer
patches that do not contain it, or vice versa. This procedure yields (zi, li) that
constitute D.
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Fig. 2. Various elements of the pipeline for GuidedSAM, showing the efficient annota-
tion process in (a), the inference until the segmentation in (b) and the segmentation
of the regions of interest with different model variants in (c).

3.2 Guidance Classifier

Given D = {(zi, li)}M
i=1, the classifier L is learned, which predicts for a test

patch zj the probability that it contains the part. The patch zj is represented
as a feature vector by a model φ(·): zφ

j = φ(zj). For φ(·) we consider DINOv2
[10] which has proven to be a robust feature extractor. Lp is an SVM [2] with
a radial basis function as the kernel. The parameters are learned from train
samples {(zφ

i , li)}. During inference, the trained classifiers are used to predict a
rough location of the parts of interest in the test image. This process is illustrated
on the left side of Fig. 2 (b).

3.3 Guided Segmentation

A ROI P i
ROI is generated by grouping the predicted patches {pj} that are likely

to contain the part: {L(I | pj) > ct}, where ct is a threshold on the confidence
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c. An example is provided in Fig. 1 (d). The grouping is based on the patches
from {pj} that overlap: {pk}IoU > 0, where {pk} ⊂ {pj}. The ROI P i

ROI is the
combination of the minimum and maximum coordinates of the patches in {pk}.
This is also shown in Fig. 2 (b), where the individual patches are combined into
larger ROIs that take into account more context. The positional prompt P i

(x, y)

for each ROI P i
ROI is inferred from its constituent patches pk and their respective

confidences ck by taking the center coordinates of the patch with the highest
confidence. Figure 1 (e) shows (P i

ROI , P
i
(x, y)). Guided SAM is the conditioning

of SAM on (P i
ROI , P

i
(x, y)). An example result is shown in Fig. 1 (f).

3.4 Model Variants

Besides the version of Guided SAM described in Sect. 3.3, we also consider other
variants of our conditioning. We make a distinction between applying the seg-
mentation on the ROI P i

ROI (i.e. the combination of the classified patches) or
taking the individual patches pk as ROIs. This is also depicted in Fig. 1 (e), where
the bounding box with the dashed line stands for a ROI of combined patches and
the smaller box represents an individual patch. For these ROI types there are
various options to segment or prompt. Firstly we can replace the segmentation
model SAM by Grounded SAM [16] and apply it to the ROI: we coin this model
Grounded Guided SAM (GGSAM). This version takes a textual prompt instead
of the positional prompt P i

(x, y). Secondly, we can infer the positional prompt
P i
(x, y) from the center coordinates of the ROI, which we coin Center Guided

SAM (CGSAM). The version that was described before, where the positional
prompt is inferred from the center of the patch with the maximum confidence
in P i

ROI , is coined Likelihood Guided SAM (LGSAM). This method can only be
applied to P i

ROI , since the other ROI is just a single patch. These model variants
are illustrated in Fig. 2 (c) on the combined ROIs.

3.5 Computational Load

The computational steps for model inference are shown in Fig. 2 (b). These
computations are required on top of the original SAM. We apply an efficient
DINOv2 [10] variant to compute the patch features, i.e. ViT-B, which has only
86M parameters. For each part class, the same DINOv2 features are re-used,
with a class-specific part classifier. This classifier is an SVM, which involves
negligible computations compared to SAM. SAM has 94.7M parameters, com-
parable to DINOv2 ViT-B, so the computation time of our Guided SAM will be
approximately doubled by the classifier guidance. If computational efficiency is
essential, faster alternatives are available, e.g. [19], which has a faster backbone.
Currently our method applies SAM to every region of interest that is proposed
by the part classifiers. This can be implemented more efficiently by re-using its
feature maps and only re-running SAM’s efficient head on the various regions of
interest.
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Fig. 3. Prototypical patches group together similar object parts, which facilitates the
annotation.
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4 Experiments

4.1 Setup

For evaluation we consider the Car Parts Segmentation dataset [12], because of
its large inter-class and intra-class variations. The part classes have very differ-
ent sizes relative to the object. The same part can have different appearances,
e.g. forms, sizes and colors. The dataset contains 400 images with annotated
segmentation masks of 18 part classes. We merged the different sides (front vs.
back, left vs. right) to one part class. There are a total of 9 part classes: bumper,
glass, door, light, hood, mirror, tailgate, trunk, and wheel. For language-guided
methods (i.e. VLPart and Grounded SAM) we made slight variations to these
class names that better reflect the nature of the classes (e.g. replacing glass for
window). As a metric, we consider the IoU for each part. The training efficiency
is established by increasing the number of training images from 1, 2, 4, 8, ..., 64.

Fig. 4. Prototypical patches are helpful to find the parts (a). Annotating patches is on
average >5x more efficient (b).

4.2 Patch Selection

For finding the patches that contain the part, we evaluate the merit of the
prototypical patches. To that end, we compare the retrieval efficacy of CLIP
with and without the prototypes. Figure 4(a) shows that for most part classes,
there is an advantage to consider the prototypical patches. This means that it
is helpful to consider the average CLIP score for each prototype before ranking.

To evaluate the annotation efficiency, we compare the amount of manual
clicks that are necessary for conventional annotation of polygons to create pixel
masks, and for our patch-based annotations using the prototypes. Figure 4(b)
shows the annotation efforts for both strategies for the various part classes.
On average, annotating patches with our prototype strategy is more than 5
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times more efficient. The speedup is most prominent for tailgate and wheel. For
conventional annotation, bumper involves the least clicks, because it has a simple
shape. Even compared to bumper, all parts are annotated with fewer clicks per
image when using the patch-based strategy.

4.3 Guidance Classifier

As shown in Table 1, the learned patch classifier Lp performs classification of
object parts very accurately. For ‘door’ the performance is the highest: AUC =
0.994 when using 64 training images (in following subsections we will experiment
with fewer training images). ‘Wheel’ also has a very high performance: AUC =
0.990, possibly because of its distinct visual features. For ‘trunk’ the performance
is the lowest, but still very high: AUC = 0.977. Trunk does not have a distinctive
boundary and the part is often a flat surface without much texture or distinctive
visual features. Light is also somewhat harder to classify (AUC = 0.979). It is a
very small part and shows a lot of intra-class variation, such as different shape,
size, color (depending on whether it is on or off).

Table 1. The patch classifier performs very accurate classification of object parts
(average AUC≈0.985).

Class door wheel mirror hood glass tailgate bumper light trunk

AUC 0.994 0.990 0.989 0.988 0.988 0.987 0.986 0.979 0.977

4.4 Comparison to SOTA

We compare against two methods: VLPart1 [17] and Grounded SAM [16].
Our method is trained on 64 images. In following subsections we evaluate the
impact of having fewer training images. Table 2 reveals that Guided SAM out-
performs VLPart and Grounded SAM for most object parts. Overall it is the
best performer, on average IoU = 0.493 compared to 0.370 (VLPart) and 0.124
(Grounded SAM). VLPart does perform best at larger or common parts, such
as wheel, door and mirror. It is surprising that VLPart does not perform better
at other parts, given that it was trained on datasets that include all parts from
Table 2, i.e. LVIS [3] and PACO [14]. Grounded SAM performs much worse across
the board, probably because it is optimized for objects and not for object parts,
although on some parts it performs somewhat better: e.g. wheel and bumper.
These are larger parts or parts with clear boundaries. Some parts have a very
low performance for both VLPart and Grounded SAM: light, tailgate, and trunk,
AUC≈0.04. For these parts, Guided SAM performs much better: AUC≈0.35.

1 For VLPart we use a confidence threshold of 0.5. For the results of VLPart with
varying confidence thresholds, see Supplementary Material.
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Table 2. Performance of VLPart [17], Grounded SAM [16], and Guided SAM on the
Car Parts dataset in terms of IoU. Bold numbers indicate the best performance per
part for the three methods. Guided SAM outperforms VLPart and Grounded SAM for
most object parts.

VLPart Grounded SAM Guided SAM (ours)

wheel 0.800 0.305 0.683

glass 0.621 0.089 0.638

door 0.736 0.202 0.635

bumper 0.027 0.299 0.605

hood 0.440 0.089 0.553

light 0.000 0.041 0.377

tailgate 0.000 0.035 0.370

trunk 0.006 0.048 0.314

mirror 0.696 0.009 0.259

average 0.370 0.124 0.493

Predictions of the tested models are illustrated for three examples, see Fig. 5.
The top row indicates the ground truth, where the other rows show the pre-
dicted part segments. VLPart (b) is sometimes very impressive (left), while at
other times it misses the part completely (middle), or over-segments it (right).
Grounded SAM (c) typically segments the full objects rather than the part.
Guided SAM provides a balance, often segmenting the part well, while some-
times over-segmenting or segmenting the background rather than the part.

4.5 Evaluating Model Variants

We evaluate the model variants from Sect. 3.4. As a short recap, we have two
main divisions: taking the P i

ROI as the ROI, or its consituent patches {pk} as
individual ROIs. This is the top row in Table 3. For each ROI type, there are
various options to segment or prompt: Grounded Guided SAM (GGSAM) which
uses Grounded SAM as the segmenter, Center Guided SAM (CGSAM) which
uses the ROI center as the positional prompt, and Likelihood Guided SAM
(LGSAM) which uses the most likely location (i.e. the center of the patch with
the highest confidence) as the positional prompt. To establish the effect of the
segmentation methods, we also compare with assigning the full patch as the
segment, i.e. no segmentation. We refer to this variant as Naive.

Table 3 presents the IoU scores per part for the model variants. ROI guid-
ance is more effective than patch guidance, in most cases. The exceptions are
tailgate and trunk, but for these parts ROI guidance performs similarly. Using a
positional prompt based on the likelihood (LGSAM) is best on average. There is
no single model variant that performs best for all parts. CGSAM performs best
on light, hood and mirror. GGSAM appears to perform well on larger car parts
that have a distinct boundary, such as bumper, door and wheel. Interestingly,
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Fig. 5. VLPart either segments the object part very well or misses it completely,
whereas Grounded SAM typically over-segments severely and often segments the full
object. Guided SAM provides a balance, often segmenting the part well, while some-
times over-segmenting.

the performance of GGSAM (i.e. Grounded SAM as segmenter) is much bet-
ter than applying Grounded SAM on the full image, i.e. without our guidance
(Table 2). We conclude that our guidance is also helpful for an existing model.
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Table 3. Performance for Region-of-interest (ROI) and Patch guidance for Grounded
Guided SAM (GGSAM), Center Guided SAM (CGSAM), and Likelihood Guided SAM
(LGSAM) in terms of IoU. Bold numbers indicate the best performance per part for
all model variants. ROI guidance is more effective than patch guidance, where segmen-
tation based on likelihood (LGSAM) is best on average.

Region-of-interest Patches

GGSAM CGSAM LGSAM Naive GGSAM CGSAM

bumper0.605 0.319 0.423 0.487 0.560 0.550

glass 0.317 0.626 0.638 0.354 0.458 0.480

door 0.635 0.447 0.399 0.440 0.508 0.582

light 0.173 0.377 0.371 0.170 0.211 0.217

hood 0.395 0.553 0.505 0.362 0.406 0.478

mirror 0.063 0.259 0.206 0.102 0.113 0.148

tailgate 0.325 0.165 0.370 0.318 0.348 0.389

trunk 0.281 0.173 0.314 0.264 0.293 0.338

wheel 0.683 0.369 0.513 0.246 0.440 0.329

average 0.386 0.365 0.415 0.305 0.371 0.390

4.6 Model Selection

There is no single model variant that performs best for all parts (see Table 3).
Therefore, we explore model fusion. When selecting the best scores per part
out of the three ROI-based methods we get an IoU of 0.493, which is a great
improvement over the best model variant (LGGAM with 0.415). We want to
understand how many images are needed to decide properly about this model
selection. The upper bound is the best-case scenario, established from having
seen the full set. The lower bound is worst-case model selection for each part.
Now, we are interested in the performance of model fusion when selecting a
model variant for each part, after seeing 1, 2, 4, ..., 64 random images. For
each amount of images, the experiment is repeated 10 times, because it involves
random draws of the images. The increasing performance is shown in Fig. 6.
We observe that the average IoU starts way above the lower bound, indicating
that just one image is already an indication of which model is most suitable for
respective parts. After having seen a few images, e.g. 4 or 8, it is already possible
to determine an effective selection of models to acquire better performance by
fusion. With 32–64 images, the performance is close to the upper bound.

4.7 Label Efficiency

We hypothesize that the performance of Guided SAM largely depends on the
accuracy of the guidance classifier. This classifier is trained with 1, 2, 4, ..., 64
images. We explore how many training images are needed for effective guidance.
At various amounts of training images, we evaluate the model variants (Sect. 4.5)
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Fig. 6. After having seen a few images, e.g. 4 or 8, it is already possible to determine
an effective selection of models to acquire better performance by fusion.

Fig. 7. Learning efficiency of our model variants and the fused model. With 64 images,
a performance of IoU≈0.49 is achieved. With 32 or only 16 images, performance drops
with respectively only 0.04 or 0.12.

and the fused model (Sect. 4.6), which combines the best performing model vari-
ants per part. Figure 7 shows the learning efficiency. The fused model is the best
performer on average. Our guidance with Grounded SAM, i.e. Grounded Guided
SAM (GGSAM), is the best performer at very low number of images. Probably
this is because the confidences of that model are a useful source to filter out
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wrong segmentations. With more than 8 training images, the fused model has
a better performance, especially with 16, 32 or 64 images. With more training
images, the guidance becomes better, hence all model variants become better.
As a consequence, merit can be taken that the best variant is different across
parts (Table 3). With 64 images, a performance of IoU≈0.49 is achieved. With 32
or only 16 images, object parts can be segmented reasonably well: performance
drops with respectively only 0.04 or 0.12.

5 Conclusion

In this paper, we proposed a novel method for guiding segmentation models
to accurately identify object parts. Our approach leverages regions of interest
(ROIs) composed of patches predicted by a learnt classifier to identify specific
parts of the object and indicate a positional prompt as starting point for part
segmentation. It can be used as a guidance for advanced segmentation models
such as (Grounded) SAM. We evaluated our method using the Car Parts dataset
and demonstrated that it achieves good performance, even with a limited num-
ber of labeled patches. This approach significantly reduces the manual effort
required for annotation, as it relies on labeling patches rather than creating full
segmentation masks. The patch annotations must be centered around the object
parts to ensure that the SAM positional prompts are correctly placed. Misalign-
ment could lead the model to segment the background instead of the intended
object parts. For future work, we plan to explore techniques to automatically
refine patch placement to enhance segmentation accuracy further. Additionally,
we aim to extend our method to other datasets and object categories to validate
its generalizability and robustness across various domains.

References

1. Biederman, I.: Recognition-by-components: a theory of human image understand-
ing. Psychol. Rev. 94(2), 115 (1987)

2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
3. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance

segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5356–5364 (2019)

4. Jain, A.K., Hoffman, R.: Evidence-based recognition of 3-D objects. IEEE Trans.
Pattern Anal. Mach. Intell. 10(6), 783–802 (1988)

5. Jia, M., et al.: Fashionpedia: ontology, segmentation, and an attribute localization
dataset. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020.
LNCS, vol. 12346, pp. 316–332. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58452-8 19

6. Kirillov, A., et al.: Segment anything. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 4015–4026 (2023)

7. Liu, S., et al.: Grounding DINO: marrying DINO with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499 (2023)

https://doi.org/10.1007/978-3-030-58452-8_19
https://doi.org/10.1007/978-3-030-58452-8_19
http://arxiv.org/abs/2303.05499


306 S. B. van Rooij and G. J. Burghouts

8. Myers, A., Teo, C.L., Fermüller, C., Aloimonos, Y.: Affordance detection of tool
parts from geometric features. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1374–1381. IEEE (2015)

9. Nauta, M., Schlötterer, J., van Keulen, M., Seifert, C.: PIP-Net: patch-based
intuitive prototypes for interpretable image classification. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2744–
2753 (2023)

10. Oquab, M., et al.: DINOv2: learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193 (2023)

11. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT press (1999)
12. Pasupa, K., Kittiworapanya, P., Hongngern, N., Woraratpanya, K.: Evaluation of

deep learning algorithms for semantic segmentation of car parts. Complex Intell.
Syst. 1–13 (2021). https://doi.org/10.1007/s40747-021-00397-8

13. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: International Conference on Machine Learning, pp. 8748–8763.
PMLR (2021)

14. Ramanathan, V., et al.: PACO: parts and attributes of common objects. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 7141–7151 (2023)

15. Reddy, N.D., Vo, M., Narasimhan, S.G.: CarFusion: combining point tracking and
part detection for dynamic 3D reconstruction of vehicles. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1906–1915
(2018)

16. Ren, T., et al.: Grounded SAM: assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159 (2024)

17. Sun, P., et al.: Going denser with open-vocabulary part segmentation. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 15453–
15465 (2023)

18. Wei, M., Yue, X., Zhang, W., Kong, S., Liu, X., Pang, J.: OV-PARTS: towards
open-vocabulary part segmentation. In: Advances in Neural Information Processing
Systems, vol. 36 (2024)

19. Zhao, X., et al.: Fast segment anything (2023)

http://arxiv.org/abs/2304.07193
https://doi.org/10.1007/s40747-021-00397-8
http://arxiv.org/abs/2401.14159


Multidimensional Cross-Reconstructed
Networks for Few-Shot Fine-Grained

Image Classification

Yu Cheng, Bo Li(B), Penghao Jia, Aoxiang Ning, and Jinhong He

Chongqing University of Technology, Chongqing 400054, China
{cy0707,jph0526,ningax,hejh}@stu.cqut.edu.cn, libo@cqut.edu.cn

Abstract. In recent years, numerous Few-Shot Fine-Grained Image
Classification methods have been proposed, primarily focusing on better
fine-grained feature extraction. Among them, the feature mapping recon-
struction network (FRN) is a prominent approach to solving this prob-
lem. Nevertheless, extensive comparative experiments reveal that tradi-
tional FRN only utilizes support features from a single channel dimension
to reconstruct query features, while neglecting interactions between dif-
ferent dimensions, which leads to inaccurate reconstruction errors. To
mitigate this issue, this paper proposes a cross-reconstruction network
(CRN), which effectively helps the model learn the features across differ-
ent dimensions, enhancing its applicability to the few-shot fine-grained
classification problems. Additionally, we introduce a multi-scale feature
enhancement (MCFE) module for feature information, which works in
concert with the cross-reconstruction network to capture feature informa-
tion of images more effectively and make features more specific. Exten-
sive experiments on a baseline dataset demonstrate the superiority of our
approach compared to other state-of-the-art methods.

Keywords: Few-shot Fine-Grained image classification · Few-shot
learning · Feature reconstruction · Feature fusion

1 Introduction

In recent years, researchers in the computer vision community have devoted
considerable attention to few-shot learning [17] [28], particularly few-shot clas-
sification [1,5,8,37]. Among these, few-shot fine-grained image classification has
posed significant challenges due to the limited number of labeled samples per cat-
egory and the high similarity between subcategories. Therefore, models need to
the capability to learn and distinguish fine-grained features from a small number
of labeled samples.

To address the challenges of few-shot classification, researchers have exten-
sively explored meta-learning-based approaches. Meta-learning strives to acquire
meta-level knowledge from base classes and subsequently apply this knowledge to
new classes. Existing meta-learning methods can generally be divided into three
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15329, pp. 307–321, 2025.
https://doi.org/10.1007/978-3-031-78110-0_20
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categories, metric-based methods [9,30,31,35,41], optimization-based methods
[6,23,24,27,28], and transfer learning-based methods [19] [2].

Recently, some metric-based methods have introduced novel alignment [42]
or reconstruction [16] [17] [39] techniques, achieving impressive performance in
few-shot fine-grained image classification. Among these, the Feature Mapping
Reconstruction Network (FRN) [39], proposed by Wertheimer et al., demon-
strates excellent performance in few-shot fine-grained classification by weighting
and reconstructing each position of its feature map using the ridge regression
formula for the support features of each category, and employing the reconstruc-
tion error to compute the metric score. However, our experiments reveal that
when employing basic features from the usual embedding module for reconstruc-
tion, FRN focuses on reconstructing the query features from single-dimensional
support features. This approach neglects interactions between different dimen-
sions, which are crucial for fine-grained image classification, leading to inaccurate
reconstruction errors. This limitation represents a key issue in the FRN method-
ology.

Firstly, we developed the multi-scale feature enhancement (MCFE) Module
to address the challenge of model performance being affected by background
noise and complex scenes in images. The MCFE module enhances computa-
tional efficiency through parallel processing and global information encoding,
while suppressing the interference of irrelevant information. Furthermore, tra-
ditional FRN only reconstructs features from a single channel dimension of the
supporting features, ignoring the interactions between different dimensions. This
oversight can result in inaccurate reconstruction of the target. To tackle the
issue of inaccurate reconstruction, we propose a new reconstruction approach.
The method captures the relationship between the different dimensions of the
support feature map and the query feature map, thus providing a more accurate
distance metric. Our main contributions can be summarized as follows:

• We propose a new multidimensional cross-reconstructed network (FMCRN)
for few-shot fine-grained image classification.

• We propose a new cross reconstruction approach (CRN) that replaces the
traditional single reconstruction approach.

• We propose a new feature extraction module (MCFE) to extract important
feature information in feature maps, which can help in semantic understand-
ing of images.

• The results on fine-grained image datasets, coarse-grained datasets, and dif-
ficult datasets with few-shot classification consistently prove the superiority
of our proposed method.

2 Related Work

2.1 Few-Shot Learning

In a broad sense, few-shot learning methods based on deep learning can be
mainly classified into three categories. The model-based approach [3,7,22,28]
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aims to quickly update the parameters using a small number of samples by
designing the model structure to directly establish the mapping function between
the input X and the predicted value P . Optimization strategy-based approaches
[6,23,24,27,28] quickly adapt to new tasks by learning how to adjust model
parameters.

In this work, we mainly focus on the third type, i.e., metric-based approaches
[18]. Metric-based approaches focus on learning a metric space such that sam-
ples from the same category are closer to each other and samples from different
categories are further away. BSNet [17] uses two similarity metrics to learn the
distinct features of each class as a way to classify them. MatchNetwork [35] clas-
sifies query samples by calculating match weights for samples in each category,
using an attention mechanism to focus on the feature representations in the
support set that are most relevant to the query samples, and then using these
weighted feature representations to comprehensively assess the similarity of the
query samples to known categories.

Our research is not about creating new metrics; instead, it explores how to
extract features from metric learning that are critical for category differentiation,
with the goal of improving the accuracy of few-shot learning tasks.

2.2 Feature Alignment in Few-Shot Image Classification

Feature alignment methods aim to improve the learned similarity between images
by aligning features in an image to capture the spatial location between objects.
This helps the model to better utilize the similarities or differences between
samples to improve classification accuracy. Feature alignment methods can be
broadly categorized into spatial alignment [9,11,39,40,42] and channel alignment
[9,11,14,29].

The cross attention module (CAM) in CAN [9] focuses on the semantic cor-
relation between features. It computes the cross attention graph by calculating
the correlation between each pair of classes and the query feature graph to high-
light common areas to localize objects. The PARN [40] is its ability to compute
the similarity between any two positions in an image feature regardless of their
spatial distances in the image, which significantly improves the fast adaptation
and classification of new categories in sample less learning scenarios. DSN [29]
constructs a dynamic classifier by using subspaces to represent the set of sam-
ples in each category. This approach exploits the power of subspaces to capture
and model structure in high-dimensional data, thereby improving classification
accuracy and generalization. RENet [11] performs autocorrelation transforma-
tion through self-correlation representation (SCR), allowing the model to extract
structured patterns from each image. It also computes cross-correlation between
two image representations through cross-correlation attention (CCA), enabling
the model to generate joint attention and focus on semantically relevant content
between images.

FRN [39] uses ridge regression to reconstruct the feature map of a query
image based on support features, providing closed-form solutions that are com-
putationally efficient. Although FRN attempts to preserve the spatial details of
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the image, it struggles to effectively reconstruct the image features because it
does not fully account for the semantic information

Unlike existing reconstruction-based approaches, our proposed FMCRN
introduces a new cross-reconstruction module. This module is based not only on
channel reconstruction but also on height reconstruction, width reconstruction,
and height-width cross-reconstruction. This design allows for a fuller integration
of both basic and local content-rich feature representations, thereby enhancing
the network’s semantic understanding of images.

2.3 Attention Mechanism

Over time, the attention mechanism has emerged as a pivotal technique in
enhancing image classification performance. It enables the model to concen-
trate on essential information within the image while filtering out irrelevant
background, thereby enhancing classification accuracy and efficiency.

Since the introduction of the transformer model [34], traditional channel
attention mechanisms, such as (SENets) [10], enhanced feature representation
by explicitly modeling interrelationships between channels. Subsequently [20]
proposed global attention mechanism (GAM), which aims to enhance the per-
formance of deep neural networks by preserving channel and spatial aspects to
enhance cross-dimensional interactions. Shortly after, [25] and others proposed
a novel efficient multiscale attention (EMA) module focusing on reducing the
computational cost while preserving the information of each channel.

Traditional few-shot fine-grained image classification networks often neglect
cross-scale information integration, limiting the model’s ability to capture subtle
yet critical features. To solve this issue, we developed a new multi-scale feature
enhancement module (MCFE), inspired by the research of [25]. The core of the
design of this module is to address the problem of accurately capturing those
small but critical feature differences in learning situations with only a small
number of samples, by first reconstructing them as noise maps, and then by
synthesizing feature information at different scales to capture those subtle fea-
tures that are critical for classification. The combined use of various multi-scale
feature enhancements significantly improves the model’s sensitivity to impercep-
tible changes in the image, which in turn achieves higher accuracy and reliability
in image classification tasks.

3 Methodology

3.1 Definition of the Problem

The few-shot classification problem usually involves dividing the given dataset
D = {(xi, yi), yi ∈ C} into three sub-datasets. These are the training set
Dtrain = {(xi, yi), yi ∈ Ctrain}, the validation set Dval = {(xi, yi), yi ∈ Cval},
and the test set Dtest = {(xi, yi), yi ∈ Ctest}, which is the final test to evaluate
the model. These three sub-datasets are in principle mutually exclusive, so they
contain different image classes, i.e. Dtrain ∩ Dval ∩ Dtest = ∅.
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Fig. 1. The raw image is fed to the embedding module fϕ to obtain a basic feature
which is subsequently converted by the MCFE module into a richer feature represen-
tation. We use orange, yellow and red to denote the three subcategories of the support
image, and green, gray and light blue to denote the query image. Then, the cross-
reconstruction module cross-reconstructs the two types of query features based on the
two types of support features to obtain five reconstruction tasks. ωdd, ωhh, ωww, ωhw

and ωwh denote the corresponding weights used to compute the weighted reconstruction
scores of the query images. Finally, the similarity is computed based on the weighted
reconstruction errors thus obtaining the metric scores.

N -Way K-shot is a common setup for few-shot, i.e., each training sample
consists of N classes randomly sampled from Dtrain, and each class consists of
K labeled samples to train the model and L unlabeled samples. The support set
and query set are for model learning and validation, respectively. Each class in
the support set S = {(xi, yi)}n

i=1(n = N ×K) contains K labeled samples, while
each class in the query set Q = {(xq, yq)}m

q=1(m = N × L) contains L unlabeled
samples.

3.2 The Framework of FMCRN

In Fig. 1, we describe the framework of FMCRN. The support set S and the
query set Q are input into the embedding module fϕ to extract basic features.
The multi-scale feature enhancement module (MCFE) takes the base features
as inputs and generates features Sd, Sh, Sw and Qd, Qh, Qw with richer semantic
information while reducing the effect of noise. These features are then fed into
the cross-reconstruction module, producing five sets of cross-reconstructed query
features. The metric distance between these cross-reconstructed query features
and their corresponding true query features is computed as the reconstruction
error. The weighted sum of these five reconstruction errors is used as a metric
score to classify the query image.

3.3 The Multi-scale Feature Enhancement Module (MCFE)

The multi-scale feature enhancement module, as shown in Fig. 2, aims to utilize
a convolutional layer to reconstruct the noise mapping and introduces a residual
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Fig. 2. The structure of MCFE.

learning mechanism that removes redundant features by comparing the enhanced
noise-mapped image with the original noisy image. This process enhances the
ability to capture features at different scales and improves classification accuracy
through fine feature modeling and multi-scale contextual information fusion.

Firstly, we utilize the residual dense architecture [32,43] for feature enhance-
ment, which efficiently identifies and eliminates redundant high-frequency fea-
tures through a multi-layer structure and residual learning techniques, enhancing
the network’s noise suppression ability and improving the denoising effect. Subse-
quently, we pass the enhanced image through a feature extraction module, which
effectively extracts and fuses features from different scales and spatial locations,
thereby enhancing the richness and accuracy of feature representations for better
classification.

Specifically, we first extract image shallow features using a convolutional layer
with a 5×5 convolutional kernel size, and further refine the image features using
two combinations of RDB [43] and ReLU with a 4-layer structure. Then, we fused
the image features learned by two residuals to achieve the enhanced ability of
shallow features to memorize deep features. To prevent over-enhancement we
pass the fused features through a convolutional layer and ReLU again. We used
1 × 1 and 3 × 3 convolutional kernels to extract image features. For the 1 × 1
convolutional branch, we use global average pooling to encode separately along
the horizontal and vertical directions to obtain two parallel feature encoding
vectors. These operations can be represented as:

ZC
H =

1
W

∑W
j−1X

(i,j)
C , ZC

W =
1
H

∑H
i−1X

(i,j)
C (1)

Where X
(i,j)
C represents the feature at position (i, j) of channel C, and ZC

H

and ZC
W are the features obtained from pooling in the horizontal and vertical

directions, respectively.
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For 3 × 3 convolutional branching, we use global average pooling to encode
global spatial information as follows:

ZC =
1

H × W

∑H
i−1

∑W
j−1X

(i,j)
C (2)

Further, we optimize network efficiency and performance through feature
grouping and parallel processing. The feature grouping strategy divides the chan-
nel into subgroups, with each subgroup focusing on different semantic features,
thereby enhancing feature representation. The parallel processing unit consists
of two branches: one captures local features using 1 × 1 convolution and average
pooling, while the other captures broader spatial context using 3 × 3 convolu-
tion, which accelerates feature extraction and enhances the capture of multi-scale
feature. This setup accelerates feature extraction and improves the capture of
multi-scale features.

The cross-dimensional interaction mechanism further integrates information
from different sub-feature groups. Two spatial attention maps were generated
through matrix dot product operations and channel features. The first spatial
attention map is obtained by multiplying the output of the parallel process-
ing with the output of the 1 × 1 convolution branch, while the second spatial
attention map is obtained by transforming the output of the 1 × 1 convolution
branch into the corresponding dimensional shape, retaining precise spatial loca-
tion information.

Ultimately, the output feature maps within each group are derived by aggre-
gating the two spatial attention weights and applying a specific function. This
multi-scale contextual fusion strategy enables the network to generate pixel-level
fine attention for high-level feature maps more efficiently, thereby improving fea-
ture representation quality. These operations can be expressed as:

y
(i,j)
C = σ(

∑C
k=1(ZK • ω

(i,j)
KC )) (3)

Where σ is the Sigmoid activation function, ZK is the global spatial information
of the Kth channel obtained by global average pooling, and ω

(i,j)
KC is the learned

attention weights.

3.4 Cross-Reconstruction of Features Based on Ridge
Regression(CRN)

The FRN tries to find the matrix W ∈ Rkr×d to reconstruct Q as a weighted sum
of rows in S. In essence the reconstruction of Q depends on the vector of S in the
channel dimension. Yet, after our extensive experiments, we have learned that the
single-channel dimension-based reconstruction approach ignores the relationship
between different dimensions, which leads to inaccurate reconstruction errors.

In order to solve this kind of problem, we design a new feature cross-
reconstruction module. In this new feature cross-reconstruction task, we follow
the ridge regression strategy proposed in Wertheimer et al. [39] for all reconstruc-
tion tasks. The support features S ∈ RkT×d and query features Q ∈ RT×d (where
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T = h×w), three different types of features are newly extracted as Sd, Sh, Sw in
the support feature pool, and with the query feature pool Qd, Qh, Qw, and then
these features are cross-refactored, resulting in five refactoring tasks.

They are height and width based cross reconstruction, channel based Sd

and Qd reconstruction, height based Sh and Qh reconstruction and width based
Sw and Qw reconstruction. Which Sd ∈ Rkhw×d, Sh ∈ Rkdw×h, Sw ∈ Rkdh×w;
Qd ∈ Rhw×d, Qh ∈ Rdw×h, Qw ∈ Rdh×w.

This cross-reconstruction method is feasible since we get equal height and
width in the feature graph, and we reconstruct the query feature Qw in the
width dimension by the support feature Sh in the height dimension and the
support feature Sw in the width dimension to reconstruct the query feature Qh

in the height dimension.

WhwSh ≈ Qw,WwhSw ≈ Qh (4)

where Whw ∈ Rdh×kdw, Wwh ∈ Rdw×kdh. The formula suggests that this process
involves the intersection of two dimensions, Qw is eventually reconstructed as a
weighted sum of Sh rows, Qh is eventually reconstructed as a weighted sum of
Sw rows.

We finally use self-reconstruction based on height, width and channel. That
is, Sh reconstructs Qh, Sw reconstructs Qw and Sd reconstructs Qd. Where
Wh ∈ Rdw×kdw,Ww ∈ Rdw×kdh,Wd ∈ Rhw×khw.

WhSh ≈ Qh,WwSw ≈ Qw,WdSd ≈ Qd (5)

To compute the optimal Whw, Wwh, Wh, Ww,Wd, we learn from ridge regres-
sion by solving the following least squares problem:

W = argmin
W

||Q − WS||2 + λ||W ||2 (6)

W is denoted as Whw, Wwh, Wh, Ww,Wd, respectively, and λ is denoted as
λhw, λwh, λh, λw,λd. Following the rules of the FRN [39], where || · || is the
Frobenius paradigm number and λ is a constant controlling the bias-variance
tradeoff, which we set as a learnable parameter. The target weights W have the
following closed form solutions:

W = QST (SST + λI)−1 (7)

where I ∈ RkT×kT is the unit matrix, W ∈ {Whw,Wwh,Wh,Ww,Wd}, S ∈
{Shw, Swh, Sh, Sw, Sd}, Q ∈ {Qhw, Qwh, Qh, Qw, Qd}, λ ∈ {λhw, λwh, λh, λw, λd}
Thus, the reconstructed query feature image can be computed as:

Q̂hw = WhwShw, Q̂wh = WwhSwh, Q̂h = WhSh, Q̂w = WwSw, Q̂d = WdSd (8)

We compute the similarity of these reconstructed query features with the
original unprocessed query features to obtain the reconstruction error of recon-
structed query features from the support features for each dimension.

Ehw =< Q, Q̂hw >=
||Q − Q̂hw||2

dh
,Ewh =< Q, Q̂wh >=

||Q − Q̂wh||2
dw

(9)
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With the above formula, we can get the reconstruction error based on each
dimension. Eventually we need to perform a weighted sum of the reconstruction
errors obtained from the appealed formula to get the final reconstruction error.

Er =< Q, Q̂ >= ωhwEhw + ωwhEwh + ωhEh + ωwEw + ωdEd (10)

where ωhw, ωwh, ωh, ωw, ωd, are the learnable weights associated with each of
the five reconstruction tasks.

Based on the above reconstruction error, we can get the final classification
prediction probability. Where c denotes the category, γ is the learnable temper-
ature factor and C denotes the set of supported categories.

P (yq = c|xq) =
e(−γEr)

∑
i∈Ce(−γEr)

(11)

4 Experimental Results and Analysis

4.1 Datasets

To evaluate the effectiveness of the proposed FMCRN model, we conduct exten-
sive experiments on four different fine-grained datasets: the CUB [36], Aircraft
[21], Dogs [12] and Cars [13].

The CUB dataset contains 200 bird categories with a total of approximately
600 images per category, totaling 11,788 images. We randomly divided them
into a training set of 100 classes, a validation set of 50 classes and a test set of
50 classes. In addition, we crop each image to the bounding box of the human
annotations following the preprocessing methods of [41,42].

The Aircraft dataset contains 100 aircraft classes and 10,000 images, and we
randomly select 50 classes as the training set, 25 classes as the validation set,
and 25 classes as the test set. The aircraft in each image are annotated with
tight bounding boxes and hierarchical aircraft model labels.

Dogs Dataset contains 20,580 labeled images from 120 different dog breeds,
with about 150–200 images per breed. We randomly selected 70 classes to form
the training set, 20 classes for the validation set, and 30 classes for the test set.

The Cars dataset contains 16, 185 images of 196 classes of cars. We randomly
select 130 classes to form the training set, 17 classes for the validation set, and
49 classes for the test set.

We choose these four fine-grained datasets as a measure of the performance
results achieved by FMCRN in each domain. By using this approach we can make
our model more convincing in the domain of few-shot fine-grained classification.

4.2 Implementation Details

Given the small size of our training samples, we use the lightweight Conv-4 as
the backbone network, which is commonly used in recent classification work and
also known as Conv-64F, as shown in Fig. 3. This network contains 4 identical
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Fig. 3. Structure of the Conv-4 backbone.

convolutional blocks, each consisting of a convolutional layer, a BatchNorm layer,
a ReLU activation, and a max-pooling layer of size 2. Thus, when we set the
size of the input image to 3 × 84 × 84, the shape of the output feature map is
64 × 5 × 5. During the training phase of our model, we set the epoch to 800 and
the initial lr to 1e−2, weight decay is set to 5e−4, λ and β are set as learnable
parameters (λ ∈ {λhw, λwh, λh, λw, λd}, β ∈ {βhw, βwh, βh, βw, βd}). We validate
the model by performing every 20 epochs, thus selecting the model with better
performance based on the validation set. These parameters are consistent for all
datasets

For all experimental procedures, we use 5-Way 1-shot and 5-Way 5-shot set-
tings for testing and performed 10,000 random samples on the test dataset in
order to compute the average classification accuracy with 95% confidence inter-
vals.

4.3 Comparison with State-of-the-Art Technology

In order to verify the applicability of our model in few-shot fine-grained image
classification, we conduct experiments on the following four fine-grained image
classification datasets. Based on these four fine-grained datasets we reproduce
some classical methods for fine-grained image classification. For example (Match-
ingNet [35], ProtoNet [30], Relation [31], Baseline++ [1]) as well as more recent
methods for fine-grained image classification (DSN [29], DN4 [15], DeepEMD
[42], RENet [11], the FRN [39], TDM [14], and LCCRN [16]), and as can be seen
in Table 1, our method achieves the highest accuracy on these four datasets.

In addition to conducting experiments on the fine-grained dataset, we also use
the same training strategy as the fine-grained dataset to conduct experiments
on the coarse-grained dataset mini-ImageNet [26] and meta-iNat dataset [33]
[38]. The results in Table 2 shows that FMCRN beats FRN and LCCRN in
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Table 1. Comparative performance of 5-Way 1-shot and 5-shot on CUB, Aircraft,
Dogs and Cars datasets. � denotes our reproduced results.

Model CUB Aircraft Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [35] 60.06± 0.88 74.57± 0.73 58.23± 0.89 74.90± 0.66 46.10± 0.78 59.79± 0.85 44.73± 0.77 64.74± 0.72

ProtoNet� [30] 63.79± 0.23 82.71± 0.16 58.65± 0.21 79.62± 0.18 46.24± 0.21 69.23± 0.16 47.16± 0.11 69.27± 0.19

RelationNet [31] 63.94± 0.92 77.87± 0.64 61.73± 0.98 75.96± 0.72 47.35± 0.88 66.20v0.74 46.04± 0.91 68.52± 0.78

DN4 [15] 57.45± 0.89 84.41± 0.58 68.41± 0.91 87.48± 0.49 39.08± 0.76 69.81± 0.69 34.12± 0.68 87.47± 0.47

DeepEMD [42] 64.08± 0.50 80.55± 0.71 62.39± 0.74 75.46± 0.18 46.73± 0.49 65.74± 0.53 61.60± 0.27 72.84± 0.37

BSNet(D&C) [17] 62.84± 0.95 85.39± 0.56 56.51± 1.09 70.80± 0.81 43.42± 0.86 71.90± 0.68 40.89± 0.77 86.88± 0.50

CTX [4] 72.61± 0.21 86.23± 0.14 67.41± 0.10 80.06± 0.34 57.86± 0.21 73.59± 0.16 66.35± 0.21 82.25± 0.14

FRN� [39] 73.62± 0.21 88.24± 0.13 53.97± 0.21 72.18± 0.18 59.91± 0.22 78.62± 0.15 64.25± 0.22 85.46± 0.12

TDM� [14] 74.73± 0.21 88.95± 0.13 69.90± 0.23 83.34± 0.15 58.77± 0.22 77.32± 0.15 66.10± 0.21 85.89± 0.13

LCCRN [16] 75.75± 0.22 88.25± 0.13 76.24± 0.21 87.65± 0.12 62.97± 0.22 78.57± 0.15 71.22± 0.21 86.40± 0.12

Ours 76.14±0.21 89.31±0.12 77.21±0.21 88.17±0.11 63.69±0.22 80.24±0.14 74.58±0.21 88.95±0.11

categorizing coarse-grained data. The main reason is that coarse-grained data
usually have greater inter-class differences than fine-grained data. Therefore the
cross-dimensional acquisition of global features of an image by FMCRN can
achieve better classification results than FRN and LCCRN.

Table 2. Performance on mini-ImageNet and meta-iNat.

Model
mini-ImageNet

1-shot 5-shot

FRN [39] 53.040.20 70.820.16

LCCRN [16] 53.930.20 70.410.16

Ours 55.510.20 71.790.16

Model
meta-iNat

1-shot 5-shot

Proto [30] 55.340.23 76.460.16

FRN [39] 62.260.23 80.230.16

Ours 66.960.23 83.090.15

Table 3. Ablation study on the removal of MCFE and CRN in 5-Way 1-shot and
5-shot on CUB, Aircraft, Dogs and Cars datasets.

MCFE CRN CUB Aircraft Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

× × 73.08± 0.21 88.13± 0.13 53.97± 0.21 72.18± 0.22 59.91± 0.22 78.62± 0.15 64.25± 0.22 85.46± 0.13

� × 76.08± 0.21 88.57± 0.12 76.16± 0.21 87.42± 0.12 63.18± 0.22 79.24± 0.15 72.72± 0.22 88.32± 0.11

� � 76.14±0.23 89.31±0.12 77.21±0.20 88.17±0.18 63.69±0.22 80.24±0.15 74.71±0.21 88.95±0.11

4.4 Ablation Experiment

Based on the fact that in the benchmark method FRN, the query features are
reconstructed by means of support feature vectors in the channel dimension and
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the resulting reconstruction error is also computed in the channel dimension. In
contrast, the proposed FMCRN employs channels, heights, lengths, and inter-
sections of height and width to reconstruct the error. In order to fully assess
the validity of different combinations of dimensions of reconstruction error, we
performed an ablation study. The results given in Table 3 show that in almost
all cases, the performance is worst when both modules are removed and the
MCFE module has a significant impact on the accuracy improvement. However
this module can lead to further improvement in the performance of the model
by combining it with our proposed reconstruction method.

Therefore, we argue that relying solely on reconstruction error in the channel
dimension overlooks some crucial feature information, and that our proposed
reconstruction method effectively addresses this by supplementing the channel
dimension reconstruction error.

4.5 Visualization

Original Image

Base features

MCFE features

Fig. 4. Visual comparison of base features and MCFE features. Compared to the base
module, MCFE extracts richer semantic information and reduces the effect of back-
ground.

In Fig. 4, we aim to provide an in-depth comparison of the differences and
advantages between the base feature extraction method and our proposed multi-
scale feature enhancement (MCFE) technique. The experimental results clearly
show that the MCFE technique can effectively reduce the background noise
while enhancing the semantic information in the image. By processing images
with MCFE, the model captures key information more accurately, leading to
improved classification accuracy.

5 Conclusion

In this paper, we propose a multidimensional cross-reconstruction network for
few-shot fine-grained image classification. First, we novel a multi-scale feature
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enhancement (MCFE) module to extract critical information from images. Sec-
ondly, our main contribution is a cross-reconstruction module that does not
rely on the traditional individual reconstruction errors; We propose a cross-
reconstruction module, i.e., a multi-dimensional reconstruction, as well as cross-
reconstruction of heights and widths with each other. Compared with existing
methods of reconstruction, this method allows us to capture the relationship
between different dimensions more efficiently, which is the key to fine-grained
learning. Finally, we validate the effectiveness of FMCRN through extensive
experiments on four challenging fine-grained datasets, as well as coarse-grained
and difficult classification datasets, demonstrating its highly competitive classi-
fication performance.
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Abstract. Although deep learning (DL) architectures achieve state-of-
the-art performance in a wide range of applications, such as computer
vision, the training process remains highly sensitive to hyperparame-
ters, initial weights, and data distributions, making the development
of fast and stable optimization methods a challenging task. The Root
Mean Square propagation (RMSprop) optimization method has success-
fully extended the Stochastic Gradient Descent (SGD), using an adaptive
learning rate mechanism, establishing its use in the DL community. How-
ever, even RMSprop suffers from convergence issues related to the high
variance of gradients and learning rates at the initial stage of training.
Motivated by the significant contribution of the multiplicative updates
in the early development of Machine Learning and recent preliminary
results, in this work, we propose a multiplicative update term oriented
to RMSprop, significantly improving its performance. More specifically,
the proposed term employs normalization to gradients and scales the
parameters according to their magnitudes, leading to significant accel-
eration at the initial stage of training, while resulting in more robust
models. Based on the proposed update term, we formulate two novel
RMSprop alternatives demonstrating the acceleration and robust capa-
bilities on traditionally used image classification benchmarks as well as
to convex and non-convex optimization tasks.

Keywords: RMSprop · Multiplicative updates · Accelerate training ·
Robust training

1 Introduction

Even nowadays, where Deep Learning (DL) has achieved state-of-the-art per-
formance in computer vision applications, training fast and robust DL models
remains a challenging task [1]. Stochastic Gradient Descent (SGD) undoubtedly
holds the credential of having a tremendous impact on the early development
of DL. In turn, RMSprop, inspired by Adagrad [2], is proposed as an adaptive
learning rate alternative to SGD, significantly improving the performance of DL
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models when gradients are sparse or, in general, small. Even though RMSprop,
along with Adam, is still missing a rigorous and well established theoretical
analysis, is considered as a preferable solution in a wide-range of applications,
including image classification, empirically shown state-of-the-art performance.

Although RMSProp improved the rapid decay issue of the learning rate of
Adagrad, it still suffers from convergence issues related to the high variance in
learning rate during early stages of training [3] or the magnitude of gradients [4],
which provides, in turn, a fruitful area for analysis, variations and enhance-
ments [5]. In our work, we focus on the update term of RMSprop, introducing
an alternative multiplicative term. More specifically, preliminary results have
shown that multiplicative updates leverage advantages over additive updates,
due to their properties to involve parameter magnitude during the update, and
despite the fact that they have been extensively studied during the early years of
machine learning research [6] holding strong theoretical guarantees [7], they have
been merely studied in the context of DL. In fact, multiplicative update remains
a valuable solution for non-negative matrix factorization, since they physically
constrain the sign of parameters, allowing part-based representation, and the
authors in [8] highlight the acceleration capabilities that are offered. Such phys-
ical restrictions can also be used to preserve the balance between excitatory and
inhibitatory synapses of neural networks [9], with recent work trying to exploit
such effects to stabilize training [10] or even train the DL architecture with lower
precision arithmetic [11].

In this work, we exploit the properties of the multiplicative updates to pro-
pose a novel update term, oriented to RMSprop, targeting to accelerate training
by overcoming known limitations that are related to gradient and parameter
magnitudes. More specifically, the proposed update term normalizes the gradi-
ents, providing a simple measurement of how much a single gradient descent step
will scale the original parameter, ignoring the magnitude of the gradient and con-
sidering the parameter’s one, which empirically is shown to make training more
robust and faster [4,12]. To fully exploit the potential of multiplicative updates
by overcoming the physical sign constraint, we integrate the proposed term into
a novel hybrid additive-multiplicative RMSprop approach, showing that both
proposed updates can generalize their acceleration and robust behavior, which
is observed on simple convex and non-convex optimization tasks on traditionally
used image classification benchmarks. The proposed methods offer acceleration
during the initial stage of training, while leading to greater robustness to initial
distribution models.

To this end, the main contributions of this work are twofold: a) a
multiplicative-based update rule that accelerates convergence of the optimiza-
tion process while making models more robust to initial parameter distributions
and b) a hybrid multiplicative-additive RMSprop that overcomes the sign lim-
itation of the multiplicative update term. We provide experimental results on
convex and non-convex task, shedding light on the benefits of the proposed
updates, while we demonstrate their capabilities on CIFAR image classification
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benchmarks, employing the proposed optimizers in several scenarios, focusing
on the robustness and acceleration capabilities.

The rest of the paper is structured as follows. First, we introduce the proposed
methods in Sect. 2. Then, the results of the experimental evaluation are reported
in Sect. 3. Finally, the conclusions are discussed in Sect. 4.

2 Proposed Method

Deep neural networks (DNNs) have the ultimate goal of approximating a function
f∗ using a universal approximator F . More precisely, the input of the networks
is indicated as x ∈ R

Ni−1 , where Ni−1 represents the number of input features
at i-th layer. Each sample in the train data set is labeled with a vector l =
1c ∈ R

C , where the c-th element equals to 1 and the other elements are 0 if
it is a classification task (C denotes the number of classes) or a continuous
vector l ∈ R

C if it is a regression task (C denotes the number of regression
targets). DNNs approximate f∗ by using more than one layer, i.e., F (x;Θ) =
f (n)(. . . (f (2)(f (1)(x;θ(1))θ(2); )θ(n)) = z(n) and learn the parameters θ(i) where
0 ≤ i ≤ n with θ(i) consisting of weights w(i) ∈ R

Ni×Ni−1 and biases b(i) ∈ R
Ni .

For example, the multilayer perceptrons compute the linear output of each layer
as:

z(i) = f (i)(y(i−1)) = w(i)y(i−1) + b(i) ∈ R
Ni . (1)

The output of the linear part of a neuron is fed to a non-linear function
g(·) : RNi → R

Ni , named activation function, to form the final output of the
layer:

y(i) = g(z(i)) ∈ R
Ni . (2)

Without loss of generality, this can be appropriately generalized to describe
convolution neural networks (CNN), with the difference that they apply multidi-
mensional convolutional operations between the features and the kernel parame-
ters. Consequently, training a CNN is achieved by updating its parameters, using
the backpropagation algorithm, to minimize an objective J(θ), we use lowercase
θ to simplify the notation. Cross-entropy loss is often used in multi-class classi-
fication as objective function, given by:

Jt(θt) = −
C∑

c=1

lc logFc(x;θt) ∈ R, (3)

where t define the training epoch and Fc(x;θt) denotes the c-th element of the
F (x;θt) output.

In the case of RMSprop, the algorithm moves each parameter θt−1 in the
opposite direction of the gradient gt = ∇θJt(θt−1) adapting the learning rate
for each parameter individually using the sequence of gradient estimates. More
specifically, the updated parameters is calculates as:

θt = θt−1 − η√
E[g2]t + ε

∈ R
N , (4)
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where η defines the step size, which by default is set to η = 0.001 and E[g2]t is
the moving average of squared gradient:

E[g2]t = βE[g2]t−1 + (1 − β)g2
t ∈ R

N , (5)

where β is the weighting parameter of moving average and by default is set to
β = 0.9.

However, RMSprop can be sensitive to the initial conditions of parameters;
for instance, if the initial gradients are large, the learning rates will be low for
the remaining training. Furthermore, the accumulation of squared gradients in
E[g2]t−1 can significantly eliminate the learning rate to values close to zero after
some training epochs. Therefore, this makes RMSprop sensitive to the choice of
learning rate and initialization scheme, leading to difficulties in training DL
models when the magnitude of the parameters differs from the initial theoretical
hypothesis. To overcome these limitations, we propose a multiplicative update
rule oriented to faster convergence and robustness that normalizes and clips
gradients. More specifically, the proposed update rule incorporates tanh(·) : R →
(−1, 1) function that offers normalization of the gradient and then multiplies it
by the parameter. In this way, the proposed update term proportionally scales
the parameters considering the magnitude of it, calculated as:

θt = θt−1 − |θt−1| tanh
(

ηin√
E[g2]t + ε

)
ηout ∈ R, (6)

where ηin ∈ R
+ is the inner and ηout ∈ (0, 1] the outer learning rate. Essentially,

the inner learning rate allows one to adjust the gradients regarding the working
range of the used nonlinearity. The outer learning rate affects the size of the
step similarly to the learning rate used in traditionally applied optimization
methods and, additionally, defines the upper scaling threshold depending on the
parameter, [−ηout|θt−1|, ηout|θt−1|]. For a deep learning application, we propose
setting by default the learning rates of multiplicative RMSprop as ηin = 0.4 and
ηout = 0.2

Motivated by the observation that gradient clipping in a specific setting can
accelerate training [13], making DL models more robust [4], the proposed multi-
plicative update rule naturally normalizes gradients and introduces a threshold
proportional to the magnitude of the parameter. More specifically, the proposed
multiplicative update rule makes the update term proportional to the parame-
ter by introducing the tanh(·) : R → (−1, 1) function. Intuitively, the multiplier
tanh (ηinmtlt) provides a measurement of how much a single gradient descent
step will scale the original parameter. In this way, the divergence issues occurred
when the update term ||η∇θJt(θt)|| becomes significantly larger than the weight
||θt|| can be partially eliminated, where || · || denotes the L2 norm.

In fact, as already shown, the ratio of the L2-norm of weights and gradients,
||θt||/||∇θJt(θt)||, is not only significantly high in the first epochs of training,
but also highly different between weights, biases, and layers [14]. As a result,
vanishing and exploiting gradient phenomena are prevalent during the initial
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training stage, making the traditional optimizer highly sensitive to initialization
and learning rate [15–17]. Using the proposed method, the update of parameters
no longer depends on the magnitude of the gradient, preventing the gradient-
weight ratio ||θt||/||(|θt| tanh

(
1/E[g2]t

)
)|| to become significantly large, while

it introduces thresholds for maximum increment and decrement that can be
easily controlled by the outer learning rate. Thus, we claim that the proposed
update term makes training more robust to vanishing and exploiting gradience
phenomena, offering acceleration to convergence.

Although the proposed update rule has the ability to preserve the initial sign
of the update parameter, making it an excellent choice for training neural net-
works oriented to interpretability [18] and neuromorphic architectures [19,20],
in traditional DL training, there are no such limitations. However, current neu-
ral network architectures are initialized by drawing parameters from a normal
distribution, N (0, σ2), with zero mean and variance depending on the size of the
layers [21]. Furthermore, by default, DL architectures are overparameterized,
allowing optimization methods to converge even in complex loss topologies, sta-
bilize and accelerate training, and, in turn, improve overall performance [22]. At
the same time, overparameterization allows different optimization methods to
converge at different local minima, leading to equivalent performances [23].

In this work, we exploit overparameterization to apply multiplicative updates
that accelerate training, since it allows the proposed multiplicative update rule
to converge in a local minimum using the initial sign of the parameters. Where
needed, the multiplicative update rule can be combined with the additive one,
exploiting in this way the benefits of the multiplicative update rule with the
ability of parameters to change sign when additive rule is used. The proposed
hybrid rule retains the advantages of multiplicative updates while controlling
the contribution of each update, and is given by:

θt = θt−1 − γ

[
|θt−1| tanh

(
ηin√

E[g2]t + ε

)
ηout

]

+(1 − γ)

(
η√

E[g2]t + ε

)
∈ R

N ,

(7)

where γ is the weight of the relative contribution of the multiplicative term.
By default, we suggest setting γ = 0.5 and learning rates as ηin = 0.01 and
ηout = 0.1. The learning rate of the traditionally additive update term can be
set to its default values η = 0.001

Finally, the hybrid method, except for allowing parameters to change their
initial sign when using the multiplicative update rule, also ensures that the
parameters will not be stuck at zero, which is a potential consequence of uti-
lizing multiplicative update rules. Although modern DL frameworks, such as
PyTorch [24] and Tensorflow [25], do not initialize weights and biases to zero,
combining the multiplicative update term with the additive one allows one to
overcome such potential limitation, leveraging the advantages of the multiplica-
tive update. However, it should be mentioned that the elimination of synapses
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could potentially be useful in cases where weight sparsity and/or pruning are
required [26], while it can also provide an additional regularization effect, avoid-
ing in this way overfitting during training.

Algorithm 1: RMSprop
Input : η, ηin, ηout : stepsizes, γ: update contribution, θ0: parameters, f(θ):

objective, α: alpha, λ: weight decay,
Initialize: u0 = 0: square average, b0 = 0: buffer, gave

0 = 0
1 begin
2 while t = 1 to T do
3 gt = ∇θft(θt−1);
4 if λ �= 0 then
5 gt = gt + λθt−1 ;

6 ut = αut−1 + (1 − α)g2
t ;

7 ũt = ut ;
8 // Additive

9 θt = θt−1 − ηgt/(
√

ũt + ε) ;

10 // Multiplicative

11 θt = θt−1 − |θt−1| tanh
(
ηingt/(

√
ũt + ε)

)
ηout;

12 // Hybrid

13

θt = θt−1

− γ
(|θt−1| tanh

(
ηingt/(

√
ũt + ε)

)
ηout

)

− (1 − γ)
(
ηgt/(

√
ũt + ε)

)
;

14 return θt ;

The proposed methods can be easily implemented using the original
RMSprop algorithm by changing the update rule, as presented in Algorithm 1.
More specifically, in order to integrate the proposed methods, one has to replace
the original additive update of RMSprop, given in line 9 (blue color), with either
the multiplicative or hybrid, in lines 11 (red color) and line 13 (green color),
respectively. In such a way, the leaning capability of the RMSprop algorithm
can be easily accelerated, providing a stable training process regardless of the
initial distribution.

3 Experimental Results

We experimentally evaluated the proposed framework using two different sets of
experiments. First, we demonstrate the effectiveness of the proposed optimiza-
tion framework in 2-dimensional convex and non-convex tasks, giving us further
insights into the optimization process. Then, we apply the proposed optimization
method in traditionally used image classification benchmarks employing DNNs.
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3.1 Convex and Non-convex Optimization

For a better understanding of the optimization method under the proposed
framework, we demonstrate different optimizers in 2-dimensional convex and
non-convex tasks. For convex task, we used a second-order polynomial given by:

f1(x) = β(x1 − α)2 + 10β(x2 − α)2 ∈ R, (8)

where x∗ = [α, α] is the global minimum of the convex function with subscript
i denoting the i-th element of the vector, and β defines the steepness of the
function. Additionally, we use the non-convex Rosenbrock benchmark function,
given by:

f2(x) = (α − x1) + β(x2 − x2
1)

2 ∈ R, (9)

where the global minimum is at x∗ = [α, α] and β defines the steepness of the
function. The values of α and β are set to 1 and 20, respectively. The vector
parameter x is optimized to solve the equations.

Table 1. Task configurations for tuning and evaluation processes

Convex 2D Rosenbrock
Parameter Tuning Evaluation Tuning Evaluation

x
(t=0)
1 50 N (50, 5) 0.5 N (0.5, 0.1)

x
(t=0)
2 50 N (50, 5) 3.0 N (3, 1)

α 1 N (1, 1) 1 1
β 20 N (20, 2) 60 N (60, 6)

Iterations 100 N (100, 10) 100 N (100, 10)

We evaluate the traditionally used RMSprop and the proposed multiplicative
and hybrid updates to find appropriate learning rates for the applied simplified
tasks. We tune the hyperparameters of each optimization approach evaluated
for the aforementioned tasks with a given configuration. The configuration used
for each task is reported in the Table 1 at columns 2 and 4. For hyperparameter
tuning, a grid search method is used. More specifically, for the traditionally
used additive RMSprop, we perform a search for the learning rate, ranging from
[1e − 6, 5e + 2], with a step of 0.5. For the proposed multiplicative update rule,
we perform a grid search for inner and outer learning rates, between values
[1e − 1, 5e + 1] and [1e − 4, 1.0], using step 0.5, respectively. Finally, for the
hybrid variation of the RMSprop, the above learning rate search spaces are
applied, while the weight of the relative contribution of the multiplicative term,
γ, is kept fixed and equal to 0.5. In all cases, 20 learning rate configurations are
evaluated as obtained from the grid search algorithm.

In Table 2, we present the final scores obtained from the tuning process on
lines 3 and 4. More specifically, in column 2, we present the performance of
traditionally used RMSprop and in columns 3 and 4 the performance for the



Multiplicative RMSprop Using Gradient Normalization 329

Table 2. The table reports in lines 3 and 4 the best scores after 100 iteration steps
applying the best hyperparameters as obtained from tuning process in given configu-
rations. At lines 6 and 7, the average test score over 100 randomly drawn task con-
figurations is reported applying the best hyperparameters as obtained from tuning
process.

Optimizer Baseline Proposed
Multiplicative

Proposed
Hybrid

Tuning
Convex 2D 2.62 × 10−7 1.09 × 10−7 2.42× 10−9

Rosenbrock 2.22 × 10−1 8.98 × 10−2 2.45× 10−2

Testing
Convex 2D 8.26 × 10−6 2.24 × 10−3 2.01× 10−8

Rosenbrock 3.16 × 10−1 1.43 × 10−1 2.01× 10−1

proposed multiplicative and hybrid RMSprop alternatives, respectively. For a
better comparison, we report the score for each evaluation run, which is com-
puted by dividing the Euclidean distance between the optimized parameters and
the global minimum with the Euclidean distance between the initial parameter
values and the global minimum. In this way, the zero means that the parameters
are on the global minimum, while the one means that the parameters are on the
initialization point.

From hyperparameter tuning results, presented in lines 3 and 4, it is high-
lighted that the proposed hybrid RMSprop performs significantly higher than
the traditionally used RMSprop, covering a larger distance from the global min-
imum during 100 iterations. This confirms that optimal performance is obtained
when the multiplicative update rule is combined with the additive one under
the proposed hybrid RMSprop. Hybrid RMSprop significantly outperforms both
additive and multiplicative update rules, since it exploits the acceleration capa-
bilities of the multiplicative update, while allowing the parameters to change
sign. This is demonstrated in Fig. 1 that depicted the Euclidean distance during
training. Although the proposed multiplicative update rule results in the worst
local minimum than the proposed hybrid RMSprop, it offers a significant per-
formance boost during the first epochs of training. In turn, the hybrid update
rule exploits such a boost by combining the proposed multiplicative update term
with the additive one, which allows the parameters to change sign, leading to a
higher convergence rate and resulting in a better local minimum.

Additionally, we investigate the robustness of the proposed framework, apply-
ing the best hyperparameter configurations obtained from the hypeparameter
tuning process. More precisely, we draw the initial points, β value (which defines
the slope of the function), and the number of iterations of a Gaussian distribu-
tion, with a mean equal to the value used in the tuning process and a standard
deviation that is proportional to the magnitude of the mean, as reported in
Table 1. In addition, in the Convex2D case, the global minimum is drawn from
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Fig. 1. The figure depicts the Euclidean distance between parameters and the global
minimum for Convex 2D and Rosenbrock tasks when applying alternative updates for
RMSprop optimizer.

a normal distribution as well. We report the average score over 100 evaluation
runs for the three optimizers in Table 2 in rows 6 and 7.

Evaluating the different RMSprop approaches in a randomly drawn config-
uration shows that the proposed hybrid RMSprop leads to significantly bet-
ter performance, while the multiplicative alternative suffers from a convergence
issue related to the sign constraint. More specifically, in the Convex 2D case,
the improvements when the hybrid update rule is used are impressive compared
to the traditionally used updates. Similar improvements are also achieved in the
Rosenbrock non-convex optimization task. The performance of hybrid updates
highlights the generalization ability of the proposed alternative on non-convex
task, while by comparing its performance with the one obtained when using the
multiplicative RMSprop, it is shown that the hybrid update rule exploits the
benefits of multiplicative updates overcoming the restrictions forced by the mul-
tiplicative update. In this way, the robustness and generalizability of the pro-
posed hybrid RMSprop are demonstrated, achieving better performance than
traditional updates in cases where the initial theoretical hypothesis differs from
the actual one.

3.2 Image Classification

To demonstrate the capabilities of the proposed RMSprop alternatives, we evalu-
ate them in traditionally used image classification benchmarks. More specifically,
we conducted experiments to evaluate the robustness and convergence of the pro-
posed optimizers in DNNs applying different size architectures to traditionally
used image classification benchmarks. First, we present experimental results in
the CIFAR10 dataset, which consists of 600,000 32 × 32 colored images in 10
classes, with 6000 images per class, where 50,000 are training images and 10,000
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test images, applying different training configurations and DNN architectures,
such as ResNet9, ResNet18 and VGG16 [27,28]. More specifically, 10 random
training configurations are used, applying Xavier initialization1 with different
gain values and different number of epochs, highlighting in this way the robust-
ness to the initial distribution when the proposed multiplicative update rule is
applied. Gain values are randomly drawn from a gamma distribution, defined as
g ∼ Gamma(k = 1, θ = 2.5), while the number of training epochs is drawn from
a normal distribution, defined as T ∼ N (60, 10). The default hyperparameter
values are used for each different optimizer, while we apply a simple preprocess-
ing to training data involving: a) random crop, b) random horizontal flip, c)
random rotation up to 15◦C, and d) normalization.

Table 3. Mean and standard deviation of Top-1 test accuracy on CIFAR10 dataset,
applying the different optimization methods on 10 randomly drawn training configu-
rations

Architecture Additive Multiplicative Hybrid

Epoch 5
ResNet9 61.66 ± 7.47 62.64 ± 9.55 64.21± 4.85

ResNet18 61.16 ± 7.02 60.15 ± 8.30 63.35± 4.82

VGG16 46.49 ± 12.0357.72± 18.24 56.54 ± 6.31

Final
ResNet9 86.24 ± 4.00 85.40 ± 2.18 86.56± 2.31

ResNet18 86.99 ± 3.99 86.23 ± 2.18 88.33± 2.45

VGG16 85.61 ± 6.28 83.00 ± 4.97 85.67± 4.56

In Table 3, the Top-1 average test accuracies and their variance are presented
in the 10 different training configurations. More specifically, in rows 3–5, the
test accuracies at the fifth epoch are reported, giving us further insight into the
training process, while in rows 7–8 the final test accuracies are presented. As
demonstrated by the results, the proposed hybrid RMSprop outperforms both
the additive and the proposed multiplicative RMSprop. The advantage offered
by the multiplicative term is highlighted by the performance of the multiplicative
alternative. Even though the multiplicative RMSprop constraints the parameters
to their initial sign, it not only achieves a similar test accuracy at the end of the
training, but also improves in some cases the test performance during the first
epochs. This confirms that multiplicative updates can lead to an acceleration
of convergence in the initial stage of training. On the other hand, the proposed
hybrid RMSprop sufficiently exploits the advantages of multiplicative update

1 Xavier initialization randomly draw the weights from a normal distribution defined
as w ∼ N (0, g

√
2

MiNi
), where Mi and Ni are the fan-in and fan-out values of the

i-layer, respectively, and g denotes the gain.
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term, by combining it with the additive one to overcome the sign limitation,
leading to overall better performance in all different architectures.

Table 4. Reports the mean and standard deviation of test accuracy on CIFAR10
dataset applying VGG16, ResNet9 and ResNet18 architectures

Optimizer VGG16 ResNet9 ResNet18

Fromage [10] 87.31 ± 2.42 87.43 ± 2.19 87.43 ± 2.19

MAdam [11] 73.64 ± 8.17 79.51 ± 10.59 79.51 ± 10.59

Nero [29] 86.45 ± 1.71 86.01 ± 3.78 86.01 ± 3.78

LAMB [30] 82.66 ± 4.65 84.28 ± 5.27 84.28 ± 5.27

SignSGD [31] 78.15 ± 1.78 84.18 ± 1.76 84.18 ± 1.76

Hybrid RMSprop 88.52± 0.86 87.95± 1.60 90.24± 0.88

We extend our experimental setup to evaluate the proposed method also with
novel optimization methods which offer robustness and/or minimum to no learn-
ing rate tuning over different initial distributions. To evaluate the methods, we
randomly draw five configurations, including different gains for the Xavier ini-
tialization method and different numbers of training epochs, as already described
in the aforementioned experimental setup. For baselines, we used: a) Nero [29]
optimizer that applies multiplicative update to perform a projected gradient
descent per neuron, using Adam’s memory, requiring no learning rate tuning,
b) Madam [11] which is also a multiplicative optimizer that allows no learning
rate turning and leverages advantages in cases where low-bit width synapses are
used, c) Lamb [30] that employs a layerwise adaptive learning rate strategy using
normalized gradients, and it is based on Adam optimizer, d) SignSGD [31] that
targets distributed training in multiple workers offering compression to gradients
and improving the convergence rate of SGD, competing with Adam in particular
cases, and e) Fromage [10] that is based on deep relative trust controlling the
relative size of updates, allowing the training of deep learning models without
learning rate tuning.

We report the Top-1 accuracy in the CIFAR10 test set for VGG16, ResNet9,
and ResNet18 architectures and in Tables 4. For all the methods evaluated, we
use the default hyperparameter configurations. As demonstrated, the proposed
hybrid RMSprop outperforms all baselines evaluated in all different cases, regard-
less of the applied architecture. In this way, we demonstrate that with the pro-
posed hybrid RMSprop, we are able to improve not only the robustness and
performance, contrary to the traditional used RMSprop, but also against novel
approaches that are applied for robustness. For example, in the ResNet18 case
the hybrid RMSprop improves the performance of the models in the average case
close to 3% from the second-best approach Fromage.

Furthermore, to investigate the acceleration offered by the proposed
approaches, we include the training and test performance in 5 evaluation runs
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Table 5. Average and variance of test accuracy over 5 evaluation runs on CIFAR100
using default configurations

Task Additive Multiplicative Hybrid

ResNet18 63.81 ± 1.41 60.18 ± 1.82 64.68± 1.46

ResNet34 64.61 ± 0.51 62.14 ± 0.12 65.99± 0.44

on CIFAR100, which is similar to CIFAR10, except that it has 100 classes con-
taining 600 images each, where 500 are training images and 100 test images per
class using the default Xavier initialization (g = 1). Similarly to the CIFAR10
task, we applied the default hyperparameters for each optimizer. Cross-entropy
loss is applied during training and the Top-1 test accuracy is reported in all
cases in Table 5. As also shown in Fig. 2, the multiplicative RMSProp acceler-
ates convergence during the first 10 training epochs. Hybrid RMSprop leads to
better accuracy in all cases, effectively exploiting the acceleration capabilities
offered by the proposed multiplicative update term. Even though the hybrid

Fig. 2. Training and test accuracy during training applying ResNet18 and ResNet34
architecture on CIFAR100 dataset using default configurations for each optimizer
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RMSprop slightly improves the performance in all the aforementioned cases,
it consistently leads to improvements on test accuracy, and especially in cases
where the robustness is required.

4 Conclusions

Even though multiplicative updates hold theoretical claims that potentially can
be used to accelerate DL training and lead to robust models, there are merely
studied in the context of DL optimization. In this work, we propose a novel
update term that unlocks training acceleration and robust model capabilities,
exploiting the properties of multiplicative update rules. More specifically, we
propose a multiplicative RMSprop that takes into account the magnitude of
parameters, while normalizing gradients, claiming that this leads to faster train-
ing and robust models. To overcome the limitations that may arise from the
multiplicative update rule, we also propose a hybrid RMSprop that combines
the traditional update rule with the proposed multiplicative update term. As
demonstrated by the experiments conducted, the proposed methods acceler-
ate training during the initial stage, while ensuring robustness when the actual
configurations differ from the initial hypothesis. We first validate the proposed
methods on simple convex and non-convex optimization tasks, showing that the
benefits observed when the proposed multiplicative term is applied can be gen-
eralized in traditionally used image classification benchmarks, such as CIFAR10
and CIFAR100.
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Learning. This paper presents a novel pipeline for identifying tasks in
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data through a transformer-based existing model. Second, we group the
embedding densities based on similarity and extract few nearest points to
each cluster centroid. Third, we train an incremental task classifier using
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in terms of computational requirements and build an algorithm that
decides when to learn a new task in an online way using the task classi-
fier and drift detector. We experiment with the real-world driving dataset
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1 Introduction

The rapid evolution of Machine Learning (ML) has led to significant advance-
ments in fields like autonomous driving, driven by vast datasets. Traditional ML
approaches assume data for training and inference are independent and iden-
tically distributed (IID) [5], which rarely holds true in real-world applications.
Real-life data can be non-IID, correlated, and context-dependent, leading to the
domain shift problem [26]. This is particularly challenging in dynamic environ-
ments like autonomous driving, where data distributions drift over time.

TADIL
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Fig. 1. Workflow of our TADIL method. During training, for a batch x related to task
Ti, we derive the nearest-centroid embeddings Ni. If drift is detected, these embeddings
are stored in memory M, and a new head is added to the multi-head model, trained
on Ni without label supervision. At inference, the task classifier h predicts the task
T̂i. The multi-head model then uses the corresponding head for final prediction y.
TADIL expands the model with new knowledge during training and accurately selects
the relevant head during inference.

Continual Learning (CL) aims to address these challenges by developing algo-
rithms that continuously adapt to new data without forgetting previous knowl-
edge. However, CL faces hurdles such as data privacy, storage, and computational
constraints, making it difficult to retain all incoming data for learning. Existing
CL strategies, including regularization [28], replay [14], and architectural mod-
ifications [19], often assume clear task boundaries and known tasks, which are
rare in real-world settings with continuous, unsupervised data. In the context
of CL, accurate task identification (task ID) plays a crucial role in maintaining
model performance across different domains. Task ID inference allows the model
to distinguish between different operational contexts, enabling it to apply the
most relevant knowledge and adapt its behavior accordingly. This is particu-
larly important in Domain-Incremental Learning (Domain-IL) scenarios, where
the underlying data distribution may shift over time. Without effective task ID
inference, a CL system may struggle to differentiate between tasks, leading to
suboptimal performance, increased forgetting, and reduced adaptability to new
domains. Our work addresses this challenge by introducing a novel, unsupervised
approach to task ID inference, which forms the foundation of our Domain-IL
pipeline.
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In autonomous driving, the complexity increases due to dynamic and unpre-
dictable environments [1]. Vehicles encounter diverse conditions, emphasizing the
need for sophisticated Domain-IL approaches. Recognizing these challenges, we
introduce a novel, unsupervised Domain-IL pipeline leveraging data embeddings
from a pre-trained CLIP model [18] to identify and classify tasks in real-time
without explicit task labels. Our approach is tailored for scenarios lacking super-
vision, utilizing unsupervised clustering of data embeddings to handle dynamic
domain shifts.

Our method hypothesizes that semantically similar tasks result in closely
clustered embeddings, while dissimilar tasks are farther apart. We extract clus-
ter centroids, representing the most critical data points for training a task-
specific classifier, suited for real-world applications like autonomous driving,
where accessing all tasks simultaneously is impractical. Our approach adapts
to new tasks through semantic embedding, density-based clustering, and a drift
detection mechanism, enabling dynamic domain shift detection—a capability yet
to be explored within driving datasets.

Implemented as an unsupervised pipeline, our method calculates base embed-
dings from raw data, groups them by similarity to identify nearest cluster
centroids, and incrementally trains a task classifier using these centroids. A
lightweight drift detector determines when a new task has emerged, enabling the
CL model to adapt to new data domains without explicit supervision. Using the
SODA10M real-world driving dataset [7], we demonstrate significant improve-
ments in handling domain shifts and task identification in a task-agnostic man-
ner, with minimal computational overhead.

Contributions:

– Introduce an unsupervised Domain-IL pipeline using nearest-centroid seman-
tic embeddings for task identification and classification in autonomous driv-
ing.

– Combine semantic embeddings with density-based clustering and online drift
detection for real-time, unsupervised task and domain adaptation.

– Demonstrate the superiority of our method through extensive evaluation on
the SODA10M dataset.

2 Related Work

Multimodal Transformer. The integration of multimodal transformers such
as CLIP has been pivotal in CL for tasks like autonomous driving. These mod-
els effectively combine visual and textual data to generate embeddings that
enhance object discrimination and adaptability to new scenarios. For exam-
ple, the TransFuser model [17] demonstrates improved urban driving predictions
by merging image and LiDAR data via attention mechanisms. Additionally, [9]
employs a Transformer with multimodal attention to predict vehicular trajecto-
ries, acknowledging social interactions. Our methodology leverages pre-trained



340 G. Bravo-Rocca et al.

transformer models to extract environmental patterns without the computa-
tional burden of training from scratch, allowing for future updates with more
advanced models.

Universal Representation and Cross-Domain Learning. Our work paral-
lels the goals of universal representation learning [12] by creating networks adept
at multiple tasks across domains. Unlike the typical use of knowledge distillation
in universal representation, which navigates the trade-offs between task-specific
losses and gradient conflicts, we utilize the CLIP ViT-B/32 model for direct
semantic embedding, streamlining the process. Challenges in task conflict are
thus circumvented by our reliance on a singular, robust pre-trained model. In
a similar vein, Kim [10] addresses cross-domain adaptability with their Visual
Token Matching technique, which, unlike our approach, uses non-parametric
patch-level matching for diverse domain learning. Our strategy, while sharing
the adaptability objective, diverges in methodology by leveraging the semantic
capacity of CLIP ViT-B/32.

Catastrophic Forgetting. Catastrophic forgetting is a major challenge in CL,
where neural networks forget previously learned information when acquiring new
concepts [2]. This problem, mainly due to gradient descent [11], necessitates bal-
ancing the integration of new data (plasticity) and retention of learned knowl-
edge (stability), known as the stability-plasticity dilemma. Inspired by biological
mechanisms, where the hippocampal system supports rapid learning (plasticity)
and the neocortical system maintains long-term storage (stability) [16], various
strategies have been proposed. Elastic Weight Consolidation (EWC) [11] protects
old knowledge by reducing weight plasticity through regularization, while Expe-
rience Replay (ER) [20] mitigates forgetting by maintaining a memory buffer of
past experiences combined with new data.

Domain-Incremental Learning (Domain-IL). A subset of CL, focuses
on sequentially learning tasks across different domains, essential for recogniz-
ing driving patterns under varied conditions. DISC [15] offers an online zero-
forgetting solution, learning new domains without re-training and using physical
sensors for task ID at inference. Domain-specific autoencoders [4] deduce task IDs
through reconstruction error, requiring significant training time and clear task
boundaries. In contrast, our approach uses a task-agnostic lightweight classifier
learning from small sample sets without predefined boundaries. Domain-aware
representations [27] tackle the stability-plasticity issue using a mixture model
for incremental learning, adjusting the internal structure to manage drift and
imbalance, while our method determines the task ID externally without altering
the model’s architecture.

Task-Agnostic CL and Task ID Inference. Task-agnostic approaches are
crucial for evolving driving scenarios without predefined task identities [29]. Vari-
ous methods have been proposed to address this challenge. Generative replay [23]
retains knowledge of previous tasks but is resource-intensive. Learning without
Forgetting (LwF) [13] uses distillation and regularization to preserve knowledge
across tasks. Techniques like ’progress and compress’ [22] and class-incremental
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learning [19] avoid task IDs but are tailored to specific models, potentially intro-
ducing bias. Recent task ID inference methods, such as Gradient-Based Task
Inference [21], use gradient embeddings from model parameters to predict task
IDs. However, this approach is computationally intensive and closely tied to spe-
cific model architectures. In contrast, our method employs transformer-based
semantic embeddings and density-based clustering for task ID inference, offering
a more model-agnostic and computationally efficient solution. Our approach uses
a lightweight, independent model for task identification, integrating seamlessly
with various architectures to ensure unbiased learning and generalization across
tasks.

3 Problem Definition

Let X be the input space, Y the output space, and T the space of task IDs.
We consider a sequence of K tasks, each with a joint distribution Pk(X,Y )
over X × Y . Our goal is to learn a sequence of K models f1, f2, ..., fK , where
fk : X → Y is the model for task k, such that each model is learned incrementally
without forgetting previous tasks.

During inference, the task ID t ∈ T is unknown. The model ft predicts
the output y ∈ Y as ft = pt(y|x). Formally, our domain-incremental learning
approach aims to:

arg min
f1,f2,...,fK

K∑

k=1

L(fk, Pk), (1)

where the goal is to minimize the loss function L(fk, Pk) for each task k, ensuring
incremental learning without forgetting previous knowledge.

In our experiments, the functions f1, f2, . . . , fK are multi-head classifiers:

fk(x) = gk(b(x)), k = 1, 2, . . . , K, (2)

where b(x) is the shared base network, gk(·) is the classifier for task k, and x
is the input sample. We use the ResNet18 [8] architecture as the base network
with linear classifiers.

To improve inference performance and support strategies like EWC, ER, and
LwF, a task classifier that learns the task ID without supervision is necessary.
This classifier predicts the task ID t ∈ T from input x, allowing the selection of
the appropriate classifier ft for inference. Without this, the multi-head classifier
may suffer from catastrophic forgetting and inefficient knowledge utilization.

Let gt be the classifier for task t. We define a task classifier ht : X → T
that predicts the task ID t for input x ∈ X. During inference, given x and
the predicted task ID t̂ = h(x), the multi-head classifier ft̂ predicts the output
y ∈ Y :

y = ft̂(x) = gt̂(b(x)). (3)
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Incorporating a task classifier into the domain-incremental learning frame-
work can be expressed as:

arg min
h,g1,g2,...,gK

K∑

k=1

L(fk, Pk), (4)

where h is the task classifier, gk is the classifier for task k, and L(fk, Pk) is
the loss function for task k. This ensures each classifier is learned incrementally
without forgetting previous knowledge, integrating the task classifier into the
learning process.

4 Components of the Pipeline for Task-Agnostic
Domain-IL

In this section, we first present a training pipeline for task-agnostic Domain-IL.
A series of components are introduced to obtain the nearest centroids and to
train an incremental task classifier using the Nearest Centroid Algorithm [24]
(a really light classifier). Then, a drift detector is presented to detect when to
train incrementally the task classifier. To train the task classifier in an unsu-
pervised way we need a series of components that together can predict the task
at inference time. Let ht be the task classifier for each task Tt. The task clas-
sifier is a function that maps an input x ∈ X to a task ID t ∈ 1, 2, ..., T , i.e.,
ht : X → 1, 2, ..., T . The task classifier is obtained through the following pipeline:

Semantic Embedding. Given a batch of inputs X = x1, x2, ..., xm, where m is
the batch size, we first obtain their corresponding embeddings E = e1, e2, ..., em
using the pretrained transformer-based model CLIP ViT-B/32. We can represent
this process as E = femb(X), where femb is the embedding function. The use
of a pretrained transformer-based model can be justified by the fact that these
models have already been trained on large amounts of data, and as a result, have
learned representations of common things such as pedestrians, cars, buildings,
and other objects that are commonly found in driving scenarios. Moreover, they
capture higher-level semantic information about the input that can be useful for
various downstream tasks, such as classification, clustering, or retrieval.

Density-Based Clustering. Next, we cluster the embeddings E based on
their cosine similarity using the DBSCAN density clustering algorithm [3].
Let the resulting clustering labels be C = c1, c2, ..., cm, where ci is the clus-
ter label assigned to the i-th embedding ei. Let the clustering function be
fclust(E; ε,minPts), where ε is the maximum distance between two points for
them to be considered in the same cluster (in our setup, ε = 0.3) and minPts
is the minimum number of points required to form a dense region (in our setup,
minPts = 10). An example of the outcomes of the density-based clustering
can be appreciated in Fig. 2, which depicts the 2D projection of two clusters of
embeddings (with actual 512 dimensions) corresponding to two different tasks.
The choice of DBSCAN is due to its ability to identify clusters without needing
the number of clusters. However, other clustering algorithms can also be used.
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Fig. 2. Visualization of density clustering for task-specific embeddings: Each point
represents an embedding, with distinct colors for Task 1 (purple) and Task 2 (red).
Black and red stars mark the centroids for each task’s cluster. The large circles delineate
the areas containing the nearest neighbors to these centroids, emphasizing the core
regions of each cluster. This graphical representation highlights the separation between
clusters of different tasks and the concentration of embeddings around their central
points. (Color figure online)

Nearest-Cluster Centroids. Then, we obtain the nearest centroids of the j
distinct clusters present in C (M = m1, . . . ,mj). Each centroid mi is calcu-
lated in the first phase of the Nearest Centroids Algorithm [24] from all the
embeddings ex where the cluster label cx = i. We can represent this process as
M = fcent(E,C), where fcent is the function that obtains the centroids, in our
case, by using Manhattan distances. The Manhattan distance metric is employed
for centroid computation due to its efficiency in high-dimensional spaces, as com-
monly encountered in embedding vectors. This metric is faster in those scenarios
since we do not have to square the differences as in Euclidean distance. At this
point, we obtain the k nearest neighbors of each centroid mi from the embed-
dings E using a nearest-neighbor algorithm such as k-Nearest Neighbors (in our
setup, k = 10). An example of the nearest-cluster centroids can be appreciated
in Fig. 2, which depicts the nearest neighbors of each centroid (inside the circles)
on top of the clusters corresponding to two different tasks.

Nearest-Centroid Incremental Classifier. Finally, we obtain the task clas-
sifier ht for task Tt by running the second phase of the Nearest Centroids Algo-
rithm. Specifically, given the set of k nearest neighbors of each centroid mi (let
it be Ni), we train a task classifier hi

t using the nearest neighbors Ni and their
corresponding task IDs for tasks T1, T2, ..., Tt−1. The final task classifier ht for
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task Tt is obtained by combining the individual classifiers hi
t using a majority

vote. We can represent this process as ht = fcls(Mtd , t
d), where fcls is the func-

tion that obtains the task classifier ht using the nearest centroids Mtd and td

being the new task ID detected by the drift detector R (as defined below). Each
Mtd is obtained using the training data Di

t−1
i=1 of the previously seen tasks. The

task classifier ht maps an input x to a predicted task ID t̂, i.e., ht(x) = t̂.
Our classifer excels in tasks with both new and familiar categories, efficiently

handling overlapping classes across domains. For instance, in daytime and night-
time scenarios, it accurately categorizes common objects like cars and trucks.
TADIL’s performance is tuned through key hyperparameters in its clustering
(DBSCAN: eps=0.3, min_samples=10) and nearest neighbor (n_neighbors=10)
components, balancing overfitting and generalization. This classifier with Man-
hattan distance proves effective and robust in high-dimensional spaces, though
potentially sensitive to feature scaling. To manage multi-head classifier growth
in frequent concept drift scenarios, we propose implementing a maximum head
limit or merging similar heads based on centroid proximity, maintaining effi-
ciency while adapting to new tasks.

Drift Detector. Additionally, in real scenarios, we need a way to decide when
to update incrementally the task classifier ht as new tasks arrive, that is to say,
the trigger td, which will allow for effective learning in a domain with a changing
task distribution. In order to detect drift between a pair of tasks Tt and Tt′ over
time, we define a drift function R that measures the dissimilarity between the
nearest neighbors at different time points:

R(Nt, Nt′) =
1
k

k∑

s=1

d(Nt[s], Nt′[s]) (5)

where Nt and Nt′ are the sets of k nearest neighbors obtained from the embed-
dings for tasks Tt and Tt′ , respectively. d(a, b) represents the amount of drift
between points a and b. This function computes the average drift between the k
nearest neighbors in Nt and Nt′ using the Maximum Mean Discrepancy (MMD)
method [6]. A larger value for the drift function indicates a greater difference
between the nearest neighbors, suggesting a possible shift in the data distri-
bution, hence, a new task. Because different tasks involve images from different
domains, we inevitably get different neighbors, even if the CLIP encoder remains
unchanged.

5 Online Algorithm for Task-Agnostic Domain-IL

We present a pipeline algorithm for task-agnostic Domain-IL in an online fashion,
utilizing the components introduced earlier (detailed in Algorithm 1).

For each incoming image batch, our algorithm calculates the nearest-centroid
embeddings Nt and checks for drift against known tasks stored in memory. Drift
is evaluated using the drift detector. If drift is detected, indicating a new task,
Nt is saved in memory M, the task classifier ht is incrementally trained with
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the new task ID Tt without supervision, and a new head is added to the multi-
head classifier for inference until a domain change occurs. If no drift is detected,
the classifier ht estimates the task ID, and if it matches a known task, the
model proceeds with inference. If the task ID is unrecognized, it triggers an
incremental training phase, updating the task classifier and refining the base
model. This adaptive approach relies on the availability of ground truth labels
for accurate updates and learning. Additional checks help identify issues with the
drift detector or task classifier, ensuring task ID consistency with the multi-head
classifier for accurate inference and alignment.

Algorithm 1: Online Task-Agnostic Algorithm for Domain-IL
Input: M, memory buffer; Dt, current data batch;
Function Online_TADIL(M, Dt);
Nt ← Get_Nearest_Centroid_Embeddings(Dt);
for Nt′ in M.Reversed() do

if not R(Nt, Nt′) then
Use task classifier ht′ to predict task ID Tt;
if Tt �= Tt′ then

Raise warning;
end
Use head gt′ (Dt′ ) from the classifier for inference;
return;

end
end
Save Nt into M; Train ht with Nt and Tt; Add head gt(Dt); Use head gt(Dt);
return;
End Function;
Output: Multi-head classifier updated with new data and task;

6 Experimental Evaluation

We used the CLIP model for zero-shot transfer (embeddings of each object cate-
gory). Besides, our classifier is built upon the ResNet18 model, enhanced for mul-
titasking with a MultiHeadClassifier replacing the original fully connected layer,
a linear layer tailored for our specific tasks, and employs an Adam optimizer
for training efficiency. The SODA10M dataset was selected for its classification
challenges, providing a robust testing ground.

6.1 Testbed

Our experimental setup includes an Ubuntu 22.04 (64-bit) platform, Dual Intel
Xeon Platinum 8360Y CPUs @ 2.40 GHz, and 256 GB RAM. The software
stack utilizes Docker image intel/oneapi-aikit1, avalanche-lib 0.3.12, torch 1.12.0

1 https://hub.docker.com/r/intel/oneapi-aikit.
2 https://avalanche.continualai.org/.

https://hub.docker.com/r/intel/oneapi-aikit
https://avalanche.continualai.org/
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and torchvision 0.13.03, intel-extension-for-pytorch 1.12.100+cpu4, scikit-learn
1.2.25, and scikit-learn-intelex 2023.0.16. We focus on the SODA10M dataset
[7], adapted for the CLAD-C online classification challenge [25], featuring 20,000
labeled images across various conditions (Fig. 3). Tasks are split into training
(80%) and testing (20%) for domain incremental classification, with relevant
metrics. For further details on our experimental setup, including the code and
scripts used to conduct the experiments, please refer to the supplementary mate-
rial.

Fig. 3. SODA10M dataset for the CLAD-C benchmark. It consists of six distinct tasks
(day/night conditions with different weather, location, cities, and objects), each fea-
turing a specific number of classes (Pedestrian, Cyclist, Car, Truck, Tram/Bus, and
Tricycle). For example, Task 1 involves images of six classes captured during the day
on city streets in Guangzhou under overcast and rainy weather conditions. Similarly,
Task 2 includes images belonging to at most three classes taken at night on highway
in Shenzhen under overcast weather condition. The objective of the multi-head model
is to classify images accurately for each individual task.

6.2 Performance of the Task Classifier

We assess our task classifier’s performance by its differentiation among 2 to 6
tasks, as illustrated by Fig. 4a showing F1-scores weighted by task frequency.
The F1-score, a harmonic mean of precision and recall, effectively measures per-
formance in contexts with uneven class distributions. As expected, the F1-score

3 https://www.pytorch.org.
4 https://github.com/intel/intel-extension-for-pytorch.
5 https://scikit-learn.org/stable/.
6 https://github.com/intel/scikit-learn-intelex.

https://www.pytorch.org
https://github.com/intel/intel-extension-for-pytorch
https://scikit-learn.org/stable/
https://github.com/intel/scikit-learn-intelex
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decreases with more tasks, due to the classification problem’s increased com-
plexity. However, all tasks score above a 0.5 F1-score, as shown by the horizon-
tal dashed line, indicating consistent, non-random performance. This is further
enhanced by using majority voting for batch predictions, reducing the impact of
individual errors and not showing a systematic bias towards any class. Thus, the
majority voting potentially neutralizes random errors, underscoring the effec-
tiveness of a weighted F1-score approach.

6.3 Performance of the Drift Detector

In this section, we evaluate the performance of our drift detector component.
Given a memory component that contains nearest-centroids embeddings from
the six tasks, we simulate the arrival at inference time of other embeddings from
the same tasks. The objective is to see if the drift detector is able to detect the
change of boundaries between tasks. Figure 4b shows the performance of the drift
detector by building a confusion matrix to measure the average drift between
the k neighbors of each pair of tasks, that is, their dissimilarity. Negative values
indicate there is no drift, whereas positive ones indicate drift. As shown in the
matrix, drift is correctly detected every time the new task differs from a former
task in the memory (and only in this case).

Fig. 4. (a) The bar plot delineates the F1-scores corresponding to number of tasks
from 2 to 6. The horizontal dashed line marks the minimum acceptable F1-score of 0.5
(at least not random), with all tasks surpassing this benchmark and (b) depicts the
performance of the drift detector, showing the level of drift across a sequence of tasks.
Negative values indicate that there is no drift, whereas positive ones indicate drift. As
shown, the drift detection is 100% accurate between all the different pairs of tasks.
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6.4 Performance of the CL Multi-head Models

This study evaluates the importance of labeling new tasks in multi-head models
for accurate task ID identification, crucial for task differentiation and learning.

Task-Boundary Setup. We assess the effectiveness of various CL strategies
within a classic CL setup with defined task boundaries. Data is segmented into
distinct tasks presented sequentially to the model (no need for drift detection
in this case). Our multi-head model, using an Adam optimizer (learning rate
0.01) and cross-entropy loss, tests EWC [11], ER [20], and LwF strategies. Each
strategy runs over 4 epochs with a batch size of 200, using defaults from the
Avalanche library. Task IDs facilitate model adaptation to different outputs. We
compare the effect of both having or not a task ID: TADIL (our approach) that
predicts the task ID, and a NoID approach without task IDs. Table 1 shows that
our method surpasses the NoID approach in average by efficiently using task
IDs (100% task ID match with ground truth). Task IDs enhance the multi-head
model’s ability to differentiate tasks and apply relevant knowledge, with varying
impact across EWC, ER, and LwF. LwF benefits significantly from task IDs due
to its use of soft targets, unlike EWC and ER, which balance past and new task
learning.

While these strategies aim to mitigate forgetting, task similarity disparities
can affect performance. For example, EWC’s performance declines when transi-
tioning from day (Task 1, 3 and 5) to night (Task 2, 4 and 6) imagery, which
improves with similar subsequent tasks.

Task-Agnostic Setup. The traditional task-boundary setup in CL benchmarks
often fails to reflect real-world applications due to the need for explicit task
boundaries and the assumption of static, non-overlapping classes. Real-world
data streams are dynamic and overlapping. To address this, we evaluate CL
strategies (EWC, ER, LwF) in a task-agnostic framework using a multi-head
model and detecting new tasks without prior knowledge of task boundaries. The
drift detector (Eq. 5) identifies task shifts, triggering training upon new task
detection, providing a realistic approach to task identification.

A fair comparison requires periodic retraining of the NoID approach in the
absence of task IDs, particularly at the start of daytime tasks (Tasks 1, 3, and
5), simulating practical retraining scenarios to adapt to new data distributions.
As shown in Table 1, “Without repetitions” column shows, in average, improved
accuracy across all strategies with task ID provision, validating our task classifier
and drift detector’s efficacy. In some cases, for Task 1, retraining works better
that having a task ID, however, it can not generalize for the rest of tasks, as we
can see for EWC and LwF strategies. The TADIL approach performs consistently
across task-boundary and task-agnostic scenarios due to accurate drift detection,
while the NoID approach shows performance disparity, with scheduled retraining
mitigating task forgetting for daytime tasks.

This highlights the trade-off between model update frequency and task for-
getting, with TADIL maintaining superiority over the NoID approach. Notably,
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the Replay strategy exhibits the lowest task forgetting, emphasizing the effec-
tiveness of our method in managing model updates.

Task-Agnostic Setup with Task Repetitions. We evaluate CL strategies
(EWC, ER, LwF) in scenarios with repeating tasks, mimicking real-world con-
ditions with varying environments. A custom sequence [1, 2, 3, 2, 4, 4, 5, 5, 5,
6] tests the model’s adaptability. Our TADIL method outperforms the NoID
method, especially for nighttime tasks (Table 1). Unlike previous experiments,
the NoID approach’s performance is significantly affected by irregular retraining
intervals, either due to prolonged periods without updates or consecutive updates
for repeated tasks. Continual retraining on repeated tasks (e.g., Task 5) without
task detection can lead to redundancy, inefficiency, and potential overfitting, as
seen with the diminishing returns of the LwF strategy after successive retrain-
ings on Task 5. This issue is critical in resource-constrained settings, emphasizing

Table 1. Average accuracy and standard errors for each task, CL strategy, and scenario.
Bold indicates best accuracy. The NoID method sometimes generalizes better for Task
1, but struggles for other tasks.

With boundaries Without repetitions With repetitions

Strategy Task TADIL NoID TADIL NoID TADIL NoID
EWC 1 0.63 ±.04 0.63 ±.04 0.60 ±.05 0.70 ±.05 0.60 ±.05 0.69 ±.04

2 0.82 ±.05 0.77 ±.11 0.83 ±.05 0.75 ±.07 0.85 ±.04 0.75 ±.07
3 0.71 ±.03 0.59 ±.08 0.66 ±.06 0.68 ±.03 0.66 ±.08 0.69 ±.04
4 0.88 ±.02 0.79 ±.09 0.85 ±.04 0.75 ±.07 0.87 ±.03 0.75 ±.06
5 0.79 ±.02 0.72 ±.05 0.79 ±.02 0.76 ±.01 0.77 ±.03 0.77 ±.02
6 0.78 ±.03 0.67 ±.05 0.79 ±.01 0.57 ±.08 0.73 ±.04 0.59 ±.04
Avg 0.77 ±.04 0.70 ±.07 0.75 ±.04 0.70 ±.05 0.75 ±.04 0.71 ±.05

LwF 1 0.56 ±.04 0.56 ±.04 0.57 ±.03 0.66 ±.06 0.57 ±.05 0.64 ±.06
2 0.88 ±.02 0.81 ±.06 0.85 ±.04 0.75 ±.05 0.89 ±.01 0.81 ±.06
3 0.70 ±.03 0.49 ±.03 0.67 ±.02 0.68 ±.06 0.69 ±.04 0.64 ±.06
4 0.88 ±.01 0.78 ±.05 0.86 ±.03 0.74 ±.06 0.88 ±.01 0.79 ±.07
5 0.75 ±.01 0.49 ±.07 0.73 ±.02 0.76 ±.06 0.75 ±.03 0.72 ±.07
6 0.69 ±.01 0.56 ±.05 0.68 ±.02 0.51 ±.03 0.70 ±.01 0.48 ±.07
Avg 0.74 ±.03 0.61 ±.05 0.73 ±.03 0.68 ±.05 0.75 ±.03 0.68 ±.06

Replay 1 0.68 ±.04 0.68 ±.04 0.67 ±.04 0.64 ±.06 0.69 ±.03 0.70 ±.04
2 0.89 ±.02 0.82 ±.05 0.88 ±.02 0.75 ±.08 0.89 ±.02 0.78 ±.05
3 0.75 ±.01 0.70 ±.03 0.76 ±.02 0.61 ±.06 0.77 ±.02 0.70 ±.03
4 0.89 ±.01 0.79 ±.03 0.89 ±.01 0.77 ±.07 0.88 ±.01 0.79 ±.03
5 0.82 ±.01 0.73 ±.02 0.83 ±.01 0.76 ±.06 0.83 ±.01 0.80 ±.01
6 0.83 ±.01 0.76 ±.05 0.83 ±.02 0.58 ±.06 0.83 ±.01 0.59 ±.06
Avg 0.81 ±.02 0.75 ±.04 0.81 ±.02 0.68 ±.06 0.81 ±.02 0.72 ±.04
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the need for task detection mechanisms to optimize continual learning. Our find-
ings demonstrate that our approach maintains superior performance in complex
scenarios with task repetitions, highlighting its robustness and applicability in
real-world challenges.

6.5 Forgetting Rate Analysis

To quantify TADIL’s effectiveness in mitigating catastrophic forgetting, we cal-
culated the overall average forgetting rate for both TADIL and the NoID baseline
across all scenarios and tasks using:

F̄ =
1

Nscenarios

Nscenarios∑

e=1

1
Ntasks − 1

Ntasks−1∑

t=1

ΔAccmethod, e
t,t+1 (6)

where ΔAccmethod, e
t,t+1 represents the change in accuracy between consecutive tasks

t and t + 1 for the method in scenario e, Nscenarios is the number of scenarios,
and Ntasks is the total number of tasks. Table 2 shows the overall average for-
getting rates for TADIL and NoID methods. TADIL demonstrates a negative
forgetting rate (–0.0054), indicating improved performance on previous tasks as
it learns new ones. In contrast, NoID exhibits a positive forgetting rate (0.0275),
suggesting a decline in performance on previously learned tasks.

Table 2. Forgetting rate across the 6 tasks for TADIL and NoID methods.

Method Task 1–2 Task 2–3 Task 3–4 Task 4–5 Task 5–6 Average

TADIL –0.14 0.05 –0.08 0.08 0.03 –0.0054
NoID –0.03 0.12 –0.07 0.05 0.06 0.0275

The negative forgetting rate suggests that TADIL leverages knowledge from
new tasks to refine its understanding of previous tasks, a highly desirable char-
acteristic in CL scenarios.

7 Conclusion

In this paper, we proposed a novel pipeline called TADIL for detecting and
identifying tasks in task-agnostic Domain-IL scenarios without supervision. Our
pipeline first obtains base embeddings from the raw data using an already exist-
ing transformer-based model. The embedding densities are grouped based on
their similarity to obtain the nearest points to each cluster centroid and a task
classifier is incrementally trained using only these few points. This task classifier
and a drift detector are used together to learn new tasks. Our experiments using
the SODA10M real-world driving dataset have demonstrated the good perfor-
mance of the drift detector and the task classifier, and how state-of-the-art CL
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strategies work when using our pipeline to predict the task ID, both in experi-
ments assuming task boundaries using a traditional approach, and also in more
realistic task-agnostic scenarios that require detecting new tasks on-the-fly.

Limitations and Future Work. The current limitation of the proposed app-
roach is its dependence on pre-trained models for embedding extraction, which
may not perform well with rare or domain-specific elements, such as emergency
vehicles without visible signals or non-standard traffic signs in driving datasets.
Future work will focus on model fine-tuning using representative datasets of
these uncommon classes to improve task ID identification and robustness in
real-world conditions. Additionally, plans include developing a custom ER strat-
egy using zero-shot predictions to generate weak labels for centroids, facilitating
unsupervised training and optimizing the CL strategy.

Supplementary Material. For further details on our experimental setup,
including the code and scripts used to conduct the experiments, please refer
to our Github repository7 and supplementary file.
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Abstract. We introduce FedEvPrompt, a federated learning approach
that integrates principles of evidential deep learning, prompt tuning,
and knowledge distillation for distributed skin lesion classification. FedE-
vPrompt leverages two sets of prompts: b-prompts (for low-level basic
visual knowledge) and t-prompts (for task-specific knowledge) prepended
to frozen pre-trained Vision Transformer (ViT) models trained in an evi-
dential learning framework to maximize class evidences. Crucially, knowl-
edge sharing across federation clients is achieved only through knowledge
distillation on attention maps generated by the local ViT models, ensur-
ing enhanced privacy preservation compared to traditional parameter
or synthetic image sharing methodologies. FedEvPrompt is optimized
within a round-based learning paradigm, where each round involves
training local models followed by attention maps sharing with all federa-
tion clients. Experimental validation conducted in a real distributed set-
ting, on the ISIC2019 dataset, demonstrates the superior performance of
FedEvPrompt against baseline federated learning algorithms and knowl-
edge distillation methods, without sharing model parameters. In conclu-
sion, FedEvPrompt offers a promising approach for federated learning,
effectively addressing challenges such as data heterogeneity, imbalance,
privacy preservation, and knowledge sharing.

Keywords: Prompt Tuning · Knowledge Distillation · Uncertainty

1 Introduction

In recent decades, deep learning has played a leading role in medical image anal-
ysis, including skin lesion classification. However, most of the existing methods
rely on centralized learning, assuming data uniformity and accessibility, which
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often does not align with the reality of decentralized and privacy-sensitive clin-
ical settings. This disparity not only limits progress in the field, but also exac-
erbates inequalities, with wealthier regions having a data advantage over poorer
areas, leading to disparities in model performance and clinical support. Feder-
ated learning (FL) emerges as a promising solution to this challenge, enabling
model training across distributed devices while preserving data privacy. Methods
like FedAvg [10] and FedProx [8] have addressed issues such as non-i.i.d. data and
system heterogeneity, yet they still face obstacles, particularly in scenarios with
class imbalances and data heterogeneity. Evidential Deep Learning (EDL) [13]
has found adoption in FL to handle these limitations in medical data, thereby
enhancing model confidence and reliability, crucial for clinical applications. For
example, the recent work on uncertainty-aware aggregation of federated mod-
els for diabetic retinopathy classification demonstrates its efficacy in improving
model performance and reliability [19].

Furthermore, the scarcity of data poses an additional significant challenge,
often leading to model overfitting and suboptimal federation performance.
Recent techniques like learnable prompting [9], particularly effective in low-data
regimes, offer a promising solution by facilitating personalized model tuning
across distributed clients [7]. Nonetheless, privacy concerns persist, particularly
due to the sharing and aggregation of model parameters, which poses the risk
of reconstructing training images, as demonstrated by recent studies [4,20]. To
mitigate these concerns, one strategy involves sharing suitably-constructed syn-
thetic data generated through generative models [11]. Yet, the use of generative
models carries its own risks, potentially incorporating and synthesizing sensitive
training samples, thus exacerbating privacy concerns.

We here propose FedEvPrompt, a novel approach that integrates princi-
ples of evidential deep learning, prompt tuning, and knowledge distillation to
address existing limitations comprehensively. FedEvPrompt leverages prompts
prepended to pre-trained ViT models trained in an evidential learning set-
ting, maximizing class evidence. Knowledge sharing across federation clients
is achieved only through knowledge distillation on attention maps generated
by ViT models, which offers greater privacy preservation compared to sharing
parameters or synthetic images, as it lacks pixel-level details and reconstructive
qualities. While our approach maintains a high level of abstraction for minimizing
privacy leaks, it also provides richer information than average logits, as in Fed-
Distill [15], or prototypes, as in FedProto [17]. Thus, FedEvPrompt represents a
principled way to share insights into the decision-making process of local models
for enhanced federated performance, as demonstrated by the results achieved on
a real-word distributed setting for skin lesion classification.

2 Background Evidential Learning

Deep Learning methods often use softmax activation in the output layers to
perform classification. However, softmax outputs can be biased to training data,
failing to predict with low certainty even for samples far from the distribution
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[16]. In contrast to the additivity principle in probability theory, Dempster-
Shafer theory describes that the sum of belief can be less than 1. Its remainder
is then attributed to uncertainty.

In a frame of K mutually exclusive singletons (e.g., class labels), each single-
ton k ∈ [K] is assigned a belief mass bk, and an overall uncertainty mass u. The
sum of these K + 1 mass values is constrained by u +

∑K
k=1 bk = 1, with u ≥ 0,

bk ≥ 0, ∀k ∈ [K]. The belief mass is determined by the evidence supporting each
singleton, reflecting the level of support gathered from data. The uncertainty is
inversely proportional to the total amount of evidence, with uncertainty equal to
1 for a total lack of evidence. A belief mass assignment corresponds to a Dirichlet
distribution with parameters αk = ek +1, where ek denotes the derived evidence
for the k-th singleton. This choice of Dirichlet distribution is motivated by its
role as a conjugate prior to the categorical distribution, and is defined as:

Dir(p, α) =
Γ (S)

∏K
k=1 Γ (αk)

K∏

k=1

pαk−1
k , αk > 0

where p denotes a probability mass function, K denotes the number of classes,
α = [α1, . . . , αK ] are the Dirichlet parameters related to the evidence, Γ (·)
denotes the gamma function, and S =

∑K
k=1 αk is termed the Dirichlet strength.

From the parameters of this Dirichlet distribution, the belief bk and the
uncertainty u are derived as:

bk =
αk − 1

S
, u =

K

S

When considering an opinion, the expected probability p̂k of the k-th single-
ton equates to the mean of the corresponding Dirichlet distribution, calculated
by:

p̂k =
αk

S

Although this modeling of second-order probabilities and uncertainty enables
the computation of different types of uncertainties, this work only considers
classical vacuity uncertainty (u).

Evidential Deep Learning (EDL) aims to quantify these uncertainties in the
predictions, using a single deterministic neural network. The model learns evi-
dence from the logit layer, typically applying non-negative functions like ReLU to
obtain these values. With these minimal changes, EDL models can be trained by
minimizing losses such as evidential mean squared error (MSE) loss to form the
multinomial opinions for K-class classification of a given sample i as a Dirich-
let distribution. Following [14], the evidential MSE loss for sample i can be
interpreted as:

Li(Θ) =
∫

[
(yi − pi)T (yi − pi)

]
Dir(pi, αi)dpi
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=
K∑

k=1

E
[
y2

i,k − 2yi,kyi,k + p2i,k
]

where yi = (yi,1, . . . , yi,K) and pi = (pi,1, . . . , pi,K) are vectors of true and
predicted probabilities, and αi = (αi,1, . . . , αi,K) are the Dirichlet parameters.

Using the identity E

[
p2i,k

]
= E [pi,k]

2 + Var(pi,k), the loss can be rewritten
as:

Li(Θ) =
K∑

k=1

(
(yi,k − E [pi,k])2 +Var(pi,k)

)

=
K∑

k=1

((

yi,k − αi,k

Sk

)2

+
αi,k (Si − αi,k)

S2
i (Si + 1)

)

where Si is the total Dirichlet strength for sample i.
To avoid generating misleading evidence for incorrect labels, a Kullback-

Leibler (KL) divergence regularization term is used, reducing total evidence to
zero for incorrectly classified samples. The KL term is defined as:

LKL = KL [Dir(pi | α̃i)‖Dir(pi | 1)]

= log

⎛

⎝
Γ

(∑K
k=1 α̃i,k

)

Γ (K)
∏K

k=1 Γ (α̃i,k)

⎞

⎠ +
K∑

k=1

(α̃i,k − 1)

(

ψ(α̃i,k) − ψ

(
K∑

k=1

α̃i,j

))

where α̃i are the Dirichlet parameters after the removal of non-misleading evi-
dence defined as α̃ = y + (1 − y) � α, KL[.‖.] denotes the Kullback-Leibler
divergence operator, and ψ(.) is the digamma function [14]. The final eviden-
tial loss Lε results in:

Lε = Li + LKL

3 Methodology

We introduce FedEvPrompt, our federated learning paradigm, which leverages
prompt evidential learning and knowledge distillation on ViT attention maps
for enabling effective knowledge aggregation across federated clients. The overall
learning strategy is described in Fig. 1.

FedEvPrompt is based on a pre-trained ViT model, kept frozen across all
clients within the federation. Upon the fixed backbone, prompts are prepended
on each client model and optimized using local data. Each client also computes
attention maps (through attention rollout mechanism [1]) for each class and
shares a subset of them with the federation. The attention maps by all clients
form our uncertainty-aware attention buffer that is used for knowledge distilla-
tion during prompt learning.

Learning is organized in rounds: at each round, federation clients carry out
different local training epochs for prompt optimization through a combination of
evidential loss for learning class evidence and knowledge distillation loss on the
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Fig. 1. Overview of FedEvPrompt. During a round of Training (top), local data
is used to optimize b-prompts, encoding general visual features, and t-prompts, encoding
task-specific information, prepended to a frozen ViT encoder. Optimization is carried
out by minimizing evidential loss (Lε) and a knowledge distillation loss (LKD) between
local attention maps and those of the federation available in the uncertainty-aware
attention buffer. After a round of training at Inference (bottom), the client identifies,
for each class K, its M most informative attention rollout maps (sorted by lowest
uncertainty) to contribute to the federated uncertainty-aware attention buffer.

per-class attention maps present within the buffer. At the end of training round,
each client identifies its M most informative attention maps for each class and
updates the buffer.

More in detail, each client employs a frozen ViT, as the backbone, with two
sets of prompts b-prompts and t-prompts. Each prompt is associated with a
specific attention layer, with the b-prompts (basic prompts) prepended to layers
with low-level feature representation and the t-prompts (task-specifc prompts)
to deeper layers with high-level feature representation. The parameters of the
prompts are incorporated through pre-fix tuning. Let’s denote the output of the
ith attention layer as hi with i ∈ 1 · · · H where H is the number of attention
layers. The prepended parameters for the key and value inputs, denoted as prk

and prv respectively, are introduced as follows:
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MSA(hQ, [pr
(i)
k ;hK ], [pr(i)v ;hV ]) (1)

where hQ, hK , and hV represent the query, key, and value outputs from the pre-
vious layer, respectively. The prepended prompts pr

(i)
k and pr

(i)
v are b-prompts to

the first l layers, and t-prompts to the last H − l layers. The two sets of prompts
undergo distinct optimization strategies: b-prompts require slower adaptation
since the frozen backbone (ViT) has already grasped general visual features.
Conversely, t-prompts necessitate faster adjustments to accommodate varying
data distributions. Consequently, μ1 < μ2, where μ1 and μ2 denote the learn-
ing rates for the b-prompts and g-prompts optimizers, respectively. Both set of
prompts are optimized by minimizing an overall loss LG that includes an evi-
dential loss term Lε and a knowledge distillation loss term LKD on the shared
attention map buffer A:

LG = Lε + λLKD (2)

where λ = 1e−6 is a parameter controlling the balance between the two terms.

3.1 Evidential Loss

Our method is based on evidential learning, i.e., the classification model out-
puts evidences E = [e1, . . . , eK ], with K categorical class elements (number of
classes). The Dirichlet distribution characterizes the likelihood of each discrete
probability value within a set of possible probabilities. It is parameterized by a
vector of K elements (classes), α = [α1, . . . , αK ], defined as αk = ek +Wk, with
ek being the model evidence for class k, and Wk the prior weight for that class.
Classical EDL assumes a uniform Dirichlet (Dir(1)) distribution as a prior, i.e.,
W = 〈1, 1, . . . , 1〉. The uncertainty for the ith input sample is then estimated
as ui = K

S , with S being the total Dirichlet strength S =
∑K

k=1 αk. Due to
the strong class imbalance typical in federated learning settings, we change the
uniform evidential prior to a skewed distribution, weighted by class frequency:

αk = ek + Wk with Wk =
K

K − 1

(

1 − Nk

N

)

(3)

such that
∑K

k=1 Wk = K.
Prompt parameters are finally optimized by minimizing the evidential loss

defined in [14] as a combination of MSE and KL divergence. Given the ith input
sample, the one-hot-encoded vector yi of its class label k, and its expected prob-
abilities pi, the evidential loss Lε is computed as:

Lε(θ) = Ep∼Dir(α)

[
(yi − pi)T (yi − pi)

]
+ λKLDKL(Dir(pi|α̃i)||Dir(pi|wi)) (4)

with λKL = min(1, t/10) being an annealing factor applied to gradually increase
the regularization impact with the number of epochs t.

In order to let the evidence for incorrect classes shrink to the weighted prior
values W, the KL divergence loss term minimizes the distributional difference
between W and misleadingevidence α̃, formulated as α̃ = y · w + (1 − y) � α.
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Given the weighted prior distribution W = Dir(p|w) and P = Dir(p|α̃), the
general KL divergence form for the Dirichlet distribution [12] becomes:

DKL(Dir(p|α̃)||Dir(p|w)) = log

⎛

⎝

Γ
(

∑K
k=1 α̃k

)

Γ
(

∑K
k=1 wk

)

⎞

⎠ +
K

∑

k=1

log

(

Γ (wk)

Γ (α̃k)

)

+

K
∑

k=1

(α̃k − wk) ·
[

ψ(α̃k)− ψ

(

K
∑

k=1

α̃k

)]

= log

⎛

⎝

Γ
(

∑K
k=1 α̃k

)

· ∏K
k=1 Γ (wk)

Γ (K) · ∏K
k=1 Γ (α̃k)

⎞

⎠+

+
K

∑

k=1

(α̃k − wk) ·
[

ψ(α̃k)− ψ

(

K
∑

k=1

α̃k

)]

(5)

With Γ being the gamma function, and ψ being the digamma function.

3.2 Uncertainty-Aware Attention Buffer for Knowledge Distillation

Prompt optimization involves minimizing a knowledge distillation loss LKD term
between the model attention maps (computed through attention rollout) and the
maps available in our uncertainty-aware attention buffer A shared within all the
C clients of the federation, with each client providing M attention maps for each
of the K classes:

A =
C⋃

c=1

K⋃

k=1

M⋃

m=1

ac,k,m (6)

here ac,k,i ∈ RH×W represents the ith attention map for the kth class of the
cth client of the federation. H and W are the height and width of the attention
maps equal to input image dimensions. The knowledge distillation loss LKD

for a generic training sample of client c, with class k can be expressed as:

LKD =
1
M

C\c∑

i=1

M∑

m=1

∥
∥ac,k,_ − ai,k,m

∥
∥2 (7)

where,
∥
∥ac,k,_ − ai,k,m

∥
∥2 denotes the squared Euclidean distance between the

attention map ac,k,_ of the considered training sample and ai,k,m being an item
of the buffer A.

The selection of samples for the attention buffer A by each client is based on
the assumption that each local model should share its most confident predictions
and indicate the image regions it focuses on. We use uncertainty scores from our
evidential learning approach to guide the selection of attention maps for sharing
within the federation. Specifically, we compute uncertainty scores, u

(k)
j , for each

sample in class k, where j ranges from 1 to N (k), the total number of samples in
class k. From these, we select the M samples with the lowest uncertainty scores,
denoted as {u

(k)
1 , u

(k)
2 , . . . , u

(k)
M }, and corresponding attention maps for inclusion

in our uncertainty-aware attention buffer, A, replacing older ones.
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4 Experimental Results

We validate the effectiveness of our proposed method on a multicenter dataset
of 23,247 dermoscopic images of nine skin lesions from different populations and
medical centers, based on the ISIC2019 dataset [2,3,18]. To carry out federated
learning, we organized the dataset into six nodes, with each node representing
data from a specific source:

Fig. 2. Distribution of the Fed-ISIC2019 dataset across clients.

Client C1 contains the BCN20000 dataset as described by Combalia et al. [3],
which includes 19,424 images from the Hospital Clínic in Barcelona; Clients
C2, C3 and C4 are from the Austrian portion of the HAM10000 dataset [18],
with images from the ViDIR Group at the Department of Dermatology at the
Medical University of Vienna; Client C5 is also part of the HAM10000 dataset
and contains the Rosendahl image set from the University of Queensland in
Australia; while client C6 includes the MSK4 dataset [2]. The overall dataset
exhibits heterogeneity in both the number of images contributed by each client
as well ass in the distribution of classes, as illustrated in Fig. 2, making it a strong
real-world use case for testing federated learning methods. For this study, we will
focus on the binary classification task of distinguishing Melanocytic nevus from
other skin lesions.

Training Procedure. In our setup, for each client, data is divided into a 75%
training and 25% test split. Training is executed over 5 communication rounds,
with 15 training epochs per round. Our model architecture employs a frozen
ViT backbone augmented with additional parameters for b-prompts, t-prompts,
and a classification-head. The ViT backbone specifications include an embedding
dimension of 384, 6 attention heads, 12 blocks, and an input size of 224 × 224
pixels. For the b-prompts and t-prompts, the prompt keys (k and v) have a
sequence length of 50, while l is 3 out of the 12 attention layers. We set the
learning rates μ1 and μ2 to 2.5e− 4 and 5e− 4 respectively, with a weight decay
factor of 1e − 2. Additionally, each client contributes 5 attention rollout maps
per class (i.e., M in Eq. 6) to the uncertainty-aware attention buffer. Results are
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presented as in terms of balanced accuracy on the test set at the conclusion of
all rounds.

Results. In Table 1, we present a comprehensive performance comparison
between FedEvPrompt and existing federated learning methods. FedAvg [10]
serves as our baseline. FedAvgPers builds upon FedAvg by integrating a person-
alization step through local data fine-tuning, aligning with our emphasis on per-
sonalized learning via b-prompts and t-prompts tuning. Additionally, we incor-
porate FedProx [8], specifically tailored to address non-IID data like our skin
lesion dataset.

Given that our approach employs knowledge distillation without parame-
ter sharing, we include two analogous methods in our analysis: FedProto [17]
and FedDistill [15]. We also evaluate the performance of local training, where
client models are trained independently without parameter sharing, using
both sets of prompts (i.e., (b, t)prompts), and using only one set of prompts
(gprompts - general prompts) across all attention layers. We define g-prompts =
[b-prompts, t-prompts] with both learning rates set to μ1. This evaluation aims
to validate our choice to apply different parameters across different attention
layers and to demonstrate the advantages provided by our federated learning
approach.

Results show that FedEvPrompt outperforms its competitors, including those
that share parameters (thus being less privacy-preserving), such as FedAvg [10]
and FedProx [8]. Notably, when comparing FedEvPrompt performance with
other methods that do not share parameters, namely FedProto [17] and FedDis-
till [15], we observe higher performance across all clients and a lower standard
deviation, indicating better convergence in accuracy among clients.

Table 1. Comparison with state-of-the-art methods on the Skin Lesion Dataset.
In bold, best accuracy values.

C1 C2 C3 C4 C5 C6 Avg

Local b, tprompts 72.56 50.00 89.91 79.94 67.61 50.00 68.34±10.98

Local gprompts 50.00 50.48 84.79 78.91 71.59 50.00 64.30±10.31

FedAvg [10] 74.74 72.79 67.74 79.89 67.61 77.09 73.31±3.64

FedAvgPers 77.79 68.01 84.84 78.08 67.61 82.66 76.50±7.25

FedProx [8] 81.34 68.14 74.69 75.15 77.84 78.65 75.97±4.55

FedProto [17] 71.88 69.04 66.34 69.71 58.52 73.57 68.18±5.34

FedDistill [15] 81.08 67.42 60.96 77.13 70.45 80.33 72.90±7.98

FedEvPrompt 81.02 71.83 84.15 79.02 68.18 79.35 77.26±4.65
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We finally conducted an ablation study to assess the impact of various
prompting options and sharing strategies among nodes within the federation.
It’s worth noting that while prompt sharing may potentially compromise pri-
vacy guarantees, exploring its effectiveness compared to using private prompts
and our proposed knowledge distillation approach is interesting.

To this end, we initially assessed the performance of a variant of FedAvg
where only low-level b-prompts are shared, gradually incorporating t-prompts
and knowledge distillation on the uncertainty-aware attention buffer. Further-
more, we examined the variant of the proposed prompting strategy using a single
set of general prompts g-prompts shared between nodes and coupled with our
knowledge distillation method. Our findings, outlined in Table 2, underscore the
significance of separate prompt learning, as evidenced by the subpar performance
of the g-prompts variants. Interestingly, sharing separate sets of b-prompts and
t-prompts (first two rows of Table 2) proved less effective than keeping them
private and employing knowledge distillation (best performance observed in the
last two rows of the same table). Moreover, we demonstrate that our strat-
egy of incorporating attention maps based on uncertainty scores (as detailed in
Sect. 3.2) yields superior performance compared to random selection of buffer
samples. These two last considerations highlight the informative contribution
provided by the attention maps corresponding to the lowest uncertainty samples
driving clients’ models towards the most significant regions of skin lesion images.

Table 2. Ablation study results showing the impact of shared prompts and knowl-
edge distillation (KD) on federated learning performance.

C1 C2 C3 C4 C5 C6 Avg

FedAvg bprompts 50.00 70.04 70.29 79.61 71.59 79.21 70.18±7.56

+ tprompts 74.74 72.79 67.74 79.89 67.61 77.09 73.31±3.64

+ KD 73.02 71.41 76.80 81.74 67.61 79.25 74.97±3.94

FedAvg gprompts 50.00 70.88 72.77 50.00 67.61 50.00 60.21±6.81

FedAvg gprompts + KD 81.1 71.32 72.83 78.89 63.64 80.49 74.71±6.18

KDrandom 78.12 69.40 76.80 80.30 68.75 77.65 75.17±3.66

KDuncertainty (Ours) 81.02 71.83 84.15 79.02 68.18 79.35 77.26±4.65

5 Conclusion

This work introduces FedEvPrompt, a new federated learning approach tailored
for skin lesion classification using the ISIC2019 dataset. Indeed, this dataset
offers a realistic setting for evaluating federated learning methods, eliminating
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the need for simulated distributions. FedEvPrompt seamlessly integrates evi-
dential deep learning, prompt tuning, and knowledge distillation within a vision
transformer architecture. Knowledge distillation on attention maps, in partic-
ular, ensures better privacy-preserving capabilities than parameter sharing. In
addition to its superior performance in addressing data heterogeneity and pri-
vacy concerns, the employment of evidential learning offers enhanced model
interpretability and uncertainty quantification, providing valuable insights for
decision-making in medical image analysis. Balancing vacuity and dissonance
[5,6] in buffer selection warrants further research to comprehensively understand
underlying mechanisms.
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Abstract. Visual-language tracking combines visual and textual infor-
mation to improve the accuracy of object tracking in video sequences.
However, existing methods utilize language descriptions only from the
initial frame of the video sequence, leading to inaccuracies as the target’s
appearance changes. To overcome this limitation, we propose a real-time
updating method for language descriptions based on the target’s current
features. Our approach incorporates a large visual-language model that
continuously generates descriptions to maintain relevance and accuracy,
as well as an update determination module to assess whether the cur-
rent text’s quality requires refreshing. Additionally, we introduce a text
fusion method to combine descriptions from different moments within the
sequence, enhancing coherence and precision. Our method’s effectiveness
is validated on OTB99, LaSOT, and TNL2K datasets, demonstrating
superior performance and adaptability in various tracking scenarios.

Keywords: Visual-Language Tracking · Large Visual-Languge
Model · Online Feature Update

1 Introduction

Visual-Language Tracking (VLT), which integrates visual and textual informa-
tion to locate targets in video sequences, has become a crucial task in com-
puter vision [1]. Compared to conventional tracking approaches that rely solely
on visual templates, VLT methods leverage language descriptions to guide the
tracking process, offering improved adaptability and performance. Using text to
describe and track objects can also enhance the effectiveness of systems in real-
world applications like surveillance, autonomous driving, and human-computer
interaction [2–4].

Current VLT methods [5–8] typically rely on a static textual description cor-
responding to the initial frame of the video sequence. While these approaches
have achieved great results on datasets, they have inherent limitations. The
main challenge is that the initial description does not adapt to changes in the
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Visual template update
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Language
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Large Visual-
Language
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Natural language update

(a) Update visual template during tracking (b) Update visual template and natural language during tracking

Fig. 1. A comparison of existing image-updated methods and our proposed method.
(a) Conventional methods only update the image template during tracking, overlooking
that the correspondence between text and image changes with the target. (b) Our
proposed method updates the text description along with the template, enhancing the
stability of visual-language tracking.

object’s appearance as the video progresses. Therefore, this static characteristic
may lead to a decline in tracking accuracy over time. In contrast, in conven-
tional visual tracking methods [9–13], image template updating techniques have
already become relatively common. Typically, a series of updated templates of
the target are stored and managed, as shown in Fig. 1(a). This kind of method is
continuously updated online to accommodate changes in the target’s appearance,
thereby ensuring more accurate and robust tracking. Inspired by this approach
and to address the issue of dynamic text-image mismatch in subsequent frames,
we propose a similar strategy for VLT. Specifically, we introduce a method that
updates the textual descriptions based on the target’s current features. This
online updating approach, illustrated in Fig. 1(b), utilizes a large visual-language
model to generate and refresh the textual descriptions. By utilizing the mul-
timodal understanding and generation capabilities of a large vision-language
model, our method can effectively interpret and describe the visual features of
the target, ensuring that the textual guidance remains relevant and accurate
throughout the tracking process. Besides, we introduce an update determination
module that determines whether the current text needs to be refreshed based on
its quality. Additionally, we propose a text fusion method that integrates multi-
ple descriptions from various moments to create a comprehensive representation
of the target.

We validate the effectiveness of our text online updating method through
comprehensive evaluations of three datasets with textual descriptions, including
OTB99, LaSOT, and TNL2K. Furthermore, we test our approach across different
initialization scenarios (NL, NLBBOX, BBOX). Our main contributions are as
follows:

– We propose an online updating approach for VLT trackers, incorporating
an innovative text fusion module and a text quality assessment mechanism.
This approach dynamically updates descriptions to adapt to changes in the
object’s appearance, ensuring continuous and accurate tracking.
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– We introduce a finetuned large vision-language model for updating tracker
texts. This model leverages its multimodal understanding and genera-
tion capabilities to produce precise and context-aware descriptions, thereby
enhancing tracking performance.

– Extensive experiments on three challenging datasets confirm the effectiveness
of our proposed method, showcasing its robustness and adaptability across
diverse tracking scenarios.

2 Related Work

2.1 Visual-Language Tracking

Given the abundance of semantic information in natural language, VLT has
increasingly garnered the interest of researchers. TNLS [1] introduces the con-
cept of “Tracking by Natural Language Specification(TNL),” aiming to harness
the rich semantic information within the text to enhance human-computer inter-
action. GTI [14] breaks the TNL task into three distinct subtasks: Grounding,
Tracking, and Integration. To overcome the lack of datasets in VLT, TNL2K [5]
introduces a benchmark for object tracking with rich natural language descrip-
tions. Despite significant progress in the aforementioned research, grounding and
tracking methods remain separate and do not support end-to-end training. To
address this issue, some studies design a unified framework by introducing a
masking mechanism. For example, JointNLT [2] uses a Transformer module to
fuse visual and textual cues, while UVLTrack [7] designs a multi-modal con-
trastive loss function, mapping visual and textual features to the same semantic
space. Both approaches can utilize a single model to simultaneously complete
grounding and tracking tasks, significantly enhancing usability.

Although previous methods improve tracker performance with language
descriptions, they overlook the mismatch issue between text and the target’s
actual state. Textual cues are usually based on the initial frame, causing incon-
sistencies in later frames. Despite these issues, few studies focus on updating text
features. QueryNLT [8] introduces a real-time adjustment module that selects
features better suited to the current state by leveraging the relation between
temporal visual templates and language descriptions. However, it only filters
out mismatched words from the initial text without generating new, more pre-
cise descriptions. In this study, we use a large visual-language model to analyze
the target in the current frame and generate accurate textual descriptions that
match its state.

2.2 Large Visual-Launguage Model

In recent years, large language models (LLMs) [15–19] have achieved remark-
able performance in a variety of language processing tasks due to their superior
natural language understanding and interactivity. Expanding on the foundation
provided by pre-trained LLMs, a series of visual-language models [20–24] have
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been developed. These methods have attained leading standards in numerous
visual-linguistic tasks, including, but not limited to, referring expression gener-
ation, image captioning, visual reasoning, visual question answering, and visual
grounding.

For instance, BLIP-2 [23] integrates image embeddings at the LLM’s input
stage and utilizes an auxiliary Q-Former to align the image and text features
which are then concatenated and input into the LLM. Building upon the BLIP-2
framework, instructBLIP [24] replaces the descriptive text within the Q-Former
with instructive text that contains querying information, enhancing the model’s
specificity for image-text tasks. Qwen-VL [20] introduces a visual encoder and
a position-aware adapter into Qwen [17] and implements three phases of joint
training with the LLM to specialize the pure language model for image-text tasks.
CogVLM [21] augments the text attention model of LLMs with a parallel image
model that has separate Query-Key-Value matrices and Feed-Forward Networks
(FFNs) but collaborates in performing multi-head attention. While this approach
considerably increases the size of the LLM, it maintains the language processing
abilities and enriches the image comprehension proficiency of the large Vision
Language Model (VLM), especially in terms of object localization.

Compared to conventional VLMs, LVLMs exhibit enhanced abilities, includ-
ing (1) improved comprehension and expressive capabilities, (2) the ability to
describe open-set targets, (3) versatility, and (4) interactivity. In this work, we
employ the LoRA fine-tuning approach [25] to train a Large VLM for Referring
Expression Generation on visual-language tracking datasets, thereby enabling
the tracker to update descriptive text online based on the current image and
target bounding box.

3 Methodology

The primary objective of this paper is to develop an effective plug-and-play
method for visual-language tracking. Our goal is to develop an integrable solution
that enhances existing models in generating referring expressions and feature
fusion, thereby resolving issues with text-image mismatches. After outlining some
fundamental concepts, this section will detail the methodology we employed to
achieve this goal.

3.1 Preliminaries

In the context of visual-language tracking tasks, there are three sources of inputs:
initial text (T1st), template image (IT ), and search image (IS). For the Track-
ing by Natural Language Specification (TNL) task, the inputs are T1st and IS .
This task can be formulated as: TNL : {T1st, IS} → B where B represents
the target bounding box. Initially, T1st is used to locate B, and then object
tracking is performed. Conversely, the Tracking by Language and Box Specifi-
cation (TNLBBOX) task utilizes T1st, IT , and IS , which can be expressed as
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TNLBBOX : {T1st, IT , IS} → B. Here, T1st is used to enhance tracking per-
formance, given an initial bounding box B0. Additionally, visual object track-
ing, also known as Tracking by Box Specification (TBBOX), can be defined as:
TBBOX : {IT , IS} → B.

Current research trends favor using a unified network framework to handle
all tasks by employing masking techniques. Specifically, in the NL task, the IS
is replaced with a zero-padded template. Subsequently, the visual and textual
information are processed through feature encoders to obtain the corresponding
visual and textual features. These features are then concatenated for feature
fusion. After fusion, the features of the search region are extracted and passed
through a prediction head or decoder to determine the position of the identified
object bounding box. In our research, we propose an innovative update method,
which includes not only the initial text T1st but also the updated text Tupd

generated by a large visual-language model based on the current frame state, as
shown in Fig. 2. This design aims to better align textual features with the current
target appearance. By ensuring that the textual information remains relevant
and accurately reflects the evolving context, we can enhance the accuracy and
robustness of target tracking.

Fig. 2. The pipeline of our text update process. The model is divided into three parts:
object tracking, text generation, and text fusion. The results estimated by the object
tracker, along with the current image, are given to the LVLM to generate new text.
After being evaluated by the update determination module, the generated text is fused
with the initial text to create new text embeddings, supporting subsequent tracking.
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3.2 LVLM-Based Referring Expression Generation

During tracking, generating descriptions based on the target’s current visual fea-
tures aligns with the goal of the Referring Expression Generation (REG) task,
which is to describe objects within a specific region of an image. However, a core
issue with present REG methods, including those LVLM models when applied
to tracking sequences, is the poor distinctiveness of the generated descriptions.
When there are similar objects in the image, the visual-language tracker can mis-
takenly localize to the wrong object due to ambiguous descriptions (see Sect. 4.4
for more details). To meet the requirements of the object tracking task, we select
CogVLM as the foundational referring expression generator and fine-tune it to
obtain CogVLM_Track, which is adapted for the tracking scenario.

As illustrated in Fig. 2, our method takes the current image and target loca-
tion as inputs and outputs a description of the target. Unlike general scenarios
that require LVLM to have robust interactive capabilities, the tracking task
only carries out user-invisible queries on LVLM. Therefore, we only use a single
prompt during training and testing, which is:

pmt(box) = [pmtpre, [x1, y1, x2, y2], pmtsuf ], (1)

where x1, y1, x2, y2 represent the horizontal and vertical coordinates of the top-
left and bottom-right corners of the target. Each coordinate value is discretized
to an integer within 1000 based on the original image size and is padded with
leading zeros to three digits as proposed in [21]. pmtpre and pmtsuf are the fixed
prefix and suffix of the prompt, respectively1.

To generate textual descriptions of the target, we train the network using
cross-entropy loss:

LREG(θ) = − logP (wt|w1, w2, . . . , wt−1, I, pmt(box)), (2)

where θ represents the trainable parameters, wt is the predicted word at position
t, and I is the current image.

To filter out invalid descriptions in advance, we use an update determination
module to assess the quality of the generated text. The formula is as follows:

Tupd =
{

Tnew if IoU(box, ˆbox) > σ,

T̃upd elsewise.

s.t. Tnew = LV LM(I, box), ˆbox = V G(I, Tnew).

(3)

In this module, we use the text Tnew generated by LVLM and employ the
visual-language tracker’s visual grounding function V G(·) to relocate the target
in the image, yielding ˆbox. We then determine the quality of Tnew by checking
if the IoU between ˆbox and the original box exceeds the threshold σ, deciding
whether to update Tupd with Tnew or maintain the history text T̂upd.

1 pmtpre: Please describe the area;
pmtsuf : in the image, including color or positional information for distinction.
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3.3 Online Text Feature Fusion

The current mainstream trackers construct the image template by preserving
the initial frame and periodically updating subsequent frames. To adapt to the
feature composition on the image side, we do not directly use the text embed-
dings generated by LVLM. Instead, they are fused with the initial description
before being fed into the tracker to ensure that the final feature representation
maintains both cross-modal temporal consistency and contextual accuracy.

As shown in Fig. 2, we first use a text encoder to perform embeddings on texts
T1st and Tupd, obtaining feature vectors f1st and fupd, respectively. It should be
noted that since T1st remains constant during tracking, f1st is computed only
once at initialization and is reused thereafter. Subsequently, a cosine similarity
function is applied to generate the attention weights wupd, with the formula as
follows:

wupd = cos_sim(f1st, fupd) =
f1st · fupd

‖f1st‖‖fupd‖ , (4)

where · represents the dot product, and ‖ · ‖ represents the Euclidean norm of
a vector. We use the weighted sum ffuse of f1st and fupd as the tracker’s input,
setting the w1st to 1− wupd to ensure

∑
w = 1, which is represented as follows:

ffuse = (1 − wupd) · f1st + wupd · fupd. (5)

During tracking, f1st initializes fupd. When in the first frame or without a text
generator, the text fusion module degenerates to output the initial features f1st.
This property ensures the robustness of the method.

Additionally, to facilitate the subsequent processing of text features, we pro-
vide a text mask Mfuse for ffuse that is the union of the masks for f1st initializes
fupd, making all available features visible:

Mfuse[i] = M1st[i] ∨ Mupd[i], s.t.∀i ∈ {1, . . . , n}. (6)

where n is the length of the text embedding, M1st and Mupd are the masks for
f1st and fupd respectively, and ∨ represents the bitwise OR operation.

By employing the above feature fusion method, we can ensure that the most
relevant features from both the initial and updated texts are combined in a way
that reflects their contextual importance.

4 Experiment

4.1 Implementation Details

LVLM for Tracking. During the training of CogVLM-Track, we utilize the first
frame of the videos in training splits from OTB99 [26], LaSOT [27], and TNL2K
[5] to create our referring expression generation dataset. Given the tendency of
LaSOT’s text to provide uniform descriptions for targets within the same object
class, we select only one random video per class to include in our training data.
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We set the batch size to 4 for each GPU, set the learning rate to 1e-5, and employ
an Adam [28] optimizer with a weight decay of 0.05 to conduct the fine-tuning
process over 4000 iterations on eight A800 GPUs.

The network architecture involved in fine-tuning includes the 63 layers of
Transformer from ViT [29] used for image feature extraction and the final 32
layers of Transformer in CogVLM [21]. LoRA branches are configured for the
respective QKV (Query, Key, Value) matrices and linear layers. During fine-
tuning, the rank is set to 10 to ensure a minimal increase in the model size and
rapid training. The original model size is 32.857 GB, and after fine-tuning, the
model size is 32.893 GB, with an increase of only 0.1%.

Online Text Update. To align the textual description with the tracking image,
we invoke LVLM to generate the description using the cropped search region of
the current frame together with the corresponding target bounding box, rather
than using the full image. The parameter σ utilized by the update determina-
tion module is set to 0.5 across all sequences. In our online update setting, the
text updates are scheduled to coincide with the image template updates. The
baseline visual-language tracker we use is UVLTrack [7], for which we conducted
NL, NLBBOX, and BBOX Tracking experiments mainly on its large version. It
should be noted that the results we provide show slight deviations from those
provided by [7], which is due to our use of the official code and official network
weights retested in our environment to ensure a fair comparison.

Datasets and Metrics. We evaluate our method on three tracking benchmark
datasets with natural language descriptions, which include OTB99 [26], LaSOT
[27], and TNL2K [5]. The OTB99 dataset, with textual descriptions provided
by Li et al., contains 99 sequences, 48 of which are designated for testing. The
LaSOT dataset is a long-term tracking dataset that provides bounding boxes
and natural language descriptions, featuring 280 long-term test sequences. The
TNL2K dataset, specifically designed for vision language tracking tasks, includes
700 test sequences covering both real and synthetic scenes such as cartoon videos,
and it presents challenging factors like significant appearance changes and adver-
sarial samples. In this study, we employ three key metrics to evaluate the per-
formance of trackers: Area Under Curve (AUC) of Success Plot, Precision (P),
and Normalized Precision (PN ). AUC measures overall performance under var-
ious conditions; Precision reflects the degree of overlap between the tracking
results and the actual targets; Normalized Precision adjusts the precision metric
considering changes in target size.

4.2 Evaluations on 3 Tasks

We apply the proposed online text update method to three different tracking
tasks to verify the generality of our approach.

NL Tracking. This task serves as the primary scenario for our verification.
We conducted experiments on both the base and large versions of UVLTrack.
From the top part of Table 1, it can be observed that applying our update method
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Table 1. Comparison of our method with state-of-the-art trackers on OTB99 [26],
LaSOT [27], and TNL2K [5] datasets. We highlight the top-ranked scores in red.

Method OTB99 LaSOT TNL2K
AUC P PN AUC P PN AUC P PN

NL
TNLS-II [1] 25.0 29.0 – – – – – – –
GTI [14] 58.1 73.2 – 47.8 47.6 – – – –
TNL2K-1 [5] 19.0 24.0 – 51.1 49.3 – 11.4 6.4 11.0
CTRNLT [30] 53.0 72.0 – 52.0 51.0 – 14.0 9.0 –
JointNLT [2] 59.2 77.6 – 56.9 59.3 64.5 54.6 55.0 70.6
QueryNLT [8] 61.2 81.0 73.9 54.2 55.0 62.5 53.3 53.0 70.4
UVLTrack-B* [7] 60.1 77.0 71.1 56.7 60.2 64.2 54.7 56.3 70.9
UVLTrack-L* [7] 62.6 81.5 73.7 59.3 63.5 66.8 58.2 60.8 74.6
UVLTrack-B* + ours 60.9 78.1 72.1 57.1 60.8 64.6 54.9 56.7 71.2
UVLTrack-L* + ours 63.1 82.1 74.3 59.7 63.9 67.3 58.3 60.8 74.7
NLBBOX
TNLS-III [1] 55.0 72.0 – – – – – – –
SNLT [31] 66.6 80.4 – 54.0 57.6 - 27.6 41.9 –
TNL2K-2 [5] 68.0 88.0 – 51.0 55.0 - 41.7 42.0 50.0
JointNLT [2] 65.3 85.6 79.5 60.4 63.6 69.4 56.9 58.1 73.6
QueryNLT [8] 66.7 88.2 82.4 59.9 63.5 69.6 57.8 58.7 75.6
UVLTrack-L* [7] 70.8 92.2 86.3 70.8 78.0 81.1 64.7 69.0 82.5
UVLTrack-L*+ours 70.9 92.5 86.7 71.0 78.2 81.3 65.1 69.4 82.9
BBOX
Ocean [32] – – – 56.0 56.6 65.1 38.4 37.7 45.0
TransT [33] – – – 64.9 69.0 73.8 50.7 51.7 –
MixFormer-L [34] – – – 70.1 76.3 79.9 – – –
SimTrack-L [35] – – – 70.5 - 79.7 55.6 55.7 –
UVLTrack-L* [7] 70.1 91.0 84.7 70.8 77.7 81.0 64.9 69.1 82.7
UVLTrack-L* +ours 70.7 92.0 85.8 71.0 78.0 81.3 65.1 69.4 83.0
* our reproducing results using the officially released code.

leads to improvements for both UVLTrack-B and UVLTrack-L, thereby asserting
the effectiveness of our approach. Specifically, the proposed method achieved
AUC scores of 63.1, 59.7, and 58.3 on OTB99, LaSOT, and TNL2K respectively,
attaining leading performance. We noticed that the improvement of our method
over the baseline is not substantial. This is because most trackers use a low
update frequency (e.g., every 50 frames) for maintaining optimal tracking speed.
To demonstrate the versatility of our method, we didn’t artificially increase text
update frequency on UVLTrack but allowed it to update concurrently with the
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Table 2. Analysis of different components in our methods.

Method
UVLTrack_base (NL)

OTB99 LaSOT TNL2K
AUC P PN AUC P PN AUC P PN

baseline 60.1 77.0 71.1 56.7 60.2 64.2 54.7 56.3 70.9
+TUM(cos) 60.7 77.9 71.9 56.8 60.4 64.3 54.8 56.6 71.1
+TUM(avg)+UDM 60.8 77.9 71.9 57.0 60.6 64.6 54.8 56.6 71.1
+TUM(cos)+UDM 60.9 78.1 72.1 57.1 60.8 64.6 54.9 56.7 71.2

image template. As a consequence, our method had limited activations during
tracking, which decreased opportunities to improve upon the base tracker.

NLBBOX Tracking. In this task, UVLTrack is initialized with both the first
frame image and text, and subsequently updated by our method. As shown in
the middle part of Table 1, UVLTrack_L+ours outperforms the baseline across
all metrics in three datasets. This demonstrates that even in tasks where track-
ing is predominantly image template-driven, our method can still provide richer
scene information to the base tracker, enhancing tracking performance compre-
hensively.

BBOX Tracking. Although this task does not provide additional text annota-
tions for tracking initialization, the natural language we provide does not depend
on initial annotations like QueryNLT. Therefore, we can still perform online
text generation to assist tracking. The bottom part of Table 1 shows an over-
all improvement of our method over the baseline, proving the generality of our
approach in pure visual tracking Scenarios.

4.3 Ablation Study and Further Analysis

Ablation Study on Different Components. We ensure that LVLM is avail-
able in this experiment, as it serves as the foundation for text updating. Under
this premise, we primarily verify the importance of two components: the Text
Update Module (TUM) and the Update Determination Module (UDM). Among
them, TUM corresponds to the Text Fusion part shown in Fig. 2. Table 2 presents
the outcomes of applying TUM directly without UDM for text filtering (line
#2). It is observable that there is an improvement in performance across all
datasets relative to the baseline (line #1), demonstrating the efficacy of TUM.
By incorporating UDM into TUM (line #4), the tracker’s performance is further
enhanced, highlighting the importance of the UDM.

Different Similarity Measurement Methods. We use averaging as a substi-
tute for Eq. 5 to compare our approach with a simpler fusion method, formally
expressed as ffuse = 0.5 ∗ f1st + 0.5 ∗ fupd. As shown in line #3 in Table 2, using
this method shows improvement over the baseline method (line #1), indicating
the high quality of our text generation which can be paired with different fusion
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methods. Additionally, the performance of this method across all datasets is
lower than our approach (line #4), which validates the correctness of our fusion
method.

Fig. 3. Tracking performance comparison on the LaSOT dataset using texts generated
by different models to replace the ground truth of the first frame in UVLTrack-large.

Different Text Generation Models. To assess text generation quality across
models, we substituted the initial frame’s ground truth with text from various
models and compared their tracking performance. The models evaluated are
CogVLM_Track (fine-tuned), CogVLM (original), and CogVLM + p (CogVLM
with prompt). Results in Fig. 3 show that CogVLM_Track’s tracking perfor-
mance, with a 58.0 AUC on LaSOT, closely approaches ground truth per-
formance, surpassing CogVLM and CogVLM+p by 2.1 points. Similarly, The
superiority of CogVLM_Track on the P and PN metrics indicates its gener-
ated text’s high fidelity. Although slightly underperforming compared to ground
truth, CogVLM_Track’s text remains more accurate over time than maintaining
the first frame description, suggesting the benefits of periodic updates (refer to
Fig. 1 and Fig. 4 for comparison).

Inference Speed Analysis. In experiments using a single A100 GPU (40G), we
test inference on image sequences with a resolution of 1280 × 720. The baseline
inference speed of UVLTrack-B was 35 FPS, and with our text updating method,
it slightly decreased to 33 FPS. This indicates that while inference speed slightly
decreases, our method’s dynamic adaptation to new visual features improves
accuracy and robustness, particularly when text descriptions do not match visual
information, making it valuable for complex environments.

4.4 Visualization

Generated Text. In the tracking task, language descriptions must accurately
and distinctively describe the target to avoid confusion with similar objects.
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Fig. 4. Visualization analysis of generated texts from CogVLM, CogVLM+p, and
CogVLM_Track. The sequences are from the test sets of (a) LaSOT, (b)(c) OTB99,
and (d) TNL2K, with the bounding boxes as annotations. We also show the ground
truth of the first frame for comparison.
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Fig. 5. Visualization analysis of the effects of text updates on challenging video
sequences from the TNL2K test set. (Zoom in for a better view).

From Fig. 4(a) and (b), it’s evident that determining the target from CogVLM
and CogVLM+p descriptions, and even from the first frame ground truth of
Fig. 4(a), is challenging due to their lack of distinctiveness. In contrast, CogVLM-
_Track provides specific instance descriptions. Additionally, Fig. 4(c) and (d)
show that without changing the initial text, it’s difficult to accurately describe
the subsequent states, highlighting the necessity of text updating.

Text Update Validity. As shown in Fig. 5, we present a comparative analysis
of two challenging sequences in TNL2K. The figure includes the initial text, the
texts generated at the early, middle, and late stages of the tracking process,
as well as the location box. The results demonstrate that because the gener-
ated texts better match the current state of the object, our method can locate
the object more accurately compared to the baseline. For example, in frame
#173 of the first sequence in the figure, the generated text “the player in
a gray suit and on the right” provides better directional information and
introduces new details that were not present in the initial description, helping
the tracker to locate the object more precisely.

5 Conclusion

In this paper, we introduce a novel online text updating method for Visual-
Language Tracking. We leverage the natural language processing capabilities
of LVLM to design a text generation module and introduce a complementary
text fusion module to maintain cross-modal temporal consistency with image
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templates. This method dynamically updates the entire textual description based
on the target’s current appearance, ensuring continuous and accurate tracking.
Our approach outperforms the baseline approach in 3 different tracking tasks
on the OTB99, LaSOT, and TNL2K datasets, demonstrating its superiority. We
hope that our work will facilitate the further application of large models in the
field of object tracking and the exploration of more efficient online text updating
approaches.
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Abstract. Accurate prediction of human or vehicle trajectories with
good diversity that captures their stochastic nature is an essential task
for many applications. However, many trajectory prediction models pro-
duce unreasonable trajectory samples that focus on improving diversity
or accuracy while neglecting other key requirements, such as collision
avoidance with the surrounding environment. In this work, we propose
TrajDiffuse, a planning-based trajectory prediction method using a
novel guided conditional diffusion model. We form the trajectory pre-
diction problem as a denoising impaint task and design a map-based
guidance term for the diffusion process. TrajDiffuse is able to generate
trajectory predictions that match or exceed the accuracy and diversity of
the SOTA, while adhering almost perfectly to environmental constraints.
We demonstrate the utility of our model through experiments on the
nuScenes and PFSD datasets and provide an extensive benchmark anal-
ysis against the SOTA methods.

Keywords: Human Trajectory Prediction · Diffusion Model

1 Introduction

Recent Human Trajectory Prediction (HTP) [1,3,9,13,16,30] works have
achieved great prediction accuracy by incorporating the stochastic nature of
human trajectory; this means that HTP models sample multiple trajectory pre-
dictions and use the most accurate one for accuracy evaluation. HTP models
also promote sample diversity to cover as many modes of movement as possible.
However, SOTA models often sacrifice the feasibility and realism of the pre-
diction in order to achieve the above-mentioned properties, failing to produce
quality trajectory samples that consistently follow scene contexts. In this paper,
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we investigate how to achieve accurate and diverse predictions while making sure
that the generated trajectories are also reasonable with respect to environmental
constraints.

Fig. 1. Top Left: Illustration of the denoising trajectory prediction process. Green
dots indicate the observed trajectory and the predicted way points. Red dots are the
denoised prediction. Top Right: A map from nuScene dataset overlayed with the
distance transform showing the distance to the navigable areas (roads) in the scene.
The color scale represents the normalized distance from closest (blue) to the farthest
(red). Bottom: Comparison against other SOTA methods on PFSD dataset (Color
figure online)

To predict an accurate multimodal distribution of human trajectories, recent
work has often adopted a planning-based approach by learning a probabilistic
latent variable model of the agent’s intent of movement [19,30]. Such formulation
models the human decision-making process in which human agents often have a
goal in mind and execute their movement based on their goals. These methods
typically use a CVAE-based model to decode a latent variable to obtain the
trajectory prediction. Despite the effectiveness of this strategy, we argue that
these works often lack explicit control over the generation and decoding process.

Other non-probabilistic methods often rely on test-time sampling tricks or
the anchoring approach [3,16]. These methods can achieve diverse sampling by
using handcrafted criteria that promote the output trajectories to be distinct
from each other. However, we have observed that the sampling trick will cause
a trade-off between the diversity and the feasibility of predicted trajectories.

To address these issues, we propose a trajectory prediction method based on
a guided conditional diffusion model. Compare with previous diffusion-based
approaches [6,14,17], which use latent observation embedding as input, our
method formulates the trajectory prediction problem as an interpolation between



384 Q. T. Liu et al.

the agent trajectory history and the predicted agent motion intent, as illustrated
on the top left of Fig. 1. By adopting the diffusion model framework, we gain
the ability to directly and explicitly control the trajectory generation process via
goal/waypoint conditioning and a guidance function that fuses the higher-level
signal of an agent’s intent with constraints such as the environmental awareness
encoded on the top right of Fig. 1. Our method has shown better environmental
understanding compared to other SOTA HTP methods as shown in both the
bottom of Fig. 1 and experiments in the later sections.

Our contributions are summarized as follows: (1) We propose a novel
planning-based trajectory prediction algorithm TrajDiffuse using a guided con-
ditional diffusion model to obtain accurate and diverse trajectory predictions. (2)
We propose an environment-based gradient guidance term that ensures that out-
put trajectories are feasible and environment-compliant. (3) We demonstrate our
design through experiments on two public datasets. We show that our method
can produce an accurate trajectory prediction and achieve good compliance with
environmental constraints. The source code can be found here: https://github.
com/TL-QZ/TrajDiffuse.git

2 Related Work

Trajectory Prediction. Early works in trajectory prediction have focused on
performing the trajectories prediction with sequence-to-sequence models such
as the RNN-based Social-LSTM proposed by [1]. To capture the multimodal-
ity of human trajectories, recent work has often applied probabilistic generative
frameworks for the prediction process. Social-GAN and Social-BiGAT [7,12] pro-
posed to use the Generative Adverseral Network (GAN) [5] to generate multiple
prediction outputs by repeatedly sampling inputs for the generative network.
MUSE-VAE, Trajectron++ and Agentformer [13,22,30] applied the CVAE [24]
for inference on the distribution of latent agent intents. For nonprobabilistic
approaches, Y-Net [16] used a test-time sampling trick to achieve diverse trajec-
tory predictions. MultiPath [3] leveraged a fixed set of state sequence anchors
to generate diverse modes of trajectory predictions. GOHOME [4] uses lane
information from HD-maps to generate heatmaps for intent prediction. Despite
its effectiveness, such information are only viable for vehicle trajectory predic-
tion, as pedestrian does not follows specific lanes. Besides, the evaluations of
above-mentioned models often ignored feasibility and only promoted diversity
and accuracy of the mode with least displacement from the ground truth, mak-
ing generation unusable and unrealistic trajectory predictions. We have shown
in our experiments that our model alleviates this problem by considering the
environmental feasibility of each output prediction and guiding the sampling
process with a map-based gradient correction term.

Diffusion Models. The recent success of diffusion models [8,23,27] in image
and audio generation has shown their ability to generate high-quality, high-
dimensional samples. The applications of diffusion models have also been

https://github.com/TL-QZ/TrajDiffuse.git
https://github.com/TL-QZ/TrajDiffuse.git
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extended to multimodal learning [18], sequence learning [20], and offline rein-
forcement learning tasks [10,29]. Recent works also attempt to apply diffusion
for the HTP task. Gu et al. [6] proposed Motion Indeterminacy Diffusion (MID)
that predicts the agent’s trajectory by denoising diffusion of Gaussian noise to
trajectory predictions using the observed trajectory embeddings as an additional
condition to the model. This approach requires a large number of diffusion steps.
Li et al. [14] and Mao et al. [17] proposed using a trajectory proposal rather than
pure Gaussian noises as the start of the denoising process to reduce the num-
ber of steps required. Leapfrog Diffusion [17] generates the trajectory proposal
from a learned deterministic trajectory initializer, while [14] used a CVAE-based
module for this initialization. MotionDiffuser [11] focused on learning the joint
distribution for motions of multiple agents to generate trajectory predictions
without agent-agent collision. The above-mentioned diffusion-based HTP mod-
els all uses latent embedding of observed trajectories as condition and generate
trajectories via denoising diffusion from either Gaussian noises or a full tra-
jectory proposal. We argue that such a setting lacks explicit control over the
generation process and does not offer a clear strategy that incorporates environ-
mental information. Inspired by recent work [10] on the use of the diffusion model
for goal-conditioned offline reinforcement learning, we propose a new planning-
based HTP model using guided conditional denoising diffusion to solve human
trajectory prediction as an impainting task by interpolating the agent’s trajec-
tory history and predicted agent motion intent. We also propose a map-based
gradient guidance term to ensure that all generated trajectory samples are com-
plying with the environmental constraint. We compare with the MID model and
the results of our experiments demonstrate the effectiveness of our model in both
predictive accuracy and quality performance. For other diffusion-based models,
we were not able to included in the benchmark due to the source code being
unavailable .

3 Proposed Method

We define the trajectory prediction problem as follows: Given the observed
trajectory of an agent, denoted as X = (x1, . . . , xTo

), where each xt ∈ R
2 rep-

resents the agent’s 2D coordinates in timestep t within the observed frames To,
as well as the semantic map M of the surrounding environment, our objective is
to predict the future trajectory Y = (yTo+1, . . . , yTo+Tp

) for subsequent frames
Tp. Here, yt ∈ R

2 denotes the 2D coordinates of the agent within the same
coordinate system as X.

To achieve our objective, we formulate the trajectory prediction task as fol-
lows.

P (Y,G|X,M) = P (Y |G,X,M)P (G|X,M). (1)

Here, the trajectory distribution is conditioned on an inferred agent intent G; we
assume this intent to be the predicted long-term goal and short-term way-points
the agent should follow, which makes G ⊂ Y . We used an off-the-shelf goal pre-
dictor to infer G. To model the conditional trajectory distribution P (Y |G,X,M),
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Fig. 2. Details on TrajDiffuse Model Structure. Left: Prediction pipeline of the
TrajDiffuse model. Here we represent the data as a two-channel one-dimensional
signal; the two channels in the input and output correspond to the two dimensions of
the position coordinate. Right: Illustration of the conditional denoising process inside
a diffusion block. The input and output are conditioned on the observed trajectory
and the predicted intents. The U-net-encoded bottleneck features are attended across
the channels and decoded. The output is then conditioned by the observed trajectory
history and the predicted waypoints.

we introduce a novel conditional diffusion-based trajectory prediction method
called TrajDiffuse. This model takes advantage of the inferred intent of the
agent, the observed trajectory, and a semantic scene map. It generates a tra-
jectory that corresponds to the agent’s intent, guided by a map-based guidance
module that ensures that the generated trajectory adheres to environmental
constraints.

In Sect. 3.1, we introduce the basic formulation of the diffusion model.
Section 3.2 introduces the formulation of the model TrajDiffuse in terms of
input/output representation, model formulation, model architecture, and train-
ing. Section 3.3 introduces a map-based guidance term which ensures that the
sampled predictions adhere to environmental constraints. Finally, Sect. 3.4 intro-
duces the sampling process during test time to generate trajectory predictions
using the TrajDiffuse model.

3.1 Fundamentals of Denoising Diffusion Model

The Diffusion Model [8,23] models the data generation procedure as an itera-
tive denoising process Pθ(τ i−1|τ i) for i = N, . . . , 0 starting from τN ∼ N (0, I)
sampled from a standard Gaussian distribution and τ0 being the ground truth
data instance. This process is the inverse of a forward procedure that gradually
adds noise to the ground truth data instance based on a sequence of variance
schedule hyperparameters α = {α1, ..., αN} which can be written as
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q(τ t|τ t−1) ∼ N (τ t;
√

αtτ
t−1, (1 − αt)I). (2)

The reverse denoising model Pθ(τ i−1|τ i) is often modeled as

Pθ(τ i−1|τ i) ∼ N (μθ(τ i, i), σ2
q (i)I). (3)

Here, the mean function μθ(τ i, i) is often parameterized with a neural network
structure that takes the output of the previous denoising step and an embedding
for the current denoising step index, and σ2

q(i) is a constant function of the
scheduling hyperparameters α. We follow the definition in [15] for this diffusion
process.

3.2 Conditional Diffusion Model for Trajectory Prediction

Trajectory Representation. We represent the input and output trajectories
of the model τ ∈ R

(To+Tp)×2 as the concatenation of the observed trajectory X
and the predicted trajectory Ŷ . Then, the trajectory output from denoising step
i will have the form

τ i = (x1, . . . , xTo
, ŷi

To+1, . . . , ŷ
i
To+Tp−1, ŷTo+Tp

)′. (4)

There are two notions of timesteps, the index of denoising steps and the
number of trajectory frames. We will use superscript to represent the former and
subscript to represent the latter. This means that ŷi

To+1 represents the agent’s
2D coordinates in the To + 1 frame from the output of the ith denoising step.

We assume the predicted intent G consists of a predicted goal ŷTo+Tp
and S

waypoints ŷw1 . . . ŷwS
, where ws ∈ {To+1, . . . , To+Tp −1} for all s ∈ {1, . . . , S},

of the form
G = {ŷw1 . . . ŷwS

, ŷTo+Tp
}. (5)

Model Formulation. Inspired by the image-inpainting task presented in [23],
our TrajDiffuse model P (Y |G,X,M) considers the trajectory prediction task
as an interpolation for the observed trajectory history and the predicted way-
points and the end goal. We use the diffusion model to perform iterative denois-
ing on the coordinates between the observed history and the predicted goal and
waypoints. Our model has the form

P (Y |G, X, M) = P (τ0) =

∫
P (τN )

N−1∏
i=0

P (τ i|τ i+1)dτ1:N . (6)

For each denoising step i, we fix the elements in τ i corresponding to the
observed trajectory with the observed coordinate sequence (x1, . . . , xTo

) and the
elements corresponding to the predicted goal and the waypoints in the predicted
intent G to obtain a noisy conditioned trajectory τ i′

. We then feed the τ i′
into

the next denoising step i−1 and sample the next denoised trajectory τ i−1 based
on the distribution in (3). Figure 2 illustrates how the input to each diffusion
step is conditioned by the observed trajectory and the predicted agent intent.
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Architecture. Following [15], we further parameterize the mean function
μθ(τ i, i) as

μθ(τ i, i) = μ(τθ(τ i, i), α), (7)

where τθ(τ i) is a neural network that predicts the ground truth trajectory with
the noisy trajectory as its input. We use a U-Net-based [21] structure along
with an attention module [28] for τθ(τ i). We considered the two-dimensional
trajectory in the form of a two-dimensional coordinate sequence as a 2-channel
1-dimensional image with only one temporal dimension. Therefore, we use groups
of 1-dimensional convolutional neural network blocks along with residual connec-
tions for the encoding and decoding modules for the U-Net structure, following
the model architecture design in [10]. The encoded U-Net feature, which has a
dimension of C×W , does not contain any information across the channels during
the encoding process. Therefore, we feed the encoded feature into a cross-channel
attention layer to resolve this issue, as suggested in [10]. The cross-attended fea-
ture is the input into the decoding blocks to generate the denoised trajectory.
Figure 2 illustrates the structure introduced here.

Training. Like standard denoising diffusion models, to train TrajDiffuse,
we minimize the KL divergence between our denoising model Pθ(τ i−1|τ i) and
the ground-truth denoising distribution q(τ i−1|τ t, τ0) for each denoising step
i ∈ [1, N ]. This KL divergence becomes the L2 norm between the predicted
mean function μθ(τ i, i) and the ground-truth mean function μ̃(τ t, τ0). Based
on the reprameterization in (7), we can further simplify this and form our loss
function as

L = Ei∼U{1,N}

[
Eq(τi|τi−1)

[
λ(α)

2σ2
q(t)

‖τθ(τ i, t) − τ0‖2
2

]]
. (8)

The λ (α) is a function of the predefined noise schedule hyperparameter α.
The complete derivation follows the review [15] and the original DDPM paper
[8]. We also provide a brief derivation in the Supplementary Material.

3.3 Map-Based Gradient Guidance Module

To achieve the goal of generating trajectory predictions that strictly adhere to
environmental constraints, we introduce a novel map-based gradient guidance
term for the denoising trajectory prediction process, illustrated as the Map Based
Guidance module in Fig. 2. Given the semantic map M , we first extract the
binary navigability map Mb and perform the distance transform D(Mb) to obtain
the distance map Md. Each element Md(i, j) represents the distance to the closest
navigable pixel, as demonstrated on right of Fig. 1. We then calculate the image
gradient ∇Md with respect to each pixel coordinate.

Directly using the gradient to guide the denoised trajectory may cause
the coordinates of different frames to drift toward opposing directions, causing
impossible predictions. Therefore, we propose an algorithm to guide the trajec-
tory iteratively through the trajectory sequence. For each frame in the trajectory,
we will perform a gradient descent using the image gradient ∇Md to ensure that
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Algorithm 1: Map-based Guidance H(∇Md, τ
i)

Input: denoised trajectory τ i

Output: map-based guidance term
τ i∗ ← τ i;
for f = To + 1 to To + Tp do

for k = K, . . . , 1 do
// K times of this gradient descent step
τ i∗[f :] ← τ i∗[f :] + ∇Md(τ

i∗[f ]);
end

end
return τ i∗ − τ i

the coordinates of the current frame end up in a navigable area; we then also
update all the positions of the later frames relative to the updated location of
the current frame, as illustrated in Algorithm 1. We continue to perform this
update iteratively for all time steps {t|t = To + 1, . . . , To + Tp}.

3.4 Test Time Sampling

During test time, we assume that an agent has an observed history X, the seman-
tic scene map M , and K sets of predicted agent intent G = {G1, . . . , GK}. For
each set Gk, we sample a trajectory prediction through the conditional denoising
diffusion process guided by the map-based guidance H defined in Sect. 3.3. The
pseudocode for the guided prediction pipeline is given in the supplementary.

4 Experiments

Section 4.1 introduces the datasets, evaluation metrics, and benchmark settings.
Section 4.2 quantitatively compares the SOTA models and the TrajDiffuse
model. Section 4.3 performs qualitative analysis for the SOTA models and our
TrajDiffuse model. In Sect. 4.4, we present an ablation study for the map-based
guidance module. We also performed an analysis of the inference speed compared
to other SOTA models, included in the supplementary section G.

4.1 Preliminaries

Datasets. We use two publicly available datasets for our benchmark exper-
iment. The nuScenes dataset, first introduced in [2], is a large-scale vehicle
trajectory dataset, consisting of 1000 driving scenes and provides HD semantic
maps. There are multiple benchmark configurations for this dataset and we fol-
low [13,30] and used their training and testing splits for the nuScenes prediction
challenge. The PFSD dataset introduced in [13] features simulated trajecto-
ries within a group of synthetic path-finding environment layouts proposed in
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[26]. The non-navigable areas are designed to be more complex for navigation.
Despite having different agent types (vehicle and pedestrian, respectively), both
benchmark offers strict navigability constraint, making them great benchmark
platforms testing the models’ ability generating realistic predictions.

Metrics. For the benchmark evaluation, we compute the minimum average
displacement error ADEk and the final displacement error FDEk of the K tra-
jectory samples for each agent compared with the ground truth trajectory. We
also adopt the Kernel Density Estimated-based Negative Log Likelihood (KDE
NLL) proposed in [9], which evaluates the fit of the model. We evaluate the
environment understanding of the prediction models using the Environmental
Collision-Free Likelihood (ECFL) proposed in [25], which measures the prob-
ability that a predicted trajectory free of environmental collision. Finally, we
quantify the diversity of the prediction outputs using the Multiverse Entropy
(MVE) proposed in [25] quantifying the diversity of the trajectory predictions.
We provides a detailed definition of each metric in the supplementary sections
of the paper.

Implementation Details. We use the CVAE-based Macro-stage of the MUSE-
VAE model [13] to predict intent of an agent. We also point out that, for the
following experiments, TrajDiffuse and MUSE-VAE share the same sets of
predicted waypoint sets. Other implementation details are presented in the sup-
plementary.

4.2 Quantitative Analysis

For the quantitative experiment, we perform the trajectory prediction task on the
two datasets mentioned above. We compared the performance of TrajDiffuse
against the Trajectron++ (T++) [22], AgentFormer (AF) [30], Y-net [16],
MUSE-VAE (MUSE) [13] and motion indeterminacy diffusion (MID) [6]. Both
PFSD and nuScenes provide rasterized global scene maps, and we provide a
local view of the maps for all the methods benchmarked following the experi-
ment in [13]. The original MID model does not utilize map information, so we
also compare with a modified MID that incorporates a map embedding for fair
comparison. Since MID uses T++’s encoder for observed trajectories and social
interactions, we use T++’s map encoder for the modified MID. We point out
this is different from our map guidance module, but an adaption based on the
design choice of MID model itself. We trained all models from scratch except for
MUSE and Agentformer, where we used their provided pre-trained weight on the
nuScenes dataset and we used MUSE-VAE’s pretrained weight on PFSD dataset.
Some benchmark models consider multi-agent settings, using context from other
agents to condition independent or joint predictions of all agents’ trajectories
in the scene. We argue that such a difference does not significantly affect our
conclusions, and we provide a more detailed discussion in the supplementary
material.
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Table 1. Quantative Results on PFSD and nuScenes datasets

(a) Results on PFSD with K = 20 with tobs = 3.2s (8 frames) and
tpred = 4.8s (12 frames). Errors are in meters. The best performance
is boldfaced and the 2nd place is marked as blue. Numbers in
parenthesis indicate the ranking for the score.

Model ADE ↓ FDE ↓ NLL ↓ ECFL ↑ MVE ↑
T++ 0.20 (7) 0.42 (7) 2.24 (7) 85.00 (7) 1.13 (1)
AF 0.11 (6) 0.17 (5) 1.93 (1) 93.76 (4) 0.67 (7)
Y-net 0.07 (3) 0.12 (3) 1.98 (3) 94.16 (3) 0.79 (6)
MUSE 0.05 (1)0.09 (1) 1.95 (2) 97.08 (2) 0.92 (4)
MID 0.09 (4) 0.16 (4) 2.00 (5) 88.72 (6) 0.93 (3)
MID w/Map 0.10 (5) 0.19 (6) 2.00 (5) 90.41 (5) 0.86 (5)
TrajDiffuse 0.06 (2) 0.09 (1) 1.98 (3) 99.62 (1) 1.08 (2)

(b) Result on nuScenes with K = 5 and K = 10 with tobs = 2s (4
frames) and tpred = 6s (12 frames). Errors are in meters. The best
performance is boldfaced and the 2nd place is marked as blue.
Numbers in parenthesis indicate the ranking for the score.

K Model ADE ↓ FDE ↓ NLL ↓ ECFL ↑ MVE ↑

5

T++ 2.51 (7) 5.57 (6) 11.66 (7) 81.66 (4) 0.46 (6)
AF 1.86 (4) 3.89 (4) 6.94 (3) 84.66 (3) 0.38 (7)
Y-net 1.63 (2) 2.86 (3) 7.13 (4) 76.61 (5) 0.68 (3)
MUSE 1.37 (1) 2.84 (2) 5.76 (1) 89.30 (2) 0.65 (4)
MID 2.38 (5) 5.54 (5) 9.33 (5) 69.23 (6) 0.81 (1)
MID w/Map 2.42 (6) 5.61 (6) 9.51 (6) 68.72 (7) 0.81 (1)
TrajDiffuse 1.67 (3) 2.73 (1) 6.85 (2) 99.15 (1) 0.61 (5)

10

T++ 1.92 (5) 4.01 (5) 8.20 (7) 81.25 (4) 0.57 (6)
AF 1.45 (4) 2.86 (4) 5.67 (4) 84.26 (3) 0.42 (7)
Y-net 1.32 (1) 2.05 (2) 5.60 (3) 70.71 (5) 1.03 (3)
MUSE 1.10 (1) 2.11 (3) 4.61 (1) 89.26 (2) 0.79 (4)
MID 1.93 (6) 4.29 (7) 7.42 (6) 68.97 (6) 1.00 (2)
MID w/Map 1.96 (7) 4.28 (6) 7.41 (5) 68.40 (7) 1.00 (2)
TrajDiffuse 1.41 (3) 2.02 (1) 5.33 (2) 99.08 (1) 0.74 (5)

PFSD Dataset. Table 1a summarizes the results in the PFSD dataset. For the
PFSD dataset, we use 3.2 s (8 frames) observations and predict 4.8 s (12 frames)
into the future. We chose to sample K = 20 samples for the PFSD dataset
to consider the inherent multimodal nature of the human trajectory. For the
ADE20 score, TrajDiffuse was able to achieve the second best among all the
benchmarked models. For the FDE20 score, TrajDiffuse achieves the overall
best along with the MUSE-VAE model. The two displacement errors measure
the prediction accuracy of the best sample and we have shown that TrajDiffuse
can achieve SOTA performance in terms of these two metrics. For the KDE NLL
metric, TrajDiffuse also matches the SOTA methods, meaning that the K sam-
ples generated could reflect the distribution of the ground truth data distribu-
tion. TrajDiffuse model is capable of surpassing all SOTA models in the ECFL
experiment. The TrajDiffuse model can achieve an almost perfect prediction in
terms of complying with the environmental constraint. This indicates that given
sufficient predicted waypoints, TrajDiffuse is capable of generating predictions
that are accurate and realistic. For the MVE, TrajDiffuse is ranked second.
This indicates that TrajDiffuse is capable of generating diverse trajectory
predictions. Compared to MID, another diffusion-based model, TrajDiffuse
achieved better performance in all metrics. For the PFSD data set, after adding
map embedding, MID achieves a lower MVE score, causing the predictions to
be less diverse. This is also demonstrated in the qualitative analysis.

nuScenes Dataset. For the nuScenes dataset, we follow the configurations of
previous works, observing 2 s (4 frames) of past trajectories and predicting 6 s
(12 frames) into the future. We experiment with two K settings for this dataset.
Table 1b shows the result. For the K = 5 case, our model was able to achieve
the best FDE5 score and matches the SOTA ADE5 performance. This indicates
that the model can take advantage of the accurate long-term prediction and gen-
erate a reasonable and accurate trajectory. For the KDE NLL, TrajDiffuse is
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able to achieve the second best. For the ECFL score, TrajDiffuse can achieve
the best among all models and achieve an increase of almost 10%. For case
K = 10, all models achieve better displacement error performance, with MUSE
having the best ADE10 score and TrajDiffuse having the best FDE10 score.
TrajDiffuse was also able to achieve SOTA performance on the KDE NLL
metric. For the ECFL, TrajDiffuse again achieves the best among the bench-
mark models and achieves almost perfect predictions it terms of following the
environmental constraint. For the MVE metric, TrajDiffuse is ranked 5th over-
all. However, compared to the top three ranking MID, Y-net and MUSE-VAE,
TrajDiffuse is capable of generating more feasible predictions while still having
comparable MVE values. On the other hand, the top-ranking Y-net and MID
sacrifice the feasibility in terms of ECFL to achieve more diversity, causing most
of their prediction to be unrealistic. Although MUSE-VAE ranked the highest on
average, its generated trajectories often violated environmental constraints, mak-
ing unrealistic predictions, as can be seen in the qualitative analysis in the next
section. The MID model struggled to perform on the vehicle-focused nuScenes
dataset. Despite ranking first for the MVE metric for diversity, the model fails to
produce accurate and feasible trajectory predictions. The experiments show that
diffusing from raw Gaussian noise and using only trajectory history embedding
as conditions is not as effective compared with our setting of interpolation via
diffusion.

4.3 Qualitative Analysis

We provide a qualitative analysis with visualizations of the prediction output of
each model to better illustrate the behavior and characteristics of these models.

Figure 3a shows two instances of the PFSD experiment. For the PFSD
dataset, the TrajDiffuse model is capable of generating diverse paths that
are also able to adhere to the environmental constraint. Here, we point out
again that we use the same intent prediction as the MUSE-VAE output. Since
MUSE-VAE does not directly use the predicted goal and waypoints, it will still
generate trajectories that cause a collision with the environment. Our guided
denoising inpainting approach is able to address this issue while still maintaining
the prediction accuracy. Y-net test time sampling trick helps the model generate
a diverse set of predictions; however, this sampling process is not data-driven
and generates trajectories that ignore the environmental constraint. The Agent-
Former model is able to generate trajectories that cause no collision with the
environment in one of the instances, however, the outputs lack diversity. For the
other instance, AgentFormer is able to predict the correct intent of the agent;
however, the trajectories all violate the environmetnal constaint and the pre-
dictions also lack diversity. Trajectron++ model suffers a lack of diversity issue
in one of the cases shown here, and in the other instance the model also gen-
erates many trajectories which ignore the environmental constraint. The MID
model (in both settings) behave similarly to the Trajectron++, as they share
the same encoder structure. The model is able to achieve better environmental
understanding with the addition of map embedding; however, it still produces
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Fig. 3. Visualizations for qualitative analysis on PFSD and nuScenes datasets. Each
column contains visualizations of an agent’s trajectories predicted by the model indi-
cated at the top of the column. Each row corresponds to the agent with identical initial
conditions and identical prior motion history. Blue dashed lines denote the ground-truth
trajectories. Red dashed lines are predicted trajectories. (Color figure online)

trajectories violating the map constraints, and the addition of map embedding
also causes the model to produce less diverse predictions in both instances.

Figure 3b presents three instances from the nuScenes dataset. Due to the
dataset’s focus on vehicle trajectory in traffic scenarios, the environmental con-
straint is stricter, offering limited navigable areas. Here, the TrajDiffuse model
is capable of producing accurate and diverse trajectories and staying within nav-
igable areas. TrajDiffuse and MUSE-VAE also share the predicted waypoints
in this experiment. However, we see here that MUSE will generate off-road tra-
jectories, which are likely due to inaccurate intent predictions. Meanwhile, the
TrajDiffuse model with its map-based guidance is able to correct those tra-
jectories and makes reasonable predictions. For Y-net outputs, the disadvantage
of the test-time sampling trick is shown in this kind of narrow environment.
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Y-net outputs have shown a trade-off between diversity and environmental com-
pliance, where many outputs go off-road. The sequence-to-sequence setting of
AgentFormer and Trajectron++ was able to generate more output that stays
on-road. However, these predictions often fail to reach the ground truth goal and
overshoot beyond the truth trajectory, causing the prediction accuracy problem.
MID also suffers from this issue of inaccurate predictions, and the model also
often goes off road given the narrower navigable areas. With the help of map
embedding, the model does have lower environmental violation; however, it still
suffers in accuracy, and the model also produces less diverse outputs for these
three instances.

From the qualitative analysis, we have shown that the TrajDiffuse offers a
better solution for using the predicted intent than the MUSE-VAE model and
renders more realistic and diverse predictions than MID Y-Net, AgentFormer
and Trajectron++ models.

4.4 Ablation Study

Table 2a presents an ablation study of the map-based guidance sampling on the
nuScenes dataset with K = 10 samples. We note that the map-based guidance
not only improves the ECFL of the model output; it also improves the accuracy
metrics. The MVE value decreases slightly; however the MVE metric should be
considered along with other metrics and this indicates the guidance term helps
the model to generate higher quality trajectory predictions while maintaining
the diversity. We also note that using the heatmap based MUSE Macro-stage
for intent prediction indeed helps the TrajDiffuse achieves a good starting
base line for ECFL, however, we see that using the same sets of predicted way-
points, TrajDiffuse without map guidance still achieves better ECFL score than
MUSE and both TrajDiffuse settings also achieve better FDE score compare
with MUSE. This is due to the non-autoregressive setting of our diffusion based
interpolation, which directly uses the environmentally-compliant waypoints as
the final output. On the other hand, MUSE-VAE’s micro-stage only uses these
predicted waypoints as reference for its auto-regressive RNN based prediction
module and generate brand new trajectory predictions that often fails to maxi-
mizes the advantage of the environment-aware Macro-stage predictions.

We provide another ablation study in Table 2b on the number waypoints used
for prediction on the nuScenes dataset. With only one waypoint (final goal), the
model yields slightly decreased performance. However, for other choices, the
model performance increases and does not drastically vary. Hence, the model
needs both the intermediate waypoints and the goal point, but it is robust against
a different number of waypoints. We chose 3 waypoints following MUSE-VAE.

5 Discussion and Conclusion

In this paper, we introduced TrajDiffuse, a guided conditional diffusion model
for trajectory prediction. By framing the prediction task as denoising interpo-
lation of the observed trajectory and predicted waypoints, our model is able to
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Table 2. Two abalation studies

(a) Ablation study of the map-based guidance on nuScenes dataset
with K = 10.

Model ADE ↓FDE ↓KDE NLL ↓ECFL ↑MVE ↑
MUSE-VAE 1.10 2.11 4.61 89.26 0.79
TrajDiffuse w/o Guidance 1.42 2.04 5.40 92.07 0.77
TrajDiffuse w Guidance 1.42 2.02 5.33 99.08 0.75

(b) Ablation study for different number of waypoints on nuScenes
with K = 5 with tobs = 2s (4 frames) and tpred = 6s (12 frames).
Errors are in meters; map-guide vs. w/o map-guide
#Waypoints ADE ↓ FDE ↓ NLL ↓ ECFL ↑ MVE ↑

1 1.74/1.772.75/2.787.18/7.3099.16/89.12 0.57/0.60
2 1.68/1.692.76/2.807.12/7.2299.15/91.64 0.60/0.62
3 1.67/1.682.73/2.766.85/6.9499.15/92.10 0.61/0.64
4 1.66/1.672.77/2.797.15/7.2099.02/92.24 0.60/0.62

achieve a SOTA performance in accuracy and diversity measure while surpassing
the existing method’s ability to follow the critical environmental constraints.

Several other future directions can be considered. Our TrajDiffuse frame-
work makes it possible to integrate other dynamic scene elements and HD-maps
that have become more prevalent in recent years. Alternate approaches that
incorporate the intent of other agents in the scene to model agent-agent inter-
actions may similarly and readily benefit from the TrajDiffuse framework.

Our method leverages the predicted agent intent in the form of trajectory
waypoints; in this work, we employ a CVAE-based backbone of the MUSE-VAE
model [13] for that task. Although we demonstrated that the feasibility of the
TrajDiffuse prediction exceeds that of MUSE-VAE, other waypoint prediction
models could be used to create successful pipeline designs, opening an interesting
direction for further investigation.
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Abstract. Identifying and tracking mobile objects in an underwater environment
is a challenging task. Traditional methods cannot differentiate the object from
the background due to the losses induced by inherent properties of light. In this
regard, researchers across the globe developed several deep learning models that
adhered to convolutional kernels and their modified forms to tackle the same.
However, such kernels incur losses due to uncertain, fuzzy, and poorly defined
boundaries of objects inside the water. Recent advancements in graph learning
have eliminated the loss typically associated with convolutional kernels, creat-
ing new opportunities for moving object identification. This study presents an
end-to-end moving object detection architecture to analyze intricate underwa-
ter scenes. We adhered to a ResNet-50 backbone in the proposed architecture
to project the video frame to feature space. Graph learning is used to retain the
structural information of the object by projecting from feature space to graph
space. Multiple aggregators facilitate the seamless transfer of information among
neighbouring nodes, alleviating noise induced by deep architectures. The refac-
tored latent vector is transformed to image space to detect the moving object(s)
from the given scene. The proposed method is evaluated against twenty-four
state-of-the-art algorithms on the benchmark datasets, outperforming all existing
methods.

Keywords: Underwater object detection · Graph learning · Deep learning ·
Graph aggregation

1 Introduction

The advancement in underwater navigation has led to a greater need for detecting mov-
ing objects to facilitate automated navigation [22]. Despite significant advancements in
terrestrial object recognition, detecting underwater objects remains an area for improve-
ment. Conventional terrestrial approaches [23,41] could be more effective in underwa-
ter scenarios due to the challenges presented by the dynamics of the underwater envi-
ronment. The objects are camouflaged and occluded, and their intricacies are obscured,
making it challenging to discern the moving object. In addition, when light traverses
in the underwater scenario, it loses some energy due to the intrinsic property of light.
Hence, the underwater images are degraded in terms of colour and texture information,
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making it difficult to distinguish between foreground and background [31]. Further, the
fish manoeuvre through the water with swift and sudden movements, making monitor-
ing challenging. The challenges posed by underwater are more severe than those in ter-
restrial environments. Therefore, detecting moving objects in underwater environments
is a relatively uncommon topic in the literature.

Recent studies [29,30,37,38] indicate notable progress in underwater surveillance
by utilizing various features of objects. However, these methods fail due to degradations
offered by the underwater environment. The loss of colour and texture information in
underwater environments makes it difficult to rely on these features. Further, authors
[1,25] have utilized deep-learning techniques to detect the foreground from the back-
ground, taking advantage of the progress in deep learning. Nevertheless, these methods
are ineffective in preserving minute details of the object. One possible explanation is
that noise is amplified by applying a spatial kernel in the non-Euclidean domain during
the convolution operation and by the noise introduced by the max pooling operation.

The graph networks are more reliable in retaining information irrespective of the
topology of the data. Hence, it has become popular in various domains like action
recognition [33], cancer detection [43], etc. However, the spatial relationship extracted
by the convolutional network is paramount in image processing tasks like object detec-
tion. Moreover, CNNs are less computationally expensive than graph networks. Hence,
combining both networks can be utilized to preserve features better. Kapoor et al. [16]
have introduced a graph-sage-based approach to detect moving objects in a scene using
graph-refactoring in the latent space. This approach uses CNN for feature extraction
and GraphSage to refactor the information shared by latent vector elements. Further, the
author tests various aggregators in the sampled neighbourhood. The transfer of infor-
mation among the nodes depends upon the number of nodes in the neighbourhood and
the aggregator utilized to combine the information among neighbours. However, Xu et
al. [40] demonstrated that the mean and max aggregators cannot differentiate between
features with the same characteristics but different cardinalities. The graph structure
information cannot be captured by mean, and max operators used by [16] to accu-
rately refactor the latent vector. Corso et al. [3] proposed a principal neighbourhood
aggregation with multiple aggregators and scalers to combine the information among
neighbours, which can be utilized to refactor the feature vector in high-dimensional
space.

This study presents an underwater moving object detection module with an end-to-
end encoder-decoder architecture. The feature extraction module preserves the spatial
correlation between the nodes and extracts the features in a high-dimensional latent
space that differentiates the object from the background. The spatial correlations in the
latent space are elusive. Therefore, we introduce a graph refactoring module to remove
unwanted noise and retain the global contextual information. The graph refactoring
module, positioned between the encoder and decoder architecture, preserves the intri-
cate details while removing any distortion induced by the convolution kernel and max
pooling. The latent vector is mapped onto the graph space, facilitating the exchange of
information among the graph nodes. The performance of the graph is contingent upon
the exchange of information across nodes. Therefore, using the principal aggregation
approach, we utilize several aggregators and scalars to merge the information across
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the nodes. Aggregators and scalers collect and organize information from neighbouring
nodes and pass it to the following graph layer. Following refactoring, the graph is trans-
formed to generate a refactored latent vector. The decoder network converts the latent
vector into the image domain and detects the moving object(s) present in the scene.

The main contributions of the article are as follows:

– A principal-neighborhood aggregator technique is used to restructure the latent
space node relationship.

– A diverse range of aggregator functions is utilized with distinct scalars to preserve
relevant information and eliminate noise.

– The proposed method was evaluated against twenty-four state-of-the-art techniques,
and our method outperformed the existing methods in terms of performance.

The rest of the paper is organized as follows. The related works are discussed in
Sect. 2. Section 3 demonstrates the proposed work and basic concepts. The results and
discussion are presented in Sect. 4. Finally, Sect. 5 contains the conclusion of the pro-
posed method.

2 Related Works

The state-of-the-art methods can be classified into two categories: traditional methods
and learning-based methods. The traditional methods use image features and descriptors
to identify the object(s) in the given scene. In contrast, deep learning-based methods
don’t require any pre-requisite prior knowledge or handcrafted features.

2.1 Traditional Methods

Traditionally, a moving object can be identified by analyzing the neighbouring informa-
tion to detect any changes in the region across consecutive frames. A simple approach
is subtracting the subsequent frames to detect local change across the frames [26,29].
Nevertheless, these strategies are ineffective when faced with sudden changes in motion
and appearance of objects. Additionally, dynamic background conditions caused by
algae and seaweed present a challenge, which complicates moving object detection. A
simple way to incorporate the dynamic background is to model the background with a
Gaussian Mixture Model (GMM) [15,27,28,30,36,45]. Further, the object can be iden-
tified by utilizing its attributes in the image, such as colour and texture information, as
the object’s appearance differs from that of the background. Authors in [37,38] sug-
gested techniques that rely on identifying the object(s) through the object’s features,
like colour and texture characteristics. Nevertheless, the presence of colour is not reli-
able in underwater environments due to image deterioration. Further, Palazzo et al. [24]
proposed a foreground and background modelling methodology. The method utilizes
kernel density estimation to create two probabilistic maps, which are then employed
to detect motion using a Markov field approach. However, it has been observed in tra-
ditional methods that reliance on the handcrafted feature makes it difficult to detect
objects in underwater scenarios.



Principal Graph Neighborhood Aggregation for Underwater Moving Object Detection 401

2.2 Deep Learning Based Methods

The deep learning algorithms extract the statistical distribution from training data col-
lection. The convolution-based design leverages the spatial correlation of the image to
identify the object as a region of interest [17,18,20]. To reduce the loss induced by con-
volution networks [10] applies dynamic aggregation and feature enhancement methods
to detect the object from underwater images. Further, transformer-based architectures
[2,21] can be utilized to detect the object by evaluating the attention score. Neverthe-
less, the shape and structure information is lost. In response to this issue, Vajpai et
al. [1] introduced a U-Net architecture with an encoder-decoder structure for moving
object detection. The said method still fails to detect the small object. Kapoor et al.
[16] suggested that this could be due to the losses induced by the convolution kernel
and information loss due to pooling. Therefore, the authors have suggested graph refac-
toring in a latent space to restructure the node information and preserve the spatial-
contextual relationship. The said method samples the neighbourhood and uses mean,
max, and LSTM aggregators to merge the information among the neighbours. As noted
in the literature by [3], previous research has shown that more optimal approaches exist
than utilizing a single operator for merging information. Moreover, utilizing a large
amount of information from neighbouring sources retrieves more crucial information.
Hence, using multiple aggregators can help propagate messages among graph nodes.

Fig. 1. Architecture of the proposed method using principal neighbourhood aggregation

3 Proposed Method

As shown in Fig 1, an encoder-decoder architecture is employed to discern the object
from the background. The encoder network uses a convolution kernel to extract the
features from the image. Max-pooling is employed to decrease the dimensionality of
feature maps. The convolution kernel extracts the spatial relationships in Euclidean
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space. However, such a relationship is not possible in higher-order space. Therefore, a
graph projection is implemented by assigning each element of the latent vector as a node
in the graph. The information is transmitted among the adjacent nodes of the graph.
Instead of using a single aggregator operator, we employed a collection of aggregator
operators. After aggregating the information, the graph is projected onto feature space.
The latent vector is fed into the decoder architecture to detect the moving object(s) in
the given scene.

3.1 Feature Extraction

The input image is passed via the encoder module to extract features. The encoder
module consists of four blocks. Every block consists of two convolutional layers, fol-
lowed by a pooling layer. After traversing four blocks, the feature map is flattened to
produce a latent vector. After undergoing two or three convolutions, the spatial rela-
tionship begins to weaken, resulting in the emergence of increasingly abstract features.
Further, the operation of max-pooling is irreversible, i.e. the inverse operation doesn’t
exist. Therefore, the encoder block results in a loss of information. To mitigate this
effect, graph-based learning techniques are employed.

3.2 Graph Learning Module

The graph-learning module projects the latent vector into graph space by initializing a
graph and considering each element of the latent vector as a node of the graph. If the
nodes share information, an edge is said to be present between them. If two nodes i and
j are connected, a message is passed between them. Here, Mt maps the message being
passed from one node to another by considering the hidden state of the node and the
edge feature between them. After the message is passed, the vertex update function Ut

will update the hidden state of the node based on the previous hidden state and message
from the neighbourhood. The information is passed through the neighbourhood nodes,
aggregated at the central node, and fed forward. Different aggregators, such as mean,
max, and LSTM, can be used to combine the information coming from different sets
of nodes. However, it is challenging to determine how to aggregate the information.
Corso et al. [3] suggested using multiple sets of aggregators to transmit the information
among the nodes. Hence, the principal neighbourhood aggregation method can be used
to share information among the neighbours and retain maximum information. The graph
learning rule as per message passing neural network is given as:

ht+1
v = Ut(ht

v,
∑

ω∈N (v)

Mt(ht
v, ht

w, evw)) (1)

Here, ht
v is the hidden state at a node v, Ut is the vertex update function, Mt is the

message passing function at t step, evw is the edge feature. The modified message-
passing function [3] with a more generalized rule can be written as,

ht+1
v = Ut(ht

v,
⊕

ω∈N (v)

Mt(ht
v, ht

w, evw)) (2)
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Here, ⊕ is a generalized aggregator function and is defined as,

⊕
=

⎡

⎣
I
A
D

⎤

⎦ ⊗

⎡

⎢⎢⎣

maxj∈Ni
X l

j

meanj∈Ni
X l

j

σ2(X)
σ(X)

⎤

⎥⎥⎦ (3)

The scalers represent the degree of the node and can be used to amplify and attenu-
ate the message. This is critical in a network of multiple layers. A minute change may
amplify or attenuate the gradients. Hence, a number of scalers with a generalized sum-
mation operator can be utilized. In Eq. 3, the first matrix is the matrix of scalars: I rep-
resents identity, A represents amplification, and D represents attenuation. The second
tensor contains a list of aggregators. In this work, we have used max, mean, variance
(σ2), and standard deviation (σ). The max and mean are simple operators and consider
the max and mean values from the neighbourhood and can be defined as,

maxi(X l) = maxj∈Ni
X l

j (4)

meani(X l) = meanj∈Ni
X l

j (5)

The variance σ2(X) and standard deviation σ are used to diversify the information at a
node. They are defined with the expectation E and can be described as:

σ(X) =
√
E[X2] − E[X]2 (6)

σ2(X) = E[X2] − E[X]2 (7)

The node’s degree (d) is used to adjust the aggregated information proportionally. A
slight alteration in the degree results in exponential attenuation or amplification. There-
fore, the scaling function S(d, α) is applied to the aggregated tensor and is defined as
follows:

S(d, α) =
(

log(d + 1)
δ

)α

(8)

Here, α is zero for identity function (I), –1 for attenuation (D), and +1 for amplification
(A). Two principal neighbourhood graph learning layers are used to refactor the node
relationships and pass the message among nodes. After the message aggregation, the
feature vector is built by projecting the hidden vector of the last layer by drawing a
projection map from the graph to latent space.

3.3 Image Generation

The reformed latent vector is converted into image space using a decoder module.
The decoder module comprises four transposed convolution modules. To maintain
the semantic features, residual connections are incorporated from the encoder to the
decoder. A sigmoid layer is applied at the end of the decoder, which projects the latent
vector onto the image space. Binary cross entropy loss is used as a cost function to
converge the model, and the error is backpropagated.
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Fig. 2. Visual analysis of Fish4Knowledge dataset on the proposed method. Here, (a) original
image, (b) ground-truth, (c) Texture-BGS [9], (d) ML-BGS [41], (e) MultiCueBGS [23], (f) SuB-
SENSEBGS [35], (g) SILTP [8], (h) MFI [38], (i) Proposed Method
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4 Results and Conclusion

To assess the system’s effectiveness, the suggested system is subjected to testing using
all the challenges present in the Fish4Knowledge dataset and underwater change detec-
tion. The proposed technique is evaluated using twenty-four state-of-the-art algorithms:
GMM [36], KDE [4], SuBSENSE [35], Vu Meter [7], Wronksian [30], ML-BGS [41],
MC-BGS [23], FgSegNet [19], MFI [38], CSLTP [37], MSGAN [25], Texture-BGS [9],
SILTP [8], GSMM [28], AGMM [45], ABMM [15], ADE [46], GWFT [27], HMLS
[32], SSSR [13], DeColor [44], SRPCA [14], MSCL [11], GFL [39], 2PRPCA [6],
OMoGMF+TV [42], CS-RPCA [12].

Table 1. Average F-Measure on four challenges of Fish4Knowledge dataset. Red indicates best,
and blue indicates second best.

Method ComplexBkgDynamicBkg CrowdedHybrid Overall

GMM [36] 0.12 0.06 0.26 0.15 0.15

ML-BGS [41] 0.58 0.32 0.74 0.46 0.52

MC-BGS [23] 0.48 0.33 0.68 0.72 0.55

KDE [4] 0.13 0.07 0.20 0.16 0.14

SuBSENSEBGS [35] 0.21 0.81 0.67 0.42 0.53

FgSegNet [19] 0.64 0.39 0.68 0.60 0.58

MFI [38] 0.83 0.64 0.69 0.64 0.70

CSLTP [37] 0.80 0.76 − 0.83 0.79

MSGAN [25] 0.92 0.79 0.74 0.89 0.83

HMLS [32] 0.84 0.90 0.84 0.91 0.87

GraphSage [16] 0.99 0.99 0.98 0.98 0.99

Proposed 0.99 0.98 0.99 0.99 0.99

4.1 Experimental Setup

We evaluate the proposed method on NVIDIA A100 80GB GPU and 256GB of RAM.
The proposed method is implemented utilizing the PyTorch framework on a Linux-
based operating system. To achieve faster convergence, the ResNet 50 backbone is
used in the encoder, which is pre-trained with the ImageNet weights. The weights
are then updated on the Fish4Knowledge dataset to incorporate the challenges posed
by the underwater environment. The DGL library is employed for the primary aggre-
gation algorithm. The model is trained using the Adam optimizer with a e−3 learn-
ing rate for 100 epochs. A scaling factor of 0.5 is employed, and just two layers of
graphs are utilized to prevent excessive smoothing. The proposed method is evaluated
on Fish4Knowledge in five challenges: complex background, crowded, dynamic back-
ground, hybrid, and standard. Further, experiments were conducted on five underwater
change detection challenges: caustics, fish swarn, marine snow, small aquaculture, and
two fishes.
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Table 2. Quantitative analysis in terms of F-measure with thirteen SOTA architectures. The red
color indicates the best, and the blue indicates the second best.

Models Caustics Fish SwarmMarine Snow small Aquaculture two fishes Average

ABMM [15] 0.06 0.65 0.43 0.67 0.76 0.51

AGMM [45] 0.30 0.82 0.74 0.74 0.79 0.68

GSMM [28] 0.57 0.84 0.77 0.55 0.79 0.70

ADE [46] 0.59 0.82 0.88 0.75 0.71 0.75

GWFT [27] 0.85 0.91 0.93 0.67 0.82 0.84

SSSR[13] 0.79 0.80 0.83 0.85 0.91 0.83

DeColor [44] 0.69 0.72 0.73 0.81 0.84 0.75

SRPCA [14] 0.72 0.73 0.75 0.80 0.82 0.76

MSCL [11] 0.75 0.74 0.80 0.83 0.89 0.80

GFL [39] 0.77 0.75 0.76 0.77 0.84 0.75

2PRPCA [6] 0.71 0.76 0.72 0.74 0.82 0.70

OMoGMF+TV [42] 0.66 0.70 0.70 0.67 0.79 0.70

CS-RPCA [12] 0.81 0.83 0.85 0.88 0.95 0.86

Proposed 0.99 0.99 0.99 0.98 0.99 0.99

4.2 Qualitative Analysis

To evaluate the quality of the detected objects, we conducted a visual analysis using six
state-of-the-art methods: Texture-BGS [9], ML-BGS [41], MultiCueBGS [23], SuB-
SENSEBGS [34], SILTP [8], MFI [38], as depicted in Fig. 2. MultiCueBGS [23] fails
to accurately detect the object in the complex background, as demonstrated in the first
image of column e. Texture-BGS [9], ML-BGS [41], and SILTP [8] do not maintain the
shape and structure of the object. Additionally, the sea weed’s quasi-periodic motion
also contributes to the generation of a significant amount of noise, as demonstrated in
third image of Texture-BGS [9], ML-BGS [41], MultiCueBGS [23], SuBSENSEBGS
[34], SILTP [8]. In second image of Texture-BGS [9], ML-BGS [41], MultiCueBGS
[23], SuBSENSEBGS [34], SILTP [8], MFI [38], many rock formations are recognized
as mobile entities. Our proposed technique accurately classifies the identified object
as foreground while eliminating the background noise. Hence, the proposed method
outperforms the state-of-the-art methods.

4.3 Quantitative Analysis

To evaluate the quantitative performance of the proposed system, an analysis is drawn
in terms of the accuracy, precision, recall, and F-measure. Table 1 presents the average
F-measure obtained from nine state-of-the-art methods. The proposed method is tested
against thirteen state-of-the-art methods: GMM [36], KDE [4], SuBSENSE [35], Vu
Meter [7], Wronksian [30], ML-BGS [41], MC-BGS [23], FgSegNet [19], MFI [38],
CSLTP [37], MSGAN [25], HMLS [32], and GraphSage [16]. The proposed method
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outperforms the existing state-of-the-art methods. We observe a high increase of around
20% in the overall F-measure of the Fish4Knowledge dataset [5] from the learning-
based method, i.e. MSGAN [25]. GraphSage [16] utilises a single aggregator across
the neighbourhood, while the method proposed by us utilises four different aggregators
to pass the message. The proposed method performed better in crowded and hybrid
environments. Hence, in real-life underwater scenarios with multiple fishes present, our
method outperforms all the existing methods. Further, we evaluated the efficiency of the
proposed method on the underwater change detection net. Table 2, a quantitative anal-
ysis is drawn in terms of F-measure against thirteen state-of-the-art methods: GSMM
[28], AGMM [45], ABMM [15], ADE [46], GWFT [27], SSSR [13], DeColor [44],
SRPCA [14], MSCL [11], GFL [39], 2PRPCA [6], OMoGMF+TV [42], and CS-RPCA
[12]. Our method surpassed all the existing methods and corroborated our findings. The
quantitative analysis in terms of accuracy, precision, recall, and F-measure on all the
challenges posed by the Fish4Knowledge dataset and underwater change detection are
given in Fig 3. It is clearly seen that our method is robust to different challenges posed
by underwater environments.

4.4 Ablation Study

Table 3 shows the ablation study with different aggregators and scalers on complex
background challenges in terms of F-measure. It shows that using different scalers and
aggregators affects the performance of the proposed algorithm. The aggregator might
miss information from some nodes, which introduces noise in the process. Hence,
choosing a set of suitable aggregators and scalers is critical. The table shows mean,
max, std, and var as aggregators and identity, amplification, and aggregator retain the
most information.

Table 3. Ablation study is performed on complex background challenge of Fish4Knowledge
dataset with a different set of aggregators and scalers.

Aggregator Scalers F-measure

mean Identity, Amplification 99.26

mean Identity, Amplification, attenuation 99.30

Max Identity, Amplification 99.26

max, std Identity, Amplification 99.41

mean, std,var Identity,Amplification 99.13

mean, max, std, var Identity,Amplification, attenuation 99.46

4.5 Discussion

The challenge posed by the underwater environment is more complex than that of terres-
trial. Hence, there is a gap in the literature towards moving object detection in underwa-
ter scenarios. Nevertheless, the object detection problem has been addressed, but retain-
ing the object’s boundary and structure in complex underwater environments is more
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Fig. 3. Quantitative analysis on all the challenges (a-d) Fish4Knowledge dataset (e-h) underwater
change detection

complicated in moving object detection. Conventional deep architectures like CNNs
cannot retain the object’s minute details. Recently, [16] shows that information reten-
tion using different aggregators in graph space is more efficient than a CNN architecture
alone. The authors showed that using mean aggregation retains most information in the
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graph space. However, the mean operator can increase the noise by adding information
from nodes that are not required. Further, aggregators like min and max don’t account
for neighbourhood information. Some nodes may have slightly less information, but
they may still be critical. Hence, using different aggregators can reduce the noise in
the message-passing mechanism of graphs. Furthermore, different scalers are utilised
to reduce the overfit and ensure the information is forwarded correctly.

5 Conclusion

This paper proposes an encoder-decoder-based architecture to detect the moving object
from the background. A ResNet-50-based feature extraction module extracts spatial
features from the image and projects them in the latent space. To mitigate the impact
of noise, the latent vector between the encoder and decoder is projected onto a graph
space. A principal neighbourhood-based refactoring of latent vectors is applied in graph
space. The nodes of the projected graph undergo aggregation operations such as mean,
maximum, variance, and standard deviation to derive information from their neighbour-
ing nodes. The information is further generalized using three scalar values, identity,
amplification, and attenuation, to derive a refactored set of nodes. Following refactor-
ing, re-projection is implemented from graph space on the latent space, constructing an
image using the decoder. The proposed method was compared to twenty-four state-of-
the-art methods on two underwater datasets: Fish4Knowledge and underwater change
detection. Our findings indicate that our proposed method outperforms all others. In the
future, we will pass the message among nodes based on attention score instead of con-
structing the node hop neighbourhood to retain local and global information effectively.
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Abstract. The ambiguous appearance, tiny scale, and fine-grained
classes of objects in remote sensing imagery inevitably lead to the noisy
annotations in category labels of detection dataset. However, the effects
and treatments of the label noises are underexplored in modern oriented
remote sensing object detectors. To address this issue, we propose a
robust oriented remote sensing object detection method through dynamic
loss decay (DLD) mechanism, inspired by the two phase “early-learning”
and “memorization” learning dynamics of deep neural networks on clean
and noisy samples. To be specific, we first observe the end point of early
learning phase termed as EL, after which the models begin to memorize
the false labels that significantly degrade the detection accuracy. Sec-
ondly, under the guidance of the training indicator, the losses of each
sample are ranked in descending order, and we adaptively decay the
losses of the top K largest ones (bad samples) in the following epochs.
Because these large losses are of high confidence to be calculated with
wrong labels. Experimental results show that the method achieves excel-
lent noise resistance performance tested on multiple public datasets such
as HRSC2016 and DOTA-v1.0/v2.0 with synthetic category label noise.
Our solution also has won the 2st place in the “fine-grained object detec-
tion based on sub-meter remote sensing imagery” track with noisy labels
of 2023 National Big Data and Computing Intelligence Challenge.

1 Introduction

Extensive researches have been devoted to recognize objects in remote sensing
imagery and locate them with more precise oriented bounding boxes, i.e. oriented
remote sensing object detection (ORSOD), which is of great interest in both
computer vision and remote sensing community. Most of them focus on improv-
ing performance with cutting-edge detection frameworks, such as anchor-based
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Fig. 1. The first row illustrates the difficulty of annotating the fine-grained types of
planes in remote sensing images with similar appearances. The second row shows
one example image with correct reference ground truth annotations in DOTA-v1.0
dataset on the left. The red and blue oriented bounding boxes indicate “plane” and
“helicopter”. We train a baseline ORSOD model(Oriented R-CNN) and baseline +
DLD(ours) with synthesized 30% noisy category labels. Their detection results are
visualized in the middle and right respectively, baseline result contains several false
classification instances. Baseline with DLD generates more accurate results. (Color
figure online)

one/two-stage detection [7,13,38,42], anchor-free point-based detection [11,24]
and DETR-based detection [5,46]. Some other works pay attention to design
network components, like augmented backbones [25,33], elaborated loss func-
tions and angle coders [41,43–45], effective label assigners [16,39]. However, few
ORSOD methods take notice of the ubiquitous and detrimental noisy annota-
tions in current dataset, since the data set with high quality, low cost, and large
scale can not be simultaneously achieved.

The noisy annotations have aroused concerns in training image classifica-
tion, segmentation and object detection models for decades. A series of robust
loss functions [1,9,28] and clean sample selection methods [10,12,20] are pro-
posed to alleviate the effects of noisy labels in image classification. Like-wisely,
in more challenging image segmentation task, annotation noises resistant meth-
ods [18,23,27,34] are designed to avoid the degradation. More related object
detection methods [3,15,22,26,35,40,48] pay more attention to inaccurate hori-
zontal bounding boxes or mixture of categorical and positional annotation noises.
None of them addresses the category annotation noises in training ORSOD
model. In practice, distinguishing the specialized type of small size, dense
arranged objects (such as ships and planes) with remote sensing imagery of
sub-meter spatial resolution is difficult even for the experts as shown in the first
row of Fig. 1. The inter-class discrepancy is small for fine-grained plane types.
It isn’t surprising that the datasets contains many category label noises. In con-
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trast to the inaccurate bounding box, the absolute wrong class label deserves
particularly consideration to acquire more robust ORSOD model.

To address the challenge in training model with category noisy labels, we pro-
pose a robust oriented remote sensing object detection method through dynamic
loss decay mechanism, inspired by the two phase “early-learning” and “memo-
rization” learning dynamics of deep neural networks (DNNs) on clean and noisy
samples [2,47]. Although, [47] points that DNNs can easily fit a random label-
ing of the training data, the quantitative differences are demonstrated in DNNs
optimization on clean and noisy data [2]. The DNNs learn simple consistently
shared patterns among training samples before memorizing irregular false labels.
The learning dynamics of DNNs is adopted in training classification [28] and
segmentation models [27] with noisy annotations. Imposing early-learning regu-
larization [28] or correcting probable false labels [27] in early learning stage are
proved to be effective. Similarly, in training ORSOD model with noisy category
labels, we have observed consistent accelerated and decelerated improvement
dynamics of both mAP (measured using model output and ground truth), and
top-1 accuracy ACC (measured using model output and noisy annotations),
which can be used to find the endpoint of early-learning phase represented by
EL. Specifically, we first identify EL through monitoring the second-derivative
of ACC curve during training. The accuracy curves of models trained on cat-
egory labels with different proportion of noises share the same trend and EL.
Secondly, the dynamic loss decay begins in the memorization phase. Since the
larger loss value means the higher probability of being calculated with false
labels, the overall loss computation is divided into two parts, the top K largest
samples losses and the rest samples losses. We adaptively decrease the weight of
the largest top K samples losses which contains the most false category labels
in the following epochs. Experimental results corroborate that our method is
robust to categorical annotation noises in ORSOD, and effectively decreases the
model performance degradation when training on manually contaminated pub-
lic dataset HRSC2016 and DOTA-v1.0/v2.0. Our solution also has won the 2st
place in the “fine-grained object detection based on sub-meter remote sensing
imagery” track with artificial class noise annotations of 2023 National Big Data
and Computing Intelligence Challenge (NBDCIC 2023) [6]. In summary, our
contributions are:

– We propose the first robust ORSOD method against categorical annotation
noises through dynamic loss decay mechanism.

– We identify the effective early-learning phase endpoint EL in training accu-
racy curves through theoretical and experimental analysis for ORSOD.

– We validate the superiority of proposed method in both common ORSOD
benchmarks and competitive NBDCIC 2023.
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2 Related Works

2.1 Oriented Remote Sensing Object Detection

Most object detection methods commonly utilize horizontal bounding box (HBB)
to localize general objects. Considering the severe overlapping by using HBB
to represent bird-view remote sensing objects, oriented bounding box (OBB)
representation is more accurate with extra direction. There are both similari-
ties and discrepancies between HBB based general object detection and OBB
based remote sensing object detection. On the one hand, inspired by HBB based
object detection framework, representative anchor-based one-stage (R3Det [42],
S2A-Net [13]) and two-stage (ROI-Transformer [7], Oriented-RCNN [38]), as
well as anchor-free point-based (CFA [11], Oriented RepPoints [24]) and DETR-
based (A2O-DETR [5], ARS-DETR [46]) OBB remote sensing object detec-
tors are proposed. On the other hand, to accommodate the additional rotation
variance, backbones are augmented with rotation varied-size window attention
(RVSA [33]) and large selective kernel (LSKNet [25]).

2.2 Learning with Noisy Labels

Note-worthily, the acquisition and annotation cost of remote sensing data is much
higher than ground-based data. Training models with incomplete, inexact, and
inaccurate supervision which collectively referred as weakly supervised in [51]
is practical and desirable. Researchers are highly motivated to construct noise-
resistant models in classification, segmentation, and object detection tasks.

Classification. Various tactics such as robust loss functions (GJS [9], SLC [1],
ELR [28]), sample selection(MentorNet [20], co-teaching [12], OT-filter [10],
CoDis [37]) and twin contrastive learning model(TCL [17]) are designed to han-
dle categories label noises in classification. In remote sensing, [19,32,49] address
the issue of noisy labels in hyperspectral image classification. Specifically, both
ELR [28] and our proposed object category noise treatment are built upon the
learning dynamics of deep neural networks (DNNs) on clean and noisy samples
as disclosed in [47] and [2]. The DNNs have been observed to first fit clean labels
during “early learning phase”, and then memorize false labels in “memorization
phase”.

Segmentation. Image segmentation performs dense pixel-wise classification,
and is more challenging. Both in the medical and remote sensing domain, the
noisy annotations are ubiquitous on account of weary labeling and expertise
requirement. Medical segmentation methods improve the robustness by model-
ing human annotation errors [18], adopting regularization term [34], etc. Note
that in contrast to noisy label classification, not all semantic categories share the
synchronous learning dynamics in segmentation, ADELE [27] separately correct
noisy label for each category. In [23], the authors propose a semi-supervised seg-
mentation method to handle both incomplete and inaccurate labels via multiple
diverse learning groups.
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Fig. 2. The overview training process of DLD. The bottom part illustrates structure
of an Oriented Object Detector, the upper part shows the conceptual illustration of
DLD based on early-learning stage and memorization stage theory.

Object Detection. The complexity of object detection with noisy annotations
lies in simultaneously dealing with possible categorical and positional noises.
Efforts have been devoted to robust HBB based object detection [22,40,48],
while we can hardly found studies on OBB based noise-resistant remote sensing
object detection. Object detection with noisy labels is closely related to weakly-
supervised object detection (WSOD) [4]. The commonly WSOD setting is train
detectors with image-level labels and follows multiple instance learning (MIL)
pipeline to joint optimization of object appearance and object region in positive
bags.

3 Methods

3.1 Preliminary

In ELR [28], the authors theoretically interpret the learning dynamics of DNNs
from gradient analysis. Considering the classification problem of training DNNs
with N samples {xi,ai}N

i=1 in C classes, where xi ∈ Rd is the i-th sample and
ai ∈ {0, 1}C is the corresponding one-hot annotation vector. The DNNs DΘ

parameterized with Θ encodes xi into C-dimensional feature DΘ(xi) ∈ RC ,
and we can acquire the conditional probability prediction pi = S(DΘ(xi)) with
softmax function S. The cross-entropy loss (1) and gradient with respect to Θ
(2) can be formulated as :

LCE(Θ) := − 1
N

N∑

i=1

C∑

c=1

ac
i log pc

i (1)

∇LCE(Θ) =
1
N

N∑

i=1

∇D(Θ|xi) (pi − ai) (2)

where ∇D(Θ|xi) is the Jacobian matrix of DNNs encoding for i-th sample xi

with respect to Θ. Therefore, the contribution of i-th sample xi to the gradient of
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class c is ∇Lc
CE(Θ) = ∇D(Θ|xi) (pc

i − ac
i ). If xi truly belongs to class c, i.e. ac

i =
1, the gradient descent will forward to the right direction ∇D(Θ|xi), otherwise
the wrong annotation will push the update of Θ to the opposite direction.

The learning dynamics of DNNs reflects the characteristics of gradient
descent with noisy labels. In early-learning stage, since correct labels are in
majority and the gradient descent is well correlated with optimal direction, we
can expect accelerated accuracy increment. Once the magnitude of noisy gradi-
ent dominates the update, the DNNs will memorize (overfit) the noise label, and
the improvement of accuracy will decelerate.

Fig. 3. The dynamics of two measurements mean average precision (mAP) and top 1
accuracy (ACC), acquired by the Oriented R-CNN with LSKNet-Tiny backbone. The
experiments are conducted on DOTA-v1.0 dataset contaminated with different level of
category noises (20%, 30%, and 40%). The mAP is calculated between model output
and clean GT category labels. The ACC of the model output is referenced with noisy
category labels. The stars in right two figures represent the early-learning endpoint.

3.2 End Point of Early-Learning in ORSOD

The existence of the turning point between early-learning phase and memoriza-
tion phase, in training classification DNNs with noisy labels, has been theoret-
ically proven in ELR [28]. The point has also been validated in the learning
dynamics of image segmentation DNNs training with noisy pixel annotations in
ADELE [27]. Similarly, we experimentally demonstrate that the same end point
of early-learning consistently occurs in training ORSOD model with different
level of noisy category labels.

Specifically, we monitor the dynamics of two measurements mean average
precision (mAP) and top 1 accuracy (ACC), acquired by the representative
ORSOD method Oriented R-CNN with LSKNet-Tiny backbone [25]. The exper-
iments are conducted on the well-known DOTA-v1.0 dataset contaminated with
different level of category noises (20%, 30%, and 40%), and experimental details
is given in Sect. 4. The mAP is calculated between model output and clean
ground truth (GT) category labels. In practice, we have no access to clean GT
in real-world application, the model output ACC with reference to noisy cate-
gory labels can serve as a surrogate for mAP.

As shown in Fig. 3, the similar trend is shared between the curves of mAP
and ACC. These indexes all exhibit rapid growth in first 12 epochs and improve
slower in the subsequent epochs. From the slope (first-order derivative) curve of
approximated polynomial, we can identify the end epoch of the early-learning
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phase represented as EL (i.e. the initial epoch of memorization phase) by the
condition that the second-derivative at EL is approximately equal to 0. We invite
Eq. (3) to describe this condition:

∣∣∣Poly
′′
[ACC1:ACCEL](EL)

∣∣∣ < η (3)

where Poly
′′
[ACC1:ACCEL](EL) is the second derivative of the polynomial at EL,

and the polynomial is acquired by fitting the discrete ACC values [ACC1 :
ACCEL], and ACCi stands for the ACC value for i-th epoch. η is a threshold
and we set to 0.001 in experiments.

3.3 Dynamic Loss Decay for Robust ORSOD

Different from ELR [28] which adds early-learning regularization term in loss
function and ADELE [27] which corrects high confidence false labels in early-
learning stage, we design a more intuitive and effective scheme called dynamic
loss decay to mitigate the influence of wrong category annotations in ORSOD.
As Sect. 3.1, in the early-learning stage, the optimization is dominated by the
outnumbered correct labels and will be affected by noisy labels in memorization
stage. Therefore, the identified EL indicates the right time of intervention to
avoid the detrimental influence of noisy labels in loss back propagation and
misleading the ORSOD model.

The DLD mechanism is illustrated in Fig. 2 and consists of two phases divided
by EL. In the early-learning stage, i.e. the training epoch is smaller than EL,
we use the standard Cross Entropy loss. In the memorization stage, we select
the top K samples of which the losses are the top K largest ones (more probably
noisy labels), and epoch-wisely decay the losses of the top K samples as they are
most probably calculated with wrong category labels. All the training samples
are denoted by X, the top K samples with top K largest losses are represented
as XK , and Xr stands for the rest samples. The formulation of LDLD can be
given in (4):

LDLD =
{LCE(X), if EC < EL

αLCE(Xk) + LCE(Xr), if EC ≥ EL (4)

where α = exp( 10
EC−EL ) is the dynamic decay factor, LCE(X) represents the

Cross Entropy loss with respect to samples X, EC stands for the current epoch
number. In the memorization stage, the loss function consists of two parts: the
first part gradually diminishes as the number of epochs increases, and the second
part remains unchanged.

4 Experiments

In this section, we first briefly introduce the testing data sets HRSC2016 [30],
DOTA-v1.0/v2.0 [8,36]. Then, we describe the implementation details of the
experiments. Thirdly, we report the ablation study of the key components and
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Table 1. Ablation study of early-learning end point EL. We report the best mAP
values acquired by varying the beginning epoch of the second stage of DLD on valida-
tion sets of DOTA-v1.0. The first row term “20%-LSK Tiny (12)” represents that the
Oriented R-CNN model with LSK-Tiny backbone trained on DOTA-v1.0 containing
20% category label noises, and the EL identified by our method is 12. We can observe
that the identified EL leads to superior robustness on different datasets and backbones.

EL 20%-LSK 30%-LSK 40%-LSK 20%-LSK 30%-LSK 40%-LSK

Tiny(12) Tiny(12) Tiny(12) Small(14) Small(14) Small(14)

baseline 70.5 70.3 69.0 73.2 70.7 70.2

EL-8 70.7 70.8 70.3 72.8 71.6 70.4

EL-4 71.2 72.3 69.1 72.6 71.6 70.6

EL 71.9 71.6 70.4 73.4 72.2 71.0

EL+4 71.4 71.6 69.5 73.0 70.7 70.3

EL+8 71.5 71.5 69.4 73.4 71.6 69.6

Table 2. Comparison of mAP(%) for different ORSOD models training with DLD.
The results of DLD are highlighted. We report the best mAP value for validation set
of DOTA-v1.0.

Dataset Detector 0% noise 20% noise 30% noise 40% noise

baseline baseline DLD baseline DLD baseline DLD

DOTA-v1.0 Oriented R-CNN 74.2 70.5 71.9(+1.4) 70.3 71.6(+1.3) 69.0 70.4(+1.4)

ROI-Transformer 74.6 71.5 71.6(+0.1) 70.4 71.6(+1.2) 68.1 70.1(+2.0)

ReDet 73.2 70.5 70.5(+0.0) 69.9 70.3(+0.4) 67.7 68.3(+0.6)

Table 3. Comparison of mAP(%) for the hyperparameter Top-K with different pro-
portions of category incorrect labels in the DOTA-v1.0 dataset. The selected model is
the Oriented R-CNN detector with LSKNet-Tiny backbone.

Method baseline Top-K= 3% Top-K = 5% Top-K= 7% Top-K= 10%

LSK-T-20% 70.5 71.5 71.9 70.5 70.8

LSK-T-30% 70.3 71.0 71.6 71.0 70.9

LSK-T-40% 69.0 68.6 68.9 70.4 70.1

in-depth analysis of proposed method to verify their effectiveness. Finally, we
show the performance of proposed method compared with other competitors
on both synthesized noisy ORSOD dataset and 2023 National Big Data and
Computing Intelligence Challenge.

4.1 Datasets

HRSC2016 [30] is a popular ship detection dataset that contains 1,070 images
and 2,976 instances using satellite imagery. It has a three level category hierarchy,
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and we chose to use its first and second tier level which contains four categories:
aircraft carrier, warship, merchant ship and other generic ships.

DOTA-v1.0 [36] is a large scale aerial images dataset for object detection.
It is widely used in develop and evaluate ORSOD methods. The dataset contains
15 categories, 2,806 images and more than 180,000 instances. The size of images
varies from 800 × 800 to 20000 × 20000.

DOTA-v2.0 [8] collects more sub-meter remote sensing and aerial images.
DOTA-v2.0 has 18 categories, 11,268 images and 1,793,658 instances. In our
ablation study, we have assessed 17 out of 18 categories in the validation set
of DOTA-v2.0, excluding the “helipad” category. The validation set comprises
a total of 130,909 instances, with only 3 instances belonging to the “helipad”
category in our processed dataset. The rare presence of “helipad” instances sig-
nificantly degrades the mAP and ACC indexes and distorts the overall curve
trends.

4.2 Implementation

We adopt single-scale training and testing strategy by cropping all images into
1024 × 1024 patches with overlap of 200 pixels. For noisy category label gen-
eration, we randomly select a proportion of instances in the annotations, and
set their categories to random new ones without changing the bounding box.
Oriented R-CNN [38] on MMRotate [50] framework, with LSKNet [25]-Tiny,
LSKNet-Small and SwinTransformer [29]-Tiny as backbones, is adopted for dif-
ferent experiments respectively. NVIDIA A40 GPU is utilized to carry out all
the experiments. The models have been trained for 36 epochs with AdamW
optimizer. We first train the baseline model on the original dataset with clean
labels. Then, we train ORSOD models with different level of noisy labels (20%,
30%, 40%) for comparisons.

4.3 Ablation Study and Analysis

In this section, we report the results of ablation study on validation sets of
DOTA-v1.0 and DOTA-v2.0 to validate the effectiveness of our method.

End Point of Early-Learning. Identifying the endpoint of early learning is
a crucial component of our method. We adhere to the approach outlined in
Sect. 3.2 and compute EL using Eq. (3). The influence of changing the initial
epoch of the second stage of DLD is explored in Table 1. The candidate epochs
[EL − 8,EL − 4,EL + 4,EL + 8] are selected around the EL found by our
proposed criterion. In order to verify the generality of the identified EL, we
report the best DOTA-v1.0 validation set mAP of different backbones (LSK-
Tiny and LSK-Small) training with different noisy-level labels (20%, 30%, and
40%). For example, the head row term “20%-LSK Tiny (12)” represents the
experimental setting, that the Oriented R-CNN model with LSK-Tiny backbone
trained on DOTA-v1.0 containing 20% category label noises with DLD, and the
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Fig. 4. Left: The more elaborated curves of mAPC (mAP with respect to correct
category labels) and mAPI (mAP with respect to incorrect category labels) of training
set. The Orient R-CNN model is trained with labels with 40% noise level. The curve
of mAPI stays below 2% while mAPC continuously improves during whole process.
Right: The ACC curves of ORSOD model training with four different strategies and
labels with 20% noise. The four training strategies are training Oriented R-CNN not
using DLD, using DLD and the loss decay begins at epoch EL-4 (8), EL (12), and
EL+4 (16).

corresponding EL identified by our method is 12. From the third row to the
seventh row of the second column, the initial epoch of loss decay in DLD is
varied from 4 (EL-8) to 20 (EL+8).

We can observe that the EL selected by our proposed criterion consistently
lead to superior robustness with different noise-level datasets and backbones.
Although the endpoint EL identified by the method in Sect. 3.2 serves as a
effective indicator for DLD, it’s important to note that the best performance
may not achieved exactly at EL, but in the neighbourhood of EL as shown in
the third column of Table 1. Therefore, comparing with the baseline model, we
can claim that under the guidance of EL, DLD can significantly boost its the
noise resistance.

To further analysis the relationship between EL and mAP accuracy of incor-
rect labels, we show the more elaborated curves of mAPC (mAP with respect
to correct category labels) and mAPI (mAP with respect to incorrect category
labels) in training set in Fig. 4 left figure. The ORSOD baseline model is trained
using labels with 40% noise. mAPC continuously improves, and slow down its
growth rate at epoch 12 which is align with mAP performance in validation set
as is shown in Fig. 3. This is phenomena also demonstrates that ACC can reflect
the overall training accuracy of correct labels when model train with noisy labels.
Owing to the erroneous labels being randomly reassigned across the remaining
eleven categories, the mAPI consistently remains below 2% throughout the
entire process, without any marked spikes in performance.
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Fig. 5. The heatmap shows the distribution of region of interest with the attention map
during inference, where the attention increases from blue to red. Notably, the ORSOD
model is more focused on the target objects after DLD is applied. (Color figure online)

The Effectiveness of DLD. We demonstrate that the effectiveness of DLD
from three aspects: analysis ACC curves, class activation map visualization and
integration with different ORSOD methods.

Firstly, we compare the ACC curves of ORSOD model training with four
different strategies and labels with 20% noise in Fig. 4 right figure. The four
training strategies are not using DLD, using DLD and the loss decay begins at
epoch EL-4 (8), EL (12), and EL+4 (16). The three training strategies with
DLD consistently improve the ACC, which shows that DLD take effects at
relatively relaxed EL neighbourhood.

Secondly, we compare the class activation maps of ORSOD model with and
without DLD on test images. Some examples of EigenCAM [31] are shown in
Fig. 5. Training with DLD, the ORSOD model tend to focus more on foreground
targets which is beneficial for noise resistance.

Finally, to further analysis the generality of our method for different oriented
object detectors, we choose two representative methods ROI-Transformer and
ReDet [14], and employ LSKNet-Tiny as backbone. Meanwhile, we use DOTA-
v1.0 dataset with different proportion of noise for training. The results are illus-
trated in Table 2 which demonstrates that our method can be easily integrated
in different ORSOD models and improve their robustness.

Top-K Selection. The effectiveness of DLD heavily relies on the hyperpa-
rameter K in selecting the top K samples with largest losses. We have conduct
extensive experiments to explore the impact of different K values, specifically
top 3%, top 5%, top 7%, and top 10%. As illustrated in Table 3, when the incor-
rect label proportions are 20% and 30%, top 5% yields the highest mAP, while
top 7% performs better in the case of 40% noise. These experimental findings
conform with the intuitive expectation that dataset with larger proportion of
incorrect labels should employ larger K value to decay the weight of more losses
terms.
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Table 4. Comparison between baseline and DLD method on three datasets: DOTA-
v1.0, DOTA-v2.0, and HRSC2016. These datasets have been deliberately contaminated
with category noise levels of 20%, 30%, and 40%. The employed detector employed is
Oriented R-CNN, and three distinct backbones are selected: LSKNet-Tiny, LSKNet-
Small, and SwinTransformer-Tiny. The reported values represent the highest accuracy
from the best epoch evaluated in the validation set. DLD represents the model that is
trained by our method.

Dataset Method 0% noise 20% noise 30% noise 40% noise

baseline baseline DLD baseline DLD baseline DLD

DOTA-v1.0 LSKNet-Tiny 74.2 70.5 71.9(+1.4) 70.3 71.6(+1.3) 69.0 70.4(+1.4)

LSKNet-Small 75.6 73.2 73.4(+0.2) 70.7 72.2(+1.5) 70.2 71.0(+0.8)

SwinTransformer-Tiny 75.3 71.5 71.7(+0.2) 71.4 72.0(+0.6) 69.5 70.8(+1.3)

DOTA-v2.0 LSKNet-Tiny 66.1 63.5 61.5(+1.4) 63.1 63.7(+0.6) 62.4 62.8(+0.4)

LSKNet-Small 66.4 63.1 64.2(+1.1) 62.9 64.3(+1.4) 62.2 63.2(+1.0)

SwinTransformer-Tiny 67.2 63.8 64.4(+0.6) 62.5 62.9(+0.4) 61.3 62.8(+1.5)

HRSC2016 LSKNet-Tiny 82.1 81.1 81.3(+0.2) 78.6 79.2(+0.6) 72.7 72.9(+0.2)

LSKNet-Small 86.8 85.3 85.6(+0.3) 83.0 84.7(+1.7) 80.1 81.7(+1.6)

SwinTransformer-Tiny 75.3 71.5 71.7(+0.2) 71.4 72.0(+0.6) 69.5 70.8(+1.3)

4.4 Final Results

Test on Open Datasets. Based on Oriented R-CNN framework, we eval-
uate DLD with backbones of three different size (CNN based LSKNet-Tiny:
4.3M [25], CNN-based LSKNet-Small: 14.4M [25], and Transformer based
SwinTransformer-Tiny: 29M [29]), three ORSOD datasets (DOTA-v1.0, DOTA-
v2.0, and HRSC2016), three proportion of incorrect category labels(20%, 30%,
and 40%). The results presented in Table 4 demonstrates that DLD can effec-
tively alleviate the models’ degradation caused by noisy category labels, the
maximum improvement in mAP is 2.0% for ROI-Transformer. Meanwhile, as is
shown in Table 3, endpoint of early-learning for Oriented Object Detectors can
be identified effectively through our method.

DLD vs. Label Smoothing Method [21]. Label Smoothing (LS) is a regu-
larization method involves penalizing the distribution of the network’s outputs,
thereby encouraging the model to be more cautious in its predictions. As shown
in Table 5, DLD outperforms LS by a considerable margin in the experiments
with 20% and 30% category incorrect labels, and achieves an equal mAP in the
40% noise ratio setting.

NBDCIC 2023. The competition has posed several significant challenges such
as weak target features, subtle differences between classes, labeling noise, and
an extremely unbalanced distribution of categories. The most noteworthy char-
acteristic of the dataset is the category labels are randomly contaminated with
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Table 5. Comparison of mAP(%) between Label Smoothing (LS) method and our
method (DLD).

Method baseline LS DLD

LSK-T-20% 70.5 71.5 71.9

LSK-T-30% 70.3 70.9 72.3

LSK-T-40% 69.0 70.4 70.4

noise and the ratio of label noise is different in the preliminary round and the
final round. The competition pay close attention on the way of alleviating the
degradation of model caused by category noise. Despite these challenges, our
team has acquired remarkable results, as highlighted in Table 6 showcasing the
superiority of proposed method in tackling label noise.

Table 6. Results of the Fine-grained Object Detection Based on Sub-meter Remote
Sensing Images from NBDCIC 2023.

Team Name Final Round First Round

GaoKongTanCe Team 0.7758 0.7533

Sensing earth(ours) 0.7758 0.7518

CAE AI 0.7565 0.6994

Happy Children’s Day 0.7508 0.7656

default13253462 0.7448 0.6803

5 Conclusions

In this paper, we propose the first robust oriented object detection method
for remote sensing images, which addresses the issue of noisy category training
labels with dynamic loss decay mechanism. Based on the theoretical analysis and
experimental validation, we identify the existence of the early-learning phase and
memorization phase in training ORSOD model with noisy labels, and propose
a feasible approach to find the end point of early-learning EL. Accordingly,
we design an effective dynamic loss decay scheme by gradually reduce the top K
largest loss terms which are most likely calculated with false labels in subsequent
epochs of EL. Experiments on both synthesized noisy ORSOD datasets and
NBDCIC 2023 demonstrate the effectiveness of proposed DLD in preventing
training category noise, and the ablation studies corroborate the rationality of
the selected EL and the loss decay scheme.
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Abstract. Object detection has achieved remarkable progress, yet its
efficacy undergoes substantial deterioration in challenging or adverse
environmental conditions. Current domain adaptation object detection
(DAOD) methodologies predominantly concentrate on transfer models
to acclimate to the target domain, but neglecting the potential ero-
sion in detection performance within the source domains. This nar-
row focus can undermine the comprehensive robustness and adapt-
ability of the detection systems. We propose a simple but efficient
method called Environment-Independent Fusion YOLO (EIF-YOLO)
to tackle this issue. Our method focuses on extracting and fusing
environment-independent features to enable accurate detection across
different domains. We have reused the original feature extractor while
preserving all its parameters and optimizing it by mixing data from the
source and target domains. To encourage the extraction of object-related
features, we introduce multi-layer perceptual regularization to align the
features from the original feature extractor. Additionally, we introduce
a domain-adaptive fusion that merges features from different domains
while minimizing interference with the original data features. Experi-
mental results show that our method surpasses existing foggy and low-
light detection approaches while maintaining excellent source domain
performance.

Keywords: Object Detection · Domain adaptation ·
Environment-Independent Fusion

1 Introduction

Object detection is a fundamental and vital task in computer vision, which iden-
tifies and locates specific objects in images or videos. The continuous improve-
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ment of object detection can be attributed to the emergence of efficient networks
like SDD [3] and DETR [7] also the iterative optimization of detection models
such as Yolo series [1,34]. These efficient methods find practical applications
in various domains, including autonomous driving and security surveillance [8–
10]. However, real-world scenarios often present adverse environments, including
foggy days, low-light, and other factors that degrade the quality of captured
images [16–18]. The domain gap between test images and training images can
result in a significant performance decline of the trained model [6].

Directly training object detection for adverse environments is not feasible
due to the high cost of data collection and accurate data labeling. Domain adap-
tation offers a solution to transfer knowledge learned from the source domain
to the target domain [4,5]. One approach is aligning the target domain data
with the source domain data by using the data alignment algorithms [16–18,20],
which allows models trained on the source domain to perform well on the tar-
get domain. Another method involves enhancing the robustness of the feature
extractor to improve the adaptive capability [25]. Additionally, constructing a
student-teacher model for adjusting the detection ability of the model can be
beneficial [27].

Existing DAOD methods often focus on adapting the object detection to the
target domain data but overlook maintaining the detection performance on the
source domain. To address this issue, we propose to leverage the capabilities of
YOLOv8 by freezing its parameters and reusing its backbone as a new trainable
adapter. This adapter is responsible for detecting objects in adverse environ-
ments and suppressing irrelevant object information. This approach allows the
model to perform excellently in different domains, as illustrated in Fig. 1.

More specifically, we propose an Environment-Independent Fusion YOLO
for robust object detection. To maintain the performance on the source domain.
We reused its backbone as a learnable environment-independent adapter (EIA)
for extracting features from different domains. To guide the feature extraction,
we introduce a multi-layer perceptual regularization (MPR) that encourages
the adapter to focus on object-related information. We employ a zero-conv [31]
based domain-adaptive fusion (DAF) to enhance object detection performance.
This module facilitates the adaptive fusion of features from different extractors
while preserving the original capability of the fixed module. The framework of
our method is depicted in Fig. 2. Experimental results on public object detection
benchmarks demonstrate that our proposed structure enables us to obtain robust
and efficient object detection.

The contributions are summarized as follows: 1) We use pre-trained YOLOv8
to initialize an adapter responsible for feature extraction from different domains,
and we introduce multi-layer perceptual loss to motivate the adapter to focus on
object-related features. 2) To prevent the performance of source object detection
from interfering, we use domain-adaptive fusion to fuse features from different
modules. 3) Our model outperforms competing methods on multiple publicly
detection datasets while retaining the performance on the source domain.
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Fig. 1. Original image(Column 1) and detection results. EIF-YOLO(Column 4)
demonstrates the capability to extract environment-independent features for detec-
tion across various environments, which is not achievable by the baseline(YOLOv8)
method(Column 2) or the data-enhanced IA-YOLO(Column 3).

Fig. 2. The framework of proposed EIF-YOLO. The adapter Ea is initialized with
pre-trained YOLOv8 parameters and extracts features from different domain data.
We introduce multi-layer perceptual regularization to ensure that the extracted fea-
tures from the adapter more focus on the domain-invariant information. Additionally,
we enabled a domain-adaptive feature fusion, for improving the model’s performance
across different environments.
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2 Related Work

2.1 Object Detection

Target detection has witnessed remarkable advancements in recent years, fueled
by deep learning and the proliferation of large-scale datasets. Convolutional Neu-
ral Networks (CNNs), particularly advanced architectures like YOLO [1], SSD
[3], and Faster R-CNN [2], have revolutionized the field by achieving unprece-
dented accuracy and efficiency. As research progresses, techniques such as atten-
tion mechanisms detector DETR [2], multi-scale feature fusion [32,33], and
anchor-free detector YOLOX [34] approaches are being explored to enhance
detection performance further.

2.2 Domain Adaptation

Domain adaptation, a pivotal concept in machine learning and computer vision,
addresses the challenge of deploying models trained on a source domain to
operate in a target domain with distinct statistical properties effectively. This
paradigm is crucial for bridging the gap between synthetic and real-world data,
enabling models trained in controlled environments to be applied to complex,
real-world scenarios.

Recent work can be divided into two mainstream directions: Unsupervised
Domain Adaptation (UDA) and Semi-supervised or Weakly-supervised Domain
Adaptation. Typical UDA methods [11] focus on leveraging unlabeled target data
to align the distributions between the source and target domains; some studies
have proposed UDA methods that combine self-training [12] and pseudo labeling
[13] to generate pseudo labels based on the model’s predictions. In addition, some
studies have explored how to use adversarial training [28] to improve the domain
adaptation performance further [29], by introducing a domain discriminator to
encourage the model to learn more domain invariant feature representations.
Semi-supervised approaches build upon UDA by incorporating limited labeled
data from the target domain to guide the adaptation process further [14,15].

2.3 Domain Adaptation Object Detection

Recent works on domain adaptation have focused on various approaches to
bridge the gap between the source and target domains for object detection.
The main idea is to leverage unlabeled or weakly labeled data from the target
domain to align the feature distributions between the two domains.

A typical method is to embed an image enhancement module to align the
feature distributions firstly [16–18,20]. The design of these image enhancement
modules usually follows the atmospheric scattering model [22], and is trained
by detection loss. However, additional modules increase the model’s size while
slowing down the inference speed [19,21] achieved faster inference speed by opti-
mizing the network structure. [40] combining self-training with image training
modules to improve the model’s accuracy.
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Another method explores the use of adversarial learning to achieve domain
adaptation. This approach effectively reduces the domain shift for object detec-
tion tasks [23,24,26]. After the gradient reversal layer (GRL) [28] is discovered,
it can be used to assist domain discriminator align features in an adversarial
way [27,29,30]. The popular student-teacher framework is used to pseudo-label
target domain images; providing pseudo-labels in the target domain will improve
the detection capability of the detector in the target domain [27,29,30].

3 Methodology

3.1 Preliminaries

Our model builds upon YOLOv8, a widely used single-stage detection model.
The detection model consists of three main components: backbone, multiple neck
blocks, and multiple detection heads.

The backbone of the model extracts features at multiple levels, including
low, medium, and high levels. To handle those features, YOLOv8 incorporates
multiple neck blocks that employ up-sampling and down-sampling strategies
to fuse features from different levels. The multiple detection head decodes the
fused features to obtain object localization and recognition results, including the
coordinates of bounding boxes and corresponding object categories. Adopting a
multi-scale approach can significantly improve the model’s capability to detect
objects of varying sizes. The detection model is primarily optimized using the
following loss:

LDet = Lcoord + Lobj + Lcbs, (1)

where Lcoord is a coordinate loss used to determine the position of an object.
Lobj is the object loss, also known as the confidence loss, used to calculate the
confidence of the prediction box. Lcbs is a category loss used to calculate the
category of the prediction box.

3.2 Overview

Given the source domain datasetXs, we refer to [17,25] add environmental per-
turbations to Xs to obtain the paired target domain dataset Xt. To ensure that
the model maintains its performance on the source domain, we create a training
dataset X = {xi | xi ∈ Xs ∪ xi ∈ Xt} by combining data from source domain
and target domain in a ratio of 1:3.

In our work, we aim to learn more domain invariant information while pre-
serving the model’s excellent performance in source domain feature extraction.
Firstly, to provide the model with additional capacity to learn domain invariant
information, we reused the original backbone Eb as an environment-independent
adapter, noted as Ea. The multi-layer features extracted from xi using Ea and
Eb are represented as {Ek

a(xi)}Kk=1 and {Ek
b (xi)}Kk=1 respectively, where K is

3 and represents the features of the low, medium and high level in order from
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smallest to largest. Meanwhile, in order to constrain Ea to focus on domain
invariant information, we additionally input a reference image xf , which cor-
responds to xi, into Eb to obtain multi-layer feature maps, and we deployed a
multi-layer perceptual regularization to regularization on Eb by optimizing the
distance between features extracted by different feature extractors. Subsequently,
We converted the original neck module into a domain-adaptive fusion module
F = {Fk}Kk=1, which can provide dynamic weights for feature fusion and get
fused multi-layer feature maps {fk

xi
}Kk=1. Finally, the detection head D decodes

fused features and obtains the object localization and recognition results. During
training, the original pretrained backbone Eb, the neck module N = {Nk}Kk=1

embedded in F , and the head D remain frozen.

3.3 Environment-Independent Feature Extraction

In clear images, a pre-trained object detector can accurately identify objects due
to the feature extractor’s ability to capture object-related information. How-
ever, the feature extractor may need help when images are affected by complex
environments. To address this issue, we introduce an environment-independent
adapter Ea specifically for handling different domain images. This adapter allows
it to disregard environmental interference and concentrate on the object of inter-
est. However, training a new feature extractor from scratch is a laborious task
and can introduce conflicts with the features extracted by the original feature
extractor Eb, posing challenges for subsequent fusion modules. Hence, we pro-
posed to reuse the pre-trained feature extractor as an adapter by copying its
structure and weights. We optimize Ea by inputting xi, while the input of Eb

is xf , and the Eb is frozen. This approach enables the Ea to learn the object-
related features of abnormal images while leveraging the knowledge acquired by
the Eb.

While the detection loss of training data can guide the Ea to extract object
features in input images, it overlooks the invariant information shared between
different domains, potentially leading to model overfitting. To address this, we
introduce the multi-layer perceptual regularization that guides Ea to reduce the
interference of complex backgrounds on objects at different layers. We lever-
age the superior detection performance of Eb on clear reference images and
the consistency of labels. Specifically, we added a reference image xf for Eb

to extract feature maps. By employing mean squared error (MSE) loss between
{Ek

a(xi)}Kk=1 and {Ek
b (xf )}Kk=1, Ea will be constrained to reduce the gap between

them, which guide Ea to extract features that primarily focus on the objects.
The multi-layer perceptual regularization is defined as follows:

LMPR =
K∑

k=1

MSE(Ek
a(xi), Ek

b (xf )), (2)

The value of K represents the number of multi-scale, and by default, it remains
the same as YOLOv8 and is set to 3. By applying the aforementioned con-
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straints, we can utilize the object-related features extracted from Eb to guide
Ea in disregarding the environmental influence.

3.4 Domain-Adaptive Feature Fusion

The features obtained by different extractors may contain complementary infor-
mation. However, when applying the pre-trained frozen feature extractor Eb to
an abnormal image, its performance relies solely on the extent of interference
caused by environmental factors. Directly fusing the different features could com-
promise the model’s robustness. Zero-Initialized Layers, a convolutional layer
with initial weights and bias values set to zero, are used in ControlNet [31]
for connecting different features. We transform the original Neck module into
domain-adaptive fusion F to merge features from different extractors efficiently,
the detailed structural design of DAF can refer to the Sect. 3 of Supplementary
Materials. This module learns fusion weights to combine features from different
feature extractors dynamically:

fk
xi

= Fk(Ek
a(xi), Ek

b (xi), fk+1
xi

), k = 1, 2, 3, (3)

where fk+1
xi

denotes the original feature, when k = 3, the original feature is equal
to E3

b (xi). To achieve the adaptive fusion of features, those extracted by different
feature extractors are combined with those dynamic weights and then added
to the original data stream as residuals. This process enables improved model
performance on the target domain while preserving the detection performance
on the source domain data to the greatest extent possible.

3.5 Training and Inference

During training, we input the same image xi into two feature extractors: adapter
Ea and original backbone Eb. Additionally, we input the corresponding clear
reference image xr into the Eb to apply MPR. The final loss, computed against
the target domain data, is utilized to optimize the adapter Ea and the fusion
module F . The optimization formula for the entire model is as follows:

min
Ea

LDet + ωLMPR,

min
F

LDet,
(4)

where ω represents the coefficient of the multi-layer perceptual regularization.
After completing the training process, the object detection model can utilize
data from the source or target domain as input for object detection. The pseu-
docode for the training process can be referred to in Sect. 4 of the Supplementary
Materials.
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4 Experiments

The performance of EIF-YOLO is evaluated through experiments conducted on
two common tasks: foggy detection and low-light detection. We begin by pre-
senting comprehensive information regarding the benchmarks and experimental
setups. Next, we quantitatively compare EIF-YOLO with several state-of-the-art
methods to assess its performance. Additionally, we provide visual comparisons
to demonstrate the direct effectiveness of EIF-YOLO in complex environments.
Moreover, we perform ablation experiments to validate the efficacy of each mod-
ule in the proposed model.

4.1 Experimental Settings

Datasets. The source domain clear images are derived from the VOC [35]
dataset (VOC2007 and VOC2012), which consists of 21,503 traffic scene images
with accurately labeled objects belonging to 20 object classes for the object
detection task. In the foggy detection task, we evaluate the model’s robustness
using the real-world hazy dataset called RTTS [38]. This dataset comprises 4,322
natural hazy images with five labeled object classes: person, bicycle, car, bus,
and motorcycle. To ensure consistency, we select VOC images containing these
five categories and create a subset called VOC nf. Following a method described
in [17], we use the atmospheric scattering formula to generate images in foggy
conditions, and use power operations to generate images in low light conditions.
We convert VOC nf to the target domain dataset VOC f, which contains images
captured in foggy conditions with varying degrees of occlusion. For the low-light
detection task, we introduce the part of ExDark [37] dataset as the val set,
which consists of 2,546 images containing 10 object categories, including bike,
boat, bottle, bus, car, cat, chair, dog, motorbike, and person. To train the low-
light domain adaptation object detection, we filter the VOC dataset and obtain
VOC nd. Subsequently, we convert VOC nd into low-light datasets VOC d using
a reference method [17]. The composition details of the datasets are provided in
Table 1.

Hyperparameter. To ensure training stability, we adopt hyperparameter set-
tings based on the default configurations of YOLOv8. We initialize EIF-YOLO
using the pre-trained model on the COCO [36] dataset. The optimization process
utilizes the AdamW optimizer with a learning rate of 0.000119 and a momentum
of 0.9 The value of ω in Eq. (4) is set to 10. The model is trained for 100 epochs
with a batch size of 64. In order to maintain the model’s performance on the
source domain, the input data consists of a mixture of source and target domain
data in a 1:3 ratio, the experimental results on mixed data can refer to Sect. 1 of
Supplementary Materials. All experiments are conducted on an NVIDIA TITAN
X GPU.
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Evaluation Metrics. The mAP (%), standing for Mean Average Precision, is
a crucial metric used to evaluate the performance of object detection models. It
averages the AP (Average Precision) scores across all object categories.

Table 1. The normal datasets, VOC nf and VOC nd, consist of the same data as their
corresponding generated datasets VOC f and VOC d, respectively.

Dataset Images Instances

train val person bicycle car motor bus boat cat dog bottle chair Total

RTTS – 4322 7950 534 18413 1838 862 – – – – – 29577

VOC f 8111 1712 3286 244 921 235 151 – – – – – 4852

ExDark – 2546 2802 464 1105 461 279 564 366 402 573 643 7665

VOC d 12509 3831 5227 389 1541 369 254 393 370 530 657 1374 11104

4.2 Comparative Experiments on Foggy Images

To evaluate the effectiveness of EIF-YOLO in foggy detection, we conduct a
comparative analysis involving baseline YOLOv8 and other methods. IA-YOLO
[17], GDIP-YOLO [19], DENet [39] and TIENet [41] trained an image enhance-
ment module. BAD-Net [40], HLA-HOD [47], and HLNet [46] trained additional
modules for aligning feature maps. SDA [45] is an unsupervised domain adapta-
tion method. To ensure a fair comparison, we maintained consistency by using
the same training sets for all the methods during the training process.

Table 2 compares mAP between EIF-YOLO and other methods on the three
test sets. The baseline method performs well on the source domain data but
needs help to achieve satisfactory results on the untrained target domain data.
Specifically, it only achieves 46.2% mAP on the foggy weather dataset VOC f,
indicating significant performance degradation in foggy conditions. The other
comparison methods show improved performance in detecting objects under
foggy conditions by training on the target domain. However, their performance
in the source domain is adversely affected to varying degrees. In contrast, our
model exhibits an improvement of 1.58% points. in detection performance on
the VOC nf compared to the baseline. This improvement is attributed to the
introduction of domain-adaptive feature fusion and the training of the adapter
with a mixture of source and target domain images. These adaptations enable
the model to fuse features adapted by different feature extractors effectively.
Furthermore, by optimizing the adapter, our model demonstrates improvements
of 38.58 and 6.3% points on the generated dataset VOC f and the real-world
hazy dataset RTTS, respectively, compared to the sub-optimal method. This
result demonstrates the efficacy of our model in addressing the DAOD task for
foggy scenes.

Additionally, we present a visual comparison between EIF-YOLO and the
baseline (YOLOv8) in Fig. 3. The adapter in EIF-YOLO focuses on extracting
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environment-independent object features through the optimization of detection
loss and multi-layer perceptual regularization. For more representative results,
please refer to Sect. 2 of the Supplementary Materials.

Table 2. Performance comparison on foggy images in terms of mAP.

Method VOC nf val VOC f val RTTS

Baseline 86.40 46.20 51.30

IA-YOLO [17] 73.23 72.03 37.80

GDIP-YOLO [19] 75.36 73.37 42.84

BAD-Net [40] 85.86 85.58 53.15

DENet [39] 84.13 83.56 53.70

TIENet [41] – 77.50 52.10

HLA-HOD [47] – 83.43 56.90

SDA [45] – – 35.10

HLNet [46] – – 55.60

EIF-YOLO 87.98 85.78 57.60

Fig. 3. Representative results of EIF-YOLO(row3) and the baseline(row2) on
VOC f val (Columns 1 to 3) and RTTS (Columns 4 to 6). The first row is the ground
truth.

4.3 Comparative Experiments on Low-Light Images

In the low-light detection scenario, we conducted a similar comparison between
our model and other comparison methods. LAR-YOLO [42] trained an image
enhancing module, and SC-Det [48] trained an additional module for aligning
feature maps. LIDA-YOLO [49] and T2 [43] are unsupervised domain adaptation
methods. The remaining experimental settings remained consistent with those
used for foggy detection.
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Table 3 presents the mAP results for each method. Notably, our model
demonstrates improved performance even on the derived data, highlighting its
effectiveness. A significant improvement is observed on both low-light datasets,
especially on VOC d, where we achieve a 9.2% points improvement over the base-
line. This result demonstrates the efficacy of our method in low-light detection
tasks.

Furthermore, we provide a visual comparison with the baseline(YOLOv8) in
Fig. 4. Our model accurately recognizes objects even in extremely poor lighting
conditions, emphasizing its ability to capture environment-independent features
for detecting objects of interest. For more representative results, please refer to
Sect. 2 of the Supplementary Materials.

Table 3. Performance comparison on low-light images in terms of mAP.

Method VOC nd val VOC d val ExDark

Baseline 79.10 66.40 62.10

IA-YOLO [17] 70.20 59.40 40.37

GDIP-YOLO [19] 63.23 57.85 42.56

LAR-YOLO [42] 74.49 62.79 42.58

DENet [39] 73.17 67.81 51.51

SC-Det [48] 69.00 – 63.00

LIDA-YOLO [49] – – 56.65

T2 [43] – – 61.76

EIF-YOLO 79.20 75.66 65.70

Fig. 4. Representative results of EIF-YOLO and the baseline (YOLOv8) on VOC d val
(Columns 1 to 3) and ExDark (Columns 4 to 6). The first row is ground truth, the
second row is the baseline method (YOLO v8), and the third row is EIF-YOLO.
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4.4 Ablation Study

To assess the effectiveness of each module in our proposed method, we conducted
ablation experiments under various settings, including environment-independent
adapter, multi-layer perceptual regularization, and domain-adaptive fusion.
These experiments were performed on three datasets. The results are presented
in Table 4, with the first row indicating the baseline (YOLOv8) performance.

For the foggy detection, it is evident that the introduction of the adapter and
MPR improves the detection performance on VOC f by about 37.94% points.
However, it leads to a degradation in the detector’s performance on VOC nf and
RTTS, especially on VOC nf, decline 42.86% points. This result is based on the
fact that RTTS experiences fewer disturbances from foggy weather compared to
VOC f. It primarily exhibits a domain gap with the source domain data. Conse-
quently, fine-tuning the model on VOC f could potentially undermine the detec-
tor’s original capability. Furthermore, simple feature fusion disregards conflicts
between different features, resulting in performance degradation. By incorporat-
ing domain-adaptive fusion, the model’s performance demonstrates significant
improvement across all three test sets, particularly on the source domain data,
with a noteworthy increase of 44.44% points (Table 4)

Table 4. Ablation analysis on VOC nf val, VOC f val and RTTS in terms of mAP.

Method EIA MPR DAF VOC nf val VOC f val RTTS

Baseline 86.40 46.20 51.30

EIF-YOLO
√ √

43.54 84.14 47.60√ √
71.40 81.40 53.60√ √ √
87.98 85.78 57.60

4.5 Impact of Hyper-parameters

The coefficient ω in Eq. (4), which corresponds to mutil-layer regularization,
plays a crucial role in the training process. We experiment with the performance
of the model in various datasets when ω is set to different values of {0, 0.5,
1, 2, 5, 7.5, 10, 15}. In Fig. 5, it is observed that the results are similar when
the ω is small compared to when MPR is not included. However, as the MPR
value increases, the overall performance of the model gradually improves. When
it reaches 15, the model performance starts to decline. Therefore, we use ω = 10
to achieve the optimal performance of the model.
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Fig. 5. The impact of coefficient ω on foggy detection (left) and low-light detection
(right) in terms of mAP.

5 Conclusion

We propose EIF-YOLO, a simple yet efficient method that enhances robust
object detection in adverse environments by fusing environment-independent
features. We ultimately retain the parameters of pretrained YOLOv8 and get
a learnable adapter responsible for detecting abnormal images by copying the
original backbone of YOLOv8. To enable the adapter to focus on object-specific
features, we introduce multi-layer perceptual regularization at multiple scales.
This guidance encourages that the features extracted by the adapter align closely
with those obtained from clear reference images. Directly tuning the original
object detector using the target domain images adversely impacts the perfor-
mance in the source domain. To address these issues, we introduce domain-
adaptive fusion, which enables the model to preserve performance in the source
domain while simultaneously improving results in the target domain. Experi-
mental results demonstrate that our method reduces the influence of complex
environments on the detection performance.
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Abstract. The integration of LiDAR and camera data has demon-
strated significant potential in enhancing the accuracy and robustness of
object detection systems. Therefore, developing a proficient fusion tech-
nique for these modalities is vital to harness their combined strengths. In
this study, we propose TransfuseNet, a novel Transformer-based method
for 2D object detection that deviates from the usual use of transform-
ers in cross-attention tasks. This approach emphasizes self-attention to
efficiently integrate camera and LiDAR inputs, thereby enhancing global
context synthesis from both sources. Our designed Transformer architec-
ture processes multi-modal feature maps derived from LiDAR and image
data, which improves feature extraction and contextual understanding.
Additionally, we examined different fusion operators, focusing on their
roles in the later stages of fusion. This analysis led to the creation of
Multi-Convolutional Fusion (MCF), a new strategy that uses a priority
gate to highlight features with higher importance scores during fusion.
Experimental results on KITTI benchmark datasets demonstrate that
our approach not only matches state-of-the-art methods but is also sig-
nificantly faster, making it ideal for rapid decision-making in autonomous
driving.

Keywords: Object Detection · Multi-modal Fusion · Transformer

1 Introduction

The advancement of autonomous driving technology heavily relies on accurate
and robust object detection methods, enabling vehicles to perceive and compre-
hend their surroundings. Image-based object detection methods either one-stage
detector [10,22] or two-stage detectors [8,16,28] often struggle under challenging
conditions such as adverse lighting and occlusions, significantly impairing visual
clarity and detection accuracy (Fig. 1).

Integrating LiDAR data has emerged as a promising solution to these limi-
tations. LiDAR sensors provide precise and dense 3D point cloud information,
which complements the visual information captured by cameras, thereby enhanc-
ing detection accuracy and robustness in autonomous systems.

However, LiDAR systems are not without their limitations. Environmental
factors such as fog or heavy rain can impair LiDAR data, leading to incomplete
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15329, pp. 445–460, 2025.
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Fig. 1. Left: Poor Illumination. Right: High Occlusion. Both conditions illustrate object
detection challenges effectively addressed by our proposed network. Bounding boxes in
green and blue denote predictions and ground truth, respectively. (Color figure online)

or inaccurate 3D detections. This presents a critical challenge for autonomous
driving, where accurate detection is vital. In critical scenarios like collision avoid-
ance, the need for accurate and rapid detection surpasses the dimensionality of
the detection, emphasizing the importance of lightweight and fast networks.

To address these needs, we propose TransfuseNet, a network designed to
enhance safety by swiftly identifying potential hazards. Our focus on 2D object
detection within TransfuseNet strategically balances computational efficiency
with detection accuracy, meeting the real-time demands of autonomous driving
where rapid response and decision-making are essential.

Several fusion approaches have been proposed to integrate LiDAR and image
data for object detection. One common approach is fusing the two modalities
at the feature level through concatenation or addition. However, these methods
often fail to capture the complex spatial dependencies present in LiDAR data,
limiting their effectiveness in certain scenarios.

Motivated by the potential of Transformers, we introduce a novel
Transformer-based network tailored for fusing LiDAR and image data, a pio-
neering effort in the 2D object detection task. Previous methodologies [1,17]
have primarily engineered Transformers for 3D detection, often relegating 2D
detection to a secondary outcome. Recognizing the importance of targeting 2D
detection, our method underscores its strategic significance in achieving a fine
balance between computational efficiency and detection accuracy which is vital
for addressing the real-time requirements of autonomous driving. Moreover, con-
trary to these methods that primarily applied Transformers to generate proposals
or utilized cross-attention techniques, our approach distinctively leverages the
self-attention mechanism of Transformers to integrate camera and LiDAR data,
enabling a comprehensive synthesis of global context from both modalities.

In constructing a robust sensor fusion framework, the optimal selection of a
fusion operator, especially for late fusion, is essential to integrate diverse modal-
ities and their associated feature maps effectively. The recent literature has pro-
posed several fusion operators, ranging from simple element-wise, non-learnable
operators to more advanced learnable approaches [35,36] that capture the inher-
ent relationships between features. However, The effectiveness of intricate fusion



Transformer-Based RGB and LiDAR Fusion for Enhanced Object Detection 447

operators must be assessed before introducing computational complexity into a
network.

To evaluate the effectiveness of our proposed approach, we conduct exten-
sive experiments on KITTI benchmark datasets [9] for 2D object detection in
autonomous driving scenarios.

Our primary contributions can be summarized as follows:

– We introduce TransfuseNet, which employs Transformer self-attention for fus-
ing camera and LiDAR data, demonstrating state-of-the-art results in 2D
object detection.

– TransfuseNet is designed to be simple and fast, making it suitable for inte-
gration within autonomous driving systems, particularly for edge computing
applications.

– We present a novel learnable fusion method called MCF, that leverages pri-
ority gates, demonstrating superior performance over the fusion techniques
evaluated in this study.

– The effectiveness of various fusion operators for 2D object detection is thor-
oughly investigated. Our systematic exploration highlights the impact of dif-
ferent fusion strategies on the overall detection performance, providing valu-
able insights for future research in this domain.

The remainder of this paper is organized as follows: Sect. 2 provides an
overview of related work in object detection using data fusion. Section 3 describes
our proposed Transformer-based fusion approach and the different fusion opera-
tors employed as late fusion in this study. The experimental results are presented
in Sect. 4, followed by the conclusion and future research directions in Sect. 5.

2 Related Work

Camera-only Detectors. In autonomous driving, there has been a substantial
focus on detecting objects using only camera inputs, a trend largely driven by the
KITTI benchmark. Due to the KITTI dataset’s reliance on a singular front cam-
era, this has prompted the development of various methods specifically tailored
for monocular 3D detection, as referenced in several studies [2,19,30].
LiDAR-only Detectors. Initial strategies for object detection via point clouds
can be divided into two primary categories. One approach simplifies the point
cloud into more streamlined forms, such as Bird’s Eye View (BEV) images
[24,25], Frontal View (FV) images [3,7], and three-dimensional attribute repre-
sentations [39]. Another approach involves utilizing the raw point clouds directly
[12,31,32]. In this context, [38] proposes an efficient single-stage point-based 3D
detector, focusing on foreground points as key for object detection. It employs
innovative, instance-aware downsampling strategies to selectively prioritize these
foreground points in detecting objects of interest. [32] presents the Point-Voxel
Transformer (PVT) module, which combines voxel-based feature encoding with
an innovative query initialization module. This approach efficiently fuses long-
range voxel contexts and precise point positions, effectively integrating contex-
tual and geometric data. BtcDet [31] effectively estimates occluded object shapes



448 R. Sadeghian et al.

in point clouds. It identifies areas affected by occlusion, predicts occupancy prob-
abilities to detect object shapes, and integrates this data to produce refined 3D
proposals and final bounding boxes.
Camera-LiDAR Fusion Detectors. In object detection, combining LiDAR
and camera data is becoming increasingly common due to the unique advantages
each provides. This approach falls into two categories based on how the data
from the two sources is fused. The first category is point-level fusion. Here,
features from images are linked with raw LiDAR points, and these combined
features are then added back as enhanced point data, as seen in studies [13,29].
The second category is feature-level fusion. In this method, LiDAR points are
first converted into a feature format [18,37] or used to create initial detection
proposals [1]. Then, camera data is associated with these features or proposals,
enhancing the overall feature quality, as shown in [4]. TransFusion [1] employs
a Transformer-based detection head. The initial layer of this decoder generates
preliminary bounding boxes from a LiDAR point cloud through a limited number
of object queries. Subsequently, its second layer of the decoder skillfully merges
these object queries with valuable image features, utilizing both spatial and
contextual correlations. DeepFusion [17] utilizes cross-attention to dynamically
identify the relationships between image and LiDAR features during the fusion
process.

Fig. 2. The overall architecture of our proposed TransfuseNet with single-view RGB
and LiDAR BEV/FV inputs. The system employs multiple Transformer layers for
intermediate feature map fusion, followed by a late fusion operator. These fused features
are input to a Region Proposal Network and a subsequent detection head for bounding
box prediction.
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3 TransfuseNet

TransfuseNet is a two-stage, end-to-end object detection framework utilizing
data fusion. As shown in Fig. 2, it comprises two main parts:(1) A Transformer-
based fusion module followed by late fusion operation, integrating data from
LiDAR and camera streams for a cohesive representation, and (2) a region pro-
posal and detection head. In the upcoming sections, we will elaborate on the
input representation and describe each network component.

3.1 Input Representation

Our research incorporates two distinct sensor types: camera RGB images and
LiDAR point cloud data. These sensor inputs are transformed into the FV/BEV
format for further processing.

The input for the camera stream is RGB images of KITTI dataset. KITTI
dataset provides images with dimensions of 1242×375×3, which will be processed
by min-max normalization to scale the values of pixels in the range of 0 to 1. On
the other hand, the LiDAR information will be represented in two ways: Bird’s
Eye View (BEV) and Frontal View (FV). These two technique encodes the 3D
point cloud into a 2D image, simplifying object detection.

BEV representation provides a concise yet comprehensive view by indicating
the presence or absence of LiDAR points in each corresponding cuboid. Despite
reducing its spatial dimensions, it offers a precise depiction of the 3D space. The
representation spans a physical space of [0, 100] × [−30, 30] × [−0.6, 3.5] meters
and is discretized into a 1242 × 375 image with 7 distinct channels dedicated to
height information.

FV representation aligns with the camera’s perspective and is constructed
using accurate camera calibration parameters from the KITTI dataset. We derive
three Frontal View features from the sparse LiDAR point clouds: intensity, depth,
and height maps. Intensity maps are based on reflectance values, while depth
and height maps utilize ratios relative to their dimensions’ maximum values.
The three features are then concatenated in the channels’ dimensions to create
a Frontal View feature image of size 1242×375×3. The encoding of the Frontal
View is normalized between 0 and 1.

3.2 Fusion Network

Our model integrates two fusion stages: mid-level, employing the Transformer,
and late fusion, utilizing either non-learnable or learnable fusion techniques.

Mid-Level Fusion. Our main concept revolves around leveraging the self-
attention mechanism found in Transformers [27] to incorporate global context
into both image and LiDAR modalities. We leverage the grid structure fea-
ture, inspired by previous work [5,21], to maximize the benefits of Transform-
ers for vision tasks. By integrating this feature, we optimize the performance
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of Transformer-based architectures in vision-related applications. Incorporating
feature maps at different levels, each encompassing distinct information leads
to improved comprehension of the input by the network when fusing the fea-
tures from LiDAR and Images. Consequently, the mentioned features are fused
at various levels (Fig. 2) to enhance overall performance and understanding.

Given the intermediate-level feature maps of each stream, which are repre-
sented as 3D tensors with dimensions H × W × C, the individual features from
each stream are combined through concatenation, resulting in a tensor with
dimensions (2 × H × W ) × C. Subsequently, a learnable positional embedding
is added to these concatenated features (Fig. 2). The purpose of incorporating
positional embedding is to enhance the network’s understanding of the spatial
relationship among input tokens. By considering this positional information, the
network gains valuable insights into the spatial context of the input data, con-
tributing to improved performance and interpretation. The produced tensor is
used as the input to the Transformer, which produces an output tensor of the
same size as the input, as shown in Fig. 2. This output is formed into two feature
maps, each with H × W × C. Then, these feature maps are reintroduced into
the distinct modality branches using element-wise summing with the existing
feature maps. The ConvMixer [26] feature extractors of the image and LiDAR
stream, which operate at various resolutions, are repeatedly subjected to this
fusion procedure carried out at a single scale. As High spatial resolution feature
map processing is computationally expensive, we use average pooling to down-
sample higher resolution feature maps from the early encoder blocks to a fixed
resolution of H = W = 8 before passing them as inputs to the Transformer. We
then use bilinear interpolation to upsample the output to the original resolution
before element-wise summing with the existing feature maps.

Utilizing modality-specific feature extractors and following dense feature
fusion across diverse resolutions, we obtain a refined feature map of dimensions
16 × 16 × 256. These feature maps, derived from the LiDAR and camera data
streams, are then strategically channeled into the advanced late fusion process.

Late Fusion. TransfuseNet adopts a sequential fusion strategy, commencing
with mid-level fusion and transitioning to late fusion. Within the late fusion
phase, we employed either (1) Non-learnable or (2) Learnable fusion operators,
enhancing the experimental process.

Non-learnable Fusion employs no learnable weights, resulting in accelerated
processing times. We use two non-learnable fusion operators, elemental addition
and multiplication, as shown in Eqs. (1) and (2), respectively, like that of recent
research articles [6,20].

Fadd = ICamera⊕ILiDAR (1)

Fmul = ICamera⊗ILiDAR (2)

Learnable Fusion needs more processing power because they have layers with
trainable parameters. As was already indicated, employing learnable combina-
torial operators has advantages in terms of their learning potential, particularly
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Fig. 3. Learnable fusion operators. Left: Our proposed Multi-Convolutional Fusion
operator (MCF). Right: Multi-modal Factorized Bilinear pooling fusion operator
(MFB).

in capturing and understanding complex interactions among features generated
from various input modalities. As shown in Fig. 3, we also incorporate two learn-
able fusion operators, Multi-modal Factorized Bilinear pooling (MFB) [36] and
a new learnable fusion named Multi-Convolutional Fusion (MCF) that is pro-
posed in this study. MCF leverages the Sigmoid layer as a priority gate, which
outputs a probability value for each feature, signifying its importance. Features
with higher probability scores are considered more crucial and are thus prior-
itized during the fusion process with subsequent layers. ReLU is used as the
main activation function throughout our model, the padding value is set to 1,
and a kernel size of 3 is used for all operations in our network. We use batch
normalization techniques to provide stability and efficient training.

3.3 Proposal Generation and Detection Head

Faster R-CNN [22] enhances object detection speed and accuracy by generat-
ing region proposals and classifying objects. In our approach, features from the
late-fusion output feed into the proposal module, which uses nine anchors based
on three scales and aspect ratios. The Region Proposal Network (RPN) predicts
objectness scores and bounding box offsets. The detection head module, with
three convolution layers and a dropout layer, refines these proposals. Finally,
two linear layers classify objects within the refined boxes. During inference,
Non-Maximum Suppression (NMS) with an IOU threshold selects high-scoring
proposals
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4 Experiments

4.1 Dataset and Metric

We evaluate our network using the KITTI object detection benchmark [9], which
includes 7,481 training and 7,518 test images. We split the training set into equal
training and validation sets, as the test server only assesses 2D detection. The
KITTI dataset categorizes labels into three difficulty levels: easy, moderate, and
hard. We present the car class accuracy using the Average Precision (AP%) met-
ric with an Intersection-Over-Union (IOU) threshold of 0.7 across all difficulty
levels.

4.2 Experimental Setup

We employ the Adam [14] optimizer with a learning rate of 0.001 and a weight
decay of 0.00001. The network is trained using a batch size of eight for 150
epochs on an NVIDIA GeForce RTX 3090 GPU. We use ConvMixer [26] model
to extract features from the camera RGB images for the image stream. Also, for
the LiDAR stream, we use the same model for feature extraction.

4.3 Loss Function

Similar to Faster R-CNN [22], our loss function comprises two integral com-
ponents. The initial element pertains to the classification loss, for which we
employed the cross-entropy loss function to classify the car object. Subsequently,
the second component is the regression loss, which exclusively operates when an
object is detected. We have adopted the smooth L1 loss function [10] for this
purpose.

4.4 Results

As Table 1 shows, we evaluated the performance using various combinations of
input modalities and late fusion operators, which will be analyzed in the follow-
ing. The baseline uses solely RGB data, excluding LiDAR. Through extensive
testing, LiDAR’s inclusion consistently boosts accuracy across categories, under-
lining its pivotal role in 2D object detection.

Different Input Modalities. By focusing on a single late fusion operator
and comparing the impact of various input modalities, we discover that the
choice between BEV and FV representations impacts detection differently. For
easily detectable objects (falling in the easy and moderate categories), using FV
offers superior supplementary details. Conversely, RGB+BEV proves superior
for the challenging hard category comprising small and heavily occluded objects.
This is attributed to its top-down perspective, eliminating occlusions inherent in
other views. Incorporating BEV data significantly aids detection, especially in
occlusion-heavy scenarios. As depicted in Table 1, when concatenating the BEV
and FV modalities to utilize them produces optimal detection results across all
categories using the benefits of both BEV and FV information.
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Table 1. Average Precision (AP%) of TransfuseNet with respect to input data and
late fusion operator.

Input Data Late Fusion Operator
2D AP (%)

Easy Moderate Hard

RGB No Fusion 87.08 83.13 77.07

RGB + BEV

Add 91.58 85.49 80.28

Mul 92.12 86.21 82.19

MFB 92.64 87.24 85.96

MCF(ours) 92.81 88.51 86.15

RGB + FV

Add 92.19 86.93 79.94

Mul 92.53 87.13 82.04

MFB 92.77 88.13 85.57

MCF(ours) 93.02 89.12 85.26

RGB + BEV + FV

Add 93.85 89.93 83.17

Mul 94.39 90.78 83.96

MFB 96.27 94.72 89.92

MCF (ours) 97.53 94.92 91.65

Table 2. Performance evaluation of TransfuseNet using Average Precision (AP%).
The table results are based on inputs of RGB images and concatenated BEV and FV
representations.

Fusion 2D AP (%) BEV AP (%)

operator Easy Moderate Hard Easy Moderate Hard

Add 93.85 89.93 83.17 86.87 80.27 74.83

Mul 94.39 90.78 83.96 90.46 84.03 78.77

MFB 96.27 94.72 89.92 94.24 89.16 85.03

MCF (ours)97.53 94.92 91.65 94.93 91.02 87.12

Different Fusion Operators. In this analysis, focusing on a singular input
data type, we examine the impacts of varying late fusion operators. Special
attention is paid to a direct quantitative comparison between our newly proposed
MCF and the established MFB methods. As depicted in Table 1, our findings
indicate that learnable fusion methods outclass their non-learnable counterparts.
This performance gap is particularly noticeable when detecting smaller and more
complex objects, designated as the ‘hard’ category in our case. Within this cat-
egory, the shortcomings of non-learnable fusion methods become significantly
more apparent, emphasizing the benefits of learnable approaches in challenging
object detection scenarios. As shown in Table 2, considering the concatenation
of RGB, BEV, and FV as input data, MCF achieves superior performance com-
pared to MFB, registering gains of +1.26, +0.20 and +1.73% points for the



454 R. Sadeghian et al.

Fig. 4. TransfuseNet 2D Average Precision (AP%) vs. IoU evaluated using MCF, MFB,
and element-wise addition fusion operators. Columns from left to right indicate results
for easy, moderate, and hard categories.

easy, moderate hard categories, respectively, in 2D object detection. We further
explored the impact of late fusion operators on BEV detection, as detailed in
Table 2. In the BEV detection task, MCF surpasses MFB with significant mar-
gins of +0.69, +1.86, and +2.09% points, respectively. These improvements are
primarily due to the MCF’s employment of the priority gate which is sigmoid
layer, which effectively identifies and amplifies the impact of more significant
features within the fusion process.

Within the scope of non-learnable fusion methods, element-wise multiplica-
tion consistently outperforms addition across all evaluated scenarios. This supe-
rior efficacy of element-wise multiplication can be attributed to its inherent capa-
bility to amplify prominent features for transmission to subsequent layers, while
simultaneously suppressing less significant features. These results collectively
confirm the efficacy and superiority of our MCF fusion method over all studied
fusion operators, specifically MFB, substantiating its applicability in both 2D
and BEV object detection tasks.

In Table 4, we present the AP versus IoU performance of TransfuseNet, which
employs various fusion operators, including MCF, MFB, and element-wise addi-
tion. These evaluations are conducted across the KITTI benchmark’s three dif-
ficulty categories: easy, moderate, and hard. Our analysis reveals that learnable
fusion operators consistently outperform the simpler element-wise addition app-
roach, underscoring the importance of learnable fusion mechanisms in object
detection. While MCF and MFB yield comparable performance at lower IoU
thresholds, MCF exhibits superior performance at higher IoU values. This sug-
gests that MCF generates predictions with greater confidence, rendering it a
more reliable choice than MFB and element-wise addition.

State-of-the-Art Comparisons. As shown in Table 3, TransfuseNet, which
utilizes our novel learnable fusion operator MCF, outperforms state-of-the-art
networks in the BEV, easy, and moderate categories of 2D object detection. It
achieves this with significantly less inference time compared to all other methods,
demonstrating the network’s efficiency—an essential factor for safe autonomous
driving. Furthermore, as Table 4 reveals, TransfuseNet is three times faster than
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Table 3. Evaluation results on KITTI 2D and BEV object detection benchmark (car).
We evaluated TransfuseNet against the latest state-of-the-art results on the test set,
using mean Average Precision measured at 40 recall positions for comparison. ‘L’ and
‘I’ represents LiDAR and Image, respectively. The best results appear in bold.

Method
Input Time 2D AP (%) BEV AP (%)

L I (ms) Easy Moderate Hard Easy Moderate Hard

OMNI3D[2] - � 50 95.78 92.72 84.81 31.70 21.20 18.43

MonoNeRD[30] - � - 94.60 86.89 77.23 31.13 23.46 20.97

NeurOCS[19] - � 100 96.39 91.08 81.20 32.27 24.49 20.89

IA-SSD[38] � - 30 96.26 93.54 88.49 92.79 89.33 84.35

BtcDet[31] � - 80 96.23 93.47 88.55 92.81 89.34 84.55

Pointpillars[15] � - 30 94.00 91.19 88.17 90.07 86.56 82.81

PointRCNN[23] � - 100 95.92 91.90 87.11 92.13 87.39 82.72

SVGA-Net[12] � - 30 96.05 94.67 91.36 92.07 89.88 85.59

CAT-Det[37] � � 60 95.97 94.71 92.07 92.59 90.07 85.82

3D-CVF [34] � � 60 96.87 93.36 86.11 93.52 89.56 82.45

EPNet[13] � � 100 96.25 94.44 89.99 94.22 88.47 83.69

STD[33] � � 80 96.14 93.22 90.53 94.74 89.19 86.42

M3DETR[11] � � 180 97.39 94.83 91.10 94.41 90.37 85.98

TransfuseNet w/ MFB � � - 96.27 94.72 89.92 94.24 89.16 85.03

TransfuseNet w/ MCF � � 20 97.53 94.92 91.65 94.93 91.02 87.12

Table 4. Comparative analysis of the number of parameters and inference time, eval-
uated on an NVIDIA GeForce RTX 3090 GPU with batch size 1.

Methods CAT-Det [37] M3DETR [11] BtcDet [31] TransfuseNet w/ MCF

# Param. 30M 76M 35M 7M

Inference (ms) 60 180 80 20

CAT-Det and nine times faster than M3DETR, both of which are transformer-
based methods, while also having considerably fewer parameters.

4.5 Qualitative Results

Table 5 shows the advantages of LiDAR for 2D object detection. TransfuseNet
effectively detects small and occluded objects, a task challenging for RGB-
only models. This underscores the importance of incorporating LiDAR data for
enhanced 2D object detection. Figure 6 further demonstrates the robustness of
TransfuseNet; the network correctly identifies objects even when they are not
labelled as ground truth.
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Fig. 5. Qualitative detection results of our TransfuseNet on KITTI validation sam-
ples. Green and blue bounding boxes are true positive detection and ground truth,
respectively. (Color figure online)

Fig. 6. Sample from the KITTI dataset
illustrating the capability of our network to
accurately detect an object despite incor-
rect annotation. The green bounding box
indicates true positive detection, while the
blue bounding box represents ground truth.

Table 5. Evaluating the impact of the
number of transformer blocks employed
in TransfuseNet.

# Transformer 2D AP (%)
block Easy Moderate Hard

0 87.97 84.92 81.67
1 95.75 90.93 85.03
2 97.53 94.92 91.65
3 96.88 94.53 89.94

Table 6. The effectiveness of differ-
ent Mid-level fusion operator with two
blocks utilized in TransfuseNet w/ MCF
as late fusion operator.

Mid-level 2D AP (%)
fusion operator Easy Moderate Hard

No Mid-fusion 87.97 84.92 81.67

Add 88.71 86.52 81.79
Mul 89.93 87.67 83.41

Transformer 97.53 94.92 91.65

4.6 Ablation Study

In this section, we conducted ablation studies on various facets, including input
data types, backbone models, fusion techniques, and Transformer structure.

Initially, we evaluated the efficacy of multi-view features across various input
modalities and late fusion operators. These results are encapsulated in Table 1.
Significantly, our results demonstrate that the integration of RGB, BEV, and
FV inputs consistently outperforms other combinations, irrespective of the late
fusion operator used. Moreover, our proposed MCF method exhibited superior
performance compared to the alternative fusion techniques in all scenarios.

We assessed the impact of varying the number of Transformer blocks within
TransfuseNet. Table 5 highlights that optimal performance is achieved with
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two Transformer blocks. The absence of Transformer blocks, and hence mid-
level fusion, significantly degrades results, underscoring the efficacy of Trans-
former blocks in enhancing mid-level fusion. The diminishing returns observed
with three blocks suggest that an increased parameter count may impede per-
formance. Furthermore, Table 6 shows the superior effectiveness of employing
Transformers as mid-level fusion operators, compared to addition or multiplica-
tion methods.

Finally, as indicated in Table 7, we compared our model against various
parameters such as the number of attention heads and layers, and different back-
bone models. In our default configuration, we use two Transformer layers, eight
attention layers, four attention heads and ConvMixer for BEV and RGB feature
extraction. In selecting a feature extractor, we chose ConMixer as our primary
backbone due to its superior accuracy over alternatives like VGG-16 and ResNet-
34. Notably, ConMixer offers a simpler structure and requires significantly fewer
parameters, approximately only one-tenth those of ResNet-34.

Table 7. Ablation study of 2D object detection. Comparison of different model struc-
tures’ results on the KITTI validation set.

Network
Value

2D AP (%)

Parameter Easy Moderate Hard

Attention layer

2 95.76 91.25 86.61

4 95.62 93.93 86.92

6 96.49 93.01 88.88

Attention head 2 96.12 93.48 87.75

Backbone
VGG-16 96.24 91.65 90.43

ResNet-34 96.97 93.26 88.54

Default Config - 97.53 94.92 91.65

5 Conclusion

In this work, we introduced TransfuseNet, an innovative end-to-end, two-stage
object detection framework. The primary aim of TransfuseNet is to provide a
conceptually simple, fast, yet accurate fusion method that is useful for making
quick decisions in critical autonomous driving scenarios, such as collision avoid-
ance. TransfuseNet effectively leverages Transformer-based fusion, capitalizing
on the synergies between LiDAR and camera modalities for 2D object detec-
tion. While Transformers facilitate mid-level fusion, an extensive examination of
fusion operators has offered valuable insights for the late fusion stage. Notably,
our proposed learnable fusion technique resulted in a significant improvement
in both 2D and BEV detection performance. This progress contributes to the
development of fusion methods and highlights potential areas for future research
in multi-modal object detection.
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