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President’s Address

Onbehalf of theExecutiveCommittee of the InternationalAssociation for PatternRecog-
nition (IAPR), I am pleased to welcome you to the 27th International Conference on
Pattern Recognition (ICPR 2024), the main scientific event of the IAPR.

After a completely digital ICPR in the middle of the COVID pandemic and the first
hybrid version in 2022, we can now enjoy a fully back-to-normal ICPR this year. I
look forward to hearing inspirational talks and keynotes, catching up with colleagues
during the breaks and making new contacts in an informal way. At the same time, the
conference landscape has changed. Hybrid meetings have made their entrance and will
continue. It is exciting to experience how this will influence the conference. Planning
for a major event like ICPR must take place over a period of several years. This means
many decisions had to be made under a cloud of uncertainty, adding to the already large
effort needed to produce a successful conference. It is with enormous gratitude, then,
that wemust thank the team of organizers for their hard work, flexibility, and creativity in
organizing this ICPR. ICPR always provides a wonderful opportunity for the community
to gather together. I can think of no better location than Kolkata to renew the bonds of
our international research community.

Each ICPR is a bit different owing to the vision of its organizing committee. For
2024, the conference has six different tracks reflecting major themes in pattern recogni-
tion: Artificial Intelligence, Pattern Recognition and Machine Learning; Computer and
Robot Vision; Image, Speech, Signal and Video Processing; Biometrics and Human
Computer Interaction; Document Analysis and Recognition; and Biomedical Imaging
and Bioinformatics. This reflects the richness of our field. ICPR 2024 also features two
dozen workshops, seven tutorials, and 15 competitions; there is something for everyone.
Many thanks to those who are leading these activities, which together add significant
value to attending ICPR, whether in person or virtually. Because it is important for ICPR
to be as accessible as possible to colleagues from all around the world, we are pleased
that the IAPR, working with the ICPR organizers, is continuing our practice of awarding
travel stipends to a number of early-career authors who demonstrate financial need. Last
but not least, we are thankful to the Springer LNCS team for their effort to publish these
proceedings.

Among the presentations from distinguished keynote speakers, we are looking for-
ward to the three IAPRPrizeLectures at ICPR2024.This yearwehonor the achievements
of Tin Kam Ho (IBM Research) with the IAPR’s most prestigious King-Sun Fu Prize
“for pioneering contributions to multi-classifier systems, random decision forests, and
data complexity analysis”. The King-Sun Fu Prize is given in recognition of an outstand-
ing technical contribution to the field of pattern recognition. It honors the memory of
Professor King-Sun Fu who was instrumental in the founding of IAPR, served as its first
president, and is widely recognized for his extensive contributions to the field of pattern
recognition.
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The Maria Petrou Prize is given to a living female scientist/engineer who has made
substantial contributions to the field of PatternRecognition andwhose past contributions,
current research activity and future potential may be regarded as amodel to both aspiring
and established researchers. It honours the memory of Professor Maria Petrou as a
scientist of the first rank, and particularly her role as a pioneer for women researchers.
This year, the Maria Petrou Prize is given to Guoying Zhao (University of Oulu), “for
contributions to video analysis for facial micro-behavior recognition and remote bio-
signal reading (RPPG) for heart rate analysis and face anti-spoofing”.

The J.K. Aggarwal Prize is given to a young scientist who has brought a substan-
tial contribution to a field that is relevant to the IAPR community and whose research
work has had a major impact on the field. Professor Aggarwal is widely recognized
for his extensive contributions to the field of pattern recognition and for his participa-
tion in IAPR’s activities. This year, the J.K. Aggarwal Prize goes to Xiaolong Wang
(UC San Diego) “for groundbreaking contributions to advancing visual representation
learning, utilizing self-supervised and attention-based models to establish fundamental
frameworks for creating versatile, general-purpose pattern recognition systems”.

During the conference we will also recognize 21 new IAPR Fellows selected from
a field of very strong candidates. In addition, a number of Best Scientific Paper and
Best Student Paper awards will be presented, along with the Best Industry Related
Paper Award and the Piero Zamperoni Best Student Paper Award. Congratulations to
the recipients of these very well-deserved awards!

I would like to close by again thanking everyone involved in making ICPR 2024 a
tremendous success; your hard work is deeply appreciated. These thanks extend to all
who chaired the various aspects of the conference and the associated workshops, my
ExCo colleagues, and the IAPR Standing and Technical Committees. Linda O’Gorman,
the IAPR Secretariat, deserves special recognition for her experience, historical perspec-
tive, and attention to detail when it comes to supporting many of the IAPR’s most impor-
tant activities. Her tasks became so numerous that she recently got support from Carolyn
Buckley (layout, newsletter), Ugur Halici (ICPR matters), and Rosemary Stramka (sec-
retariat). The IAPR website got a completely new design. Ed Sobczak has taken care of
our web presence for so many years already. A big thank you to all of you!

This is, of course, the 27th ICPR conference. Knowing that ICPR is organized every
two years, and that the first conference in the series (1973!) pre-dated the formal founding
of the IAPR by a few years, it is also exciting to consider that we are celebrating over
50 years of ICPR and at the same time approaching the official IAPR 50th anniversary
in 2028: you’ll get all information you need at ICPR 2024. In the meantime, I offer my
thanks and my best wishes to all who are involved in supporting the IAPR throughout
the world.

September 2024 Arjan Kuijper
President of the IAPR



Preface

It is our great pleasure to welcome you to the proceedings of the 27th International Con-
ference on Pattern Recognition (ICPR 2024), held in Kolkata, India. The city, formerly
known as ‘Calcutta’, is the home of the fabled Indian Statistical Institute (ISI), which
has been at the forefront of statistical pattern recognition for almost a century. Concepts
like the Mahalanobis distance, Bhattacharyya bound, Cramer–Rao bound, and Fisher–
Rao metric were invented by pioneers associated with ISI. The first ICPR (called IJCPR
then) was held in 1973, and the second in 1974. Subsequently, ICPR has been held every
other year. The International Association for Pattern Recognition (IAPR) was founded
in 1978 and became the sponsor of the ICPR series. Over the past 50 years, ICPR has
attracted huge numbers of scientists, engineers and students from all over the world and
contributed to advancing research, development and applications in pattern recognition
technology.

ICPR 2024 was held at the Biswa Bangla Convention Centre, one of the largest such
facilities in South Asia, situated just 7 kilometers from Kolkata Airport (CCU). Accord-
ing to ChatGPT “Kolkata is often called the ‘Cultural Capital of India’. The city has
a deep connection to literature, music, theater, and art. It was home to Nobel laureate
Rabindranath Tagore, and the Bengali film industry has produced globally renowned
filmmakers like Satyajit Ray. The city boasts remarkable colonial architecture, with
landmarks like Victoria Memorial, Howrah Bridge, and the Indian Museum (the oldest
and largest museum in India). Kolkata’s streets are dotted with old mansions and build-
ings that tell stories of its colonial past. Walking through the city can feel like stepping
back into a different era. Finally, Kolkata is also known for its street food.”

ICPR 2024 followed a two-round paper submission format. We received a total of
2135 papers (1501 papers in round-1 submissions, and 634 papers in round-2 submis-
sions). Each paper, on average, received 2.84 reviews, in single-blind mode. For the
first-round papers we had a rebuttal option available to authors.

In total, 945 papers (669 from round-1 and 276 from round-2) were accepted
for presentation, resulting in an acceptance rate of 44.26%, which is consistent with
previous ICPR events. At ICPR 2024 the papers were categorized into six tracks:
Artificial Intelligence, Machine Learning for Pattern Analysis; Computer Vision and
Robotic Perception; Image,Video, Speech, and SignalAnalysis; Biometrics andHuman-
Machine Interaction; Document and Media Analysis; and Biomedical Image Analysis
and Informatics.

The main conference ran over December 2–5, 2024. The main program included
the presentation of 188 oral papers (19.89% of the accepted papers), 757 poster papers
and 12 competition papers (out of 15 submitted). A total 10 oral sessions were held
concurrently in fourmeeting roomswith a total of 40 oral sessions. In total 24workshops
and 7 tutorials were held on December 1, 2024.

The plenary sessions included three prize lectures and three invited presentations.
The prize lectures were delivered by Tin Kam Ho (IBM Research, USA; King Sun
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Fu Prize winner), Xiaolong Wang (University of California, San Diego, USA; J.K.
Aggarwal Prize winner), and Guoying Zhao (University of Oulu, Finland; Maria Petrou
Prize winner). The invited speakers were Timothy Hospedales (University of Edinburgh,
UK), Venu Govindaraju (University at Buffalo, USA), and Shuicheng Yan (Skywork AI,
Singapore).

Several best paper awards were presented in ICPR: the Piero Zamperoni Award for
the best paper authored by a student, the BIRPA Best Industry Related Paper Award,
and the Best Paper Awards and Best Student Paper Awards for each of the six tracks of
ICPR 2024.

The organization of such a large conferencewould not be possible without the help of
many volunteers. Our special gratitude goes to the Program Chairs (Apostolos Antona-
copoulos, Subhasis Chaudhuri, RamaChellappa andCheng-LinLiu), for their leadership
in organizing the program. Thanks to our Publication Chairs (Ananda S. Chowdhury and
Wataru Ohyama) for handling the overwhelming workload of publishing the conference
proceedings. We also thank our Competition Chairs (Richard Zanibbi, Lianwen Jin and
Laurence Likforman-Sulem) for arranging 12 important competitions as part of ICPR
2024. We are thankful to our Workshop Chairs (P. Shivakumara, Stephanie Schuckers,
Jean-MarcOgier and Prabir Bhattacharya) andTutorial Chairs (B.B.Chaudhuri,Michael
R. Jenkin and Guoying Zhao) for arranging the workshops and tutorials on emerging
topics. ICPR 2024, for the first time, held a Doctoral Consortium.Wewould like to thank
our Doctoral Consortium Chairs (Véronique Eglin, Dan Lopresti and Mayank Vatsa) for
organizing it.

Thanks go to the TrackChairs and themeta reviewers who devoted significant time to
the review process and preparation of the program.We also sincerely thank the reviewers
who provided valuable feedback to the authors.

Finally, we acknowledge the work of other conference committee members, like the
Organizing Chairs and Organizing Committee Members, Finance Chairs, Award Chair,
Sponsorship Chairs, and Exhibition and Demonstration Chairs, Visa Chair, Publicity
Chairs, and Women in ICPR Chairs, whose efforts made this event successful. We also
thank our event manager Alpcord Network for their help.

Wehope that all the participants found the technical program informative and enjoyed
the sights, culture and cuisine of Kolkata.

October 2024 Umapada Pal
Josef Kittler

Anil Jain
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Abstract. This study aims to classify brain tumors in MRI images into
four categories: glioma, meningioma, absent, and pituitary tumors, as
well as segment low-grade gliomas. We evaluate our proposed models on
four publicly available datasets to ensure robustness and generalizability.
For classification tasks, we compare the performance of our custom CNN
model against established models like ResNet and VGG. For segmenta-
tion tasks, we compare our custom U-Net model with the original U-Net
and ResNet-based encoders. To validate the effectiveness of our models,
we employ the Explainable AI (XAI) method LIME, providing insights
into why our custom architectures outperform others. Our custom U-Net
model achieves a validation accuracy of 99.79% and an Intersection over
Union (IoU) score of 0.889 for low-grade glioma segmentation. Addition-
ally, we report a LIME explanation stability score of 0.8169 and a sparsity
score of 0.1190. The proposed custom CNN model achieves a validation
accuracy of 98.70%, weighted avg precision of 97.63%, recall of 97.64%
and weighted F1 - Score of 97.63%. The model achieves a LIME stability
score of 0.923 and a sparsity score of 0.203. These results highlight the
potential of our custom models to enhance accuracy and interpretability
in brain tumor classification and segmentation tasks, offering significant
improvements over existing methodologies. The custom U-net model is
also an excellent negative classifier achieving a perfect 1.00 IoU score for
classifying MRI scans which do not have any tumor.

Keywords: Brain Tumor · Explainable AI · LIME

1 Introduction

Segmentation and classification of brain tumors in MRI images have been exten-
sively researched over the past few years. Researchers have been leveraging deep
neural networks to achieve significant improvements in this area [1–5].

However, the advent of Explainable AI (XAI) [6] has introduced new possibil-
ities, allowing us to scrutinize network structures and understand the underlying
mechanisms behind their final results. This perspective is crucial for discerning
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why certain models perform better than others and how existing neural net-
work architectures can be modified for improved efficiency and accuracy. Con-
sequently, this can lead to smaller networks that save training time and provide
faster results when deployed.

Previously, deep learning models operated largely as black boxes. Input
images were fed into the network, and based on the output, additional images
that led to misclassifications were incorporated into the training set to enhance
learning. Developers focused on layer adjustment, feedback incorporation, loss
prevention, and hyperparameter tuning, often relying on trial and error to
achieve better results. With XAI, the opaque nature of neural networks has
transformed into a transparent process, providing clear insights into the inner
workings of the network. This transparency empowers developers to exert more
control over the network, significantly reducing development time and reliance
on trial and error [7].

Moreover, traditional deep learning models were constrained to predicting
predefined classes without the ability to indicate uncertainty. XAI now enables
us to identify when the network reaches an ”I don’t know” stage, allowing for
the development of custom models tailored to specific needs rather than merely
adapting existing network architectures for different domains through transfer
learning.

Explainable AI also enhances the accountability, fairness, and transparency
of deep learning models. This is particularly important in medical diagnostics,
where the consequences of misclassification and segmentation can be severe.

In this paper, we develop a custom segmentation and classification model,
providing interpretation with the LIME model [8]. We compare our results with
benchmark neural network models such as ResNet [9] and VGG Net [10].

The paper is organized as follows: we detail our methodology in Sect. 2, fol-
lowed by the experimentation details in Sect. 3 and presentation of our results
and their discussion in Sect. 4. The conclusions and implications our findings are
presented in the Sect. 5.

2 Methodology

2.1 Proposed Neural Network for Segmentation

The proposed segmentation network is a custom U-Net, specifically designed
to enhance the segmentation of brain MRI images. The architecture retains the
canonical encoder-decoder structure of the original U-Net, with several enhance-
ments aimed at capturing more complex features and improving segmentation
performance. Figure 1 displays the network architecture.

Proposed Enhanced U-Net. Our proposed Enhanced U-Net model intro-
duces several critical modifications to the original U-Net architecture, aimed at
augmenting its performance for brain tumor segmentation tasks. These enhance-
ments are strategically designed to improve feature extraction, model robustness,
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Fig. 1. Proposed Neural Network for Segmentation

and overall segmentation accuracy. Here are the key differences and enhance-
ments compared to the original U-Net:

Residual Connections: Residual connections are integrated within each convo-
lutional block. This strategy helps alleviate the vanishing gradient problem and
facilitates the training of deeper networks by allowing gradients to flow more
effectively through the network. The residual path is implemented by adding
the input to the output of the convolutional layers within the block.

Batch Normalization: Batch normalization layers are employed after each con-
volutional layer. This technique stabilizes and accelerates the training process by
normalizing the activations, thus reducing internal covariate shift. It also allows
for higher learning rates and reduces sensitivity to initialization.

Spatial Dropout: Spatial Dropout is incorporated within each convolutional block
to improve generalization and prevent overfitting. This form of dropout randomly
drops entire feature maps rather than individual elements, which is particularly
effective for spatial data, ensuring that the model does not become overly reliant
on specific feature maps.

By incorporating these enhancements, our proposed Enhanced U-Net model
aims to significantly improve segmentation performance in terms of accuracy,
robustness, and generalization capabilities.

2.2 Proposed Neural Network for Classification

The proposed classification network is a custom Convolutional Neural Network
(CNN) specifically designed for classifying brain MRI images into benign and
malignant tumors. It incorporates advanced convolutional layers with batch nor-
malization, ReLU activations, and strategic pooling operations to enhance fea-
ture extraction and classification accuracy. Figure 2 displays the Proposed Neural
Network for Classification.
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Fig. 2. Proposed Neural Network for Classification

Convolutional Layers: The network comprises four convolutional layers, each
contributing to hierarchical feature learning:

– Conv Layer 1: Applies 32 filters of size 4× 4 with a stride of 1, utilizing batch
normalization and ReLU activation.

– Conv Layer 2: Employs 64 filters of size 4× 4 with a stride of 1, followed by
batch normalization and ReLU activation.

– Conv Layer 3: Utilizes 128 filters of size 4× 4 with a stride of 1, integrated
with batch normalization and ReLU activation.

– Conv Layer 4: Applies 128 filters of size 4× 4 with a stride of 1, followed by
batch normalization and ReLU activation.

Pooling Layers: Pooling operations are strategically placed to reduce spatial
dimensions and enhance translational invariance:

– Pooling Layer 1: After the first and second convolutional layers, a max pooling
operation with a kernel size of 3× 3 and a stride of 3 is applied.

– Pooling Layer 2: Following the third convolutional layer, a max pooling oper-
ation with a kernel size of 3× 3 and a stride of 2 is employed.

Fully Connected Layers: After feature extraction through convolution and pool-
ing, the network incorporates fully connected layers for final classification:

– Fully Connected (FC) Layer 1: Composed of 512 units with ReLU activation,
facilitating complex feature integration.

– Dropout Regularization: Implemented with a dropout rate of 0.5 before the
final classification layer to prevent overfitting by randomly deactivating neu-
rons during training.

– Final Classification FC Layer 2: The last layer outputs predictions corre-
sponding to the number of classes, leveraging integrated features for accurate
classification.
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Enhanced Performance: The strategic use of two different strides in the max
pooling layers significantly enhances test accuracy, allowing the network to effec-
tively capture and integrate hierarchical features from varying spatial scales.
This design choice optimizes the network’s ability to discern between benign
and malignant brain tumor images with increased precision and reliability in
medical imaging applications.

2.3 Applying LIME on Proposed Models

Application on Classification Models: For the classification task, LIME is
applied to understand the reasons behind the classification of brain MRI images
as benign or malignant or no tumor. The steps include:

1. Selecting Instances: A subset of correctly classified and misclassified images
from the test set is selected for explanation.

2. Generating Explanations: LIME generates explanations for each selected
instance by highlighting the regions of the image that most influenced the
model’s decision.

3. Visualizing Explanations: The explanations are visualized as heatmaps over-
laid on the original images, showing which parts of the image contributed
most to the classification.

Application on Segmentation Models: For the segmentation task, LIME
helps to explain why certain regions of the MRI images were segmented as tumor
areas. The steps include:

1. Selecting Instances: A set of segmented images, including both successful and
failed segmentations, is chosen for explanation.

2. Generating Perturbations: Perturbations are applied to the images, and the
model’s segmentation predictions for these perturbed samples are obtained.

3. Fitting an Interpretable Model: A simpler model is fitted to approximate the
segmentation decisions of the original model.

4. Visualizing Explanations: The important features (image segments) that
influenced the segmentation decision are visualized, helping to understand
the model’s behavior.

2.4 Algorithm for the Proposed Work

The following steps outline the algorithm we employed in our research for prepro-
cessing data, training custom models for classification and segmentation, apply-
ing LIME for explainability, and evaluating the models using specific metrics.

Step 1: Data Preparation:

1. Data Acquisition: We collected a publicly available dataset of brain MRI
images. The dataset includes labels for classification (glioma , pituitary ,
meningioma ,no tumor) and ground truth masks for segmentation.
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2. Data Preprocessing:We normalized the images to a standard scale (e.g., [0, 1]).
The images were resized to a fixed size (e.g., 256 × 256 pixels) to ensure uni-
form input dimensions. Used a custom data loading function to load , prepro-
cess MRI Images and load them in a Dataframe. We augmented the dataset
using techniques such as cropping out the brain sections only to enhance
model generalization and accuracy and also adding data augmentations such
as horizontal flips and rotations.

Step 2: Model Training:

1. Classification Model: We defined a custom CNN architecture for classification.
The model parameters were initialized, and the model was compiled with
an appropriate optimizer (Adam) and loss function (cross-entropy loss). The
dataset was split into training, validation, and test sets. We trained the model
on the training set and validated it on the validation set. The training process
was monitored, and early stopping was applied to prevent overfitting.

2. Segmentation Model: We defined a custom U-Net architecture for segmen-
tation. The model parameters were initialized, and the model was compiled
with an appropriate optimizer (Adam) and loss function (binary cross-entropy
with Dice coefficient). The model was trained on the training set and vali-
dated on the validation set. The training process was monitored, and early
stopping was applied to prevent overfitting.

Step 3: Model Evaluation

1. Classification Evaluation: We evaluated the trained classification model on
the test set using metrics such as accuracy, precision, recall, and F1 score.

2. Segmentation Evaluation: We evaluated the trained segmentation model on
the test set using metrics such as Dice coefficient, Intersection over Union
(IoU), and pixel-wise accuracy.

Step 4: Applying LIME for Explainability

1. Instance Selection: We selected a subset of correctly classified and misclas-
sified images from the test set for classification explainability. We selected a
set of successful and failed segmentations from the test set for segmentation
explainability.

2. Generate Explanations: We applied LIME to generate explanations for the
selected instances. For classification, we created perturbed samples and fit
an interpretable model to approximate the classifier’s behavior locally. For
segmentation, we created perturbed samples and fit an interpretable model
to approximate the segmenter’s behavior locally.

3. Visualization and Interpretation: We visualized the explanations as heatmaps
to highlight the regions of the images that contributed most to the model’s
predictions. The visualizations were interpreted to understand the model’s
decision-making process.
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Step 5: Quantitative Evaluation of Explanations

1. Explanation Stability: We measured the consistency of the explanations when
the input image was slightly perturbed.

2. Explanation Sparsity: We evaluated the proportion of the image highlighted
in the explanation to assess conciseness.

3. Explanation Fidelity: We assessed how well the interpretable model approxi-
mated the original model’s predictions.

3 Experimental Details

3.1 Dataset Used

For Classification Tasks: For the classification tasks, we employed a com-
bined dataset comprising 7023 images of human brain MRI images. These images
are categorized into four distinct classes: glioma, meningioma, no tumor, and
pituitary. This dataset amalgamates images from multiple sources, providing a
diverse and comprehensive collection for robust classification model training and
evaluation.

Sources of Data:

1. Jun Cheng’s Brain Tumor Dataset [11,12]: This dataset contains 3064 T1-
weighted contrast-enhanced images from 233 patients, distributed across three
tumor types: meningioma (708 slices), glioma (1426 slices), and pituitary
tumor (930 slices). The dataset is split into four subsets, each archived in a
.zip file containing approximately 766 slices. The data is organized in MAT-
LAB (.mat) format, with each file storing the image data and associated
annotations.

2. Br35H Dataset: The Br35H dataset contains a diverse collection of brain MRI
images used for various brain tumor classification tasks. The dataset includes
images categorized into the four classes mentioned above, further enhancing
the diversity and robustness of our classification model.

3. SarTaj Dataset: This dataset includes additional brain MRI images used
to complement the classification model’s training dataset, ensuring a robust
learning process.

The combined dataset from these sources provided a rich variety of images,
enhancing the model’s ability to generalize across different types of brain tumors.
The images in the combined dataset were preprocessed to ensure uniformity in
resolution and intensity normalization, followed by augmentation techniques to
further increase the dataset size and variability, such as rotation, flipping, and
contrast adjustment.
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For Segmentation Tasks

Brain MRI Segmentation Dataset: This dataset includes brain MR images along
with manual FLAIR abnormality segmentation masks. The images were sourced
from The Cancer Imaging Archive (TCIA) and correspond to 110 patients
included in The Cancer Genome Atlas (TCGA) lower-grade glioma collection,
each having at least one fluid-attenuated inversion recovery (FLAIR) sequence
and associated genomic cluster data. FLAIR sequences, known for their high
sensitivity to lesions and abnormalities within the brain tissue. Manual seg-
mentation masks were created by expert radiologists, delineating the abnormal
regions with high precision. Covers 110 patients, providing a comprehensive and
diverse dataset for training and evaluating segmentation models.

Each image has been standardized to a uniform resolution, ensuring consis-
tency across the dataset. Images were preprocessed to correct for intensity inho-
mogeneities and were normalized to have zero mean and unit variance. Data
augmentation techniques, including random rotations, scaling, and elastic defor-
mations, were applied to increase the effective size of the training set and to
improve the robustness of the segmentation model. The segmentation masks
provide a binary representation of the tumor regions, with 1 s indicating the
presence of a tumor and 0 s representing healthy tissue. These masks are crucial
for training supervised learning models for segmentation tasks.

3.2 Evaluation Metrics

Segmentation: For evaluating the performance of our segmentation models,
we employed several standard metrics to ensure a comprehensive assessment:

1. Dice Coefficient (Dice Similarity Index, DSC):The Dice coefficient measures
the overlap between the predicted segmentation and the ground truth. It
ranges from 0 to 1, with 1 indicating perfect overlap.

D(A,B) =
2 |A ∩ B|
|A| + |B| (1)

where A is the set of pixels in the predicted segmentation and B is the set of
pixels in the ground truth segmentation.

2. Intersection over Union (IoU, Jaccard Index):IoU measures the ratio of the
intersection to the union of the predicted and ground truth segmentations. It
ranges from 0 to 1, with 1 indicating perfect segmentation.

IoU =
Area of overlap
Area of union

=
A ∩ B

A ∪ B
(2)

3. Precision (Positive Predictive Value): Precision indicates the proportion of
true positive pixels among all pixels that were predicted as positive.

Precision =
TP

TP+FP
(3)

where TP is the number of true positive pixels and FP is the number of false
positive pixels.
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4. Recall (Sensitivity, True Positive Rate): Recall measures the proportion of
true positive pixels among all actual positive pixels.

Recall =
TP

TP+FN
(4)

where FN is the number of false negative pixels.
5. F1 Score: The F1 score is the harmonic mean of precision and recall, providing

a single metric that balances both.

F1 Score =
2 × Precision × Recall

Precision + Recall
(5)

6. Hausdorff Distance: This metric measures the maximum distance between the
predicted segmentation boundary and the ground truth boundary, providing
insight into the spatial accuracy of the segmentation.

dH (X,Y ) = max
{
supx∈Xd (x, Y ) , supy∈Y d (X, y)

}
(6)

where sup represents the supremum operator and d(a,B) = infb∈Bd(a, b). inf
is the infimum operator d(a,B) quantifies the distance from a point a ∈ X to
the subset B ⊆ X. d(a, b) is the Euclidean distance between points a and b.

Classification: For the classification tasks, the following metrics were utilized
to evaluate the model performance:

1. Accuracy: Accuracy is the ratio of correctly predicted instances to the total
instances. It provides a straightforward measure of overall performance.

2. Confusion Matrix: The confusion matrix provides a detailed breakdown of
the classification performance, displaying the counts of true positives, true
negatives, false positives, and false negatives for each class.

3. Receiver Operating Characteristic (ROC) Curve and Area Under the Curve
(AUC): The ROC curve plots the true positive rate against the false pos-
itive rate at various threshold settings. The AUC provides a single scalar
value summarizing the model’s performance across all thresholds. An AUC
of 1 indicates perfect classification, while an AUC of 0.5 suggests no better
performance than random guessing.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision, Recall and F1-scores are also used to evaluate the results.

LIME (Local Interpretable Model-Agnostic Explanations): For the
interpretability of our models, particularly in understanding their decision-
making processes, we employed LIME to generate explanations. The following
metrics were used to evaluate the quality of the explanations provided by LIME:
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1. Explanation Stability: Explanation stability measures the consistency of
explanations when slight perturbations are made to the input data. High
stability indicates that small changes in the input do not significantly alter
the explanation.

Stability = 1 − 1
n

∑

i=1

n |E (xi) − E (x′
i)| (8)

where E (xi) is the explanation for instance xi and E (x′
i) is the explanation

for the perturbed instance and n is the number of samples.
2. Explanation Sparsity: Explanation sparsity evaluates the proportion of fea-

tures used in the explanation compared to the total number of features. Sparse
explanations are preferred as they are easier to interpret.

Sparsity = 1 − Number of features in explanation
Total number of features

(9)

3. Explanation Fidelity: Explanation fidelity measures how well the explanation
approximates the original model’s behavior. High fidelity indicates that the
surrogate model used for generating explanations closely mimics the original
model.

Fidelity = 1 − 1
n

n∑

i=1

(f (xi) − g (xi))
2 (10)

where f (xi) is the prediction of the original model for instance xi and g (xi)
is the prediction of the surrogate model.

3.3 Setting Up Parameter Values

For both the segmentation and classification tasks, careful selection and tuning
of hyperparameters were crucial to optimizing the performance of our neural
network models. The parameter values for various components of our proposed
work are detailed below:

Segmentation Model (Enhanced U-Net)

1. Learning Rate: 1e-4. The learning rate determines the step size at each itera-
tion while moving toward a minimum of the loss function. A smaller learning
rate ensures a stable convergence but might require more epochs.

2. Batch Size: 16. The batch size indicates the number of training samples used
in one forward/backward pass. A moderate batch size balances memory effi-
ciency and gradient stability.

3. Epochs: 50 The number of epochs defines how many times the learning algo-
rithm will work through the entire training dataset. More epochs can lead to
better convergence but may also increase the risk of overfitting.

4. Dropout Rate:
– Initial layers: 0.1
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– Middle layers: 0.2
– Final layer: 0.3

Dropout is used to prevent overfitting by randomly setting a fraction of input
units to 0 at each update during training time. Different rates are used for
different layers to balance regularization and learning.

5. Optimizer Adam. The Adam optimizer is chosen for its adaptive learning rate
capabilities and efficient handling of sparse gradients, making it suitable for
training deep neural networks.

6. Loss Function: Binary cross entropy is used for measuring the performance
of a classification model whose output is a probability value between 0 and
1. It is well-suited for segmentation tasks where the output is a binary mask.

Binary Cross Entropy = − 1
N

N∑

i

M∑

j

yij log (pij) (11)

where N is the number of samples and M is the number of classes.

Classification Model (Custom CNN)

1. Learning Rate: 1e-3. A higher learning rate compared to the segmentation
model to ensure faster convergence while maintaining stability.

2. Batch Size: 32. A larger batch size to improve gradient estimation accuracy
and training speed.

3. Epochs: 100. A higher number of epochs to ensure sufficient training for
convergence.

4. Dropout Rate: 0.5. A higher dropout rate to strongly regularize the model
and prevent overfitting, given the smaller dataset size.

5. Optimizer Adam. Adam optimizer is chosen for its efficient gradient compu-
tation and adaptive learning rates, facilitating robust training.

6. Loss Function: Cross Entropy Loss. Cross entropy loss is used for multi-
class classification tasks, where it evaluates the performance of a classification
model whose output is a probability value between 0 and 1 for each class.

Cross Entropy = − 1
N

N∑

j=1

[tj log (pj) + (1 − tj) log (1 − pj)] (12)

N is the number of data points, tj is the truth value and pj is the Softmax
probability for taking the truth value.

LIME Parameters

1. Number of Samples: 1000. The number of perturbed samples generated to
explain each prediction. More samples can improve explanation fidelity but
increase computational cost.
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2. Kernel Width: 0.25. The width of the kernel used for weighting the perturbed
samples. A smaller width focuses the explanation on samples closer to the
original instance.

3. Feature Selection Method: Forward Selection. The method used for select-
ing the most important features in the perturbed samples. Forward selection
iteratively adds features to improve explanation quality.

4. Regularization: L1 Regularization. L1 regularization encourages sparsity in
the explanation, making it more interpretable by focusing on the most influ-
ential features.

5. Segmenter: Quickshift
– Kernel Size: 4. Controls the spatial scale of the segmentation. A larger

kernel size results in larger segments.
– Max Distance: 200. Limits the distance in the color space between two

pixels to be merged.
– Ratio: 0.5. Balances the color proximity and spatial proximity. A higher

ratio gives more importance to color similarity.
Quickshift is a mode-seeking segmentation algorithm that clusters pixels
based on color similarity and spatial proximity. It is used to generate superpix-
els, which are smaller segments of the image that preserve local information.

4 Results and Discussion

Table 1 presents the evaluation results of our proposed Custom CNN model
compared to ResNet32 and VGG16 models.

The Custom CNN model achieved the highest accuracy (98.70%) compared
to ResNet32 (96.35%) and VGG16 (96.2%), indicating superior overall perfor-
mance in classifying brain tumors. The Custom CNN model also demonstrated
the highest precision (97.63%), compared to ResNet32 (95.24%) and VGG16
(95.78%), indicating a lower rate of false positives. Recall: The Custom CNN
model achieved a recall of 97.64%, slightly higher than ResNet32 (96.12%) and
VGG16 (95.12%), indicating a higher rate of true positives. The Custom CNN
model showed the highest F1-Score (97.47%), compared to ResNet32 (96.15%)
and VGG16 (95.76%), balancing precision and recall effectively. The Custom
CNN model had the highest LIME Explanation Stability Score (0.923), com-
pared to ResNet32 (0.846) and VGG16 (0.687), indicating more stable explana-
tions across similar inputs. The Custom CNN model had a LIME Explanation
Sparsity Score of 0.208, compared to ResNet32 (0.196) and VGG16 (0.225), with
lower sparsity indicating more concise explanations. ResNet32 had the highest
LIME Explanation Fidelity Score (0.556), followed by VGG16 (0.418), and the
Custom CNN model (0.310). This measures how well the explanation model
approximates the original model.

These results demonstrate that the Custom CNN model generally outper-
forms both ResNet32 and VGG16 in terms of classification accuracy, precision,
recall, and F1-Score, while providing highly stable and reasonably concise expla-
nations as measured by LIME.
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Table 1. Evaluation Results of proposed Custom CNN model compared to ResNet
and VGG16

Evaluation Metrics Custom CNN Model ResNet32 VGG16

Accuracy 98.70% 96.35% 96.2%

Precision 97.63 95.24 95.78

Recall 97.64 96.12 95.12

F1-Score 97.47 96.15 95.76

LIME Explaination Stability Score 0.923 0.846 0.687

LIME Explaination Sparsity Score 0.208 0.196 0.225

LIME Explaination Fidelity Score 0.310 0.556 0.418

Table 2 presents the evaluation results of our proposed Custom U-Net model
compared with a U-Net model that uses ResNet as its encoder. The Custom U-
Net model achieved a higher validation accuracy (99.8%) compared to the U-Net
with ResNet as its encoder (99.11%). The Custom U-Net model demonstrated
a lower validation loss (0.0132) than the U-Net with ResNet (0.0425), indicating
better performance in minimizing error. The IoU score, which measures the over-
lap between the predicted and ground truth segments, was higher for the Custom
U-Net model (0.889) compared to the ResNet-based U-Net (0.847), suggesting
more accurate segmentation. The Custom U-Net model had a higher LIME
Explanation Stability Score (0.8169) versus the ResNet-based U-Net (0.7873),
indicating more stable explanations across similar inputs. Both models showed
similar LIME Explanation Sparsity Scores, with the Custom U-Net model having

Table 2. Evaluation Results for the proposed Custom U-net model compared with
ResUnet

Evaluation Metrics Custom U-net Model U-net with ResNet
as Encoder

Validation Accuracy 99.8% 99.11%

Validation Loss 0.0132 0.0425

Intersection over Union Score (IoU) 0.889 0.847

LIME Explaination Stability Score 0.8169 0.7873

LIME Explaination Sparsity Score 0.1190 0.1221

LIME Explaination Fidelity Score 0.5447 0.6036
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a slightly lower score (0.1190) compared to the ResNet-based U-Net (0.1221).
Lower sparsity indicates more concise explanations. The ResNet-based U-Net
model exhibited a higher LIME Explanation Fidelity Score (0.6036) compared
to the Custom U-Net model (0.5447), which measures how well the explanation
model approximates the original model. Figure 3 displays the Confusion Matrix
of custom CNN. Figure 4 displays the Plot of ground truth scans, masks and pre-
dicted masks and labels along with IoU Score. Figure 5 displays the MRI Scan
on which LIME visualizations are generated. Figure 6 displays the LIME Visual-
izations of Custom CNN with feature heatmap, positive and negative influences
and top three feature visualization. Figure 7 displays the plot of ground truth
scans, masks and predicted masks and labels along with IoU Score Negative
Classifier achieving perfect IoU of 1.

Fig. 3. Confusion Matrix of custom CNN

Fig. 4. Plot of ground truth scans , masks and predicted masks and labels along with
IoU Score
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Fig. 5. MRI Scan on which LIME visualizations are generated

Fig. 6. LIME Visualizations of Custom CNN with feature heatmap, positive and neg-
ative influences and top three feature visualization

Fig. 7. Plot of ground truth scans, masks and predicted masks and labels along with
IoU Score Negative Classifier achieving perfect IoU of 1

5 Conclusion and Future Scope

In this study, we developed and evaluated advanced neural network architectures
for brain tumor classification and segmentation using MRI images. Our enhanced
U-Net model demonstrated improved segmentation performance, while our cus-
tom CNN showed significant accuracy in classification tasks. The integration of
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Explainable AI (XAI) techniques, particularly LIME, provided valuable insights
into the model’s decision-making processes, enhancing interpretability and trust-
worthiness.

Combining multiple neural network architectures, such as integrating atten-
tion mechanisms or transformers, could improve both classification and segmen-
tation performance. Leveraging larger and more diverse datasets can improve the
generalizability of our models across different populations and imaging modal-
ities. Developing models capable of real-time processing can facilitate clinical
applications, enabling quicker diagnosis and treatment planning. Incorporating
more advanced XAI techniques can provide deeper insights into model behavior,
improving interpretability and clinical acceptance. Utilizing pre-trained models
on broader datasets and fine-tuning them on specific medical imaging tasks can
enhance model performance and reduce training time. Implementing these mod-
els in clinical workflows and electronic health records (EHR) systems can aid in
automated diagnosis and decision support.
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Abstract. While state-of-the-art models for breast cancer detection
leverage multi-view mammograms for enhanced diagnostic accuracy, they
often focus solely on visual mammography data. However, radiologists
document valuable lesion descriptors that contain additional information
that can enhance mammography-based breast cancer screening. A key
question is whether deep learning models can benefit from these expert-
derived features. To address this question, we introduce a novel multi-
modal approach that combines textual BI-RADS lesion descriptors with
visual mammogram content. Our method employs iterative attention
layers to effectively fuse these different modalities, significantly improv-
ing classification performance over image-only models. Experiments on
the CBIS-DDSM dataset demonstrate substantial improvements across
all metrics, demonstrating the contribution of handcrafted features to
end-to-end.

Keywords: Cancer Detection · BI-RADS · Deep Learning ·
Mammograms · Breast Cancer · Attention · Transformer · Multi-Modal

1 Introduction

In recent years, deep learning techniques have emerged as a powerful tool for
breast cancer detection, demonstrating significant potential in enhancing the
accuracy of mammography interpretation. State-of-the-art models [6,17,29] have
achieved impressive results by leveraging information from different mammo-
gram views (craniocaudal (CC) and mediolateral oblique (MLO)) to enhance
diagnostic accuracy. However, these approaches often focus solely on end-to-end
extracted visual features.

Radiologists use the Breast Imaging Reporting and Data System (BI-RADS)
lexicon [1] to document specific lesion descriptors such as size, shape, and margin
characteristics during mammogram interpretation. These descriptors can offer
crucial insights that aid in distinguishing between benign and malignant lesions.
In this paper we investigate whether incorporating BI-RADS descriptors can
improve deep learning for cancer detection.

Integrating these descriptors with mammograms poses challenges due to dif-
ferences in modalities, scales, importance levels, and inconsistencies across radi-
ology reports. To address these challenges and answer our research question, we
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 17–30, 2025.
https://doi.org/10.1007/978-3-031-78104-9_2
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propose a multi-modal dual-branch architecture. Each branch, corresponding to
CC/MLO views, encodes the mammogram in a multi-resolution manner. We
introduce a dedicated iterative attention mechanism [10] that processes input
from the previous layer, the current encoded resolution of the mammogram, and
processed information from the other branch. By processing information from
these sources at each level using the attention mechanism, our model effectively
overcomes the differences in modalities and inconsistencies.

We conduct experiments using the CBIS-DDSM dataset, which includes both
mammograms and BI-RADS descriptors as metadata. Our results indicate that
our multi-modal iterative attention-based approach effectively integrates both
visual and textual modalities, outperforming image-only models for benign vs.
malignant classification. We achieve performance improvements across all met-
rics compared to image-only models, with an AUC score of 0.87. Our results
demonstrate the significant potential of incorporating handcrafted features with
deep learning models, suggesting a promising direction for future research in
medical image analysis.

2 Related Work

2.1 Handcrafted Features for Cancer Detection

The Breast Imaging Reporting and Data System (BI-RADS) [1], developed by
the American College of Radiology (ACR), acts as a standardized language for
describing and classifying breast lesions identified through mammograms, ultra-
sounds, and MRIs. This system plays a crucial role in improving the consistency,
clarity, and accuracy of breast imaging reports. Unlike our suggested features,
BI-RADS descriptors are based on the grayscale level of the pixels in the lesions.
A similar lexicon, the Thyroid Imaging Reporting and Data System (TI-RADS),
has been proposed for thyroid lesions [2].

2.2 Multi-view Cancer Detection

Liu et al. [14] presented a cross-view correspondence reasoning method based
on a bipartite graph convolutional network for mammogram mass detection.
This approach effectively addresses the challenge of inherent view alignment
between different views by learning geometric constraints. Tulder et al. [25]
proposed a multi-view analysis method for unregistered medical images using
cross-view transformers, addressing the challenge of effectively combining fea-
tures from unregistered mammogram views (CC/MLO) with perspective differ-
ences. Shen et al. [21] presented an interpretable classifier for high-resolution
breast cancer screening images utilizing weakly supervised localization. This
approach effectively addresses the challenge of interpretability in deep learn-
ing models for mammogram analysis. Chen et al. [4] proposed a multi-view local
co-occurrence and global consistency learning method for mammogram classifi-
cation generalization, addressing the challenge of effectively combining features
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Table 1. The BI-RADS descriptors and descriptors classes in the CBIS-DDSM dataset.

Mass Calcifications

Margin Morphology

Circumscribed Pleomorphic

Ill-defined Amorphous

Spicular Linear

Obscured Punctate

Shape Distribution

Round Clustered

Oval Scattered

Irregular Diffuse

from unregistered mammogram views (CC/MLO) with perspective differences.
While these methods address multi-view analysis, they do not utilize the textual
lesion attribute data and cross-view information at each analysis stage - key
capabilities of our architecture.

2.3 Incorporating Handcarfted Features

In the field of mammogram-based deep learning for breast cancer detection,
current research primarily focuses on predicting BI-RADS descriptors as model
outputs. The integration of both these descriptors and visual features in mam-
mogram analysis remains an open research question.

Zhang et al. introduced BI-RADS-NET [30], an explainable deep learning
approach for breast cancer diagnosis that outputs BI-RADS descriptors to better
explain predictions, although their model was designed for ultrasound images.
[16,23] investigated a deep learning method that utilizes multi-view mammo-
gram images to enhance BI-RADS and breast density assessment, rather than
integrating them as in our approach. Liu et al. [13] explored the potential of
combining mammography-based deep learning with clinical factors such as age
and family history of breast cancer, demonstrating the potential benefits of inte-
grating additional features with visual data in the prediction process.

3 Model Architecture

Our model consists of two branches. Each branch is composed of N = 6 stacked
identical attention-based layers. An overview of our dual-branch architecture
using stacked multi-attention layers (gray background) is presented in Fig. 1.

The attention based layers progressively fuse and process the multi-modal
inputs. The input to the first layer is textual attributes with a skip connection
to the last layer. In the first layer, learnable query vectors X̂ and Ŷ are used
since no feature queries exist yet. The input to subsequent layers is the extracted
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Fig. 1. Our model takes mammograms from the MLO and CC views along with a
varying number of textual descriptors classes describing one or more lesions as input.
The multi-attention layers (grayed blocks) processes these descriptors along with visual
features extracted from mammogram images in different resolutions.

image features at different resolutions using the Big Transfer (BiT) blocks [11],
the input from the preceding layer, and the latent features from the other branch.

The output of the final attention layer in each branch is aggregated by aver-
aging to obtain a unified vector z ∈ R

L×1. This representation encodes the joint
contribution of images and text. The vector is then layer-normalized and reduced
into a labeling vector using a fully-connected layer for the benign and malignant
classes.

In the following we present a detailed description of each component of our
model.

3.1 BI-RADS Descriptors Encoding

Our model utilizes the textual metadata associated with each mammogram,
which contains the classes of the lesion and breast descriptors of the Breast
Imaging Reporting and Data System (BI-RADS) lexicon [1]. We do not use
subjective assessments reflecting radiologist suspicion, like BI-RADS scores, but
only the descriptive physical lesion and breast characteristics annotated during
routine screening. Table 1 presents examples of the descriptors and descriptors
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classes that are incorporated by our model. Both calcifications and mass lesions
can have combinations of these descriptors. For instance, a mass lesion can have
a “Circumscribed-Obscured” margin or a “Round-Oval” shape. Our approach
allows for the integration of a variable number of classes, as well as their combi-
nations.

We assign a unique index i = 1, . . . , N to enumerate the possible values of
the descriptors classes across all categories. The input to our model is a binary
vector φ ∈ R

L (we use L = 256), defined as:

φ(i) =

{
1, if descriptor class i exists in the description
0, otherwise.

(1)

The encoded input vector φ represents the BI-RADS descriptors for a single
lesion. However, there can be cases with more than one lesion. Our architecture
supports a dynamic number of input vectors, so the input is Φ = {φj}Kj=1 where
K is the number of lesions in the mammogram.

3.2 Feature Extraction

We use BiT layers as our feature extractor, pre-trained on the PatchCamelyon
dataset [27]. Our BiT layer F is based on ResNet50-V2 [7,8] with modifications
made by [11] to Group Normalization [28] instead of Layer Normalization [3],
and the use of Weight Standardization [19] for all convolution layers. The output
of each of these blocks is the input to our multi-attention layer. Each BiT layer F
reduces the resolution and increases the number of channels using the following
formulation:

F0 = F0(I)
Fk = Fk(Fk−1), ∀ k = 1, . . . , N − 1, (2)

I ∈ R
1×H×W is the input image of height H and width W , Fk ∈

R
d0·2k×H′×W ′

where H ′ = H
4·2k , W ′ = W

4·2k and d0 = 64.

3.3 Multi-attention Layer

The multi-attention layer has three attention-based [26] sub-layers. The first
is a cross-attention mechanism, the second is self-attention and the third is
view-attention. They enable the model to establish connections between different
resolutions and the attributes, between patches within the same image, and
between images from different views.

The utilization of attention enables the exploration of connections between a
provided query Q, pre-existing key data K, while representing these relationships
using V . It is stated as follows:

Attn(Q,K, V ) = Softmax(
QKT

√
d

)V, (3)

where d is the scaling factor corresponding to the dimensionality of the key
vectors.
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Cross-attention. The first sub-layer, referred to as cross-attention, allows
efficient processing of multi-modal inputs including attributes, latent features
and images, without relying on domain-specific assumptions. It takes a high-
dimensional input and projects it into a lower-dimensional latent bottleneck [10].
It then applies Transformer-style self-attention on this latent space. It combines
the preceding latent features with either the attributes or image features at a
given resolution.

The cross-attention in layer k, denoted as AC
k , is defined as:

AC
k := Attn(Ck−1,Fk−1,Fk−1), (4)

where Fk−1 is the extracted features from the previous layer (Sect. 3.2) and Ck−1

is the output of the previous multi-attention layer.
Positional encoding vectors are employed to encode the feature vector Fk. In

the first Cross-attention sub-layer, where no preceding input exists, the query is
learnable parameters X:

Attn(X,Φ,Φ). (5)

Self-attention. The self-attention sub-layer is placed right after the cross-
attention sub-layer. Similar to [10], the goal is to model both short-range and
long-range dependencies within the features and capture the global context.

The inputs for the self-attention in layer k, denoted as AS
k , are the output

of the cross-attention:

AS
k := Attn(AC

k ,AC
k ,AC

k ). (6)

View-Attention. The view-attention sub-layer combines the latent features
from the current view with the latent features from the other view, enabling
the expansion of the context to both MLO and CC. The values V of the view-
attention block are the output of the preceding self-attention block, while the
query Q and keys K are the output of the view-attention from the other branch
at the corresponding level:

Attn(ÂS
k , ÂS

k ,AS
k ), (7)

where ·̂ denotes the output of the self-attention sub-layer in the other branch.

Input-Output. To ensure that our multi-attention layer receives input with the
same number of channels, we reshape the feature tensor Fk to have dimensions
Fk ∈ R

d′×Nk , where Nk = H′·W ′
2(n−k−1) and d′ = 4 · d0 represents the desired length

of the feature vectors inserted into the multi-attention layer.
The output tensors of the multi-attention layer at level k have dimensions

R
L×Nk , where L denotes the length of the multi-attention latent vector. The

query parameters X̂ and Ŷ are learnable parameters with dimensions R
L×NQ ,

where NQ is a hyperparameter set by the user.
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3.4 Sub-layer Attention Computation

Given an input sequence X = (x1, x2, . . . , xN ), each attention sub-layer com-
putes a weighted sum of the values at all positions in the sequence. This is
achieved through the following steps:

Positional Encoding. To provide positional information to the model, we
apply a Fourier feature encoding to the input sequences. Similar to [10], we
utilize the Fourier feature positional encodings introduced in [22].

Given N input vectors xi ∈ R
L each associated with a position index i, we

first normalize the index as:
pi = 2 · i

N
− 1 (8)

We then define a set of sinusoidal frequency bands:

Sb = {S | S = b · mfreq

nbands
, 1 ≤ b < nbands, b ∈ Z

+} (9)

where mfreq and nbands determine the maximum frequency and number of bands.
The sinusoidal position encoding vectors are then calculated as:

PE1b(pi) = sin(pi · Sb · π), (10)

PE2b(pi) = cos(pi · Sb · π). (11)

Finally, we concatenate the normalized index pi and encoding vectors PE1b,
PE2b to the original input xi, expanding it to xi ∈ R

L+2nbands+1. This injects
positional information through sinusoidal functions of different frequencies,
allowing the model to utilize the order of the input vectors.
Linear Transformation. The input sequence X is linearly projected into the
query (Q), key (K), and value (V ) matrices using learnable weight matrices WQ,
WK , and WV :

Q = XWQ (12)
K = XWK (13)
V = XWV (14)

where Q,K, V ∈ R
L×dmodel , and dmodel is the dimensionality of the model.

This transformation projects the input into distinct query, key, and value
spaces. The query and key matrices are used to compute attention weights indi-
cating the relevance between inputs. The value matrix holds the input represen-
tations that will be aggregated according to the attention weights.
Attention Unit. We compute the attention function (Eq. 3).
Position-wise Feed-Forward Network. After the attention unit, a position-
wise feed-forward network is applied to each position independently. The feed-
forward network consists of two linear transformations with a ReLU activation
function in between:

FFN(x) = max(0, xW1 + b1)W2 + b2 (15)

where x is the input, W1, W2 are weight matrices, and b1, b2 are bias vectors.
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4 Experimental Setup

4.1 Dataset

We use the Curated Breast Imaging Subset of DDSM (CBIS-DDSM) dataset [12]
that contains valuable metadata providing additional clinical information about
each mammogram and associated lesions. It is a widely used mammography
image collection annotated by radiologists, derived from the original DDSM [9]
dataset and contains a diverse range of breast abnormalities, including benign
and malignant lesions. The images are provided in the Digital Imaging and
Communications in Medicine (DICOM) format, along with detailed annotation
files. These files specify lesion locations, types, ROI crops, and binary masks
across the craniocaudal (CC) and mediolateral oblique (MLO) views. It includes
1566 patients with total of 3,568 abnormalities, 1696 mass and 1872 calcification.
In our experiments, we employ five-fold stratified cross-validation to maintain
class balance across folds.

4.2 Implementation Details

The training was done in mini-batches, with each mini-batch size set to 16. For
each image in our training data, the image’s content is scaled to 1024 × 1024
pixels. As data augmentation, we used vertical and horizontal flips, as well as
elastic deformation. We set a total of 1000 training iterations for each fold. We
utilized Cross-Entropy as our loss [5]. An initial learning rate was set to 0.001
and we employed a decaying factor of 10 after 500 iterations. We used the SGD
optimizer [20] with momentum set to 0.9. Dropout value was set to 0.25. We
implemented our model in PyTorch [18].

Table 2. Quantitative performance analysis to detect abnormality using CBIS-DDSM
dataset.

Model AUC Accuracy Specificity Precision Recall F1-Score

[15] 0.680 0.661 0.670 0.638 0.651 0.644

[24] 0.811 0.723 0.750 0.686 0.698 0.692

Ours - no descriptors 0.711 0.664 0.650 0.676 0.619 0.634

Ours 0.872 0.760 0.773 0.760 0.743 0.751

5 Results

We compare our multi-modal descriptor-based model (“Deep BI-RADS”) against
several baselines: a descriptor-excluded variant of our own model, a multi-view
Transformer baseline [24], and an advanced recent single-view Transformer app-
roach with four branches [15]. The descriptor-excluded variant includes the
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Table 3. The effect of different configurations for the inputs (Query, Keys, Value) to
the view attention sub-layer in the multi-attention layer. The inputs can come from
either the current view (C) or the opposite view (O) of the mammogram. Configuration
2, in which the Query and Keys inputs are from the opposite view, achieved the best
overall performance.

Configuration Q K V AUC Accuracy Specificity Precision Recall F1-Score

0 C O O 0.835 0.738 0.731 0.643 0.750 0.692

1 O C O 0.850 0.760 0.790 0.762 0.727 0.744

2 O O C 0.878 0.796 0.773 0.816 0.786 0.780

3 C C O 0.852 0.760 0.768 0.714 0.750 0.732

4 C O C 0.843 0.764 0.792 0.762 0.733 0.747

5 O C C 0.848 0.771 0.803 0.778 0.737 0.757

multi-attention layers, allowing us to evaluate the specific contribution of the
BI-RADS descriptors. Comparing with a multi-view architecture helps assess
the contribution of both the attention layers and the BI-RADS descriptors. The
multi-view baseline employs a Transformer architecture to analyze pairs of unreg-
istered mammograms from different views and achieves state-of-the-art results
on the CBIS-DDSM. Comparison with a single-view Transformer evaluates the
contribution of the multi-view architecture.

To ensure a fair comparison, we trained all models from scratch following their
respective provided training protocols. We evaluate the models for classifying
mass lesions, following common practice. The results are obtained using five-
fold stratified cross-validation to maintain class balance across folds.

Table 2 presents the quantitative performance analysis. Our multi-modal app-
roach achieves a higher AUC of 0.872 compared to 0.711 without incorporating
the BI-RADS descriptors, demonstrating the benefits of integrating textual infor-
mation. We also attain an AUC of 0.872 versus 0.811 for the baseline multi-view
model, showcasing the advantages of our multi-attention fusion approach over
prior multi-view only techniques.

Beyond AUC, utilizing BI-RADS descriptors enables consistent gains across
accuracy, specificity, precision, recall, and F1-score on both tasks. Our approach
increases recall from 0.619 to 0.743 compared to the baseline without BI-RADS.
This demonstrates improved sensitivity in detecting true positive cases by incor-
porating textual descriptor classes.

Notably, the high F1 scores demonstrate that our model balances improved
sensitivity with precision, rather than sacrificing one metric for the other. This
indicates that our multi-modal methodology incorporates the radiologist context
to enhance interpretation without introducing additional false positives.

Figure 2 presents the ROC curve for a single fold, summarizing the trade-
off between the true positive rate and false positive rate for our model using
different probability thresholds. Overall, our multi-modal method shows promise
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for generalized breast abnormality detection by effectively combining visual and
textual information.

Fig. 2. ROC curve for our approach

5.1 Input to Multi-attention Layer

Table 3 represents different configurations (Fig. 3) for wiring the query (Q), and
keys (K), and values (V). In both branches, the input to the multi-attention
layer can be either from the current view (C) or from the opposite view (O).
There are six possible configurations, as we always wire at least one input from
the other view. Based on the results in Table 3, we conclude that wiring the
query (Q) and keys (K) inputs to the attention layer from the opposite view
(configuration 2) leads to the best performance, with the highest metrics.

Some observations:

– Wiring Q and K from the opposite view consistently outperforms wiring them
from the current view (e.g., compare configurations 2 vs 3). This might suggest
that the attention mechanism benefits from fusing information between the
two views via the value input specifically.

– Based on how the inputs are interconnected between the two views, there
is a noticeable difference in performance. This emphasizes the importance of
effectively leveraging the two views.

– Wiring Q and K from the same view (configurations 2,3) performs better
than wiring them from different views.

– Specificity is highest when wiring Q from the opposite view and K and V
from the current view (configuration 5). However, other metrics like recall
are lower in this configuration.
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5.2 Number of Multi-attention Layers

The number of multi-attention layers primarily influences our model size. We
trained configurations with 3, 5, 6, and 7 layers.

Table 4 presents the accuracy for each model across five folds. The 3-layer
model underperformed, while the 5-layer model achieved the second-best results
overall. The 6-layer configuration yielded the highest average accuracy, outper-
forming 5 layers. However, further increasing layers to 7 degraded performance,
likely due to overfitting given the limited dataset size. In our implementation,
we deploy 6 layers which achieved the optimal trade-off between model capacity
and overfitting on this dataset.

Fig. 3. The possible configurations of the inputs for the view attention sublayer in our
multi-attention layer. Q, K, and V represent the Query, Keys, and Value respectively.

Table 4. Accuracy for different numbers of multi-attention layers. Results are across
five folds.

Configuration Average

3 layers 0.69 ± 0.015

5 layers 0.73 ± 0.019

6 layers 0.76 ± 0.010

7 layers 0.67 ± 0.018
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5.3 Augmentations

We tested various data augmentation strategies to improve model generalization
of our model. Table 5 presents test set performance for different augmentation
configurations. The baseline with no augmentations underperformed all aug-
mented models, indicating augmentations are beneficial. Adding random hor-
izontal/vertical flips or elastic deformations to the baseline improved average
accuracy. Resizing the images to 1024 × 1024 pixels achieved the best overall
results. Interpolation sizes of 2048 × 2048 and 384× 384 underperformed. Gaus-
sian noise augmentation degraded performance, likely due to occluding mean-
ingful mammographic details. The optimal configuration utilized interpolation
upsampling to 1024× 1024 pixels, which seems to balance overfitting and under-
fitting effects based on model capacity.

Table 5. Accuracy for different augmentation strategies.

Configuration Average

Baseline w/o aug. 0.656 ± 0.025

Baseline + 384 0.702 ± 0.014

Baseline + 1024 0.72 ± 0.008

Baseline + 2048 0.646 ± 0.019

Baseline + h/vflip 0.666 ± 0.02

Baseline + elastic 0.688 ± 0.017

Baseline + Gaussian 0.612 ± 0.018

6 Conclusion

In this study we ask whether incorporating BI-RADS descriptors can improve
deep learning for cancer detection. Our results provide a clear affirmative answer
to this question. We presented a multi-modal approach that combines visual
mammogram data with textual BI-RADS descriptors, utilizing a dual-branch
architecture with iterative attention layers. Experiments on the CBIS-DDSM
dataset demonstrated significant improvements over image-only models. These
findings suggests that the fusion of features based on human expertise and auto-
matically extracted features can lead to superior outcomes in cancer detection.
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Abstract. Integration of Vision Transformer models with texture anal-
ysis presents a novel dual-stage approach for histopathology diagnosis.
The proposed approach is mainly focused on discriminating between
Meningioma (MEN) and Solitary Fibrous Tumor (SFT), two tumors
known for their similar morphological characteristics. This approach
leverages the inherent power of ViT models to capture global and local
features from whole-slide images (WSIs), complementing this capability
by integrating texture analysis techniques aimed at improving classi-
fication accuracy. Initially, ViT models are applied across three levels
of WSI magnification, using rotationally and multi-scaled tiles to han-
dle diverse scales and orientations inherent in histopathological imagery.
ViT’s attention mechanisms capture intricate details and spatial corre-
lations within WSIs, offering a comprehensive view of histological struc-
tures. Concurrently, texture analysis methods including 3D-CLBP, 3D-
GLCM, and 3D-GLRLM are used to extract the inherent patterns of the
WSIs, such as homogeneity/inhomogeneity, morphology, and connectiv-
ity alongside the three RGB channels to capture the influence of color
features. The scores obtained at the output of both stages are then fused
and passed to a deep neural network, enabling a more reliable diagno-
sis. The experimental results show an accuracy of 93.42%, sensitivity of
92.15%, specificity of 94.73%, precision of 94.74%, balanced accuracy of
93.44%, and F1 score of 93.42%. These results elucidate the potential of
the proposed approach in enhancing histopathology diagnostics.
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1 Introduction

Differentiating meningioma from solitary fibrous tumors presents a frequent diag-
nosis challenge in neuropathology [28]. This distinction requires careful consider-
ation and analysis due to the overlapping characteristics and complexities inher-
ent in both conditions [5,23]. Solitary fibrous tumor (SFT) is a rare, meningeal
mesenchymal spindle-cell neoplasm that typically originates in the pleural cavity
[13]. Notably, SFT tumors demonstrated aggressive biological behavior partic-
ularly when occurring in the central nervous system (CNS), with a reported
recurrence rate close to 50% within a 5-year after surgical resection and a rate of
up to 30% extraneural metastasis after initial surgery [26]. Meningioma (MEN),
another type of meningeal neoplasm, originates from the meningeal layers sur-
rounding either the brain or the spinal cord [4]. MEN tumors account for 37.6%
of CNS primary tumors and around 50% of all benign brain tumors [24]. They
are significantly more prevalent compared to SFT, constituting approximately
20% of all intracranial tumors [10]. Conversely to SFT, most MEN tumors are
typically benign, leading to favorable long-term outcomes and lower rates of
recurrence and metastasis [5]. The common clinical and imaging characteristics
of SFT and MEN tumors, particularly in critical areas such as the CNS, highlight
the challenge of precise diagnosis in tailoring suitable treatment plans and ensur-
ing correct prognostic assessments [1,21]. While Immunohistochemistry (IHC)
serves as a valuable tool in resolving this differential diagnosis by identifying
specific biomarkers [30], its effectiveness may be constrained in resource-limited
settings and time-sensitive scenarios such as frozen section analyses and urgent
surgery situations. Moreover, the need for specialized equipment and skilled per-
sonnel contributes to its associated high costs [3,15]. Therefore, it is imperative
to explore other alternative approaches to address this diagnostic challenge effec-
tively.

Different artificial intelligence (AI) based approaches hold promise in dis-
tinguishing between various types of MEN and SFT tumors [11,29]. Kong et
al. [16] investigated the efficacy of machine learning (ML) models trained on
MRI radiomics features to classify between intracranial solitary fibrous tumors
(ISFTs) and angiomatous meningiomas (AMs) using a dataset of 268 patients.
The study reported area under the curve (AUC) values of 0.917, 0.923, and 0.950
for the ML models based on radiomics, clinical, and fusion features, respectively.
Furthermore, they achieved an AUC value of 0.786 based on the radiomics sig-
nature for histological stratification of ISFT. Le et al. [19] demonstrated the
significance of texture features over clinical features in differentiating between
malignant haemangiopericytoma (HPC) and angiomatous meningioma (AM).
Utilizing a dataset of 67 cases, the support vector machine (SVM) classifier
based on texture features extracted from enhanced T1WI achieved the best per-
formance with an AUC of 0.90, surpassing SVM classifiers based on T2-FLAIR
(AUC = 0.77) and DWI (AUC = 0.73). Notably, all texture-based SVM clas-
sifiers outperformed the clinical feature-based model, which achieved an AUC
of 0.66. Dong et al. [8] utilized a 3D-MRI texture feature model to differentiate
malignant intracranial SFT/HPC from AM, using a dataset of 97 patients with
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SFT/HPC and 95 with AM. Their study incorporated various MRI modalities,
including T1WI, T2WI, and contrast-enhanced T1WI. They reported the follow-
ing AUC values: T1WI (AUC = 0.885), T2WI (AUC = 0.918), contrasted T1WI
(AUC = 0.815), and combined sequence (AUC = 0.959). In the test set, these
models achieved accuracies of 71.2%, 81.4%, 69.5%, and 83.1%, respectively.

Recently, transformers and other deep learning models have gained significant
interest due to their outstanding performance across different Medical imaging-
related tasks [18,27]. Li et al. [20] developed an end-to-end DL model called
(ViT-WSI), employing Vision Transformer (ViT) architecture on Whole Slide
Images (WSI) for brain tumor analysis. This model accurately classifies tumor
types and subtypes via weakly supervised learning. Through gradient-based anal-
ysis, the ViT-WSI model identifies three crucial histopathological features - IDH1
mutation, p53 mutation, and MGMT methylation - achieving patient-level AUC
scores of 0.960, 0.874, and 0.845, respectively. Chen et al. [6] developed an MRI-
based deep learning model to discriminate between Intracranial hemangioperi-
cytoma/solitary fibrous tumor (SFT/HPC) and meningioma. The study utilized
a pre-trained ResNet-50 Model on T1-contrast images using a dataset of 236
patients. They reported a promising accuracy result of .889 and an AUC of .91
in the validation set. Hossain et al. [12] explored various DL models, includ-
ing VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xcep-
tion, to enhance the performance of multi-class brain tumor classification. They
reported peak accuracies ranging from 93.58% to 94.5% for these models. Addi-
tionally, they proposed a transfer learning-based multiclass classification model
called IVX16, which combines the strengths of the three best-performing models:
VGG16, InceptionV3, and Xception. The IVX16 model attained a peak accuracy
of 96.94%, outperforming individual models and demonstrating the effectiveness
of their ensemble strategy.

To date, there have been exceedingly few AI-based studies published on
imaging characteristics that can effectively differentiate between MEN and SFT
tumors. Additionally, most studies predominantly focus on texture features
derived from MRI modalities, overlooking the crucial role of histopathological
WSIs as the gold standard in diagnosis. To the best of our knowledge, we are
the first group to diagnose MEN and SFT tumors based on histopathology. This
work extends our prior research on the application of ViT models to histopathol-
ogy diagnostics [2]. Our previous study demonstrated that ViTs are capable of
effectively analyzing histopathological images with good accuracy. Building on
these results, we combine ViT with texture analysis techniques to enhance diag-
nostic performance and interpretability. This study presents a novel concurrent,
two-stage approach designed to capture both global and local features within
WSIs. In the first stage, the ViT model captures attention-based informative
regions to differentiate MEN and SFT tumors. The second stage focuses on using
ML models to perform diagnosis based on extracted texture features, including
3D Gray-Level Co-occurrence Matrix (3D-GLCM), 3D Gray-Level Run Length
Matrix (3D-GLRLM), and 3D Circular Local Binary Pattern (3D-CLBP). Fus-
ing the decision probabilities of both stages achieved a promising accuracy in
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diagnosing MEN and SFT tumors. Utilizing this comprehensive methodology,
which includes both deep learning-based and texture-based feature classification
from multiple WSI magnification levels, can significantly enhance the reliability
of tumor classification in histopathology.

Fig. 1. Illustration of the proposed approach for classifying MEN and SFT tumors. The
workflow depicts the process of patch extraction by tiling WSIs into circular patches,
followed by a two-stage pipeline for ViT model and texture-based classification. Finally,
a deep neural network is used for the final classification decision.

2 Methods

The proposed approach, as illustrated in Fig. 1, begins by tiling WSIs into circu-
lar patches extracted from three magnification levels within the WSI pyramid.
Each patch undergoes a two-stage pipeline: The first stage employs the deep-
learning ViT model, renowned for its adeptness in feature extraction through
self-attention mechanisms, to classify different MEN and SFT extracted patches.
Concurrently, the second stage focuses on extracting diverse texture features,
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specifically 3D-CLBP, 3D-GLCM, and 3D-GLRLM, designed to capture variant
patterns alongside the influence of color information within WSIs. These fea-
tures are then amalgamated and fed into an ML classifier, i.e., SVM, to obtain
the output scores/probabilities for the MEN and SFT classes. To accommodate
the scale variations within WSIs, this two-stage process is applied to all patches
across the three levels. Finally, all resulting output scores are fused and fed to a
deep neural network for the final classification decision.

Fig. 2. Visualization of a WSI pyramid at magnification levels: Level 0 (40x), Level 1
(10x), and Level 2 (2.5x), along with corresponding centrally-aligned circular patches,
depict the same physical area with sizes 1024× 1024, 256× 256, and 64× 64 respec-
tively.

2.1 WSI Patches Extraction

The proposed approach employs a multiscale strategy that utilizes patches
extracted from multiple magnification levels, specifically (40x, 10x, and 2.5x),
within WSIs. This results in generating a triple set of patches representing the
same physical area; an example is shown in Fig. 2. To address the arbitrary
orientations occurring during WSI capture, patches are extracted in a circular
manner, ensuring rotation invariance. To enhance the quality of the dataset,
patches with a background content exceeding 50% of patch area are system-
atically identified and excluded. This strategy yields a set of multiscale and
rotationally invariant patches, facilitating an in-depth multiresolution analysis
of diverse degrees of detail inherent in tissue samples within WSIs. Algorithm 1
outlines the main steps of the patch extraction process.

2.2 ViT Models Utilization

Employing ViT models in WSI analysis arises from its capability to filter and
emphasize critical WSI parts/regions through self-attention mechanisms while
also capturing internal correlations among features [9]. By stacking multiple
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Algorithm 1. The main steps of Multi-level Patch Extraction Procedure
1: Utilize the WSI pyramid characteristic to extract levels (0, 1, and 2) corresponding

to magnifications of 40x, 10x, and 2.5x, respectively.
2: Extract patches of size (1024 × 1024) from the WSI at level 0.
3: Discard patches where the background covers more than 50% of the area.
4: for each acceptable patch in level 0 do:
5: Calculate the centroid (center) of the patch.
6: Extract a (256×256) corresponding patch from WSI level 1 centered at center.
7: Extract a (64× 64) corresponding patch from WSI level 2 centered at center.
8: end for
9: Store the extracted patches from levels 0, 1, and 2 for further analysis.

transformer layers, the ViT efficiently grasps the global context, enhancing com-
prehensive WSI analysis by considering both local and global features [17]. To
initiate the VIT procedure, the WSI, represented as I ∈ RC×H×W , is parti-
tioned into a collection of non-overlapping tiles T1, T2, ..., Tm, where each tile
Ti ∈ RC×M×M , with C representing the number of image channels (e.g., C = 3
for RGB channels), H × W indicating the WSI dimensions, and M × M rep-
resents the tile dimensions. Tiles containing backgrounds or noisy areas were
excluded, resulting in a set of k tiles {T1, T2, ..., Tk} that exclusively encompass
foreground tissues. By utilizing a linear projection layer and a position encoding
layer, the histology features and positions of chosen patches are vectorized into a
set of tokens Z0 = {V1, V2, ..., Vn}, where Vi ∈ RE and E denote the vector size.
The tokens are organized and fed into the transformer encoder, which consists of
L stacked encoder blocks. Each transformer encoder block consists of two main
components: multi-head self-attention (MSA) and a fully connected feed-forward
multi-layer perceptron (MLP), as described by Eqs. 1 and 2, respectively. These
components are augmented with residual skip connections and are preceded by a
Layer Normalization (LN). Lastly, the first token of zL, a learnable class token,
is normalized and sent to the external head classifier layer for the class label i.e.
MEN or SFT, prediction.

Z∗
l = MSA (LN (Zl−1)) + Zl−1, l ∈ [1, . . . , L], (1)

Zl = MLP (LN (Z∗
l )) + Z∗

l , l ∈ [1, . . . , L], (2)

The MSA block is pivotal in the transformer encoder. It comprises several
heads that individually compute query-key-value scaled dot-product attention
to learn attention weights. The output of the self-attention layer is determined
by applying a softmax function to the scaled dot-product attention matrix as
depicted in the following equation:

Attention(Q,K, V ) = softmax
(

QK�
√

d

)
V (3)

where, Q, K, and V are the query, keys, and values matrices, respectively, derived
from the input embedded sequence by multiplying with learned matrices WQ,
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WK , and WV . These matrices are utilized in the scaled dot-product attention
mechanism to compute attention weights, and d denotes the dimensionality of
the key vectors [32].

Fig. 3. Illustration showcasing Voxel-based interaction across the 26-neighborhood
within the RGB channels for 3D texture features extraction.

2.3 Texture Features Extraction

Texture features serve as robust descriptors that capture various aspects of spa-
tial arrangement and intensity patterns within volumetric data [31]. Consider-
ing WSI Multi-Level patches extracted in RGB images as 3D entities, we gain
a unique perspective on different texture aspects such as homogeneity, mor-
phology, and structural complexities among varying color intensities. This study
employed three different texture analysis techniques: 3D-CLBP, 3D-GLCM, and
3D-GLRLM, for the comprehensive capturing of various texture aspects within
WSIs. These techniques are essentially built upon considering the three color
channels, i.e., RGB, of WSI patches as a 3D object, instead of converting the
colored WSI to grayscale. Thus, enabling the incorporation of color influence
along with texture variations aids in better discrimination between MEN and
SFT tumors.

3D Circular Local Binary Pattern. The CLBP algorithm is an extension
of Local Binary Pattern (LBP) that captures texture information in a circu-
lar region around each pixel enabling rotation invariance and adaptability in
identifying texture patterns [14]. It works by comparing the intensity of neigh-
boring pixels with the center pixel and encoding the result as a binary code. The
CLBP computation begins by defining a circular neighborhood around the pixel
of interest, extending to a specified radius Rmax. Within this circular region,
the intensity of each neighboring pixel (x′, y′) is compared with the intensity of
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the center pixel (x, y). Based on this comparison, the CLBP value is generated
according to the following equation:

CLBP (x, y) =
Rmax∑
r=1

⎛
⎝ ∑

(x′,y′)∈Nr(x,y)

{
2(r−1) if Ic(x′, y′) ≥ Ic(x, y),
0 otherwise

⎞
⎠ (4)

where Nr(x, y) denotes the circular neighborhood of radius r centered at (x, y),
and Ic(x′, y′) represents the intensity of the pixel at coordinates (x′, y′). This
equation is applied to the 3 channels (R, G, B) and the results are summing
up across all radii within the neighborhood. After computing CLBP, we use
percentiles derived from CDFs (ranging from the 10th to the 90th with a 10%
increment) to create the feature vector for each WSI patch. This statistical
method adeptly captures the overall distribution of pixel intensities, effectively
encapsulating essential texture and structural features. in this study, utilizing
the CLBP on multiscale WSI patches could effectively capture and encode the
intricate texture detail and further improve the analysis and interpretation of
different WSI patterns.

Table 1. A comprehensive list of the texture markers utilizing GLCM and GLRLM.

GLCM GLRLM

Contrast Short Run Emphasis Long Run Emphasis

Correlation Grey Level Non-Uniformity Run Length Non-Uniformity

Homogeneity Run Percentage Low Grey Level Run Emphasis

Angular Second Moment High Grey Level Run Emphasis Short Run Low Grey Level Emphasis

Energy Short Run High Grey Level Emphasis Long Run Low Grey Level Emphasis

Entropy Long Run High Grey Level Emphasis Run Entropy

Dissimilarity Grey Level Variance Run Length Variance

3D Gray Level Co-Occurrence Matrix. The GLCM is a statistical tech-
nique employed to represent the joint distribution of gray levels within an image,
considering spatial connections [25]. In this study, different GLCM features were
utilized, as listed in Table 1, to get a thorough examination of grayscale pat-
terns like directional attributes, neighboring pixel values, and variances observed
within diverse WSI patches. Building upon the traditional GLCM Method, we
introduced 3D GLCM values by accounting for the three RGB channels of
input patches. This expansion integrates color characteristics alongside grayscale
ones, thereby enriching the texture representation within WSIs. To compute the
GLCM for each WSI patch, a 256 × 256 matrix represents gray values. Each ele-
ment denotes the frequency occurrence of a pair of combinations of gray values.
GLCM values are derived by comparing the reference pixel to its 26 neighbor-
ing pixels: 8 pixels in the (G) channel, and 9 pixels in each of the upper (R)
and lower (B) channels as shown in Fig. 3. This approach enables comprehensive
spatial relationship analysis for each 3× 3x3 voxel grid, with a distance of 1 in
the Z-plane and 1 in the XY plane. Angle analysis spans from 0◦ to 315◦ with a
step of 45◦ to capture all directional dependencies.
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3D Gray Level Run Length Matrix. The GLRM is a statistical matrix-
based technique utilized to measure sequences of consecutive pixels with the
same gray level value, known as gray level runs [7]. This technique is employed
to describe different WSI regional heterogeneity information. Utilizing the 3D
GLRLM for the RGB patches allows for considering the color variations alongside
the spatial distribution of gray levels in the volumetric space. The GLRLM, a
matrix of dimensions L × K, is characterized by L gray levels and a maximum
run length of K. It is constructed for a specific WSI patch by aggregating runs
comprising pixels with gray level i and a run length of j. Each element (i, j)
within the matrix represents the frequency of runs with gray level i and length
j along a designated angle θ, where θ = (0◦, 45◦, 90◦, and 135◦). This involves
identifying consecutive horizontal (XY plane) and vertical (Z plane) sequences.
Subsequently, a total of 16 GLRLM-based features were estimated, as listed in
Table 1, to capture variant WSI structures.

2.4 Fusion and Final Classification

After employing the proposed two concurrent stages for level-based classifica-
tion, the output probabilities from each stage across the three hierarchical WSI
levels were aggregated into a probability vector. This vector contains level-based
probability decisions that were then fed into a deep neural network (DNN) for
the final diagnostic decision. The fusion process is designed to incorporate sup-
port from all WSI levels in the final diagnosis. Additionally, it leverages both
the versatility of VIT as a deep learning model and SVM as a texture-based
ML classifier to form complementary decisions. This aggregation ensures a com-
plementary, reliable, and unbiased classification decision. The DNN architecture
designed for SFT and MEN classification employs densely connected layers with
ReLU activation and dropout regularization to prevent overfitting. It comprises
a sequence of layers with 16, 32, 64, 32, and 16 neurons, concluding with a sig-
moid activation unit. Hyperparameter tuning involves Adam, Adagrad, Nadam,
and RMSprop optimizers, along with dropouts of 0.2, 0.3, and 0.4. Callbacks
like ReduceLROnPlateau and EarlyStopping are used for training enhancement.
Optimal settings include a learning rate of 0.001 with Adam optimizer, a dropout
rate of 0.2, and epochs ranging from 30–80 through the 5-fold stratified cross-
validation strategy.

3 Experimental Results

In this study, we utilized a multi-institutional dataset consisting of 92 cases (46
SFT and 46 MEN), all subjected to Hematoxylin and Eosin (H&E) staining. All
patients provided their consent to participate. Expert pathologists confirmed the
diagnoses and conducted a meticulous review of all pathology reports and histol-
ogy slides. SFT diagnoses were validated using STAT-6 immunohistochemistry.

Initially, WSIs underwent preprocessing, involving the extraction of aligned
patches representing the same physical area from three distinct levels within
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the WSI hierarchy, facilitating comprehensive multiresolution analysis. Subse-
quently, a two-stage pipeline was employed to rigorously analyze patches at
each level, integrating ML techniques and ViT models for precise diagnosis
of SFT and MEN tumors. A diverse set of ML classifiers, including Support
Vector Machines (SVM), Random Forest (RF), Adaboost, Logistic Regression
(LogReg), and K-Nearest Neighbors (KNN), were employed. Moreover, for ViT,
both the ‘vit-base-patch16-224’ and ‘vit-base-patch32-224’ models were used.
It’s noteworthy that all models underwent fine-tuning to optimize their perfor-
mance. To mitigate overfitting and ensure the proposed system robustness, the
dataset is partitioned into five folds using stratified k-fold cross-validation. In
this method, the dataset is divided into k equal-sized subsets, ensuring that each
fold preserves the same distribution of classes as the original dataset, providing
a more accurate assessment of the system’s performance [22]. For evaluating the
system’s effectiveness, a comprehensive set of evaluation metrics was employed.
These metrics include accuracy (ACC), sensitivity (SEN), specificity (SPC), pre-
cision (PRC), balanced accuracy (BAC), and F1-score. All results are reported
in terms of Mean ± Standard Deviation.

Table 2. Performance Evaluation of Different ML Classifiers Based on Texture Fea-
tures Across Three Hierarchical Levels of WSI for Diagnosis of SFT and MEN Tumors.

Level Classifier ACC (%) SEN (%) SPC (%) PRC (%) BAC (%) F1 (%)

Level 0 SVM 89.46 ± 0.10 90.25 ± 0.16 88.70 ± 0.16 88.59 ± 0.14 89.48 ± 0.09 89.41 ± 0.09

RF 85.88 ± 0.12 87.46 ± 0.17 84.34 ± 0.16 84.45 ± 0.14 85.90 ± 0.12 85.93 ± 0.12

KNN 83.20 ± 0.15 84.74 ± 0.15 81.71 ± 0.16 81.83 ± 0.15 83.23 ± 0.14 83.26 ± 0.14

LOGReg 80.10 ± 0.41 80.15 ± 0.60 80.04 ± 0.33 79.61 ± 0.35 80.10 ± 0.41 79.88 ± 0.45

Adaboost 79.20 ± 0.15 78.62 ± 0.40 79.76 ± 0.25 79.06 ± 0.16 79.19 ± 0.15 78.84 ± 0.19

Level 1 SVM 86.86 ± 0.04 86.40 ± 0.08 87.30 ± 0.06 86.87 ± 0.04 86.86 ± 0.04 86.63 ± 0.04

RF 83.54 ± 0.10 84.56 ± 0.20 82.55 ± 0.18 82.49 ± 0.14 83.56 ± 0.10 83.51 ± 0.11

KNN 81.48 ± 0.09 82.76 ± 0.17 80.24 ± 0.13 80.29 ± 0.10 81.50 ± 0.09 81.51 ± 0.10

LOGReg 79.38 ± 0.30 78.31 ± 0.27 80.42 ± 0.42 79.54 ± 0.37 79.37 ± 0.29 78.92 ± 0.28

Adaboost 78.70 ± 0.12 77.64 ± 0.42 79.74 ± 0.41 78.84 ± 0.26 78.69 ± 0.12 78.24 ± 0.15

Level 2 SVM 80.98 ± 0.06 80.14 ± 0.10 81.80 ± 0.13 81.06 ± 0.10 80.97 ± 0.05 80.60 ± 0.05

RF 80.29 ± 0.14 81.45 ± 0.18 79.16 ± 0.23 79.17 ± 0.18 80.31 ± 0.14 80.29 ± 0.13

KNN 77.90 ± 0.14 79.13 ± 0.16 76.71 ± 0.19 76.76 ± 0.16 77.92 ± 0.14 77.93 ± 0.14

LOGReg 76.12 ± 0.34 74.72 ± 0.42 77.49 ± 0.39 76.34 ± 0.36 76.11 ± 0.34 75.52 ± 0.35

Adaboost 76.62 ± 0.06 73.48 ± 0.40 79.68 ± 0.30 77.86 ± 0.16 76.58 ± 0.06 75.61 ± 0.14

Table 2 presents a comprehensive assessment of various ML classifiers across
different hierarchical levels of WSIs-Level 0, Level 1, and Level 2-utilizing
extracted texture features for the diagnosis of SFT and MEN tumors. Notably,
the results highlight the superior performance of utilizing Level 0 of the WSI
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hierarchy compared to Levels 1 and 2. This indicates that Level 0, offering the
most granular and precise observations of cell structures in WSIs, captures dif-
ferent SFT and MEN texture variation patterns and intricate tissue character-
istics essential for accurate tumor classification. The SVM classifier achieved
an impressive ACC of 89.46%, closely followed by RF at 85.88% and KNN at
83.20%. Similarly, at Level 1 and Level 2, SVM maintained its superiority with
ACC scores of 86.86% and 80.98%, respectively. The optimal hyperparameters
for SVM classifier consist of a polynomial kernel of degree 2, auto kernel scal-
ing, and a box constraint of 1. Notably, while SVM consistently outperforms
other classifiers, there is a gradual decline in performance as the hierarchical
level increases. This reflects the challenge of using higher WSI levels; as the
view zooms out, image quality may degrade, hindering the identification of fine
structures and texture variations within tissue samples. Nonetheless, SVM has
demonstrated consistently superior results, showcasing its ability to recognize
diverse texture patterns across all levels, establishing it as a reliable option for
the precise diagnosis of MEN and SFT tumors.

To evaluate the performance of ViT models in diagnosing SFT and MEN
tumors, Table 3 presents a comprehensive analysis of ViT-B16 and ViT-B32
across the three WSI hierarchical levels. At Level 0, the lowest and more detailed
hierarchical level, ViT-B16 demonstrates superior overall performance with an
ACC of 91.52%, outperforming ViT-B32, which achieves an ACC of 88.2%. How-
ever, as the hierarchical level increases, the performance gap between the two
models narrows, with both models exhibiting a decline in performance metrics.
At the intermediate level (Level 1), ViT-B16 maintains a slight advantage over
ViT-B32, although both models show comparable performance. Notably, at Level
2, the highest hierarchical level, the accuracy of both models decreases due to
the lower level of detail available, resulting in ViT-B16 and ViT-B32 achieving
ACCs of 82.59% and 82.5%, respectively. The optimal hyperparameters for the
ViT-B16 model consist of a batch size of 32 and a learning rate of 0.001, utiliz-
ing the Adam optimizer. These results demonstrate the ViT model’s efficacy in
classifying MEN and SFT tumors across the varying levels of the WSI hierarchy.

Table 3. Performance Evaluation of ViT-B16 and ViT-B32 Models for SFT and MEN
Tumor Diagnosis Across Three WSI Hierarchical Levels.

Level ViT Model ACC (%) SEN (%) SPC (%) PRC (%) BAC (%) F1 (%)

Level 0 ViT-B/16 91.52 ± 0.49 91.21 ± 1.51 91.84 ± 1.91 92.04 ± 1.66 91.52 ± 0.5 91.61 ± 0.44

ViT-B/32 88.2 ± 0.49 88.53 ± 1.37 87.87 ± 0.91 88.25 ± 0.68 88.2 ± 0.48 88.39 ± 0.56

Level 1 ViT-B/16 91.34 ± .62 90.33 ± 1.58 92.38 ± 1.1 92.43 ± 0.96 91.35 ± 0.62 91.36 ± 0.67

ViT-B/32 87.72 ± 0.79 88.09 ± 1.56 87.34 ± 0.41 87.74 ± 0.38 87.72 ± 0.78 87.91 ± 0.87

Level 2 ViT-B/16 82.59 ± 1.18 85.18 ± 1.4 79.91 ± 1.69 81.36 ± 1.34 82.55 ± 1.18 83.22 ± 1.13

ViT-B/32 82.5 ± 0.91 83.8 ± 1.58 81.16 ± 2.11 82.09 ± 1.58 82.48 ± 0.91 82.92 ± 0.85
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Fig. 4. An illustration of the proposed model predictions over three instances, depicting
SVM scores and VIT-B/16 scores at multiple WSI levels, alongside the final classifica-
tion decision.

In addition to assessing the individual performance of each stage across the
three WSI levels, we explored the potential benefits of combining the output
scores of the best classifier from each pipeline, i.e., SVM and the ViT-B16 model,
across the three magnification levels of the WSI hierarchy through a neural
network fusion approach. This fusion strategy aimed to leverage the power of
complementary information from each stage, facilitating the capture of both
local and global features from various levels of granularity within WSIs. The
results indicate that this fusion method achieved remarkable metrics with an
ACC of 93.42% ± 0.42%, demonstrating a substantial improvement compared
to individual classifiers. Moreover, the fusion approach yielded promising a SEN
rate of 92.15% ± 0.8% and an SPC rate of 94.73% ± 0.62%, indicating its
capability to effectively identify both positive and negative instances of SFT
and MEN tumors. Furthermore, the method exhibited a high PRC of 94.74% ±
0.57%, BAC of 93.44% ± 0.41%, and F1-score of 93.42% ± 0.43%, underscoring
its robustness in maintaining a balance between true positives and true negatives
while minimizing false classifications.
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These results emphasize the power of combining complementary information
to capture different texture variations within WSIs. It also, highlights the efficacy
of ViT attention mechanisms on directing attention to significant WSI regions
over multiscale, thus enabling the precise and dependable classification of SFT
and MEN tumors in digital pathology. Figure 4 illustrates three examples of
model predictions, showcasing the classification scores of SVM and ViT-B/16
models for each instance across different WSI scales. These scores contribute to
the final classification decision.

4 Conclusion and Future Work

This paper proposed a novel two-stage multi-scale approach to diagnose Menin-
gioma and Solitary Fibrous Tumors based on histopathological whole slide
images (WSIs). The proposed approach incorporated the strengths of vision
transformers and texture-based analysis techniques in capturing the variational
patterns and spatial correlations between different regions within WSIs. By uti-
lizing this approach over different WSI magnification levels, we enabled the cap-
ture of different local and global features for a more comprehensive analysis.
Additionally, we utilized circular-aligned patches at various scales to ensure
robust analysis of tissue samples to accommodate various scales and orienta-
tions of WSIs. Fusing all the decision scores through a Deep Neural Network
achieved promising results with 93.42% accuracy, 92.15% sensitivity, 94.73%
specificity, 94.74% precision, 93.44% balanced accuracy, and 93.42% F1 score.
These results underscored the potential of the proposed approach in improving
diagnostic accuracy and ultimately patient outcomes in the field of pathology.
Future studies could investigate the sub-typing of these tumor types, expand the
dataset to include other types, thus enhancing the model’s generalizability, and
explore the integration of other AI techniques that provide interpretability and
significance of different WSI features.
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Abstract. Automated ventricular function analysis can make health-
care more consistent and available, especially where resources are scarce.
However, current segmentation methods trained on adult heart ultra-
sounds cannot finely delineate the irregular shape of the left ventricle due
to the ignorance of boundary feature exploration. To address this chal-
lenge, we introduce HFENet for shape-aware left ventricle segmentation.
We propose a High-Frequency Enhancement Block (HFEB) that focuses
on enhancing the high-frequency component, which is also the boundary
area of left ventricles in pediatric echocardiograms. This way, the target
boundary details can be explored during feature extraction. We propose
space-frequency consistency loss to refine the shape of predicted masks
further. Specifically, our new loss function incorporates spatial and fre-
quency domain loss components to jointly refine predicted mask shapes
in cases where current spatial-domain segmentation losses cannot be opti-
mized further. Experiments carried out on two public datasets prove the
superiority of the proposed HFENet in predicting the fineness of target
shapes.

Keywords: Left ventricle · Semantic segmentation · Frequency
domain · Lightweight

1 Introduction

With its rapid image acquisition, relative affordability, and non-reliance on ion-
izing radiation, echocardiography has become the most prevalent method for
assessing children’s congenital and acquired heart conditions [1]. Accurate seg-
mentation of the left ventricle (LV) plays an essential role in this process, as
it can enable the calculation of critical clinical metrics such as left ventricular
mass, ejection fraction, and end-diastolic and end-systolic volumes [2].

However, manual delineation of the left ventricle in pediatric echocardiography
faces notable challenges. Significant inter-observer variability and inter-modality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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discordance can lead to inconsistent measurements, undermining diagnostic accu-
racy [3,4]. Furthermore, the process is labor-intensive, adding to its inefficiency.
These factors highlight the need for more standardized, automated approaches in
clinical practice.

So far, deep learning has demonstrated notable success in enhancing the
reliability and accuracy of left ventricular (LV) function assessment through
echocardiography in adults, as evidenced by various studies [5]. Yet, it is more
challenging in children due to varied anatomical abnormalities, heart rate, size,
and cooperation ability. These factors contribute to a broad scope of spatial and
temporal resolutions, impacting the overall quality of echocardiographic imaging
[6]. Consequently, there is a degree of uncertainty regarding the generalization
of machine learning models, which are primarily trained on adult datasets, to
pediatric echocardiography, given these increased variabilities.

In this research, we utilize two distinct datasets from 4467 echocardiograms
obtained from a total of 1958 pediatric patients at Lucile Packard Children’s
Hospital Stanford between 2014 and 2021. This recent study by Reddy et al. has
introduced these significant datasets with a gender distribution of 43% female
[7], where the first apical four-chamber (A4C) dataset and the second parasternal
short-axis (PSAX) dataset were extracted from the echocardiograms, resulting in
6449 two-dimensional images and 9001 images, respectively. These patients range
in age from newborn to 18 years, offering a broad spectrum of pediatric cardiac
profiles. By utilizing these datasets, this research is set to make a significant leap
in pediatric cardiac care, aiming to strengthen the accuracy and efficiency of
automating LV segmentation and, consequently, improving the overall quality of
diagnosis and treatment in pediatric cardiology through innovative deep learning
techniques.

Fig. 1. Visualization of the left ventricle segmentation challenge (a) Input image. (b)
Ground Truth. (c) Swin U-Net. (d) SpectFormer. (e) Ours (HFENet-3).
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Benefiting from the Vision Transformer’s (ViT) [8] success applied in medical
image tasks, several transformer architectures have been explored in the liter-
ature [9–12]. One of the most significant approaches has been Swin-Unet [13],
a pure transformer-based U-shaped Encoder-Decoder network. In addition, it
takes the Swin Transformer block as the fundamental unit for feature represen-
tation as well as long-range semantic information interactive learning [14].

However, when applying the present segmentation methods to segment the
left ventricle in pediatric echocardiograms, the challenge exists since the irreg-
ular shape of left ventricles still cannot be well segmented since these methods
pay insufficient attention to high-frequency boundary details, which can be seen
in Fig. 1. It has been noticed that the critical importance of frequency domain
analysis in computer vision is well-documented in the literature [15,16], high-
lighting that low frequencies in images correspond to global structures and color
and high frequencies reveal detailed attributes [17]. To highlight high-frequency
boundary details, we get inspired by the works on frequency learning and then
propose a High-Frequency Enhanced Network (HFENet). Our HFENet consists
of an innovative module called the High-Frequency Enhancement Block (HFEB)
that emphasizes high-frequency (HF) information, which is crucial for extract-
ing object boundaries in segmentation tasks. In the block, we also employ cross-
attention to mix in the low-frequency details, effectively achieving a balanced
integration of detailed and broad features. Also, this study proposes a novel loss
function called space-frequency consistency loss to further refine the left ventri-
cle shapes with the aid of the frequency domain. Moreover, our contributions
can be outlined as follows:

– We devise High-Frequency Enhancement Blocks (HFEB) embedded into our
network encoder to highlight the high-frequency components of the extracted
feature maps, which are also the boundaries of segmented objects. This way,
a more precise shape-aware segmentation can be promoted during feature
extraction.

– We propose space-frequency consistency loss, a novel loss function that inte-
grates spatial domain loss with frequency domain loss to boost the shape-
aware segmentation effect further, even though two predicted masks have
very similar spatial structures

– Experiments demonstrate the advanced performance of our HFENet on two
public datasets compared with other recently well-performed segmentation
methods.

2 The Proposed Approach

The overall architecture of the HFENet proposed in this study, as illustrated
in Fig. 2, consists of an encoder, bottleneck, decoder, and skip connections. The
skip connections are adopted for fusing the multi-scale features from the encoder
with the up-sampled features, just like the U-Net. We will elaborate on our model
in more detail in the following subsections.
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Fig. 2. The overall structure of the proposed model HFENet.

2.1 High-Frequency Enhancement Block

The High-Frequency Enhancement Block is structured as a combination of a
High-Frequency Enhancement Module (HFEM) and a Swin Transformer Block
(STB). Here, We introduce this novel HFEM, which aims to enhance high-
frequency information processing for semantic segmentation tasks. Figure 3
presents the architecture of our process.

The HFEM comprises a Dual-Tree Complex Wavelet Transform (DTCWT)
at the bottom that processes Low-Frequency (LF) and High-Frequency (HF)
components, which are then subsequently processed through the Tensor Blend-
ing Method (TBM) and Einstein Blending Method (EBM) respectively, to
derive Low-Frequency Representation (LFR) and High-Frequency Representa-
tion (HFR), modified by learnable weight matrices Wφ and Wψ [18].
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Fig. 3. The structure of the High-Frequency Enhancement Block.

One must emphasize that the Dual-Tree Complex Wavelet Transform Inverse
(DTCWT Inverse) [18] is applied in this module solely to the High-Frequency
Representation (HFR) by setting the low-frequency component to zero, effec-
tively filtering out the low-frequency information and enhancing high-frequency
details.

At the top, an ‘Adding’ process combines outputs from the Cross-Attention
and Self-Attention modules, which are crucial in emphasizing fine-grained details
and long-range dependencies within the data. The Self-Attention mechanism
processes the high-frequency component in isolation. By applying this, the model
can concentrate on specific areas of the image with significant textural details,
efficiently amplifying the effect of this information. Accordingly, the formulation
of Self-Attention can be expressed as follows:

Self-Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V (1)

where Q, K, and V indicate the query, key, and value matrices derived from the
HFR after the DTCWT Inverse procedure.

With the HFEM, the Cross-Attention mechanism integrates signals across
disparate frequency spectra. It takes a set of queries generated from the high-
frequency component, later applying these queries modulates with the keys
and values extracted from the low-frequency domain, facilitating the integra-
tion of global and fine-grained information. The simplified formulation of Cross-
Attention is:

Cross-Attention(QHF ,KLF , VLF ) = softmax
(

QHFKT
LF√

dk

)
VLF (2)

where QHF is the query matrix derived from the HFR, KLF and VLF are the key
and value matrices which can be originated from the LFR, respectively.
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2.2 Swin Transformer Block

According to shifted window multi-head self-attention (SW-MSA), the Swin
Transformer Block (STB) comprises two successive transformer blocks, where
each multi-head attention module is substituted with a window-based attention
module. It segments the image into discrete, non-overlapping patches, facili-
tating the application of self-attention mechanisms to understand inter-patch
dependencies, thereby reducing the computational intensity.

2.3 Encoding Path

The encoder layer is designed to capture high-frequency details and focus on rel-
evant spatial regions. Stacked HFEB blocks are systematically applied to embed
the input image into a latent space and perform representation learning through
successive stages. Like Swin-Unet, the patch merging layer can down-sample the
spatial representation while upsampling the channel representation [13].

2.4 Decoding Path

The STB is pivotal in reconstructing spatial details from encoded features in the
decoder architecture. The patch merging layer was replaced with the patching
expanding layer to gradually increase the spatial dimensions while lowering the
feature dimensions.

2.5 Space-Frequency Consistency Loss

The common loss functions for segmentation only calculate the loss in the space
domain while ignoring space-frequency domain consistency. Specifically, similar-
ity in space structure does not necessarily represent similarity in frequency. For
example, as shown in Fig. 4, the two prediction masks (the boundaries are high-
lighted in red and green lines) are very similar in spatial shapes with GT in (a)

Fig. 4. The visual results of (a) Groundtruth + Predicted Mask A + Predicted Mask
B all on the spatial domain (b) Predicted Mask A after DCT (c) Predicted Mask B
after DCT.
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differ a lot once transformed to the frequency domain by discrete cosine trans-
form (DCT). Thereby we propose a space-frequency consistency loss, which con-
tains a spatial domain loss Lspace and a frequency domain loss Lfreq. We adopt
the traditional BCE loss as our Lspace. For Lfreq, we utilize DCT to project the
predicted mask and GT mask into cosine components for different 2-dimensional
frequencies and use the L2 norm to constrain the loss. We define Lfreq as

Lfreq =
√

||DCT (y) − DCT (ŷ)||2 (3)

where y and ŷ denote predicted mask and GT mask, respectively. By combining
the two domain losses together, we can achieve better shape-aware segmentation
quality than using spatial domain loss alone since frequency clues are explored.
The final expression of our proposed space-frequency consistency loss is

Lsfc = Lspace + αLfreq (4)

where a hyper-parameter α is placed before Lfreq and is optimally set to 1
according to our ablation study.

3 Experiment

This section outlines the dataset deployed in our experimental investigation,
describes the training and testing settings, and finally presents the experimen-
tal results, demonstrating the performance of our method and benchmarking it
against contemporary methodologies.

3.1 Dataset

All experiments in the current section are carried out on the dataset compris-
ing 4467 echocardiograms from 1958 pediatric patients (43% female, aged 0–18
years). The data gathered from Lucile Packard Children’s Hospital Stanford
between 2014 and 2021 was divided into 80% for training, 10% for testing, and
10% for validation. It features 7643 grayscale two-dimensional video clips from
A4C and PSAX views and 17600 labeled images derived from these echocardio-
grams.

3.2 The Experimental Set

The computational setup includes a single Tesla V100-32GB GPU, a 12-core
CPU, and 61G of RAM. The system runs on an Ubuntu 18 environment with
CUDA 11.0 and Pytorch 1.13 software.

The network’s training was conducted over 150 epochs, starting with an
initial learning rate 1e-4. With the purpose of balancing computational efficiency
and the model’s accuracy, batch sizes of 24 for training were chosen. The model’s
performance was evaluated every five epochs, and a patience parameter of 10 was
set for early stopping to avoid overfitting. Regarding the network’s structure, the
depth was set up with layers in the configuration of [2, 2, 2, 2]. The multi-head
attention mechanism was integral to this design, for which the number of heads
was established as [3, 6, 12, 24].
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3.3 Quantitative Comparison with Other Methods

Table 1. Performance comparison with other methods on PSAX and A4C.

Dataset PSAX Dataset A4C

Methods DSC mIoU DSC mIoU

UNet fcn [19] 0.8624 0.7581 0.8312 0.7112

UNet deeplabv3 [19] 0.8682 0.7671 0.8336 0.7146

UNet pspnet [19] 0.8675 0.7660 0.8401 0.7243

Swin-Unet [13] 0.9113 0.9099 0.8920 0.8897

Spectformer [20] 0.9160 0.9144 0.9009 0.8979

PVT [21] 0.8910 0.8909 0.8820 0.8802

UniformerV2 [22] 0.9073 0.9059 0.8917 0.8894

Ours 0.9246 0.9215 0.9129 0.9096

Our study initially conducted comparative experiments using U-Net architecture
with three different backbones - FCN, DeepLabV3, and PSPNet, alongside other
SOTA segmentation models, including Swin-Unet [13], Spectformer [20], and
UniformerV2 [22]. The findings presented in Table 1 indicate that our model
significantly surpasses other models in DSC and mIoU, which represents superior
shape-aware segmentation quality. In addition, the values in bold format are the
highest numbers for the corresponding metrics.

3.4 Qualitative Comparison with Other Methods

We also provide a qualitative visualization of the left ventricle segmentation
results in Fig. 5. Other methods more or less suffer flawed segmentation of target
shapes due to a lack of attention paid to boundary information in pediatric
echocardiograms. Our proposed method has the closest shape similarity with
ground truths because it has advantages in providing more accurate and refined
delineations of the shape of LV in pediatric echocardiograms.

3.5 Ablation Studies

Effect of High-Frequency Enhancement Block. We first conducted exper-
iments to study the effect of varying the number of HFEB within the HFENet
encoder architecture. As shown in Table 2, We incrementally integrated 1, 2, and
3 HFEBs into the encoder path’s first, second, and third stages, respectively,
resulting in HFENet-1, HFENet-2, and HFENet-3. In cases where HFEBs were
not used, pure STBs were employed as substitutes in these stages. Our findings
indicate that adding HFEBs correlates with improvements across both datasets
in both evaluation metrics (DSC and mIoU), demonstrating the positive effect
of our proposed HFEB in boosting shape-aware segmentation during feature
extraction.
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Fig. 5. Visual comparisons of different methods on the A4C dataset. (a) Input image.
(b) Ground Truth. (c) Swin U-Net. (d) SpectFormer. (e) Ours (HFENet-3).

Table 2. Ablation study on performance metrics across PSAX and A4C datasets.

Dataset PSAX Dataset A4C

Methods DSC mIoU DSC mIoU

HFENet-1 0.9200 0.9181 0.9044 0.9011

HFENet-2 0.9214 0.9193 0.9071 0.9038

HFENet-3 0.9220 0.9199 0.9129 0.9096

HFENet(Resize)-1 0.9192 0.9173 0.9047 0.9016

HFENet(Resize)-2 0.9209 0.9190 0.9059 0.9029

HFENet(Resize)-3 0.9246 0.9215 0.9098 0.9055

Table 3. Impact of varying α coefficients in hybrid loss functions.

α 0 0.1 1

DSC of A4C 0.9043 0.9074 0.9129
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Table 4. Comparison of the ablation study and our method in terms of parameters,
inference speed, and GFLOPs.

Methods Params (in M) IS in ms, PSAX IS in ms, A4C GFLOPs

UNet fcn [19] 29.060 11.024 11.116 12.660

UNet deeplabv3 [19] 29.060 11.750 12.228 12.710

UNet pspnet [19] 29.050 11.392 11.629 12.360

Swin-Unet [13] 28.146 10.980 11.623 10.075

Spectformer [20] 30.254 9.394 9.229 10.480

UniformerV2 [22] 30.040 10.939 10.882 9.801

HFENet-1 24.470 4.902 4.052 7.093

HFENet-2 25.746 6.540 6.035 8.089

HFENet-3 27.804 8.400 7.635 9.079

HFENet(Resize)-1 24.470 4.384 4.02 7.093

HFENet(Resize)-2 25.746 6.069 5.389 8.089

HFENet(Resize)-3 27.804 8.015 7.267 9.079

Note: IS stands for Inference Speed.

Secondly, we intended to replace the DTCWT Inverse operation in the HFEB
with the Resize operation to determine whether the inverse operation is nec-
essary. The motivation for this ablation is that the inversion can no longer
recover the original input feature because we enhance the high-frequency part
of the input feature, so we wonder whether inversion is still needed compared
with the resize operation. We still follow the former HFEB number settings but
replace inversion with a resize operation and denote this experiment setting as
HFENet(Resize)-1, HFENet(Resize)-2, and HFENet(Resize)-3, respectively. It
can also be observed that HFENet (resize) shows improved performance metrics
as the HFEB number increases. Moreover, as Table 4 suggested, HFENet(Resize)
offers a quicker inference speed than the standard HFENet, attributed to the
resize operations being faster than the DTCWT Inverse operations.

Effect of Space-Frequency Consistency Loss. Table 3 shows the effect of
our space-frequency consistency loss in A4C. α=0 means no frequency domain
loss is added to the final loss, and this condition performs the worst in Table 3.
The reason is that only spatial loss is insufficient to determine which predicted
mask is better once the two predicted masks yield very close IoU or MSE values.
With the value of α growing from 0 to 0.1 and then to 1, the DSC value also
rises in the A4C dataset, meaning that the frequency domain loss part indeed
contributes to shape-aware segmentation since it can further align the predicted
and GT features in the frequency domain to determine further which prediction
is better in shape. This phenomenon complies with the motivation of our new
loss design.



56 T. Chen et al.

3.6 Model Complexity Analysis

Table 4 evaluates the scale and efficiency of the models. As the number of HFEBs
increases within the HFENet series, there is an upward trend in both param-
eters and GFLOPs, suggesting a rise in model complexity and computational
load. However, our proposed method demonstrates significantly lower GFLOPs
than U-Net architectures with FCN, DeepLabV3, PSPNet backbones, and other
SOTA ViT-based methods. Despite this, our segmentation performance greatly
surpasses these methods. Furthermore, our model outperforms all comparison
models in terms of parameter complexity and offers faster inference speed.

4 Conclusion

This work proposes an innovative deep network architecture, HFENet, for left
ventricle segmentation in pediatric echocardiograms, explicitly focusing on high-
frequence enhancement mechanisms. By integrating HFEB into the encoding
phase, HFENet captures fine details more effectively and maintains a balance
with the low-frequency domain through cross-attention. Combining MSE in the
DCT domain, our customized loss function further refines the segmentation accu-
racy. Notably, HFENet features a lightweight architecture with small computa-
tional demands. Extensive experiments on both LV datasets demonstrate its
robust performance in diverse imaging contexts.
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Abstract. Multilevel thresholding plays a crucial role in image pro-
cessing, with extensive applications in object detection, machine vision,
medical imaging, and traffic control systems. It entails the partitioning of
an image into distinct regions based on optimal pixel values. However, as
the number of threshold levels increases, so does the computational cost
for segmentation. To address this challenge, a novel method is proposed
namely Chaos theory based Gravitational Search Algorithm (CGSA)
for multilevel thresholding. CGSA combines the standard Gravitational
Search Algorithm (GSA) for exploration with chaotic maps for exploita-
tion of the complex pixel problem space. In this study, Kapur’s entropy
method is utilized to segment sample images into various partitions based
on optimal pixel values. The effectiveness of CGSA in real-world scenar-
ios is evaluated using COVID-19 chest CT scan imaging datasets from
Kaggle database. The quality, symmetry, and consistency of the seg-
mented output are assessed using metrics like Peak Signal to Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM), and Feature Sim-
ilarity Index Measure (FSIM). Qualitative analysis includes convergence
curves, segmented graphs, colormap images, and box plots. Statistical
validation is conducted using the signed Wilcoxon rank sum test. Addi-
tionally, a comparison is made between CGSA’s performance and that
of eight state-of-the-art heuristic algorithms. The findings demonstrate
the superior performance of CGSA, evidenced by its reduced compu-
tational time and enhanced image quality metrics values. Specifically,
CGSA achieved SSIM of 0.81, FSIM of 0.82, and PSNR of 24.27, sur-
passing the performance of other competitive algorithms.
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1 Introduction

Image segmentation involves dividing an image into smaller regions of interest
based on pixel intensity variations [1]. This process is especially crucial in med-
ical imaging techniques like MRI and CT scans. Image segmentation techniques
are utilized across a wide array of disciplines, including visual perception analysis,
computational intelligence, and structure detection [2]. They provide a valuable
tool for streamlining difficult procedures and increasing productivity. Image seg-
mentation is a method used in computer vision that extracts features from pictures
and uses them in further processing. MRI and CT images are frequently subjected
to medical image segmentation to indicate the body region that requires attention.
As a consequence, medical professionals may concentrate on treating the problem-
atic location which may speed up the diagnosis procedure [3].

Image segmentation methods vary, but thresholding stands out as the most
widely adopted due to its simplicity and effectiveness [4]. It primarily separates
different portions of an image by setting a basic threshold value, making it eas-
ier to discern similar elements. Thresholding comes in two main forms: bi-level
and multi-level. Bi-level thresholding, similar to binary thresholding, assigns a
single intensity value to pixels below a specified threshold, whereas multilevel
thresholding assigns multiple intensities hierarchically, resulting in a more intri-
cate segmentation [5,6]. Noteworthy example of bi-level thresholding include
Kapur’s entropy method [7]. It is an advanced technique for image thresholding,
aimed at differentiating between objects and background within an image [8].
The method involves evaluating a range of potential threshold values and com-
puting the entropy for each. Entropy, in this context, is a quantitative measure
of the information content or uncertainty within the image regions defined by
the threshold. Specifically, Kapur’s method seeks to identify the threshold that
maximizes the total entropy of the segmented image, thereby achieving an opti-
mal separation between the foreground and background regions. By maximizing
entropy, this approach enhances the clarity and precision of the segmented image,
thereby improving the effectiveness of subsequent tasks such as object detection
and image analysis. In recent years, the emergence of the Coronavirus disease
(COVID-19) in China in December 2019 has garnered significant attention [9].
Based on clinical trials and laboratory studies, Huang et al. [10] identified spe-
cific symptoms of COVID-19, including fever, cough, and shortness of breath.
Declared a global health emergency by the World Health Organization (WHO),
COVID-19 prompted worldwide preventive measures [11]. With over 600 million
infections and nearly 7 million deaths in the past three years, COVID-19 has
evolved into a global pandemic.1

Several vaccines and medications have been developed to combat COVID-19.
However, the list of COVID-19 variants is continually being updated with new
mutations. The effectiveness of vaccination against these altered virus strains
remains uncertain [12]. In the early stages of medical intervention and preven-
tion, prompt and accurate detection of COVID-19 cases is crucial. Reverse Tran-
scription Polymerase Chain Reaction (RT-PCR) is a commonly used technique

1 https://www.worldometers.info/coronavirus.

https://www.worldometers.info/coronavirus
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for identifying COVID-19 infections, but its reliability is compromised by a rel-
atively low rate of positive results and potential delays in detecting the virus
for timely treatment [13]. Conversely, medical imaging tools like X-rays and CT
scans offer higher detection rates and can reveal the virus within hours of infec-
tion, making them more precise in the early diagnosis of COVID-19. Automating
the identification of COVID-19 using chest X-rays and CT scans could signifi-
cantly mitigate the pandemic’s impact on society. However, segmenting COVID-
19 lesions on CT scans remains challenging due to their irregular shapes, diverse
sizes, and indistinct boundaries between healthy and infected tissues [14]. Over-
coming this challenge requires employing a range of image processing techniques
to differentiate these properties based on similarities and differences. Therefore,
in this study, we have implemented the Chaos theory-based Gravitational Search
Algorithm (CGSA) for multi-level thresholding. The CGSA aims to address the
limitations of Kapur’s entropy scheme and provide accurate segmentation out-
comes more quickly and with lower computational costs. The paper presents
several key contributions:

1. Introduction of Chaotic Gravitational Search Algorithm (CGSA)
based segmentation methodology: CGSA redefines image processing
with its precise and efficient segmentation procedure. Its integration of chaotic
maps enhances feature delineation and navigates complex search spaces,
marking a significant advancement in heuristic segmentation techniques.

2. Harnessing Chaos in segmentation: At its core, CGSA strategically
incorporates Chaos theory principles, mitigating local optima entrapment and
optimizing segmentation accuracy. This integration establishes new standards
for excellence in image processing methodologies.

3. CGSA’s application in Medical Imaging: Beyond segmentation, CGSA
finds applications in medical imaging, such as evaluating COVID-19 severity
through chest CT scans. Rigorous comparative analyses underscore CGSA’s
superiority, positioning it as the preferred method for precise segmentation.

The organization of the paper proceeds as follows: In Sect. 2, a literature sur-
vey is conducted on the application of heuristic approaches in medical imaging.
Section 3 outlines the methodology, including an explanation of GSA, chaotic
maps, and the proposed CGSA-based image segmentation scheme. Following that,
Sect. 4 presents the experimental results obtained from CT scan images. Finally,
Sect. 5 concludes the study and discusses potential future research directions.

2 Literature Review

Image segmentation is a fundamental and challenging task in computer vision
and image processing [3]. It plays a crucial role in various applications, such as
object recognition, scene understanding, medical image analysis, and robotics
[5]. The primary objective of image segmentation is to partition an input image
into meaningful regions, each representing a distinct object or region of interest.
Over the years, numerous image segmentation techniques have been proposed in
the literature to address the diversity and complexity of images encountered in
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real-world scenarios. One prominent and widely studied approach for image seg-
mentation is multilevel thresholding [6]. Thresholding-based techniques involve
dividing an image into regions based on pixel intensity levels. Multilevel thresh-
olding extends this idea to partition images into multiple segments by selecting
optimal intensity thresholds [7]. The effectiveness of multi-level thresholding lies
in its simplicity and computational efficiency, making it a preferred choice in
many image segmentation applications. The significance of multi-level thresh-
olding in image segmentation has prompted numerous researchers to explore its
application and propose various advancements in the field [8].

Image segmentation using multilevel thresholding has gained significant
attention in medical imaging, particularly in the analysis of CT scan images for
various diseases, including COVID-19. Several studies have explored the appli-
cation of multilevel thresholding techniques to effectively segment lung regions
and identify lung pathologies associated with COVID-19 infections [4]. In fact,
the researchers like Su et al. [15] introduced CCMVO, an enhanced multiverse
optimizer, for efficient processing of COVID-19 chest radiography. Incorporating
horizontal and vertical search processes, the method outperformed other algo-
rithms in image segmentation quality with reduced risk of stagnation. Validation
through benchmark functions demonstrated the effectiveness in COVID-19 diag-
nosis using FSIM, PSNR, and SSIM metrics, offering a valuable tool for medical
organizations. Liu et al. [16] proposed CLACO, a method combining ant colony
optimization with Cauchy and greedy Levy mutations, enhancing COVID-19
X-ray image segmentation. This method utilized 2D Kapur’s entropy as the fit-
ness function for improved segmentation. Experimental results showed CLACO’s
superiority over variants and peer methods in benchmark functions. Similarly,
Kumar Sahoo et al. [17] introduced Es-MFO, an enhanced Moth Flame Opti-
mization algorithm, for accurate COVID-19 CT image classification and seg-
mentation. It outperformed other techniques in benchmark tests, showing effec-
tiveness in medical applications. Zhao et al. [18] introduced VMCSA, enhancing
the Crow Search Algorithm with Variable Neighborhood Descent and Informa-
tion Exchange Mutation methods. It outperforms alternatives in optimization
and excels in COVID-19 X-ray image segmentation, showing robustness and
superior outcomes. Likewise, the teams led by Houssein et al. [19] and Qi et al.
[20] delved into the segmentation of COVID-19 X-ray images. These researchers
proposed refined multilevel segmentation models employing swarm intelligence
algorithms to enhance the accuracy of segmenting COVID-19 X-ray images. The
literature review clearly reveals that Kapur’s entropy scheme and Otsu’s method
are well-regarded as leading techniques for multi-level thresholding. These meth-
ods generally provide more flexibility and effectiveness compared to alternatives.
However, while they perform well in simpler cases or with fewer thresholds, their
efficiency declines as the number of thresholds increases because of greater com-
putational requirements. This highlights a key issue with traditional threshold-
ing methods: the computational burden. In contrast, heuristic algorithms present
a viable solution due to their mathematical simplicity and faster convergence,
which help lower computational costs and improve decision accuracy.
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3 Methodology

The Chaotic Gravitational Search Algorithm (CGSA) is a robust amalgamation
of the Gravitational Search Algorithm (GSA) with ten distinct chaotic maps,
rendering it proficient in both exploratory and exploitative tasks. This section
elucidates the mathematical framework that underpins the operational mechan-
ics of CGSA.

3.1 Gravitational Search Algorithm (GSA)

Optimization algorithms often borrow concepts from nature or scientific prin-
ciples to improve their efficiency. One such method, the Gravitational Search
Algorithm (GSA), draws inspiration from physics. In GSA, the process begins
by assigning masses to searcher agents, resembling how objects interact gravita-
tionally in the physical world. This initialization stage is grounded in Newton’s
law of universal gravitation, which explains how the gravitational force between
two masses is influenced by their mass and the distance between them. By sim-
ulating these gravitational interactions, GSA aims to guide the optimization
process towards finding optimal solutions efficiently. Mathematically, Equation
(1) calculates the gravitational force between masses ‘x’ and ‘y’ at time ‘t’.

f xyd(t) = G(t)
(mpx(t) · may(t))(xd

x(t) + xd
y(t))

Rxy(t) + ε
(1)

The dynamic interaction between the passive and active attractive masses
within the scope of Equation (1) is evident through the variables may(t) and
mpx(t). Specifically, may(t) represents the gravitational pull exerted on a single
point mass, while mpx(t) illustrates the attractive force originating from a point
mass situated within the gravitational field. Moreover, this dynamic relationship
extends to the Euclidean metric Rxy, which depicts the spatial distance between
these masses, and the infinitesimal constant ε, introduced to enhance numerical
stability.

Achieving a delicate balance during the optimization process is crucial in the
context of the GSA. The gravitational constant ′G′ plays a fundamental role in
establishing this equilibrium, serving as the key factor in determining feasible
positions within the vast solution space as outlined in Equation (2).

G(t) = G(t0)e−α CI
MI (2)

In the equation, G(t0) and G(t) represent the starting and concluding values
of the gravitational constant, correspondingly, with α serving as a minor coef-
ficient. CI and MI denote the ongoing iteration and the maximum iterations,
respectively. Determining mass involves accounting for active, passive, and iner-
tia masses, wherein a greater mass signifies a heightened gravitational pull. The
gravitational mass Mx(t) is ascertained by Equation (3) when the active max,
passive mpx, and inertia mix masses equate.

max = mpx = mix = Mx (3)
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mx(t) =
fitx(t) − worst(t)
best(t) − worst(t)

(4)

Mx(t) =
mx(t)

∑m
y=1 mx(t)

(5)

The fitness measure, mx(t), as elaborated in Equation (4), appraises the
performance of masses within a particular context. Factors such as best(t) and
worst(t) within fitx(t) specify whether the objective leans towards minimizing
or maximizing. In the context of Equation (5), the variable ‘m’ signifies the
quantity of masses intricately distributed across a spatial domain with multiple
dimensions, actively engaging in complex gravitational interactions. Addition-
ally, Equation (6) is utilized by classical mechanics to determine the cumulative
gravitational force.

f d
x(t) =

m∑

y=1,y �=x

γyf
d
xy(t) (6)

In Equation (6), γy is a stochastic variable. As per Equation (1), it’s clear
that more massive masses yield a heightened gravitational influence. Further-
more, the exploration spans the complete search domain, unveiling viable local-
ities. This comprehensive exploration is crucial for upholding solution quality,
facilitated by employing the kbest strategy as delineated in Equation (7). In the
context of a physical system undergoing acceleration, a consequential force is
invariably produced. Within the solution space, masses consistently apply force
to each other, resulting in the manifestation of acceleration ad

x(t). This accelera-
tion steers solutions toward feasible regions. In Equation (8), f d

x(t) signifies the
mutual force exerted by masses.

f d
x(t) =

m∑

y=kbest,y �=x

γy (7)

ad
x(t) =

f d
x(t)

mix(t)
(8)

In the GSA framework, the inertial mass is symbolized as mix(t). Each indi-
vidual point mass is characterized by both a positional attribute and a velocity.
Conversely, towards the termination of the iterative procedure, a singular mass
exhibiting a pronounced gravitational field prevails. Consequently, the determi-
nation of velocity vd

x(t) and position xd
x(t) is paramount for the identification of

an optimal solution, as delineated in Equation (9) and Equation (10).

vd
x(t + 1) = γyvd

x(t) + ad
x(t) (9)

xd
x(t + 1) = xd

x(t) + vd
x(t + 1) (10)
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3.2 Chaos Theory

In the context of various metaheuristic algorithms, the use of extensive and
diverse random number sequences is of paramount importance. When randomly
generated numbers cluster within a specific range or repeatedly produce iden-
tical values, there is an increased risk of the algorithm becoming trapped in
local optima. To mitigate this risk, it is crucial that the generated numbers
exhibit diversity and have a spread spectrum. This diversity ensures a broader
exploration of the solution space, helping the algorithm avoid getting stuck in
sub-optimal solutions and improving its ability to discover more globally optimal
solutions [21].

Table 1. Mathematical formulas describing chaotic mappings

Chaotic function Chaotic map Limits

Chebyshev xi+1 = cos(i cos−1(xi)) (1,-1)

Circle xi+1 = mod (xi + b − ( a
2π

) sin(2πxi), 1), (0,1)

a=0.5, b=0.2

Gauss xi+1 =

{
1 if xi = 0

1
mod(xi,1)

otherwise
(0,1)

Iterative xi+1 = sin
(

aπ
xi

)
, a = 0.7 (-1,1)

Logistic xi+1 = axi(1 − xi), a = 0 (0,1)

Piecewise xi+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi
P

if 0 ≤ xi ≤ P
xi−P
0.5−P

if P ≤ xi ≤ 0.5, P = 0.4
1−P−xi
0.5−P

if 0.5 ≤ xi < 1 − P
1−xi

P
if 1 − P ≤ xi < 1

(0,1)

Sine xi+1 = a
4

sin(πxi), a = 4 (0,1)

Singer xi+1 = μ(7.86xi − 23.31x2
i + 28.75x3

i − 13.302875x4
i ), (0,1)

μ = 2.3

Sinusoidal xi+1 = ax2
i sin(πxi), a = 2.3 (0,1)

Tent xi+1 =

{
xi
0.7

if xi < 0.7
10
3

(1 − xi) if xi ≥ 0.7
(0,1)

The foundational tenets of methodologies underpinned by chaos are contin-
gent upon the utilization of functions representing discrete-time systems char-
acterized by their inherently chaotic behavior. The theoretical framework posits
that the numerical outputs emanating from chaotic maps intrinsically lack pre-
dictability, exhibiting prominent spread-spectrum attributes and non-periodic
behavior. In their integration within metaheuristic algorithms, chaotic maps
supplant traditional random variables, deviating from the conventional prac-
tices inherent in standard approaches [22,23]. The construction of a chaotic
sequence involves the aggregation of chaotic variables employed in a given iter-
ation. The deliberate integration of chaotic sequences is aimed at endowing the
algorithm with the capacity to transcend local minima during the pursuit of the
global minimum, thereby underscoring its inherent adaptability. This intentional
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amalgamation empowers heuristic algorithms to diverge from impractical regions
within the vast expanse of the search space [24]. Consequently, the initiation of
metaheuristic algorithms with chaotic maps is envisaged to expedite and refine
the process of ascertaining the initial random number sequence, culminating in
the generation of more efficacious solutions for optimization problems [25]. The
chaotic maps subjected to scrutiny in this study are detailed in Table 1, with
their corresponding random patterns illustrated in Fig. 1.

Fig. 1. The plots of the ten chaotic maps shown in (a)-(j) clearly illustrate the inherent
random variations in the behavior of chaotic systems. Each plot captures the unpre-
dictable fluctuations over time, highlighting the complexity and sensitivity to initial
conditions that characterize chaotic dynamics. These visual representations underscore
the diverse and intricate patterns that emerge from chaotic maps, providing a clear
depiction of their erratic and non-linear nature.

3.3 Image Segmentation Using Chaotic Gravitational Search
Algorithm (CGSA)

In this section, a novel strategy for image segmentation is proposed, integrating
the Gravitational Search Algorithm (GSA) with chaos theory. The inherent chal-
lenges of the GSA technique, such as its slow convergence and susceptibility to
getting stuck in local minima, necessitate innovative solutions. To address these
issues, ten different chaotic maps are employed to enhance the performance of the
standard GSA framework. A noteworthy characteristic of chaotic maps is their
sensitivity to initial parameters. Even small adjustments to these parameters can
lead to significant changes in the output. This observation highlights the poten-
tial of chaotic maps to introduce variability and dynamism into optimization
algorithms, thereby augmenting their ability to explore solution spaces effec-
tively and mitigate convergence challenges. Furthermore, chaotic normalization
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ensures an appropriate balance of exploration and exploitation by analytically
computing Equation (11).

Cnorm
i (t) =

(Ci(t) − a) · (d − c)
(b − a)

+ c (11)

In Equation (11), (a, b) is the chaos map range, i is an index of chaos, and
(c, d) are chaos normalized intervals where c equals zero and d is measured by
Equation (12).

d =
MI − CI

MI
× (Max − Min) (12)

Such that Max and Min are 20 and 1E-10, respectively, indicating adap-
tive intervals. The gravitational constant (G) plays a central role in the stan-
dard GSA, determining the magnitude of the gravitational field, as elucidated
in Equation (2). Achieving a delicate balance between intensification and diver-
sification phases hinges on maintaining an appropriate equilibrium between G
and other parameters. During the initialization phase, a rapid decrease in G
facilitates exploration of the search space. Conversely, in the later iterations, G
remains constant, favoring the selection of solutions in proximity to the global
optimum. Due to its pivotal role in simplifying both exploration and exploitation
phases, G is regarded as the primary controlling parameter in our approach.

Fig. 2. The figure clearly delineates the segmentation procedure, beginning with the
acquisition of the test image. Kapur’s entropy is employed as the objective function
to partition the image into regions containing the maximum information content. Sub-
sequently, the parameters of the CGSA algorithm are iteratively adjusted to expedite
the optimization process. This results in a final segmented image characterized by
high-intensity pixels.
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The CGSA integrates the GSA’s gravitational constant with the random
sequences of the chaotic maps. Thus, Equation (2) is integrated with Equation
(11) to obtain chaotic gravitational constant (GC(t)).

GC(t) = Cnorm
i (t) + G(t0)e(−α CI

MI ) (13)

Equation (13) clearly demonstrates that GC(t) possesses all the essential
characteristics required to enhance both the intensification and diversification
aspects of the standard GSA. The main advantage of CGSA is taking candidate
solutions away from the local minima areas. Besides, it maintains the appropriate
balance between exploration and exploitation stages as well as increases the
convergence rate. The flowchart of CGSA based multilevel thresholding is shown
in Fig. 2.

4 Experimental Results and Discussion

The empirical investigation scrutinized ten distinct variants of the Gravitational
Search Algorithm (GSA) augmented with chaos, denoted CGSA1 to CGSA10,
in the context of image segmentation, particularly focusing on COVID-19 chest
CT scans. These scans, sourced from the Kaggle database2 exhibited pixel values
ranging from 0 to 255, as depicted in Fig. 3. This dataset includes 1252 CT scans
from patients with COVID-19 and 1230 CT scans from patients without the
infection, totaling 2482 scans. A comparative evaluation was conducted against
a repertoire of heuristic algorithms, including PSO [26], GSA [27], PSOGSA
[28], SCA [29], SSA [30], DE [31], BBO [32], and CPSOGSA [33–35], with initial
parameters drawn from their respective seminal works. Simulation outcomes
were based on 20 searcher agents and 300 iterations per algorithm run, with
termination criteria set at 10% identical outcomes. Computational experiments
were conducted on a 3.40 GHz i7 Intel processor, utilizing MATLAB R2020a.

The quantitative assessment of the segmented image entails the systematic
application of distinct mathematical metrics, namely the PSNR, SSIM, and
FSIM. These metrics serve as meticulous instruments for the exhaustive exam-
ination and scrutiny of the inherent quality of the segmented output. At its
core, PSNR plays a pivotal role in discerning the legitimacy of the segmented
image by intricately analyzing the nuanced variations in threshold values across
successive iterations within the optimization process. The precise mathematical
formulation governing PSNR is rigorously encapsulated in Equation (14).

PSNR = 10 log10

(
2552

MSE

)

(14)

MSE =
1

RC

R∑

i=1

C∑

j=1

(I(i, j) − O(i, j))2 (15)

2 https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset.

https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
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Fig. 3. The grayscale backgrounds in (a)-(c) provide a detailed view of the overall
image characteristics, showcasing the texture and structure. Meanwhile, the histograms
in (d)-(f) depict pixel intensity distributions, highlighting the contrast and brightness
variations across the images.

Equation (15) encapsulates the intricate dimensions denoted by R and C,
representing rows and columns within the matrix, respectively. Meanwhile, the
symbols I and O delineate the conventional input image and the resulting seg-
mented output image. On a parallel note, SSIM emerges as a nuanced metric,
delving into the subtleties of both uniformity and resemblance between the seg-
mented image and a predefined input reference image. A discernibly elevated
SSIM value signifies the preeminence of pixels of superior quality within the
segmented image. The mathematical equation for SSIM is shown in Equation
(16).

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(16)

The mean luminance values of the original and segmented images are denoted
by μxand μy, respectively. The standard deviations of the original and segmented
images are represented by σ2

x and σ2
y. Covariance between the original and seg-

mented images is denoted by σxy, and < c1, c2 > signify minor constants in the
formula. Similarly, FSIM serves as a sophisticated image assessment metric, metic-
ulously evaluating the quality of a segmented image by scrutinizing pixels within
the local neighborhood. This comprehensive process involves the analysis of piv-
otal elements for discerning optimal pixel values and gauging the precision of the
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resulting segmented image. The intricate mathematical expression for FSIM is
delineated in Equation (17).

FSIM(x) =
∑

x∈Ω SL(x)PCm(x)
∑

x∈Ω PCm(x)
(17)

Ω signifies the pixel search area and SL(x) denotes image similarity while PC
shows the phase congruency of the image. As the task of image segmentation
involves maximizing a certain objective, a heightened FSIM value indicates the
adeptness in pinpointing optimal pixels within the solution space, showcasing
effective segmentation capabilities.

Furthermore, it’s important to carefully analyze the results using statistics.
To understand how well the Heuristic Algorithms (HAs) performed, we use a
method called the Signed Wilcoxon Rank-sum Test [36]. This test helps us com-
pare the performance of the algorithms. The null hypothesis (H0) suggests that
CGSA doesn’t provide the best pixel values for the image, while the alternative
hypothesis (H1) suggests that CGSA does give good pixel values. The P-values
are calculated for all the algorithms to see if they support H1. If the P-value is
less than 0.05, it means H1 is likely true. If the P-value is close to 1, it means
the peer algorithm performs similarly to the best one.

4.1 Experimental Analysis of Medical Images

The CGSA is a powerful heuristic method designed to handle complex prob-
lems by navigating through nonlinear problem spaces and finding the best solu-
tions. Its unique hybrid design combines robust exploration and exploitation
mechanisms, making it well-equipped to tackle challenging and intricate prob-
lem landscapes. To validate its efficacy, CGSA has been applied to chest CT scan
database images, serving as a challenge for its ability to determine optimal image
thresholds and furnish precise values for key image quality assessment metrics
such as PSNR, SSIM, and FSIM. Furthermore, it is of keen interest to scrutinize
how CGSA copes with escalating computational demands as image thresholds
increase. The comprehensive experimental analysis, focusing on the chest CT
scan images, has been documented in Table 2. Noteworthy findings reveal that
CGSA versions, alongside DE and PSOGSA, have demonstrated superior perfor-
mance in identifying optimal thresholds. Additionally, CGSA exhibits commend-
able results across PSNR, SSIM, and FSIM metrics. In contrast, algorithms such
as PSO and SSA exhibit elevated Standard Deviation (SD) and Mean Square
Error (MSE) values, indicative of potential outliers within the segmented output.
Furthermore, computational intensive methods like SCA, SSA, DE, and BBO
necessitate considerable time investments to ascertain optimal pixel configura-
tions within the problem space. Importantly, the results underscore CGSA’s effi-
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Table 2. Simulation outcomes for CT scan image processing employing classical,
hybrid, and contemporary Heuristic Algorithms (HAs)

Method k SD MSE PSNR SSIM FSIM BV Run Time(s) P-Value

GSA 2 0.11 8507.33 8.83 0.52 0.60 15.75 7.5807 0.0020

3 0.05 4161.37 11.93 0.48 0.66 17.16 11.2454 0.0020

5 0.23 2914.64 13.48 0.55 0.73 22.52 18.4125 0.0020

7 1.03 3985.53 12.12 0.49 0.67 27.13 19.6508 0.0020

10 0.31 2782.01 13.68 0.64 0.69 33.24 28.6723 0.0020

PSO 2 0.29 29370.51 3.45 0.10 0.41 10.45 6.0663 0.0020

3 0.56 26891.35 3.83 0.16 0.41 14.32 8.3811 0.0020

5 1.14 11239.81 7.62 0.51 0.61 19.66 16.1352 0.0020

7 1.12 13700.89 6.76 0.43 0.58 28.19 17.6534 0.0020

10 0.97 15330.86 6.27 0.39 0.56 32.30 24.5230 0.0020

PSOGSA 2 0.88 21516.36 4.80 0.27 0.50 10.19 5.8473 0.0020

3 0.89 21781.24 4.75 0.27 0.48 11.54 8.5503 0.0020

5 0.43 13714.78 6.75 0.42 0.57 21.87 15.2910 0.0020

7 0.87 14296.90 6.57 0.41 0.57 21.28 16.2218 0.0020

10 0.49 2225.70 14.65 0.77 0.76 36.03 23.1176 0.0020

CPSOGSA 2 0.35 27806.03 3.68 0.13 0.41 09.71 6.2928 0.0020

3 0.61 2125.45 4.85 0.28 0.44 14.95 7.9160 0.0020

5 0.74 24827.08 4.18 0.20 0.41 22.15 13.3482 0.0020

7 0.29 7117.84 9.60 0.65 0.68 24.76 16.3624 0.0020

10 0.82 6980.08 9.69 0.66 0.68 34.40 25.1694 0.0020

BBO 2 0.72 11705.57 7.44 0.50 0.60 15.83 8.1842 0.0020

3 1.20 2236.27 14.63 0.58 0.68 19.59 10.9221 0.0098

5 1.07 1725.86 15.76 0.69 0.70 22.98 17.6534 0.0020

7 0.53 436.06 21.73 0.75 0.74 30.21 20.9856 0.0020

10 1.62 1780.38 15.62 0.67 0.70 37.31 29.4807 0.0020

DE 2 1.63 3902.63 12.21 0.52 0.56 16.62 8.3519 0.0059

3 2.63 8708.85 8.73 0.43 0.63 18.79 11.2949 0.0020

5 1.43 3831.97 12.29 0.40 0.61 26.34 17.1391 0.0098

7 1.47 575.02 20.53 0.79 0.77 32.57 21.6220 0.0020

10 1.92 482.32 21.29 0.79 0.77 39.34 33.9167 0.0020

SCA 2 1.61 4489.83 11.60 0.50 0.69 16.36 8.2530 0.0137

3 1.50 1708.80 15.80 0.65 0.66 19.10 11.2949 0.0050

5 2.04 1138.83 17.56 0.70 0.69 25.82 17.4521 0.0020

7 2.61 0634.17 20.10 0.80 0.78 33.70 21.1952 0.0020

10 3.16 0305.68 23.27 0.83 0.83 39.97 30.2570 0.0020

SSA 2 5.25 33672.14 2.85 0.00 0.41 13.36 6.9575 0.0020

3 3.89 31154.95 3.19 0.01 0.50 17.54 11.2088 0.0020

5 3.67 4968.06 11.16 0.45 0.62 26.34 22.5873 0.0020

7 3.87 4968.06 11.16 0.45 0.62 26.34 22.5873 0.0020

10 12.58 31154.95 3.19 0.01 0.50 28.23 30.2576 0.0020

CGSA1 2 1.91 3412.81 12.79 0.53 0.71 16.90 2E-06 0.3594

3 0.61 2487.68 14.17 0.56 0.64 21.23 2E-06 00001

5 1.32 710.19 19.61 0.79 0.79 28.65 2E-06 00001

7 2.70 484.58 21.27 0.81 0.80 37.67 2E-06 0.4316

10 2.41 839.10 18.89 0.76 0.78 46.90 2E-06 0.4316

(continued)
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Table 2. (continued)

Method k SD MSE PSNR SSIM FSIM BV Run Time(s) P-Value

CGSA2 2 0.39 5934.26 10.39 0.50 0.68 16.13 1E-06 0.0371

3 0.63 2902.26 13.50 0.56 0.73 21.24 2E-06 0.1602

5 0.97 968.65 18.26 0.76 0.77 28.68 2E-06 0.3750

7 2.30 938.89 18.40 0.77 0.78 36.53 2E-06 0.0488

10 2.79 480.32 21.31 0.78 0.81 49.61 1E-06 0.1934

CGSA3 2 0.26 3070.81 13.25 0.54 0.70 16.13 2E-06 0.0195

3 0.35 2585.22 14.00 0.55 0.69 19.89 2E-06 0.0840

5 1.39 2529.68 14.10 0.58 0.73 27.17 2E-06 0.0039

7 2.59 2441.15 14.30 0.59 0.73 33.56 2E-06 0.0098

10 3.70 1656.01 15.96 0.68 0.73 43.79 2E-06 0.0039

CGSA42 1.67 5756.22 10.52 0.50 0.68 16.90 1E-06 0.0645

3 0.83 1753.62 15.69 0.65 0.67 21.23 2E-06 0.0195

5 1.63 634.83 20.10 0.80 0.79 28.63 2E-06 0.6250

7 2.18 818.63 18.99 0.77 0.78 37.94 2E-06 00001

102.52 603.13 20.32 0.77 0.77 49.26 3E-06 00001

CGSA5 2 0.41 2508.22 12.67 0.52 0.71 16.92 2E-06 0.3223

3 0.26 5962.38 10.37 0.43 0.52 21.22 1E-06 0.1309

5 1.58 1314.90 16.94 0.72 0.75 28.62 1E-06 0.3750

7 2.44 518.73 20.98 0.81 0.81 35.33 2E-06 0.1934

10 1.88 795.33 19.12 0.78 0.78 47.12 2E-06 0.1602

CGSA6 2 0.29 6658.29 9.87 0.41 0.52 16.92 2E-06 0.2324

3 0.39 1423.29 16.59 0.70 0.73 21.24 2E-06 0.4316

5 001 1348.23 16.83 0.71 0.73 28.65 2E-06 0.3223

7 2.01 1035.25 17.98 0.74 0.77 37.25 2E-06 00001

10 2.28 242.99 24.27 0.82 0.81 47.77 2E-06 0.2324

CGSA7 2 0.39 3424.54 12.78 0.52 0.71 16.89 2E-06 0.3224

3 0.88 2988.46 13.37 0.51 0.63 21.21 2E-06 0.0645

5 0.98 1205.61 17.31 0.71 0.76 28.64 1E-06 00001

7 2.25 607.20 20.29 0.78 0.79 35.37 2E-06 0.0195

10 3.22 469.83 21.41 0.77 0.79 49.02 3E-06 0.8457

CGSA8 2 0.64 3520.08 12.66 0.52 0.71 16.90 2E-06 00001

3 0.32 2494.82 14.16 0.56 0.70 19.81 1E-06 0.1309

5 1.43 682.08 19.79 0.78 0.79 28.61 2E-06 0.7695

7 2.15 1186.98 17.38 0.72 0.73 35.36 2E-06 0.4922

10 2.48 489.08 21.23 0.78 0.76 49.28 1E-06 0.9219

CGSA9 2 0.88 3450.24 12.75 0.52 0.71 16.93 1E-06 0.6953

3 0.66 1663.81 15.91 0.67 0.72 21.25 3E-06 0.4316

5 0.83 774.26 19.24 0.78 0.74 26.98 2E-06 0.0273

7 2.28 793.21 19.13 0.76 0.76 36.81 2E-06 0.7695

10 2.91 295.36 23.42 0.78 0.82 47.18 2E-06 0.9219

CGSA10 2 0.29 5130.79 11.02 0.43 0.51 16.90 8.8356 0.0840

3 0.44 2679.72 13.84 0.56 0.70 21.23 9.8946 0.1602

5 0.53 4538.25 11.56 0.47 0.52 28.64 17.0167 0.1602

7 1.47 2255.33 14.59 0.59 0.73 38.01 19.5191 0.8457

10 3.46 1063.59 17.86 0.76 0.77 49.16 27.8105 0.6250
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Fig. 4. The convergence curves in (a) show that CGSA achieves the best performance
with higher values for Kapur’s objective function. Furthermore, the boxplots in (b)
reveal that the CGSA has highest values for the lower and upper quartiles indicating
a greater amount of information content.

Fig. 5. The images (a)-(e) illustrates the segmented output acquired through the CGSA
across a spectrum of k = 2,3,5,7,10 values. Colormap representations highlight the dis-
tribution of pixel intensities, while the histogram curves portray the frequency distri-
bution of pixel values within the segmented images.

ciency, evidenced by its reduced CPU time requirements for image segmentation
compared to alternative methodologies.

In a similar manner, we assess the local exploitation capabilities of the com-
petitive methods using convergence curves, depicted in Fig. 4. It is evident that
CGSA, DE, and SCA exhibit swift convergence rates, indicating their adeptness
in navigating complex search spaces and identifying optimal pixel configura-
tions. Notably, CGSA stands out with its faster convergence rate compared to
its counterparts, highlighting its effectiveness in achieving feasible outcomes.
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Furthermore, the box plot analysis underscores CGSA’s superior performance,
as evidenced by its favorable values for the Kapur’s objective function. Addition-
ally, CGSA displays fewer outliers relative to its peers, affirming its proficiency
in image segmentation.

Furthermore, in Fig. 5, we can clearly observe the impact of the Coronavirus
on the lungs through the segmented images generated by CGSA. These images
provide a visual representation of the severity of lung involvement. Notably, the
colormap visualization highlights areas of consolidation in the lungs, with the
right lung appearing to be more heavily affected, indicating significant infection.
In the generated segmented images, different colors represent various lung condi-
tions: yellowish areas depict bronchi filled with fluid or pus, light blue indicates
fibrosis or the thickening of lung tissue, and blue represents healthy lung tis-
sue. This visual depiction offers valuable insights into the pathological changes
caused by the Coronavirus in the lungs.

5 Conclusion and Future Directions

This investigation utilizes the Chaos theory-based Gravitational Search Algo-
rithm (CGSA) to perform the multilevel thresholding of grayscale images.
Through the integration of Kapur’s entropy scheme with CGSA, the algorithm
can effectively pinpoint optimal pixels within the search space. The performance
evaluation of this approach is conducted using chest CT scan images, employing
metrics like SSIM, FSIM, PSNR, MSE, and CPU time. Furthermore, the study
undertakes a comparative analysis between the outcomes of CGSA and those of
other competitive algorithms.

The findings emphasize how CGSA outperforms other methods, showing its
exceptional ability to find the optimal pixel values across various intensity levels
without needing high computing power. Additionally, achieving the best PSNR,
SSIM, and FSIM values indicates that the images it produces are well-balanced,
high-quality, and consistent. Notably, CGSA is effective at identifying both large
and small irregular areas in CT scan images, which could improve the diagnosis
of COVID-19 patients. This highlights CGSA’s potential usefulness in practi-
cal applications involving image processing. Furthermore, Differential Evolution
(DE) and Sine Cosine Algorithm (SCA) also yield favorable outcomes for image
thresholds. Future research avenues may involve the application of CGSA to
segment color images instead of grayscale benchmarks and the exploration of
alternative fitness functions, such as Otsu’s variance scheme and Renyi entropy
methods, for CGSA-based image segmentation.
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Abstract. Breast cancer (BC) remains a significant global health
concern, necessitating accurate and efficient diagnostic approaches. In
this study, we propose a comprehensive framework that integrates
feature extraction, selection, and classification using Support Vector
Machines (SVM) along with hyperparameter optimization. Additionally,
we employ multi-level Vision Transformers (ViTs) for patch classification,
aiming to capture both local and global information from histopathologi-
cal slides. Moreover, we introduce a Fusion Probability Network (FPN) to
combine the outputs of SVM and ViTs. Through this multi-faceted app-
roach, we aim to improve diagnostic performance and contribute to more
effective BC diagnosis. Sensitivity analyses and ablation studies across
various sample sizes confirm the framework’s effectiveness. Results show
high accuracy (up to 96.50%), precision (up to 93.33%), recall (up to
93%), specificity (up to 97.67%), F1 score (up to 92.99%), and balanced
accuracy (up to 95.33%). Ablation studies highlight the significance of
the feature extraction pipeline in enhancing the framework’s effectiveness
and robustness, as well as its adaptability to diverse patch morphologies.
Overall, our study offers promising avenues for improving BC grading,
with potential implications for enhancing clinical decision-making and
patient outcomes.

Keywords: Breast Cancer (BC) · Fusion Probability Network
(FPN) · Multi-level Vision Transformers · Texture Analysis

1 Introduction

Breast cancer (BC) is a pervasive global health issue affecting millions of women
worldwide [2]. Traditional imaging approaches have limitations, including sub-
jective interpretation, false positives, and difficulties in distinguishing between
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benign and malignant lesions [6,10,20]. These limitations underscore the urgent
need for innovative artificial intelligence (AI) approaches to enhance the effi-
ciency of BC diagnosis and treatment planning [12,29].

Recent advancements in AI have revolutionized BC diagnosis. Various
approaches have emerged, aiming for objective and precise diagnosis using AI
[21,33]. For instance, Wang et al. [26] proposed DeepGrade, focusing on histolog-
ical grading of breast tumors, specifically re-stratifying NHG 2 cases. Joseph et
al. [4] utilized handcrafted feature techniques to extract texture, shape, and color
features, employing a deep neural network for classification. Additionally, Wet-
stein et al. [28] employed a deep learning-based BC grading model to differentiate
between low/intermediate and high-grade tumors, while also predicting nuclear,
mitotic, and tubular grade characteristics. Despite these advancements, key gaps
remain, prompting the development of our framework. Prior studies often focused
solely on histological grading or image feature extraction, lacking integration into
a cohesive framework. Furthermore, there is a gap in feature selection and inte-
gration from histopathological slides, with few standardized methods available.
Additionally, existing approaches may lack scalability and robustness across dif-
ferent magnification levels of histopathological slides.

To address these gaps, a novel framework for enhancing BC diagnosis accu-
racy and efficiency is proposed. It involves patch extraction from histopatho-
logical slides at three magnification levels to capture global and localized tissue
features. A feature extraction pipeline extracts statistical, shape, and texture fea-
tures. Non-significant features are filtered out using one-way analysis of variance
(ANOVA). Classification is conducted using a support vector machine (SVM),
with hyperparameters tuned using the tree-structured Parzen estimator (TPE).
Simultaneously, patches from all magnification levels are fed into vision trans-
formers (ViT). Probabilities from both the SVM and ViT models are input to
a deep neural fusion probability network (FPN). This network integrates prob-
abilities from each model to categorize the cellularity condition.

2 Materials

The dataset used in this study is the Post-NAT-BRCA dataset [13], a compre-
hensive collection of high-resolution microscopic images and clinical data from
breast resections in patients with residual invasive breast cancer following neoad-
juvant therapy (NAT). This dataset includes annotations for tumor cellularity,
which is a crucial parameter for calculating the Residual Cancer Burden Index
(RCBi), a tool used to assess response to NAT. The images are annotated with
various cell types, including malignant, healthy, and lymphocyte cells, aiding in
the development of cell segmentation algorithms [19].

The dataset comprises 96 Whole Slide Images (WSIs) stained with Hema-
toxylin and Eosin (H&E), extracted from 54 patients. We systematically cate-
gorized annotated patches into four separate groups based on their cellularity.
The categories include low grade, moderate grade, high grade, and normal cel-
lularity. Patches of size 64 × 64 pixels were extracted from each WSI using the
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corresponding annotation file, ensuring no overlap between patches. In total,
more than 100,000 patches were extracted.

Fig. 1. Samples from the utilized dataset in the current study.

3 Methods

The proposed framework, visualized in Fig. 2, employs histopathological slides
to diagnose BC. It begins by extracting patches from three magnification levels.
Next, a feature extraction pipeline extracts statistical, shape, and texture fea-
tures from the top magnification level. Subsequently, the p-value is computed
using ANOVA to filter out non-significant features. Following this, feature selec-
tion is performed to identify the most promising features among the significant
ones. Classification is carried out using SVM, and hyperparameters are tuned
using the TPE. Concurrently, patches from the three magnification levels are
input to ViT. The probabilities from the four models (one for numerical features
and three for the magnification levels) are then input to the FPN. The FPN
combines the probabilities from each model to make a final decision.

3.1 Numerical Features Extraction from Histopathological Patches

Aim and Hypothesis 1 : This study aims to comprehensively capture the diverse
characteristics of histopathological BC slides by integrating various features,
including shape features (SF), texture descriptors such as Gray-Level Co-
occurrence Matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM), Sta-
tistical Feature Matrix (SFM), Local Binary Patterns (LBP), and global shape
descriptors known as Hu Moments.

We hypothesize that this approach will significantly enhance the classification
of BC from histopathological patches, leading to higher accuracy and reliability
in distinguishing between different tissue types and pathological conditions asso-
ciated with BC.
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Fig. 2. The proposed comprehensive framework for breast cancer diagnosis from
histopathological slides.

Theory and Implementation: The patches undergo conversion from RGB to
XYZ color space, offering advantages over traditional RGB mode. XYZ mode
ensures standardized color representation, aiding in detecting pathological fea-
tures. It maintains consistency for human perception, ensuring faithful color
reproduction and interpretation. Additionally, separating luminance from chro-
maticity allows precise adjustments of brightness and contrast, crucial for high-
lighting subtle tissue nuances while preserving color fidelity [15].

After patch extraction, nuclei, fat, and other tissue components are seg-
mented as presented in Fig. 3. Nuclei segmentation utilizes StarDist [27] to
accurately delineating nuclei boundaries. Fat segmentation combines blurring
and thresholding techniques to isolate adipose tissue regions within histopatho-
logical samples. Lastly, other tissue components are segmented by identifying
regions unrelated to nuclei or fats.

Statistical, shape, and texture features are extracted from different tissue
types, including shape, GLCM, GLRLM, LBP, SFM, and Hu moments features.
Shape features accurately characterize geometric properties, while GLCM cap-
tures subtle textural patterns by quantifying spatial relationships between pixel
intensities, aiding in detecting irregular cell arrangements [8]. GLRLM quantifies
the length and frequency of homogeneous pixel runs, providing insight into tissue
texture [17]. SFM integrates shape and texture information, enhancing discrim-
ination between tissue types [16]. LBP captures local pixel intensity patterns,
aiding in detecting cancerous regions [1]. Hu Moments capture global shape fea-
tures, aiding in differentiation between tissue types and pathological conditions
[23].
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Fig. 3. Visualization of the steps to extract the nuclei, fat, and other tissue components.

Significance and Elimination: After extracting features from the histopathol-
ogy patches, a set of 70 features was obtained. To enhance the robustness and
scientific rigor of our analysis, we conducted an ANOVA test to assess the sig-
nificance of each feature. Features with a significance p < 0.05 were retained,
as they demonstrate a higher degree of association with the underlying biolog-
ical phenomena we are investigating. The remaining number of features is 57,
reflecting the subset of features that exhibited statistically significant differences.

3.2 Numerical Features Selection via Manta Ray Foraging
Optimization (MRFO)

Aim and Hypothesis 2 : Employing Manta Ray Foraging Optimization (MRFO)
for feature selection post-extraction [32], we aimed to identify the most infor-
mative features crucial for BC classification from histopathological patches. We
hypothesized that MRFO could efficiently select a subset of features, reducing
computational complexity, enhancing interpretability, and improving generaliza-
tion performance on unseen data.

Theory and Implementation: The foraging behavior of manta rays is simu-
lated to explore the feature space and select promising feature subsets as sum-
marized in Algorithm 11. Let X represent the set of features extracted from
histopathological patches, where each feature is denoted by xi ∈ X. A popula-
tion of manta ray agents (M) (sized N = |M|) is initialized where each agent
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(mj ∈ M) representing a potential feature subset. Each manta ray agent (mj) is
characterized by a binary vector, bmj

, of length |X|, where bmj
[i] = 1 if feature

(xi) is selected and bmj
[i] = 0 otherwise. The quality of each feature subset is

evaluated using the fitness function (F) that measures the classification per-
formance using a classification algorithm (SVM in our study) to the subset of
selected features represented by mj . Let F(bmj

) denote the fitness value of agent
indexed at j, the goal is to select a subset of features (S) that maximizes the
classification performance: S = M[argmax

j

(F(bmj
)
)
] [5].

Algorithm 1: Manta Ray Foraging for Feature Selection
Input: X: Set of extracted features
Output: S: Selected subset of features

1 Initialize population M

2 for each agent mj ∈ M do
3 Initialize binary vector bmj

4 end
5 for each iteration do
6 for each agent mj ∈ M do
7 Evaluate fitness F(bmj ) using SVM classification performance
8 end
9 Update agent positions to simulate foraging behavior

10 end
11 S ← M[argmax

j

(F(bmj )
)
]

3.3 Numerical Features Classification and Hyperparameters
Optimization via Tree-Structured Parzen Estimator

Aim and Hypothesis 3 : Our goal is to optimize the BC classification model by
tuning hyperparameters using the TPE algorithm [14,18], and assessing the effec-
tiveness of SVM in classifying BC from histopathological patches post-tuning.
We hypothesize that systematic exploration of the hyperparameter space will iden-
tify optimal configurations for SVM, enhancing classification accuracy. We antic-
ipate that SVM’s capability to find optimal hyperplanes in high-dimensional fea-
ture spaces will enable effective discrimination between tissue types associated
with BC, improving diagnostic performance.
Theory and Implementation: The TPE algorithm iteratively explores the hyper-
parameter space to identify promising hyperparameters (H) as summarized in
Algorithm 12. It starts with initializing a population P of hyperparameter config-
urations sampled from the search space. Each configuration (pi ∈ P) is evaluated
using the model (F) on the testing dataset, computing a performance metric
Q(pi), such as accuracy.

Probabilistic models are constructed to capture the relationship between
hyperparameters and model performance, with PDFs p(x|y = 1) for good config-
urations and p(x|y = 0) for bad ones. Configurations maximizing the probability
ratio p(x|y=0)

p(x|y=1) are selected. The models are updated based on evaluated configu-
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rations, refining the PDFs to guide the search towards promising regions. This
process repeats for a predefined number of iterations (T ).

Let W represent the feature matrix containing extracted features, and y the
corresponding class labels. W is scaled to ensure all features have similar scales,
preventing dominance during optimization. The SVM model is trained using
preprocessed feature matrix W and class labels y, aiming to find the optimal
hyperplane that maximally separates data points of different classes while max-
imizing the margin.

Mathematically, this is expressed as: minw ,b
1
2 ||w||2+C ×∑N

i=1 ηi subject to
yi × (wT × xi + b) ≥ 1 − ηi and ηi ≥ 0, where w represents the weight vector,
b the bias term, C the regularization parameter, ηi slack variables, and N the
number of samples.
Algorithm 2: TPE Algorithm for Hyperparameter Optimization
Input: H: Hyperparameter space, T : Number of iterations
Output: Optimal hyperparameters

1 Initialize population P of hyperparameter configurations
2 for each configuration pi ∈ P do
3 Evaluate performance Q(pi) using model F on testing dataset
4 end
5 Construct PDFs p(x|y = 1) for good configurations and p(x|y = 0) for bad

configurations
6 for each iteration t = 1 to T do
7 Select configurations maximizing p(x|y=0)

p(x|y=1)

8 Evaluate selected configurations pi and update performance Q(pi) using
Q(pi) = F(pi | testing dataset)

9 Update PDFs p(x|y = 1) and p(x|y = 0) based on evaluated configurations
using:

10 p(x|y = 1) =
∑

pi∈P,Q(pi)>Qthreshold
δ(x−pi)

∑
pi∈P

δ(x−pi)

11 p(x|y = 0) =
∑

pi∈P,Q(pi)≤Qthreshold
δ(x−pi)

∑
pi∈P

δ(x−pi)

12 end

3.4 Multi-level Vision Transformers Classification: Patches

Aim and Hypothesis 4 : This study explores the utilization of multi-level Vision
Transformers (ViTs) for image patch classification [9,31]. The aim is to discrim-
inate between tissue structures effectively using ViTs. Our hypothesis suggests
that multi-level ViTs can capture both local and global information from image
patches, facilitating accurate BC classification from histopathological slides. We
anticipate that the self-attention mechanism in ViTs will enable discernment of
subtle malignancy indicators, enhancing diagnostic performance.

Theory and Implementation: The need for multi-level ViTs in image patch
classification stems from the complexity and heterogeneity of histopathological
images. Traditional CNNs may struggle to capture long-range dependencies and
contextual information crucial for accurate classification. ViTs address this need
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by leveraging self-attention mechanisms to capture global context and relation-
ships between different parts of the image patch.

Histopathological slides are partitioned into smaller image patches, denoted
by I. Each patch Ii is processed by the multi-level ViT to extract hierarchical
features, represented by Fi. These features are organized hierarchically across
multiple levels, capturing both local and global information. Let Fi(l) denote
the features at level l for patch Ii, where l ranges from 1 to L, the total number
of levels. The self-attention mechanism in ViT computes Query (Q), Key (K),
and Value (V ) vectors, where Qi = xi × WQ, Ki = xi × WK , and Vi = xi × WV

respectively.
These vectors are used to compute attention scores: A = SoftMax

(
Q×KT

√
dk

)
,

which weight the values (Attention(Q,K, V )×V = Ai×V ), where dk denotes the
dimension of the key vectors, and N is the number of patches. The hierarchical
features Fi(l) are input into a classification head to predict the probability of
malignancy for each image patch. Let pi denote the predicted probability of
malignancy for patch Ii. These probabilities are compared with ground truth
labels yi to compute the loss function L. The objective is to minimize L to
improve the model’s classification performance.

3.5 Fusion Probability Network (FPN)

Aim and Hypothesis 5 : This study aims to enhance overall classification accuracy
by employing the Fusion Probability Network (FPN) to combine the probabili-
ties from multi-level ViT and SVM models for BC classification [11]. The FPN
integrates predictions from individual models, leveraging their complementary
strengths to enhance overall performance. We hypothesize that integrating these
models will improve BC diagnosis classification performance. We anticipate that
FPN’s ability to effectively combine diverse model strengths will lead to more
robust and reliable predictions.

The need for FPN arises from effectively leveraging multiple models for BC
classification. Unlike majority voting, a simple ensemble method, FPN considers
the confidence or uncertainty associated with each model’s prediction. It com-
bines probabilities from different models in a weighted or attention-based man-
ner, ensuring a more sophisticated approach that fully exploits the strengths of
individual models, enhancing classification accuracy by considering both predic-
tions and their reliability.

In using FPN to combine the probabilities of the multi-level ViT and SVM
models, several steps are involved (see Algorithm 13). First, both the multi-level
ViT and SVM model generate probabilistic outputs for each image patch in the
dataset. These probabilities, denoted as PViT and PSVM respectively, represent
the likelihood of each image patch belonging to the positive class (i.e., BC).
Next, the probabilities generated by the ViT and SVM models are concatenated
to create a combined feature vector FFPN. This combined feature vector aggre-
gates the probabilistic outputs of both models and serves as input to the Fusion
Probability Network.
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Mathematically, this concatenation can be represented as FFPN =
[PViT, PSVM]. The FPN is a neural network comprising multiple layers of neu-
rons. It takes the combined feature vector FFPN as input and learns to fuse the
probabilistic outputs of the ViT and SVM model to generate a final probability
PFPN for each image patch. The network’s architecture and parameters are opti-
mized during training using a labeled dataset, where the ground truth labels are
used to compute the loss function L.

The discrepancy between the fused probability estimates PFPN(Ii) and
ground truth labels yi can be expressed as: min

∑N
i=1 (L(PFPN(Ii), yi). The deci-

sion from the FPN can be expressed as: argmax
c

(PFPN,c(Ii)) where Ii represents

the i-th image patch, PFPN,c(Ii) denotes the probability estimate generated by
the FPN for class c for the i-th image patch, and argmaxc denotes the class c
that maximizes the probability estimate, indicating the predicted class for the
image patch.
Algorithm 3: FPN for Combining Probabilities from ViT and SVM Mod-
els
Input: Image patches, ground truth labels y
Output: Predicted class for each image patch

1 Generate probabilistic outputs PViT from ViT model
2 Generate probabilistic outputs PSVM from SVM model
3 Concatenate probabilities to form combined feature vector FFPN = [PViT, PSVM]
4 Initialize Fusion Probability Network (FPN)
5 for each iteration during training do
6 Input FFPN to FPN
7 Compute fused probability PFPN for each image patch
8 Compute loss L(PFPN(Ii), yi)
9 Update FPN parameters to minimize loss

10 end
11 for each image patch Ii do
12 Predict class argmax

c
(PFPN,c(Ii))

13 end

4 Experiments

The study’s software setup uses Python via Anaconda on a Windows 11 oper-
ating system. Hardware includes an 8 GB NVIDIA GPU, 256 GB of RAM, and
an Intel Core i7 processor. The experiments were run for 1,000 stochastic tri-
als. The mean metrics and 95% confidence interval are reported. As mentioned,
patches of size 64 × 64 pixels were extracted from each WSI using the corre-
sponding annotation file, ensuring no overlap between patches. In total, more
than 100,000 patches were extracted.

The suggested approach is applied on different sample sizes (i.e., number of
patches) to study the performance sensitivity as presented in Table 1. From it,
accuracy ranged from 95.36% to 96.50% across sample sizes of 10K, 25K, 50K,
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and 100K. Precision values ranged from 91.07% to 93.33%, with the highest
precision achieved at a sample size of 10K.

Similarly, recall rates varied from 90.68% to 93.00%, with the highest recall
also recorded at a sample size of 10K. Specificity remained consistently high, rang-
ing from 96.90% to 97.67%, indicating the model’s ability to accurately identify
negative cases. The F1 score, a harmonic mean of precision and recall, ranged
from 90.73% to 92.99%. Balanced accuracy (BAC) values were observed between
93.79% and 95.33%, with the highest BAC achieved at a sample size of 10K.

Moreover, the results showed that the system can work with different sample
sizes, highlighting the robustness of the proposed approach across varied dataset
sizes and validating the hypotheses mentioned in the current study.

Table 1. Performance sensitivity analysis resulted from the suggested framework on
different sample sizes. The experiments are run for 1,000 stochastic trials. The mean
metrics and 95% confidence interval are reported.

Sample Size Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 (%) BAC (%)

10K 96.50 ± 0.23 93.33 ± 0.16 93.00 ± 0.12 97.67 ± 0.35 92.92 ± 0.28 95.33 ± 0.32
25K 95.95 ± 0.27 92.18 ± 0.22 91.90 ± 0.21 97.30 ± 0.18 91.88 ± 0.17 94.60 ± 0.28
50K 96.50 ± 0.31 93.22 ± 0.12 93.00 ± 0.15 97.67 ± 0.28 92.99 ± 0.31 95.33 ± 0.10
100K 95.36 ± 0.12 91.07 ± 0.29 90.68 ± 0.11 96.90 ± 0.18 90.73 ± 0.22 93.79 ± 0.37

4.1 Ablation Studies

Two ablation studies were conducted to validate the proposed approach and
assess its generalizability. These studies included (1) removing numerical fea-
tures, relying solely on patches and Vision Transformers (ViTs); and (2) altering
patch spaces through morphological transformations such as rotation, blurring,
and noise introduction.
First Ablation Study: The target of the first ablation study is to assess the
impact of excluding the feature pipeline on the performance metrics of the frame-
work. The question is to evaluate how the absence of the feature pipeline affects
key metrics compared to the results of the whole system.

Results in Table 2 (the first group) show sensitivity analysis without the fea-
ture pipeline on the testing subset. Result : Comparing with Table 1, notable
differences in performance metrics are observed when the feature pipeline is not
utilized. Accuracy decreases by approximately 3–4%, precision by 5–7%, recall
by 4–6%, F1 score by 3–6%, and BAC by 4–5%.

Insights: These performance decreases underscore the significant importance
of the feature pipeline in enhancing overall effectiveness and robustness of the
framework.
Second Ablation Study: The target of the second ablation study is to evaluate
how well the system performs under different patch morphologies; and under-
stand how these variations affect the system’s ability to diagnose and classify
patches. Additionally, it investigates the influence of the feature pipeline on sys-
tem performance, comparing results with and without it.
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Performance results, shown in Table 2, include outcomes after applying ran-
dom rotations within [−90◦, 90◦] (the second two groups) and random blurring
within [(1, 1) → (5, 5)] (the last two groups). Result : The system effectively diag-
noses and classifies patches regardless of rotation or blurring, indicating rotation
and/or blurring invariance.

Insights: These findings underscore the system’s robustness and adaptability
to variations in patch orientations and morphology, enhancing its suitability for
diverse imaging scenarios.

Table 2. Performance sensitivity analysis resulted from the suggested framework on
different sample sizes in the ablation studies. The experiments are run for 1,000 stochas-
tic trials. The mean metrics and 95% confidence interval are reported.

Features Pipeline Sample Size Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 (%) BAC (%)

Not Included 10K 89.50 ± 0.36 81.39 ± 0.27 79.00 ± 0.18 93.00 ± 0.47 79.18 ± 0.39 86.00 ± 0.24
25K 92.70 ± 0.42 86.37 ± 0.35 85.40 ± 0.21 95.13 ± 0.38 85.46 ± 0.49 90.27 ± 0.33
50K 93.35 ± 0.28 87.32 ± 0.49 86.70 ± 0.32 95.57 ± 0.14 86.68 ± 0.27 91.13 ± 0.41
100K 93.16 ± 0.17 86.92 ± 0.21 86.33 ± 0.45 95.44 ± 0.29 86.41 ± 0.38 90.88 ± 0.19

Not Included 10K + R 86.88 ± 0.29 77.18 ± 0.42 73.75 ± 0.36 91.25 ± 0.18 73.19 ± 0.24 82.50 ± 0.31
25K + R 91.10 ± 0.48 84.16 ± 0.39 82.20 ± 0.27 94.07 ± 0.45 81.61 ± 0.37 88.13 ± 0.22
50K + R 92.25 ± 0.33 85.66 ± 0.27 84.50 ± 0.41 94.83 ± 0.29 84.05 ± 0.38 89.67 ± 0.47
100K + R 91.21 ± 0.22 83.65 ± 0.38 82.43 ± 0.25 94.14 ± 0.47 82.41 ± 0.29 88.28 ± 0.34

Included 10K + R 87.63 ± 0.27 77.16 ± 0.35 75.25 ± 0.43 91.75 ± 0.39 74.99 ± 0.26 83.50 ± 0.47
25K + R 91.95 ± 0.31 85.41 ± 0.24 83.90 ± 0.28 94.63 ± 0.22 83.74 ± 0.39 89.27 ± 0.32
50K + R 93.45 ± 0.42 87.47 ± 0.37 86.90 ± 0.45 95.63 ± 0.28 86.70 ± 0.31 91.27 ± 0.48
100K + R 92.34 ± 0.39 85.63 ± 0.26 84.68 ± 0.33 94.89 ± 0.42 84.67 ± 0.37 89.78 ± 0.29

Not Included 10K + B 90.00 ± 0.28 83.85 ± 0.36 80.00 ± 0.21 93.33 ± 0.45 79.67 ± 0.32 86.67 ± 0.19
25K + B 92.40 ± 0.42 86.18 ± 0.27 84.80 ± 0.38 94.93 ± 0.29 84.65 ± 0.37 89.87 ± 0.24
50K + B 92.95 ± 0.31 86.98 ± 0.39 85.90 ± 0.24 95.30 ± 0.18 85.75 ± 0.43 90.60 ± 0.29
100K + B 93.41 ± 0.17 87.51 ± 0.24 86.83 ± 0.32 95.61 ± 0.41 86.88 ± 0.19 91.22 ± 0.37

Included 10K + B 95.50 ± 0.36 91.33 ± 0.23 91.00 ± 0.29 97.00 ± 0.18 90.99 ± 0.41 94.00 ± 0.28
25K + B 93.60 ± 0.27 87.97 ± 0.35 87.20 ± 0.32 95.73 ± 0.19 87.24 ± 0.38 91.47 ± 0.25
50K + B 94.85 ± 0.45 90.42 ± 0.28 89.70 ± 0.37 96.57 ± 0.24 89.74 ± 0.33 93.13 ± 0.29
100K + B 94.21 ± 0.39 89.28 ± 0.34 88.40 ± 0.26 96.11 ± 0.43 88.47 ± 0.31 92.25 ± 0.27

R: Rotation, B: Blurring, BAC: Balanced Accuracy, Included: Features
pipeline is included, and Not Included: Features pipeline is omitted.

4.2 Comparison with Related Studies

The proposed approach is tested using an external dataset called the Breast
Cancer Histopathological Database (BreakHis) [24] to examine its validation
and applicability to different benchmarks. Table 3 presents a comparative anal-
ysis of the findings from this research with those of other studies conducted on
the BreakHis dataset. The outcomes reveal notable enhancements compared to
earlier related studies conducted on BreakHis. Our study achieved high accu-
racy, precision, recall, specificity, and F1 score with small variances across 25
stochastic trials. Compared to previous research, our results demonstrate robust
performance, indicating potential advancements in the field of breast cancer
diagnosis using these metrics.
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Table 3. Comparison of this study’s results with those of other related studies on the
BreakHis dataset.

Study Year Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 (%)

Seo et al. [22] 2022 86.80 90.90 93.20 - 89.90
Agarwal et al. [3] 2022 94.67 92.60 80.52 - 85.21
Balasubramanian et al. [7] 2024 98.43 - - - -
Xiao et al. [30] 2024 92.00 - - - -
Taheri et al. [25] 2024 95.10 - - - -
Current Study 2024 98.88 ± 0.58 98.65 ± 0.77 96.54 ± 0.81 98.46 ± 0.69 96.24 ± 0.74
The experiment of the current study is run for 25 stochastic trials. The mean metrics
and 95% confidence interval are reported.

4.3 Time Complexity Analysis

The feature extraction process involves several computational steps to analyze
histopathological patches. Initially, patches are extracted from multiple magni-
fication levels, requiring operations proportional to the number of pixels in each
patch. Feature extraction algorithms like GLCM, GLRLM, LBP, SFM, and Hu
Moments compute statistical and textural features, with time complexity gen-
erally dependent on patch size and feature extraction method. For instance,
GLCM and GLRLM computations involve traversing image pixels and construct-
ing matrices based on pixel relationships, typically resulting in time complexities
of O(N2), where N is the number of pixels. LBP and SFM computations also
operate at similar complexities due to pixel-level operations and matrix manip-
ulations. Hu Moments, involving image moment calculations, can vary but often
have complexities around O(N2) per patch.

MRFO for feature selection iteratively evaluates feature subsets’ quality using
SVM classification performance. The computational complexity of MRFO pri-
marily lies in evaluating each feature subset’s fitness, which involves training
SVM models on subsets of features. Given M possible feature subsets and
SVM training complexity O(M × N × d), where N is the number of training
instances and d is the dimensionality of the feature space, MRFO’s overall com-
plexity is influenced by the number of iterations and population size, typically
O(T × M × N × d).

TPE optimizes SVM hyperparameters by iteratively exploring and updat-
ing probability distributions over the hyperparameter space. The complexity
involves evaluating configurations’ performances using SVM, adjusting PDFs,
and selecting new configurations, typically O(T × N × C), where T is the num-
ber of iterations, N is the number of configurations, and C is the SVM’s training
complexity.

Multi-level ViTs process image patches by extracting hierarchical features
through self-attention mechanisms. The time complexity is influenced by the
number of patches P , levels L, and self-attention operations per patch, typi-
cally O(P × L × N2), where N is the patch size. ViTs’ training also involves
backpropagation through multiple layers, affecting overall complexity.
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The FPN integrates probabilities from ViT and SVM models to enhance clas-
sification accuracy. The complexity includes concatenating and processing prob-
abilistic outputs from each model, typically O(P ×C), where P is the number of
image patches and C is the number of classes. Training FPN involves optimiz-
ing network parameters via backpropagation, contributing additional complexity
depending on network architecture and iterations.

The overall complexity combines these components’ computational efforts:
O(M ×N ×d+T ×N ×C +P ×L×N2+P ×C) where M is number of feature
subsets (influenced by the number of patches and feature extraction methods),
N is number of pixels per patch (influenced by feature extraction and SVM),
d is SVM training complexity, T is number of hyperparameter optimization
iterations, C is number of classes, P is number of patches, and L is number of
levels in ViTs.

4.4 Clinical Relevance in Enhancing the Diagnosis

BC diagnosis heavily relies on accurate interpretation of histopathological slides.
The proposed framework integrates advanced computational methods to enhance
diagnostic accuracy and reliability. By leveraging multi-level feature extraction
from histopathological patches and employing state-of-the-art classification tech-
niques, the framework aims to improve the discrimination between different tis-
sue types and pathological conditions associated with BC. This comprehensive
approach not only enhances the efficiency of diagnosis but also supports clin-
icians in making informed decisions based on robust quantitative analysis of
tissue characteristics.

The utilization of diverse feature extraction techniques, including statisti-
cal, shape, and texture features, coupled with advanced machine learning algo-
rithms such as SVM and ViT, underscores the potential to achieve more precise
and consistent BC diagnosis. By integrating these computational methods, the
framework seeks to mitigate interpretational variability and enhance the overall
clinical workflow, contributing to improved patient outcomes and management
strategies.

5 Conclusions and Future Directions

This study proposed a comprehensive framework, encompassing feature extrac-
tion, selection, classification, hyperparameter optimization, and model prediction
fusion, aimed to enhance the performance and reliability for BC grading. Promis-
ing results were achieved, with the best-performing model reaching an accuracy
of 96.50%, demonstrating the effectiveness of our approach across varying sam-
ple sizes. The integration of advanced feature extraction techniques facilitated
a comprehensive characterization of histopathological patches, capturing crucial
tissue characteristics indicative of BC. multi-level ViTs efficiently extracted hier-
archical features, while the FPN effectively combined model predictions, improv-
ing overall classification performance. Ablation studies underscored the impor-
tance of the feature extraction pipeline’s robustness and adaptability to diverse
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patch morphologies. Despite variations in patch orientations and morphologies,
consistent performance was observed, highlighting the system’s reliability and
diagnostic capabilities.

Future directions include expanding the dataset to improve model gener-
alizability across diverse breast cancer subtypes and integrating multi-modal
data, such as genomic and radiological information, to enhance classification
accuracy. Developing a real-time application for clinical use, improving model
explainability, and incorporating longitudinal data for prognostic purposes are
key next steps. Collaboration with clinicians will refine the model for practi-
cal use, while addressing regulatory and ethical concerns, such as data privacy
and bias, remains essential. Continuous model improvement through ongoing
learning will ensure it stays accurate and relevant.
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Abstract. Brain tissue segmentation is critical for diagnosing and treat-
ing brain diseases. While Mamba-based models excel in the medical field,
they face performance bottlenecks with high-resolution MRI images,
often losing local feature information in complex texture structures. To
address these challenges and enable deployment in resource-limited set-
tings, we propose Dual-MambaNet, a lightweight segmentation model
based on Mamba. In Dual-MambaNet, we introduce the Outlook atten-
tion module to capture local complex textures and structures in brain
MRI images. Subsequently, we combined it with the Mamba block to con-
struct a feature extractor (FE) encoder layer to couple local and global
features. Additionally, we integrate dual decoder branches and a multi-
level pixel contrastive loss function(MPCL) to better integrate local and
global features. This method optimizes global feature representation by
refining local complex textures and structural details, effectively captur-
ing multi-level features in MRI images. Experimental results on public
brain MRI datasets OASIS1 and MRBrainS13 demonstrate that Dual-
MambaNet achieves high segmentation accuracy with minimal parame-
ters and computational complexity, making it suitable for deployment in
resource-limited medical environments.
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1 Introduction

The rapid diagnosis of brain and nervous system disorders depends on health-
care professionals’ expertise and professional skills. The analysis of brain
magnetic resonance imaging (MRI) by healthcare professionals requires a sig-
nificant amount of time and effort. In recent years, with the rapid advancement
of computer technology, the use of computer-assisted techniques has improved
the speed of segmentation and diagnosis of magnetic resonance imaging (MRI),
enhancing the efficiency of medical diagnosis [10].

Fig. 1. Comparison of model parameters (Million) and GFLOPs (G) (The size of the
circles represents the average Dice score on the OASIS1 dataset (↑)).

Convolutional neural networks(CNN), represented by UNet [14], are widely
applied in medical image segmentation. CNN excel at capturing local features
but may struggle to utilize global contextual information, which can lead to
lower segmentation accuracy [2]. Inspired by self-attention mechanisms in natu-
ral language processing, Vision Transformer (ViT) was the first to apply multi-
head attention mechanisms to visual tasks [3]. Due to its excellent capability in
extracting global context, ViT is widely applied in medical image segmentation.
However, its quadratic complexity can lead to high computational costs, espe-
cially in high-resolution medical image segmentation. In resource-constrained
medical environments, these high computational costs pose challenges for model
deployment. Therefore, there is an urgent need in medical image segmentation
for lightweight algorithms that can achieve high accuracy.

Recently, advancements in state space models (SSM) [12] have provided new
insights into lightweight medical image segmentation algorithms. The linear com-
plexity of state space models and their excellent capability to model long-range
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relationships have led to their widespread application in medical image segmen-
tation, with Mamba as a representative example [4]. To facilitate model deploy-
ment in medical environments and improve segmentation accuracy, a series of
lightweight Mamba models have been proposed to facilitate deployment in medi-
cal environments. LightM-UNet [8] significantly reduces model parameters while
maintaining high segmentation accuracy to ensure feasibility for deployment in
medical environments. UltraLight VM-UNet [18] introduces the Parallel Vision
Mamba (PVM) module, resulting in a more lightweight model that ensures accu-
racy in skin lesion segmentation tasks.

Despite these studies alleviating the issues of complexity and computational
cost to some extent, existing models still face performance bottlenecks when
processing high-resolution MRI images, often losing local feature information in
complex texture structures. To address these challenges and enable deployment
in resource-limited environments, we propose Dual-MambaNet, a lightweight seg-
mentation model based on Mamba. In Dual-MambaNet, we introduce the Out-
look attention module to capture local complex textures and structures in brain
MRI images. Subsequently, we combine it with the Mamba block to construct a
feature extractor (FE) encoder layer, coupling local and global features. Addi-
tionally, we propose dual decoder branches and a multi-level pixel contrastive
loss function (MPCL) to integrate local and global features better. This app-
roach optimizes global feature representation by refining local complex textures
and structural details, effectively capturing multi-level features in MRI images.
Figure 1 compares the parameters and GFLOPs of Dual-MambaNet and other
models(UNet, Swin-UNet, Mamba-UNet and UltraLight VM-UNet). As shown,
Dual-MambaNet maintains high accuracy while having lower parameters and
GFLOPs, facilitating its deployment in resource-limited medical environments.

In this paper, our contributions are as follows:

1. This paper designs a feature extractor (FE) as the encoder part, which
extracts structural features through spatial transformation operations
achieved by adaptive long-range and short-range computations. Specifically,
Mamba is used for extracting global contextual information, while the local
attention mechanism (Outlook attention) captures local features.

2. This paper employs a dual-branch decoder to strengthen the coupling of infor-
mation at different levels and enhance the model’s ability to couple global and
local features.

3. A multi-level pixel contrastive loss function(MPCL) is proposed to optimize
the coupling of the model’s low-level and high-level features.

4. This paper proposes a lightweight model for brain MRI image segmentation.
The model maintains high segmentation accuracy with a minimal increase in
the number of parameters and GFLOPs.

2 Related Work

With the development of artificial intelligence, deep learning has been widely
applied to medical image segmentation. Convolutional neural networks (CNN)
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have been extensively used for image segmentation tasks [9]. UNet [14] has been
widely applied in medical image segmentation due to its symmetric encoder-
decoder architecture and skip connections [7]. The encoder and decoder of UNet
can extract features at different levels, and the skip connections facilitate efficient
transformation between these levels. However, this simple fusion method can
only partially exploit these features, inevitably creating a semantic gap between
features at different levels. To bridge this semantic gap, UNet++ [22] enhances
the fusion of high-level and low-level information by adding convolutional layers
within the skip connections. Building on this, UNet3+ [6] achieves more accu-
rate segmentation by integrating multi-scale high-level and low-level features.
However, methods based on CNNs can only extract local information and need
moreapture global contextual information.

To enhance the extraction of global contextual information, TransUNet [2]
combines Transformer with UNet, achieving higher accuracy in medical image
segmentation. Building on this, UTNet [5] employs multi-scale Transformers to
fuse high-level and low-level features better. Given the suitability of ViT [3] for
visual tasks and its robust feature extraction capabilities, many studies have
integrated ViT and its variants with UNet, yielding improved results.

The linear complexity and long-range relationship modelling capability of
state space models have recently led to the widespread application of Mamba
models in medical image segmentation. Studies have shown that Mamba is effec-
tive in image segmentation [20]. VMamba [23] introduced a hierarchical visual
backbone network and Cross-Scan Module (CSM) based on Mamba, making
Mamba more suitable for 2D image tasks. Mamba-UNet [17], based on the
Swin-UNet architecture, applies pure visual Mamba modules (VSS) to medi-
cal image segmentation, outperforming CNN- and Transformer-based models.
LightM-UNet [8] was proposed to explore more lightweight models, significantly
reducing the number of model parameters. UltraLight VM-UNet [18] verified
the significant impact of channel count on model parameters and introduced
the Parallel Vision Mamba module (PVM), achieving a more lightweight model
while ensuring accuracy in skin lesion segmentation.

Although CNN-based methods can accomplish complex medical image seg-
mentation tasks, they often fail to fully utilize global contextual information,
resulting in poor feature extraction capability and, consequently, lower segmen-
tation performance. On the other hand, transformer-based algorithms can effec-
tively extract global contextual information, but they tend to be complex with
high computational complexity. This paper proposes a lightweight medical image
segmentation model based on Mamba (Dual-MambaNet) to address information
loss issues in brain MRI image segmentation and the difficulty of deploying com-
plex models in resource-constrained medical environments.

3 Method

3.1 Architecture Overview

Figure 2 shows the overall architecture of Dual-MambaNet, which consists of a 6-
layer encoder, a 3-layer low-level feature decoder, and a 6-layer high-level feature
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Fig. 2. The overall architecture of Dual-MambaNet.

decoder, forming an asymmetric U-shaped network. In the encoder part, except
for the first encoder layer, which uses convolutional layers and local attention
mechanisms, all other layers use the feature extractor (FE), as shown in Fig. 3(b).
In the decoder part, except for the last decoder layer, all other layers use the
parallel Mamba layer (PVM) [18]. The number of channels in each layer of the
encoder and decoder structures are [8, 16, 24, 32, 48, 64].

Skip connections use the channel attention bridge (CAB) and spatial atten-
tion bridge (SAB) as proposed in [15]. The SAB module includes max pooling,
average pooling, and dilated convolutions with shared weights. The CAB module
includes global average pooling, concatenation operations, fully connected lay-
ers, and a Sigmoid activation function. In the skip connections of the low-level
decoder, attention bridges are not used to avoid over-decoding due to the large
gap between shallow features (which contain better detail information) and deep
features (which contain more semantic information).

The model has two final outputs: the left decoder branch outputs low-level
features, and the right decoder outputs high-level features. The low-level output
information is also used to finely optimize the high-level output through a pixel-
level contrastive loss function, improving the model’s segmentation accuracy.
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Fig. 3. Encoder Structure Diagram (a) E1: First Layer Encoder Structure. (b) FE2-
FE6: Feature Encoder (FE) Constructed.

3.2 Parallel Vision Mamba Layer (PVM)

The Mamba module used in this paper is the Parallel Vision Mamba layer (PVM)
proposed in [18], which is based on the Mamba module [4]. Its structure is shown
in Fig. 4(b). In [18], the impact of the number of channels on the Mamba param-
eter count was extensively discussed, demonstrating that the number of channels
has an exponential effect on the Mamba parameter count. Based on this conclu-
sion, the PVM Layer was proposed. The structure of PVM is shown in Fig. 4(a).
PVM mainly combines Mamba with residual connections and adjustment fac-
tors. The feature token X (with C channels) first passes through a LayerNorm
layer and is then divided into four sub-features (each with C/4 channels) along
the channel dimension. Each sub-feature is then fed into Mamba, and the out-
puts are subjected to residual and adjustment operations to optimize the ability
to capture long-range spatial information. Finally, the four features are concate-
nated along the channel dimension to form Xout, which has the exact dimensions
as the original input X. Xout, then undergoes LayerNorm and linear projection
operations to transform it to the exact dimensions as the original image. This
allows Mamba to enhance the capture of long-range spatial relationships without
introducing additional parameters and computational complexity.

3.3 Outlook Attention

The Outlook attention in this paper is based on [21], and its specific structure
is shown in Fig. 5. Specifically, for each spatial position (i, j), Outlook Atten-
tion calculates its similarity with all neighbours within a local window of size
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Fig. 4. (a) Parallel Vision Mamba (PVM) structure diagram. (b) Mamba Block.

K×K centred at (i, j). Unlike self-attention, which requires a Query-Key matrix
multiplication to compute attention, Outlook Attention simplifies this process
through a reshaping operation.

Formally, given the input X, each C-dimensional token is first projected
using two linear weight layers WA ∈ R

C×K4
and WV ∈ R

C×C into the outlook
weights A ∈ R

H×W×K4
and value representations V ∈ R

H×W×C , respectively.
Let VΔi,j

∈ R
C×K2

denote the values within the local window centred at (i, j),
This process is represented by Eq. 1.

VΔi,j
=

{
Vi+p−�K

2 �,j+q−�K
2 �

}
, · · · 0 ≤ p, q < K, (1)

where,
⌊

K
2

⌋
represents the floor function of K

2 .
In Outlook attention, the outlook weights at position (i, j) can be directly

used as the aggregated attention weights by reshaping them into Âi,j ∈ R
K2×K2

,
followed by the softmax activation function. Consequently, the value projection
process can be written as Eq. 2:

YΔi,j
= MatMul

(
Softmax(Âi,j), VΔi,j

)
, (2)

where Âi,j is the reshaped outlook weights, and VΔi,j
represents the values within

the local window centred at (i, j).
Outlook attention densely aggregates the projected value representations. By

summing the differently weighted values from the same position across different
local windows, the output result is obtained as shown in Eq. 3:
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Fig. 5. Outlook attention structure diagram.

Ỹi,j =
∑

0≤m,n<K

Y i,j
Δ

i+m−[K
2 ],j+n−[K

2 ]
. (3)

3.4 Loss Function

Pixel Level Contrastive Learning. Contrastive learning is widely used in
self-supervised learning. Its main idea is discrimination between positive and
negative samples, primarily achieved by using a metric function to encourage the
network to bring positive samples closer while pushing negative samples apart. In
medical image segmentation, contrastive learning addresses the critical issue of
sparse annotated samples in datasets while enhancing the model’s generalization
ability and augmenting the model’s capacity for feature extraction [19].

Dual-MambaNet uses two decoders: a low-level decoder and a high-level
decoder. The output of the low-level decoder is considered the segmentation
result for generating pseudo-labels, while the output of the high-level decoder is
regarded as the segmentation result for the accurate labels. Inspired by [16],
we propose using our novel improved multi-level pixel contrastive loss func-
tion(MPCL) between the outputs of the two decoders. This approach optimizes
the output of the high-level decoder based on the output of the low-level decoder,
thereby improving the final output of the model.

Considering that in brain images, each tissue has a relatively small size and
many pixels belong to the background, these background pixels do not provide
sufficient features for the network. Therefore, we propose using adaptive aver-
age pooling to filter out unimportant background pixels, enhancing the model’s
feature extraction capability. Additionally, we apply L2 regularization on the
channel dimension to sparsify the features, thereby improving the model’s gen-
eralization and robustness. Specifically, our proposed multi-level pixel contrastive
loss function(MPCL) can be expressed as Eq. 4:
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LMPCL =
∑ ‖(G(Dθ(DL ∪ DH)), G(Dθ(DH))‖2

2

N
, (4)

where Dθ is the decoder using AdaptiveAvgPool, G is the L2 regularization
operation along the channel axis, and N is the number of input data. DL and
DH represent the outputs of the low-level and high-level decoders, respectively,
and ∪ denotes the union operation. To effectively utilize the low-level decoder
output to optimize the high-level decoder output, we consider the high-level
decoder output as the low-level decoder output to maximize the distance between
different level outputs, thereby improving the model’s performance.

Toatal Loss. In our model, decoders and labels use standard cross-entropy
loss(LCE) and Dice loss functions(LDice). A multi-level pixel contrastive loss
function(MPCL) is also used between the outputs of the two decoders.

The total loss is defined as Eq. 5:

Ltotal = λ

( LL
Dice+LL

CE
2 + LH

Dice+LH
CE

2

2

)
+ (1 − λ)LMPCL, (5)

where LL
Diceand LH

Dicerepresent the Dice losses for the low-level and high-level
feature outputs, respectively. Similarly, LL

CE and LH
CE represent the cross-

entropy losses for the low-level and high-level feature outputs, respectively.
LMPCL represents the multi-level pixel contrastive loss function between the
high-level and low-level feature outputs. The weighting factor lambda, set empir-
ically to 0.9, balances the contributions between the contrastive loss and the
other loss functions. As shown in Fig. 6, we illustrate the process of the pro-
posed dual-branch decoder and multi-level pixel contrastive loss function col-
laboratively optimizing the final output. In Fig. 6, DH represents the high-level
decoder branch, and DL represents the low-level decoder branch.

Fig. 6. A diagram of the dual-branch decoder framework based on multi-level pixel
contrastive learning.
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4 Experiments and Results

4.1 Datasets

OASIS1: The OASIS-1 dataset [11] used in this experiment is from the Open
Access Series of Imaging Studies (OASIS). It comprises 421 subjects aged
between 18 and 96 years. Each subject has a T1-weighted magnetic resonance
imaging (MRI) scan. The dataset labels classify brain tissue into the cere-
brospinal fluid (CSF), grey matter (GM), and white matter (WM).

MICCAI 2013 MR BRAIN IMAGE SEGMENTATION: The
MRBrainS13 challenge dataset consists of 20 subjects acquired using a 3.0T
Philips Achieva MR scanner at the University Medical Center Utrecht, Nether-
lands [13]. The dataset includes multi-sequence MRI brain scans, such as T1,
T1-IR and T2-FLAIR used for the challenge. The dataset labels classify brain
tissue into the cerebrospinal fluid (CSF), grey matter (GM), and white matter
(WM).

4.2 Implementation Details

All experiments were conducted on a GeForce RTX 3090Ti GPU system with
24GB memory and Ubuntu 22.04, Python 3.8.19, PyTorch 2.2.0, and CUDA
11.8. The model is used for 2D medical image segmentation. We randomly split
the two datasets into training, testing, and validation sets in an 8:1:1 ratio.
All images were normalized and resized to 224×224, and data augmentation
techniques, including vertical flip, horizontal flip, and random rotation, were
applied. The Dual-MambaNet model was trained for 40,000 iterations with a
batch size 24. The AdamW optimizer was used with a learning rate of 1e-4 and
a weight decay set to 1e-4. Network performance was evaluated on the validation
set every 200 iterations, and model weights were saved only when the new best
performance was achieved on the validation set.

4.3 Comparison Methods

To ensure a fair comparison, the baseline methods (UltraLight VM-UNet) [18],
Mamba-UNet [17], UNet [14], and Swin-Unet [1] were also trained under the
same hyperparameter configurations without loading pre-trained models. We
directly compared Dual-MambaNet with the baseline method (UltraLight VM-
UNet) and other methods based on CNN, Transformer and Mamba.

4.4 Evaluation Metrics

This study also employed three objective evaluation metrics for quantitative
comparison of our proposed method: (1) Similarity Measurement: Dice coeffi-
cient (denoted by an upward arrow ↑), where values closer to 1 indicate better
performance. (2) Difference Measurements: Hausdorff Distance (HD) 95% and
Average Surface Distance (ASD) (both denoted by a downward arrow ↓), where
lower values are better, indicating higher similarity between the predicted seg-
mentation and the ground truth.
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Fig. 7. Segmentation results comparison among different models on the OASIS1
dataset, with localized zoom-in comparison. (a) Image. (b) GT. (c) Mamba-UNet.
(d) Swin-UNet. (e) UNet. (f) UltraLight VM-UNet. (g) Dual-MambaNet.

4.5 Qualitative Results

Figure 7 and Fig. 8 present three randomly selected original image samples
from the OASIS1 and MRBrainS13 datasets. They compare the segmentation
results of all baseline methods, including Dual-MambaNet, on the OASIS1 and
MRBrainS13 datasets, along with zoomed-in views of local details.

As shown in the results of Fig. 7 and Fig. 8, as well as the enlarged views of
local details, Dual-MambaNet can segment all categories completely compared
to the Baseline (UltraLight VM-UNet). It can extract local features better while
also capturing high-level semantic information. Compared to other classic models
based on CNN, Transformer, and Mamba, Dual-MambaNet can also fully extract
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Fig. 8. Segmentation results comparison among different models on the MRBrainS13
dataset, with localized zoom-in comparison. (a) Image. (b) GT. (c) Mamba-UNet. (d)
Swin-UNet. (e) UNet. (f) UltraLight VM-UNet. (g) Dual-MambaNet.

local features. As seen in the enlarged local view in Fig. 7, Dual-MambaNet can
recognize more complex local features while maintaining the integrity of global
information. As shown in the enlarged local view in Fig. 8, Dual-MambaNet can
better recognize edge information and maintain the integrity of global features.
In the above analysis, Dual-MambaNet can fully extract global features while
better capturing complex textures and structural features such as edges.

4.6 Quantitative Results

Table 1 and Table 2 directly compare Dual-MambaNet with other segmenta-
tion networks on the OASIS1 and MRBrainS13 datasets, respectively, including
similarity and difference metrics. The best-performing results are highlighted in
bold, and ’-’ indicates that the model did not segment that category.

Quantitative results indicate that on large-scale datasets, Dual-MambaNet
performs comparably to CNN-based and Transformer-based models on some
metrics while surpassing classical models and the latest Vision Mamba models on
others. Additionally, Dual-MambaNet has lower parameter counts and GFLOPs.
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Table 1. Comparison of objective evaluation metrics of models on the OASIS1 dataset.

Model Dice(↑) HD95(↓) ASD(↓) Para(M) GFLOPs(G)

CSF GM WM CSF GM WM CSF GM WM

Mamba-UNet 0.9118 0.9114 0.8905 1.2102 1.7833 3.4910 0.3183 0.5163 1.0448 28.00 5.99

UNet 0.8719 0.8717 0.8793 1.4852 1.9535 4.0379 0.3059 0.6240 1.4087 1.81 2.3

Swin-UNet 0.9160 0.9187 0.9098 1.2913 1.2347 1.8963 0.2536 0.4269 0.4949 41.34 8.71

UltraLight VM-UNet 0.8528 0.7177 - 1.6120 6.5613 - 0.5413 0.4943 - 0.049 0.04

Dual-MambaNet 0.9161 0.9198 0.9136 1.1439 1.3626 2.5324 0.3222 0.3771 0.2542 0.10 0.08

Table 2. Comparison of objective evaluation metrics of models on the MRBrainS13
dataset.

Model Dice(↑) HD95(↓) ASD(↓) Para(M) GFLOPs(G)

CSF GM WM CSF GM WM CSF GM WM

Mamba-UNet 0.6655 0.6918 0.7150 2.3588 3.4587 4.2645 0.5810 1.0214 1.3920 28.00 5.99

UNet 0.6614 0.7003 0.7327 2.1166 2.5988 5.0152 0.4488 0.7471 1.7367 1.81 2.3

Swin-UNet 0.6683 0.7045 0.7417 1.7946 1.5695 4.5107 0.4843 0.4716 1.3532 41.34 8.71

UltraLight VM-UNet - 0.6219 0.6895 - 4.8375 4.7374 - 1.4408 1.6855 0.049 0.04

Dual-MambaNet 0.6697 0.7077 0.7199 2.3193 2.5511 4.2528 0.5565 0.7432 1.5689 0.10 0.08

Compared to UltraLight VM-UNet, Dual-MambaNet significantly improves seg-
mentation accuracy with a slight increase in complexity. Dual-MambaNet also
demonstrates good generalization ability and robustness on small datasets, accu-
rately predicting segmentation masks. Despite a slight increase in parameters
and GFLOPs compared to the baseline model (UltraLight VM-UNet), Dual-
MambaNet significantly enhances segmentation performance. Dual-MambaNet
achieves higher segmentation accuracy than other methods while maintaining
lower parameter counts and GFLOPs.

4.7 Ablation Study

Dual-MambaNet involves three key components: 1) Outlook Attention; 2) Dual
Decoder Branches; 3) Multi-Level Pixel Contrastive Loss(MPCL). We compare
the parts proposed in this study through ablation studies. To validate the effec-
tiveness of the proposed model and its improvements, extensive ablation exper-
iments were conducted on the MRBrainS13 dataset, using Dice and HD95, to
evaluate the performance of each component quantitatively. The best-performing
values are highlighted in bold, and ‘−’ indicates that the model did not segment
that category. The results are shown in Table 3. In this table, ‘Atten’ represents
the improved Outlook attention, ‘Double’ represents the duale decoder branches
structure, and ‘MPCL’ represents the multi-level pixel contrastive loss function.
Additionally, ✓ indicates that the component is used and ✗ indicates that the
component is not used.
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Table 3. Comparison of Ablation Experiment Results.

Model Dice(↑) HD95(↓)

Double Atten MPCL CSF GM WM CSF GM WM

✗ ✗ ✗ - 0.6219 0.6895 - 4.8375 4.7374

✓ ✗ ✗ 0.6348 0.6627 0.6672 2.9957 3.9822 7.0246

✓ ✗ ✓ 0.6414 0.6629 0.6845 2.9074 3.3953 5.3508

✓ ✓ ✗ 0.6370 0.6727 0.6787 3.0993 3.4120 6.8035

✗ ✓ ✗ 0.6321 0.6542 0.6654 3.0875 3.9764 6.9864

✓ ✓ ✓ 0.6697 0.7077 0.7199 2.3193 2.5511 4.2528

As shown in Table 3, although using local attention alone for feature extrac-
tion improves the model’s accuracy, the Dual-MambaNet with the dual-branch
decoder captures the complex features of brain MRI images more effectively.
This indicates that the dual-branch decoder enhances the model’s ability to
couple multi-level information, thereby improving segmentation accuracy. Fur-
thermore, using the pixel-level contrastive loss function for output optimization
further improves segmentation accuracy, demonstrating that this loss function
strengthens the coupling ability of the dual-branch decoder. While using any sin-
gle component alone can improve segmentation performance, the model achieves
the best performance when all three components are combined. These results
show that Dual-MambaNet can segment brain MRI images with high accuracy.

5 Conclusion

This paper addresses the performance bottlenecks and loss of local feature infor-
mation in brain tissue segmentation of high-resolution MRI images by proposing
the Dual-MambaNet model. This model combines the Outlook attention mod-
ule with Mamba to construct a feature extractor (FE) encoder layer, effectively
connecting local and global features. Additionally, dual decoder branches and
a multi-level pixel contrastive loss function (MPCL) are introduced to optimize
feature representation. Experimental results on the OASIS1 and MRBrainS13
datasets demonstrate that Dual-MambaNet achieves high segmentation accu-
racy with lower parameters and GFLOPs, making it suitable for deployment in
resource-limited medical environments. This research provides a promising solu-
tion for medical image segmentation under constrained computational resources.
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Abstract. The segmentation of the Inferior Alveolar Canal (IAC) plays
a central role in maxillofacial surgery, drawing significant attention in
the current research. Because of their outstanding results, deep learn-
ing methods are widely adopted in the segmentation of 3D medical vol-
umes, including the IAC in Cone Beam Computed Tomography (CBCT)
data. One of the main challenges when segmenting large volumes, includ-
ing those obtained through CBCT scans, arises from the use of patch-
based techniques, mandatory to fit memory constraints. Such training
approaches compromise neural network performance due to a reduction
in the global contextual information. Performance degradation is promi-
nently evident when the target objects are small with respect to the
background, as it happens with the inferior alveolar nerve that develops
across the mandible, but involves only a few voxels of the entire scan.
In order to target this issue and push state-of-the-art performance in
the segmentation of the IAC, we propose an innovative approach that
exploits spatial information of extracted patches and integrates it into a
Transformer architecture. By incorporating prior knowledge about patch
location, our model improves state of the art by ∼2 points on the Dice
score when integrated with the standard U-Net architecture. The source
code of our proposal is publicly released.

Keywords: Inferior Alveolar Canal · 3D Segmentation · CBCT ·
Transformers · Patch-based Learning

1 Introduction

The presence of the Inferior Alveolar Nerve (IAN) represents a challenge for max-
illofacial surgery. Such a nerve crosses the Inferior Alveolar bone Canal (IAC)
and supplies sensation to the lower teeth, lips, and chin. For this reason, IAN
position (Fig. 1) must be carefully identified before surgical intervention (e.g.,
implant placement and molar extraction) to prevent aches, pain, and tempo-
rary or permanent paralysis [33]. Usually, the preoperative treatment planning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 108–123, 2025.
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Fig. 1. CBCT with the IAC marked in red. (a) contains a 3D dense annotation, while
(b) contains a 2D sparse annotation obtained from a panoramic view of the mandible
and later re-projected to the 3D space (Color figure online).

is based on IAC segmentation performed on 3D data acquired with Cone Beam
Computer Tomography (CBCT). Nevertheless, producing 3D annotations for 3D
data is dramatically challenging and time-consuming. Hence, the standard prac-
tice consists of extracting 2D panoramic views where the surgeon can annotate
the approximate position of the IAC drawing 2D curves. Despite this procedure
being effective most of the time, having the 3D segmentation of the IAC would
crucially improve the precision of the surgery planning, minimizing the likelihood
of errors during surgery operations.

Recent advancements in deep learning have significantly impacted multi-
ple domains, including medical imaging, particularly through methods based on
Convolutional Neural Networks (CNNs) [11,14,15,23–26]. Among them, of the
most popular is U-Net [27], an encoder-decoder architecture with skip connec-
tions capable of extracting deep features while trying to retain as many fine-
grained details as possible [10]. As well, many U-Net-based approaches for the
automatic segmentation of the IAC [5,16,30] have been recently published, also
thanks to the public availability of a 3D-annotated dataset [4].

Despite the great success of CNN in medical imaging, the rise of Transformer
architectures [31] stands as a turning point. Representing the standard of Natural
Language Processing since 2017 and deeply affecting the Computer Vision field
since 2020 [8], Transformer-based architectures demonstrate dominance in sev-
eral tasks due to their capability of modeling long-range interactions [6,21,22,28].
This is in contrast with the CNN locality bias, which instead forces the modeling
of local interactions that lie within the CNN sliding kernels [8]. For this reason,
researchers are developing strategies to improve U-Net-based architectures [27]
by integrating some Transformer layers to enhance long-range interactions, with
encouraging results [9,29]. In this work, we investigate innovative and effective
ways to improve such an integration.

Regardless of the adopted method, processing 3D volumes leads to severe
memory constraints, making the segmentation of a single 3D scan in one shot a
prohibitive operation. Meanwhile, decreasing the resolution of such 3D images
with downsampling techniques is counterproductive because fine-grained details
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are needed to improve the segmentation quality. Hence, the only solution to
solve both problems is splitting the 3D scans into multiple patches that will be
processed separately, without losing detailed information. The literature refers
to the aforementioned procedure as patch-based learning. Even if patch-based
learning allows the training of deep neural networks with standard hardware
resources, it must be mentioned that it forces the model to focus only on a
fraction of the total information at a time, losing global context (e.g., the position
of the examined patch with respect to the other patches of the 3D volume). In
this research, we aim at mitigating this phenomenon with Transformers [31].
Paper Contribution. We present an innovative 3D segmentation model
enhanced by a memory-augmented Transformer encoder that effectively har-
nesses absolute spatial coordinates, addressing the challenges of patch-based
training.

Specifically, our proposal evolves from the standard 3D U-Net architecture by
incorporating a memory-augmented Transformer in the bottleneck. By leverag-
ing the inherent capacity of Transformers to model interactions between all pairs
of elements within a given sequence, we aim to enhance the flow of information
among the elements of the U-Net bottleneck, thereby increasing contextualiza-
tion. Moreover, we harness such a flow of information to effectively inject con-
textual information related to the processed patches, i.e., their position within
the entire volume, thus mitigating issues associated with patch-based learning.
The “memory” is an additional refinement that supports the model in retaining
crucial prior concepts that may be challenging to be directly extracted from
image features, but are nonetheless valuable for interpretation. In summary, the
key contributions of this paper are as follows:

i) We propose a memory-augmented Transformer module that harnesses abso-
lute spatial coordinates, mitigating issues related to patch-based learning;

ii) We design an U-Net-based deep learning architecture integrating our pro-
posed module and tailored for 3D IAC segmentation, outperforming state of
the art on the selected segmentation task of ∼2 Dice points;

iii) The source code of our proposal is publicly released1 to allow the replication
of the experiments and foster future research advancements.

2 Related Works

While classical computer vision approaches have made significant contributions
in the past [1,2,13,19,32], today, the most successful models for the segmentation
of the IAC are based on machine learning and deep learning.

Notably, Jaskari et al. [12] presented one of the pioneering applications of
deep learning for mandibular canal segmentation. Their approach involved train-
ing a convolutional network using a dataset of coarsely annotated 3D scans. This

1 https://github.com/AImagelab-zip/alveolar_canal

https://github.com/AImagelab-zip/alveolar_canal
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deep learning approach demonstrated superior performance compared to previ-
ous methods relying on Statistical Shape Models. However, it encountered limi-
tations due to the lack of finely annotated voxel-level data and the sub-optimal
quality of segmentation masks generated automatically from coarse annotations.

Cipriano et al. [5] introduced a significant breakthrough by proposing the
first publicly available dataset of 3D annotated CBCT scans of the human jaw,
named Maxillo, alongside a deep learning model for the 3D segmentation of the
IAC, PosPadUNet3D. This marks a substantial advancement in publicly acces-
sible datasets for the segmentation of the inferior alveolar canal. The Maxillo
dataset has been later extended with the 2023 MICCAI ToothFairy Challenge.2

Additionally, in [30], Usman et al. proposed a two-stage approach also based
on the U-Net architecture. On the hypothesis that the predominant challenge
in segmenting the inferior alveolar canal relates to the class imbalance between
the mandibular canal and the background, they initially apply a CNN to isolate
the regions of the input volume where the canal is likely to be located, reducing
background interference. Then, leveraging U-Net architecture, the segmentation
of the mandibular canal is performed exclusively within the extracted regions.

The latest approach tested on public data is contributed by Zhao et al. [34]
and, similarly to [30], it works in a two-stage fashion. Firstly, the mandibular
centerline is extracted via automatic segmentation of the mandible and local-
ization of the mandibular and mental foramen. The sub-volumes containing the
mandibular canal information are then obtained using a double reflection method
based on the Frenet frame. Secondly, the extracted sub-volumes are fed into a U-
Net-based 3D segmentation network, and the topology of the mandibular canal
is constrained with the clDice. To conclude the segmentation process, the pre-
diction masks are inversely transformed back into the original CBCT images.

2.1 Patch-Based Learning

All of the aforementioned solutions employ a patch-based learning strategy.
Indeed, when targeting complex, high-dimensional inputs or when the compu-
tation resources available are limited or should be kept so, patch-based learning
is the only viable approach. The segmentation or classification in whole-slide
images, as well as the segmentation of anatomical structures in 3D volumes, are
noticeable medical imaging applications requiring such a kind of learning pro-
cedure. Indeed, feeding a neural network with gigapixel images or hundreds of
millions of voxels coming from 3D volumes is not a feasible approach.

To meet memory constraints, the simple downsampling of the input data is
counterproductive whenever the preservation of fine-grained details is crucial. A
common approach consists of training neural networks using subsets extracted
from the original data [3,12]. Such an approach, known as patch-based learning,
mitigates memory constraints but also leads to a loss of global information due
to restricted (patch-limited) receptive fields. Moreover, ambiguity in segment-
ing objects situated at the intersections of multiple patches may arise, causing

2 https://toothfairy.grand-challenge.org

https://toothfairy.grand-challenge.org
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Fig. 2. Sample data from the ToothFairy dataset. Each line of the image contain a
different patient, from left to right you can see left-side and frontal views of the CBCT
volume, sparse and dense annotations of the inferior alveolar nerve.

potential artifacts around patch boundaries. When the object to be segmented
is small in comparison to the entire volume, as it happens in the segmentation
of the IAC, the aforementioned challenges become particularly prominent.

A first proposal to overcome the patch-based learning drawbacks in the
segmentation of the IAN is introduced in [5] with the PosPadUNet3D. The
authors suggested leveraging the positional information from the coordinates
of extracted patches by simply projecting and concatenating these coordinates
within the network bottleneck. Although this approach demonstrated some
improvements in performance, the aforementioned major issues still persisted.
Unlike PosPadUNet3D, our approach harnesses the information flow of Trans-
formers, semantically conditioning the bottleneck embedding based on the spa-
tial information instead of a simple feature concatenation.

3 Dataset

The maxillofacial dataset employed in our experiments is an improved version
of the Maxillo dataset introduced by Cipriano et al. [4]. Such an improvement,
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known as ToothFairy dataset, was part of the homonymous MICCAI 2023 chal-
lenge hosted on the Grand Challenge platform.3

All of the 3D CBCT volumes of the ToothFairy dataset were collected from
the Affidea center in Modena, Italy, part of a leading pan-European healthcare
group specializing in advanced diagnostics, outpatient services, laboratory anal-
yses, physiotherapy and rehabilitation, and cancer diagnosis and treatment. The
scans were acquired using the NewTom/NTVGiMK4 CBCT device, with acqui-
sition parameters set at 3 mA, 110 kV, and 0.3mm cubic voxels. The dataset is
publicly available after user registration:4 such availability, along with the public
release of the source code, ensures full reproducibility of our experiments and
verification of our claims.

The annotation process was initially performed by diagnostic technicians
responsible for the examinations, providing what we refer to as “sparse anno-
tations” (Fig. 1b): the upper boundary of the canal is marked along the entire
dental arch, offering a useful approximation of the nerve position. Such anno-
tations are performed on 2D panoramic views of the jawbone and are routinely
used in surgical practice to measure the height and depth of implant placement
sites, thereby avoiding injuries to the inferior alveolar nerve.

Instead, the 3D annotations (in the following also referred to as “dense anno-
tations”) of the ToothFairy dataset (Fig. 1a) have been created using an updated
version of the iacat tool [18], specifically version 2.0 developed in [17], by a team
of medical experts with over five years of experience in the maxillofacial field.

All of the 443 volumes in the ToothFairy dataset are paired with the 2D
sparse annotation. For a subset of 153 scans, the 3D dense annotation is also
provided. For what concerns volume shapes, the average size in the dataset
is 169 × 342 × 370, while minimum and maximum volumes have respectively
148×265×312 and 178×423×463 dimensions. Sample images of the employed
dataset are reported in Fig. 2.

4 Methods

This paper proposes a novel U-Net-based deep learning model for the segmen-
tation of the IAC. Specifically, we devise a module that harnesses memory-
augmented Transformer layers for modeling long-range interactions and inte-
grating absolute positional information to mitigate issues related to patch-based
learning. All the details concerning our proposed methodology can be found
in Sect. 4.1.

In our work, a two-step training procedure is employed to exploit both vol-
umes that are annotated in 3D and those that are annotated only in 2D, improv-
ing overall segmentation performances. An in-depth explanation of this training
procedure can be found in Sect. 4.2.

Finally, the Hann-based post-processing employed in our pipeline is described
in Sect. 4.3.
3 https://toothfairy.grand-challenge.org/
4 https://ditto.ing.unimore.it/toothfairy/

https://toothfairy.grand-challenge.org/
https://ditto.ing.unimore.it/toothfairy/
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Fig. 3. Proposed Transformer module integrated in the standard 3D U-Net architec-
ture. A detailed visualization of our module is reported in Fig. 4.

4.1 The Proposed Approach

We design a novel deep-learning model to address the limitations associated
with patch-based learning through the utilization of Transformers capable of
exploiting contextual information. More specifically, we propose a module based
on Transformer encoder blocks, accompanied by learned embedding represen-
tations for positional encoding, and integrate it in the bottleneck of the well-
known U-Net architecture (Fig. 3). By capitalizing on the inherent capacity of
Transformers to model interactions between all pairs of elements within a given
sequence, we aim to enhance the flow of information among the elements of
the U-Net bottleneck. Moreover, we leverage this to effectively inject contextual
information related to the processed patches.

In practice, we introduce a specialized token that captures the absolute posi-
tion of the patch within the original volume, referred to as [ABS]. This is accom-
plished by projecting the 3D coordinates of two opposite corners of the patch
into the bottleneck dimensional space, exploiting a learnable matrix of dimen-
sion 6 × dmodel, where 6 are the numbers identifying the position of the patch
within the entire volume and dmodel is the number of channels in the U-Net
bottleneck (Fig. 4). Subsequently, we concatenate this token with the remaining
elements of the bottleneck, allowing its information to influence their represen-
tations through the Transformer encoder.

It is worth noticing that Transformers already employ positional encoding
to describe the location of a token in a sequence. Such an encoding provides
information about the position of (groups of) voxels within the current patch
only. Instead, our [ABS] token encodes the position of a patch with respect to
the entire volume. However, the inbuilt positional encoding of the Transformer
architecture must not be applied to the [ABS] because all of the other tokens
should be able to employ its information independently from their position.
To achieve this goal, the Transformer inbuilt positional encoding is summed
only to the tokens representing volume information. Again, this ensures that
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Fig. 4. The proposed module. B, C, D, W, and H represent respectively batch size, chan-
nels, depth, height, and width. The patch coordinates [x1, y1, z1, x2, y2, z2] are projected
using a linear layer to produce the [ABS] token. The activation map obtained in the
bottleneck of U-Net before the first transposed convolution (pink blocks) is flattened
across the spatial dimension and concatenated with the [ABS] token. The resulting
tensor is fed to a cascade of four Transformer layers: for each layer a new set of mem-
ory token is concatenated to the input sequence and discarded from the output so that
the sequence length does not vary. After the Transformer layers, the [ABS] token is
removed and the remaining output is reshaped back to the original spatial dimension-
ality. (Color figure online)

the [ABS] token remains positionally untied from the rest of the sequence. This
disentangled approach allows each element to pay attention to the special token’s
information and vice versa, regardless of its position in the sequence.

Additionally, we enriched the proposed module with memory. The integration
of Transformer memory has demonstrated considerable effectiveness in tasks
such as image captioning [7]. This mechanism enables the Transformer to retain
crucial prior concepts that may be challenging to be directly extracted from
image features, but are nonetheless valuable for interpretation. Recognizing the
applicability of this approach to the patch-based learning paradigm, wherein each
patch is extracted from a wider context, we harness the power of Transformer
memory to incorporate external information, thus enhancing the processing of
individual patches. A graphical summary of this process is provided in Fig. 4.

4.2 Model Training

With the aim of also leveraging volumes with only 2D sparse annotations avail-
able, we adopt a two-step procedure composed of an initial step called “deep label
expansion” or “generation phase” and a second one that consists of a standard
segmentation training. In the deep label expansion, the network is trained using
CBCT volumes paired with their corresponding sparse 2D labels to generate
dense 3D annotations. Again, the rationale behind this operation is to obtain a
model that can leverage the sparse 2D labels (available for all the volumes in
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the Maxillo dataset) to create dense synthetic 3D annotations when they are not
available.

The second step consists of merging the initial training set provided with
“true” labels with the synthetically annotated CBCT volumes, generated by the
deep label expansion. Thus, a total of 420 3D annotated volumes is obtained
as a train set. Still, 8 and 15 volumes from the non-synthetic 3D dataset are
available for the validation and test set respectively. Using the above-mentioned
set of data, our segmentation model is trained to output 3D masks representing
the inferior alveolar canal, and consequentially evaluated.

In other words, our pipeline leverage the proposed model twice, changing
only the input data. A first instance is used to extend the amount of 3D IAC
annotations by learning to “expand” the available 2D labels. The second instance
is trained to predict a 3D segmentation of the IAC starting from a virgin scan.
Test data of both instances are never seen during training.

4.3 Post-processing

Even if the proposed memory-augmented Transformer-based encoder with [ABS]
token mitigates the lack of global information in patch-based learning and
reduces the segmentation ambiguity on patch borders, we still need to deal with
noise and artifacts generated at patch boundaries (Fig. 5). Taking inspiration
from audio encoding [20], we introduced a post-processing algorithm based on
the Hann windows function to tackle the presence of artifacts near patch edges.
The Hann window function is defined as:

WHann(i) =
1
2

(
1 − cos

2πi

I

)
(1)

where i is an element in the considered interval I. This function is symmetric,
peaking at 1 in the middle of the window and tapering to 0 at the edges. The sum
of two Hann windows, each shifted by I

2 (50%), is equivalent to a rectangular
window of width I and height 1:

WHann(i) + WHann

(
i +

I

2

)
= 1 (2)

Such a property is exploited in audio encoding to eliminate border artifacts by
multiplying the Hann window with frames that overlap by 50%, before summing
them together.

While this approach is defined in 1D for audio, we extended it to multiple
dimensions, and applied it to the 3D segmented patches produced by our model.
Thus, we are able to reduce the aforementioned noise on patch borders and
improve the overall performance.

The effects of the proposed 3D extension of the Hann filtering to the seg-
mented patches produced by our model are depicted in Fig. 5.
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Fig. 5. Effects of Hann-based filtering on an axial plane extracted from a predicted
volume. On the left (a), the prediction of our model without post-processing. On the
right (b), the effect of the proposed Hann-based post-processing on the same model
output. In both images, blue represents logits that have a value higher than 10−4. The
post-processing significantly reduces artifacts that appear close to patch borders. Even
if most of these artifacts do not cause any issues, the ones that are close to the IAC
badly influence the final segmentation. (Color figure online)

5 Experiments and Results

Section 5.1 defines the details of the adopted patch-based learning procedure,
alongside with our experimental setting. We compare our proposal with state-
of-the-art models in Sect. 5.2 and conduct an ablation study to highlight the
contribution of the absolute token [ABS] and the memory of the Transformer in
Sect. 5.3. Finally, Sect. 5.4 provides some visualizations of our model predictions,
discussing its strengths and weaknesses.

5.1 Experimental Setting

Since we adopted a patch-based learning approach, we fed our model with
patches of 120×120×120 instead of the entire volume as a whole. During train-
ing we extracted patches with random uniform sampling, while during inference
patches are extracted with an overlap of 50% in all the dimensions.

For what concerns the hardware resources, we trained our model in a dis-
tributed fashion, exploiting two NVIDIA Quadro RTX 5000 GPUs. The time
needed for a complete training is approximately 16h with a batch size of 2.

5.2 Comparison with the State of The Art

In order to compare our proposal with the latest advances in the segmentation
of the inferior alveolar nerve [30,34], Table 1 is provided. Both [30,34] leverage
a two-stage approach that aims at filtering out background data before actually
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Table 1. Comparison of our proposed model with the state of the art on IAC segmen-
tation.

Dataset Method IoU Dice

Maxillo Usman et al. [30] – 0.770
Cripriano et al. [5] 0.650 0.790

Zhao et al. [34] – 0.810
Ours 0.7040.824

ToothFairy Ours 0.7100.831

performing the canal segmentation. In doing so, [30] makes use of a CNN-based
approach that performs worse than both the positional encoding proposed in [5],
and the non-deep two-stage approach based on the Frenet frame described in [34].
In Table 1 the proposed (complete) model is trained from scratch by means
of both 3D “true” label and synthetically generated labels obtained from the
deep label expansion phase. For a fair comparison, we performed the training
twice, using only the Maxillo dataset (the dataset employed by competitors)
and the complete ToothFairy dataset (our reference dataset). The test set of the
two datasets matches, being one the extension of the other. The comparative
evaluation provided confirms that our proposal outperforms the state-of-the-
art competitors on the public dataset, by setting a new upper bound for IAC
segmentation.

5.3 On the Effectiveness of the ABS Token and Memory

To showcase the contribution of each model component, we perform our evalu-
ation by progressively including them in Table 2. We performed 10 experiments
for each setup,5 but focused only on the deep label expansion phase of the train-
ing, thus limiting the number of experiments without losing generality in the
conclusion raised (Sect. 4.2). It is worth noticing that any improvement in the
deep label expansion step will benefit the whole segmentation pipeline. More-
over, since the model employed in the two phases is the same, the contributions
of each proposed component can already be inferred during the generation phase.

At first glance, the comparison between the first two table lines might imply a
lack of efficacy of the Transformer architecture. However, it is crucial to note that
PosPadUNet3D incorporates absolute positional information from the original
volume, which is not the case for TransPosPadUNet3D, which simply relies on
a Transformer module introduced in the bottleneck of the U-Net architecture.

Introducing the [ABS] token to TransPosPadUNet3D (third line of Table 2)
enhances its performance, already improving with respect to PosPadUNet3D and
consistently demonstrating the effect of the proposed ABS token. Furthermore,
the performance of TransPosPadUNet3D shows a progressive improvement, ini-
tially with the integration of memory tokens, and subsequently through the
5 Experiments on the same setup differ only in the initialization seed.
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Table 2. Contribution of the modules composing our proposal, considering only the
generation phase of our training procedure.

Method Transf.ABS TokenMemoryHann Window Dice

PosPadUNet3D ✗ ✗ 0 ✗ 0.797 ± 0.006

TransPosPadUNet3D ✓ ✗ 0 ✗ 0.796 ± 0.009

TransPosPadUNet3D ✓ ✓ 0 ✗ 0.801 ± 0.005

TransPosPadUNet3D ✓ ✗ 128 ✗ 0.800 ± 0.011

TransPosPadUNet3D ✓ ✓ 128 ✗ 0.802 ± 0.004

Ours (Complete) ✓ ✓ 128 ✓ 0.809 ± 0.004

application of the Hann Windows function as a post-processing strategy. Ulti-
mately, the implementation of the [ABS] token results in a halved standard
deviation, thereby supporting the robustness of the proposed model.

5.4 Qualitative Evaluation

A qualitative evaluation of the predictions obtained using our proposed model is
provided in Fig. 6, where five pairs of automatic segmentations are coupled with

Fig. 6. Segmentation predictions proposed by our model (left) and corresponding
ground-truths annotation (right) on examples taken from the ToothFairy public test
set. The jaws face the camera view, thus the canal on the left side is the right IAC.
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their corresponding ground-truth annotations. Sample data are taken from the
public test case of the ToothFairy dataset.

While the majority of the predictions are exceptionally accurate and worth to
be integrated in the daily clinical practice, a notable edge case is observed in the
sample P141, where the canal on the left is heavily affected by the presence of a
wisdom tooth, making it one of the hardest to be predicted. In this instance, our
model’s prediction resulted in a non-continuous canal. Further improvements to
our model may involve techniques to deal with such a kind of issues.

6 Discussion and Conclusion

One of the primary challenges associated with patch-based learning is the limited
context available when modeling patches extracted from the original objects. In
order to address this limitation, we propose an innovative approach by incorpo-
rating a transformer encoder with memory into the U-Net architecture, along
with the introduction of the [ABS] token. Specifically, the [ABS] token is designed
to embed the absolute position information of the processed patch within the
original volume. By sharing this positional information with other elements
within the bottleneck of the U-Net architecture, we are able to enhance the
contextual understanding of the patches during the segmentation process and
improve overall performance.

Moreover, our transformer encoder is equipped with memory tokens, which
serve to store essential and generalized information pertaining to all patches. This
stored information can be particularly valuable for the segmentation task, as it
may be difficult to be directly retrieved from each patch singularly. By leveraging
the transformer encoder with memory and the [ABS] token, our proposed method
seeks to address the contextual information challenge in patch-based learning,
improving the segmentation performance within the U-Net architecture.

To ensure the reproducibility of our experiments, we have made the described
pipelines openly accessible to the scientific community as an open-source project.
Furthermore, we conducted our experiments on public datasets, encouraging the
broader scientific community to further enhance the results in the context of
inferior alveolar canal segmentation and letting anyone reproduce the obtained
results and verify our claims. Such a collaborative effort is crucial in critical
medical domains to foster progress and innovation.

Future Work. While the suggested approach has proven effective in refining
IAC segmentation, it could be adapted and potentially applied to any tasks
where feeding an entire sample into the network is impractical, but having a
global context is important. Future works will focus on studying the versatility
of our proposed method, which will open doors to a broad range of applications
beyond IAC segmentation. This will offer a promising research direction for fur-
ther investigation into its performance across diverse neural networks, datasets,
and data modalities.
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Abstract. The prevalence of ocular illnesses is growing globally, pre-
senting a substantial public health challenge. Early detection and timely
intervention are crucial for averting visual impairment and enhancing
patient prognosis. This research introduces a new framework called Class
Extension with Limited Data (CELD) to train a classifier to catego-
rize retinal fundus images. The classifier is initially trained to iden-
tify relevant features concerning Healthy and Diabetic Retinopathy (DR)
classes and later fine-tuned to adapt to the task of classifying the input
images into three classes, viz. Healthy, DR and Glaucoma. This strat-
egy allows the model to gradually enhance its classification capabilities,
which is beneficial in situations where there are only a limited num-
ber of labeled datasets available. Perturbation methods are also used to
identify the input image characteristics responsible for influencing the
model’s decision-making process. We achieve an overall accuracy of 91%
on publicly available datasets.

Keywords: Fundus image · Class Extension · Data scarcity ·
Explainability

1 Introduction

With the rapid growth in the global population, the number of individuals diag-
nosed with diabetes is increasing at an alarming rate. Diabetes, a metabolic
disorder characterized by high blood sugar levels, often leads to various visual
impairments. Diabetic individuals must undergo regular eye screening due to
the strong correlation between diabetes and eye abnormalities. A significant
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challenge lies in the shortage of trained eye care professionals, which ham-
pers effective screening and treatment [1]. Diabetes is a precursor for several
vision-threatening diseases, notably diabetic retinopathy (DR) and Glaucoma
[3]. Approximately one-third of diabetics are likely to develop DR, and those
with diabetes are twice as likely to be afflicted by Glaucoma as compared to
non-diabetic individuals [15]. Both DR and Glaucoma often progress silently
until significant vision loss occurs, potentially leading to irreversible blindness.

Regular, automated, non-invasive screening is crucial for early detection. This
helps prevent the progression of these diseases in the preliminary stage, especially
in remote regions with limited access to trained professionals. These technolo-
gies can help identify at-risk individuals early, allowing timely intervention [5].
Deep learning (DL) [12] is a popular choice in smart healthcare, for automat-
ing the screening process. Feature extraction with minimal human assistance,
scalability, and high output efficiency, are some of the key factors attributed to
the acceptability of deep learning methodologies in healthcare. This helps make
the screening process efficient in terms of time, while coping with the limited
number of trained professionals.

Several studies have utilized deep learning models for DR classification. For
instance, the multi-resolution convolutional attention network (MuR-CAN) [14]
emphasizes discriminative features using a multi-dilation attention block, with
depth-wise convolution layers at various dilation rates to capture multi-scale
spatial information. The DRNet13 [18] has been developed for automated DR
stage classification. The Modified Generative Adversarial-based Crossover Salp
Grasshopper (MGA-CSG) [16] approach predicts and classifies diabetic retinal
diseases using fundus image datasets. Research has also focused on analyzing
multiple pathologies from eye fundus images [7], using various CNN-based mod-
els like LeNet, AlexNet, Inception, VGG, and ResNet, for diagnosing Glaucoma
and DR. Vision transformers [4] have also been employed for ocular disease
detection and classification using fundus images.

Deep learning models require large volumes of annotated data to learn fea-
tures for accurate prediction. Given the limited number of trained professionals,
this becomes a major challenge. Consequently, automated detection of DR and
Glaucoma, from eye fundus images, gets constrained by data scarcity issues.
Most publicly available datasets provide retinal images without detailed label-
ing of the affected region(s). Transfer learning has been employed [2] to handle
the scarcity of data by adapting weights from models trained on larger datasets.
However, this often faces challenges like catastrophic forgetting and degraded
performance due to domain shifts.

This paper proposes a framework - Class Extension with Limited Data
(CELD), which trains classifiers to recognize additional (new) classes over time
without forgetting relevant features from the previously learned classes. This
framework is particularly useful in scenarios where new data classes get grad-
ually incorporated. In real-life scenarios, as new and rarer ocular diseases are
discovered or become more prevalent, it becomes necessary to update the diag-
nostic model to recognize these new conditions while still retaining the ability to
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diagnose previously known diseases. The CELD framework addresses the data
scarcity and imbalance issues prevalent in DR and Glaucoma classification when
compared to healthy samples. Unlike transfer learning, which requires a substan-
tial volume of data to fine-tune the model, the proposed framework updates the
model as new data becomes available; without having to retrain from scratch.
This approach allows the network to continuously learn from smaller, progres-
sive batches; thereby, making it resource-efficient and scalable for dynamic envi-
ronments. Several controlled data-perturbation techniques are incorporated to
analyze the decision-making process of our model. This adds explainability to
address the significance of each input attribute towards model behavior. The key
contributions of the research are listed below.

– The class adaptation in CELD progresses incrementally. A deep neural net-
work is first trained to classify fundus images into healthy and DR classes. It is
then extended to additionally classify Glaucoma, to transform to a three-class
learning model.

– The CELD framework prevents catastrophic forgetting of previous learning,
while leveraging existing knowledge to learn new classes in the presence of
limited data.

– Detailed empirical study and analysis of the CELD framework establishes its
robustness to data and use of fewer computational resources.

– Feature relevance is explored, through data perturbation, to analytically
observe changes in model performance.

The remaining sections of the paper are organized as follows. Section 2
describes the CELD framework. Section 3 outlines the experimental results to
study the performance of our proposed framework CELD. Finally Sect. 4 con-
cludes the article.

2 Methodology

A significant challenge in the task of retinal image classification is the limited
availability of annotated data, which constrains the generalizability of the model.
Specifically, there is a disproportionate ratio of healthy and DR data, with Glau-
coma data being even scarcer. This imbalance complicates the task of improving
classification accuracy. While data augmentation might intuitively address this
issue, it risks overfitting, resulting in an inefficient model [6]. To effectively man-
age this data imbalance, the proposed CELD framework helps to classify fundus
images as healthy, DR-affected, or Glaucoma-affected. Additionally, we evalu-
ate the model’s decision-making process using explainability methods based on
perturbation techniques. A schematic workflow is provided in Fig. 1.

The objective of this study is to develop a detection system for retinal color
fundus images of three classes: healthy, DR, and Glaucoma. The subsequent parts
of this section provide a detailed explanation of the classifier architecture, the
proposed CELD framework, and the perturbation-based explainable methods
used to gain insights regarding the decision-making process of the model.
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Fig. 1. The basic workflow of the proposed CELD-Framework

2.1 Class Extension with Limited Data (CELD)

A deep learning model tends to experience “catastrophic forgetting”, losing previ-
ously learned patterns when trained on new data distributions [19]. In contrast,
humans have an inherent ability to learn new skill over the time without for-
getting prior knowledge. In this work, the proposed CELD framework exploits
this notion of natural learning ability by retaining the knowledge acquired from
previously learned classes to enable the network to adapt to new class. This
reduces the requirement for extensive datasets for each incoming new class. This
makes it highly suitable for real-world scenarios characterized by limited data
availability, such as the classification of retinal fundus images, where obtaining
extensive labeled datasets is often a significant challenge. Employing models pre-
trained on the ImageNet dataset and subsequently fine-tuning them for adapting
to new tasks in the medical domain may lead to suboptimal performance due to
the inherent differences in data distribution between natural images and medi-
cal images [8]. CELD framework mitigates the issue of performance degradation
caused by domain shift since the datasets for source and target tasks belong to
the same domain. In this work the source task is to train the classifier for cate-
gorizing healthy and DR images and the target task is defined by adapting the
classifier from the source task to categorize the input fundus images into DR,
Glaucoma and healthy category.

Formally, τS and τT represent the datasets for source and target task respec-
tively, and τS ⊂ τT ⊂ τ , where τ represents the universal domain of retinal
fundus images. A classifier CS , parameterized by a set of parameters ωS , is ini-
tially trained on source data (xi, yi) ∈ τS . Here xi ∈ χS represent the input
images and the corresponding labels yi ∈ YS where YS = {Healthy,DR}.

CS : χS �→ YS (1)

ω∗
S = argmin

ωS

M∑

i=1

L(ŷi = CS(xi;ωS), yi) (2)
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Here L is the loss function to be minimized and M = |τS | during training
the classifier CS . The optimized weights from the trained classifier CS , ω∗

S are
then used to initialize a new classifier CT which classifies (xk, yk) ∈ τT where
xk ∈ χT represent the input images and the corresponding labels yk ∈ YT where
YT = {Healthy,DR,Glaucoma} with N = |τT |. Subsequently, CT is fine-tuned
on the extended dataset.

CT : χT �→ YT (3)

ω∗
T = argmin

ωT

N∑

i=1

L(ŷk = CT (xk;ωT ), yk) (4)

Here, ω∗
T is the updated weight of CT after training on τT . The loss function

during the incremental learning phase can be defined as:

L(τT ;ωT ) = E(x,y)∼τT [−
C∑

c=1

yc log ŷc] (5)

where (x, y) ∼ τT indicates that the input data x and the corresponding label y
is drawn from the expanded dataset τT . yc is the true label for class c and ŷc is
the predicted label. C = |YT | represents the total number of classes in τT . The
expectation E denotes averaging over all samples in the dataset. This approach
allows CT (.) to retain patterns learned from τS while learning features relevant
to the new class, thus improving the retention of previously learned knowledge
and avoiding overfitting.

2.2 Classifier

This paper adapts DenseNet121 [10] as the backbone classifier based on the
experimental results shown in Sect. 3. DenseNet121 is characterized by a dense
connectivity pattern, where each convolutional layer receives inputs from all pre-
ceding layers within a dense block, thereby promoting efficient feature reuse and
robust gradient flow. This ensures strong gradient signals even for the earliest
layers during backpropagation [10]. The architecture consists of 121 convolu-
tional layers, organized into four dense blocks and separated by three transition
layers. The transition layers apply normalization, followed by a convolution and
pooling operations to downsample the feature maps. Finally, the intermediate
feature map obtained undergoes global average pooling and is fed to fully con-
nected layers for classification. The dense connections reduce redundant parame-
ters which lower model complexity and enable faster training of deeper networks
[10]. This improved information flow helps to reduce overfitting, which is crucial
for handling imbalanced data.

2.3 Perturbation Methods for Explainability

The black-box nature of deep neural networks hinders the understandability
of how predictions are made by the model. This limits the usability of the AI
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algorithms in critical scenarios like healthcare where the rationale behind the
decision-making process of the model must align with the characteristics taken
into account by the healthcare professionals. In the realm of deep neural net-
works, explainability is not just a desirable feature-it is a necessity. Without a
clear understanding of how and why these complex models make decisions, par-
ticularly in medicine, we risk compromising trust and safety. To make the model
more trustworthy and transparent, our framework uses perturbation techniques
to identify the relevant characteristics of input data that influence the decision-
making process of the model. An efficient model should learn from salient features
rather than spurious information or noise that is present in the training data.
Perturbation methods, being model-agnostic, allow dynamic analysis without
requiring access to the model’s internal details. Techniques like applying occlu-
sion masks or adding noise to image patches or pixels help in querying the model
and developing test hypotheses on the fly. The main challenge is selecting appro-
priate perturbation techniques to analyze the model’s performance effectively.

The detection of DR requires identifying pathologies spread across various
quadrants of the eye fundus image. In contrast, diagnosing Glaucoma necessi-
tates a precise analysis of the optic disc, focusing on the cup-to-disc ratio. The
formation of red and bright lesions are the two most common symptoms of DR.
Research shows that the identification of red and bright lesions is most effec-
tively done using the green channel of color fundus images [20]. Additionally, as
the condition worsens, neovascularization, which involves the formation of new
blood vessels, takes place. Neovascularization in advanced stages of DR can also
impact the optic disc area, resulting in the formation of new blood vessels in the
optic disc.

Based on the above insights gained regarding the relevant clinical features for
DR and Glaucoma, we have designed perturbation techniques to further investi-
gate the model’s decision-making process. Multiple controlled perturbations are
applied to the test dataset and the performance of classifier CT on this per-
turbed data was compared with the one obtained from the unperturbed test
dataset. Two techniques were used to assess the influence of the green channel in
the decision-making process: Reduce green (RG) which reduces the overall green
channel weightage in comparison to the red and blue channels of color fundus
images and Random green removal (RGR) which randomly removes segments
of the green channel. Additional techniques like reducing image contrast (RC),
adding Gaussian noise (GN) and applying edge sharpening (ES) were also used
to study the impact of image quality on the model’s inference. A strategy namely
Optic disk occlusion (ODC) was used to evaluate the relevance of the optic disc
in the classification of Glaucoma and DR images. Figure 2 shows the different
kind of perturbated images.

3 Experiments and Results

This section provides a comprehensive overview of the datasets used, the met-
ric used to assess the classifier’s performance, the experimental setup, and the
resulting experimental outcomes.
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Fig. 2. The original image and its perturbated versions for each of the classes: DR,
Healthy and Glaucoma.

3.1 Dataset

A total of 3,111 retinal color fundus images were obtained from three publicly
available datasets: Messidor21, Chaksu [11], and LES-AV [17]. The Messidor2
dataset has 1,744 macula-centered RGB images. There are 1017 images belong-
ing to the healthy class and 727 images belonging to the DR category. The
Chaksu dataset comprises 1,345 images, with 188 images classified as Glau-
coma and 1,157 images classified as healthy. These images were captured using
three devices, including two non-mydriatic fundus cameras: the Remido non-
mydriatic Fundus-on-Phone (FoP) and the Forus 3Nethra Classic non-mydriatic
fundus camera and the Bosch handheld fundus camera. These images are Optic
Disc-centered for Optic Disc assessment and Glaucoma detection. The LES-AV
dataset has 22 images with 11 images categorized into Glaucoma and the remain-
ing 11 images categorized into healthy category. The data details are given in
Table 1.

Table 1. Pooled Dataset Details

Data DR Healthy Glaucoma Total

Messidor2 727 1017 - 1744
LES-AV - 11 11 22
Chaksu - 1157 188 1345
Overall Samples per Class 727 2185 199 3111

Data Pooling: To address data scarcity, data from three sources were combined
to create a more diverse dataset, enabling the model to learn salient features
1 https://www.kaggle.com/datasets/mariaherrerot/messidor2preprocess.

https://www.kaggle.com/datasets/mariaherrerot/messidor2preprocess
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and generalize better. The inclusion of images from different populations and
imaging conditions, along with an increased chance of capturing rare medical
conditions, reduces model bias toward irrelevant features. After pooling from
the three datasets, there are 2185 healthy, 727 DR, and 199 Glaucoma samples.
All images were resized to dimensions of 256 × 256 from each dataset. The
combined dataset was split into 80% for training, 10% for testing, and 10% for
validation. To ensure accurate splits, the data was initially divided within each
dataset before combining, ensuring that each train-test-validation split contained
data from all sources. This approach was applied separately for healthy, DR, and
Glaucoma-affected fundus images from each dataset within its split.

3.2 Experimental Setup

CELD is developed using Pytorch2 and Monai3 on python 3.9 as the platform.
All experiments were performed on a 12 GB NVIDIA Titan XP GPU. The initial
learning rate was set to 10−5. Early stopping is used to avoid over-fitting along
with the AdamW optimizer [13]. A batch size of 8 is used in training.

3.3 Metric

The performance of the proposed framework was evaluated using accuracy, pre-
cision, recall, and F1-score. The mathematical definition of the listed metrics in
terms of True Positive (TP), False Positive (FP), False Negative (FN) and True
Negative (TN) is defined below.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 − score = 2 × Precision × Recall

Precsion + Recall

3.4 Result

The state-of-the-art (SOTA) models such as SeResNet101 [9], DenseNet121, and
ViT were employed for classifying retinal images into Healthy, DR and Glau-
coma, with their performance summarized in Fig. 3. DenseNet121 achieved the
highest accuracy at 0.7910. However, all models exhibited poor performance in
classifying Glaucoma and DR due to significant class imbalance.

2 https://pytorch.org/.
3 https://monai.io/.

https://pytorch.org/
https://monai.io/
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Fig. 3. Quantitative Result for 3 Class Classification.

Table 2. Quantitative Result for 2 Class Classification

Model Classes Overall Accuracy
Healthy DR

Precision Recall F1-Score Precision Recall F1-Score

SeResNet101 0.8264 0.8772 0.8511 0.7667 0.6866 0.7244 0.8066
DenseNet121 0.9027 0.8947 0.8987 0.8235 0.8358 0.8296 0.8729
ViT 0.8103 0.8246 0.8174 0.6923 0.6716 0.6818 0.7680

Further, the same models were tested, with results summarized in Table 2
where the classifiers are trained to categorize images into Healthy and DR
only. Significant performance improvements were observed, particularly in the
DR class, as indicated by balanced precision-recall scores. DenseNet121 outper-
formed the other models, achieving an overall accuracy of 0.8729 and F1-scores
of 0.8987 for healthy and 0.8296 for DR, leading to its selection as the backbone
architecture for the CELD framework.

For this three-class classification problem, the proposed CELD framework
outperformed the state-of-the-art (SOTA) models, achieving an overall accuracy
of 0.9100. The performance of the CELD framework has been listed in Fig. 3. It
demonstrated significant improvement in the F1-scores for all classes, particu-
larly for DR and Glaucoma. While the ViT model achieved a maximum F1-score
of 0.5797 for DR, the CELD framework substantially improved this to 0.8971,
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with a high yet balanced precision-recall. Similarly, SeResNet’s highest F1-score
of 0.6286 for Glaucoma was improved to 0.6667 by the CELD framework. In med-
ical image analysis, it is crucial for models to accurately detect positive cases,
even if it occasionally results in false alarms. The CELD framework showed
significant improvement in recall, albeit with a slight drop in precision for Glau-
coma. Overall, the CELD framework significantly outperformed other models
across various parameters.

Explaining CELD Framework with Data Perturbation: The performance
of the proposed framework was evaluated using perturbed data and compared to
unperturbed data, as summarized in Fig. 4. The corresponding confusion matrix
is represented in Fig. 5. Reducing the weight of the green channel significantly
decreased performance for DR and Glaucoma classifications, while the classi-
fication of healthy samples remained mostly unaffected. The confusion matrix
shows increased mis-classification of DR and Glaucoma images as healthy when
the green channel’s weight is negatively altered or partially removed. Notably,
reducing the green channel’s weight across the entire image leads to higher mis-
classification rates than randomly removing segments of the green channel. When
random patches of green channel are removed, the classifier’s decision for the DR
class is influenced by the remaining unperturbed data. The performance drop
for the Glaucoma class is less significant, as the optic disc region often remains
unperturbed in many images.

Fig. 4. Quantitative Result over CELD framework with Data Perturbation.
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Reducing contrast does not significantly impact the classification of DR or
healthy categories, as shown in the confusion matrix, but it does impair Glau-
coma classification. Visually, this perturbation blurs the optic disc region, thus,

Fig. 5. Confusion matrix over CELD framework with Data Perturbation. The matrix
shows performance of CELD (a) With no perturbation, (b) Reduce green (RG), (c)
Random green removal (RGR), (d) Reducing image contrast (RC), (e) Gaussian noise
(GN), (f) Edge sharpening (ES), (g) Optic disk occlusion (ODC) (Color figure online)
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obscuring key features. Edge sharpening, which enhances pixels having high-
intensity changes w.r.t it’s neighborhood, leads to a high mis-classification rate
of Glaucoma as healthy, as reflected by the F1-score. Adding random Gaussian
noise causes the model to falsely classify only one DR image as Glaucoma and
most other DR images as healthy, resulting in high precision but a low F1-score
for the DR class. It is important to note that in this study this the first per-
turbation strategy that generates ambiguous decisions between the two disease
classes. The model’s decision for Glaucoma is less affected by noise but becomes
prone to classifying healthy images as Glaucoma, leading to high recall and low
precision for the Glaucoma class. In summary, DR identification is challenging
in poor-quality images, while Glaucoma can be diagnosed in noisy, low-quality
images but not in those with poor contrast or excessive sharpening.

Observing the optic disc occlusion strategy reveals the model’s high depen-
dency on the optic disc for classifying Glaucoma and healthy eyes. These two
classes exhibit high mis-classification rates, which is understandable since eye
experts often diagnose Glaucoma by examining the optic disc region. For Glau-
coma, the absence of relevant features leads to mis-classification, as shown in the
confusion matrix and Fig. 4. Most mis-classified images are labeled as healthy,
indicating the model relies on this feature for Glaucoma identification, thereby
increasing the precision score for the normal class. The optic disc’s features are
crucial for determining eye health, reflected in the lower F1-score compared to
unperturbed data for healthy eyes. For DR, performance is less affected since
neovascularization in the optic disc is not always present in DR-affected images.
However, there is an increase in false positives for the DR class due to the model’s
insufficient features for reliable decisions, resulting in high recall and low pre-
cision for the DR class. In conclusion, optic disc occlusion significantly impacts
overall model accuracy, highlighting its importance as an input feature.

To conclude, the perturbation techniques revealed that the model heavily
relies on the green channel and image quality for accurate classification, espe-
cially for DR and Glaucoma. Occlusion of the optic disc significantly impacts
Glaucoma detection, emphasizing its critical role in the model’s decision-making
process.

4 Conclusion and Discussion

This research demonstrates the potential of deep neural networks to improve
medical image classification, particularly for identifying conditions like diabetic
retinopathy (DR) and Glaucoma from fundus images. Initially, we trained the
network to differentiate between healthy and DR-affected images. Using the
Class Extension with Limited Data (CELD) framework, we fine-tuned the model
also to classify Glaucoma, transforming it into a three-class classifier. The CELD
framework enables the model to maintain its performance on previously learned
tasks while adapting to new classes while efficiently tackling data imbalance
with minimal computational overhead and data requirements. Consequently, the
model retains its proficiency in identifying DR while learning to classify Glau-
coma, ensuring efficiency and resource-friendliness.



136 S. Dey et al.

Our extensive empirical analysis compared the performance of two-class and
three-class classifiers. The results highlighted that the Densenet121 architecture
significantly improves classification accuracy, proving its suitability for this appli-
cation. We conducted various experiments to assess accuracy and robustness,
confirming the model’s effectiveness. Additionally, we explored feature relevance
through explainability using perturbed data. These studies provided insights
into how changes in input data affect model performance, identifying the most
critical features for accurate classification. The perturbation analysis summa-
rized the robustness of the CELD framework. This approach represents a sig-
nificant advancement in medical imaging and deep learning, providing an effi-
cient method to expand model capabilities with limited data and computational
resources. The CELD framework has the potential to be applied to diagnose a
variety of other ocular diseases common in diabetic eyes.
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Abstract. Skin cancer poses a serious global health challenge, where
timely and precise diagnosis is essential to improve patient outcomes.
Recently, neural networks have proven to be highly effective tools for
automated skin cancer classification, significantly advancing the field
of dermatology. This paper introduces a novel approach to generate
edge maps from dermoscopic images using a holistically nested edge
detector model. These edge maps enhance the detection of shape and
symmetry irregularities, which are key indicators of malignancy, and
improve the focus on relevant regions of interest. We then propose
an edge-guided dual-branch neural network, called EDB-Net, for the
classification task. Branch 1 handles edge maps, while Branch 2 pro-
cesses original dermoscopic images. To highlight significant regions and
focus on specific lesion areas, we incorporate a novel channel-spatial
synergistic attention block within Branch 2. Additionally, we intro-
duce a unique strategy to modulate the generated attention maps
using edge features extracted from the edge maps in Branch 1, creat-
ing edge-guided features that refine the overall feature representation.
In the final stage, both edge-guided and attention-aided features are
combined, producing more distinct and contextually relevant outputs,
thereby significantly enhancing classification performance. Our model
achieves accuracies of 0.927 and 0.848 on the challenging HAM10000
and ISIC 2016 datasets, respectively, without employing any data aug-
mentation. The source code of the proposed model is available at:
https://github.com/Cmatermedicalimageanalysis/EDB_Net.
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1 Introduction

Skin cancer is among the most dangerous types of cancer worldwide, with its
incidence increasing due to increased exposure to ultraviolet radiation from the
sun. Periodic and intense exposure can cause sunburns, raising the risk of skin
cancer. Additional risk factors include abnormal moles and a family history of
the disease. The risk of developing skin cancer increases with age, making older
individuals more vulnerable. Skin cancer is broadly categorized into melanoma
and non-melanoma types. Despite being less common, melanoma is more likely
to metastasize and is a significant cause of skin cancer-related deaths. Melanoma
can appear on any part of the skin, but is often found in extensive sun-exposed
areas such as the face, hands, and neck. Early detection and diagnosis are vital for
effectively treating melanoma, as it spreads quickly and can result in severe and
fatal consequences. Therefore, the artificial intelligence community in medical
image analysis is dedicated to developing techniques for the early diagnosis of
skin cancer.

Related Work: Classifying skin cancer is a complex task due to the diverse
types of skin lesions. Visual features like color, pattern, shape, and texture can
overlap between benign and malignant samples, making it difficult to distin-
guish between harmless moles and potentially cancerous ones. Furthermore, even
among malignant lesions, there can be significant differences in appearance. From
the literature survey, it has been observed that earlier machine learning-based
techniques were predominantly used in the field of skin cancer classification,
achieving limited success. However, the introduction of deep neural networks
brought about rapid advancements in this area.

Kalouche et al. [1] employed a pre-trained deep convolutional neural net-
work (CNN) architecture, VGG16, with the last three layers fine-tuned. They
used a stochastic gradient descent (SGD) optimizer with a low learning rate for
fine-tuning. Emara et al. [2] utilized the InceptionV4 backbone and enhanced it
by incorporating feature reuse through a residual connection. This modification,
which integrated features from earlier layers with those from higher-level lay-
ers, significantly improved classification performance. Iqbal et al. [3] proposed a
deep CNN comprising 63 convolutional layers aimed at multi-class skin cancer
classification. Although they accounted for inter-class similarities and intra-class
variances, their model was not effective in addressing these challenges. Datta et
al. [4] proposed a skin cancer classification model using InceptionResNetV2 as
the backbone. They enhanced it with a soft attention unit that included a bilin-
ear attention layer, which helped focus on small lesion areas and ignore artifacts
by computing weighted feature maps.

Skin cancer datasets are often heavily imbalanced and to address this chal-
lenge, Shen et al. [5] employed a cost-effective and high-performance data aug-
mentation strategy. They combined this approach with an EfficientNetB7 archi-
tecture to enhance automatic skin cancer screening in rural communities. Sarkar
et al. [6] presented a novel classifier combination technique using the Dempster-
Shafer theory for skin cancer classification. This approach significantly improved
the recall rate for melanoma, the deadliest form of skin cancer. Leveraging deep
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learning, researchers have made significant strides in addressing many challenges
associated with skin cancer classification. However, despite these encouraging
advancements, existing approaches still struggle to consistently deliver robust
performance in real-world settings.

Motivation and Contributions: In dermatology, skin cancer classification
heavily relies on evaluating asymmetry, border irregularity, color variation, and
lesion diameter—commonly known as the ABCD rules [7]. Dermatologists utilize
these criteria to assess skin lesions for signs of malignancy. Edge information of
lesions can effectively capture aspects of the “A” (asymmetry) and “B” (border
irregularity) components of the ABCD rules by delineating lesion boundaries and
contours. In response to this, we introduce an edge-guided dual-branch neural
network (EDB-Net), which focuses on recognizing lesion boundaries and intricate
edge patterns within these boundaries. The main contributions of this paper are
as follows:

1. We introduce an innovative pre-processing method for generating edge maps
from dermoscopic images.

2. We propose the EDB-Net model, which features a novel dual-branch app-
roach that incorporates both dermoscopic images and their corresponding
edge maps. Branch 1 processes the edge maps, while Branch 2 handles the
original dermoscopic images.

3. We integrate a novel channel-spatial synergistic attention (CSSA) block
within Branch 2 to highlight the most distinct regions within the lesion.

4. We introduce an attention modulation block that implements a unique strat-
egy to modulate the attention maps generated from the CSSA block. This
modulation uses edge features extracted from the input edge maps in Branch
1, resulting in the creation of edge-guided features.

5. To assess the performance of our model, we conduct extensive experiments
using the publicly available benchmark datasets for skin cancer: HAM10000
and ISIC 2016.

2 Proposed Method

In this section, we introduce our novel algorithm for generating edge maps from
dermoscopic images and elaborate on our proposed model, EDB-Net. Addition-
ally, we propose the CSSA block and elucidate the strategy used to modulate
the attention maps generated by the CSSA block.

2.1 Edge Map Generation

In this section, a detailed explanation of the edge map generation from dermo-
scopic images is provided. The block diagram, as illustrated in Fig. 1, provides
a comprehensive overview of the method.
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Fig. 1. Overview of the proposed edge map generation approach

Noise Removal: Median blur is applied to mitigate noise from the dermoscopic
image in the blue-green-red (BGR) color space. This operation involves comput-
ing the median value for each pixel within a 5 × 5 square neighborhood centred
around its position. For a pixel at position (x, y), the operation can be rep-
resented mathematically as Output(x, y) = Median(Neighborhood(x, y)). This
process enhances the overall quality of the image for subsequent analysis.

K-Means Clustering: K-means clustering, an unsupervised learning algo-
rithm, partitions data points into K clusters. The objective function of this
algorithm, denoted in Eq. 1, measures the within-cluster sum of squares (WCSS).

WCSS =
K∑

i=1

∑

x∈Ci

‖x − μi‖2 (1)

In Eq. 1, K represents the number of clusters, Ci denotes the ith cluster and x
signifies a data point in Ci. μi and ‖ · ‖ denote the centroid of Ci and Euclidean
distance respectively. The algorithm iteratively updates cluster assignments and
centroids to minimize this objective function. In our algorithm, K-means clus-
tering is applied to the enhanced image with K=8 clusters. The exact value for
K has been determined through empirical testing. The cluster centers are com-
puted, and each pixel is assigned to its nearest center, allowing the image to be
reconstructed into a segmented image with similarly attributed pixels.

Adaptive Histogram Equalization: The K-means segmented image under-
goes a conversion from BGR color space to hue-saturation-value (HSV) color
space. This transformation facilitates the independent processing of color and
intensity information. Subsequently, contrast limited adaptive histogram equal-
ization (CLAHE) is applied exclusively to the value channel, representing image
intensity or brightness. The hue and saturation channels remain unaltered to pre-
serve the color information. CLAHE restricts contrast enhancement to localized
regions by dividing the image into small tiles and applying histogram equaliza-
tion individually to each tile. The threshold parameter for contrast limiting is
specified as 3, with a tile grid size of 8 × 8 for CLAHE initialization. Then, the
individual hue, saturation, and value channels are merged together to produce
the enhanced image in the lightness-A-B (LAB) color space. Finally, the image
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is converted from LAB to BGR color space, thereby restoring the image to its
original color representation while incorporating enhanced contrast in the value
channel, due to the CLAHE operation.

Edge Detection: The BGR image is processed in a way suitable for input to a
holistically nested edge detector (HED) [8] model for predicting edge maps. This
processing typically involves scaling pixel values and performing mean subtrac-
tion. Following this, the resultant image is utilized as input for the pre-trained
HED model. Unlike conventional edge detectors, which rely on low-level features
such as gradients or filters, HED employs deep learning to acquire rich hierar-
chical representations of edges from the input image. The fundamental concept
underlying HED involves conducting edge detection across multiple scales, fol-
lowed by fusing the multi-scale information to generate a holistic edge map.

HED consists of a stem network, side output layers, and a weighted fusion
layer. A pre-trained CNN model like VGGNet serves as the backbone for hier-
archical feature extraction from the input image. The feature maps from the
stem network are fed into the side output layers across different stages. Each
side output layer produces an edge map at a specific scale, capturing edges at
varying levels of granularity. These edge maps from all the side output layers
are then fused together using the weighted fusion layer. The weighted fusion
layer assigns learned weights to the edge maps from each side output layer and
combines them, thereby allowing selective emphasis or de-emphasis based on the
significance for edge detection.

In this work, HED is utilized solely for generating edge maps, without altering
the model’s parameters or performing any training or optimization. The pre-
trained weights are directly employed to predict edge maps for the input image.
During the forward pass of an input image through the HED model, the image
traverses through the layers of the network, and edge features are computed
at each layer. Following this process, the HED model generates a set of edge
maps from the input image. These edge maps encompass edges identified at
diverse scales and levels of detail, capturing both fine and coarse edges within
the image. For the input image, edge map predictions from the side output
layers (Ŷ (1)

side, . . . , Ŷ
(M)
side ) and the weighted-fusion layer (Ŷwfuse) are obtained. Here,

M denotes the number of side-output layers. The final consolidated edge map
(ŶHED) is achieved by aggregating these generated edge maps denoted in Eq. 2.

ŶHED = Average(Ŷwfuse, Ŷ
(1)
side, . . . , Ŷ

(M)
side ) (2)

The resulting edge map undergoes rescaling to ensure that edge intensities
fall within the appropriate range for visualization, typically between 0 and 255.
Figure 2 illustrates two complex cases where the original dermoscopic images are
processed using the HED model to generate edge maps. Additionally, the images
processed through our proposed algorithm are also fed to the HED model for
edge map generation. HED struggles to accurately delineate lesion boundaries
in the original images and often detects edges based on artifacts. In contrast,
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when using the images processed by our algorithm, the HED model successfully
distinguishes even small infected areas, despite the presence of artifacts.

Fig. 2. Comparison of edge maps obtained from the original image with the processed
image generated using our proposed algorithm

2.2 Edge-Guided Dual-Branch Neural Network

EDB-Net consists of two branches: Branch 1 is dedicated to processing the edge
maps, while Branch 2 focuses on the original dermoscopic images. Both branches
employ a DenseNet-based backbone [9] to extract features from their respective
inputs. This section deals with the detailed exploration of EDB-Net, elucidating
the rationale behind each architectural choice and discussing the integration of
edge features into the novel CSSA block for improved classification performance.
Figure 3 illustrates the architecture of EDB-Net.

Fig. 3. Architecture of the proposed EDB-Net model

Branch 1 Extraction of Edge Features: Here, a set of dense and transition
blocks is used for extracting the edge features, Fedge, from the input edge maps.
The architectural sequence commences with an initial convolution operation to
extract basic features from the input images. This convolutional layer is followed
by subsequent batch normalization and rectified linear unit (ReLU) activation to
normalize and introduce non-linearity into the feature maps. A sequence of dense
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blocks and transition blocks is then iteratively applied to capture increasingly
complex edge features. Within this iterative process, two dense-transition itera-
tions are specified, each comprising a dense block with 4 layers and a growth rate
of 12, followed by a transition block. The decision to limit the number of dense-
transition iterations underscores the aim to prioritize the extraction of edge
features while minimizing the likelihood of the network acquiring extraneous
information. This strategic approach aligns with our research goal of developing
a specialized model tailored specifically for the edge feature extraction task.

Branch 2 Dermoscopic Feature Extraction: Here, the DenseNet201 archi-
tecture is used to extract features, Fdermo, from dermoscopic images. This archi-
tecture is customized by excluding the last 28 layers and integrating our channel-
spatial synergistic attention block into the dense block of the network architec-
ture, where the size of image feature maps, Fdermo, is 7× 7. Figure 4 depicts the
architecture of this block.

Fig. 4. Architecture of the proposed CSSA block

The design of this CSSA block is inspired by the architecture of the convo-
lutional block attention module (CBAM) [10] and involves the computation of
both channel and spatial attention mechanisms. However, like CBAM, we do not
apply the attention mechanisms sequentially. In our CSSA block, initially, chan-
nel attention is computed by globally pooling the input tensor, Fdermo, along
the spatial dimensions, using both average and max pool operations. These acti-
vations are then fused through dense layers to generate the channel attention
map, Mc ∈ R

C×1×1. Subsequently, spatial attention is computed by averaging
and max-pooling activations along the channel dimension, followed by convolu-
tional operations to derive the spatial attention map, Ms ∈ R

H×W . This map is
then split into five smaller maps, M

(i)
s ∈ R

H×W , each corresponding to different
heads. The decision to use five distinct maps is based on empirical testing and
is intended to enhance the focus on specific and localized areas. This strategy
allows for a more detailed and precise analysis of the diverse characteristics of
skin lesions, which differ significantly in terms of shape, size, and color. Each of
these smaller spatial attention maps M

(i)
s is combined with the channel attention

map Mc using the Hadamard product. The outputs from each of the five heads
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are aggregated to yield a unified attention map, A ∈ R
C×H×W , which integrates

all localized attentions into a global context. This refined attention map, A, is
subsequently applied to the input features, Fdermo, through a Hadamard prod-
uct. Equations 3, 4, 5, and 6 represent the key formulations within the CSSA
block. Thereafter, a SeparableConv2D layer is employed, resulting in enhanced
feature representations, Fattn. These refined representations encapsulate both
channel-wise and spatially relevant information, facilitating improved perfor-
mance in the subsequent classification task.

M (i)
s = Split(Ms,parts = 5) for i = 1, . . . , 5 (3)

A(i) = M (i)
s � Mc for i = 1, . . . , 5 (4)

A =
5∑

i=1

A(i) (5)

Fattn = Fdermo � A (6)

Attention Modulation Block: Here, the attention map A is refined through
the integration of edge features, Fedge. These features are instrumental in modu-
lating the attention map, generated using our CSSA block, enhancing the model’s
ability to focus on the regions of interest defined by prominent edges within
the input images. This modulation process is governed by a gating mechanism
equipped with learnable convolutional weights W , which adaptively capture con-
textually relevant edge patterns. The gating mechanism is formulated in Eq. 7.

A′ = σ(conv(Fedge,W )) � A (7)

Here, in Eq. 7, σ represents the sigmoid activation function, that normalizes the
convolution output, ensuring that the values lie within the range [0, 1]. This
normalization is crucial as it conditions the modulation to be conducive for
multiplicative scaling. The operation � represents the Hadamard product. This
operation allows the edge features to selectively enhance or suppress features
within the attention map A, based on the edge information. This process aligns
the model’s focus with the most salient regions marked by significant edge fea-
tures.

Further, to introduce flexibility and maintain a balance between the original
and edge-enhanced attention maps, a hybrid modulation strategy is applied to
generate a refined attention map A′′, defined in Eq. 8.

A′′ = β × A′ + (1 − β) × A (8)

Here, in Eq. 8, β is a trainable parameter that determines the extent to which the
edge-modulated attention map A′ influences the final attention representation
A′′. Such a hybrid approach not only enriches the attention mechanism with
precise and edge-based contextual information but also preserves the integrity
of the initial attention cues. This strategy ensures that the network remains
robust to variations in edge relevance across different contexts.
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Integration of Edge-Enhanced Attention: This stage is pivotal for incorpo-
rating the final attention map A′′ into the feature maps to enhance the model’s
feature representations. Initially, the Hadamard product is employed to fuse the
features extracted during the dermoscopic feature extraction phase, Fdermo, with
the refined attention map A′′. This operation, denoted in Eq. 9, produces edge-
guided feature maps, Fguided, which are enhanced by the attentional focus driven
by edge-specific information.

Fguided = Fdermo � A′′ (9)

Subsequently, to ensure a comprehensive feature representation, these edge-
guided features Fguided are concatenated with Fattn, the features generated using
the CSSA block. This concatenation, shown in Eq. 10, helps preserve both vital
edge information and high-level semantic information, culminating in an enriched
feature set Ffinal.

Ffinal = Fguided ⊕ Fattn (10)

Finally, the enriched feature set Ffinal is flattened and fed into the final dense
layers to perform the classification task.

3 Results

3.1 Datasets and Experimental Protocols

Datasets: We have used the challenging HAM10000 [11] and ISIC 2016 [12]
datasets to assess the performance of EDB-Net. The HAM10000 dataset includes
10,015 images categorized into seven skin disease groups: 327 actinic keratosis
and intraepithelial carcinoma images, 514 basal cell carcinoma images, 1,099
benign keratosis images, 115 dermatofibroma images, 1,113 melanoma images,
6,705 melanocytic nevus images, and 142 vascular malformation images. Since
there is no official split for this dataset, we have applied an 80:20 train-test split,
consistent with the approach used by many other state-of-the-art methods. For
the ISIC 2016 dataset, we have adhered to the official training and test sets.
The training set consists of 900 images, while the test set contains 379 images,
categorized into malignant melanomas and benign nevi. We have utilized 20%
of the training set from each dataset for validation. Despite significant class
imbalances in these datasets, we do not augment the training sets, aiming to
demonstrate that the integration of edge information in our proposed model
effectively distinguishes various classes, highlighting its robustness and potential
for accurate skin cancer classification. All images and their corresponding edge
maps have been resized to 224× 224 dimensions. Our proposed model has been
retrained on the training sets by fine-tuning all layers for 60 epochs, with an
early stopping patience of 30. For all training tasks, we have used a learning rate
of 0.001, the Adam optimizer with an epsilon value of 0.1, and cross-entropy
loss.

Evaluation Metrics: To evaluate our model, we have employed the follow-
ing metrics: Accuracy(Acc) = TP+TN

TP+TN+FP+FN , Precision(Pre) = TP
TP+FP ,
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Recall(Rec) = TP
TP+FN , and F1 − score(F1) = 2 × (Precision×Recall)

(Precision+Recall) . Here TP ,
TN , FP , and FN stand for true positives, true negatives, false positives, and
false negatives, respectively.

3.2 Quantitative Analysis

To determine the optimal backbone network for our proposed model, several
CNNs have been trained on the HAM10000 dataset. These include MobileNetV2,
ResNet50, InceptionResNetV2, and DenseNet201, with DenseNet201 demon-
strating the highest performance. The outcomes of these evaluations are sum-
marized in Table 1a. Although DenseNet201 and InceptionResNetV2 perform
similarly, DenseNet201 has significantly fewer parameters. Therefore, we decided
to further investigate various architectural configurations using DenseNet201 as
the backbone network. The different configurations are as follows:
(i) DenseNet201 + CBAM
(ii) DenseNet201 + CSSA module
(iii) EDB-Net (DenseNet201 + CSSA module + edge guidance)

The detailed analysis of these configurations is provided in Table 1b.

Table 1. Ablation results for selecting the best-performing baseline model and the
best architectural setup for the HAM10000 dataset

(a) Baseline model selection
Model Acc Pre Rec F1

MobileNetV2 0.858 0.852 0.858 0.849
ResNet50 0.872 0.877 0.868 0.874

InceptionResNetV2 0.892 0.888 0.892 0.890
DenseNet201 0.894 0.900 0.897 0.900

(b) Best setup selection
Model Acc Pre Rec F1

(i) 0.908 0.910 0.908 0.909
(ii) 0.913 0.910 0.913 0.911
(iii) 0.927 0.924 0.927 0.926

From the ablation analysis presented in Table 1b, it is evident that our novel
CSSA module exhibits an enhancement over CBAM for skin cancer classification.
Additionally, the integration of edge information contributes to improving accu-
racy by a minimum of 1.40% compared to using attention mechanisms alone.
Figure 5a, Fig. 5b, and Fig. 5c depict the confusion matrix, receiver operating
characteristic (ROC) curve, and the loss curve of EDB-Net on the HAM10000
dataset, respectively. Additionally, to assess robustness, we have evaluated the
performance of EDB-Net on the ISIC 2016 dataset using the best setup that was
obtained for the HAM10000 dataset. For ISIC 2016, Fig. 6a, Fig. 6b, and Fig. 6c
present the confusion matrix, ROC curve, and the loss curve of EDB-Net, respec-
tively. The results summarized in Table 2 illustrate EDB-Net’s superior perfor-
mance compared to most existing methods for skin cancer classification on both
the HAM10000 and the ISIC 2016 datasets. Additionally, Table 2 indicates that
although the model proposed by Gajera et al. [13] achieves the highest accu-
racy on the ISIC 2016 dataset, its relatively low recall rate is a notable flaw. In
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contrast, EDB-Net offers a balanced performance in terms of both accuracy and
recall.

Table 2. Performance comparison of the proposed model with some recent methods
on HAM10000 and ISIC 2016 datasets

Dataset Work Ref. Acc Pre Rec F1

HAM10000 Bajwa et al. [14], 2020 0.815 0.728 0.782 0.783
Iqbal et al. [3], 2021 0.888 0.905 0.888 0.891
Datta et al. [4], 2021 0.916 0.915 0.916 0.914
Sai Charan et al. [15], 2022 0.886 - - -
Gururaj et al. [16], 2023 0.912 - - 0.917
Roy et al. [17], 2023 - 0.723 0.706 0.702
Khan et al. [18], 2024 0.870 - 0.869 -
Gairola et al. [19], 2024 0.920 0.690 0.920 0.730
Roy et al. [20], 2024 0.908 0.908 0.908 0.912
Kumar et al. [21], 2024 0.886 0.888 0.883 0.880
Ours, 2024 0.927 0.924 0.927 0.926

ISIC 2016 Yu et al. [22], 2016 0.855 - 0.507 -
Saba et al. [23], 2019 0.786 - 0.667 -
Gajera et al. [13], 2022 0.871 0.783 0.480 0.595
Gajera et al. [24], 2023 0.805 0.506 0.560 0.532
Sahoo et al. [25], 2024 0.781 - 0.780 -
Ours, 2024 0.848 0.846 0.848 0.847

3.3 Discussion

Accurate classification of skin cancer poses significant challenges, particularly
with unbalanced datasets like HAM10000 and ISIC 2016. As demonstrated in
Fig. 5a, EDB-Net achieves a high level of accuracy in identifying various skin
cancer classes, even without the use of data augmentation. Figure 7 illustrates
samples of seven types of dermoscopic lesion images, their corresponding edge
maps generated using our proposed algorithm, and edge feature maps obtained
from Branch 1 of EDB-Net. Notably, Fig. 7 showcases EDB-Net’s ability to delin-
eate intricate lesion borders, affirming its efficiency.

Figure 8 shows the t-distributed stochastic neighbor embedding (t-SNE) plots
for our model on the HAM10000 and the ISIC 2016 datasets. In HAM10000, the
plot shows distinct clusters for most classes, indicating effective model learning.
Class overlap occurs for some classes (akiec and bkl) suggesting room for poten-
tial improvements. For ISIC 2016, the malignant (mel) class forms a relatively
distinct cluster towards the right side of the plot, isolated from the benign (nv)
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class. However, the significant overlap between the two classes in the plot’s cen-
tral region suggests potential difficulties in the model’s ability to differentiate
between them.

Figure 9 showcases gradient-weighted class activation mapping (Grad-CAM)
heatmaps for sample images of each lesion type in the HAM10000 test set, visu-
ally indicating the areas within the images that most influence our model’s pre-
dictions. These heatmaps highlight regions of elevated diagnostic significance,
with warmer colors (red and yellow) denoting higher relevance to the model’s
decisions. Notably, the heatmaps effectively focus on the primary lesion areas
while ignoring uninfected skin and hair.

Fig. 5. (a) Confusion matrix; (b) ROC curve; (c) Loss curve for HAM10000

Fig. 6. (a) Confusion matrix; (b) ROC curve; (c) Loss curve for ISIC 2016

To offer a balanced view, we acknowledge some limitations of the proposed
method. Although EDB-Net presents a novel approach, its efficiency heavily
relies on the quality of the generated edge maps, which significantly influences
the model’s overall performance. Additionally, identifying the optimal hyperpa-
rameters for the CSSA module and the edge feature modulation strategy poses
challenges, necessitating extensive experimentation.
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Fig. 7. (a) Dermoscopic images; (b) Edge maps; (c) Edge feature maps

Fig. 8. t-SNE plots for (a) HAM10000 and (b) ISIC 2016 datasets

Fig. 9. (a) Dermoscopic images; (b) Grad-CAM heatmaps
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4 Conclusion

Skin cancer is responsible for a significant number of fatalities worldwide each
year, making prompt and accurate diagnosis crucial for improving survival rates
and treatment efficacy. Skin cancer classification is a critically important and
challenging research topic. In this work, we draw inspiration from the fact that
the edge information of lesions is a crucial indicator of malignancy. Consequently,
we introduce an innovative algorithm for generating edge maps from dermoscopic
images. Subsequently, we propose an edge-guided dual-branch network aided by
our CSSA block and attention modulation block. This approach focuses on intri-
cate edge patterns and enhances the emphasis on regions of interest within the
images, producing more distinctive features and significantly boosting classifi-
cation performance. Our model achieves accuracies of 0.927 on the HAM10000
dataset and 0.848 on the ISIC 2016 dataset. Notably, our model operates without
data augmentation, demonstrating its efficiency and effectiveness.

While our proposed model showcases promising results, further enhancements
are required to improve the recall rates of melanoma and a few other minority
classes to ensure real-world usability. Our next attempts involve a focused inves-
tigation into specific loss functions tailored to address this issue. Additionally,
we aim to integrate contrastive learning techniques to refine feature extraction,
thereby enhancing overall classification performance.
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Abstract. Atherosclerosis, characterized by the deposition of fats,
cholesterol, and other substances along arterial walls, poses a signif-
icant risk to cardiovascular health, leading to arterial narrowing and
potentially fatal events such as heart attacks and strokes. Intravascu-
lar ultrasound (IVUS) imaging plays a crucial role in cardiovascular
medicine, offering high-resolution views of arterial cross-sections. Accu-
rate segmentation of IVUS images is essential for quantifying patho-
logical features such as atherosclerotic plaque, which is necessary for
assessing disease burden, planning therapeutic procedures, and eval-
uating responses to medications. This paper introduces a novel app-
roach leveraging machine learning and deep learning techniques to seg-
ment atherosclerotic plaques in IVUS images. The proposed methodology
incorporates active learning techniques into the segmentation pipeline to
strategically select the most informative data points for training, thereby
enhancing model performance and mitigating data dependency. Exper-
imental results demonstrate promising outcomes, achieving comparable
segmentation performance measured by mean Intersection over Union
(IoU) using a significantly smaller portion of the dataset. This highlights
the efficacy of our methodology in optimizing segmentation performance
while reducing reliance on extensive data. We will release the dataset on
https://iab-rubric.org/resources.

Keywords: Intravascular Ultrasound · Segmentation · Active Learning

1 Introduction

Cardiovascular diseases are a leading cause of morbidity and mortality worldwide
[25]. Therefore, imaging techniques for an accurate diagnosis of such diseases are
highly valued by clinicians. Intravascular ultrasound (IVUS) [18] is a powerful
modality that provides high-resolution cross-sectional images of the coronary
arteries. The information obtained from IVUS, particularly in the evaluation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 154–167, 2025.
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Fig. 1. Annotated IVUS images showing cross-sectional view of coronary artery depict-
ing the plaque (fibro/fatty plaque in (a) and (b), calcified plaque in (c) deposition of
three different individuals having varying degrees of plaque marked between red (inner)
and green (outer) boundaries for healthy and diseased patients with (a) low plaque,
(b) moderate plaque, and (c) high plaque.

vessel wall morphology and the identification of atherosclerotic plaques, makes
it extremely useful in interventional cardiology. While IVUS provides detailed
images, the manual analysis of these images is a time-consuming and challenging
task, requiring the intervention of experts. Image segmentation, the process of
partitioning images into distinct regions or structures, is fundamental to extract-
ing meaningful information from IVUS images (Fig. 1).

Accurate segmentation of plaques from IVUS images assist clinicians in mak-
ing precise diagnoses and treatment plans for cardiovascular diseases. However,
the manual analysis of IVUS images is challenging because of several factors,
including subjectivity, interobserver variability, and the time-consuming nature
of the process [12]. This shows the need for automated and accurate image seg-
mentation techniques to help healthcare professionals obtain clinically relevant
information efficiently. Deep learning-based segmentation methods may address
these challenges and contribute to ongoing efforts to enhance the utility of IVUS
in cardiovascular medicine. Traditional segmentation approaches face challenges
posed by the intricate nature of vascular structures, morphology variations, and
the presence of speckle noise.

Modern deep learning techniques often require vast amounts of training data;
however, annotated datasets for plaque segmentation in IVUS images remain
scarce. The challenge lies in the labor-intensive nature of manual annotation,
compounded by potential interobserver variability. To address this gap, we have
developed one of the first annotated IVUS image datasets, named PSIVUS,
specifically for plaque segmentation. This dataset has the potential to signifi-
cantly advance research in the automated and efficient diagnosis of cardiovascu-
lar diseases. We will release PSIVUS dataset to further catalyze progress in this
critical area of research.
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Given the elusiveness of annotated IVUS datasets, there is a pressing need
to develop automated plaque segmentation methods that can be trained with a
limited number of training images. At the same time, it is important to recog-
nize that unannotated images are often available in much larger quantities. To
address these challenges, we introduce PSIVUS-Net, an active learning method
for plaque segmentation from IVUS images. Our approach minimizes the reliance
on extensive annotated datasets by leveraging unannotated images during train-
ing. PSIVUS-Net utilizes the underlying data distribution to generate pseudo
labels for unannotated images. We then identify a subset of images where the
pseudo labels are predicted with high confidence and incorporate these images,
along with the annotated ones, into the training process. This iterative approach
continues based on the available annotation budget, optimizing the model’s per-
formance with minimal manual annotation. In this paper, our key contributions
are as follows:

1. We have developed an annotated dataset specifically for plaque segmentation
from Intravascular Ultrasound (IVUS) images.

2. We propose an active learning framework tailored for the segmentation of
IVUS images.

3. We provide a comprehensive benchmark by evaluating the performance of
various state-of-the-art image segmentation techniques on our dataset.

2 Related Works

Since this research focuses on segmentation for IVUS and active learning, we
summarize here the literature in these two areas.

2.1 Segmentation

Recent studies in IVUS image segmentation employ various machine learning
approaches in conjunction with deep learning. These methods include active
contour-based techniques such as snake and level set methods [28], probability-
based methods [16], and other machine learning-based strategies [4]. Recent work
focused on fully automated segmentation that mimics human expert procedures,
with specific applications in assessing coronary artery dimensions, balloon sizing,
and the automatic extraction of lumen and vessel boundaries [15].

These advancements indicate the growing role of machine learning in enhanc-
ing the accuracy and efficiency of IVUS image segmentation tasks. Deep learning
techniques, especially convolutional neural networks (CNNs), are used in vari-
ous medical image segmentation tasks [10]. It has shown remarkable success in
various image segmentation tasks because it can automatically learn hierarchi-
cal features from raw data [20]. Nishi et al. [17] used a DL-based segmentation
system built using a fully convolutional neural network (CNN) with DeepLabv3
architecture, incorporating a ResNet34 encoder and Adam optimizer. Bajaj et
al. [2] employed a ResNet-based convolutional neural network with a Pix2pix
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[11] conditional generative adversarial network (GAN). Dong et al. [6] used an
approach using an 8-layer U-Net to segment the coronary artery lumen and
EEM.

These investigations have shown promising results, showcasing the potential
of automated approaches to streamline the analysis workflow and improve diag-
nostic accuracy. However, a comprehensive evaluation of custom IVUS image
segmentation deep learning techniques remains an active research area. This
study aims to contribute to the existing body of knowledge by presenting a
detailed exploration of the application of CNNs for IVUS image segmentation.
By building upon the foundation laid by previous studies, we seek to address
the limitations of traditional segmentation methods and provide insights into the
potential of deep learning to revolutionize the analysis of IVUS images. Through
rigorous experimentation and evaluation, our objective is to establish the effi-
cacy and reliability of our proposed methodology to enhance the clinical utility
of IVUS for the diagnosis and planning of cardiovascular treatment.

2.2 Active Learning in Medical Image Segmentation

Active learning has become increasingly important in medical image segmenta-
tion due to its ability to reduce the manual annotation burden by strategically
selecting the most informative samples for labeling. One notable recent method
is the integration of Bayesian active learning with deep learning models. Billah
et al. [3] proposed a Bayesian Convolutional Neural Network (BCNN) framework
that employs Monte Carlo dropout to estimate the model uncertainty. Their app-
roach focuses on selecting samples with the highest uncertainty, thus providing a
significant boost in performance with fewer labeled instances. This method has
been applied to tasks such as brain tumor segmentation, demonstrating enhanced
efficiency in labeling efforts [1].

The suggestion annotation [27], one of the initial deep AL frameworks, used
bootstrapping to estimate the uncertainty of the sample, and used a greedy
measure of cosine similarity to evaluate the similarity between the candidate
set and the unlabeled pool. In contrast to using multiple models, [19] utilized a
Monte Carlo dropout Bayesian network to compute the prediction variance and
adopted a Borda-count-based sampling strategy to identify the candidates who
ranked the best in terms of uncertainty and representativeness. An extension of
this approach computed representativeness with an infoVAE [29] for maximum-
likelihood sampling in the latent space [19]. Mahapatra et al. [14] used a condi-
tional generative adversarial network (cGAN) to generate realistic chest X-ray
images conditioned on real images, and a Bayesian neural network to select the
most informative samples for training.

To enhance model performance with a smaller amount of annotated data
during training, two methodologies have emerged to harness the potential of
unlabeled data: active learning and semi-supervised learning [8]. Active learn-
ing (AL) focuses on selecting informative samples for labeling and inclusion in
training. Semi-supervised learning aims to enhance the learned representation
from data by leveraging unlabeled samples alongside the limited labeled ones.
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Nonetheless, the challenge persists in selecting the most suitable samples for the
labeled set, emphasizing the significance of active learning in this context.

3 PSIVUS Dataset

Due to the lack of multiple publicly available datasets in this domain, we pre-
pared a dataset of IVUS imaging at All India Institute of Medical Sciences
Rishikesh (AIIMS) Rishikesh. For this, appropriate IRB approvals were taken.
IVUS procedures were performed according to established protocols, ensuring
standardization and reliability of image acquisition. An automated transducer
pullback, operating at a velocity of 0.5mm/s, is utilized in conjunction with a
commercially available IVUS imaging system under the expertise of a experi-
enced cardiologists. The acquired IVUS image data are initially stored in the
“.iq” format and then processed using the cardiac imaging software QIVUS
Research Edition 3.1 by Medis Medical Imaging to convert it into the more acces-
sible “.jpeg” format. The resulting dataset includes a collection of cross-sectional
artery images annotated by domain experts. These annotations delineated the
vessel and lumen with distinct red and green boundaries, ensuring clarity and
precision in subsequent segmentation tasks, as shown in Fig. 2 and the dataset
statistics are summarized in Table 1.

To train a segmentation model effectively, it is essential to have not only
the images, both also the annotations for a corresponding mask. Therefore, the
dataset is further annotated by domain experts which will provide a significant
support towards the development of segmentation algorithms. These annota-
tions primarily involved delineating boundaries that mark the plaque regions
within IVUS images, serving as ground-truth labels for mask generation. The
careful annotation process ensured the accuracy and reliability of the dataset,
thereby providing a strong foundation for developing and evaluating segmenta-
tion methods to identify plaque regions in IVUS images. Annotated images that
show delineations in green and red hues are processed for mask development. The
dataset and the annotation will be released publicly to the research community.

The binary mask features the white plaque region (plaque) and the black
background. Green and red boundaries are used to generate a binary mask. Ini-
tially, a black background is created to match the size of the image. Then, the
presence of green pixels in the annotated image is identified using the Suzuki
algorithm [24]. This algorithm allows for the precise tracing of continuous white
(foreground) regions by scanning pixels within a defined range of green values. It
employs a pixel-following technique, navigating through adjacent pixels to deter-
mine contour boundaries with a non-recursive method. Following this approach,
red contours are also generated. Then, area under the red contour is subtracted
from the area under green contour on the background black image, resulting in
the final plaque region. This process yields a binary mask that is used in model
training.
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Fig. 2. (a): Raw image from QIVUS, (b): After annotation from a medical expert, (c):
Ground truth mask for plaque segmentation.

Table 1. Description of the dataset split for training and evaluation.

Train Validation Test Total

Images 8606 1385 4706 14697

4 PSIVUS-Net

We propose PSIVUS-Net, an active learning method for plaque segmentation
from IVUS images. It utilizes a Variational Autoencoder (VAE) [13] with a
shared encoder and two decoders. While one decoder branch reconstructs the
input image, the other decoder branch performs plaque segmentation. The latent
space of the VAE helps in extracting salient features from the input IVUS images.
Our design is motivated by the Variational Adversarial Active Learning (VAAL)
method [23]. We also follow the training protocol of [23]. The proposed PSIVUS-
Net architecture is illustrated in Fig. 3. We perform active learning utilizing the
latent space representation. The operation of the segmentation branch and the
reconstruction branch is discussed next followed by the description of the active
learning method.

The integration of the segmentation task with a variational autoencoder
(VAE) for the extraction of latent features is done where the network has an
encoder-decoder structure. The encoder maps the input image to a latent space,
and the decoder reconstructs the image from this latent representation. The
training procedure involves training the segmentation model, VAE, and dis-
criminator models. Specifically, the VAE transforms the input image x into a
distribution over the latent variables z.

4.1 The Segmentation Decoder

The segmentation decoder operates in conjunction with the encoder, using the
same encoded features for segmentation tasks. The encoder Eφ(x) processes
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the input image x to produce the latent space feature map f . The segmenta-
tion branch (decoder) implements an upsampling function U(f) that takes the
encoded features f and increases their dimensions to match those required by the
segmentation task. This is done with transposed convolutional layers. Then, the
segmentation head Sψ processes these upsampled features to generate pixel-wise
segmentation predictions for an input image x.

Fig. 3. Proposed PSIVUS-Net Architecture: Both labeled and unlabeled images are
passed through an encoder for feature extraction then latent space representations are
used for different purposes. Discriminator: tries to differentiate the latent space rep-
resentation between labeled and unlabeled and according to the budget the unlabeled
samples identified by discriminator are given to oracle. Reconstruction decoder: helps
capture important features from these representations. Segmentation decoder: creates
the mask, leveraging the refined features for accurate segmentation results.

The segmentation branch employs instance normalization and dropout for
regularization along with LeakyReLU and ReLU activations. For each pixel of an
input image x, this branch outputs probabilities of belonging to the foreground
(and background). These probabilities are used to calculate the cross-entropy
loss Lseg between the predicted and ground truth segmentation masks. This
loss is used alongside other losses to train our model.

4.2 The Reconstruction Decoder

The reconstruction decoder outputs the reconstructed version of the input image
using the latent space representation of the VAE. Reconstruction of images from
the latent space is achieved through decoding layers, involving upsampling to
the original image size. In each epoch, the model iterates through batches of
labeled and unlabeled data, computing losses for segmentation, VAE transduc-
tive and adversarial loss, and discriminator loss. Let xL represent the labeled
data samples and xU represent the unlabeled input data samples. The encoder
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qφ processes these inputs to produce the latent representations zL and zU , respec-
tively. The VAE learns to encode input data x into a compressed latent space z
and then decode it back to reconstruct the input. The reconstruction should be
as close to the original as possible, which is encouraged through the reconstruc-
tion loss, measured as the mean squared error (MSE) between the input and the
reconstructed output. The objective function of the VAE aims to minimize the
variational lower bound on the marginal likelihood of a given sample is given by,

LVAE
trd = E[log pθ(xL|zL)]− βKL(qφ(zL|xL)|p(z))

+ E[log pθ(xU |zU )]− βKL(qφ(zU |xU )|p(z)), (1)

where LVAE
trd is the transductive loss for the VAE; E[log pθ(xL|zL)]

and E[log pθ(xU |zU )] are the expected log probabilities of reconstructed labeled
xL and unlabeled xU data from their corresponding latent representations zL

and zU , respectively; β is a hyperparameter that balances the reconstruction
loss and the KL divergence in the VAE loss function; KL(qφ(zL|xL)|p(z)) and
KL(qφ(zU |xU )|p(z)) are the Kullback-Leibler divergences between the approxi-
mate posterior distributions of the latent variables given the labeled and unla-
beled data, respectively, and the prior distribution p(z).

4.3 Discriminator

The discriminator distinguishes between the latent representations derived from
the labeled data and those from the unlabeled data. If the VAE creates dif-
ferent latent space representations for the labeled and the unlabeled data, the
discriminator penalizes the VAE by increasing the adversarial loss given by

LVAE
adv = −E[logD(qφ(zL|xL))]− E[logD(qφ(zU |xU ))], (2)

where LVAE
adv is the adversarial loss for VAE; E denotes the expectation over

the specified distributions; logD(qφ(zL|xL)) and logD(qφ(zU |xU )) are the loga-
rithms of the discriminator outputs for latent representations of labeled zL and
unlabeled zU data samples, respectively, conditioned on their input data xL and
xU . Through the minimization of this loss, the discriminator enforces the cre-
ation of similar latent space representations for the labeled and the unlabeled
data. Similar representations of the labeled and unlabeled data makes the VAE
model robust to the variation in the data.

When the discriminator identifies a sample as unlabeled, the sample is likely
to have a significant difference in distribution compared to the labeled samples.
Hence, such a sample should be labeled by an oracle and used in the training
process to accommodate such varieties in the distribution. To that end, such a
sample is forwarded to an oracle for labeling within the constraints of a prede-
fined budget. The budget is a parameter that optimizes the labeling process by
ensuring that only a limited number of samples are labeled in each iteration to
maintain efficiency and cost-effectiveness. Once the oracle labels these samples,
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the models are subsequently re-trained using the updated sets of labeled and
unlabeled data. This iterative re-training process aims to improve the model’s
accuracy and performance.

4.4 Sampling for Active Learning

Our sampling strategy, as shown in Fig. 3 of PSIVUS-Net, uses the probability
scores of the discriminator’s predictions. We collect a batch of b samples with the
lowest confidence scores predicted as “unlabeled” and send them to the oracle
for labeling. The closer the probability is to zero, the higher the likelihood that
the sample comes from the unlabeled pool. The core idea behind our approach
is to prioritize the representativeness of samples, rather than depending solely
on the training algorithm’s performance on the main task, which tends to be
unreliable, especially in the early stages. Thus, we select samples based on their
likelihood of belonging to the unlabeled pool according to the discriminator.

Our experiments start with an initial labeled pool comprising 100 images
of the training set. For each batch, the budget size is set to 100 samples from
the unlabeled pool. The remaining portion of the training set forms the pool of
unlabeled data, from which samples are selected for annotation by the oracle
and also used for producing better segmentation results. Once these samples
are labeled, they are incorporated into the initial training set, and the training
process is repeated on this augmented dataset.

4.5 Implementation Details

For the purpose of model training, validation and evaluation, the dataset is
divided into three subsets where fine-tuning is performed with 6 patients where
a subset (1 vessel data) of 1 patient is held from these 6 patients and is used for
validation, curated to ensure representative sampling in various clinical scenarios
and anatomical presentations. Subsequently, the remaining 4 patients’ data are
in the test set, held separate from model training and validation processes that
provide an unbiased evaluation of algorithmic performance.

The segmentation models UNet, UNet++, DeepLabV3+, and Multi-Scale
Attention Net are initialized with ImageNet weights, which proves to be partic-
ularly advantageous given the limited size of the initial dataset. Using pre-trained
weights allows the models to use the vast knowledge acquired from large-scale
datasets. For the Variational Adversarial Active Learning (VAAL) framework,
kaiming initialization is used to address the challenges associated with initial-
izing neural network weights, ensuring more stable and efficient training. The
combination of pre-trained weights for the segmentation models and kaiming
initialization for VAAL optimizes the overall model initialization process.

The training process for the segmentation models is further optimized using
the Adam optimizer and configured with a learning rate determined through
grid search testing various batch sizes from 4 to 64 depending on model size and
learning rates between 0.1 and 0.00001. Additionally, a learning rate scheduler,
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specifically the ReduceLROnPlateau scheduler, adjusts the learning rate dynam-
ically based on validation loss. If the validation loss stagnates for a set number
of epochs, the learning rate is reduced to enhance convergence. An early stop-
ping mechanism with patience of 10 epochs is implemented to prevent overfitting
and halt training when no improvement in validation loss is observed within the
specified period, thus ensuring the development of a robust and generalized seg-
mentation model. Training is carried out on an A100 GPU, ensuring efficient
handling of computational demands.

5 Results and Discussion

The experiments are performed on the proposed PSIVUS dataset using the pro-
tocol summarized in Table 1. In order to evaluate the effectiveness of the pro-
posed model, we have compared the performance with state-of-the-art segmenta-
tion algorithms including UNet [21], UNet++ [30], DeepLabV3+ [5], MANet [7]
along with different backbones: ResNet18 [9], VGG19 [22], MiT-b2 [26]. In addi-
tion, we have also compared the performance with active learning methodology,
Variational Adversarial Active Learning (VAAL), and the results are evaluated
in terms of Jaccard index, F1 score, precision and recall. Active learning meth-
ods are evaluated with incrementally adding a subset of the training images.
Therefore, starting with an initial training set of 100 images, we have incre-
mentally used 10%, 20%, 30%, and the full training dataset, while the testing
subset remains the same throughout. The results obtained with the best encoder-
decoder combinations are summarized in Table 2.

Some visual results of the proposed and existing algorithms are shown in
Fig. 4. The first row displays the original input images that are grayscale and
show cross-sectional views of coronary artery. The second row provides the
ground truth segmentations, binary masks indicating the plaque in white region.
The third to seventh row indicate the outputs from different segmentation mod-
els. Here, UNet results closely follow the ground truth but sometimes have more
FPs in comparison to others as in Sample 1 and more FNs as in Sample 4.
UNet++ provides more refined boundaries and captures details better. How-
ever, there are still some areas where the segmentation could be improved like in
Sample 5. MANet’s performance is similar to UNet++, with well-defined bound-
aries but some segmentations show slight over-segmentation, where the predicted
mask is larger than the ground truth as visible in Sample 5. DeepLabV3+ tends
to produce smoother boundaries and captures the overall shape well. The final
row presents the results from the proposed model and is very close to the ground
truth, with well-defined boundaries and accurate representations of the regions
of interest. It seems to handle both the overall shape and finer details better
than the other models but sometimes has worse performance than others.

Across both existing and proposed active learning algorithms, we observe
that training with only 20–30% of the entire dataset yields results comparable
to those obtained by using the entire dataset. PSIVUS-Net exhibits promising
performance across various data splits, achieving competitive mean IoU scores.
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Fig. 4. The visual results after training with 30% of the training data for different
models are shown here, where the various columns denote the different sample images
used and each row has a different model; Row 1: Input Image, Row 2: Ground Truth
Mask, Row 3: UNet, Row 4: UNet++, Row 5: MANet, Row 6: DeepLabV3+, Row 7:
Proposed PSIVUS-Net.
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Table 2. Performance of different models with Active Learning (AL) on 10%, 20%,
30% and 100% of the training data.

AL Model Ratio Jaccard F1 Recall Precision

VAAL [23]UNet [21] 0.10 0.77 0.85 0.81 0.92
0.20 0.77 0.86 0.82 0.92
0.30 0.78 0.87 0.84 0.92
1.00 0.79 0.88 0.85 0.91

UNet++ [30] 0.10 0.76 0.85 0.81 0.90
0.20 0.77 0.86 0.83 0.92
0.30 0.78 0.86 0.83 0.92
1.00 0.79 0.87 0.84 0.91

MANet [7] 0.10 0.63 0.73 0.67 0.93
0.20 0.76 0.85 0.81 0.92
0.30 0.77 0.86 0.82 0.92
1.00 0.78 0.92 0.83 0.87

DeepLabV3+ [5] 0.10 0.73 0.82 0.78 0.89
0.20 0.74 0.84 0.80 0.89
0.30 0.77 0.86 0.86 0.88
1.00 0.77 0.86 0.83 0.89

PSIVUS-Net (Proposed) 0.10 0.77 0.84 0.81 0.90
0.20 0.77 0.86 0.82 0.91
0.30 0.78 0.86 0.82 0.91
1.00 0.79 0.88 0.85 0.92

This range highlights its robust segmentation capabilities. Furthermore, preci-
sion scores indicate high accuracy in identifying positive instances, while recall
values reflect its effectiveness in capturing relevant instances from the dataset.
PSIVUS-Net shows comparable performance to VAAL with UNet model and has
better performance than the other models.

The results indicate that PSIVUS-Net demonstrates the ability to select
the most representative samples in each iteration that are equivalent to those
obtained with the entire dataset. The proposed architecture can be further
explored to accommodate a balance between segmentation and sample selec-
tion with more adaptability that could help improve its performance. The other
models present competitive metrics across various evaluation criteria, indicating
their effectiveness in reducing data annotation costs and accelerating learning.
These findings highlight the potential of these techniques to improve the effi-
ciency of segmentation tasks in various applications. More experimentation can
be done to explore their performance under different scenarios and datasets and
identify potential areas for improvement and optimization.
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6 Conclusion

This research makes contributions to the field of medical image analysis by
addressing the challenges associated with plaque segmentation in intravascu-
lar ultrasound images. Through the development of the PSIVUS dataset and
the introduction of PSIVUS-Net, an active learning framework, we have demon-
strated that deep learning models can achieve high performance with substan-
tially fewer annotated samples. This efficiency not only reduces the burden of
manual annotation but also accelerates the adoption of automated diagnostic
tools in clinical settings. Our work offers a promising pathway towards more
accurate, reliable, and scalable solutions for cardiovascular disease diagnosis.
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Abstract. Analyzing the cone photoreceptor pattern in images obtained
from the living human retina using quantitative methods can be crucial for
the early detection and management of various eye conditions. Confocal
adaptive optics scanning light ophthalmoscope (AOSLO) imaging enables
visualization of the cones from reflections of waveguiding cone photorecep-
tors. While there have been significant improvements in automated algo-
rithms for segmenting cones in confocal AOSLO images, the process of
labeling data remains labor-intensive andmanual. This paper introduces a
method based on deep learning (DL) for detecting and segmenting cones in
AOSLO images. The models were trained on a semi-automatically labeled
dataset of 20 AOSLObatches of images of 18 participants for 0◦, 1◦, and 2◦

from the foveal center. F1 scores were 0.968, 0.958, and 0.954 for 0◦, 1◦, and
2◦, respectively, which is better than previously reported DL approaches.
Our method minimizes the need for labeled data by only necessitating a
fraction of labeled cones, which is especially beneficial in the field of oph-
thalmology, where labeled data can often be limited.

Keywords: AOSLO · cones · photoreceptors · segmentation ·
detection

1 Introduction

Adaptive optics scanning light ophthalmoscopy (AOSLO) [15] offers a noninva-
sive approach to achieve high-resolution, in vivo imaging of the cone photore-
ceptors (cones) mosaic in both healthy and diseased retinas [23]. The AOSLO
technique integrates an adaptive optics (AO) system within a scanning light
ophthalmoscope (SLO) [17]. The AO system employs a wavefront sensor and
an actuated mirror to measure and dynamically compensate for wavefront aber-
rations caused by the eye’s inhomogeneous medium. While AO can be utilized
with any ophthalmic imaging device requiring light passage into or out of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 168–182, 2025.
https://doi.org/10.1007/978-3-031-78104-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78104-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-78104-9_12


Generalist Segmentation Algorithm for Photoreceptors Analysis 169

eye, it is predominantly used with SLOs due to its superior contrast and reso-
lution capabilities. Multimodal AOSLO imaging captures three channels simul-
taneously (confocal, split-detection, and dark-field), each emphasizing different
retinal structures. The confocal modality of AOSLO facilitates relatively explicit
imaging of cones and rods [17], presenting clinicians and researchers with quan-
tifiable but complex retinal structural information [12]. Using this technology,
one can obtain various quantitative measures of the cone mosaic from AOSLO
images, such as cone density, spacing, and pattern regularity [2,8]. Such quanti-
ties are useful for developing sensitive biomarkers for early diagnosis and moni-
toring of ocular and systemic disease progression.

Considering just the cones, peak foveal density can approach 200,000 cones
per mm2 [5], making manual labeling impractical. On the other hand, existing
automatic labeling techniques may not consistently enable the automatic iden-
tification of every cone within an image, particularly in the presence of blood
vessels or when the image clarity is compromised. Furthermore, the challenge
intensifies when examining retinal locations that are more eccentric from the
fovea.

Using the Voronoi algorithm, we cover the area from center-to-center of a
cone detected in the confocal image [8]. As we move out from the foveal center,
we move from an area with only cones and where the Voronoi cell is equal to
the cone’s size to areas with rods in between cones. This has already happened
about 0.5◦–1◦ from the foveal center. Thus, in areas with rods and cones, the
Voronoi represents distances between cones but not their size. Classical meth-
ods, such as presented in work by Li and Roorda [7], which are currently used
in contemporary works, rely on the optical fiber properties of cone photorecep-
tors. In practice, the algorithm can mislabel rods as cones. Therefore, it needs
to be revised by a human expert. New algorithms should take this into account.
Several algorithms have been previously developed to detect inner segments in
split-detection images [4,18]. In general, AOSLO split-detection images are semi-
automatically analyzed to extract the location of cone photoreceptor cells within
the images, with compulsory refinement by a medical expert. Creating a fully
automatic method for the segmentation and detection of cones will significantly
increase the possibilities of retinal research and reduce the workload of reti-
nal researchers. This paper introduces a deep learning (DL) –based method for
automatically detecting and segmenting the cones.

2 Related Works

Cellpose [20] is a versatile, generalist algorithm for cell segmentation in
microscopy images, regardless of the imaging modality or the type of cells being
analyzed. It employs a DL model to identify cell boundaries, enabling automated
and accurate segmentation of individual cells or nuclei across various applica-
tions. The algorithm uses a novel approach based on the concept of “flows” to
capture cells’ complex shapes and sizes, making it highly effective in different
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biological contexts. The term “flows” refers to the vector field that is generated
for each pixel in the image, pointing towards the center of the cell to which
that pixel belongs. Cellpose 2.0 [11] is an updated version with a manual correc-
tion step for training custom models. However, it requires considerable effort to
manually correct the detected polygons of multiple cells, which is significant for
the number of receptor cells in AOSLO images (up to 200,000 cells per mm2).
Another segmentation method, PolarMask, is a single-shot, anchor-free convolu-
tional neural network (CNN) framework designed for instance segmentation [24].
Unlike traditional instance segmentation methods that rely on bounding boxes
or complex, multi-stage processes, PolarMask simplifies this by utilizing a polar
representation to capture the shape of each object. It generates a center point
for the object and then defines the segmentation boundary through a set of rays
emanating from the center to the boundary in polar coordinates. This approach
allows PolarMask to perform instance segmentation efficiently and accurately
without the need for anchor boxes, reducing the complexity and computational
demands of the task. StarDist is a novel image segmentation method optimized
for microscopy images, particularly those of nuclei and cells, leveraging a shape-
based approach to outline individual objects’ boundaries [16,22]. The core inno-
vation of StarDist lies in its use of star-convex shapes for segmentation, where it
predicts the distances from the center of an object to its boundary in a fixed set
of directions, effectively capturing the often complex and irregular shapes of bio-
logical cells. This method is implemented through a DL framework, allowing it to
learn from annotated training data and generalize well to new, unseen images.
StarDist stands out for its ability to handle overlapping structures and vary-
ing shapes, making it highly effective for tasks where segmenting closely packed
or irregularly shaped cells is critical. Its performance and efficiency make it a
valuable tool for biomedical image analysis, facilitating advanced quantitative
studies of cellular structures.

These methods are versatile and efficient computational tools for segmenta-
tion, demonstrating significant performance in various biological imaging con-
texts [19,21]; however, they are designed to generalize across different types of
cells and imaging modalities by leveraging a unique representation of cell shapes.
Despite its robustness and adaptability, applying them to segment structures
derived from Voronoi diagrams may require modifications. Cunefare et al. [4]
applied CNN to confocal AOSLO images to detect the cones, extracting the
training patches using the Voronoi algorithm. However, the method does not
involve the segmentation of the cells. The AOSLO images belonged to patients
with achromatopsia disease –which have many inactive cones – and are, in fact,
black regions on the images and are very different from the active cones in our
dataset.
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3 Methods

3.1 Dataset

In this study, we employed a semi-automatically labeled dataset of 20 AOSLO
batches of images of 18 healthy participants with normal vision from a wide
age range, 14–65 years, representing a wide scope of healthy retinas. Each batch
consists of approximately 40 confocal images. The cone centers were first auto-
matically identified with the classical method [7]. Then, missed cones were man-
ually added by a human expert or removed if they were mislabeled by the auto-
matic algorithm, representing approximately 5% of all cones across the dataset
images. The data was split on the participant’s level so that images belonging
to one participant appeared only in one subset, with a train: test split ratio of
70:30. Therefore, we had 14 batches (540 images) of AOSLO images for training
and 6 batches (240 images) for testing. Each image was cropped to 550 × 550
pixel resolution with 350 labeled cones on each image on average, for a total of
190k segmented cells in the training subset at the starting point. Figure 1 shows
examples of confocal images with labeled cone centers.

Fig. 1. Two examples of confocal AOSLO images with labeled cone centers using the
existing semi-automatic segmentation method [7] followed by refinement by a medical
expert.

3.2 Human-In-The-Loop Approach

Figure 2 illustrates the overall pipeline of the proposed method. AOSLO images
were labeled and split into the test and train subsets as described in the dataset
Sect. 3.1. To all labeled areas, we applied the Voronoi algorithm to obtain the
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masks of the cones. Then, the human-in-the-loop step was applied: on the ini-
tially labeled AOSLO images, we trained DL-based models to generate semantic
masks on unlabeled images. Then, from semantic masks, we calculated the cen-
ter of mass for each segment (cone), which is basically the center of the cone
we manually labeled. Therefore, we could evaluate the models by comparing the
obtained centers with ground truth labels. Given the potential for initial inac-
curacies, manual correction is a crucial step in the method. This step ensures
the precision of the model’s output by allowing the expert to review and adjust
the segmented cone centers, mitigating the risk of errors in the initial automated
segmentation. Adding new annotations and the manual correction step are not
involved in the initial zero iteration, they are only applied starting from the first
iteration step.

The Voronoi algorithm is reapplied to the refined data after correction of the
centers of the cones, which was done in EXACT [9]. This iterative process refines
the segmentation accuracy and enriches the training dataset with additional, cor-
rected instances. Thus, the next 15% of the total number of images is labeled
at each iteration, increasing the training dataset. Each iteration concludes with
an evaluation step on a test dataset to quantify the improvements. Additionally,
at this stage, we apply the K-means algorithm for clustering the cones by the
mean brightness of the center part (reflection). Therefore, we obtain the per-
centage of reflecting and non-reflecting cones, which is also a priori information
for diagnostics. This cyclical process, encompassing both automated segmenta-
tion and expert review, ensures the development of a robust model capable of
high-precision cone segmentation.

3.3 Voronoi Algorithm

The Voronoi algorithm is one of the more useful geometrical constructions to
study point patterns since it provides all the information needed to study prox-
imity relations between points [10]. Connecting surrounding cones and charac-
terizing the number of sides, the Voronoi diagram allows assessment of the degree
of hexagonality, and it is often used to show how disease and aging can affect
this aspect of packing geometry [1]. In a healthy retina, cones are packed in the
most efficient manner possible, which is a hexagonal (honeycomb) arrangement.
The degree of hexagonality, therefore, can be used as a proxy for general retinal
health. Applying the Voronoi algorithm, we can obtain a reasonably accurate
approximation of photoreceptor segmentation by labeling only the centers of
cones (Fig. 3).

3.4 Attention-Augmented U-Net

Figure 4 shows the overview of the model. In our model, we applied the concept
of flows (vector gradient fields) [20]. This means that we trained a neural net-
work to predict the horizontal and vertical gradients of the topological maps.
Additionally, the network predicts a binary map to indicate if a given pixel is
inside or outside of regions of interest. Our model was based on the general U-Net
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Fig. 2. Pipeline of the method. Voronoi algorithm is applied to initially semi-
automatically annotated cones to obtain the masks. Then, a segmentation model was
trained, which generates segmentation masks for unlabeled AOSLO images. The center
of mass function is applied to get the centers of the cells from segmentation masks.
After each iteration step, the model was evaluated using the test subset. A manual cor-
rection step is involved in the pipeline to improve the annotations of the segmentation
model of initially unlabeled images.

architecture [14] with an additional attention-augmented module (AA module)
[13]. This module dynamically adjusts the importance of different spatial regions
and channels in the input data, enabling the network to prioritize more relevant
features for improved segmentation accuracy. Such augmentation facilitates pre-
cise localization and detailed segmentation in complex image datasets, which is
particularly beneficial in medical imaging applications where accuracy is essen-
tial. Attention mechanisms can help the model to focus on relevant features and
ignore distractions, therefore, improving segmentation accuracy.

The AA module improves the performance of overlapping or docked objects.
The nature of the Voronoi algorithm ensures the cells are always tightly packed,
with no possibility of spaces in between. The AA module helps to distinguish
between adjacent objects by prioritizing spatial features that define boundaries,
enhancing the model’s ability to separate and accurately segment individual
cells.

3.5 Center of Mass

We calculated the center of mass to extract the centers of the cones. The center
of mass is a point that corresponds to the average position of all the mass in a
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Fig. 3. Application of Voronoi algorithm on the labeled AOSLO images: (a) example
of the original image; (b) segmented image.

Fig. 4. Model overview. (a) Transformation from the center of the cell to a gradient
vector field using the Voronoi algorithm. (b) U-Net model with additional Attention-
augmented module.

system. For discrete systems, the center of mass can be considered the weighted
average of the positions of all elements, where the weights are the values of those
elements. The cone may have several pixels corresponding to the brightest color:
using the center of mass, we get the center of the brightest area.
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4 Experiments

4.1 Training Setup

The model was trained for 500 epochs on each iteration with stochastic gradient
descent with a learning rate of 0.001, a momentum of 0.9, a batch size of 16
images, and a weight decay of 0.0001. All the models were trained on a single
NVIDIA A100 graphics processing unit on a machine with two Intel Xeon Gold
6134 3.2GHz and 96 GB RAM. One training iteration on this setup lasts 30min,
with about 10 s for the further inference of one image from a batch.

To predict the horizontal and vertical gradients, we used the MSE loss func-
tion. We applied the cross-entropy loss function to predict the probability that
a pixel was inside or outside a cell.

4.2 Metrics

To match predicted points and ground truth, we applied the KDTree algorithm
[6]. Each predicted cell center matched with a ground truth pair was True Pos-
itive (TP), a predicted cone without a ground truth pair was False Positive
(FP), and when nothing was detected where ground truth indicates a cone was
a False Negative (FN) case. The L2 distance (DL2) between pairs of points was
calculated using the following formula:

DL2 =
√

(xa − xb)2 + (ya − yb)2, (1)

where a and b are predicted and ground truth centers, respectively. Detected
cones were evaluated using Recall, Precision, and F1-score:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2× Precision × Recall

Precision + Recall
. (4)

4.3 Results

Figure 5 shows an example of the application of the algorithm on the first (a)
and second (b) iterations. Green and red circles correspond to ground truth and
predicted cell centers, respectively. Yellow squares on the first iteration show
unlabeled cells (FNs); on the second iteration, they are correctly labeled.

Figure 6a shows an example of the predicted semantic mask by our model.
For this mask, the center of mass was calculated, obtaining the centers of cones
that are shown in Fig. 6b. Predicted centers (red) are matched with ground truth
(green), and the distance is shown with blue connection lines.
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Fig. 5. Evaluation of the proposed method on first (a) and second (b) iterations on a
0◦ test sample. Green circles correspond to the ground truth cone centers, and red to
the predicted centers. Yellow squares show the False Negative predictions of the model.
(Color figure online)
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Fig. 6. Example of a predicted segmentation mask (a); example of the matching of
predicted (red) and ground truth (green) centers (b). Blue lines show the L2 distance.
(Color figure online)

Table 1 presents the comparative performance of the StarDist, Cellpose, and
our models. Recall, Precision, and F1 score were computed separately for 0◦,
1◦, and 2◦ from the fovea. DL2 was calculated for all three degrees together.
All models are characterized by a fundamental improvement after the second
correction: on average, the F1 score improved by 7%. We also see a tendency for
the scores to deteriorate slightly at higher eccentricities.

Table 1. Evaluation metrics of the trained models. Best results are marked in bold.

0◦ 1◦ 2◦ All
Model It. Recall Precision F1 Recall Precision F1 Recall Precision F1 DL2

StarDist 1 0.833 0.930 0.879 0.824 0.919 0.869 0.810 0.920 0.861 7.653
Cellpose 1 0.843 0.952 0.895 0.843 0.941 0.890 0.811 0.942 0.872 7.641
Ours 1 0.854 0.953 0.901 0.846 0.954 0.897 0.841 0.955 0.894 7.637
StarDist 2 0.927 0.946 0.936 0.927 0.936 0.931 0.891 0.937 0.913 7.539
Cellpose 2 0.937 0.967 0.952 0.937 0.957 0.947 0.902 0.948 0.925 7.534
Ours 2 0.958 0.978 0.968 0.948 0.968 0.958 0.940 0.969 0.954 7.529

The obtained centers were clustered in terms of brightness to monitor the
distribution of light-reflecting and non-reflecting (dark) photoreceptors during
training. The K-means algorithm is a popular unsupervised machine learning
technique for clustering data into a specified number of clusters, denoted by K.
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Fig. 7. Examples of the method performance on the test images located at 0◦, 1◦,
and 2◦ from the fovea with applied K-Means clustering algorithm. Blue-marked labels
correspond to the cones with the highest reflection, green to the lowest, and red to the
middle. White boxes show the location of the zoomed area in the right column.
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We applied the K-means algorithm with three clusters (K = 3) during each
iteration for additional distribution of reflecting cone control.

Clustering the cones based on their brightness level is particularly useful
in retinal imaging for understanding differences between healthy and diseased
retinas. Figure 7 shows examples of clustering on images of 0◦, 1◦, and 2◦.

Figure 8 plots the cumulative average number of corrected cone center identi-
fications made for all three models. The values show that our proposed improve-
ment will decrease the number of corrections for each image, compared with
using Cellpose or StarDist models for the human-in-the-loop approach, poten-
tially saving the human expert’s time cost for the AOSLO cells segmentation.

Fig. 8. The cumulative average number of corrections of cone centers on the first and
second iterations per image for Cellpose, StarDist, and the proposed model. The initial
training iteration was done with the original labeled dataset; therefore, the number of
corrections was equal to zero.

5 Conclusion

This work describes and evaluates a method for the identification and segmenta-
tion of cone photoreceptors from AOSLO confocal images. Models were trained
and tested on images covering a more extensive range of images of 18 partic-
ipants with only 5% labeled cones. Our proposed method received an overall
F1 score of 0.968 for cones for 0◦, 0.958 for 1◦, and 0.954 for 2◦, which is bet-
ter than previously reported DL approaches [3,4]. Our method can reduce the
labeling effort by requiring only a portion of labeled cones and is particularly
advantageous in the ophthalmology field, where labeled data can be scarce. The
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work is limited to the range of eccentricities from the center of the fovea - 0◦,
1◦, and 2◦. Rods are already present at 1◦ but peaks in density at around 15◦;
thus, rods become more and more visible on images between cones, which also
require detection. Therefore, a potential improvement of the method could be to
add the annotations for rods for implementing rods detection for eccentricities
more than 2◦. This could be done using the calculated modality of the AOSLO
images.

The method can be extended to the automatic identification of areas that are
not cones, enabling these regions to estimate rod density. Incorporating auto-
matic detection of inner segments in split-detection images could help to confirm
that the reflected light and/or dark areas in confocal images correspond to cones.
This would allow for an estimation of the number of dark cones. Furthermore,
identifying retinal pigment epithelium (RPE) cells as part of this process would
significantly enhance the methods’ utility for clinical work and research, which
leads us to future work.

6 Code Availability

The code used to generate the results in this paper will be available at
github.com/MikhailKulyabin/AOSLO
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Abstract. Recently, a growing interest has been seen in rapid medi-
cal image segmentation for point-of-care applications. UNeXt, a convo-
lutional multilayer perceptron (MLP)-based rapid medical image seg-
mentation network has shown an outstanding performance in single-
organ segmentation. However, there is still a large room for improve-
ment in multi-organ segmentation by exploring sufficient information
from a global view. To this end, we propose UNeXt++, a more pow-
erful framework that adds a lightweight Serial-Parallel Hybrid Atten-
tion module named SPHTension to the UNeXt. The proposed SPHT-
ension is designed to assist in the detection and localization of lesion
tissue by extracting image local features and global semantic context
through parallel structures, respectively. These structures play distinct
roles in instance segmentation. Furthermore, we introduce the Atten-
tional Feature Fusion (AFF) approach, which simultaneously cascades
learning blocks to fuse and optimize the feature representation. The pro-
posed hybrid architecture is capable of simultaneously focusing on local
and global features in different regions, effectively integrating them to
sense the location and edges of lesion tissues, and performing accurate
segmentation. It is noteworthy that UNeXt++ is capable of efficiently
aggregating global representations by adding only a very small number
of parameters. Experimental results demonstrate that our UNeXt++
outperforms UNeXt in terms of segmentation performance on the multi-
organ segmentation dataset Synapse and three single-organ segmentation
datasets. This improvement is observed to be between 5% and 18%, while
the computational cost is reduced by 17% and the amount of parameters
is reduced by 19%.

Keywords: Medical image segmentation · UNeXt · point-of-care ·
Serial-Parallel

1 Introduction

Medical image segmentation is a vital auxiliary tool in computer-aided diagno-
sis, image-guided surgical systems, and advanced medical care. Owing to the
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Fig. 1. (a)Network structure of UNeXt, (b)Network framework for UNeXt++ frame-
works, (c) Serial Structure, (d)Parallel Structure, and (e) Serial-Parallel Structure.

powerful capabilities demonstrated by deep learning methods in image process-
ing tasks, based on Convolution (CNN) U-shaped network UNet [27] and its
variants like TransUnet [6], UNet++ [38], and 3D UNet [34] have become the
cutting-edge work in the field of medical image segmentation in recent years.
However, the above networks mainly focus on amplifying lab performance, fre-
quently neglecting their practical application scene like point-of-care (PoC) [19],
which is characterized by fast testing and strong individualization, demonstrat-
ing significant advantages in many clinical tests. Limited by hardware computa-
tional resources, PoC devices cannot run complex networks with large parame-
ters. Therefore, rapid medical image segmentation aimed at reducing parameter
size and maintaining good performance has become a hot research topic. Follow-
ing the goal of speeding up inference, UNeXt [32], whose design is centered on
reducing model parameters by decreasing the number of filters in convolutional
blocks and replacing traditional transformer blocks with tokenized MLP [32]
blocks, is a groundbreaking model due to its strong segmentation performance,
as shown in Fig. 1(a).

Although UNeXt has seen substantial success, its performance for multi-
organ segmentation lags behind the transformer-based TransUNet model by 10%
on the Synapse dataset. For instance, the UNeXt model in the experiments only
utilizes CNN and MLP modules. Due to the limitations of CNNs-based oper-
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ations in handling long-distance dependency information, some crucial global
information is lost in image processing, which causes performance bottlenecks for
organ segmentation tasks. Transformer, relying purely on attention mechanisms
to model global dependencies, should have been an alternative architecture with
better performance. However, the large-scale parameters of transformer blocks
limit the application for rapid medical image segmentation. Therefore, the moti-
vation of our work is to design a lower computational architecture with global
attention mechanisms and incorporate it into the UNeXt framework for effective
representation learning of latent spaces.

In this paper, we propose a novel U-shaped hybrid framework, UNeXt++,
which integrates the strengths of Depthwise Convolution neural networks, atten-
tion mechanisms, and multi-layer perceptrons, while maintaining a minimal
parameter cost for efficient medical image segmentation tasks, as shown in
Fig. 1(b). Specifically, our framework primarily uses depthwise convolution and
MLP to hierarchically extract local intensity features, optimizing computational
speed and avoiding parameter loss large-scale pretraining of self-attention. At
the same time, it incorporates serial-parallel hybrid attention (SPHTension) to
enhance complex spatial transformations and long-range feature dependencies,
as shown in Fig. 1(e). The SPHTension interspersed between hierarchical convo-
lution and MLP, extracts global context and models local features concurrently
via two heads, and feeds the adapted fused features into the learning block for
further enhancement and Refinement. Through the local connection and weight
sharing of the learning blocks, the noise in the features can be effectively sup-
pressed and the quality of the features can be improved. The overall framework
follows a lightweight design, and the serial-parallel structure further reduces the
influence of the attention mechanism on the number of parameters of the model,
which is 19% less than that of the UNeXt network. Extensive experiments on
both multi-organ and single-organ segmentation show the better performance of
UNeXt++ compared to UNeXt. The main contributions of this paper include:

– We propose the UNeXt++ framework for rapid medical image segmentation
with excellent performance.

– We propose the lightweight SPHTension module, which effectively retains
both local and global image features with only a minimal increase in the
number of network parameters.

– We perform extensive experiments both on multi-organ segmentation and
single-organ segmentation datasets, all of which demonstrate the effectiveness
of our proposed method.

2 Related Work

2.1 Rapid Medical Image Segmentation

Rapid medical image segmentation has transformed from conventional approaches
to deep learning-based methods [17]. The majority of conventional approaches rely
on low-level features of images [3,14,20,26], including pixel intensity, color, edge,
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and texture. All of them are simple, intuitive, high interpretability, and may be
effective in some specific applications of simple scenarios. However, constrained
by the sensitivity to noise variations [24], they cannot adapt to complex scenes
and result in poor segmentation performance. The deep learning widely used in
the development of the increasing popularity of CNN has opened up new opportu-
nities for medical image segmentation. Among them, UNet and its variants have
shown excellent performance and become a pioneering architecture.

Since then, with the development of portable medical devices and bedside
care, UNet and its variants have started to explore lightweight and fast per-
sonalized modifications to the model. For example, ShuffleNet [37] is a CNN
architecture designed for mobile applications. It uses pointwise group convolu-
tion and channel shuffling operations and effectively reduces the computational
complexity associated with 1*1 convolution. SegNet [4] achieves rapid semantic
segmentation by using a deep fully convolutional neural network architecture
and efficiently leveraging pooling indices for non-linear upsampling, resulting in
reduced memory usage compared to competing models. Ping et al. [11] achieve
fast model performance through a fast spatial attention mechanism and addi-
tional spatial reduction in intermediate feature stages, enhancing computational
speed. SHFormer [29] employs a shallow hierarchical Transformer architecture
and a spatial-channel connection module to reduce model complexity and achieve
lightweight design. Super-BPD [33] achieves efficient image segmentation by
employing a novel super boundary-to-pixel direction method, effectively parti-
tioning images into information-rich superpixels with directional similarity, thus
enhancing segmentation accuracy and efficiency. These models are either opti-
mised based on the CNN structure that is not sufficient to capture the global
information of the image or based on the attentional mechanism which takes
too much time for model inference, despite significant progress in the field of
image segmentation. Therefore, a comprehensive plan for addressing the afore-
mentioned issues needs to be taken into consideration.

2.2 Hybrid Models of CNN and Self-attention

The CNN structure excels at extracting local features with lower computa-
tional costs, while Self-Attention captures global dependencies at the expense
of increased complexity. Combining these methods is advantageous for rapid
medical image segmentation. To improve Self-Attention’s efficiency in handling
high-resolution images, Wang et al. [35] integrated a multi-scale pyramid CNN
into the Vision Transformer (ViT), marking one of the first hybrid models. The
ViT [9] enhances input adaptability and feature extraction with residual links
between transformer layers. Touvron et al. [30] introduced CNN’s inductive bias
into Self-Attention using knowledge distillation. Another hybrid approach com-
bines CNN and Self-Attention in series or parallel. DETR [8] uses CNN as a fea-
ture extractor followed by Self-Attention for end-to-end object detection, while
Beal et al. [5] connect Faster R-CNN after ViT. Conformer [23] introduces a
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Feature Coupling Unit (FCU) for parallel feature fusion, and Yoo et al. [36] use
bidirectional bridging for parallel fusion via synchronized blocks.

Recently, several models have been proposed to explore the potential of cre-
ating networks using a mixture of CNN and Self-Attention in various ways.
EdgeViTs [21] and CMT [10] employ a multi-layer structure similar to ResNet.
In EdgeViTs, the model is organized into sequential stages, which consist of a
local aggregation module based on deep convolution and point-wise convolution,
a global sparse self-attention module, and a local propagation module based
on transposed convolutional local propagation module. The CMT consists of
three parts: a CNN, a lightweight multi-head self-attention mechanism, and an
inverse residual feed-forward network. On the other hand, the SegFormer [23]
model utilizes a CNN to extract features, the structure is shown in Fig. 1(c).
Finally, it fuses the features through an ALL-MLP layer with multilevel fea-
tures. PHTrans [16] is a similar approach to our work. It innovatively constructs
CNN and the Swin Transformer in parallel to model hierarchical representations
of local and global information, the structure is shown in Fig. 1(d). As standard
convolutional kernels are input-independent and unable to adapt to different
inputs, the performance improvement in these hybrid networks is limited.

Consequently, in light of the existing literature, we employ the more
lightweight and efficient depthwise convolution [7] and optimized sparse atten-
tion [18] to process image features and generate fused features with the adap-
tation of local and global feature information of images processed in parallel
according to the task characteristics, the structure is shown in Fig. 1(d). Fur-
ther enhancement and optimization of the fused features by the learning block
improves the stability and quality of the features, resulting in an improvement
in the model’s segmentation performance.

3 Method

In this paper, we propose a new three-stage framework UNeXt++, as shown in
Fig. 2. The DSC stage consists of two depthwise convolution layers for generating
a local feature map of a given image. The SPHTension stage aggregates the global
information by the proposed SPHTension module, which learns the associations
between different local features. The SPHTension stage uses SPHTension parallel
depthwise convolution and sparse attention serial-parallel convolution to learn
the association between different local features. The MLP stage applies tokenized
MLP to efficiently tokenize and project the image features.

3.1 Depthwise Convolution Stage

The UNeXt++ algorithm employs a lighter and more efficient Depth Convolu-
tion to extract shallow image features. Each convolution block is divided into two
steps. Depthwise convolution and pointwise convolution are employed, whereby
each input channel is spatially convolved independently, and the output of depth-
wise convolution is channel fused. Depthwise Convolution performs a spatial
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Fig. 2. Overall of the UNeXt++ framework. In the encoder, the input image will go
through the Depthwise Convolution stage, the SPHTension stage, and the MLP stage
sequentially. This architecture is also used in the decoder stage to ensure consistency
throughout the model. Each stage uses jump connections to fuse the feature maps at
corresponding positions during encoding and decoding.

convolution operation independently for each input channel, while Pointwise
Convolution performs channel fusion for the output of Depthwise Convolution.
In comparison to conventional convolution, depthwise convolution employs a
smaller number of parameters. This reduction not only reduces the storage
requirements of the model but also minimizes the risk of overfitting, thereby
enhancing the model’s generalisability. Depthwise Convolution is applied in the
first stage of the encoder and the last stage of the decoder, which can significantly
improve the computational efficiency of the model.

3.2 SPHTension Stage

As illustrated in Fig. 2, the image features extracted in the Depthwise Convo-
lution stage are copied into two copies and transferred to the parallel part of
the SPHTension module. The parallel part employs depthwise convolution and
sparse attention to obtain long-range dependent and local representations of
image features, respectively. The attention feature fusion (AFF) method is used
to adaptively fuse the features of the two parallel branches. In addition, sparse
attention can more effectively filter out unimportant information and focus on
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the key regions in the image. The selective attention mechanism has the poten-
tial to enhance the model’s sensitivity to crucial features, thereby optimizing
the efficacy of image feature extraction. In comparison to the global attention
mechanism employed in conventional Transformers, sparse attention significantly
reduces computational complexity and memory usage. Assuming that the input
features are N , the feature processing and fusion process of the SPHTension
module can be expressed as follows.

Sparse Attention. The input feature maps are transformed in a linear manner
to obtain query, key, and value vectors as

Q,K, V = NWqkv, (1)

where N ∈ R
B×(H×W )×C is the input feature map with B samples, each with

H × W spatial locations and a 3D tensor of the C channels, Wqkv ∈ R
C×3Dr

is the shared weight matrix, and Dr = C
2 . The sparse attention mechanism

enhances computational efficiency by adjusting the parameter Wqkv to focus on
the relationship between the image elements related to the lesion region, thereby
ignoring those elements that have little effect on the segmentation result. The
sparse attention calculates the attention weights and is subsequently employed
to weight and sum the value vectors, yielding the final output feature X as

A = softmax
(

QKT

√
dk

)
(2)

X = Dropout(A)V Wproj (3)

where A is the attention weight, dk is the dimension of the key vector, and
Wproj ∈ R

Dr×C is the projection matrix.

Depthwise Convolution. In the context of depthwise convolution processing,
the input feature map N is initially convolved in a depthwise and pointwise
manner, resulting in the generation of a convolved feature map Sconv as

Sconv = (N ∗ Kd) ∗ Kp (4)

where the parameters of the convolution kernel for deep convolution are Kd, and
point-by-point convolution are Kp. The convoluted feature map is then subjected
to normalization, Dropout, and non-linear activation to obtain the final output
feature map S by

S = NonLin(Dropout(Norm(Sconv))) (5)

Subsequently, X and S are merged with features utilizing AFF as

Ffused = α · X + β · S (6)

among them, α and β are fusion weights, which are usually generated dynam-
ically by the attention mechanism. Furthermore, the local connectivity and
weight-sharing properties in the serialized convolutional block are exploited to
spatially reprocess and enhance the features, effectively suppressing noise in the
input features to improve the quality and stability of the features.
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3.3 MLP Stage

This stage is located at the bottom of the whole framework, where two tokenized
MLP blocks [32] are used in the encoder and decoder, with the same structure
as the tokenized MLP in UNeXt [32]. Unlike UNet, which uses two convolutions
for input raw images to extract feature maps, UNeXt uses one convolution layer
in the encoder and subsequently downsampling the input image by pooling.
The local connectivity of convolutional operations and downsampling through
pooling operations restrict neurons from perceiving only local information from
the image. The image after the SPHTension stage can compensate for this. The
image features are then fed into the Tokenized MLP module through two cleverly
designed components, PatchEmbed and ShiftedBlock, to maintain segmentation
performance within the overall lightweight framework of the model.

4 Experiments

4.1 Datasets

The datasets used in this paper fall into two main categories: multi-label and
single-label medical image segmentation datasets.

Multi-label Medical Image Segmentation Dataset. We select Synapse
multi-organ segmentation dataset [15] for the multi-label segmentation task,
which contains 30 abdominal computed tomography (CT) scans totaling 3,779
slices. Each CT scan contains 85 to 198 slices that were manually labeled with
13 abdominal organs by two experienced undergraduate students. The label-
ing is validated at the volume level by a radiologist using MIPAV software.
The dataset is divided into a training set and a test set containing 18 and 12
instances, respectively. The subset covers eight abdominal organs, including the
aorta, gallbladder, right and left kidneys, liver, pancreas, spleen, and stomach.
It is mainly used to compare the results with the UNeXt model, evaluated in
terms of DSC [28] and HD [2].

Single-Label Medical Image Segmentation Dataset. The single-label
medical image segmentation datasets include the Breast Ultrasound Image
(BUSI) [1] dataset, the Database of Thyroid Ultrasound Images (DDTI) [22],
and the Dermoscopy image classification dataset (ISIC-2020 [25], ISIC-2018 [31]).
The BUSI dataset contains ultrasound images of normal, benign, and malignant
breast cancers, along with their corresponding segmentation maps. In this paper,
we selected benign and malignant tumor images, totaling 647, all resized to 224 ×
224. The DDTI dataset contains lesion types such as thyroiditis, cystic nodules,
adenomas, and thyroid cancers, providing accurate lesion segmentation stored
in XML format. The ISIC series of datasets are derived from the world’s largest
skin image analysis challenge hosted by the International Skin Imaging Collab-
oration (ISIC), with the ISIC-2018 dataset comprising more than 12,500 images
and the ISIC-2020 dataset expanding to 33,126 dermoscopy training images.
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4.2 Evaluation Metrics

We evaluate the proposed UNeXt++ model from two perspectives. For the seg-
mentation accuracy of the model, we use three commonly used standard evalua-
tion metrics in image segmentation and compare them with other SOTA meth-
ods. These metrics contain the Dice coefficient (Dice) [28], the Intersection over
Union (IoU) [12], and the 95th percentile of Hausdorff distance (HD95) [2].
For the efficiency of the model, we also consider model computational complex-
ity and inference time as evaluation metrics. The computational complexity is
determined by both model parameters and computational cost (GFLOPs) [13].
A lower computational complexity results in shorter inference time, leading to
better real-time performance and response speed in practical applications.

The Dice coefficient is used to measure the similarity between the predicted
result ‘pred’ and the real annotation ‘label’:

Dice =
2|pred ∩ label|
|pred| + |label| , (7)

Here, ‘pred’ represents the model’s predicted result, and ‘label’ represents the
real annotation. The Dice coefficient value ranges from 0-1. The larger the value,
the greater the similarity of the segmented result to the actual label, meaning
better segmentation performance.

The Intersection over Union (IoU) is a metric for evaluating the performance
of image segmentation models. IoU is used to calculate the overlap between the
model’s predicted results and the actual annotations. With a range from 0 to 1,
a larger IoU score implies heightened segmentation accuracy. Specifically, IoU
measures the accuracy of segmentation by calculating the ratio of the intersec-
tion area to the union area between the predicted results and annotations. The
formula is shown below:

IoU =
|pred ∩ label|
|pred ∪ label| . (8)

The Hausdorff distance (HD95) represents the maximum distance (Hausdorff
distance) between the predicted and actual results, retaining the average distance
of the top 95% data points after distance sorting. A lower HD95 suggests a
greater resemblance between the predicted and true results, pointing to enhanced
algorithmic effectiveness.

4.3 Experimental Settings

The UNeXt++ model runs on the PyTorch framework. A combination of Binary
Cross Entropy (BCE) loss and Dice Loss was used to train UNeXt++. The loss
L between the predicted result y and the labeled result ŷ is expressed as

L = 0.5BCE(y, ŷ) + Dice(y, ŷ). (9)

For all training samples, image enhancement operations such as rotation, flip-
ping, transposition, adding Gaussian noise, and adjusting image saturation were



192 Y. Li et al.

Table 1. Comparison on the Synapse multiple organ segmentation dataset. Note that
the ↑ indicates that UNeXt++ is better than UNeXt’s Dice score.

Network structure Inference time (s/it) Aorta Gallbladder Left kidney Right kidney Liver Pancreas Splenic organ Stomach Average

DSC HD

UNet [27] 246.08 85.32 61.38 82.62 2.64 93.07 47.04 82.33 65.10 73.69 30.08

UNet++ [38] 286.98 87.10 62.52 81.21 73.99 93.08 50.62 83.90 67.57 75.00 28.82

TransUNet [6] 212.41 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62 77.48 31.69

UNeXt [32] 79.54 76.43 51.64 74.54 67.94 91.11 34.95 79.20 60.70 67.07 40.47

UNeXt++ 83.36 79.45↑ 51.38 77.60↑ 64.41 91.18↑ 44.79↑ 82.39↑ 65.94↑ 69.64↑ 41.17

Table 2. Comparison on the single-label datasets.

Network Params (M) GFLOPs DDTI BUSI ISIC-2020

IoU (%) Inference time (s/it) IoU(%) Inference time (s/it) IoU (%) Inference time (s/it)

UNet [27] 31.13 55.84 77.42 0.24 64.26 0.45 75.51 0.08

UNet++ [38] 9.16 34.65 82.00 0.22 65.04 0.74 75.77 0.13

TransUNet [6] 105.32 38.52 81.69 0.26 65.46 0.62 81.23 0.20

UNeXt [32] 1.47 0.57 81.22 0.02 64.29 0.01 83.23 0.01

UNeXt++ 1.19 0.47 85.63 0.01 75.62 0.01 89.86 0.01

used to enhance the diversity of the data. The learning rate of Adam’s optimizer
was set to 0.001, and the momentum parameter was set to 0.9. Additionally, a
cosine annealing learning rate scheduler was used, with the minimum learning
rate set to 0.00001. The factor was set to 0.1, and patience was set to 2. The
batch size of the dataset was set to 16. For the Synapse dataset, a total of 250
calendar events were trained. For the BUSI, DDTI, and ISIC datasets, the train-
ing and test sets were randomly divided in an 8:2 ratio. To ensure the accuracy
of the experimental results, the number of epochs for all experiments was set to
300, and the experiments were conducted using a 32 GB NVIDIA V100.

4.4 Experimental Results

To evaluate the segmentation performance of the proposed method in real-world
application scenarios, this paper compares UNeXt++ with widely used medi-
cal image segmentation frameworks. It is compared with the convolution-based
UNet [27] and its variant UNet++ [38]. It is also compared with the Transformer-
based TransUNet [6] and the MLP-based UNeXt. All comparison experiments
were conducted using the same equipment and parameter settings.

Results on Multi-label Medical Image Segmentation Dataset. As shown
in Table 1, experimental results demonstrate that compared to UNeXt, the pro-
posed UNeXt++ model achieves a 2.57% improvement in average DSC, with
only a 4.6% increase in inference time. Due to the fewer attention blocks included
in UNeXt++, its inference time on the Synapse dataset is only 29-36% of com-
plex models such as TransUNet. These findings underscore the effectiveness of
our model in the direction of lightweight design.
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Table 3. Comparison on the ISIC-2018 dataset.

Network Params (M) Dice (%) IoU (%) Inf-T(CPU) (ms) Inf-T(GPU) (ms)

UNet [27] 31.13 86.05 78.42 498.98 13.79

UNet++ [38] 9.16 87.09 79.77 1559.06 38.29

TransUNet [6] 105.32 90.02 83.23 1871.92 66.93

UNeXt [32] 1.47 89.45 83.83 59.99 9.02

SHFormer [29] 1.94 90.73 84.41 68.76 10.30

UNeXt++ 1.19 93.27 87.44 60.09 5.79

Fig. 3. Qualitative segmentation results of two images from BUSI dataset and Synapse
dataset. (a) Input image, (b) Ground truth, (c) TransUNet, (d) UNeXt, (e) UNeXt
with encoder SPHTension, (f) UNeXt with decoder SPHTension, and (g) UNeXt++.

Results on Single-Label Medical Image Segmentation Datasets. It is
noteworthy that the UNeXt++ model demonstrates satisfactory segmentation
performance when applied to single-label datasets, such as BUSI, DDTI, and
ISIC. The results of the experiment are presented in Table 2 and Table 3. Fur-
thermore, we evaluated the performance with the latest lightweight segmentation
method on the commonly used ISIC-2018 dataset. The results show that the IoU
metric improves by 3.5% and the Dice metric improves by 2.7% when compared
to the state-of-the-art SHFormer network. From the table, it can be observed that
compared to existing techniques, the proposed UNeXt++ model demonstrates
significant improvements in model lightweight, efficiency, and segmentation per-
formance. The reduction in model parameters ranges from 79.81% to 98.24%,
while the acceleration in inference time ranges from 91.82% to 98.65%. The IoU
performance is enhanced by a margin of 5% to 18%. Furthermore, UNeXt++
outperforms UNeXt by more than three percentage points in terms of segmenta-
tion performance (as measured by IoU), while maintaining a lightweight model.
In comparison to the CNN-based UNet, UNet++, and the Transformer-based
TransUNet, UNeXt++ demonstrates a relatively high degree of performance
improvement, particularly because of the significant reduction in model param-
eters and accelerated inference times. This modification does not compromise
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Table 4. Ablation experiments on the Synapse multi-organ segmentation dataset.

Network structure Inference Aorta Gallbladder Left kidney Right kidney Liver Pancreas Splenic organ Stomach Average

encoder decoder time (s/it)

UNeXt UNeXt 79.54 76.43 51.64 74.54 67.94 91.11 34.95 79.20 60.70 67.07

UNeXt+SPHTension UNeXt 82.87 78.56 52.44 77.07 68.70 90.88 40.53 74.63 62.71 68.19

UNeXt UNeXt+SPHTension 83.74 77.78 51.65 73.12 65.93 89.76 38.96 73.36 62.25 66.60

UNeXt++ 83.36 79.45 51.38 77.60 64.41 91.18 44.79 82.39 65.94 69.64

Table 5. Ablation experiments on the BUSI dataset.

Network structure Params (M) Inference IoU (%)

Encoder Decoder time (it/s)

UNeXt+Serial CNN&Self-Attention 1.67 9.10 73.26

UNeXt+parallel CNN&Self-Attention 1.74 9.10 72.94

UNeXt++ 1.19 9.65 75.62

computational memory or power consumption, aligning more closely with the
practical application requirements. Furthermore, Fig. 3 presents a comparison
of the qualitative segmentation outcomes of the distinct methodologies on two
images, namely the BUSI dataset and the Synapse dataset.

4.5 Ablation Experiments

To validate the effectiveness of the SPHTension stage, ablation experiments were
conducted on the BUSI and Synapse datasets, focusing on two aspects. Firstly,
the study examined the necessity of using the SPHTension module in both the
encoder and decoder of the model. This involved observing segmentation per-
formance with and without the SPHTension module in both the encoder and
decoder. The results are presented in Table 4, revealing that adding the SPHT-
ension module in both the encoder and decoder stages outperforms adding it only
in the decoder or encoder stages, demonstrating the superiority of SPHTension
in learning-rich semantic features. Secondly, the necessity of the SPHTension
module in the serial-parallel structure was evaluated. The SPHTension module
in the second stage was replaced with parallelly concatenated depthwise convolu-
tion and Sparse Attention modules, as well as parallelly concatenated depthwise
convolution and sparse attention modules, on the BUSI dataset to observe the
results. As shown in Table 5, models using only serial or parallel structures exhib-
ited segmentation performance 3.6% and 4.1% lower, respectively, compared to
models using both serial and parallel structures with the SPHTension module.
This difference persists even when the parameter count increases negligibly.

5 Conclusion

We present UNeXt++, an efficient U-shaped hybrid framework designed for
rapid and lightweight medical image segmentation. By integrating depthwise
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convolution, MLP, and SPHTension modules, UNeXt++ effectively balances
local feature extraction with global context modeling, all while maintaining
a minimal parameter cost. This design results in fast inference and improved
segmentation performance across various medical imaging tasks. However,
UNeXt++ does have certain limitations. Although the SPHTension module
enhances the model’s ability to capture global dependencies, it may still fall
short in scenarios requiring highly intricate global information processing, such
as in complex multi-organ segmentation tasks. Compared to transformer-based
models like TransUNet, which excel in modeling long-range dependencies due
to their pure attention mechanisms, UNeXt++ might struggle to maintain the
same level of accuracy in capturing fine-grained details across distant regions
of an image. Additionally, while UNeXt++ is designed to be lightweight, this
efficiency comes with trade-offs. The reduction in parameters, although benefi-
cial for speed, may result in performance bottlenecks when dealing with highly
variable or complex anatomical structures that require a more nuanced under-
standing of spatial relationships. This could limit its effectiveness in certain
clinical scenarios where precision is critical. These limitations highlight areas
where further research could enhance the model’s capabilities. We hope that
UNeXt++ will inspire ongoing efforts to develop models that not only offer effi-
ciency but also robustness in handling the diverse challenges of medical image
segmentation.
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Abstract. Medical Visual Question Answering (MedVQA) is crucial
for medical data analysis and patient diagnosis, aiding medical practi-
tioners with fast and accurate answers. The recent deep learning model
requires a huge amount of data to train; however, collecting large sam-
ples and annotations in medical domain is challenging. Therefore, train-
ing the model from scratch with small samples easily leads to overfit-
ting. To overcome this problem, pre-trained models can be leveraged and
transfer prior knowledge to the medical domain. Efficiently transferring
knowledge from pre-trained models with limited data to different domains
remains challenging. To address this issue, an efficient convolution-based
adapter (EC-Adapter) is introduced, which is versatile and applicable to
any pre-trained architecture. The proposed adapter leverages the depth-
wise and point-wise convolution operation and add this as parallel layer to
the model. The proposed EC-Adapter is simple, lightweight and effective
as compared to state-of-the-art low-rank adapters, potentially benefiting
large language or vision models. It achieves superior performance while
requiring significantly fewer parameters than existing complex methods.
In the era of increasingly large and diverse medical datasets, EC-Adapter
offers a promising solution to enhance the adaptability and efficiency of
pre-trained models in medical applications. The efficacy of the model is
demonstrated through extensive experiments and analysis on two publicly
available MedVQA datasets: SLAKE and PathVQA.

Keywords: Medical visual question answering · Parameter efficient
adapter · Less training data

1 Introduction

Medical Visual Question Answering [5,10,12,19] is the task where a natural lan-
guage question is asked about the content of the medical images and the objective
is to predict the answer in natural language [18]. As deep learning has revolution-
ized the domain of medical image analysis in the last decade [41] which includes
the development of efficient methods for disease diagnosis based on various non-
invasive sensory data such as X-ray [31], structural MRI [3], and fMRI [37] via
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 1. Overview of proposed work. Visual encoder is trained on real image dataset
for multiple tasks. This knowledge is exploited for MedVQA task where it is expensive
to train large model due to unavailability of huge amount of data. The medical image
features achieved from visual encoder are adapted through the proposed adapter which
is based on convolution and consists of small number of parameters.

classification and segmentation approaches. These methods provide a second opin-
ion for the pathologists and doctors to investigate the patient’s medical condition.
However, this assistance is mostly disease, modality or task specific. Generic assis-
tance can be achieved with the help of developing a system that provides answers
to questions or raised concerns for captured visual sensory data. This question-
answering system that covers various modalities of visual sensory has extended
the visual question answering (VQA) [2] in the medical domain [18].

VQA has been investigated extensively in the past [2,24,25], however, despite
its crucial importance, the domain of Medical Visual Question Answering has
not received significant attention from researchers. Recently, there has been a
growing interest in the field of MedVQA [5,10,12,19]. This task has its own
challenges, which includes the lack of availability of well-annotated datasets by
medical experts. The annotation of medical images is more time-consuming and
complicated than that of natural images. Most medical datasets for VQA contain
only a few hundred of medical images, such as SLAKE [19], and PathVQA [12].
The annotation of medical images requires the domain expert which is rare there-
fore annotation is error prone and time consuming. Additionally, the questions
of the medical domains are more complex, and the system’s answer needs to
possess high accuracy since it belongs to the area of health and safety.

Recently, a massive effort has been put by the vision and language research
community by introducing various foundation models such as CLIP [29]. These
methods shows the promising performance due to the usage of high-volume
dataset in the model training. A huge amount of effort and time has been invested
in collecting massive well annotated datasets. The data used to train these model
are highly diverse and collected to the various domains like social media, general
web, medical etc. Therefore, these model shows the high generalization ability
across the various task. It is observed that these model can be used to adapt
the medical domain with the helps of only few available samples. However full
training of these model losses its generalization ability and on the small data
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easily overfit to the training samples. Hence, the concept of adapter has been
coined in the past. The adapter is some additional parameter which need to
trained over the foundation/pre-trained models which has a capability to get
trained with very small amount of training data. In adapter there are two fun-
damental approaches, namely, add some new parameters in different part of the
pre-trained network [15,22], and low-rank factorization update of the weights of
the pre-trained network [14].

However, these adapter does not fully utilize the parameters and works well
only if the adaption scenario is close to the base model’s task. For a signifi-
cantly different task it requires to increase the adapter parameters which again
poses a problem of overfitting. Also, in the today’s large models (vision and
language) scenarios a parameter efficient model is required which can easily fit
to the GPU memory. To overcome the above challenges, this work proposed
an efficient convolution-based adapter (EC-Adapter) which requires the signif-
icantly less parameter as compared to the recent state-of-the-art adapter [14].
The proposed EC-Adapter leverages the efficient depthwise and pointwise con-
volution operation and added parallel to transformer layer. The proposed model
achieves the promising result without extensive pre-training on big medical
domain data. The proposed adapter exploits the knowledge of the generic pre-
trained visual model, and transfer the knowledge to the medical domain. The
end-to-end model is highly efficient which requires less parameters and comput-
ing resources. The extensive experiments over the publicly available MedVQA
dataset SLAKE [19] and PathVQA [12] shows that EC-Adapter outperform the
recent state-of-the-adapter by a significant margin, which requiring very few
parameters. An overview of proposed workflow is presented in Fig. 1. The key
contributions of proposed work are summarized as:

1. Proposed a lightweight efficient convolution-based adapter for transforming
the visual features from natural image domain to the medical image domain.

2. The proposed EC-Adapter is easily plug-and-play on any existing efficient
visual backbone for natural images.

3. Extensive experimentation has been done on two publicly available dataset
SLAKE [19] and PathVQA [12] for MedVQA and established the efficiency
of EC-Adapter by producing similar results compared to existing SOTA
methods.

The rest of the work is organized into five sections. In Sect. 2, the work that
is closely related to the proposed method has been described. The proposed EC-
Adapter has been detailed in Sect. 3. Finally, the experimental details, results,
and conclusion are presented in Sect. 4, 5, and 6, respectively.

2 Related Work

In the following section, the existing works relevant to proposed work are dis-
cussed. These works can be broadly grouped into three categories, based on their
methods: Traditional Method; Medical Vision-Language Pre-training Method
and Adapter-based Method.
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Traditional Method. MedVQA framework [18] basically consist of three steps
include, visual & text feature extraction, feature fusion and answer reasoning,
that generate answer for the asked question on some medical image. For visual
and text feature extraction the pre-trained visual models such as VGGNet [33]
and textual feature extraction such as LSTM [13], combining Glove [28] with
LSTM, BERT [6], BioBERT [16] has been used. These visual and language
encoding contains information from two different domains, hence to establish
a relationship between features of two different modality, the feature fusion
stage is required. The basic methods to conduct the feature fusion are atten-
tion mechanism [36] and pooling module [9]. In [1], impact of stacked attention
network [36] and multimodal compact bilinear pooling [9] has been shows for
MedVQA. In [32], multi-mode decomposition bilinear pools [38] has been used.
After feature fusion, the answer for the question is generated either by using
classifiers [7,20,27] or by generative methods [34,40].

Medical Vision-Language Pre-training Method. Medical vision-language
pre-training aims to learn generic representations from large-scale medical image-
text data, which can be transferred to various medical vision-and-language down-
stream tasks. Chen et al. [5] used a self-supervised learning (SSL) method to
learn representations from medical images and text. The method learned cross-
modal domain knowledge via the reconstruction of missing pixels and tokens
from randomly masked images and text. In [39], three pre-training tasks are
taken. It includes image reconstruction, report reconstruction, and Global and
Local Alignment. Li et al. [17], has exploited an SSL method that applies masked
image modeling, masked language modeling, image text matching, and image
text alignment via contrastive learning.

Adapter-Based Method. Recently, the MedVQA has start aligning with the
adapter based approaches. In [20], a parameter-efficient way to transfer the
knowledge from pre-trained CLIP model [29] to the medical domain by introduc-
ing a lightweight adapter. The proposed adapter is a stack of two linear layers,
which first downscale the features and then upscale the features for learning
the new features over the CLIP features. Additionally, Liu et al. [20] has also
employed a denoise auto-encoder and label smoothing to boost the performance
of the method. The denoise autoencoder’s encoder feature has been concatenated
with the adapter features. However, the usage of such complicated pipeline shows
that the knowledge transfer from natural image training based CLIP is not easy.

In comparison with the existing methods of adapter for medical visual ques-
tion answering, the proposed method has advocate that a simple convolution
based adapter on generic VQA pipeline is sufficient to obtain a comparative
results as compared to complicated adapter based MedVQA methods. Further,
it is observed that a convolution based feature projection of pre-trained vision
transformer model [21,35] with basic language encoding such as Glove with
LSTM is producing competitive results as [11,29].
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Fig. 2. The schematic diagram for the proposed method. The method consist of five
components, includes, visual feature extraction (pre-trained frozen weights), text fea-
ture extraction, cross-attention, EC-Adapter, and answer classification.

3 Proposed Method

With the development of large models which are heavily pre-trained on huge
amount of data for multiple tasks, it is realised to use their capability for further
downstream task. In this work, the ability of large vision model which is pre-
trained on general images is exploited to accomplish MedVQA by using it as
a visual feature extractor. As the domain of data visual encoder is pre-trained
and the medical images are significantly different, it is required to adapt the
obtained features for medical images.

3.1 Problem Formulation

In the proposed formulation, MedVQA task is solved as classification problem.
Given a set of medical image (I), related question (Q) and answer (A) VQA
system starts with feature extraction for visual and text modality. Further the
parameters are learned to adapt the medical image features. These visual features
are fed to cross modal interaction module to extracts the attended visual feature
in context of question. Later attended features from visual and text modality are
fused to obtain the unified embedding. With this embedding answer prediction
is performed by feeding to fully connected network. The overall framework of
proposed method is demonstrated in Fig. 2.

3.2 Feature Encoder

For MedVQA, let’s consider the image, question, answer triplet samples as:
{I,Q,A}. Here, I ∈ RM×N×3, Q ∈ Rnw , A ∈ Rnc . Here, M,N represents the
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height, width of image, nw is the number of words in the question, and nc is the
number of answer (class labels) in the dataset.

Visual Encoder: For encoding the visual representation image (I) is fed to a
pre-trained vision transformer [21] to obtain the features as:

IE = ImgEncθ(I) (1)

where IE ∈ Rp×dp . p is the number of patches and dp is the dimension of each
patch.

Text Encoder: Each question is trimmed or padded to a uniform length of nw

words. These words are embedded with GloVe embeddings [28] to obtain W =
[w1, . . . , wnw

] ∈ Rnw×dw . Further, to keep the contextual information, W are fed
to LSTM to obtain LQ = [q1, . . . , qnw

] ∈ Rnw×dq .

3.3 EC-Adapter

The pre-trained parameters (θ) are obtained by training the encoder model
over the natural images. The general natural image collection are very different
from the medical data (MRI, CTScan etc.), therefore the encoded embedding is
not well suited to the medical domain.

To address the same problem, an efficient adapter is proposed which leverages
the efficient (depthwise and pointwise) convolutional filters. Say, IE ∈ Rp×dp is
the image encoder output, obtained with the pre-trained parameters θ. The
image encoder output IE as a tensor of dimension one i.e. IE ∈ Rp×dp×1. Let
DWC is the depthwise convolution filter of size L×L×1, we apply the D number
of DWC over the IE and concatenated all the output as:

ID = Concat([DWC1(IE), . . . , DWCD(IE)]) (2)

where ID ∈ Rp×dp×D and Concat is the concatenation operation. Further to
combine the ID to a single feature map the pointwise convolution operation
(PWC) which is of size 1 × 1 × D. The PWC operation over the ID is defined as:

IP = PWC(ID) (3)

The IP ∈ Rp×dp feature embeddings are used as the final adapted visual
features. Say, φ be the total parameter in the adapter i.e. combined DWC and
PWC convolutional parameter. Here we can observe that the φ contains the total
parameter |φ| = L × L × D + D.

3.4 Cross-Attention

The adapted visual feature obtained from EC-Adapter is fed to transformer [35]
based multi-head cross attention in the context of the question. To accomplish
this, visual (IP ∈ R

p×dp) and textual (LQ ∈ R
nw×dq ) features are projected to

a shared hidden dimension of dh as IPH ∈ Rp×dh and LQH ∈ Rnw×dh . First,
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the text is encoded through self attention by generating key (KT ), query (QT )
and value (VT ) through linear projections WT

K ∈ Rdh×dh , WT
Q ∈ Rdh×dh , and

WT
V ∈ Rdh×dh ∈ Rdh×dh from LQH as:

KT = LQHWT
K (4)

QT = LQHWT
Q (5)

VT = LQHWT
V (6)

where WT
K ,WT

Q ,WT
V ∈ Rdh×dh

MHA(QT ,KT , VT ) = Concat[head1, . . . ,headh]WT
O

headi = Attention(QT WQi,KT WKi, VT WV i)

Attention(QT ,KT , VT ) = softmax
(

QT KT
T√

dk

)
VT

(7)

Say, LS be the multihead self attended question representation. With this self
attended question, cross attention is given on the image by generating key (KI),
query (QI) and value (VI) from IPH similar to Eq. 4–6. For cross attention on
image, query would be query (QT ). Further the multi-head attended visual rep-
resentation (IC) is obtained from Eq. 7. This multi-head attention is applied in k
blocks where each block take as an input the attended representation from pre-
vious block and connected through skip connection and LayerNorm as proposed
by [35].

3.5 Model Learning and Answer Classification

The obtained text and visual features from self and cross attention are fused via
pointwise multiplication to obtain the final unified multimodal embedding (say,
U). This embedding is fed to a fully connected network for answer classification.

â = FCNetθc
(U) (8)

â ∈ Rnc is the predicted answer vector with nc as the number answer categories
in the dataset.

The model is trained with parameters in EC-Adapter φ, multihead attention
block parameters, classification network parameters θc in end-to-end manner.
The loss employed is binary cross entropy between predicted answer vector â
and ground truth answer vector a ∈ A.

4 Experimental Details

In the following discussion, the details of experimental setup are presented for
end-to-end model learning.
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4.1 Implementation Details

The size of image is (M,N) = (256, 256), nw = 14, GloVe dimension (dw) is
300. The number of patches (p) is 64, dimension of each patch (dp) is 768. The
LSTM hidden state output (dq) is 512. The visual encoder used in proposed
method is SwinV2 [21]. The dimension of hidden shared space (dh) for vision
and text is 512. Number of attention blocks (k) is 2. The size of kernel (L) for
EC-adapter is 17 and number of kernel (D) is 32. Number of answers i.e. class
labels (nc) for SLAKE [19] and for PathVQA [12] are 507 and 957 respectively.
All experimentation has done on A100 GPU with 40 GB GPU memory. The
experiments was conducted with batch size 128 and trained for 30 epoch with
cross-entropy loss. Adam optimizer are used with initial learning rate of 0.0001.

4.2 Datasets

To validate the efficacy of proposed model, experiments are performed on two
public datasets namely, PathVQA [12] and SLAKE [19]. The details of these
datasets are as follows:

(1) PathVQA [12] is the first dataset for pathology VQA. The data is collected
from digital library and pathology textbooks. The question can be divided into
seven categories consist of how, where, when, what, whose, (how many, how
much), and (yes,no). First six categories belongs to open ended whereas last one
is for closed ended questions. In totality it consist of 32799 question-answer pair
from 4998 pathology images. Among them 16465 is open ended questions and
rest are close ended.

(2) SLAKE [19] is a bilingual MedVQA dataset consist of semantic labels and
medical domain knowledge. The semantic label consist of mask and bounding
boxes, whereas medical knowledge base is provided in the form of knowledge
graph. The dataset is collected from three datasets and annotated by physicians.
It consists of 14028 question-answer pairs from 642 images. It covers a wide
range of human body parts, including the chest, brain, pelvic cavity, neck, and
abdomen.

4.3 Evaluation Metric

Following the dataset and existing work [10,12,19,39] the model is evaluated in
terms of overall accuracy as the metric. Alongwith the overall accuracy for total
number of samples in the dataset, evaluation is also performed on the category
of question i.e., open and close.

5 Results and Analysis

In this section, quantitative and qualitative results are presented for proposed
model on Path-VQA and SLAKE dataset. Further, the ablation studies con-
ducted to evaluate the impact of different components on the efficacy of overall
model.
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Table 1. Performance Comparison of Proposed Method with SOTA methods on
PathVQA and SLAKE-VQA datasets.

Model Dataset Visual Encoder

PathVQA SLAKE-VQA Additional

Open Close All Open Close All Training*

MPMA [39] 16.40 86.80 50.20 – – – ✓

M3AE [5] – – – 80.31 87.82 83.25 ✓

VQAMix [10] 13.40 83.50 48.60 – – – ✓

PEFA [20] – – – – – 81.90 ✓

M2I2 [17] 36.30 88.00 62.20 74.70 91.10 81.20 ✓

Proposed 37.98 87.70 62.92 85.29 84.45 84.95 ✗

*An additional training of visual encoder on medical data, which
further finetune on MedVQA datasets.

5.1 Quantitative Results

In Table 1, a comparative analysis is presented between the proposed method and
recent approaches on the Path-VQA [12] and SLAKE [19] datasets. The accuracy
metrics are provided for both the ‘Open’ and ‘Close’ categories of questions,
along with the ‘Overall Accuracy’. In comparison to the best-performing M2I2
model [17], the proposed method demonstrates a superior performance with
a ∼ 1.7% increase in overall accuracy on the SLAKE dataset. Notably, for open-
category questions, the proposed approach exhibits a significant improvement
of ∼ 5%, while for close-category questions, a slight decrease of ∼ 6% is observed.
For the Path-VQA [12], the proposed method achieves a gain of ∼ 0.7% in overall
accuracy compared to M2I2 [17]. It’s important to mention that M2I2 [17],
M3AE [5] is pre-trained on a medical image caption dataset and fine-tuned for
the MedVQA task. In contrast, the proposed method doesn’t require pre-training
on medical data which is crucial to obtain.

5.2 Qualitative Results

For the qualitative results, the well-known Grad-Cam [30] visualization method
is applied to the medical images. As shown in Fig. 3, the first column repre-
sents the medical image. The second and third column shows the Grad-Cam
of the medical image without adapter and EC-Adapter (proposed method). In
last columns the questions are mentioned with their corresponding answer and
predicted answers. The Grad-Cam activation visually explains what parts of
an image the model focused on to make its prediction. In the first row, an MRI
image of the brain is provided, the Grad-Cam activation of the proposed method
(EC-Adapter) highlights the location useful for identification of the organ i.e.
“brain” whereas without the adapter the activation is misaligned, and produces
a wrong prediction. In the second row, the Grad-Cam maps tried to highlight the
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Fig. 3. Grad-Cam visualization for the MedVQA. The first column contains the medi-
cal image, the second and third column shows the Grad-cam maps without adapter and
with adapter (EC-Adapter). The fourth column provides the questions, ground truth,
and the predicted answer without adapter and with adapter (EC-Adapter). [Red color
is used to represents wrong prediction whereas green color is sued for correct predic-
tion]. (Color figure online)

regions that help in making the decision for the biggest organ. Without the EC-
Adapter, the non-liver region major contributed to the decision and predicted
the biggest organ in the image as “kidney”, whereas after adding the adapter
the selected region is the liver, which is the correct prediction. In the third row,
the Grad-Cam highlighted the tumor regions with high activation scores. This
qualitative analysis helps to conclude that the EC-Adapter helps improve the
selection of image regions for getting better results.

5.3 Ablation Analysis

In this section, ablation studies conducted to analyze the impact of various
model’s component.

Exploring Visual Encoder Variants: An analysis is performed by exper-
imenting with different visual encoders pre-trained on general images and
results are summarized in Table 2. Initially, ViT [8] was employed, resulting
in performance scores of 57.96% and 82.23% on the Path-VQA and SLAKE
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Table 2. Performance analysis with different visual encoders on PathVQA and SLAKE-
VQA datasets

Visual Encoder Dataset

PathVQA SLAKE-VQA

ViT [8] 57.96 82.23

DiNOV2 [4] 53.47 82.32

SwinV2 [21] 62.92 84.95

Table 3. Performance analysis with different training settings of Swin Transformer on
PathVQA and SLAKE-VQA datasets

Variants Dataset

PathVQA SLAKE-VQA

Scratch Training 53.37 78.12

FineTuned 61.09 83.19

Finetune with EC-Adapter 62.92 84.95

datasets, respectively. However, when using one of the latest vision transform-
ers, DiNOV2 [4], a lower performance of 53.47% was observed on the Path-VQA
dataset compared to the ViT transformer. While on SLAKE a comparable per-
formance was achieved. We observed that SwinV2 [21] visual encoder perform
consistently and produce superior results.

Impact of Swin Transformer: The superiority of SwinV2 as a visual encoder
is evident from Table 3. To further analyse, an analysis is conducted to under-
stand the effects of training on pre-trained SwinV2. The exploration began by
training SwinV2 from scratch, as vision transformers requires a huge amount
of training data to converge. As anticipated, the model’s learning on smaller
MedVQA datasets was limited, resulting in a comparatively lower performance
(Table 3, row 1). However, notable improvements were achieved when SwinV2
was fine-tuned on MedVQA images, showcasing gains of ∼ 8% and ∼ 5% on the
Path-VQA and SLAKE datasets, respectively. Furthermore, applying the pro-
posed EC-Adapter on SwinV2 features facilitated effective and efficient knowl-
edge transfer from general images to medical images, enhancing performance.

Impact of EC-Adapter: To analyze the influence of the proposed adapter,
experiments are conducted with various adapter configurations. Initially, the
model was tested without any adapter, utilizing pre-trained SwinV2-encoded
visual representations as features. This resulted in an accuracy of 61.09% and
83.19% on the Path-VQA and SLAKE datasets, respectively (Table 4, row 1).
Subsequently, LoRA [14] was employed as an adapter on all sets of key and
query parameters of the Swin model. Leveraging the pre-trained model’s learn-
ing capability with respect to medical images, a performance improvement was
observed (Table 4, row 2). Another experiment focused on adapting only the key
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Table 4. Performance Analysis with Different Adapters on PathVQA and SLAKE-
VQA datasets

Adapter Dataset

PathVQA SLAKE-VQA

No Adapter 61.09 83.19

LoRA 61.25 83.42

LoRA-SwinV2 [21] 60.96 83.22

EC-Adapter 62.92 84.95

Fig. 4. (a) Parameter Count with respect to different Adapters Vs. Test Accuracy, (b)
The impact of varying the no. of cross modal attention steps on accuracy on SLAKE
dataset

and value parameters of the last block of SwinV2, limiting the model’s adapt-
ability to significant information from the last block (Table 4, row 3). Finally, the
EC-adapter was introduced on the pooled features obtained from SwinV2 [21].
The best performance was achieved on both datasets when the lightweight and
efficient EC-Adapter was applied to SwinV2-encoded features (Table 4, row 4).

Efficacy of EC-Adapter: Additionally, the effectiveness of the proposed EC-
adapter is evaluated by comparing it to a no-adapter setup and the LoRA
adapter on the SLAKE dataset. From Fig. 4(a) it is observed that in no-adapter
setup, the model achieved a performance of 83.19% without any additional
parameters. Introducing the LoRA adapter led to a slight improvement in per-
formance, reaching 83.42% with an increase in parameters to 282K. In contrast,
the EC-adapter outperformed both setups, achieving the best performance of
84.95% with significantly fewer parameters, only 9.2K. This showcases the effi-
ciency and effectiveness of the proposed EC-adapter in enhancing performance
with a minimal increase in model complexity. The number of parameters required
for EC-adapter φ is ∼ 9K parameter. While the total number of parameters in
full model is 18.1M . Hence, the number of parameters for proposed adapter is
0.0005% of total model parameters.

Number of Cross Modal Attention Steps: Figure 4(b) illustrates the effects
of adjusting the number of attention steps. Starting with 0 steps, no cross-modal
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attention is applied; instead, the two modalities are fused directly. Attention is
crucial in VQA tasks [23,26], and its absence significantly reduces model accu-
racy. Introducing one attention step enhances modality interaction, resulting
in a more enriched contextual feature representation. Performance continues to
improve up to 4 attention steps. However, increasing the number of attention
steps beyond this does not yield further positive results.

6 Conclusion

In the proposed approach, a lightweight adapter is designed to facilitate the
transfer of knowledge acquired from general image-related tasks to the specific
context of MedVQA. This adapter acts as a connector, allowing the model to
leverage insights from broader visual tasks and apply them effectively to the more
specialized domain of medical question answering. To assess the effectiveness of
the proposed method, thorough experiments and analysis are conducted on two
extensively studied datasets in the domain of MedVQA. The results demonstrate
the capability of the proposed EC-Adapter to get trained on a small set of data
and produce better results as compared to various SOTA methods.
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Abstract. The early diagnosis and effective treatment of age-related
macular degeneration (AMD), a leading cause of vision impairment, is
contingent upon accurate grading. This paper introduces a novel frame-
work, named Mask-UnMask Regions (MUMR), designed to distinguish
between normal retina, intermediate AMD, geographic atrophy (GA),
and wet AMD using retinal fundus images, with the input resolution
standardized to 1024 × 1024 pixels. The framework begins by downscal-
ing images to a quarter of their size using a Preserving High-Frequency
Information (PHFI) module, which maintains critical details essential
for furthure analysis. Furthermore, we developed a simple, lightweight,
yet effective ResNet-like network for efficient feature extraction and
introduced a Region Interaction (RI) module, which consists of Adap-
tive Mask and UnMask Sub-Modules. This module identifies significant
regions while reconstructing the insignificant ones using a direction-
constrained self-attention mechanism to ensure the learning of global
structural cues of AMD grades. The proposed method was evaluated on
a dataset of 864 retinal fundus images. Our model consistently achieves
superior results compared to other state-of-the-art models, with mean
accuracy, mean F1-score, and mean Cohen’s Kappa of 92.55%, 92.59%,
and 89.97%, respectively. Additionally, we demonstrate that these results
are statistically significant compared to other models based on F1-score,
indicating that our proposed framework achieves robust and improved
AMD grading performance.

Keywords: Age-related Macular Degeneration · Retinal Diseases ·
Deep Learning · Transformer

1 Introduction

The sense of vision is crucial for humans, offering vital visual data neces-
sary for numerous activities. Retinal disorders, including age-related macular
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degeneration (AMD), diabetic retinopathy (DR), and glaucoma, are the pri-
mary conditions leading to visual impairment and blindness globally [17]. AMD
is a persistent retinal disease predominantly affecting the macular region of the
retina, typically observed in older adults.

The progression of AMD is marked by the formation of drusen, with the
quantity and size of these deposits determining the disease’s stage. AMD is
categorized into dry AMD and wet AMD. Dry AMD, the more prevalent type,
is further subdivided into early, intermediate, and late stages. Conversely, wet
AMD, regarded as the advanced stage of the disease, is classified into inactive
and active stages [7]. In wet AMD, vision loss occurs due to the abnormal growth
of blood vessels beneath the retina. The shift from dry to wet AMD can happen
abruptly, making early detection essential for preventing disease progression.
Receiving treatment at this stage is vital for maintaining vision and potentially
stopping the further advancement of the disease [9].

Recent advances in deep learning (DL), transfer learning (TL), and vision
transformers (ViTs) have demonstrated significant promise in medical image
analysis applications, particularly in the diagnosis and grading of retinal dis-
eases using fundus and optical coherence tomography (OCT) images. Many
researchers nowadays use vision transformers (ViTs), an innovative architecture
derived from transformers originally developed for natural language process-
ing [22], which adapt self-attention mechanisms to interpret image patches as
sequences. This method enhances the model’s ability to handle complex visual
tasks. Recent studies have shown that models incorporating the ViT architecture
are particularly effective in identifying and differentiating between various stages
of AMD and healthy retinas [4,6,10,18,19]. For example, Chakraborty et al. [4]
implemented their deep convolution neural network (DCNN) model for diag-
nosing AMD using two public datasets utilizing fundus images, namely, ARIA
and iChallenge-AMD [14]. Their method is used to discriminate between AMD
and healthy retinas. Pečiulis et al. [18] used the MobileNetV3 pre-trained model
trained on a private dataset. They performed a binary classification to distin-
guish between normal eyes and AMD. Nevertheless, the main problem in [4,18]
is that they didn’t distinguish between dry and wet AMD, which requires differ-
ent treatments for each type. Kumar et al. [15] proposed an ensemble approach
combining EfficientNet-B0, VGG16, and ResNet152 pre-trained models to differ-
entiate between dry, wet AMD, and other retinal diseases using public datasets.
A deep learning model was implemented by Bhuiyan et al. [3] for binary clas-
sification, achieving 99.2% accuracy, 98.9% sensitivity, and 99.5% specificity in
distinguishing between normal/early and intermediate/late AMD stages. Addi-
tionally, a four-class classification was performed to differentiate between normal,
early, intermediate, and advanced AMD, with an accuracy of 96.1%. The model
was also utilized for predicting disease progression, with accuracy rates of 66.79%
for dry AMD and 68.15% for wet AMD over a one-year period. AMDNet23 was
introduced by Ali et al. [2] to diagnose three different retinal disorders and distin-
guish between normal retina, AMD, cataract, and DR. An accuracy of 96.50%,
specificity of 99.32%, sensitivity of 96.5%, precision of 96.51%, and an F1-score
of 96.49% were recorded. The model was trained on 2000 high-quality fundus
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images from six public databases: ODIR, Eye Diseases Classification from Kag-
gle, DR-200, Fundus Dataset, RFMiD, and ARIA. Furthermore, Gour et al. [10]
used a VGG16 pre-trained model trained on a private dataset composed of 5K
fundus images for eight different retinal diseases. They succeeded in perform-
ing multi-label disease detection and differentiating between a normal retina,
AMD, and other diseases, recording an accuracy of 84.93%. However, AMD can
manifest in dry or wet forms, each carrying a different prognosis. Domı́nguez et
al. [5] evaluated and compared the performance of different ViT-based models
to DL-based pre-trained models for AMD disease classification, concluding that
working with convolutional-based architectures is better than using transformer-
based models for AMD detection and classification using fundus images.

Upon reviewing the existing literature, our findings indicate that many stud-
ies extensively resize images to dimensions such as 224 × 224 or 256 × 256 to
accommodate pretrained models. However, such resizing practices often result
in significant information loss critical for accurate classification of AMD grades.
Furthermore, these approaches typically fail to effectively identify informative
regions corresponding to AMD pathologies within input images. As a conse-
quence of these limitations, this paper proposes a novel framework called Mask-
UnMask Regions (MUMR). This framework aims to comprehensively capture
the distinctive characteristics of AMD grades to enhance the accuracy of AMD
grading using high-resolution retinal fundus images (1024×1024 pixels). Accord-
ingly, our contributions are as follows:

– We introduce the Preserving High-Frequency Information (PHFI) module,
designed to retain crucial details while resizing inputs to a quarter of their
resolution.

– Developing a simple, lightweight, yet effective ResNet-like network for efficient
feature extraction.

– Introducing the Region Interaction (RI) module, comprising Adaptive Mask
Sub-Module (AMSM) and Adaptive UnMask Sub-Module (AUMSM). AMSM
identifies significant regions while masking irrelevant ones, whereas AUMSM
unmasks masked regions to enhance the understanding of crucial areas in the
input, thereby ensuring the acquisition of salient semantic cues relevant to
AMD pathology.

2 Methodology

The workflow of the proposed framework (i.e., MUMR) for AMD grading is illus-
trated in Fig. 1. The dataset consists of colored retinal fundus images varying in
resolution from 500 × 500 to 3152 × 3000 pixels. To standardize the input, all
images are resized to a resolution of 1024×1024 pixels. These resized images are
then input into our model, which consists of several steps. The first step in our
model is the Preserving High-Frequency Information (PHFI) module, designed to
maintain critical high-frequency details crucial for learning, especially in med-
ical images (i.e., retinal fundus images). The resulting feature maps from the
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Fig. 1. An overview of the proposed framework for predicting AMD grades.

PHFI module are then passed to the second step, where ResNet-like network is
developed for efficient feature extraction. To distinguish between important and
unimportant regions effectively, a Region Interaction (RI) model is developed.
Finally, the output from the RI module is fed into a classification head to predict
the AMD grades.

2.1 Preserving High-Frequency Information (PHFI)

Fundus images contain intricate details essential for accurate grading. Accord-
ingly, preserving these details becomes inevitable for effectively predicting AMD
grades. Thus, maintaining high-frequency details is crucial. While maintaining
high resolution throughout the network structure is intuitive, it comes at the cost
of significantly increased computational demands. Conversely, downsampling via
convolution with striding or using pooling mechanisms inevitably leads to infor-
mation loss and degraded performance. To mitigate these challenges, we employ
Pixel Unshuffle for downsampling the image to one-quarter of its original size
while expanding the channels without losing high-frequency details. Specifically,
the input image x ∈ R

3×W×H undergoes processing through a 3×3 convolutional
layer to derive shallow features s ∈ R

C×W×H , where C = 32 in our experiments.
Subsequently, another 3 × 3 convolutional layer reduces the channel dimensions
to s ∈ R

C/r2×W×H , which are then expanded back using Pixel Unshuffle to
s ∈ R

C×W/r×H/r, with r = 4.

2.2 Feature Extraction

In the second stage of our pipeline, we employ feature maps generated by PHFI to
extract meaningful features for subsequent steps. To achieve this, we developed
a modified version of ResNet18 [12], where the initial convolutional layer was
adapted to process input tensors with 32 channels instead of the standard 3,
with corresponding adjustments made for batch normalization. Additionally, the
first two layers (i.e., Layer1 and Layer2) of ResNet18 were adapted, followed by
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a MaxPooling layer and a depth-wise convolution layer. The output from this
stage, denoted as F ∈ R

128×32×32, is subsequently fed into the third stage, where
the model captures inter-regional interactions. It’s worth mentioning that Layer1
and Layer2 are initialized with the ImageNet-pretrained weights of ResNet-18.

Fig. 2. This figure demonstrates examples of salient regions of AMD grades from the
MUMR perspective.

2.3 Region Interaction (RI)

In this step of our pipeline, the RI module captures varying perceptual impor-
tance across input feature maps. Specifically, the module comprises two sub-
modules: the Adaptive Mask Sub-Module (AMSM) and the Adaptive UnMask
Sub-Module (AUMSM). Within AMSM, each region is assigned a score based
on its relevance, with high scores indicating significant shape and structural
information being retained, while low-scoring regions are masked. Subsequently,
AUMSM restores the masked regions to ensure the model incorporates finer
details relative to the characteristics of AMD grades, alongside learning global
structural cues. This approach enhances the model’s ability to discern inter-
regional correlations, prioritizing target shapes and structures, thereby improv-
ing understanding of AMD grades compared to neighboring regions in fundus
images. Such enhancement proves particularly advantageous in medical imaging,
where emphasizing structure is critical.

Adaptive Mask Sub-module (AMSM). It operates by passing the fea-
ture map F through a lightweight Region Scoring Network (RSN) to evaluate
the significance of each feature region. This network comprises two convolutional
layers:

RSN(F ) = σ(Ω1×1(ReLU(Ω3×3(F )))) (1)
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where Ω1×1 and Ω3×3 denote convolutional layers with kernel sizes 1 × 1 and
3 × 3, respectively. σ represents the sigmoid function, while ReLU indicates the
rectified linear unit. The output of RSN is reshaped to yield scores sl for each
region rl, l = 1, . . . , L, where L represents the number of regions. Regions are
then sorted in descending order based on their scores, and the top K scores αl

along with their corresponding regions rl are selected. These scores are multiplied
with normalized region features as modulating factors:

Φ = {φl | φl = LayerNorm(rl) · αl}, l = 1, . . . , K

POS = {pφl
| pφl

∈ {0, . . . , L}}, l = 1, . . . ,K

Here, Φ denotes the selected set of important region features, and POS denotes
their respective positions in the original 2D feature map. The parameter K is set
to β × L, where β is a constant fractional value, and the mask ratio is defined
as 1 − β. In our experiments, β = 0.5. Refer to Fig. 2 for examples illustrating
the selected important region from the MUMR perspective.

Adaptive UnMask Sub-Module (AUMSM). Following the masking in
AMSM, AUMSM reconstructs these masked regions to enhance the MUMR’s
understanding of the characteristics of AMD grades. In other words, this process
improves the MUMR’s ability to holistically understand the inter-regional inter-
actions. AUMSM initially filling masked regions with uniformly initialized learn-
able mask code embeddings (see Fig. 1). Afterwards, it employs a novel direction-
constrained self-attention mechanism [13] to facilitate information flow from
unmasked to masked regions while preventing reverse flow. This design lever-
ages unmasked region features to infer masked ones without negative impact.
The mathematical formulation of direction-constrained self-attention is:

Q,K, V = WQΦ,WKΦ,WV Φ (2)

A =
(

SoftMax
(

QKT

√
C

))
� M (3)

where WQ,WK ,WV ∈ R
C×C are learnable parameters, M denotes the attention

mask, and C is the number of channels in the input. To improve the learning
process by enhancing the flow of gradients, a skip connection is used that adds
the input F to the output of the RI module:

A = A + F (4)

It’s worth mentioning that the direction-constrained self-attention mechanism
was proposed in [13] for image generation, but here we adapted it to capture
inter-regional interactions for AMD grades classification. Finally, A is passed
through the Classification Head (CH):

CH(A) = D(F1×1(ReLU(AAP (A)))) (5)

where D represents a Dropout layer with a probability p = 0.5, and AAP repre-
sents Adaptive Average Pooling.
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Table 1. A comparison between our MUMR and other state-of-the-art models reveals
that our model consistently achieves superior results, as indicated by the values high-
lighted in bold. However, Res2NeXt-DLA-60 [8] achieved the best Recall for ’wet’ and
the best Precision for ’intermediate’. Results are presented as percentages, with mean
and standard deviation for each experiment, each repeated three times with data shuf-
fled each time. T indicates the tiny version of that model.

Model Metric GA(%) Wet (%) Normal (%) Intermediate (%)

ConvNext-T [16] Precision 75.27 ± 6.59 44.53 ± 4.98 58.38 ± 10.89 75.29 ± 1.03

Recall 77.21 ± 7.28 53.24 ± 17.98 62.62 ± 4.38 60.56 ± 8.58

F1 Score 76.12 ± 6.45 47.57 ± 8.8 60.22 ± 7.74 66.86 ± 5.62

GFNet-T [21] Precision 89.16 ± 2.84 73.87 ± 14.66 89.99 ± 3.37 85.02 ± 2.49

Recall 87.99 ± 7.09 85.30 ± 9.86 91.43 ± 6.17 75.07 ± 8.92

F1 Score 88.50 ± 4.75 78.76 ± 11.36 90.60 ± 3.78 79.30 ± 4.21

ALOFT-T [11] Precision 91.72 ± 2.55 74.45 ± 12.24 92.22 ± 8.75 87.29 ± 5.34

Recall 87.62 ± 6.88 86.85 ± 4.87 84.76 ± 1.35 83.21 ± 9.31

F1 Score 89.41 ± 2.94 79.63 ± 7.41 88.10 ± 3.98 84.56 ± 2.56

Res2NeXt-DLA-60 [8] Precision 87.59 ± 8.85 81.78 ± 10.85 93.53 ± 1.68 97.53 ± 3.49

Recall 96.44 ± 2.74 94.70 ± 2.69 90.71 ± 6.31 79.55 ± 3.56

F1 Score 91.68 ± 5.99 87.22 ± 4.84 91.92 ± 2.53 87.58 ± 2.90

Ours Precision 91.87 ± 4.87 88.76 ± 8.13 93.74 ± 2.51 95.47 ± 1.51

Recall 97.33 ± 3.77 88.93 ± 6.02 97.62 ± 3.37 88.42 ± 4.56

F1 Score 94.51 ± 4.32 88.47 ± 4.05 95.56 ± 1.18 91.71 ± 1.78

Fig. 3. This figure demonstrates the computational effort required for each model based
on MNP and GFLOPs.
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3 Experiments and Results

Dataset: The proposed approach is evaluated on a dataset consisting of 864
fundus images, with 216 images for each category: normal retina, intermediate
AMD, geographic atrophy (GA), and wet AMD. These images were gathered
by the Comparisons of Age-Related Macular Degeneration Treatments Trials
(CATT), a study group sponsored by the University of Pennsylvania [1].

Table 2. A comparison between MUMR and other state-of-the-art models using
mean accuracy, mean F1-score, and mean Cohen’s Kappa. Bootstrap resampling was
employed to establish 95% confidence intervals, confirming statistically significant dif-
ferences in performance based on mean F1-score. T indicates the tiny version of that
model.

Model Accuracy (%) (95% CI) F1-Score (%) (95% CI) Cohen Kappa (%) (95% CI) Diff

ConvNext-T [16] 62.33 (55.38, 69.23) 62.49 (55.81, 69.02) 49.62 (40.44, 58.74) 30.1 (29.99, 30.21)

GFNet-T [21] 83.86 (78.46, 88.72) 84.24 (79.08, 89.07) 78.31 (71.13, 84.91) 8.35 (8.26, 8.44)

ALOFT-T [11] 85.12 (80.26, 90.07) 85.31 (80.26, 86.27) 79.95 (73.04, 86.27) 7.27 (7.18, 7.36)

Res2NeXt-DLA-60 [8] 89.52 (85.13, 93.85) 89.6 (85.07, 93.67) 85.95 (79.95, 91.64) 2.99 (2.91, 3.07)

Ours 92.55 (88.72, 95.9) 92.59 (88.75, 96.00) 89.97 (84.82, 94.51) −

Setting: The proposed system was trained using the AdamW optimizer with
a learning rate of 0.0001 and a cosine annealing scheduler. The dataset was
divided into train (80%), validation (10%), and test (10%) sets for the purpose
of training and testing. Each experiment was repeated three times, ensuring the
dataset was shuffled each time. Additionally, cross-entropy loss was employed.
The implementation was carried out using PyTorch, utilizing a single NVIDIA
Quadro P5000 GPU with 16 GB of memory.

Results and Analysis. As shown in Tables 1 and 2, MUMR consistently out-
performed other models in mean Accuracy, mean F1-score, and mean Cohen’s
kappa, as well as across all classes according to Precision, Recall, and F1-score.
However, Res2NeXt-DLA-60 [8] achieved the best recall for ‘wet’ and the best
precision for ‘intermediate’. Furthermore, Res2NeXt-DLA-60 [8] achieved the
second-best results among the models compared, as shown in Table 2. In Table 2,
we employed bootstrap resampling with 10,000 samples from the test set, using
the three models from the three experiments mentioned earlier, to construct
95% confidence intervals (CIs) for these metrics. The 95% CIs for the mean
accuracy, mean F1-score, and mean Cohen’s Kappa were derived from the 2.5th

to the 97.5th percentiles of the bootstrap distribution. To assess the statistical
significance of these findings, we followed Rajpurkar et al. [20] in determining
the statistical significance of the proposed approach. This involved computing
the difference in mean F1-score between MUMR and other models on the same
bootstrap samples. The absence of zero within the 95% CI of this difference,
as shown in Table 2 under the column labeled ‘Diff,’ indicates a statistically
significant superiority of MUMR’s performance over the others. In addition, as
illustrated in Fig. 3, we compared all models based on the Million Number of
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Parameters (MNP) and Giga Floating-point Operations Per second (GFLOPs)
required. As observed from the figure, MUMR requires fewer MNP and GFLOPs,
thus outperforming other models in terms of computational efficiency. Like all
models, as shown in Fig. 4, MUMR experienced limitations inherently related
to the images. As illustrated in the figure, images with illumination issues due
to scanning problems caused MUMR to incorrectly identify non-AMD grade
regions as important.

Fig. 4. This figure shows examples of regions obtained incorrectly by MUMR, identified
as crucial regions related to AMD grades.

4 Conclusion and Future Work

This paper introduces the MUMR framework for predicting AMD diseases using
color retinal fundus images. As detailed in Sect. 2, MUMR comprises several key
steps. Initially, high-frequency information is preserved using PHFI to mitigate
information loss, while MUMR downscales the image to one-quarter of its orig-
inal size. Next, a lightweight variant of ResNet-18 is employed to efficiently
extract features. Thirdly, MUMR models inter-regional relationships using the
RI module to better understand the characteristics of AMD grades regions.
Experimental results demonstrate that MUMR achieves superior performance
compared to state-of-the-art models in terms of mean Accuracy, mean F1-score,
and mean Cohen’s Kappa. Additionally, MUMR achieves statistically significant
results in terms of mean F1-score compared to other models. Based on these
findings, we posit that this work has the potential to advance clinical decision-
making and enhance patient treatment outcomes. In future work, we plan to
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explore additional state-of-the-art models and compare them against MUMR,
including larger model variants. Furthermore, we intend to evaluate MUMR on
additional medical datasets and extend MUMR’s capabilities to more complex
tasks such as detection and segmentation within the medical domain.
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Abstract. Early diagnosis of retinal diseases is crucial for preventing blindness.
However, due to background variations and degradation in the images, retinal
vessel segmentation has become challenging. As a result, accurate segmentation
of the retinal vessels is essential for enhancing diagnosis to identify the disease.
To achieve this, inspired by the special ability of the attention mechanism, which
detects vital regions, and UNet, which segments the vital region, we propose a
combination of a new attention mechanism and modified UNet for segmenting
vessels in retina images. In the proposed segmentation model, the convolutional
blocks have been modified to capture multiscale spatial information by varying
the convolution dilation rates. Similarly, the Trainable tanh activation (T-Tanh) is
adapted in a new way to identify changes in the flow of the feature gradients to
differentiate between the retinal vessel pixels and the background. Furthermore,
to make the segmentation robust, the Gated Edge Attention (GEA) network is
proposed. The effectiveness of the segmentation is demonstrated by testing on
two benchmark datasets, namely, STARE and CHASE. The results show that the
performance of the proposed method is superior to the state-of-the-art methods.

Keywords: Retinal vessel segmentation · UNet · Attention mechanism ·
Diabetic retinopathy

1 Introduction

Deformations within the retina’s internal structure can lead to various ocular diseases,
making early detection crucial [1]. It is true that retinal vessels are the key indicators for
identifying diseases such as Diabetic Retinopathy (DR), Glaucoma, age-related Mac-
ular Degeneration, and cardiovascular diseases. Therefore, accurate analysis of retinal
vessels is vital for effective disease detection. Thus, it is necessary to segment vessels
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accurately tomake themvisible. Color Fundus Photography (CFP) is themost commonly
used imaging modality due to its non-invasive nature, avoiding the inconvenience and
hospitalization associated with invasive methods. Retinal vessel segmentation is not a
new problem, we can find several methods in the literature [2–4]. However, the past
methods are not robust and effective for the images affected by adverse factors, such as
low resolution, background color changes, etc. As a result, segmenting blood vessels in
retina images presents several challenges:

• Low contrast in fundus imagesmakes differentiation between vessels and background
difficult.

• Pathological features like exudates and hemorrhages can be mistaken for vessels.
• The complex morphology of retinal vasculature varies in orientation and scale.

Our aim is to address these challenges effectively, as illustrated in Fig. 1. It is noted
that the traditional medical image segmentation methods, which usually rely on conven-
tional image processing steps utilize handcrafted features and domain knowledge [2–4].
To overcome these limitations, recent advancements in deep learning, particularly con-
volutional neural networks (CNNs), have transformed medical image segmentation [5].
In the same way, architectures like UNets [6] and their variants, including Attention
UNet [7], ResUNet [8], and DeepLab V3 + [9], demonstrate exceptional performance.
However, these architectures ignore boundary information for segmentation. Addition-
ally, many existing methods overlook critical edge information necessary for accurate
segmentation and vessel boundary adherence, leading to false positives. Transformers,
although effective in capturing multiscale feature information, require extensive training
data and involve a large number of trainable parameters.

This observation motivated us to introduce the method that explores the attention
mechanism, modified UNet with a gated edge attention network. The proposed method
can be seen in Fig. 1(a) and Fig. 1(b), where it can be seen that the predicted results
obtained by the proposed model are almost the same as the ground truth for all the
images with different complexities. The special characteristics of the attention mecha-
nism, UNet, and gated edge attention network inspired us to propose a new model to
integrate the strength of the above-modified model for accurate vessel segmentation in
this work.

Therefore, the key contributions of the proposedmethod are as follows. (i) The chosen
backbone is the Attention UNet, which integrates attention mechanisms into the U-Net
framework. This enhances its ability to capture finer details and complex structures in
retinal vessels. (ii) The convolution blocks of the encoder, decoder, and bottleneck layers
of the Attention UNet are modified to capture multiscale spatial information. (iii) The
Gated Edge Attention (GEA) captures edge information, highlights spatial regions, and
provides boundary adherence for accurate segmentation mask generation. This reduces
the false positive rate by streamlining the focus of the model and making it vessel
boundary-aware.

The structure of the paper is as follows. A review of the different methods of retinal
vessel segmentation is presented in Sect. 2. Section 3 discusses the architecture of the
proposed segmentation method. The results and analysis to validate the performance of
the proposed segmentation are presented in Sect. 4. Conclusion and Future work are
listed in Sect. 5.
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Fig. 1. Sample images, ground truth (GT), and the predicted mask of the proposed model for (a)
CHASE and (b) STARE datasets.

2 Related Works

Recently, Biswas et al. [10] stated that the methods of medical imaging, especially the
approach of segmentation play an important role for precise analysis and early detection
of various diseases. This study presents a review of different deep-learning approaches
for segmentation and classification. The methods used different architectures for vessel
segmentation in the past. Anwar et al. [11] observed that accurate and efficient classifi-
cation depends on the success of segmentation approaches. This study uses EfficientNet
for the classification of different types of cancer, which include brain tumors, breast
cancer, chest cancer, and skin cancer.

Since the aim of the work is to segment vessels from retina images, this work reviews
different deep-learning models. For example, Iter-Net [12] enhances retinal vessel seg-
mentation by cascading a UNet with mini UNets while reducing channel numbers for
efficiency. The main objective of the approach is to find obscured details of the vessel
from the segmented vessel image itself, rather than using the raw input image. There-
fore, there are chances of missing sometimes vital details in the images. UNet++ [13]
improves skip connections to fuse information across multiple scales. This model has
the ability to reduce the effect of unknown network depth with an efficient ensemble
of U-Nets. CE-Net [14] addresses spatial information loss in UNet with a multi-scale
branch structure and dilated dense blocks. The CE-Net includes a feature encoder mod-
ule, a context extractor module, and a feature decoder module for image segmentation.
However, themodel workswell for 2D images. Genetic UNet [15] employs an evolution-
ary neural architecture search for retinal vessel segmentation, resulting in a streamlined
network design. The key idea for the successful segmentation is that the model generates
a U-shaped CNN which can segment vessels with high accuracy and few parameters.

DE-DCGCN-EE [16] features a dynamic-channel graph CNN with dual encoders
for edge enhancement and topological relation utilization. The key step of the proposed
work is to propose an edge detection-based dual encoder to preserve the edges of the
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vessel. Sine-Net [17] introduces unconventional upsampling and down-sampling oper-
ations. The authors noted that deep learning achieves the best results when the models
extract contextual features. However, it is not so easy to extract contextual features for all
situations. LIOT [18] enhances Iter-Net’s generalization through innovative preprocess-
ing sensitive to curvilinear structures. The main idea to achieve generalization ability
is that the approach transfers a grayscale image into contrast invariant channels based
on pixel values and their neighboring values. SegR-Net [19] utilizes feature extraction
and fusion for precise segmentation masks. While CNNs excel at exploiting translation
symmetry, they often fall short in effectively handling rotation and scale symmetries,
which are equally important for segmentation tasks. FRS-Net [20] addresses this issue
by introducing FRS-Conv, a novel convolution operator equivariant to both rotation and
scaling. However, predefined convolution operators cannot generalize across multiple
datasets and depend on local information, ignoring global dependencies.

Overall, despite powerful deep learning models being proposed for vessel segmen-
tation, the scope of the methods is limited to particular situations and applications to
achieve the best results. In addition, as the accuracy improves, the number of compu-
tations increases due to heavy architectures. Therefore, since segmentation is a prepro-
cessing step of detection, classification, and identification, it is necessary to develop
a model that can work for any dataset and images. This is the major weakness of the
existing methods. Thus, this work aims to develop a generalized and efficient model to
achieve the best accuracy without additional computational burden.

3 The Proposed Methodology

The main objective of the proposed method is to segment vessels in the retina images.
As discussed in the previous section, segmenting an accurate vessel is not easy due to
background complexities and variations at the edges of the diseased images. Therefore,
based on special characteristics of the attention network, UNet, and gated edge attention
network, we propose a new model that integrates the strength of each modified com-
ponent mentioned earlier for accurate segmentation, which results in a new model for
segmentation.

The segmentation model we are using is based on the Attention UNet [21] architec-
ture, which incorporates attentionmechanisms into the U-Net framework. This enhances
its ability to capture finer details and complex structures in retinal vessels. The traditional
convolution layers in Attention UNet have been replaced by separable convolutional lay-
ers, reducing the number of trainable parameters without a decrease in performance. The
convolution blocks of the encoder, decoder, and bottleneck layers have been modified
to capture multiscale features by introducing spatial attention from the ASPP module
to capture global and local dependencies. The parameterized tanh, i.e. T-Tanh, is used
to capture the feature gradient flow of the image, adjusting the parameters accordingly
to demarcate the flow changes in the images and spot the retinal vessels, thus ensuring
differentiation between the foreground and background pixels.

The traditional gated attention aids the skip connections in the Attention UNet. To
make themodel adhere to the boundaries of the retinal vessels, wemodified this attention
by introducing the edge information to formulate the Gated Edge Attention (GEA)



228 A. Roy et al.

module. GEA highlights the edge information for streamlining themodel’s spatial focus.
Furthermore, to differentiate between the foreground and background pixels, feature
gradient flow is utilized for further spatial information enrichment. Feature gradient
flow leverages the network’s ability to learn representations that identify the change in
feature gradients along the retinal vessels as seen in Fig. 2. This gradient information
showcases the feature flow specifically pointing in the direction of the retinal vessels.

Finally, a convolution layer with sigmoid activation produces the predicted mask. A
detailed block diagramof the proposedmodel is shown in Fig. 3. Aswe go deeper into the
network, i.e. from the bottleneck to the decoder layers, the spatial information becomes
more and more prominent as shown in Fig. 4, where one can see the proposed method
is effective and capable of segmenting vessels for the images of different complexities.

Fig. 2. Feature gradient flow of the images shown in Fig. 1. The arrow showcases the direction
in which the feature gradient changes, i.e., the direction of the retinal vessels.
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Fig. 3. A block diagram of the proposed model. Attention UNet is used as the baseline UNet. The
gated attention is modified to Gated Edge Attention (GEA) to focus on the retinal vessel edges for
boundary adherence. The convolution blocks of the encoder, decoder, and bottleneck layers are
modified to capture both local and global features

Fig. 4. Heatmaps of the decoder layers for images in Fig. 1.

3.1 Convolution Block

In theAttentionUNet, convolution layers are the fundamental building blocks. Tradition-
ally, these layers consist of convolution operations followed by batch normalization and
ReLU activation. However, we propose a modification to these convolution layers in our
work. Modified convolution layers aim to capture multiscale features to achieve scale
invariance effectively. Specifically, we introduce a trainable Tanh (T-Tanh) activation
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function to enhance spatial feature gradient flow and distinguish between foreground
and background pixels.

The Tanh function is chosen for its steep gradient around the origin, making it highly
sensitive to input changes, particularly in regions with values close to zero. In retinal
vessel segmentation, such regions often correspond to areas with subtle transitions or
gradients, such as vessel boundaries. To adapt the Tanh function to complex spatial infor-
mation, we parameterize it and make it trainable. The equation for T-Tanh is represented
in Eq. 1, where x is the input, and shift and slope are trainable parameters.

T − Tanh(x) = Tanh(slope × (x − shift)) (1)

The shift parameter horizontally translates the Tanh function, enabling adaptation
to varying background intensities or brightness levels in retinal vessel segmentation.
The slope parameter adjusts the steepness of the transition from minimum to maxi-
mum values. By dynamically adjusting both parameters during training, the trainable
Tanh function effectively captures spatial feature gradient flow, accommodating intensity
variations and enhancing sensitivity to spatial gradients. Thus, with adjustable param-
eters, the trainable Tanh function accurately captures flow variations in retinal vessels,
facilitating precise segmentation tasks such as retinal vessel segmentation.

Fig. 5. The modified convolution block. The Atrous Spatial Pyramid Pooling (ASPP) captures
multiscale features and the trainable Tanh (T-Tanh) captures the feature gradient flow to differ-
entiate between the foreground and background pixels. BN stands for Batch Normalization and
SCd

k×k is a Separable Convolution layer with a dilation rate of d and kernel size of k × k.
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Fin is the input to the convolution block with dimensions H × W × C. It is treated
by a separable convolution layer, batch normalization layer, and ReLu activation to
generate Fconv of dimensions H × W × C. It is then subsequently treated by the ASPP
module to generate multiscale features. It is a cascaded setup where Fin is treated by
separable convolution layers with varying dilation rates (d= 1,6,12) to capture features
of various receptive fields. The features extracted for different dilation rates are then
treated by the T-Tanh activation to capture the spatial feature gradient flow and then
added to produce Fdil of dimensions H × W × C. Fin is also max-pooled to capture
the dominant spatial features and then subsequently treated by separable convolution
layers and upsample layer to produce Fpool of dimensions H × W × C. Fpool and Fdil
are multiplied element-wise and treated by a separable convolution layer with sigmoid
activation to generate FASPP of dimensions H×W× 1. FASPP consists of the multiscale
spatial feature gradient flow information to highlight the foreground regions, i.e. the
retinal vessels. Finally, FASPP is element-wise multiplied with Fconv to generate Fout of
dimensions H ×W × C as shown in Fig. 5.

Fig. 6. An illustration of the Gated Edge Attention (GEA) module.
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3.2 Gated Edge Attention (GEA)

TheGatedEdgeAttention (GEA)module is amodified version of the gated attention used
in the Attention UNet. Its main purpose is to enhance the extracted spatial features with
edge information. Segmentation models often smooth out the boundaries of the region
of interest too much, which can be problematic for tasks like retinal vessel segmentation
where precise demarcation of thin vessel boundaries is crucial. The input feature maps
g and s are processed by separable convolution layers, batch normalization layers, and
Sobel filters to capture edge information across the height and width directions. The
resulting edge features gedge x, sedge x (along the height direction), gedge y, and sedge y
(along the width direction) are concatenated and processed by a separable convolution
layer with ReLu activation to generate g’ and s’. These are then added together and
processed by a separable convolution layerwith sigmoid activation to generate ‘a’, which
represents the spatial attention weight including the edge information. This helps the
decoder layers produce a boundary-aware segmented output. A detailed block diagram
of GEA is shown in Fig. 6. After the incorporation of both the GdAM and CSCmodules.

4 Experimental Results

To evaluate the performance of the proposed model, two benchmark datasets, namely,
STARE [22] and CHASEDB1 [23] are considered in this work. The STARE dataset
comprises 20 digital retinal images from 10 subjects, each with a resolution of 700 ×
605 pixels and 8-bit pixel depth. On the other hand, the CHASEDB1 dataset includes 28
digital retinal images from 28 subjects, with images of dimensions 999× 960 pixels and
8-bit pixel depth. Expertly annotated retinal vessel masks accompany both datasets for
evaluating segmentation performance. We utilized the original image size of 512× 512
pixels for input and used a train-validation-test split of 70-10-20%. For the training set,
we used data augmentation of horizontal flip, vertical flip, and rotation by 90˚ in both
clockwise and anticlockwise directions. The details of the datasets are given in Table 1.

Standard metrics to evaluate segmentation performance like accuracy (Acc), Dice
coefficient (Dc), Intersection over Union (IoU), Sensitivity (Se), and Specificity (Sp)
were used. Accuracy measures the overall correctness of the segmentation results. The
dice coefficient quantifies the overlap between the predicted segmentation and the ground
truth. IoUmeasures the overlap between the predicted segmentation and the ground truth,
normalized by the total area covered. Sensitivity measures the proportion of actual posi-
tives that are correctly identified. Specificity measures the proportion of actual negatives
that are correctly identified. The measures are defined in Eq. (2)–Eq. (6), where TP, TN,
FP, and FN represent True Positive pixels, True Negative pixels, False Positive pixels,
and False Negative pixels respectively.

Accuracy = TP + TN

TP + TN + FP + FN
(2)

Dice Coefficients = 2TP

2TP + FP + FN
(3)

IntersctionOver Union = TP

TP + FP + FN
(4)
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Sensitivity = TP

TP + FN
(5)

Specificity = TN

TN + FP
(6)

More details about themeasures can be found in [22, 23]. The training involves using
a learning rate of 0.0001, the Adam optimizer, a batch size of 4, and training for 150
epochs. Implementation is carried out using TensorFlow on an NVIDIA TESLA P100
GPU, ensuring consistency throughout the ablation study.

Table 1. A summary of the number of images used for training and testing for the two datasets.

Dataset Training Training (augmented) Testing

STARE [22] 16 80 4

CHASEDB1 [23] 110 22 6

4.1 Ablation Study

To figure out the contribution and effectiveness of the key components used in the pro-
posed method for segmenting vessels in retina images, we conducted ablation study
experiments on the CHASEDBI dataset as listed in Table 1. (i) Attention UNet, which
is the baseline architecture used to show that the baseline architecture is not capable
of achieving the best segmentation results. (ii) Attention UNet (replacing traditional
convolution layers in the convolution block with separable convolution layers to make
it lightweight), which is to show the effectiveness of a modified attention network. (iii)
Adding Gate Edge Attention (GEA) network to the model in (ii), which is to show
the effectiveness of edge information for boundary adherence. (iv) Adding a modified
convolution block to the (iii), which is to show the effectiveness of modified convolu-
tional blocks to achieve the best segmentation, and (v) The proposed model with the
T-Tanh activation function, which is to show the contribution of integrating all the above
components to achieve high accuracy.

Table 2 showcases the significant influence of the GAE’s edge information. This
information aids in enriching the features and highlighting the spatial boundaries of
the retina. Moreover, the use of separable convolution layers instead of the traditional
convolution layer reduces the number of trainable parameters by approximately 6.5
times with comparable performance. The use of a modified convolution block helps
capture multiscale spatial feature gradient flow, thus boosting the performance of the
model. Furthermore, the use of T-Tanh provides the necessary flexibility to adjust the
threshold to capture the feature flow for retinal vessels. Overall, Table 2 shows that
the performance of the method in terms of the number of parameters, accuracy, dice
coefficients, sensitivity, specificity, and IoU is the best compared to the performance
of individual components. This is because as key components and modifications are
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Table 2. Performance of the key components of the proposed segmentation models on the
CHASEDBI dataset (in %).

# Steps Parameters Accuracy Dice
Coefficients

Sensitivity Specificity IoU

(i) Baseline
Attention UNet

8.14 M 95.05 75.20 76.17 98.39 57.87

(ii) Attention UNet
(Replacing
traditional
convolution
layers with
separable
convolution
layers)

1.26 M 95.65 74.78 76.84 98.05 58.72

(iii) Modified
Attention UNet
+ GEA

1.26 M 96.72 75.25 78.26 98.03 59.32

(iv) Modified
Attention UNet
+ GEA +
Modified
Convolutional
Blocks

1.48 M 96.98 75.53 82.42 98.22 61.41

(v) Proposed
method +
T-Tanh
activation
function

1.48 M 96.96 75.78 84.03 98.14 61.56

added to baseline architectures, the performance in terms of all the parameters improves.
Therefore, one can infer that the proposed model integrates the strengths effectively to
achieve the best segmentation results.

4.2 Comparison with the State-of-the-Art Methods

The proposedmodel performs better than the state-of-the-art (SOTA)models for both the
STARE and CHASEDB1 datasets, as demonstrated in Table 3 and Table 4 respectively.
Our model shows lower specificity than LIOT Iter-Net [18] for the CHASEDB1 dataset.
However, LIOT Iter-Net [18] has poor sensitivity, resulting in a lower dice score. In
contrast, our model demonstrates better sensitivity and consequently achieves a higher
dice score. For the STARE dataset, SegR-Net [19] has the highest sensitivity, and Sine-
Net [17] has the highest specificity, although both have lower specificity and sensitivity,
respectively. Conversely, our proposed model exhibits higher specificity and sensitivity
than SegR-Net [19] and Sine-Net [17], resulting in a higher dice score compared to the
existing SOTA methods. It is evident from Table 2 that our proposed model has 1.48
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million parameters, an improvement over standard UNets and comparable to state-of-
the-art models. However, although our model has fewer parameters than most models,
there are models such as Genetic U-Net [15] and SegR-Net [19] that have lower latency
than our proposed model.

Table 3. Performance comparison of the proposed model with the SOTA models for the STARE
dataset (in %)

Models Parameters Accuracy Dice
Coefficients

Sensitivity Specificity IoU

UNet [6] 31.03 M 97.05 71.24 80.49 97.41 55.33

UNet++ [13] - 97.14 - 79.47 98.82 -

Iter-Net [12] - 97.07 - 77.62 98.92 -

CE-Net [14] 39.35 M 96.90 - 79.85 98.52 -

Attention UNet [7] 35.60 M - 72.00 82.01 97.23 56.25

ResUNet [8] 33.16 M - 62.98 80.27 96.73 45.96

DeepLab V3+ [9] 36.89 M - 65.58 77.71 95.19 48.79

Sine-Net [17] 6.9 M 97.11 - 67.76 99.46 -

DE-DCGCN-EE
[16]

- 96.79 - 73.98 98.96 -

Genetic UNet [15] 0.27 M 97.19 - 79.94 98.83 -

LIOT Iter-Net [18] - 96.94 - 78.53 98.69 -

FRS Iter-Net [20] - 97.30 - 80.13 98.93 -

SegR-Net [19] 0.65 M - 72.49 82.12 98.14 56.86

Ours 1.48 M 97.35 72.84 79.57 98.66 57.97

Cross-dataset evaluation involves training models on one dataset and testing them
on another. This approach is essential in the medical field because models developed
using a hospital’s own datasets often need to be applied to different datasets. In addi-
tion, this experiment indicates the proposed model is robust to different datasets and
has generalization ability. A strong cross-dataset performance indicates a model’s reli-
ability in practical settings. For instance, CDSTARE_CHASEDB1 refers to a model trained
on STARE and tested on CHASEDB1, while CDCHASEDB1_STARE refers to a model
trained on CHASEDB1 and tested on STARE. Cross-dataset evaluation is more chal-
lenging for a model’s generalization and robustness than training and testing on the same
dataset. Table 5 provides the numerical results for these cross-dataset experiments. The
proposed model demonstrates superior accuracy and specificity compared to state-of-
the-art (SOTA) models, though it does not show improvement in sensitivity. Despite
this, the significant improvements in other metrics, particularly accuracy, suggest that
the proposed method is superior and has promising potential for clinical applications.
Note that the results of the existing methods presented in Tables 3, 4, and 5 are sourced
directly from the reported findings of the respective authors of the cited papers.
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Table 4. Performance comparison of the proposed model with the SOTA models for the
CHASEDB1 dataset (in %)

Models Parameters Accuracy Dice
Coefficients

Sensitivity Specificity IoU

UNet [6] 31.03 M 95.71 70.56 82.72 98.05 54.51

UNet++ [13] - 96.62 - 79.64 98.31 -

Iter-Net [12] - 96.54 - 79.57 98.23 -

CE-Net [14] 39.35 M 96.43 - 77.90 98.27 -

Attention UNet [7] 35.60 M - 71.25 81.72 98.35 55.34

ResUNet [8] 33.16 M - 61.97 82.47 98.04 44.89

DeepLab V3+ [9] 36.89 M - 65.50 76.35 97.69 48.70

Sine-Net [17] 6.9 M 96.78 - 80.11 98.15 -

DE-DCGCN-EE
[16]

- 96.35 - 76.25 98.35 -

Genetic UNet [15] 0.27 M 96.58 - 79.85 98.25 -

LIOT Iter-Net [18] - 96.37 - 75.66 98.43 -

FRS Iter-Net [20] - 96.71 - 81.55 98.22 -

SegR-Net [19] 0.65 M - 72.29 83.29 98.38 56.60

Ours 1.48 M 96.96 75.78 84.03 98.14 61.56

Table 5. Performance comparison of the proposedmodel with the SOTAmodels for cross-dataset
validation (in %)

Model CDCHASEDB1_STARE CDSTARE_CHASEDB1

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

UNet [6] 95.84 56.04 99.61 94.66 67.87 97.32

IterNet [12] 95.65 54.19 99.59 94.49 58.36 98.08

UNet++ [13] 95.70 55.16 99.55 94.36 60.63 97.72

CE-Net [14] 96.07 63.18 99.19 94.63 69.43 97.14

DE-DCGCN-EE [16] 95.79 62.84 98.92 93.46 46.97 98.09

Genetic UNet [15] 96.59 70.83 99.04 94.29 59.20 97.78

LIOT Iter-Net [18] 96.44 69.37 99.01 94.36 64.32 97.35

FRS Iter-Net [20] 96.78 71.15 99.21 95.01 72.66 97.24

Ours 96.81 66.64 99.21 95.36 62.08 98.55

4.3 Error Analysis

Although the proposed segmentation model exhibits superior performance compared
to state-of-the-art models, there are still areas for improvement. Figure 8 illustrates the
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specific images that result in an erroneous segmentation output. The foreground-to-
background feature similarity is the cause of over and under-segmentation. This can be
avoided by introducing a loss to separate out the background and foreground feature
distribution to enhance prominent foreground features. Also, discontinuous segmented
retinal vessels are present in the predicted mask. This can be tackled by traditional
techniques of comparing K different neighboring pixels to maintain the connectivity of
the vessels. In this study, we focused on the boundary adherence problem of existing
segmentationmodels and the aforementioned issueswill be studied in our future research.

Fig. 8. Some error cases of the proposed model.
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5 Conclusions and Future Work

We have introduced an innovative retinal vessel segmentation approach based on the
modified attention UNet architecture. By adopting separable convolution layers instead
of traditional ones, we achieve a streamlined model design without compromising per-
formance, thus reducing computational demands. The convolution blocks of Attention
UNet are modified to capture multiscale spatial information by varying convolution dila-
tion rates. The trainable tanh activation function (T-Tanh) enriches spatial information
by detecting feature gradient flow, improving segmentation accuracy by effectively dis-
tinguishing foreground and background pixels. Additionally, the Gated Edge Attention
(GEA) mechanism enhances edge information extraction, highlights spatial regions of
interest, and promotes boundary adherence for precise segmentation mask generation.
By reducing false positives and enhancing vessel boundary awareness, GEA signifi-
cantly improves overall performance. Our model surpasses existing ones on established
retinal vessel segmentation benchmarks such as the CHASEDB1 and STARE datasets.
As discussed in the experimental section, the proposed model may not work well when
the contrast between the background and vessels is too low. To address this challenge,
we plan to introduce a feedback mechanism to fine-tune the attention network and gated
edge convolution network, which will be discussed in future work.
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Abstract. White matter tract segmentation is crucial for studying brain
structural connectivity and neurosurgical planning. However, segmen-
tation remains challenging due to issues like class imbalance between
major and minor tracts, structural similarity, subject variability, sym-
metric streamlines between hemispheres etc. To address these challenges,
we propose TractoEmbed, a modular multi-level embedding framework,
that encodes localized representations through learning tasks in respec-
tive encoders. In this paper, TractoEmbed introduces a novel hierarchical
streamline data representation that captures maximum spatial informa-
tion at each level i.e. individual streamlines, clusters, and patches. Exper-
iments show that TractoEmbed outperforms state-of-the-art methods in
white matter tract segmentation across different datasets, and spanning
various age groups. The modular framework directly allows the integra-
tion of additional embeddings in future works.

Keywords: Tract Segmentation · PointCloud · 3D Computer Vision ·
Tractography · Diffusion MRI

1 Introduction

Diffusion MRI (dMRI) [1,2] facilitates the non-invasive examination of the
brain’s white matter (WM) microstructural organization. A crucial component
of the dMRI analysis pipeline is fiber tractography [3,22,23], which tracks fibers
or streamlines under anatomical constraints from the dMRI signal received from
the scanner (refer to Sect. 3). Tract Segmentation involves dividing the stream-
lines into distinct, anatomically meaningful tracts, with each tract corresponding
to a specific white matter pathway. These tracts can be broadly grouped into 3
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types based on structural connectivity, i.e. Association, Commissural, and Pro-
jection Fibers. Each type is further subdivided based on its specific structural
connectivity and function, allowing for more granular distinctions. Through the
segmentation process, it becomes possible to conduct quantitative studies of
white matter (WM), which is important in understanding neurological disorders
such as Alzheimer’s, and Parkinson’s [16], the effect of tumors on segmenting
fiber streamlines, etc.

In addition, tract segmentation is also crucial for preoperative neurosurgical
planning [14], as it helps identify eloquent white matter areas and determine
optimal surgical approaches that minimize post-operative damage. Tract seg-
mentation is also extensively used to visualize particular segments for focused
examination by clinicians. However, this process is typically performed by expert
Neuroanatomists using their knowledge of brain anatomy to divide fibers into
multiple bundles. As a result, it is very time-consuming and can vary between
experts, affecting the consistency and reliability of the results.

Taking challenges associated with manual tract segmentation, various tech-
niques have been developed over the years. These techniques range from classical
methods to ATLAS-based and distance-based algorithms [8,9,21,25] (refer to
Sect. 2). An ATLAS refers to a standardized reference that allows spatial map-
ping of neuroimaging data from different studies (refer to Table 1) and modal-
ities. They approximate the shape, location, and brain region boundaries in a
common coordinate space, facilitating the comparison of brain structure and
function across individuals.

These methods require significant manual intervention and are prone to age-
related brain changes, also their effectiveness depends on the alignment and
quality of the ATLAS. Considering the limitations of manual and classical meth-
ods, as well as the importance of tract segmentation, machine learning, and deep
learning-based frameworks have been proposed for automatic tract segmentation
[4,28,33]. Deep learning algorithms can learn information from shape, structure,
relative location, fiber orientations, etc.

However, a notable drawback is that these models often fail in classifying
streamlines that are linear in shape due to over-reliance on shape, such as striato-
thalamo-pallido projection fibers, which in existing methods, require global refer-
ence along with streamlines [7]. Additionally, when neurosurgeons are concerned
with segmenting only a specific set of streamlines, global tractography can become
a computational overhead. Due to these complexities in streamline classification-
based tract segmentation, each method inherently has a certain drawback.

To address this, we propose TractoEmbed, a modular framework that com-
bines multi-level embeddings extracted from hierarchical data representations
specifically at streamline, patch, and cluster levels (refer to Fig. 1). Our app-
roach surpasses state-of-the-art (SOTA) results in tract segmentation. In this
work, we present an approach with the following major contributions:

1. We introduce TractoEmbed, a novel modular multi-embedding frame-
work, which leverages learning task-specific encoders to embed data repre-
sentations, and generate embeddings. Where the encoders and their hyper-
parameters are selected after rigorous experimentation.
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2. We propose novel hierarchical and descriptive streamline data rep-
resentations. These representations includes spatial information about
regional patches, neighboring streamlines and the streamline itself, providing
a comprehensive understanding of the streamline characteristics. In contrast
to recent advances, our method leverages minimal neighbouring streamlines,
hyperlocal streamlines, enhancing robustness to practical clinical settings

3. It is demonstrated that TractoEmbed framework, generalizes across vari-
ous datasets encompassing different age groups (refer Table 1). Additionally,
the framework is modular at the embedding level, allowing researchers to
integrate their own learnable embeddings to achieve even richer rep-
resentations of streamline data. This modularity enhances the flexibility and
adaptability of the framework.

2 Related Work

In recent years, a plethora of classical and deep learning methods have been
developed for tract segmentation, capable of performing in diverse conditions and
data formats with minimal supervision from the skilled medical practitioners.
Among these methods, clustering and distance-based methods, QuickBundles
[9] and RecoBundles [8] are fast algorithms that utilize clustering approaches.
QuickBundles is known for its speed in grouping streamlines based on their
similarity, while RecoBundles excels in identifying parent anatomical bundles
of streamlines. RecoBundles achieves this by recognizing and clustering similar
streamlines based on their shape and spatial location, meanwhile leveraging a
model of known white matter anatomy for accurate segmentation. Additionally,
the Fast Streamline Search (FSS) [21] is a highly accurate distance-based search
method. FSS indexes streamlines in a spatial data structure, enabling efficient
retrieval of similar streamlines in tractography data.

Other notable methods include GeoLab [25], a tract segmentation framework
for analyzing the geometry, topology, and structural connectivity of white matter
fiber bundles. Classifyber [4] is a linear classifier that uses distance-based embed-
dings with local and global streamlines and regions of interest (ROIs) in the brain,
concatenated into a weight vector, which serves as a hybrid of distance-based and
learning-based algorithms. TractSeg [28], one of the seminal works, uses a 2D U-
Net model that directly works on fODF peaks [23] to segment tracts, without
the need for parcellation and registration. In DeepWMA [33], shape information
of a single streamline is used to feed a FiberMap to a simple CNN model, pre-
serving local information. BrainSegNet [10] employs bi-directional LSTMs, while
FS2Net [11] uses an LSTM-based model to develop a rotation-invariant segmen-
tation model. TRAFIC [12] uses geometry and 265 landmarks to accurately label,
classify, and clean the traced paths of streamlines in streamline space.

Xue et al. use the PointNet model to classify streamlines using a local-global
data representation, and Wang et al. [27] utilize a transformer encoder for fiber
segmentation by incorporating features related to fiber shape and position. In
[13], a graph convolution (GCNN)-based framework, Spectral GCNN extracts
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geometry-invariant features. In FIESTA, [5,34,35] Dumais et al. segment tracts
in latent space, via an autoencoder-based segmentation algorithm.

3 Diffusion MRI Data

In this section, we discuss how diffusion MRI data (refer to Table 1) is acquired
and processed to generate input and labels for the proposed framework. Addi-
tionally, we explain how the data is divided for training and testing purposes
and converted to variations of Point Cloud Data before feeding to encoders.

Table 1. Description of the publicly available dMRI Datasets containing a total of 1
million streamlines with (15,3) dimension each i.e. (1000000, 15, 3) using UKF Trac-
tography and Parcellation (refer Sect. 3.1. [30]

Neuroimaging Datasets N
subs

b
s/mm2

N
Volumes
(mm3)

TE/TR
(ms)

Resolution (mm3)

dHCP [6] 0 20 vol. 90/3800 1.5 × 1.5 × 1.5 mm3

developing Human 20 400 64 vol.

Connectome Project 1000 88 vol.

2600 128 vol.

ABCD [26] 25 0 1 vol. 88/4100 1.7 × 1.7 × 1.7

Adolescent Brain Cognitive
Development

3000 60 vol.

HCP [24] 25 0 18 vol. 89/5520 1.25 × 1.25 × 1.25

Human Connectome Project 3000 90 vol.

PPMI [16] Parkinson’s 25 0 1 volume 88/7600 2 × 2 × 2

Progression Markers Initiative 1000 64 vol.

BTP [33] Brigham’s Tumor 25 0 1 volume 98/12700 2.2 × 2.2 × 2.3

Patient Data 2000 30 vol.

3.1 Data Preparation

Diffusion MRI data [2] (refer to Table 1) is acquired by applying magnetic dif-
fusion gradients and measuring the resulting signal attenuation, which depends
on the local tissue microstructure. This diffusion MRI is preprocessed using
standardized algorithms [22,23], followed by streamlines tracking using a trac-
tography algorithm [3,15]. ATLAS based labelling of streamlines is performed
in the parcellation process. ATLAS registration on different brains can be incon-
sistent, non-scalable, knowledge intensive, dataset-specific and time-consuming
because they are created by expert neuroanatomists. Hence there is a need for
algorithms to automate tract segmentation.
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For Tractography, we utilize the Unscented Kalman Filter (UKF) [15],
which estimates microstructural parameters and fiber orientations from diffusion
MRI data to track neuronal paths from multiple seed points. After tractography,
the extracted streamlines are bundled into parcels or clusters, where these parcels
are mapped to anatomically meaningful tracts using ATLAS, as discussed below.

Parcellation refers to the division of the brain into anatomical regions based
on ATLAS and clustering techniques into parcels. Initially, division of hemisphere
in streamline space, registration on ATLAS, and transformations are performed
to align current brain with the ATLAS.

Through this process, we obtain 800 parcels that are appended to anatomical
tracts and labeled along with quality control. These parcels are further refined
using the ATLAS and diffusion measurements to separate outlier streamlines
from each parcel, dividing each parcel into 2, resulting in 800 outlier parcels and
800 plausible parcels.

Using ATLAS, we club and label all 800 Outlier parcels to “Other” label,
and 800 plausible parcels to 42 anatomical tracts. This entire procedure can be
executed using whitematteranalysis package [17,18,32], which follows these steps
from tractography streamlines to parcellation. This method ensures consistency
across subjects and datasets. ATLAS used in this paper was derived from mean
of 100 registered tractography of young healthy adults in the Human Connectome
Project (HCP) [24].

3.2 Training and Testing Data

After sequentially performing fiber tractography, parcellation, and labeling of
each parcel, we obtain a total of 1 million labeled streamlines from 100 out of
120 subjects (refer to Table 1), where each subject contains 10,000 streamlines.
And 20 subjects out of 120 subjects are kept aside for real world test cases, and
not included in data splits.

From a total corpus of 100 subjects, we obtain an array consisting of 1M
streamlines of shape (1000000, 15, 3) (refer Table 1), where (15,3) streamline
array is derived from feature data in RAS (Right, Anterior, Superior) coordinate
space (refer Supplementary Material). This dataset is subsequently partitioned
into train, validation, and test sets in a ratio of 70 subjects for training, 10
subjects for validation, and 20 subjects for testing. Data is split subject-wise,
where a subject will only belong to one data split at a time [30].

The dataset encompasses 43 tract classes: 42 anatomically significant tracts
spanning the entire brain, and one category labeled as “other”, which includes
anatomically implausible outlier streamlines identified during the parcellation
process (refer Sect. 3.1). Here PCD is an acronym for Point Cloud Data.

3.3 Model Input Data

Training and Testing Data (refer Sect. 3.2), is in the form of a three-dimensional
array that contains (number of streamlines, points per streamline, number of
features) and is in unusable form for most encoders. Hence, to make it suitable
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Fig. 1. Data Representations: Streamline, Patch, and Cluster. For (C) Stream-
line Data, (A)input streamline of shape (15,3), is (v) converted to a point cloud. For
(B) Hyperlocal Streamlines, (refer Sect. 3.3) input streamline undergoes (i) bicubic
interpolation to make a streamline of shape (40,3), on which klocal neighboring stream-
lines are sampled using (ii) MDF Distance. In klocal search space, FSS [21], (ii) Fast
Streamline Search is used to get 5 (B) hyperlocal streamlines. (iii) get PCD converts
hyperlocal streamlines to (D) Cluster Data with (nc,3) points. For (E) Patch Data,
(iv) p farthest points are sampled using FPS (refer Sect. 4.3), np points in each patch
using kNN to find neighboring points.

for encoder-specific preprocessing methods, we represent data in 3 forms (as
mentioned in Fig. 1) which would be utilised by encoders in Sects. 4.1, 4.2, 4.3
and in results Sect. 5.

1. Streamline Data: As mentioned in Fig. 1, Streamline Data is a (15, 3) array,
which is created by undersampling actual streamlines of different lengths,
containing RAS coordinates as features (also refer Sect. 4.1).

2. Local Point Cloud (Local PCD): Streamlines are interpolated using bicubic
interpolation to approximate a smooth curve of the streamline, experimen-
tally tested to be a (40,3) streamline. On the interpolated streamline, we use
MDF (Mean Direct Flip) [9] distance to find klocal neighboring local stream-
lines. These klocal streamlines are then converted to Local Point Cloud
(Local PCD) by merging and randomly sampling nc (number of points in a
cluster) points from ((klocal + 1) ∗ 40, 3) Here interpolated streamlines give
dense point clouds, giving richer representation.

3. Hyperlocal Point Cloud (Hyperlocal PCD): In the limited search space of
klocal Local Streamlines, we employ FSS (Fast Streamline Search) [21] with a
radius of 4mm-6mm to find 5 closest streamlines to the streamline of interest.
This group of 5 hyperlocal streamlines is then converted to make a Hyperlocal
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Point Cloud by merging and randomly sampling nc points from total points
of dimensions (240,3), from ((5 + 1) ∗ 40, 3) which is (240,3), where 5 is no.
of hyperlocal streamlines and 1 is the streamline itself.

Hyperlocal Point Cloud is a variation of Local Point Cloud which contains
fewer spatially similar streamlines wherein local streamlines in Local PCD can
range to higher numbers also, and may contain dissimilar streamlines with neigh-
boring spatial information rather than structural shape information. Models we
have used as respective encoders can utilize certain forms of data. Stream-
line Encoder can only process Streamline Data. Patch Encoder can process
Hyperlocal and Local PCD. Cluster Encoder can process all forms of data
mentioned above (refer Fig. 1).

4 Methodology

TractoEmbed utilizes a modular framework to fuse learnable embeddings
trained on hierarchical streamline data representations, as detailed in the fol-
lowing Subsects. 4.1, 4.2, and 4.3.

In the Methodology section we describe pre-processing, training method,
model architecture, and output embedding for each encoder.

1. Streamline Encoder essentially is any model that preserves intra-
streamline information, its order of points, shape, and geometry amidst the
random shuffling of data points in other models. To preserve intra-streamline
spatial information we chose CNN-based method due CNN’s inherent capa-
bility of learning local and global features from a 2D array with channels.
One can argue LSTM encoder for auto-regressive sequential information but
LSTM struggles to encode spatial information (refer Sect. 5)

2. Cluster Encoder, should encode the shape, inter-streamline dependencies,
and information of a cluster to resemble the target tract. Based on our evalu-
ation PointNet is imperative in understanding spatial features from a cluster
of points or point cloud. We did mild variations in kernel sizes and layers. We
found the simple PointNet [19] model’s ability to discern intricate patterns
and dependencies better than others.

3. Objective of Patch Encoder is to learn regional information in a hyperlocal
streamline point cloud, to embed origin and termination region information
in the point cloud through regional patches. We chose a combination of mini-
pointnet and Discrete Variational Autoencoder (dVAE) [20] to reconstruct
point cloud patches and learn regional generative features. Patches are used
to embed regional information as attention across only points fails due to
minimal information in a single point and high compute requirements [31].

Broadly, three types of encoders are pre-trained or finetuned for classification
downstream tasks. Embeddings from these encoders are combined to assist the
classifier MLP (as illustrated in Fig. 2) in achieving accurate classification.
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Fig. 2. Streamline, Patch, and Cluster data obtained through the processes illustrated
in Fig. 1, are sent to respective encoders to generate embeddings. (A)Streamline
Data of dimensions (ns, 3) serves as input to the Fiber Descriptor [33], producing an
output of dimensions (2 ∗ ns, 2 ∗ ns, 3), where ns is number of points per streamline,
which is fed to 4 CNN blocks, refer Table 2, to obtain a final embedding of dimensions
(256, 1) for the MECL (Multi Embedding Concat Layer). (B) Cluster Data (nc, 3)
from either local or hyperlocal point cloud, refer to Sect. 3.3, is fed to the PointNet
Encoder to give cluster embedding of 1024 dimensions. Patches on Cluster Data are
created using Farthest Point Sampling to fetch 64 patches with 16 points each, resulting
in (64,16,3) dimensions. (C) Patch data is fed to a mini PointNet, which produces
a (64,256) output, further input to dVAE, resulting in 64 patches each of dimension
256. This is flattened to be fed to [4096, 1024] dense layers to give an output patch
embedding of 1024 dimensions. (D) These multiple embeddings are concatenated at
MECL to make (256 + 1024 + 1024 = 2304) dimensional embedding. This is input to
Classifier MLP resulting in a 512 dim classification embedding.

4.1 Streamline Encoder

Preprocessing: The streamline (15,3) is passed through the Fiber Descriptor
to get streamline representation for streamline encoder. Fiber Descriptor is a
streamline representation technique where concatenation of normal and flipped
streamlines are stacked, so that a CNN kernel can learn local intra-streamline
features.
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In Fiber descriptor, the input streamline is flipped and concatenated hori-
zontally with the original (15,3) input, creating a (30,3) row. In the second row,
the flipped streamline is followed by the original, forming a 12–21 pattern (where
1 represents the original and 2 represents the flipped). This 12–21 pattern (rep-
resentation of 2 rows separated by a dash ‘-’) is vertically repeated 15 times,
resulting in (30,30,3) representation from (15,3). This is input to our streamline
encoder model (for more details refer [33]).

Streamline Embedding is the 256-dimensional output generated by the
streamline encoder model (refer to Table 2). This CNN model is independently
trained on the Fiber Descriptor representation of streamlines using cross-entropy
loss for classification. The model is designed to learn streamline-specific discrimi-
native spatial features, (as discussed [33]). We extract the streamline embedding
from the output of MaxPool2D layer (refer Fig. 2 and Table 2).

Table 2. Streamline Encoder: Stacked CNNs with input data size (30,30,3), which
we have compressed to represent as 4 Conv Blocks

Layer (type) Output Shape Kernel Configuration

Conv Block 1 (None, 30, 60, 32) (3, 3) [Conv2D, Activation] x2

Max Pooling 2D (None, 15, 30, 32) (2, 2) -

Conv Block 2 (None, 15, 30, 64) (3, 3) [Conv2D, Activation] x2

Max Pooling 2D (None, 7, 15, 64) (2, 2) -

Dropout (None, 7, 15, 64) - -

Conv Block 3 (None, 7, 15, 128) (3, 3) [Conv2D, Activation] x2

Max Pooling 2D (None, 3, 7, 128) (2, 2) -

Conv Block 4 (None, 3, 7, 256) (3, 3) [Conv2D, Activation] x2

Max Pooling 2D (None, 1, 3, 256) (2, 2) Streamline Embedding

4.2 Cluster Encoder

Preprocessing: From interpolated (40,3) streamlines we sample klocal local
neighbour streamlines using MDF Distance from QuickBundles. After finding
local streamlines for each streamline, we sample hyperlocal streamlines using
FSS [21]. FSS uses barycenter of streamlines and distance parameters like radius
to accurately find similar streamlines. Streamlines sampled from FSS are highly
probable to belong to the same class which allow us to merge these streamlines
creating hyperlocal streamline data (6,40,3) where khyperlocal = 5 and 1 stream-
line, resulting in (240,3) point cloud, from which nc points are sampled for the
input to PointNet Model (refer Table 3) for the Cluster Embedding.

Cluster Embedding is a 1024 dimensional output embedding of a PointNet
Model (refer Table 3 [19]), which takes in Cluster data (refer Sect. 4.2) as input
(nc,3), where nc is the number of points in the total point cloud.
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Table 3. Cluster Encoder: PointNet Model Architecture for Cluster Embedding,
extracted at the last layer in this table.

Model Module Cin Cout Kernel Size

PointNet Encoder Conv1D and BN 3 64 1

STNkD 64 64 -

Conv1D and BN 64 128 1

Conv1D and BN 128 256 1

Conv1D and BN 256 1024 1

Cluster Encoder architecture is mentioned in Table 3, all values are Xavier
initialized, and the Cluster Embedding (1024 dimensional) is extracted at final
MaxPool 1D. Cluster Encoder is trained along with Classifier MLP of TractoEm-
bed (discussed in Sect. 4.4). Effects on Classification Accuracy are observed by
varying, nc in Ablation Study Table 6

4.3 Patch Encoder

Patch Data refers to a 3D patch on the Cluster data. We use patch data to
capture information across and among regional patches on a group of stream-
lines (Cluster). Enabling us to classify streamlines that are structurally linear in
shape, and are very similar to other streamlines (like projection fibers). Regional
Patches will learn to focus on Origin and Termination ROIs to help better seg-
ment difficult tracts.

Preprocessing: Patches are created by iteratively sampling, pf farthest points
using FPS, Farthest Point Sampling, over the point cloud. we then use kNN to
sample plocal nearest points per patch. We get pf = 64 patches, where every
patch has plocal = 16 points making patch data dimensions to be (64, 16, 3)
from an input cluster data of (nc, 3), randomly sampled with replacement. (refer
Ablation Study Table 6 to see effects on variation in nc)

Patch Embedding is a 1024 dimensional output of dVAE decoder (refer:
dVAE architecture used Table 4 and Subsect. 4.3) This dVAE model contains
an encoder and a decoder trained to reconstruct patch data [31] using Chamfer
and KL Divergence loss. The objective of the encoder is to create an 8192-
dimensional token embedding for each patch, then the decoder scales down each
token embedding to a 256-dimensional token embedding passing to the MLP to
reconstruct the input patches. (For more details refer to Supplementary Mate-
rial) We extract Patch Embedding at 1024 dimensional linear layer, and concat
with other embeddings at MECL.

4.4 Training Strategy

TractoEmbed concatenates all three embeddings-Streamline, Cluster, and
Patch– at theMECL (Multi-Embedding Concat Layer) to feed the classifier MLP.
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Table 4. Patch Encoder: dVAE model architecture details [31]. The last layer from
which Patch Embedding is extracted. Where Cin represents dimensions of input fea-
tures, and Cout, dimensions of output features. Nout is the number of points in the
query point cloud. K is the number of neighbors in kNN operation. Cmiddle is the
dimension of the hidden layers for MLPs.

Model Module Block Cin Cout K Nout Cmiddle

dVAE Encoder Linear 256 128 - - -

DGCNN 128 256 4 64 -

DGCNN 256 512 4 64 -

DGCNN 512 512 4 64 -

DGCNN 512 1024 4 64 -

Linear 2304 8192 - - -

Decoder Linear 256 128 - -

DGCNN 128 256 4 64

DGCNN 256 512 4 64

DGCNN 512 512 4 64 1024

DGCNN 512 1024 4 64 1024

Linear 2304 256 - -

During the training process, the Streamline and Patch Encoders, pre-trained on
tasks mentioned above (refer to Sect. 4), are kept non-trainable, while the Clus-
ter Encoder and Classifier MLP are trainable. This is trained for 40 epochs at an
initial learning rate of 0.0001 with a Cosine Annealing Warm Restarts learning
rate scheduler using Focal Loss to address class imbalance in major and minor
tracts. Experimentally, we observed that concatenating the embeddings outper-
forms adding or merging them and focal loss performs better than cross entropy
loss with these many classes. TractoEmbed extracts these multi-level embeddings
to holistically represent streamlines and regional anatomy.

5 Results and Discussions

In this section, we present extensive ablation studies, and comparative results
highlighting the effectiveness of our embeddings and data representations across
different datasets. We evaluated all the results on the test split containing 20
subjects from a sample of 100 subjects. Classification Report with Accuracy and
F1 scores for each class is described in the Supplementary Material.

We present a comparison with several models, including DeepWMA [33],
DCNN++ [29], basic PointNet [19], and DGCNN, using Single Streamline data.
In Local PCD, TractoEmbed outperforms both variations of TractCloud [30]. In
Hyperlocal PCD, we see that with only similar streamlines in the point cloud,
TractoEmbed performs better than its performance in Local PCD, due to exten-
sive focus on learning shape information of streamlines, as shown in Table 6.
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Table 5. Comparative Results: Model and Architecture performance across dif-
ferent Data Representations with a comparison of results with other state-of-the-art
methods. Results for methods are sourced from [30], to eliminate discrepancies due to
differences in training methods, except for Hyperlocal PCD. For TractCloud, hyper-
local PCD is made by setting klocal: 5 and kglobal: 0. All the experiments are done with
keeping with their prescribed configurations static and only changing the input data.

Data Model: Type Acc (%) F1 (%)

Single Streamline DeepWMA (CNN) 90.29 88.12

DCNN++ (CNN) 91.26 89.14

PointNet (PCD) 91.36 89.12

DGCNN (Graph) 91.85 89.78

Local PCD (k = 20) TractCloud: PointNet 91.51 89.25

TractCloud: DGCNN (Graph) 91.91 90.03

TractoEmbed (ours) 92.09 90.07

Hyperlocal PCD (k = 5) TractCloud (PointNet) 91.12 88.66

TractoEmbed (ours) 93.04 91.38

Local + Global Representation TractCloud: PointNet 92.28 90.36

TractCloud: DGCNN (Graph) 91.99 90.10

The comparative results in Table 5 highlight the efficacy and superior accu-
racy of our TractoEmbed framework for streamline classification and tract seg-
mentation. Where TractCloud [30] relies on local and global streamlines using
a PointNet model to achieve registration-free tract segmentation TractoEmbed
performs better even with spatially sparse hyperlocal PCD. The ablation study
presented in Table 6 reveals the effectiveness of combining multiple embeddings
used by TractoEmbed. As the neighboring point cloud becomes sparser, the
representations need to be denser, increasing the need for more embeddings.

Table 6. Ablation study across a combination of embeddings with varying input
point cloud densities to study their effect on Model Performance and finding the optimal
hyperparameters (also refer Fig. 1). Here, nc number of points are randomly sampled
from the total available points to make cluster data.

Multi Embeddings Metric (%) Hyperlocal PCD (k = 5) Local PCD (k = 20)

nc = 190 pointsnc = 220 pointsnc = 240 pointsnc = 190 pointsnc = 240 points

cluster + streamline Acc 92.917 93.038 93.020 91.494 91.383

F1 91.198 91.381 91.346 89.338 89.239

cluster + patch Acc 92.078 91.90 90.94 81.502 80.451

F1 89.891 89.574 88.489 74.765 72.799

streamline + patch Acc 91.654 91.065 89.675 91.165 90.956

F1 89.525 88.97 87.331 88.991 88.781

cluster + patch Acc 92.946 92.837 92.876 91.431 91.409

+ streamline F1 91.284 91.091 91.164 89.239 89.36
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Conversely, when the neighboring point cloud has a higher density of points, a
pair of embeddings, cluster and streamline embedding, can achieve satisfactory
performance. These findings ascertain the importance of incorporating dense
streamline data representations from various perspectives/levels, including self,
region, and neighbors.

Table 7. Ablation Study showcasing the performance of individual encoders on dif-
ferent data representations for the tract segmentation through streamline classification

Encoders only TractoEmbed (%) Data

Models Streamline Cluster Patch

Streamline Encoder CNN Acc 91.024 - -

F1 88.894 - -

Cluster Encoder PointNet Acc 91.36 90.54 -

F1 89.12 88.31 -

Patch Encoder dVAE Acc - - 85.87

F1 - - 82.48

The efficacy of a combination of embeddings can further be proven vital
in increasing streamline classification accuracy as individual encoders perform
poorly when compared to a combination of these embeddings (see Tables 6
and 7).

Diving even further, there are slight improvements in F1 scores for projection
fibers, striato-thalamo-pallido bundles, as observed in the Classification Report
(refer to Supplementary Material), indicating that Patch Embedding can effec-
tively make information-dense patches of an input point cloud. Having multiple
embeddings decreases the over-reliance on one knowledge representation, and
makes TractoEmbed robust to changes in either of the representations. Explicit
addition of Streamline Embedding containing information on the order of points
and intra-streamline spatial information makes TractoEmbed robust to point
cloud perturbations in Cluster Encoder.

In summary, TractoEmbed demonstrates effectiveness in hyperlocal point
clouds (regional examinations) and time-critical settings where a specific 3D
brain segment is considered. It is also effective particularly for classifying struc-
turally similar, minor, and projection fibers, achieving increased F1 scores and
improved overall accuracy compared to LSTM-based approaches. TractoEmbed
emphasizes the significance of fusing dense representations, incorporating various
perspectives, including self, regional patches, and neighboring streamlines, which
is crucial for extracting multiple types of information from low-fidelity streamline
data. Future research can explore additional encoders, refined embedding com-
binations, optimal hyper-parameters, and different data representations. Also,
there lies scope for improvement in finding unified models that can discriminate
among highly similar streamlines or point clouds, with more classes.
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6 Conclusion

With TractoEmbed we introduce an innovative method for Tract Segmenta-
tion, characterized by substantial accuracy, robustness, and modularity improve-
ments. Our method integrates multiple embeddings from task-specific encoders
to provide rich representations of streamlines, enabling a reduction in spatial
input data requirements. It also demonstrates effectiveness in special cases, clas-
sifying structurally similar, minor, and projection fibers, by incorporating vari-
ous data perspectives and minimal reliance on a single embedding. TractoEmbed
also gives researchers the freedom to directly experiment with embeddings and
data representations to get even better results. With its spatially minimal data
requirements, TractoEmbed can be useful for focused ROI-specific, and time-
sensitive clinical settings. Code will be made available upon request.
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Abstract. Iris recognition is widely employed in unmanned detection
environments, but it would suffer from a variety of attacks, such as,
printed iris attack, wearing cosmetic contact lenses, glass eyes, prosthetic
eyes, and so on. Although many previous methods have been proposed to
resolve these problems, the generalization of models under cross-domain
and cross-device scenarios is still need to be improved. To alleviate it, we
propose an unsupervised domain adaptation transfer learning model with
high detecting accuracy and generalization which is robust to attacks.
The transfer learning is used to attain agile deployment in our model. Our
model is mainly based on the CDD (Contrastive Domain Discrepancy)
measurement method, which minimizes the intra-class difference and
maximizes the inter-class difference, because of its satisfactory perfor-
mance on liveness detection tasks. The transfer learning method based on
MMD (Maximum Mean Discrepancy) measurement is proposed to attain
agile deployment which selects the feature space alignment between the
target domain and the source domain. Code is available at https://
github.com/Wuxiuying111/Cross-device-iris-liveness-detection.git.

Keywords: Iris recognition · Liveness detection · Transfer Learning ·
CDD · MMD

1 Introduction

In recent years, iris recognition has been widely used in mines, prisons, banks,
police, and entry and exit control. Iris recognition is one of the most important
biometric recognition, it has stability, universality, and uniqueness. In 1993, Ref-
erence [1] successfully implemented an automated iris recognition system for the
first time. In 1994, reference [2] developed an iris recognition system based on
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the Hough transform algorithm. A zero-crossing detection algorithm based on
wavelet transform is proposed in reference [3] and applied to iris recognition. In
practical application scenarios, iris recognition devices are mostly used in unat-
tended situations. In this case, the importance of liveness detection is emerging
and has attracted increasing attention. Typical fake iris attack methods include
printed iris attacks, wearing cosmetic contact lenses, glass eye, ocular prosthesis,
and screen replayed iris. Among these presentation attacks, wearing cosmetic
contact lenses is the most common appearance attack for an iris recognition
system in daily use. First, it may lead to false rejection. More importantly, it
registers iris templates to the system may cause false identification when meet-
ing similar cosmetic contact lenses, which is a high risk for the iris recognition
system. Therefore, it is sorely needed for the classification of iris images with
and without cosmetic contact lenses. The liveness detection methods based on
deep learning have achieved significant improvement in accuracy and generaliza-
tion [4–7]. However, a well-trained liveness detection classifier may completely
fail when analyzing images from another iris capture device. Besides, the train-
ing data for the liveness detection classifier is a very small subset of the large
cosmetic contact lens and end-user volume. When replacing recognition equip-
ment or doing new user group adaptation, the iris-liveness detection module is
the most likely to fail. The common operation is to collect a large number of
images and retrain the classifier, which has a high cost in time, manual work,
and price.

In traditional iris classification research, we often assume that the distribu-
tion of the training set and the test set is consistent. We train the model on the
training set and test it on the test set. However, in practical scenarios, the test
environment is often uncontrollable, leading to significant differences in the dis-
tribution between the test set and the training set. This discrepancy can cause
overfitting and result in poor model performance on the test set. When the dis-
tributions of the training set and the test set are inconsistent-due to factors like
changing devices, end users, or the presence of many unobserved contact lens
types-agile deployment can be achieved through transfer learning technology.
Domain adaptation, a representative method in transfer learning, involves using
information-rich samples from the source domain to improve the performance
of the target domain model. The source domain represents a different domain
from the test sample but contains rich supervisory information, while the target
domain represents the domain where the test sample is located, often with few
or no labels. The source and target domains typically belong to the same task
but have different distributions.

Domain adaptation is suitable for situations where there are multiple varia-
tions in images, such as changes in devices, collection targets, or environments.
By using a small amount of both synthetic and real iris images collected from
actual users with new devices, the existing model can be quickly optimized
for agile and low-cost deployment. Specifically, when the iris image acquisition
device is replaced or the near-infrared supplementary light source is adjusted,
traditional liveness detection algorithms and other classification algorithms gen-
erally become completely ineffective, requiring the collection of a large number of
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images for classifier retraining. Practical domain adaptation can optimize train-
ing with a small amount of new images to obtain a classification model suitable
for the adjusted device. The paper conducts experiments and research on domain
adaptation using liveness detection as an example, but the same method can also
be applied to other classification, detection, and recognition algorithm transfers.

According to the different types of target and source domains, there are
four different scenarios for domain adaptation problems: unsupervised, super-
vised, heterogeneous distribution, and multiple source domains. In this paper,
we designed a classification transfer task based on practical applications: labeled
source domain data with varying amounts of data, unlabeled target domain data
with varying amounts of data, and various real-world scenarios through differ-
ent combinations of source and target domains. An approach to feature space
alignment was devised, leveraging the measures of Maximum Mean Discrep-
ancy (MMD) and Contrastive Domain Discrepancy (CDD), thereby facilitating
unsupervised model transfer learning within the target domain, consequently
enhancing the efficacy of model transfer significantly.

To sum up, our contributions include:

– A transfer learning method based on MMD metrics is designed, which pro-
motes the alignment of feature Spaces between source and target domains
and emphasizes the differences within and between domains.

– A transfer learning method based on CDD measurement is designed. Based
on MMD, it can minimize intra-class differences and maximize inter-class
differences. Thus, the classification accuracy of the model is greatly improved.

In the rest of the paper, Sect. 2 provides the related work. In Sect. 3, the
measurement method and implementation principle of MMD and CDD are intro-
duced in detail. We also provide the proving and computing processes of them.
Section 4 provides the detailed information of the dataset samples, the experi-
mental results and the analyses of the results. Finally, the conclusion is drawn
in Sect. 5.

2 Related Work

2.1 Iris Liveness Detection

Iris attack modes include printed iris attack, contact lens attack, and human
fake eye attack. It is found that in response to printed iris attacks, Daugman [8]
proposes to use the spectral characteristics of different positions of the human
eye and four kinds of Purkinje reflections in the eye for printed iris deception.
Reference [9] proposes that iris tremor or pupil response to sudden external
light should be used to detect printed iris. Lee et al. [10] proposes an anti-
deception method based on multispectral illumination to detect the difference
in reflection characteristics between iris and sclera at different wavelengths. Lee
et al. [11] then proposed an anti-deception method combining the reflectance
characteristics of multi-spectral wavelength and the thickness characteristics of
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corneosclera margin. He et al. [12] proposes an anti-spoofing method based on
different positions using different bands of NIR illumination. Hoffman [6] pro-
poses an anti-spoofing method to extract specific features of conjunctival blood
vessels and iris texture from multispectral images. [13,14] literature presents a
method to obtain the fused gray samples of multiple images at different wave-
lengths. Lee et al. [15] presents a method for using near-infrared photodiodes at
different positions in the image acquisition process. Park et al. [16] was distin-
guished by detecting the characteristics of iris tremor. Reference [17–20] applied
the method of controlling pupil size fluctuation by external light intensity change
to anti-iris deception. In response to contact lens attacks, Puhan et al. [21] pro-
poses a method that combines pairwise pupil size and iris texture. Zhang et al.
[22] proposes a weighted LBP iris texture analysis detection method. Reference
[23,24] proposes a detection method for printed photos after wearing contact
lenses. A detection method based on in-depth information analysis is proposed
in reference [25].

With the develop of iris recognition, some liveness detection algorithms have
been proposed, which can be classified into two categories, e.g. algorithms based
on the manual design features and the deep convolutional neural network. Early
algorithms are based on the manual design features. Daugman [26] propose using
the amplitude spectrum of Fourier transforms to distinguish iris images with and
without cos- metic contact lens. Zhang et al. [27] develop the weighted LBP for
iris lens detection. Lovish et al. [28] demonstrate a method based on Local Phase
Quantization and Binary Gabor Patterns for detecting cosmetic lens. Daksha
et al. [22] investigate the effects of texture lens on iris recognition by using vari-
ants of LBP. Sun et al. [29] propose an iris texture primitives encoding framework
called Hierarchical Visual Codebook for iris liviness detection. In recent years,
deep convolutional network based methods are gradually occupying the main
status. Aimed at the three- class (cosmetic contact lens, soft contact lens and no
contact lens) classification problem, Ragvendra et al. [4] propose an architecture
based on the ContlensNet which is trained on image patches obtained from the
segmented and normalized iris images. To solve the same three-class detection
problem, a hierarchical network based on ResNet-50 is introduced in [5] called
GHCLNet. It does not use any kind pre-processing and iris segmentation and
performed well on most of the iris datasets except for some images that are illu-
minated to a large extent or highly occluded. Based on a shallow version of VGG
net, Hoffman et al. [6] design an iris presentation attack detection method which
takes a patch of iris image and the associated segmentation mask together as
2-channels inputs. While showing good cross-dataset generalization capability,
this method needs high precision iris segmentation information in advance.

2.2 Domain Adaptation

Under the condition of consistent distribution between testing set and train-
ing set, these methods have achieved good results. The primary issue is that
the accuracy of classification deteriorates significantly in cross-device scenar-
ios, which refers to the non-homologous classification. In practical applications,
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when the device changes, it is imperative to re-collect a substantial number of
authentic human and prosthetic iris images for retraining purposes. This pro-
cess can be time-consuming and costly, making the need for an efficient liveness
detection adaptive deployment scheme more pressing. Furthermore, the collec-
tion of contact lenses used for training is merely a fraction of the vast space of
contact lenses available. When new contact lenses are introduced, the standard
practice involves gathering a substantial amount of data and retraining using
these novel contacts, which demands considerable manpower and time. Zhang et
al. [30] propose the Margin Disparity Discrepancy (MDD) which tailors to the
distribution comparison with the asymmetric margin loss, and to the minimax
optimization for easier training. Mingsheng Long et al. [31] introduced the archi-
tecture of Deep Adaptation Networks (DAN), employing the strategy of optimal
multi-kernel selection to further mitigate the domain disparity through mean
embedding alignment. Subsequently, the authors introduced the Joint Adap-
tation Network (JAN) [32], which is founded upon the Joint Maximum Mean
Discrepancy (JMMD) criterion and employs adversarial network strategies to
maximize the JMMD.

3 Methodology

Unsupervised domain adaptation (UDA) refers to the technique of transferring
a model from a source domain to a target domain in the absence of annotated
data in the target domain. In practice, the application of a model in a novel
domain frequently necessitates a significant volume of annotated data. However,
unsupervised domain adaptation methods expedite the adaptation to the new
domain by transferring models from the source domain, thereby mitigating the
expenses and labor associated with data annotation. As an unsupervised learning
technique, the fundamental premise of unsupervised domain adaptation involves
constructing a common space between the source and target domains, enabling
domain transfer through feature alignment and domain adaptation within the
target domain. The primary procedure entails training a shared feature processor
on both the source and target domains, aligning the feature distributions of the
source and target domains as closely as possible through feature alignment and
adapting the model to the data distribution of the target domain through domain
adaptation, while evaluating model performance through testing on the target
domain.

Given a set of sample data S =
{
(xs

1, y
s
1) , · · · ,

(
xs

Ns
, ys

Ns

)}
from the source

domain and sample data T =
{
x t
1 , . . . , x t

Nt

}
from the target domain, where

ys ∈ {0 , 1 , . . . ,M − 1} represents the labels of the source data for M classes
and y t ∈ {0 , 1 , . . . ,M − 1} represents the labels of the target data for M classes,
which are unknown. x s and x t denote the input data. Therefore, in the context
of unsupervised domain adaptation, labeled source data S and unlabeled target
data T can be employed to accurately predict {ŷ t} within T. In deep neural net-
works, samples exhibit hierarchical features represented by activations at each
layer l ∈ L . In this paper, φ (·) denotes the mapping defined by the deep neural
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network from the input to a specific layer. φl (x ) represents the output of layer
l in deep neural network Φθ given input x .

3.1 Maximum Mean Discrepancy

The Maximum Mean Discrepancy (MMD) is a cornerstone among loss functions
in the realm of transfer learning, notably in the domain of adaptation, and is
predominantly utilized for gauging the divergence between two disparate yet
interconnected distributions. Its fundamental premise lies in the integration of
an adversarial element within the model, which is then refined through iterative
training to enforce convergence between the feature distributions of the source
and target domains. Through this mechanism, the transition from the source
domain to the target domain can be facilitated.

The maximum mean discrepancy (MMD) serves as a metric for quantifying
the disparity between two distributions within a Reproducing Kernel Hilbert
Space (RKHS), constituting a kernel learning methodology. The Reproducing
Kernel Hilbert Space (RKHS) is characterized by the property of reproduction,
denoted by 〈K (x , ·) ,K (y , ·)〉H = K (x , y) . In assessing the similarity between
two distributions, diminution in the distance value of MMD indicates greater
proximity between the respective data distributions.

Searching for a function f in the function set F such that MD =
|mean (f (P) − mean (f (Q)))| achieves its maximum value. Therefore, the Max-
imum Mean Discrepancy (MMD) can be expressed as follows:

MMD[F , P,Q] := sup
f∈F

(
EXs [f (Xs)] − EXt

[
f

(
Xt

)])
(1)

P and Q represent two datasets that conform to probability distributions,
while x s

i and x t
i denote samples extracted from P (X s) and P (X t) respectively.

Due to the preference for a more expansive dimensional space post-mapping, the
function set should be as diverse as possible (in practice, it is infinite). When
constitutes the unit ball on RHKS, it is as follows:

MMD[F , P,Q] := sup
f∈F,|f |H≤1

(
1
ns

ns∑

i=1

f (xs
i ) − 1

nt

nt∑

i=1

f
(
xt

i

)
)

(2)

|f |H ≤ 1 denotes the norm of f in RHKS, which ought to be less than 1,
namely, any arbitrary vector within the unit ball. ns and nt respectively denote
the sample sizes of the source and target domains. Additionally, x s ∈ S ′ ⊂ S ,
x t ∈ T ′ ⊂ T . Given that f (xi) is infinite-dimensional, the essence of its kernel
trick lies in the avoidance of explicitly representing the mapping function to
compute the inner product of two vectors. Therefore, we can square the MMD,
simplify the result, and express it using a kernel function, namely:

MMD2[F , P,Q] =
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(3)

kl represents the core selected by the first layer of the deep neural network.
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3.2 Contrastive Domain Discrepancy

Contrastive Domain Discrepancy (CDD) is based on the MMD metric, but
diverges from it in its criterion. CDD minimizes intra-class differences and max-
imizes inter-class differences. MMD employs the square of the kernel function,
whereas CDD utilizes the kernel function directly. This variation results in differ-
ent computational emphases. Consequently, MMD primarily focuses on source-
target domain similarity, while CDD primarily focuses on contrastiveness.

Fig. 1. This figure shows the comparison of the distribution of domain difference mini-
mization methods, which minimizes the intra-class difference and maximizes the inter-
class difference in our iris detection task.

As shown in the Fig. 1 (a) Before domain adaptation, it is evident that there
exists a significant domain shift between the source and target data. (b) After
conventional domain adaptation, the situation of ignoring class labels of samples
often leads to poor generalization performance. (c) Our proposed method aims to
minimize the intra-domain differences while maximizing the inter-domain vari-
ances, thereby significantly enhancing the classification accuracy.

With the detailed formulation of the Maximum Mean Discrepancy (MMD)
method, the unsupervised domain adaptation approach based on the Condi-
tional Distribution Discrepancy (CDD) metric is established upon the distinc-
tions in the conditional data distributions across domains, where CDD refers to
the marginal or conditional probability distributions under different domains.

Thus, the expression of CDD is:

CDD (P ,Q) = CDDintra (Xs ,Xt) + CDDinter (Xs ,Xt) (4)

Initially, consider how to minimize intra-domain differences. Intra-domain
differences refer to the variances among samples within the same category. We
aim for samples of the same category within the source and target domains to
cluster as closely as possible. When we assume the domain differences of two
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classes are respectively a and b, the intra-domain differences can be measured
when a = b. Consequently, the definition of intra-domain difference is as follows:

CDDintra (P, Q) =
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(5)

Subsequently, deliberate on strategies to maximize inter-domain disparities.
Inter-domain differences denote the distinctions observed among samples belong-
ing to distinct categories. Our objective is for variances among samples from
disparate categories between the source and target domains to be maximized.
Under the same conditions as aforementioned, the measurement of inter-domain
differences can be conducted when a �= b. The definition of inter-domain differ-
ence can be formulated as follows:
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The first term represents the differences between samples of category a from
the source domain and samples of category b from the target domain, while the
second term represents the differences between samples of category a from the
target domain and samples of category b from the source domain. Estimate the
target labels ŷ t

i , assuming a = b = m. Therefore, the result of CDD calculation is:

CDD(P, Q) =
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ŷ
t
1:nt

, φ
)

− 1

M(M − 1)

M∑

a=1

M∑

b=1a �=b

CDDinter

(
ŷ
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(7)

Intra-domain difference is calculated by applying MMD to samples of the
same category from both the source and target domains, while inter-domain
difference is computed by applying MMD to samples of different categories from
the source and target domains. This achieves the goal of minimizing intra-domain
difference and maximizing inter-domain difference as much as possible. It is
worth noting that since CDD is derived based on MMD, it exhibits robustness
to noise. Therefore, the noise in label estimation can be disregarded.

Next, we leverage deep neural networks (CNNs) [33], a prevalent deep learn-
ing model commonly utilized for image recognition and computer vision tasks.
These networks are composed of multiple convolutional and pooling layers for
feature extraction from input images, followed by fully connected layers for classi-
fication or regression. The feature extractor consists of convolutional neural net-
works (CNNs), which are employed to extract feature representations from input
data, mapping samples from both the source and target domains into a shared
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feature space. Simultaneously, we leverage the concept of contrastive learning,
using a contrastive adaptation module to compute contrastive losses, comprising
intra-class contrastive loss and inter-class contrastive loss. Intra-class contrastive
loss computes the contrastive loss between samples within the same category,
encouraging samples of the same category to be closer in the feature space. Sim-
ilarly, inter-class contrastive loss calculates the contrastive loss between samples
from different categories, encouraging samples of different categories to be more
dispersed in the feature space. We then employ the backpropagation algorithm
to compute gradients of the loss function with respect to the parameters of the
feature extractor.

Given a sample pair (xi, xj) , for the calculation of intra-class contrastive
loss:

Lloss
intra = ‖f (xi) − f (xj)‖2 (8)

Here, f (·) denotes the feature extractor, and ‖·‖ represents the Euclidean
distance between vectors.

Likewise, considering a sample pair (xi, xk) , for the calculation of inter-class
contrastive loss:

Lloss
inter = max

(
0,m − ‖f (xi) − f (xk)‖2

)
(9)

In this context, m represents a hyper parameter, often denoted as the margin.
Consequently, the CDD loss can be expressed as follows:

Lloss
CDD =

1
N

∑
(xi,xj)

Lloss
intra +

1
M

∑
(xi,xk)

Lloss
inter (10)

Subsequently, we integrate a cross-entropy loss to augment the classification
efficacy of the model. In this scenario, C represents the number of classes, yc

denotes the indicator function of the cth class of true labels, and pc signifies the
probability of the cth class predicted by the model. Therefore, the cross-entropy
loss to be minimized is formulated as follows:

Lce = −
C∑

c

yclog (pc) (11)

Overall objective:
Ltotal = αLCDD + βLce (12)

In this context, a and b represent two weighting parameters of the losses,
utilized to calibrate the impacts of the respective losses on the overarching objec-
tive. By minimizing both the CDD loss and the cross-entropy loss, it becomes
feasible to proficiently learn feature representations across the source and target
domains, thereby facilitating the optimization of unsupervised domain adapta-
tion and classification tasks.
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4 Experiment

We designed two sets of experiments to validate the effectiveness of the
method. For the first set of experiments, we selected Clarkson2015LG, Clark-
son20132015Dalsa and NDLiv-Det2017 datasets as dataset-1. Three data sets
were collected from LG2200, Dalsa camera and LG4000 sensor respectively. For
the second set of experiments, we selected ND-I, CASIA-IF and IF-VE datasets
as dataset-2. Three data sets were collected from the LG4000, OKIIRISPASS-h
and AI1000 sensors respectively. Details are presented in Sect. 4.1 and Sect. 4.2.

4.1 Experiment on Dataset-1

We conducted experiments on three publicly available iris cosmetic contact lens
image datasets.

One public dataset is the Notre Dame Cosmetic Contact Lens Detection
2017 (NDLiv-Det2017) [34], collected by LG4000 and AD100 sensors. All gen-
uine images conform to ISO/IEC 19794-6. Soft (or transparent) contact lenses
are excluded from the data. We divided it into training subset and test subset,
where the training subset includes 600 genuine iris images (without contact, soft,
or make-up) and 600 images of cosmetic contact lenses from multiple manufac-
turers, and the test subset includes 900 textured contact lens images and 900
genuine iris images.

Table 1. This table shows the number of samples of different classes in dataset-1 and
dataset-2

Datasets Train Test

Genuine Cosmetic Genuine Cosmetic

Dataset-1 NDLiv-Det2017 600 600 900 900

Clarkson2015LG 450 540 379 577

Clarkson20132015Dalsa 970 1275 625 1000

Dataset-2 ND-I 2000 1000 800 400

CASIA-IF 4800 592 1200 148

IF-VE 20000 20000 5000 5000

Another public dataset is Clarkson2015LG [34,35]. We divided it into training
subset and test subset, where the training subset includes 450 real-time images
and 540 images of patterned cosmetic contact lenses, and the test subset includes
379 real-time images and 577 images of patterned cosmetic contact lenses.

Another public dataset is Clarkson20132015Dalsa [34,35], and we also divided
it into training subset and test subset. The training subset includes 2245 real-time
images, images captured by Dalsa cameras, and images of patterned cosmetic con-
tact lenses. The test subset includes 1625 real-time images, images captured by
Dalsa cameras, and images of patterned cosmetic contact lenses.



266 X. Wu et al.

In Fig. 2, an example of the Dataset-1 is presented. Table 1 presents the
detailed breakdown of sample counts for training and testing subsets of each
dataset.

Fig. 2. Sample instances of genuine iris and cosmetic contact lens iris images in the
first set of experiments. Among the three datasets, NDLiv-Det2017 was acquired using
LG4000 and AD100 sensors, Clarkson2015LG was obtained using the LG2200 sensor,
and Clarkson20132015Dalsa was captured using Dalsa brand camera sensors. As the
three datasets were acquired using different equipment, to more effectively verify the
performance of cross-device iris liveness detection, we amalgamated these datasets into
a single group for experimentation.

4.2 Experiment on Dataset-2

We conduct experiments on two public iris cosmetic contact lens image datasets
and a self collected cosmetic contact lens image dataset. One public dataset is
the Notre Dame cosmetic contact lens 2013 I (ND-I for short) [36], which is
captured by LG4000. Since our research emphases on cosmetic lens detection,
merely genuine (non-lens and soft lens) and cosmetic iris images are considered.
The other one public dataset is the CASIA-IrisFake(CASIA-IF for short) [37].
It contains three type attack means, including printed iris images, plastic eyes
and cosmetic contacts. We use the cosmetic contact iris image and genuine iris
image for experiments. We randomly split the dataset in train and test subsets
of numbers referring to [36].

The self collected dataset is captured under various environment which is
more closer to practical use. To test proposed methods on different quality
images, we collect a large scale cross-sensor fake iris dataset under various envi-
ronment (IF-VE for short). It contains 50000 images, with 40000 images from
80 volunteers for training and the other 10000 from other 20 volunteers for test.
During the collection, different iris sensors are used, and volunteers are instructed
to change angles, distances and positions, wear glasses, and squint, to enrich the
quality types of iris images.

In Fig. 3, an example of the Dataset-2 is presented. Table 1 presents the
detailed breakdown of sample counts for training and testing subsets of each
dataset. Through literature review and analysis, it is evident that, for the purpose
of facilitating comparison, we have employed a method of contrast by dividing the
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data into the aforementioned two groups of datasets to validate the superiority
of experimental results.

Implementation details: We used ResNet-50 and ResNet-101 [38,39] pre-
trained on ImageNet [40] as our backbone networks. We fine-tuned the models
using labeled source domain data and unlabeled target domain data and selected
the labeled source data and unlabeled target data sets by jointly evaluating the
test errors of the source classifier and the domain classifier.

Fig. 3. Sample instances of genuine iris and cosmetic contact lens iris images in the
second set of experiments. Similarly, among the three datasets, ND-I was acquired using
the LG4000 sensor, CASIA-IF was obtained using the OKI IRISPASS-h sensor, and IF-
VE was captured using the AI1000 sensor, with each dataset utilizing different sensors.
Likewise, amalgamating these three datasets into a single group for experimentation
can effectively verify the performance of cross-device iris liveness detection.

4.3 Performance Evaluation

In this part, we demonstrate the result of the experimental settings in Sect. 4.1
and Sect. 4.2, the accuracy of our model conducted on dataset-1 and dataset-
2 respectively. For the dataset-1, we set six combinations of source and target
domain data, as shown in Table 2. And for the second dataset, we set six permu-
tations of source and target domain data, as shown in Table 3. We respectively
employ the backbone networks as ResNet-50 and ResNet-101, and tested using
two measurement methods, MMD and CDD. The results of the dataset-1 and
dataset-2 are shown in the Table 2 and Table 3.

The classification accuracy of our model on dataset-1 is relatively high,
especially when we tested using the CDD metric, the effect was more ideal.
Concurrently, we employed the non-transfer method as a comparative baseline,
clearly demonstrating that the MMD and CCD measurement methods signifi-
cantly enhance accuracy and performance. To more accurately evaluate model
predictions, the Receiver Operating Characteristic (ROC) curve is frequently
utilized. The greater the distance of the ROC curve from the baseline, the supe-
rior the model’s predictive performance. Figure 4 illustrates the ROC results
from twelve experimental sets conducted on the ResNet50 and ResNet101 back-
bone networks, respectively. The solid line denotes the CDD algorithm, the long
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dashed line signifies the MMD algorithm, and the short dashed line indicates
the non-transfer method. Evidently, models employing the proposed CDD and
MMD measurement methods demonstrate enhanced robustness and stability,
consistently achieving high classification accuracy across various datasets. Fur-
thermore, the CDD algorithm exhibits superior generalization capabilities across
diverse datasets. Compared to non-transfer algorithms, it exhibits superior iris
liveness detection characteristics.

Table 2. This table shows the sample instances of genuine iris and cosmetic contact lens
iris images in the first dataset of experiments. The accuracy of our model performing
on it is shown as well. RN50-NT and RN101-NT respectively denote the Non-Transfer
of method with backbone Resnet-50 and Resnet-101

Source Target/Test ResNet50 RN50-ACC RN50-NT ResNet101 RN101-ACC RN101-NT

Clarkson2015LG Clarkson20132015Dalsa MMD 71.7058 61.9943 MMD 76.0425 59.8818

CDD 85.354 CDD 82.1147

Clarkson2015LG NDLiv-Det2017 MMD 89.4444 85.3889 MMD 91.5556 74.0556

CDD 97.0566 CDD 93.5556

Clarkson20132015Dalsa Clarkson2015LG MMD 88.8104 73.9542 MMD 86.1648 84.5941

CDD 95.1348 CDD 90.563

Clarkson20132015Dalsa NDLiv-Det2017 MMD 79.3889 63.1111 MMD 77.4444 73.2778

CDD 89.2778 CDD 83.6667

NDLiv-Det2017 Clarkson2015LG MMD 84.7222 81.7708 MMD 90.4473 80.0347

CDD 90.7118 CDD 97.5198

NDLiv-Det2017 Clarkson20132015Dalsa MMD 66.6435 64.8798 MMD 69.1383 59.3186

CDD 72.6096 CDD 71.0859

Table 3. This table shows the sample instances of real iris and cosmetic contact lens iris
images, in the second dataset of experiments. The accuracy of our model performing
on this dataset is shown as well. RN50-NT and RN101-NT respectively denote the
Non-Transfer of method with backbone Resnet-50 and Resnet-101

Source Target/Test ResNet50 RN50-ACC RN50-NT ResNet101 RN101-ACC RN101-NT

ND-I CASIA-IF MMD 65.8615 51.0204 MMD 58.3856 53.4014

CDD 78.4766 CDD 70.6764

ND-I IF-VE MMD 24.6871 50.17 MMD 58.1913 50.82

CDD 56.5526 CDD 77.0016

CASIA-IF ND-I MMD 86.1875 85.3125 MMD 87.375 59.1875

CDD 98.0625 CDD 93.6875

CASIA-IF IF-VE MMD 67.2 62.77 MMD 67.1305 59.47

CDD 98.52 CDD 86.5261

IF-VE ND-I MMD 84.0625 77.1875 MMD 81.1875 80.6875

CDD 91.8125 CDD 91.8125

IF-VE CASIA-IF MMD 96.231 95.9184 MMD 95.5782 94.8563

CDD 99.1948 CDD 98.6536
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By comparison with the non-transfer method conducted on dataset-2, it is
observed that, except when ND-I is utilized as the training sample and IF-VE
as the testing sample, the MMD algorithm exhibits lower classification accuracy
than the non-transfer method. This discrepancy is attributable to the substan-
tial difference in sample sizes between the ND and IFVE datasets. However, over-
all, our method demonstrates a significant enhancement in model classification
accuracy. Similarly, in the second set of comparative experiments, we continue
to utilize the ROC curve to evaluate model performance. As illustrated in Fig. 4,
ResNet101 and ResNet50 are employed as the backbone networks, with the solid
line denoting the CDD algorithm, the long dashed line signifying the MMD algo-
rithm, and the short dashed line indicating the non-transfer method. According to
the figures, the model trained on CASIA samples remains consistent with our con-
clusions. However, the ROC curve results derived from IFVE and ND as training
samples are notably poor, potentially due to a substantial deviation in the num-
ber of training sample data. In the previous set of experiments, the sample size
differences across the three datasets were minimal, leading to more precise model
performance. In summary, across both sets of experiments, it is evident that the
CDD and MMD algorithms substantially enhance the classification accuracy of
iris liveness detection, as well as the robustness and stability of the model.

Fig. 4. Tree sets of diagrams on the first line: ROC curve obtained according to Clark-
son2015, Clarkson20132015Dalsa and NDLiv-Det2017 training sample. According to
the experimental grouping in Table 2, the MMD, CDD, and the Non-Transfer of method
were visually compared using the ROC curve. The advantages of the CDD approach are
clearly visible. Tree sets of diagrams on the second line: ROC curve obtained accord-
ing to ND-I, CASIA-IF and IF-VE training sample. According to the experimental
grouping in Table 3, the MMD, CDD, and the Non-Transfer of method were visually
compared according to the ROC curve. The results are affected by the large gap in the
number of data sets, but the advantages of the CDD method can still be clearly seen.
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According to the results of the experiments on the two datasets, it is evident
that both MMD and CDD metrics could improve detecting accuracy of our
model on iris recognition task, which means the performance of our model has
be enhanced notably. Moreover, compared with MMD metric under the same
experimental conditions, the improvement of CDD metric method is significantly
more established. So in the future work, we will further study on how to improve
the establishment of our iris recognition model.

5 Conclusions

In this work, we propose an unsupervised domain adaptation transfer learning
model based on MMD and CDD metrics for iris liveness detection through per-
ceptual alignment. Modeling and optimizing intra-domain and inter-domain dis-
crepancies, the CDD metric and MMD metric significantly improve the accuracy
of our model when detecting. In addition, CDD is with a noticeable superiority
in terms of classification accuracy and overall model improvement. We confirm
the effectiveness of our unsupervised domain-adaptive transfer learning method
from both theoretic proof and experimental results in cross-device iris liveness
detection, which has obtained the capability of agile deployment.

The security of iris recognition technology is pertinent to every individual’s
life. The forgery of an individual’s iris can have profound implications for per-
sonal, corporate, and national interests. The two transfer model methods we pro-
pose facilitate agile and cost-effective deployment when integrating new devices,
thereby significantly advancing iris recognition technology.
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Abstract. Contactless fingerprint identification has emerged as a reliable and
user-friendly alternative for personal identification in a range of mobile and access
control applications. This paper presents a systematic analysis of the extent of
complimentary ridge-valley information in contactless fingerprint images and
introduces a new approach to achieve significantly higher match accuracy over
state-of-the-art fingerprint matchers commonly employed today. We also inves-
tigate the least explored methods for fingerprint color-space conversions, which
can play a key role in more accurate contactless fingerprint matching from mobile
sensors.We present the experimental results from different publicly available con-
tactless fingerprint databases and incorporate the NBIS, MCC, and a commercial
fingerprint matcher to ascertain the extent of performance enhancement. Our con-
sistently outperforming results validate the effectiveness of the proposed approach
for more accurate contactless fingerprint identification.

Keywords: Personal Identification · Biometrics · Fingerprint Identification

1 Introduction

Biometric patterns offer the most reliable signatures to conveniently and securely estab-
lish human identities. Among several physiological traits accessible from the human
body, finger ridge patterns have been widely employed in law enforcement departments
to establish the unique personal identity of suspects. The fingerprint features are formed
before birth and are known for their high permanence, and today’s high-computing
machines make their use quite convenient and fast. The pervasiveness of fingerprint
authentication can be conjectured by its use in the most ubiquitous devices like smart-
phones. Moreover, many e-business applications, like financial transactions or access to
secured offices, have increasingly relied on fingerprint authentication.

The majority of the fingerprint-based systems deployed today still use contact-based
sensors to acquire the fingerprint of any subject, i.e., these sensors require the subject
to make contact with his or her finger with the platen or surface of the sensors. Such
contact-based acquisition poses new challenges relating to user convenience, hygiene,
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and security threats. The contact-based imaging requirements can be a serious threat to
hygiene as there is a wide range of diseases, e.g. severe acute respiratory syndrome or
coronavirus, which are known to transmit or spread fromunintended contacts. Therefore,
the user’s hygiene becomes vulnerable in such contact-based acquisition. The leftover
or latent impressions on the surface of contact-based sensors not only interfere with the
new acquisitions but are also known to pose a security threat as these can be lifted to
reconstruct spoof fingerprints for the presentation attacks.
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Fig. 1. Illustration of legacy and contactless fingerprints. (a) FTIR in legacy fingerprints,
(b) Legacy (contact-based) fingerprint image with regular dark ridges and bright valleys, (c)
Contactless acquisition, (d) Contactless fingerprint (with ridges and valleys in varying polarities).

Contactless acquisition of fingerprints can address the above-mentioned challenges
and has increasingly attracted the attention of researchers and developers [1, 5]. Sev-
eral references [4, 19] have investigated contactless fingerprint acquisition using mobile
phones and specialized setups, while many commercial contactless fingerprint sensors
have also recently emerged for deployments. The availability of contactless fingerprint
databases [13, 16] has also encouraged much-needed further research in this area. Invol-
untary finger motion during contactless fingerprint imaging can significantly degrade the
matching accuracies, and reference [7] has attempted to address such a problem. Earlier
work [2, 9, 16, 19, 20, 22–24] in contactless 2D fingerprint identification have largely
incorporated image segmentation, enhancement, or minutiae matching algorithms that
have shown promising results for the contact-based fingerprints. Such direct use of
contact-based fingerprint methods ignores the nature of image formation from contact-
less sensing and is, therefore, not adequate to utilize the full potential of contactless
fingerprint images. The duality of the relationship between the minutiae extracted from
contactless fingerprint images and contact-based fingerprints has been quite known [17]
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and considered during cross-sensor fingerprint matching. However, this paper [25], for
the first time, analyzes such influence in real contactless fingerprint databases and intro-
duces alternative strategies to achieve significant performance improvements using the
popular contact-based fingerprint matchers.

2 Contactless Fingerprint Image Formation

Human fingers are known to be a curved 3D structure [5, 18]. However, when these 3D
surfaces are sensed using a contact-based fingerprint sensor, only their 2D projections
are recorded. More precisely, when the subject touches the sensor plate with his or her
finger, the topographic high points, which are known as the ridges, are imaged while
the low points, known as the furrows or valleys, are not imaged as these are considered
as part of the background. Figure 1(a) illustrates the frustrated total internal reflection
(FTIR) principle, which is popularly employed in the legacy contact-based fingerprint
sensors. It can be observed from this figure that the pixels corresponding to the light rays
reflected from the low topographic regions, or valleys of the finger skin surface, have
higher intensity (bright) in a fingerprint image. The spatial locations from high areas or
ridges are rendered as darker regions in the fingerprint image. The same ridge and valley
topologies have been correspondingly identified in Fig. 1(b).

However, the contrast between such gray levels between the ridge and valley is
remarkably different in the contactless acquisition (see Fig. 1(c)) of the same finger
surface. This difference can be attributed to the varying illumination on different topo-
graphic regions of the finger skin, where the ridges are rendered as darker or brighter
areas in those regions. Contactless acquisition is commonly followed by grayscale repre-
sentation or the binarization of finger images so that their appearance is similar to that of
their legacy contact-based counterparts. Such second-order representation for contact-
less fingerprints can significantly degrade the system’s matching accuracy. A gray-level
representation can be attributed to the variation in the illuminating angle, because of
which the ridges are sometimes rendered as brighter and sometimes as darker than the
adjacent valleys. One such instance is illustrated in Fig. 1(d). In summary, the brighter
and darker portions of a ridge in a contactless image are not consistent with the ridge and
valley. Instead, they are consistent with the opposite flanks of ridges. Such polarity rever-
sal effect is quite common and can be attributed to the interaction of incident illumination
with respect to the 3D ridge-valley structure [8, 11] during contactless imaging.

These gray-level alterations can be easily observed from the raw fingerprint images
acquired in a contactless manner. However, if the images are represented as grayscale
or even binarized to detect the potential minutiae points, this polarity reversal effect is
completely lost. This is also the key reason for poor performance when the contactless
images are matched against the legacy contact-based fingerprints. Our detailed observa-
tions reveal that the minutiae expected to be matched from contactless and contact-based
images do not appear in the same or similar positions. The ridge endings of contact-based
fingerprints become ridge bifurcations in the contactless fingerprint and vice-versa. An
instance of such changes in the type of minutiae is illustrated from a real finger image
sample in Fig. 2.

Such an image formation mechanism during the contactless fingerprint acquisition
motivated us to investigate additional information for the localization of minutiae from
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Fig. 2. Differences in the localization of fingerprint minutiae from (left) contact-based or legacy
fingerprint image, (center) contactless fingerprint image, and respective (right) inverted fingerprint
image.

the input fingerprint image. Unlike the legacy contact-based fingerprint, in which the
valley information is lost as it is considered as part of background information, con-
tactless fingerprint imaging simultaneously recovers the ridge and valley information.
However, this joint information is embedded with low-contrast as 3D ridges are imaged
under uneven illuminations and reflections from multiple ridges. In order to reveal addi-
tional minutiae from the otherwise dark portions of the contactless image and exploit
the polarity alternation notion, we also investigate image transformations to precisely
recover the minutiae. This work presents such systematic investigation, using publicly
available contactless fingerprint image databases, and introduces possible solutions to
address significant degradation in performance while matching contactless fingerprint
images.

Fig. 3. Minutiae detection in (top row) raw contactless fingerprints and (bottom row) inverted
contactless fingerprint images. (Color figure online)
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3 Minutiae Detection from Contactless Fingerprint Images

The difference between the raw and its inverted contactless fingerprint images can be
explicitly observed from the sample images in Fig. 3. In this figure, the top and bottom
rows show the detected minutiae from raw and inverted contactless fingerprints, respec-
tively. As can be observed from these images, most of the minutiae detected from the
raw contactless fingerprint are also present in the corresponding inverted fingerprint, but
there is a change in the minutiae type. This explains why bifurcations of raw fingerprints
appear as terminations in the inverted images and vice-versa [20]. More importantly, it
can also be clinched upon careful inspection of these images that many spurious minu-
tiae, which are falsely detected from the raw fingerprints, remain undetected in their
inverted counterparts. Additionally, the inverted fingerprint facilitates the detection of
additional cores and deltas, which otherwise remain undetected from the raw fingerprint
images.

Fig. 4. Minutiae detection in (top row) raw contactless fingerprints and (bottom row) inverted
contactless

For instance, the first image sample in the top row of Fig. 3 shows a sample finger-
print having two cores (i.e., u-shaped ridges) in the lower half of the image. However,
the popular commercial off-the-shelf (COTS) tool, namely VeriFinger [12], is only able
to detect a single core (shown as a red-colored rectangle), while the other one remains
unnoticed because of the poor focus of the image. However, when the inverted fingerprint
is provided as input to the same COTS tool, both the cores get detected (highlighted by
two red-colored rectangles in the first image in the bottom row). Similar observations
can be made from the second and third images of Fig. 3, where the cores of fingerprints
are detected only when their inverted version is presented as input (see the red-colored
rectangles in the second and third images of the bottom row). Moreover, the last finger-
print in the top row of Fig. 3 possesses a delta (i.e., a Y-shaped ridge), which can be
observed with the bare eyes on the raw contactless image. However, this delta remains
undetected because of the poor focus on this part of the finger, which can be attributed
to the curved 3D profile of human fingers. The COTS tool, on the other hand, was able
to detect this delta from the inverted fingerprint image (red-colored triangle on the last
image in Fig. 3).
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3.1 Grayscale Representation for Colored Contactless Fingerprints

In order to study the effect of different grayscale representations, the unprocessed finger-
print images from PolyU Contactless to Contact-based fingerprint database [13] were
selected. These unprocessed fingerprints are available in RGB color representation and
have a larger size (i.e., 1400 × 900 pixels) than processed ones. The PolyU database
[13] also provides a processed contactless fingerprint sub-dataset comprising grayscale
350 × 225 pixels images. These ordinary grayscale images are generally formed by a
weighted combination of linear intensities observed in individual channels. Mathemat-
ically, such conversion of RGB images to grayscale images can be directly achieved as
follows:

Iordinary = 0.3 IR + 0.59 IG + 0.11 IB (1)

where IR, IG, and IB are the linear intensities in the red, green, and blue channels,
respectively, in the colored images.

However, there are other grayscale representations that can reveal additional details
from the output images. In order to provide a more illustrious case of study, we adopted
the Luma grayscale representation [14] as an alternative to the grayscale representation
in (1). The Luma grayscale representation is believed to be a more perceptually accurate
grayscale representation, as it employs non-linear gamma-corrected versions [15] of all
channels in colored images rather than their linear intensities. Mathematically, it can be
expressed as:

ILuma = 0.2126I ′R + 0.7152I ′G + 0.0722I ′B (2)

where I′R, I′G, and I′B are the gamma-corrected versions of red, green and blue channels,
respectively. The Luma representation of colored images can enable larger contrast. as
compared to ordinary grayscale images, which facilitates the enhanced detection of
minutiae features. This observation can also be noted from the instances of grayscale
images shown in Fig. 4. It is not difficult to observe that Luma grayscale images have
increased contrast as compared to ordinary grayscale images. It is evident from the first
and second samples in Fig. 4 that the delta singularity is appropriately detected in Luma
grayscale images, while it is not detected in ordinary grayscale images. Moreover, a
careful visual inspection reveals the presence of many spurious minutiae, which are
erroneously detected in the ordinary grayscale representation, get suppressed in the
Luma represented (refer to last column images of Fig. 4) images.

Therefore, in order to add a new dimension to the enhancement of contactless fin-
gerprint recognition, we performed experiments with Luma grayscale contactless fin-
gerprint images, which were obtained by converting the unprocessed (colored) images
of the PolyU database to Luma grayscale and reducing their dimension to be same as
that of the processed contactless fingerprints in the database, i.e. 350 × 225 pixels.
Thereafter, the recognition experiments were also performed on the inverted versions of
Luma grayscale images to present a comprehensive evaluation of the currently selected
framework. These experimental results, with both the Luma grayscale images and their
inverted counterparts, are discussed in the next section.
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4 Experiments and Results

Contactless Fingerprint Databases
This work comprises experiments on two publicly available contactless fingerprint

databases. The first database is the PolyU Contactless to Contact-based fingerprint
database [13], which provides 2016 contactless 2D fingerprints and their corresponding
2D contact-based 2016 fingerprints. These fingerprints were captured from 336 clients
from the staff and students at the university. Each client has six fingerprint images, both
in the contactless and contact-based acquisition setup. In our experiments, we use all
the 2016 contactless fingerprint images. Another contactless fingerprint database used
in this work is the Benchmark 2D/3D Fingerprint Database publicly available from [16],
which provides contactless and contact-based fingerprints from 1500 different fingers.
The database comprises at least two contactless fingerprint samples and four contact-
based fingerprint samples. The acquisition of this database was completed at three dif-
ferent universities in Australia. We employed images from 1000 fingers of this database
in our experiments. Each of these fingers has two contactless fingerprints, which resulted
in a total of 2000 images. Sample images from both of these public databases are shown
in Fig. 5.

(a)                                                                  (b)  

Fig. 5. Samples from both the contactless fingerprint images database (a) PolyU Contactless to
Contact-based database [13], (b) benchmark 2D/3D contactless fingerprint database [16].

Evaluation Protocols and Performance Metrics
All experiments were performed using the all-to-all matching protocol, in which

every single fingerprint is matched against all other fingerprints in the database. This
protocol, being the most challenging biometric evaluation protocol, yields a large num-
ber of scores for both the employed databases. The matchings for PolyU Contactless
to Contact-based fingerprint database generate 5,040 genuine and 20,26,080 imposter
scores. On the other hand, the numbers of genuine and imposter scores for the 2D/3D
benchmark contactless database are 1,000 and 19,98,000, respectively.

Three state-of-the-art fingerprint matchers are employed for the performance eval-
uation. First is a popular fingerprint matcher NBIS (NIST Biometric Image Software)
[17]. The second matcher is minutiae cylinder code (MCC) [18] while the third matcher
is the commercial off-the-shelf (COTS) matcher, namely VeriFinger from Neurotech-
nology [12]. Performances of the raw contactless fingerprints and their inverted versions
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are comparatively evaluated using common performance metrics like receiver operator
characteristics (ROC), equal error rate (EER), false acceptance rate (FAR), and genuine
acceptance rate (GAR). Performances from all three fingerprint matchers are discussed
in the following.

4.1 NBIS Matcher

The NBIS [17] is an open-source fingerprint matcher provided by NIST. Our experimen-
tal results on PolyU contactless fingerprint dataset, using NBIS matcher, are illustrated
in Fig. 6(a). The corresponding ROC curves illustrate that NBIS matcher achieves an
EER of 13.33% and GAR (@FAR = 0.01%) of 65.52% for legacy contactless finger-
prints (i.e. with conventional ridge minutiae) in PolyU database. On the other hand, with
the usage of inverted contactless fingerprints (i.e. valley minutiae), the observed EER is
14.14% and GAR (@FAR = 0.01%) is 61.61%. Hence, it can be inferred that the NBIS
matcher can achieve better results with the ridge-minutiae template matching rather than
with the corresponding valley-minutiae-based template matching. However, it is equally
important to note that the combination of scores from both scenarios of matching reflects
the complementary nature of the inverted fingerprints. The experiments with NBIS on
PolyU database also reveal that the matching accuracy from the normal contactless fin-
gerprints is at par with that of the inverted fingerprints. The performance improvement
from the combination of two template representations is significant and validates our
arguments in Sect. 3.

(a)                                                       (b)

Fig. 6. ROC curves for ridge and valley minutiae matching and combined authentication with
NBIS on (a) PolyU contactless fingerprint database and (b) benchmark contactless fingerprint
database.

The performance of NBIS matcher on the contactless fingerprint database from [16]
is illustrated using the ROC curves in Fig. 6 (b). From these values, it can be argued that
matching the raw fingerprint images offers better EER, but worse GAR, when compared
to those from matching the inverted fingerprint images. However, collaboration or the
combination of two scores results in improved performance and can also be observed
from the corresponding ROC curve.
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4.2 MCC Matcher

The Minutiae Cylinder Code (MCC) [18] is widely considered a state-of-the-art finger-
print matcher and therefore also utilized in our work. The performance of the MCC
matcher for PolyU Contactless database using the ROC curves is shown in Fig. 7
(a). From these ROC curves, it is apparent that the MCC matcher generates inferior
performance for inverted contactless fingerprints as compared to the raw contactless
images.

TheROCcurves for the contactless benchmark database [16] using theMCCmatcher
are shown in Fig. 7 (b), which indicates that the inverted contactless fingerprints offer
slightly better performance than the raw contactless fingerprints. It can be observed that
a notable performance improvement can be achieved, both in EER and GAR (@FAR =
0.01%), with the collaboration of simultaneously recovered (refer to Sect. 4.4 for more
details) individual match scores.

(a)                                                       (b)

Fig. 7. ROC curves for ridge and valley minutiae matching and their combination, using MCC,
for (a) PolyU contactless fingerprint database and (b) benchmark contactless fingerprint database.

4.3 COTS Matcher

A commercial off-the-shelf (COTS) fingerprint matcher, namely VeriFinger from Neu-
rotechnology [12], was also employed to corroborate the usefulness of inverted finger-
prints in improving contactless fingerprint recognition capabilities. This commercial
matcher tool is known to perform excellently in minutiae extraction and matching. The
ROC curves for the original (or ridge minutiae matching) and inverted (or valley minu-
tiae matching) contactless fingerprint images of the PolyU database are illustrated in
Fig. 8 (a). The verification experiments with inverted versions of contactless fingerprints
have clearly outperformed those with the original contactless fingerprints. These values
illustrated in Table 1exhibit an improvement of 64.19% and 8.30%, respectively for EER
and GAR(@FAR = 0.0001%), when compared to their counterparts in the experiments
with original images.

The same set of verification experiments was also performed using a benchmark
database [16] as for earlier cases. These experiments with inverted images show 38.05%
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and 5.62% improvement in the respective performance metrics (Table 1), as compared
with those from the experiments using the raw contactless fingerprint images. The corre-
sponding ROC curves are illustrated in Fig. 8 (b). The experimental results on a popular
COTSmatcher, with unknown implementation details, also support the merit in the joint
use of ridge and valley minutiae matching. The plausible reason for relatively higher
EERs from this database [16] can be attributed to the nature of fingerprint images in this
database. Fingerprints in this database have higher pose variations and a higher distance
between the finger and sensor, as can also be observed from the image sample in Fig. 5
(b) in comparison to the fingerprint samples in the PolyU database, as shown in Fig. 5
(a).

It is reasonable to argue that when the matching performance from the inverted
contactless fingerprint images is comparable or even inferior to those of their legacy
counterparts, it can still provide complementary details to enhance the performance of
the legacy contactless fingerprint images. This argument is also well supported by the
ROC curves illustrated in Figs. 6–8 on public contactless fingerprint databases. The key
focus of this paper is on investigating the polarity reversal or alterations observed in the
common contactless fingerprint images or databases for more accurate performance. A
careful observationof theROCcurves of Figs. 6–8 indicated that the fusionof scores from
the raw and inverted contactless fingerprint images almost always results in noticeable
performance improvements. Such improvements in performance metrics as a result of
the simultaneous use of these two representations are summarized in Table 1. The results
summarized in this table clearly indicate that the minutiae information furnished from
the inverted contactless fingerprints can surely aid to improve the performance from the
raw contactless fingerprints.

Fig. 8. ROC curves for ridge and valley minutiae matching and combined authentication using
COTS: (a) PolyU contactless fingerprint database, (b) benchmark contactless fingerprint database.
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Table 1. Summary of improvements in performance metric from simultaneous ridge and valley
minutiae representations.

4.4 Gray Level Transformation

The second part of the experimentation was performed to investigate the least-explored
notion of effective color-to-grayscale transformation which can play a vital role in local-
izing key minutiae and enhancing performance for matching the contactless fingerprint
images. One of the main advantages of contactless fingerprints is the enhanced user
convenience associated with their acquisition with mobile phones which generates col-
ored images. Therefore, effective grayscale representation is expected to enable accurate
detection of legitimate minutiae and suppression of spurious minutiae during template
extraction. By observing the improved performance of Luma grayscale fingerprints in
facilitating appropriate detection of minutiae in Fig. 4, it can be concluded that this
grayscale space can lead to the improved contactless fingerprint recognition perfor-
mance. We, therefore, performed additional experiments to ascertain this possibility.
The ROC curves for these contactless fingerprint verification experiments, using the
ordinary and Luma grayscale images, are shown in Fig. 9. In this figure, the ROC curves
corresponding to the ordinary and Luma grayscale images are illustrated using the solid
and dashed lines, respectively. It is apparent from Fig. 9 that the performance using the
Luma grayscale images is noticeably superior to the ordinary grayscale representations.

The verification experiments performed with the NBIS matcher show a notable
improvementwithLumagrayscale images as compared to the ordinary grayscale images.
These ROC curves using the NBIS matcher are shown in Fig. 9 (a). The EERs achieved
using the original and inverted Luma grayscale images are 6.70% and 6.81%, respec-
tively. These values are improved by 49.73% and 51.84%when compared with the EERs
achieved from NBIS matcher for the ordinary grayscale fingerprint images.

The GARs (@FAR = 0.01%) for raw and inverted Luma grayscale images, using
NBIS matcher, are observed to be 78.82% and 78.06%, respectively. On the other hand,
the GAR values for raw and inverted ordinary grayscale images are 65.52% and 61.61%,
respectively. The secondmatcher employed in our work, orMCC, also illustrates the sig-
nificant improvement in the verification performance from the Luma grayscale images.
ROC curves corresponding to MCC are shown in Fig. 9 (b). The EERs of original and
invertedLumagrayscale contactless fingerprints is 8.19%and8.28%, respectively. These
values are 38.18% and 41.15% higher than their counterparts from the experiments per-
formedwith ordinary grayscale images. Similarly, theGARs (@FAR= 0.01%) achieved
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Fig. 9. Comparative ROC curves for original and inverted contactless fingerprints using ordinary
and Luma grayscale images, (a) using NBIS, (b) using MCC, and (c) using a COTS matcher.

with original and inverted Luma grayscale fingerprints are 75.94% and 74.67%, respec-
tively. These values illustrate remarkable improvements over their counterparts with the
ordinary grayscale images, or 30.66% and 42.17%, respectively.

Lastly, the experiments using the COTS matcher with raw Luma grayscale images
achieved an EER and GAR (@FAR = 0.0001%) of 0.45% and 97.6%, respectively.
The same metrics for the ordinary grayscale images are 0.81% and 91.11%, respec-
tively. Therefore, it can be inferred that the Luma grayscale images are outperforming
ordinary grayscale images with 44.44% and 7.12% improvements in EER and GAR,
respectively. On the other hand, the performance metrics for inverted Luma grayscale
images were 0.17% (EER) and 99.25%, respectively. For inverted ordinary grayscale
images, the corresponding EER and GAR values were 0.29% and 98.68%, respectively.
Therefore, the percentage improvements for inverted grayscale images are 41.37% and
0.57%, respectively, for EER and GAR. The ROC curves for the COTS matcher with
Luma grayscale images are shown in Fig. 9 (c). These outperforming results from Luma
grayscale fingerprints clearly indicate that a more effective representation of colored
images in the grayscale space can be used to achieve significantly enhanced contactless
fingerprint matching.

5 Conclusions and Further Work

This paper presented a detailed analysis of contactless fingerprint images, on theminutiae
representation and matching, to achieve significant performance improvements using
popular fingerprint matchers. The experimental results presented in this paper on two
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public contactless fingerprint databases [13, 16], usingMCC [18], NBIS [17], and COTS
[12]matchers consistently illustrate the significant improvement in the performance over
the conventional approaches in the literature. The work detailed in this paper indicates
that the grayscale polarity alterations under ambient or indoor illumination are frequent
and should be incorporated into the design of any effective matching strategy to utilize
the full potential of contactless fingerprint images. The absence of contact between
the sensor platen and the human finger often leads to varying illuminated areas in the
fingerprint images. Therefore, the ridges in such images are often rendered darker and
brighter in different regions. This is unlike the images from contact-based fingerprint
sensors, in which ridges are always rendered as darker and valleys as brighter, largely
due to the frustrated total internal reflection. Simultaneous recovery and use of ridge and
valley minutiae in contactless fingerprints can enable superior matching capabilities by
utilizing the full potential of inverted fingerprints, either individually or in combination
with raw fingerprints.

The above arguments are evaluated using three popular fingerprint matchers, namely
NBIS, MCC and COTS. On the one hand, NBIS and MCC yield comparable per-
formance for both ridge (raw fingerprints) and valley (inverted fingerprints) minutiae
matching approaches. However, the combination of scores from raw and inverted fin-
gerprints achieves significantly improved performance with both of these matchers as
well. Significant performance improvement in EER and ROC or GAR due to such a
combination can validate our arguments. On the other hand, the COTS matcher clearly
illustrates improved performance with inverted fingerprints alone, which can further
be improved through the score combination. This work also considered the effective
conversion of contactless color fingerprint representation to its grayscale representation,
which has received almost nil attention in the literature. In this context, amore diversified
grayscale representation, namely Luma grayscale, was introduced with quite encourag-
ing results. Such effective grayscale representation is quite valuable for improving the
performance of contactless fingerprints acquired using the widely popular color cameras
on mobile phones. Contactless fingerprint acquisition for a range of mobile applications
requires its detection under complex or moving backgrounds and under involuntary fin-
ger motions. Such detection can be achieved using a range of lightweight detectors and
is suggested for further work. More advanced minutiae detection methods [26] can also
benefit from the simultaneous use of ridge-valley minutiae labeling, detection, and their
use for enhanced matching of contactless fingerprints and is also part of much-needed
further work in this area.
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Abstract. Finger knuckle print (FKP), known as a biological feature,
has drawn great research attention in the field of biometrics recognition.
That being said, the development of finger knuckle print recognition is
still limited by the lack of data and the difficulties in the extraction
of its region of interest (ROI). To resolve these issues, this paper pro-
poses a generative method based on the simulation of the curve distri-
bution of a finger knuckle print to generate reasonable masks of finger
knuckle points. Following this, generative adversarial networks (GANs)
are applied with the masks to generate the pseudo finger knuckle point
images. This method can provide large amounts of training data for
recognition as well as directly supplying the region of interest. Exper-
imental results show that the generated finger knuckle print examples
can effectively augment the training data for the recognition model.

Keywords: Biometrics Recognition · Finger Knuckle Print ·
Generative Method

1 Introduction

Biometrics recognition techniques [21] have become an important authentication
method due to its effectiveness, safety, and convenience. Various biometrics have
been investigated in the past decades, which can be mainly divided into behav-
ioral characteristics and physiological characteristics [10]. The former contains
signature [13], voice [2], gesture [23], and keystroke [4]. The latter is extracted
from human biological features such as iris [33], veins [14], fingerprints [20],
palmprints [37], and DNAs [27]. Biometrics recognition is widely used in many
security-sensitive scenarios with years of development. For example, access con-
trol [26], ID cards [5], and online payment [31].

This work was partially supported by the Science and Technology Development Fund,
Macao S.A.R (FDCT) 0028/2023/RIA1, and in part by the National Natural Science
Foundation of China Project (62306021).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 288–302, 2025.
https://doi.org/10.1007/978-3-031-78104-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78104-9_20&domain=pdf
http://orcid.org/0000-0003-0571-243X
http://orcid.org/0000-0003-2497-9519
http://orcid.org/0000-0001-6264-9006
http://orcid.org/0009-0006-8287-4861
https://doi.org/10.1007/978-3-031-78104-9_20


A Generative Method for Finger Knuckle Print Recognition 289

Fig. 1. An example of FKP and its ROI.

Finger knuckle print (FKP), as an emerging type of biometric [34], has
aroused great interest from researchers. FKP usually refers to the skin texture at
the first joint near the palm of the finger, as shown in Fig. 1. It is highly variable
among individuals, not easily worn out, forged or stolen, and remains highly
consistent after long-term use and multiple acquisitions. Besides this, the collec-
tion of FKPs does not require high-quality equipment and strict environmental
limits, where users are more receptive to the contactless collection methods [36].

With these valuable properties, FKP recognition has been rapidly driven
by the development of machine learning and deep learning techniques. Many
algorithms such as SVM [24], PCA [25], and KNN [29] have been applied to
FKP recognition, achieving good performances. Convolutional Neural Networks
(CNNs), as one of the most effective deep learning methods in image-related
tasks, have demonstrated great advancement in many biometric recognition
applications. Without artificially formulated classification rules, CNNs can dis-
cover the underlying pattern from the given data distribution [17].

The performance of CNNs is highly related to the training data [19]. However,
the public dataset is extremely deficient in FKP recognition due to the lack of
collection and other privacy concerns. This situation has strictly limited the
application of CNNs to FKP recognition. In addition, the extraction of the ROI
remains another problem, where the pre-processing of FKP images is also time
consuming [36].

Aiming at the above issues, this paper proposes a generative data augmen-
tation method to provide large-scale high-quality pseudo FKP ROI images for
deep learning based recognition models. To accomplish this, we first analyse the
distribution of the FKP skin texture curves. Afterwards, we propose a FKP mask
generation method using a series of ovals and other curves based on the analysis
of real FKP images. Finally the masks are input into a mask-guided GAN to
generate the pseudo FKP images. We used ResNet50 [11] in the experiments to
verify the effectiveness of our generative FKP examples. The contributions of
this work are summarized as follows:
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– We meticulously analysed the distribution of the skin texture curves of the
FKP region and quantitatively described the pattern of the FKP lines, provid-
ing statistical support for further research in FKP generation and recognition.

– We proposed a generative data augmentation method providing sufficient
large-scale high-quality pseudo FKP images for training recognition models.

– Experimental results show that our method can effectively improve the per-
formance of FKP recognition via CNNs.

2 Related Work

FKP Recognition. The research of FKP recognition started later than that
of fingerprints and palmprints. Woodward et al. [34] made an attempt at the
application of FKPs for personal authentication. They proposed a similarity
comparison method by calculating the curvature surface representation of the
fingers using the hand 3D range images. Subsequently, Kumar et al. [15] proposed
a feature extraction and personal identification method based on the finger-back
surface images using subspace analysis methods. However, these efforts on vali-
dating the effectiveness of outer-finger textures were not developed into an effi-
cient recognition system. Zhang et al. [36] first proposed a fully-processed FKP
recognition system including FKP collection, feature extraction, feature coding,
and matching. Hammouche et al. [9] proposed an FKP identification method
based on phase congruency with a Gabor filter bank. Zhang et al. [35] imple-
mented an effective FKP feature extraction approach through a novel computing
framework. They proposed the use of three representative local features: orien-
tation, phase, and congruency and applied them to calculate all characteristics.
Muthukumar et al. [24] developed a FKP identification framework using a SVM
classifier with Gabor feature.

With the development of deep learning, CNNs have shown excellent perfor-
mance in many image-related tasks. Various models were introduced for FKP
recognition and achieved satisfying results. Zohrevand et al. [39] applied a simple
5-layer CNN model for FKP recognition and achieved over 99% accuracy on the
public PolyU-FKP dataset. Chalabi et al. [6] further developed the PCANet-
SVM to a recognition framework based on score level fusion of the major and
minor FKPs. Hamidi et al. [8] included FKP in their multimodal identification
system with two pre-trained VGG-16 and VGG-19 models. Fei et al. [7] proposed
a feature learning method for encoded discriminative direction features for FKP
recognition and outperformed many algorithms.

As a data-driven deep learning method, the performance of CNNs is highly
related to the dataset quality. However, few public datasets are available due to
the difficulty of FKP collection and people’s privacy concerns. To the best of
our knowledge, IIT Delhi FKP Dataset [16] and PolyU-FKP Dataset [30] are
the only two public datasets.

Generative Methods. GANs are considered as one of the mainstream meth-
ods of generative artificial intelligence, which have shown significant application
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potential in a wide range of computer vision tasks such as image synthesis [1],
image translation [38], and representation disentangling [3]. Isola et al. [12] first
proposed a general framework pix2pix to implement image-to-image translation.
Wang et al. [32] developed the pix2pix with multi-scale generators and discrim-
inators to deal with the high-resolution images, named pix2pixHD. Traditional
GANs generated the images with no limitation. In spite of this, for some cases,
the generated images are expected to follow a specific pattern. Mirza and Osin-
dero [22] first proposed the conditional GAN that can generate images from
masks and tested its performance on MNIST digits generation. Succeeding this,
various mask guided GANs were developed for many tasks such as image manip-
ulation, portrait editing, and object removal.

In our work, we expect the generated FKP images to follow our artificially
designed patterns. Hense, the mask-guided GAN is the optimal choice, which
can generate the images not only similar to real-world images, but also follow
the designed pattern.

3 Methodology

In this section we will present the details of our generative method. As shown in
Fig. 2, our framework contains three modules: FKP Curve Distribution Analysis,
FKP Mask Construction, and FKP ROI Image Generation.

Fig. 2. The overall framework of our method.

3.1 FKP Curve Distribution Analysis

FKP, as a biometric, is highly variable among individuals, yet keeps some under-
lying patterns in common, which is a vital clue leading to the design of the pseudo
FKP generation algorithm. In this paper, we take the CAUC-FKP dataset as
reference for real-world FKPs. This will be further introduced in Sect. 4.1. Sim-
ilar to fingerprints and palmprints, the key element in FKPs is also the texture
lines. However, the curves of FKPs are not as regular as the fingerprints that have
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loops, ridges and valleys, or palmprints including principle lines and wrinkles.
Therefore, the extraction of the curves should be done first before analysis.

Inspired by the work of Tan et al. [28] in face recognition, we apply a sim-
ilar strategy to enhance the curves in FKP images for better extraction. As
shown in Fig. 3, this pre-processing pipeline contains four parts: Gamma Cor-
rection, Difference of Gaussian (DoG) Filtering, Canny Edge Detection, and
Curve Matching.

Fig. 3. The curve extraction pipeline.

The FKP gray-scale images are first input into the Gamma Correction mod-
ule, which changes the pixel intensity from I to Iγ through a non-linear gamma
function Iγ = (I + ε)γ . Here, γ is a hyper-parameter controlling the strength
of the gamma correction. This operation can adjust the image contrast auto-
matically and enrich the detail level of the bright and dark regions of an image
through setting different γ values. Next, a band-pass DoG filter is applied after
the Gamma Correction. Specifically, the DoG filter represents the difference
between two images filtered by two different low-pass filters, one of which removes
the low-frequency components corresponding to the homogeneous region, and
another removing the high-frequency noises:

DoG ∗ f(x, y) = (Gσ1 − Gσ2) ∗ f(x, y) (1)

where Gσ1 and Gσ2 represent two different Gaussian filters. The DoG filter can
be formalized as:

DoG =
1√
2π

(
1
σ1

e
− x2+y2

2σ2
1 − 1

σ2
e
− x2+y2

2σ2
2 ). (2)

After DoG Filtering, the FKP curves are more visible for the subsequent
Canny Edge Detection. This operation is applied to extract the curves in the
images. It is achieved through a series of image processing operations including
Gaussian smoothing, gradient calculation, non-maxima suppression, and dual-
threshold boundary tracking. After the Canny Edge Detection, the FKP curves
will be transformed into white lines in the binary images. The last step of the
line extraction is the Curve Matching. This step is achieved through a simple
connected-component-analysis algorithm, since the results of Canny Detection
are all binary images. For the crossing lines, which might be counted as one line,
we set the pixels at the intersection to a different value, hence separating the
connected components.
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Recall that our purpose is to analyse the patterns of the lines, including the
curve types, numbers of each type, length and thickness, position distribution
and orientation. These features provide an important reference when designing
the FKP mask construction algorithm. In the following sub-sections, we will
show the analysis in details along with the design principles of our algorithm.

3.2 FKP Mask Construction

The mask construction is the core component in our framework, since it provides
the guideline for the subsequent GAN and directly influences the quality of the
generated images. Guided by the above analysis on the FKP curve pattern,
the lines in the masks are basically divided into two types: oval-like curves and
random tiny lines. In some cases, fine hairs also appear in the FKPs. Three types
of lines are illustrated in Fig. 4.

Fig. 4. Examples of the curve types in FKPs.

Oval-Like Curves. As shown in Fig. 4, the curves with large thickness and
length construct the basic sketch of FKPs. These curves contribute the most
to the recognition performance. Figure 5b -(1) depicts the total number of the
oval-like curves in the given 585 FKP examples from CAUC-FKP. It indicates
a Gaussian distribution N (14, 4), whose mean is 14 and variance is 4. Hence,
the number of these oval-like curves in the constructed masks should follow the
same distribution.

Following this, we consider the shape of these curves. As the name suggests,
we use the partial ellipse with different eccentricities to represent these curves.
As illustrated in Fig. 5a, five parameters are applied to control the shape of the
ellipses, which are introduced as follows.

1. The center determines the location of the curves. The study on all FKP
examples indicate that the curves are roughly uniformly distributed within the
ROI, while the density at the left and right edges are slightly larger than that
in the middle, as shown in Fig. 5b - (2).



294 Y. Wang et al.

Fig. 5. The parameters used in the oval-like curve construction and their statistics.

2. The axes controls the shape of the curves. The ellipse eccentricity is deter-
mined by the ratio of the major and minor axes. Figure 5a shows that the greater
the eccentricity, the smaller the curvature. In general, the curves nearer to the
knuckle edge have a larger curvature. Curves at the knuckle center are almost
straight lines, as shown in Fig. 5b - (3).

3. The angle controls the orientation of the curves. Basically, the partial
ellipse curves are left-opened on the right half of the knuckle and right-opened
on the left half. Besides this, the curves are not always vertical to the image
orientation and have an angle shift from −25◦ to 25◦.

4. The start-end points control the length of the curves. The partial ellipses
are used to fit the curves, such that the length of the curve varies from 1/3 to 1/2
of the half-ellipse. As shown in Fig. 5b - (4), the 1/3-half-ellipse appears more
at the knuckle center and the 1/2-half-ellipse often represents the curves at the
left and right edges.

5. The last parameter is the thickness. Figure 5b - (4) shows a regular pattern,
where curves closer to the knuckle center have a larger thickness.

Finally, to increase the randomness, an image liquify operation is used to
impose the curves, which can better simulate the realistic features.

Random Tiny Lines. In addition to the basic oval-like lines, there are many
random tiny lines distributed on the entire knuckle region. The contribution of
these lines to the recognition performance cannot be ignored either. Through the
observation of real FKP examples, we use the Bezier curves connecting multiple
points to simulate those lines. Specifically, we randomly set some points which
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are divided into inner points and outer points. The inner points are close to the
knuckle center and the Bezier curves connecting each point-pair form a closed
shape. The outer points can only be the end of the curves, and there is no
connection between these points. This setting better simulates the spider-web-
like distribution pattern of the random tiny lines.

Fine Hairs. Fine hairs exist in some of the FKP examples. They can be sim-
ulated by some simple straight thin lines that only appears in the specific half-
region of the knuckle.

Algorithm 1. Mask Construction Algorithm
Input: Mask height h, mask weight w, mask number N
Output: FKP Mask Set M.

1: for i ≤ N do
2: Create empty mask Mi = [0]w×h

3: Randomize:
Total curve number ni ∼ N(14, 4)
Center point set C = {(x, y)|x ∼ U(d, w − d), yk ∼ N(h/2, σ2)}ni

Axes set A = {(a, b)|a ∼ N(3h/4, σ2), b ∼ N(a/3, σ2)}ni

Angle set Θ = {θ}ni , where θ ∼ N(0, σ2)
Start-end point set R = {r}ni , where r ∼ U(1/6, 1/4)
Thickness set T = {t}ni , where t ∼ U(t1, t2)

4: Sort the elements in sets C, A, Θ, R and T .
5: Construct the curves using cv2.ellipse and obtain M1

i ← Mi

6: Liquifaction: Ma
i ← M1

i

7: Randomize point set P = {(x, y)}
8: Calculate convex hull and:

Pout = convexHull(P ), Pin = P − Pout

9: Connect each point of Pin and Pout with Bezier curves and obtain M2
i .

10: Liquifaction: Mb
i ← M2

i

11: Randomize straight lines on the left part of Mi and obtain Mc
i

12: end for
13: M ← {Mi = (Ma

i , Mb
i , Mc

i )}N
i=1

Algorithm. Following the above patterns, our mask generation algorithm is
designed as Algorithm 1. For each mask, step 1 to step 6 correspond to the oval-
like curve mask Ma

i generation, and step 7 to step 10 correspond to the random
tiny line mask M b

i generation. The fine hair simulation is in step 11 to generate
the mask M c

i . All masks are respectively calculated and stored as a channel of
masks Mi, that is Mi = (Ma

i ,M b
i ,M c

i ). The purpose for separate calculations
is for subsequent mask-guided GAN generation. Through the randomization in
each iteration, we can finally obtain the mask set M = {Mi = (Ma

i ,M b
i ,M c

i )}N
i=1

containing N masks.
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3.3 FKP ROI Image Generation

After obtaining the FKP masks, we use the mask-guided GAN to generate our
target FKP ROI images. This conditional GAN can generate the target images
with our expected patterns. In our GAN model, the three masks constructed in
the previous process are applied to guide the generation tasks. Figure 6 illustrates
the basic architecture of our GAN model.

Fig. 6. The architecture of our GAN model.

In general, the model takes a normal distribution z as the input, along with
a fusion mask M as the condition. M is fused from the three sub-masks Ma,
M b, and M c constructed by our previous algorithm through assigning different
weights on each sub-mask. Afterwards, generator G outputs a generated image
x = G(z,M). In this case, the mask M and the generated image x are input
into the discriminator D, where there is a scalar to judge whether the image x is
realistic and matched with condition M . The generator G and the discriminator
D are alternatively optimized until the output meets the requirement.

4 Experiments

In this section, we conduct several experiments to verify the effectiveness of
our method. First, we use our generative method to construct a pseudo FKP
ROI dataset based on real-world FKP data. Following this, we train a ResNet50
model with datasets, where the pseudo images are mixed with real-world images
under different ratios. The model is tested on the test set constructed by the
same manner.
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4.1 Datasets

In our work, two real-world datasets are utilized as the reference for FKP mask
design, forming the training and test sets.

Fig. 7. Some examples of the three datasets.

PolyU-FKP Dataset contains 7,920 FKP images collected from 165 individ-
uals [30]. Each one was required to provide 12 images of the index and middle
finger knuckles. This dataset is considered as one of the largest public FKP
datasets. In this paper, we extracted the ROI with a size of 220 × 110 pixels.
Some of the examples are shown in Fig. 7.

CAUC-FKP Dataset was collected by the authors of [18] from CAUC. It
contains 5,850 FKP images coming from 195 individuals, each of which provided
10 examples of the index, middle, and ring finger knuckles, respectively. We
cropped the images into 200 × 90 pixels for the ROIs in this work. Figure 7
shows some of the examples.

UM Pseudo-FKP Dataset is the dataset generated by our method based on
the CAUC-FKP dataset. Up to now, there are 5,000 FKP ROI images from 500
identities. The size of each ROI image is 200× 90 pixels, the same as that in the
CAUC-FKP dataset. Figure 7 shows some of our generated examples.

4.2 Experimental Settings

We used a ResNet50 model as the benchmark to test the effectiveness of our
method. The model was trained on ten sub-datasets respectively. The sub-
datasets were constructed by the rules shown in Table 1, where 0% represents an
all-real-examples dataset and 100% represents an all-pseudo-examples dataset.
Each sub-dataset contained 5,000 examples from 500 IDs, where different finger
knuckles from the same person are considered as different IDs for convenience. In
the mixed sub-datasets, all examples were randomly selected from the original
dataset. The ratio of training, validation, and test was 7:2:1.
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Table 1. List of our sub-datasets.

Source Name Ratio of
Pseudo FKP

Source Name Ratio of
Pseudo FKP

PolyU + Pseudo PP-0 0% CAUC + Pseudo CP-0 0%

PP-25 25% CP-25 25%

PP-50 50% CP-50 50%

PP-75 75% CP-75 75%

PP-100 100% CP-100 100%

The model was trained for 500 epoch on each dataset using SGD with
momentum. The training device was an Ubuntu server with NVIDIA RTX 4090
GPU. After training, we obtained ten models with different parameters. After-
wards, the models were tested on the test sets respectively and the accuracy was
recorded as the metric of performance.

4.3 Results

Table 2 and Table 3 show the accuracy of the model on different datasets. Com-
pared with the models trained on all-real-world datasets (PP-0 and CP-0), the
accuracy of the models trained on our all-pseudo datasets (PP-100 and CP-100)
only drops slightly. For the PolyU-FKP subset, the accuracy drops 3.8% from
91.8% to 88.0%, while it drops only 1% from 95.4% to 94.4% on the CAUC-
FKP subset. The reason is that our pseudo images are generated based on the
CAUC-FKP examples. There is a distribution shift between the PolyU-FKP and
CAUC-FKP datasets, and the brightness and contrast in PolyU-FKP examples
are more complex. The results of PP-100 and CP-100 reveal that our generated
data can be used as a substitution for real-world data when it is insufficient.

The models trained on mixed datasets also achieved a competitive perfor-
mance. For example, PP-50 and CP-50 obtained the highest average accuracy
on five test sets among all models. In practice, the pseudo images can also be
mixed with the real-world images to provide data support.

Table 2. Accuracy of different models on the test sets (PolyU-FKP + Pseudo-FKP).

Model Ratio of pseudo images in test set Average

0% 25% 50% 75% 100%

PP-0 91.8% 90.8% 89.6% 89.4% 85.2% 89.36%

PP-25 92.0% 91.6% 90.8% 91.0% 90.4% 91.16%

PP-50 92.4% 92.6% 92.4% 92.0% 91.2% 92.12%

PP-75 91.6% 91.0% 92.0% 91.8% 92.4% 91.76%

PP-100 88.0% 89.6% 90.8% 92.6% 94.2% 91.04%
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Table 3. Accuracy of different models on the test sets (CAUC-FKP + Pseudo-FKP).

Model Ratio of pseudo images in test set Average

0% 25% 50% 75% 100%

CP-0 95.4% 93.8% 93.2% 92.8% 90.6% 93.16%

CP-25 94.6% 95.0% 94.8% 93.8% 93.8% 94.40%

CP-50 95.0% 95.2% 95.2% 94.6% 94.4% 94.88%

CP-75 94.8% 94.4% 94.8% 93.6% 93.4% 94.20%

CP-100 94.4% 95.0% 95.8% 96.0% 96.2% 95.48%

4.4 Data Augmentation

In the previous experiments, all training sets contain the same amount of exam-
ples. We conducted another experiment to further evaluate the effectiveness of
our generative method as a data augmentation technique. Specifically, we first
trained a ResNet50 model on the entire CAUC-FKP training set and recorded
its accuracy on the test set, 25% examples of which are from UM Pseudo-FKP
and the rest are from CAUC-FKP. Then, we added 500 pseudo examples to the
training set and trained the model from scratch. We repeated this operation 8
times and the training set was enlarged to 8,000 images, 4,000 of which are from
CAUC-FKP and the remaining from UM Pesudo-FKP. The accuracy change is
recorded in Fig. 8.

When we increased the amount of training examples by adding pseudo
images, the model performance improved accordingly. This result reveals that
our generative method can provide an effective data augmentation in the model
training process. Nonetheless, it is worth noting that an unlimited increase in
pseudo data is not always conducive to model training. In fact, when the input
pseudo images is 2,000, the improvement on the model accuracy has reached
marginal effects. Continuing to increase the amount of pseudo data will only
cause the performance of the model to deteriorate, making the model’s learnt
distribution shift from the real-world data distribution.

Fig. 8. The accuracy change with different numbers of pseudo images in the training
set.
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5 Conclusion

In this paper, we scrupulously analysed the patterns of FKPs, including its tex-
ture curves distribution and shape. From this, we manually designed a mask
construction algorithm based on the above analysis to guide the generation
of the pseudo FKP ROI images by mask-guided GAN. Several tests on the
ResNet50 model using real-pseudo mixed datasets illustrated the effectiveness
of our method as a data augmentation technique. The proposed work provides a
solution to the rigorous problem in the field of FKP recognition research, where
public datasets are severely deficient. As part of our future work, we will focus
on the security of the generative method’s application to biometrics and explore
more possibilities for other hand modality features.
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Abstract. Ad designers often use sequences of shots in video ads, where
frames are similar within a shot but vary across shots. These visual vari-
ations, along with changes in auditory and narrative cues, can interrupt
viewers’ attention. In this paper, we address the underexplored task of
applying multimodal feature extraction techniques to marketing prob-
lems. We introduce the “AttInfaForAd” dataset, containing 111 baby
product video ads with visual ground truth labels indicating points of
interest in the first, middle, and last frames of each shot, identified by
75 shoppers. We propose attention interruption measures and use mul-
timodal techniques to extract visual, auditory, and linguistic features
from video ads. Our feature-infused model achieved the lowest mean
absolute error and highest R-square among various machine learning
algorithms in predicting shopper attention interruption. We highlight
the significance of these features in driving attention interruption. By
open-sourcing the dataset and model code, we aim to encourage fur-
ther research in this crucial area. (Dataset and model code available at
https://github.com/ostadabbas/Baby-Product-Video-Ads).

Keywords: Baby products · Eye-tracking dataset · Attention ·
Computer vision · Natural language processing

1 Introduction

Video advertisements are a common medium for promoting baby products,
often consisting of sequences of shots, each contributing to the overall narra-
tive. Within a shot, frames are thematically and sequentially consistent, while
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noticeable differences occur across shots (see a series of example shots from one
ad in Fig. 1). These variations can cause viewers to redistribute their gaze, lead-
ing to attention interruption. Interruptions require additional cognitive effort
from viewers to follow the story, posing a substantial challenge in advertising.

Beyond the visual changes across shots, video ads frequently leverage multi-
ple modalities, such as audio and narratives, to convey product information and
elicit desired responses from viewers. These multimodal features can also affect
attention interruption. For instance, audio elements like sudden changes in vol-
ume or background music may cause distractions. Narrative elements, such as
abrupt shifts in storyline or dialogue, can further complicate attention dynamics
by requiring viewers to adjust their focus to understand the content.

Fig. 1. Points of interest (POIs) of one participant during watching the video ad named
‘90 Years Crafting’. Red dots represent the POIs. The three columns show the first,
middle, and last video frames of three shots in a video ad.

Advertisers need to understand which features in these modalities drive shop-
per attention dynamics to optimize their ad design strategies. However, the
study of multimodal features and their impact on attention interruption remains
underexplored due to several challenges. These challenges include the need for
comprehensive extraction and analysis of visual, audio, and narrative features,
the development of robust attention interruption measures, and the lack of an
eye-tracking dataset specifically featuring parents’ viewing behaviors of baby
product video ads.

To address these gaps, this paper introduces a comprehensive approach to
understanding shoppers’ attention in the baby product market. We begin by
collecting data on shoppers’ attentional allocations when they watch baby prod-
uct video ads. Their points of interest (POIs) are recorded as illustrated in
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Fig. 1. This is followed by extracting extensive multimodal features and propos-
ing attention interruption measures. With these preparations, we propose a mul-
timodal feature-infused model to predict the interruption and further explore
the importance of different features in affecting shoppers’ attention. Figure 2
provides an overview of the study framework.

Fig. 2. An overview of the framework. We first collect shoppers’ points of interest (see
Fig. 1) in video ads, based on which we propose attention interruption measures. Then,
we extract multimodal features from the video ads. Finally, we build feature-infused
neural networks to predict attention interruption and conduct feature importance anal-
yses to suggest ad design strategies.

Our contributions are threefold. First, we introduce a new task involving the
application of multimodal feature extraction techniques to solve marketing and
business problems. Second, we create the first-ever “(Att)ention to (Infa)nt
(For)mula Video (Ad)s (AttInfaForAd)” dataset, comprising 111 video ads and
4,184 frames with shoppers’ attention allocation labels. Third, we propose mea-
sures of attention interruption and provide a robust feature-infused benchmark
for attention interruption prediction. Our efforts encourage further exploration
in this critical area.

2 Related Work

This paper relates to two main venues: (1) eye-tracking research in attention
literature, and (2) multimodal features in business and marketing fields.

2.1 Attention Research Through Eye-Tracking

Eye-tracking has been widely used in many disciplines such as education, psy-
chology, and marketing [3,28,40] to enhance our understanding of human atten-
tion processes, including overt and covert attention [36]. Overt attention involves
visible eye movements and is typically measured using eye-tracking devices. In
contrast, covert attention refers to the mental process of shifting focus with-
out moving the eyes. Eye-tracking devices can generate fixations when the eyes
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remain relatively stationary on a stimulus. However, challenges exist, particu-
larly in producing calibration-free equipment [7], and in interpreting the con-
nection between eye movement recordings and cognitive processes. In this study,
we introduce the points of interest (POI) technique by requesting participants
to directly indicate their attentional focus on advertising elements. This method
is cost-effective and accessible to video stimuli and has strengthened partici-
pant engagement. Scholars have demonstrated that self-reported POI can yield
comparable results to data collected from eye-tracking devices [24].

Based on eye movement data, numerous studies have explored the factors that
attract and maintain attention, such as color, size, shape, complexity, and goals
[8,37,38]. Few addressed their impacts on attention interruption across video
shots. Among the public eye-tracking datasets, some are designed for advancing
gaze estimation [15,20,42] or insights into connections between brain activities
and eye movements [17]. Several datasets are application-driven such as drivers’
attention [31] and predictive processes in reading [22]. However, to the best
of our knowledge, few public datasets are available for understanding people’s
attention to video ads, especially baby products, despite the practical needs in
this domain.

2.2 Multimodal Features

Video ads typically contain multiple modalities and each functions differently
and collaboratively. Visuals illustrate the product features and can capture
immediate attention [32]. Narratives provide context and detail such as ben-
efits, guiding the viewer through the ad’s message [11]. Music sets the tone and
mood of the ad, evoking specific emotions and making the ad more memorable
[18].

We carefully select an extensive set of visual features related to color, texture,
content, and composite to understand their impact on viewers. Color features
include brightness, hue, saturation, contrast of brightness, color diversity, clarity,
and color names [25,41]. For texture features, we examine contrast, correlation,
energy, homogeneity, and dissimilarity for each HSV channel based on the GLCM
[23]. Additionally, visual complexity can cause cognitive load for viewers, affect-
ing their attention processes [33]. We thus consider the number of objects and
regions in ads [30]. We also include the number of faces in ads, the region sizes,
and the rule of thirds, which are photography techniques [41]. Modern ad design-
ers often enhance the central part of ads by increasing brightness and sharpness.
We measure these attributes in the inner part of ads.

We also gather a comprehensive set of audio features, including root mean
square (RMS) and zero crossing rate (ZCR) [12,39]. RMS measures loudness,
while ZCR relates to the detection of percussive sounds. Other features include
spectral centroid and bandwidth, which pertain to sound “brightness” and
“warmth,” and pitch features that capture fundamental frequency. We further
incorporate mel-frequency cepstral coefficients (MFCCs) for spectral shape anal-
ysis, chroma features for pitch class identification, and Mel spectrogram features
for capturing temporal audio dynamics. We also account for characteristics of
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Fig. 3. An overview of the video ads. The collage contains 4 × 8 video frames. Each
frame is from one video ad.

the language, as it also plays an essential role in capturing and guiding audiences’
attention, extending beyond the traditional visual and audio signals [21].

3 Introducing AttInfaForAd Dataset

We create the first public dataset of shoppers’ viewing and cognitive behavior
for infant formula advertisement videos: AttInfaForAd. Our collection comprises
111 video ads (24 brands), from which we extract 4,181 key frames (beginning,
middle, and last frame of each shot). Each key frame is annotated with individ-
uals’ points of interest, representing the solitary factor that most attracted their
focus. This extensive dataset gives beneficial understandings right into customer
interaction with infant formula advertising.
Participants. A total of 75 participants (Male: 28, Female: 40, 7 excluded)
from Beijing Film Academy participated in the study. The average age of the
participants was 31.4 years.
Stimuli. We conduct a thorough online search using various video platforms
such as YouTube to create the corpus of infant formula ads. Initially, 178 ads
were identified. After excluding non-English ads, we obtain 111 ads representing
24 different brands of infant products. Figure 3 illustrates 32 video frames from
the stimuli.
Procedure. We conduct the experiment on Qualtrics via the following steps.
Participants first provide informed consent before beginning the study. They are
then assigned to watch the advertisement videos. On average, each participant
watches on average 10 ads that are randomly sampled from the 111 video ads.
After each watch, participants are required to indicate their points of interest
(POIs) while watching the video ads. Specifically, POIs are identified by asking
participants to click on the video frame in the Qualtrics survey that attracted
their attention. Following this step, participants answer several demographic
questions, including age and gender.
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Fig. 4. Heatmaps of points of interest (POIs) for eight video ads, with ad names
displayed below each heatmap. The red areas indicate higher concentrations of POIs,
while the blue areas represent lower concentrations. A smaller red area suggests that
viewers’ attention is more focused, indicating less interruption. (Color figure online)

In total, we collect 746 samples. Figure 4 shows the example heatmaps of
points of interest from participants watching eight video ads. The ad names are
displayed under each heatmap. The red areas indicate higher concentrations of
POIs, while the blue areas represent lower concentrations. A more condensed red
area indicates less interrupted attention. The heatmaps for the ads “90 Years
Crafting” and “Cow & Gate Follow-On Milk Ad” are more concentrated com-
pared to the others, while the heatmaps for “Fuel Baby’s Development” and
“Nutrilon Opvolgmelk” are more dispersed. The heatmaps for “1994 Gerber
Baby Formula Commercial”, “Welcome To Kendamil”, “Karicare Only What
Matters”, and “Enfamil Enspire Baby Formula milk Powder” fall somewhere in
between, highlighting the variability of attention allocations across different ads.

4 Methodology

In this section, we first present our attention interruption measure based on
the collected points of interest (POIs). The measure utilizes the area of the
convex hull formed by these POIs to quantify the spread and interruption of
viewer attention during video ads. Next, we propose various techniques to extract
visual, auditory, and linguistic features from the video ads. With these extracted
features, we propose a multimodal feature-infused model to predict attention
interruption and formulate fixed-effect regressions for insights into the factors
contributing to attention interruption in video ads.
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Fig. 5. An illustration of our proposed attention interruption measure. The convex hull
area, Ach is surrounded by dashed lines, representing the boundary enclosing all points
of interest, indicated by the blue dots. The computed convex hull area is displayed in
the bottom-left corner.

4.1 A Measure of Attention Interruption

Shoppers’ attention allocations are at the frame level during their viewing of the
video ads. To quantify attentional interruption throughout the viewing, we pro-
pose an aggregate measure. We first plot the points of interest (POIs) on a figure
matching the video resolution (e.g., 512 × 512 pixels). The x and y coordinates
are normalized by the frame width and height to allow for fair comparison across
videos with different resolutions.

Our measure of attention interruption is based on the convex hull area (Ach),
which is the area of the smallest convex shape enclosing all POIs. We calcu-
late this measure using the ConvexHull function from the SciPy package, which
employs the Qhull algorithm. This algorithm constructs the convex hull by iter-
atively adding points and forming new facets that maintain the convex property.
It starts by identifying an initial simplex, then adds points to the hull, updat-
ing the set of facets to ensure they form the smallest convex shape enclosing
all points. A larger convex hull area indicates that the attention allocations are
more widely dispersed across frames and shots. This suggests that shoppers have
to reorient their gaze across shots, indicating greater attentional dispersion and
interruption. The coordinates are normalized so that the range of this measure
is from 0 to 1. For an illustration, we plot the POIs of one participant while
watching a video ad in Fig. 5 and compute the convex hull area measure.
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4.2 Multimodal Feature Extraction from Video Ads

We extract multimodal features from video ads, including visual, audio, and
linguistic elements. Visual features involve color, texture, and object counts,
while auditory features include energy, pitch, and spectral properties. Linguistic
features are derived from transcribed text using speech recognition and advanced
text analytics, producing 297 combined features to analyze ad effectiveness.

Video frames within the same shot tend to be visually and thematically con-
sistent, making it unnecessary to extract visual features from every frame. Each
shot typically represents a distinct segment of the narrative, with transitions in
both the storyline and background music more likely to occur between shots. To
effectively capture the transitions, we manually identify shots and extract visual
features from the first, middle, and last frames of each shot. Using the method
from [23], we determine the percentage of different colors. Color clarity is com-
puted as the average of the standard deviations of the H, S, and V channels.
Color diversity is calculated based on the Earth Mover’s Distance [25]. Texture
features are computed using the Skimage library. We employ YOLOv81 to count
objects and faces, and use Segment Anything [19] for region count, region size,
and rule of thirds measurement. For each feature, its magnitude and variance
are measured by its mean and standard deviation across shots in each video,
resulting in 78 visual features.

We apply an extensive approach to extracting audio features from the
111 video ads. We first obtain the audio (i.e., MP3 file) of each video using
MoviePy in Python. Then, we employ Librosa in Python to extract auditory fea-
tures, including RMS energy, ZCR, spectral centroid, bandwidth, pitch, MFCCs,
chroma, and mel spectrogram features. We summarize the audio content’s pri-
mary characteristics and variability by calculating the mean and standard devi-
ation, yielding a total of 63 auditory features.

To analyze the linguistic properties of the texts in the ad transcripts, we apply
a multi-stage process using state-of-the-art speech recognition and advanced
text analytics techniques. First, we implement OpenAI’s Whisper model to
transcribe the audio content. Through the linguistic inquiry and word count
(LIWC) tool (version 2022), we extract linguistic features from the default dic-
tionary and eight additional user-made dictionaries that align with our research
interests in psychological involvement, cognitive processes, and brand percep-
tion in infant product advertisement. These dictionaries comprise absolutist, agi-
tation/dejection, behavioral activation, brand personality, controversial terms,
cost/benefit analysis, imagination, creativity and innovation, mind perception,
and security language [1,2,4,6,16,26,27,29,35]. This extensive linguistic exami-
nation produces 156 features.

4.3 Attention Interruption Prediction Model

Our predictive analysis employs a diverse array of machine learning techniques,
including support vector machine (SVM) [13], multi-layer perceptron (MLP)
1 https://github.com/ultralytics/ultralytics.

https://github.com/ultralytics/ultralytics
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Fig. 6. Multi-feature-infused model (base model). Each modal feature is initially pro-
cessed through a dense layer with a ReLU activation function. These outputs are then
subjected to batch normalization before being concatenated, forming a unified repre-
sentation of the multimodal data. The concatenated output is passed through a dropout
layer and then serves as input to another dense layer with ReLU activation. Finally,
the model produces the output through a dense layer with a linear activation function.

[34], random forest (RF) [5], gradient boosting (GB) [10], linear regression (LR)
[9], and ridge regression [14]. Given the multimodal nature of our features, we
propose a novel feature-infused model, as illustrated in Fig. 6. This architecture
is designed to effectively integrate and process diverse input modalities.

Our dataset consists of 746 samples, 78 visual features, 63 auditory features,
and 156 linguistic features. Our base model (see Fig. 6) is designed with four
layers. Initially, each modality’s features are processed through a dense layer
with 16 nodes, employing a Rectified Linear Unit (ReLU) activation function.
This step allows for effective representation of modality-specific features. The
outputs from these individual modal layers are subsequently concatenated and
passed through a batch normalization layer, forming a unified multimodal repre-
sentation. This concatenated output is then subjected to a dropout layer and fed
into a larger dense layer with 32 nodes, utilizing ReLU activation and dropout
to prevent overfitting while capturing complex cross-modal interactions. The
model culminates in an output layer with a linear activation function that pre-
dicts the attention interruption score. This architecture effectively integrates
multimodal features and captures modality-specific nuances, potentially leading
to more accurate and robust predictions of attention interruption.

To enhance the base model, we replace the final linear activation function
with a sigmoid function to better fit the output range, considering that the
attention interruption measure (i.e., convex hull area) ranges from 0 to 1. Addi-
tionally, we experiment with different activation functions, such as Exponential
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Linear Unit (ELU), due to its ability to handle negative values more effectively
than ReLU, which can lose information when values are less than zero.

To train the mode, we use the mean absolute error (MAE) loss function with
L2 regularization, which is formulated as

L(y, ŷ) =
1
N

N∑

i=1

|yi − ŷi| + λ

M∑

j=1

w2
j , (1)

where y is the vector of true attention interruption scores measured by the
convex hull area; ŷ is the vector of predicted attention interruption scores; N is
the number of samples; λ is the regularization factor; wj are the weights of the
model; M is the number of weights.

4.4 Model Evaluation Metrics

The values of the convex hull area, Ach, in our dataset range from 0 to 1 and
are generally small. To evaluate the performance of our models, we use two key
metrics: mean absolute error (MAE) and R-squared (R2).

The mean absolute error (MAE) measures the average absolute difference
between the observed actual outcomes and the outcomes predicted by the model.
It is defined as:

MAE =
1
n

n∑

s=1

|ys − ŷs|, (2)

where n is the number of samples, ys is the actual value of attention interruption
(measured by either Ach), and ŷs is the predicted attention interruption score.
A smaller MAE indicates better predictive accuracy of the model.

The R-squared (R2) metric indicates the proportion of the variance in the
dependent variable (i.e., attention interruption) that is predictable from the
independent variables (i.e., multimodal features). It is calculated as:

R2 = 1 −
∑n

s=1(ys − ŷs)2∑n
s=1(ys − ȳ)2

, (3)

where ȳ is the mean of the actual values. The R2 value provides an indication of
the goodness of fit of the model, with a value closer to 1 indicating a better fit.

Together, these metrics allow us to assess both the accuracy and explanatory
power of our predictive models, ensuring that they not only provide precise
predictions but also capture the underlying variance in attention interruption
effectively.

4.5 Feature Importance Analysis

To understand which features affect attention interruption, we conduct a detailed
analysis of each modality to provide nuanced insights for advertisers. First, we
apply principal component analysis (PCA) to reduce redundancy among the
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features. By retaining features that explain 97.5% of the total variance, we retain
39 visual, 33 auditory, and 61 linguistic features. Additionally, we remove 7
linguistic features due to collinearity, resulting in 54 linguistic features.

A linear regression model is employed to ensure interoperability and enhance
our understanding of the importance of different features. Specifically, we for-
mulate our regression model as follows:

yiv = αi + β · Xv + εij , (4)

where y represents the attention interruption measured by Ach; X is a vector of
visual, auditory, or linguistic features; i indexes participants; v represents infant
formula video stimuli; αi are participant-specific intercepts capturing individual
heterogeneities; β is a vector of coefficients for the features specific to the video
stimuli v; and εij is the error term representing unexplained variation in attention
interruption for participant i and video stimulus v. By estimating the coefficient
of each variable (i.e., feature), we can clearly determine the extent to which each
feature affects attention interruption.

5 Experimental Results

In this section, we first report the performance of our proposed multimodal
feature-infused model. Then, we present the feature importance analysis results.

5.1 Attention Interruption Prediction Accuracy

We split our dataset into a training set (80%, or 596 samples) and a testing set
(20%, or 150 samples). We implement the machine learning algorithms using
the Scikit-Learn package and our proposed model using TensorFlow. During
training, we set the learning rate to 0.001, the regularization factor λ to 0.01,
the dropout rate to 0.1, the batch size to 16, and the number of epochs to 200,
with early stopping based on a patience of 20 epochs.

Table 1 documents the prediction evaluation on the testing dataset across
various machine learning models and our proposed multimodal model with dif-
ferent variants. We use MAE and R2 as evaluation metrics. The results suggest
that our proposed model with a sigmoid function as the final layer achieves the
lowest MAE, and together with ELU activation, it achieves the highest R2. This
demonstrates the model’s superiority and establishes a benchmark for future
research.

5.2 Feature Importance

We estimate the coefficients of Eq. (4) using the ‘FIXEST’ package in R and
summarize the count of positive and negative estimates (that are statistically
significant at an alpha level of 0.05 or lower) in each regression in Table 2. The
full estimation results are presented in the supplementary materials (Tables S1,
S2, and S3).
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Table 1. Model evaluation results. We report the mean absolute error (MAE) and
R-square of each model. In addition to the proposed base model (see Fig. 6), we have
two variants, i.e., ‘sigmoid’ and ‘ELU+sigmoid’. The best results are bolded.

Model MAE R2

SVM [13] 0.0679 −0.0259

MP [34] 0.0375 0.4788

RF [5] 0.0366 0.4866

GB [10] 0.0367 0.4938

LR [9] 0.0375 0.4781

Ridge [14] 0.0365 0.4919

Ours (base) 0.0359 0.5168

Ours (sigmoid) 0.0345 0.5216

Ours (ELU+sigmoid) 0.0350 0.5418

Among the visual features, we find that the coefficients of 23 features are sta-
tistically significant. Specifically, 15 features with positive coefficients increase
attention interruption, while 8 features with negative coefficients reduce it. For
the auditory features, 14 features affect attention interruption, with 7 increas-
ing and 7 reducing the interruption. Regarding linguistic features, 26 features
influence attention interruption: 11 features increase it, and 15 decrease it. These
findings highlight the significance of our extensively extracted features in driving
attention interruption.

Table 2. Count of significant coefficients in the estimation results. For instance, in
the visual feature analysis, 15 (8) coefficients are statistically positive (negative) at the
0.05 level.

Modality Count of Positive Coefficients Count of Negative Coefficients

Visual 15 8

Auditory 7 7

Linguistic 11 16

In sum, our findings suggest how advertisers could integrate insights from
visual, auditory, and linguistic analyses to optimize viewers’ attention allocation.

6 Discussion and Future Work

Understanding how consumers allocate their attention to baby products in video
ads is crucial for advertisers. Based on the findings from our analysis of visual,
audio, and linguistic features in Tables 2, S1, S2, and S3, we discuss insights
below.
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Visual, auditory, and linguistic features each play a pivotal role in shaping
consumer attention in baby product video ads. Our analysis underscores the
importance of visual elements like color contrast, brightness, and scene com-
plexity, which significantly affect attention interruption. Audio features are also
influential; our results indicate that higher RMS levels (i.e., loudness) can reduce
attention interruption. Linguistically, incorporating security-related terms and
expressions into the narrative of infant formula ads can effectively alleviate view-
ers’ concerns, particularly those of adult consumers. This strategy not only reas-
sures potential customers about product safety but also enhances engagement.
Notably, our findings suggest that security-focused language reduces attention
interruption, allowing viewers to maintain focus on key information.

While our study provides valuable insights and contributions, it naturally
has limitations. First, our study primarily focuses on infant formula ads. Future
research can expand the dataset to include a wider variety of baby products, a
larger set of video stimuli, and more diverse shopper socio-economic demograph-
ics. Second, attention interruption may affect viewers’ experience and recall of
the products featured in video ads. Though we provide insights on the multi-
modal drivers of attention interruption for ad design, it is worth to examine
whether the points of attention align with the area of products. To this end,
researchers can develop methods for real-time attention tracking and interrup-
tion prediction and investigate how multimodal features direct viewers’ attention
to advertised products. Third, researchers can explore personalized ad recom-
mendations based on individual viewer preferences, conduct longitudinal studies
to examine how attention patterns and ad effectiveness evolve over time, ana-
lyze how attention interruption varies across different platforms, and study the
impact of external factors such as time of day, viewer’s mood, or concurrent
activities can provide deeper insights. By addressing these areas, future research
can further enhance the understanding and application of multimodal features
in advertising, ultimately leading to more effective and engaging video ads for
baby products.

7 Conclusion

Our study contributes to the understanding of shoppers’ attention to baby prod-
uct video ads by introducing the first public dataset in this field. Our comprehen-
sive analysis demonstrates how multimodal features, including visual, auditory,
and linguistic aspects, influence shoppers’ attention during video ads. The find-
ings provide valuable practical insights for advertisers aiming to optimize their
video ad strategies. Our proposed multimodal feature-infused model achieves
the best performance among various machine learning algorithms, establishing
a benchmark for future research. This highlights the necessity for further explo-
ration and refinement in this domain.



316 W. Xie et al.

References

1. Ahmed, S.T.: The Language of the Creative Person: Validating the Use of Linguis-
tic Analysis to Assess Creativity. San Jose State University (2021)

2. Al-Mosaiwi, M., Johnstone, T.: In an absolute state: elevated use of absolutist
words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psy-
chol. Sci. 6(4), 529–542 (2018)

3. Alemdag, E., Cagiltay, K.: A systematic review of eye tracking research on multi-
media learning. Comput. Educ. 125, 413–428 (2018)

4. Baele, S.J., Sterck, O.C.: Diagnosing the securitisation of immigration at the EU
level: a new method for stronger empirical claims. Polit. Stud. 63(5), 1120–1139
(2015)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
6. Burkhardt, H.A., Alexopoulos, G.S., Pullmann, M.D., Hull, T.D., Areán, P.A.,

Cohen, T.: Behavioral activation and depression symptomatology: longitudinal
assessment of linguistic indicators in text-based therapy sessions. J. Med. Inter-
net Res. 23(7), e28244 (2021)

7. Drewes, H., Pfeuffer, K., Alt, F.: Time-and space-efficient eye tracker calibration.
In: Proceedings of the 11th ACM Symposium on Eye Tracking Research & Appli-
cations, pp. 1–8 (2019)

8. Everdell, I.: The relationship between bottom-up saliency and gaze behaviour dur-
ing audiovisual speech perception. Ph.D. thesis (2009)

9. Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University
Press (2009)

10. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat., 1189–1232 (2001)

11. Green, M.C., Brock, T.C.: The role of transportation in the persuasiveness of public
narratives. J. Pers. Soc. Psychol. 79(5), 701 (2000)

12. Grewal, R., Gupta, S., Hamilton, R.: Marketing insights from multimedia data:
text, image, audio, and video (2021)

13. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector
machines. IEEE Intell. Syst. Their Appl. 13(4), 18–28 (1998)

14. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal
problems. Technometrics 12(1), 55–67 (1970)

15. Huang, Q., Veeraraghavan, A., Sabharwal, A.: TabletGaze: dataset and analysis
for unconstrained appearance-based gaze estimation in mobile tablets. Mach. Vis.
Appl. 28, 445–461 (2017)

16. Johnsen, J.A.K., Vambheim, S.M., Wynn, R., Wangberg, S.C.: Language of moti-
vation and emotion in an internet support group for smoking cessation: explo-
rative use of automated content analysis to measure regulatory focus. Psychol.
Res. Behav. Manag., 19–29 (2014)

17. Kastrati, A., et al.: EEGEyeNet: a simultaneous electroencephalography and eye-
tracking dataset and benchmark for eye movement prediction. arXiv preprint
arXiv:2111.05100 (2021)

18. Kellaris, J.J., Cox, A.D., Cox, D.: The effect of background music on ad processing:
a contingency explanation. J. Mark. 57(4), 114–125 (1993)

19. Kirillov, A., et al.: Segment anything. arXiv:2304.02643 (2023)
20. Krafka, K., et al.: Eye tracking for everyone. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pp. 2176–2184 (2016)

http://arxiv.org/abs/2111.05100
http://arxiv.org/abs/2304.02643


Multimodal Drivers of Attention Interruption to Baby Product Video Ads 317

21. Luan, L., Liu, W., Zhang, R., Hu, S.: Introducing cognitive psychology in film
studies: redefining affordance. Int. J. Educ. Hum. 2(3), 70–78 (2022)

22. Luke, S.G., Christianson, K.: The Provo Corpus: a large eye-tracking corpus with
predictability norms. Behav. Res. Methods 50, 826–833 (2018)

23. Machajdik, J., Hanbury, A.: Affective image classification using features inspired
by psychology and art theory. In: Proceedings of the 18th ACM International
Conference on Multimedia, pp. 83–92 (2010)

24. Masciocchi, C.M., Mihalas, S., Parkhurst, D., Niebur, E.: Everyone knows what is
interesting: salient locations which should be fixated. J. Vis. 9(11), 25 (2009)

25. Matz, S.C., Segalin, C., Stillwell, D., Müller, S.R., Bos, M.W.: Predicting the
personal appeal of marketing images using computational methods. J. Consum.
Psychol. 29(3), 370–390 (2019)

26. McCullough, M.E., Root, L.M., Cohen, A.D.: Writing about the benefits of an
interpersonal transgression facilitates forgiveness. J. Consult. Clin. Psychol. 74(5),
887 (2006)

27. Mejova, Y., Zhang, A.X., Diakopoulos, N., Castillo, C.: Controversy and sentiment
in online news. arXiv preprint arXiv:1409.8152 (2014)

28. Mele, M.L., Federici, S.: Gaze and eye-tracking solutions for psychological research.
Cogn. Process. 13, 261–265 (2012)

29. Opoku, R.A., Hultman, M., Saheli-Sangari, E.: Positioning in market space: the
evaluation of Swedish universities’ online brand personalities. J. Mark. High. Educ.
18(1), 124–144 (2008)

30. Overgoor, G., Rand, W., van Dolen, W., Mazloom, M.: Simplicity is not key:
understanding firm-generated social media images and consumer liking. Int. J.
Res. Mark. 39(3), 639–655 (2022)

31. Palazzi, A., Abati, D., Solera, F., Cucchiara, R., et al.: Predicting the driver’s focus
of attention: the DR (eye) VE project. IEEE Trans. Pattern Anal. Mach. Intell.
41(7), 1720–1733 (2018)

32. Pieters, R., Wedel, M.: Attention capture and transfer in advertising: brand, pic-
torial, and text-size effects. J. Mark. 68(2), 36–50 (2004)

33. Pieters, R., Wedel, M., Batra, R.: The stopping power of advertising: measures
and effects of visual complexity. J. Mark. 74(5), 48–60 (2010)

34. Rosenblatt, F.: Principles of neurodynamics. Perceptrons and the theory of brain
mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY (1961)

35. Schweitzer, S., Waytz, A.: Language as a window into mind perception: how mental
state language differentiates body and mind, human and nonhuman, and the self
from others. J. Exp. Psychol. Gen. 150(8), 1642 (2021)

36. Van der Stigchel, S., Theeuwes, J.: The relationship between covert and overt
attention in endogenous cuing. Percept. Psychophys. 69(5), 719–731 (2007)

37. Theeuwes, J.: Top-down and bottom-up control of visual selection. Acta Physiol.
(Oxf) 135(2), 77–99 (2010)

38. Wedel, M., Pieters, R., et al.: Eye tracking for visual marketing. Found. Trends R©
Market. 1(4), 231–320 (2008)

39. Xiao, L., Kim, H.J., Ding, M.: An introduction to audio and visual research and
applications in marketing. Rev. Market. Res. 10, 213–253 (2013)

40. Xie, W., Lee, M.H., Chen, M., Han, Z.: Understanding consumers’ visual attention
in mobile advertisements: an ambulatory eye-tracking study with machine learning
techniques. J. Advertising, 1–19 (2023)

http://arxiv.org/abs/1409.8152


318 W. Xie et al.

41. Zhang, S., Lee, D., Singh, P.V., Srinivasan, K.: What makes a good image? Airbnb
demand analytics leveraging interpretable image features. Manage. Sci. 68(8),
5644–5666 (2022)

42. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: MPIIGaze: real-world dataset and
deep appearance-based gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell.
41(1), 162–175 (2017)



Facial Wrinkle Segmentation for Cosmetic
Dermatology: Pretraining with Texture

Map-Based Weak Supervision

Junho Moon1 , Haejun Chung1(B) , and Ikbeom Jang2(B)

1 Hanyang University, 04763 Seoul, Republic of Korea
{jhmoon6807,haejun}@hanyang.ac.kr

2 Hankuk University of Foreign Studies, 17035 Yongin, Republic of Korea
ijang@hufs.ac.kr

Abstract. Facial wrinkle detection plays a crucial role in cosmetic der-
matology. Precise manual segmentation of facial wrinkles is challenging
and time-consuming, with inherent subjectivity leading to inconsistent
results among graders. To address this issue, we propose two solutions.
First, we build and release the first public facial wrinkle dataset, ‘FFHQ-
Wrinkle’, an extension of the NVIDIA FFHQ dataset. It includes 1,000
images with human labels and 50,000 images with automatically gen-
erated weak labels. This dataset could serve as a foundation for the
research community to develop advanced wrinkle detection algorithms.
Second, we introduce a simple training strategy utilizing texture maps,
applicable to various segmentation models, to detect wrinkles across the
face. Our two-stage training strategy first pretrain models on a large
dataset with weak labels (N = 50k), or masked texture maps generated
through computer vision techniques, without human intervention. We
then finetune the models using human-labeled data (N = 1k), which
consists of manually labeled wrinkle masks. The network takes as input
a combination of RGB and masked texture map of the image, comprising
four channels, in finetuning. We effectively combine labels from multi-
ple annotators to minimize subjectivity in manual labeling. Our strate-
gies demonstrate improved segmentation performance in facial wrinkle
segmentation both quantitatively and visually compared to existing pre-
training methods. The dataset is available at https://github.com/labhai/
ffhq-wrinkle-dataset.

Keywords: Facial wrinkle segmentation · Weakly supervised
learning · Texture map pretraining · Transfer learning

1 Introduction

With the growing interest in dermatological diseases and skin aesthetics, pre-
dicting facial wrinkles is becoming increasingly significant. Facial wrinkles serve
as critical indicators of aging [2,19,20], and are essential for evaluating skin
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Fig. 1. Two-stage training for facial wrinkle segmentation. (a) Weakly supervised pre-
training stage: the model learns to extract masked texture maps from RGB face images.
(b) Supervised finetuning stage: the model refines its ability to extract facial wrinkles
from RGB-masked face images and masked texture maps. The model parameters are
initialized with the weights from the weakly supervised pretraining stage.

conditions [13,29], diagnosing dermatological disorders [30], and planning pre-
treatment protocols for skin management [1,27]. Nevertheless, the manual detec-
tion of facial wrinkles poses considerable challenges. Accurate detection and
analysis of facial wrinkles necessitate a high level of expertise, typically available
only through well-trained professionals such as dermatologists. This process is
time-consuming and entails substantial costs due to the extensive time and effort
required by the experts.

Recently, numerous studies have focused on the automatic segmentation of
facial wrinkles through the application of deep learning techniques [4,14,15,25,
26,34]. Nevertheless, these deep learning-based approaches are notably data-
intensive. Due to the intricate distribution of facial wrinkles across the face,
analyzing extensive collections of images can be exceedingly resource-intensive if
each wrinkle must be individually evaluated. Furthermore, the manual analysis
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procedure is fraught with subjectivity. The assessments of individual experts
can differ significantly based on their experience, level of training, and personal
biases, thereby complicating the consistency and reproducibility of the analysis
results.

To address these challenges, we propose a two-stage training strategy, as illus-
trated in Fig. 1. This approach utilizes computer vision techniques, specifically
filters, to generate many weakly labeled wrinkle masks (N = 50,000) without
human intervention for weakly supervised pretraining. A smaller set of accu-
rately labeled wrinkle masks (N = 1,000) is employed for supervised finetuning.
This method significantly decreases the time and cost associated with manual
wrinkle labeling, providing substantial advantages over traditional methodolo-
gies. To ensure the development of a generalized and robust model, we conducted
experiments using a dataset comprising images captured from various angles,
lighting conditions, races, ages, and skin conditions. We quantitatively analyzed
the challenges associated with consistent manual wrinkle labeling across such
a diverse dataset and integrated data labeled by multiple annotators to reduce
subjectivity during the finetuning stage. No public dataset exists for full-face
wrinkle segmentation, although there are a few private datasets. To address this
gap, we have made our dataset publicly accessible to enhance the reproducibility
and reliability of our results. This initiative aims to reduce the manual labeling
costs for future research and serve as a benchmark dataset.

2 Related Works

2.1 Deep Learning-Based Facial Wrinkle Segmentation

Deep learning-based methods for facial wrinkle segmentation aim to enable neu-
ral network models to learn the features necessary for accurate wrinkle detection
autonomously. Kim et al. [14] introduced a semi-automatic labeling strategy to
enhance performance by extracting texture maps from face images and combin-
ing them with roughly labeled wrinkle masks, utilizing a U-Net architecture [23]
for segmentation. In a subsequent study [15], they further improved segmentation
accuracy by implementing a weighted deep supervision technique, which employs
a weighted wrinkle map to more precisely calculate the loss for the downsampled
decoder, outperforming traditional deep supervision methods. Yang et al. [34]
developed Striped WriNet, which integrates a Striped Attention Module com-
posed of Multi-Scale Striped Attention and Global Striped Attention within a
U-shaped network. This approach applies an attention mechanism across multi-
ple scales, effectively segmenting both coarse and fine wrinkles.

2.2 Weakly Supervised Learning

Weakly supervised learning is a methodology that trains models using incomplete
or inaccurate labeled data instead of fully labeled data in situations where strong
supervision information is lacking [36]. Xu et al. [33] proposed CAMEL, a weakly
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Fig. 2. Training Dataset. (a) High-resolution face images. (b) Masked texture maps
extracted from face images, which include information about facial features. (c) Reliable
manual wrinkle masks created by combining the results of multiple annotators.

supervised learning framework that uses a MIL-based label expansion technique
to divide images into grid-shaped instances and automatically generate instance-
level labels, enabling histopathology image segmentation with only image-level
labels. Shen et al. [11] trained a deep learning model using only scribbles on
whole tumors and healthy brain tissue, along with global labels for the presence
of each substructure, to segment all sub-regions of brain tumors.

3 Dataset

3.1 Dataset Specifications

The first public facial wrinkle dataset, ‘FFHQ-Wrinkle’, comprises pairs of face
images and their corresponding wrinkle masks. We focused on wrinkle labels
while utilizing the existing face image dataset FFHQ (Flickr-Faces-HQ) [12],
which contains 70,000 high-resolution (1024 × 1024) face images captured under
various angles and lighting conditions. The dataset we provide consists of one
set of manually labeled wrinkle masks (N = 1,000) and one set of ‘weak’ wrinkle
masks, or masked texture maps, generated without human labor (N = 50,000).
We selected 50,000 images from the FFHQ dataset, specifically image IDs 00000
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Table 1. Demographic attributes of the dataset. The ‘Human-labeled’ data represents
the 1,000 face images manually labeled by human annotators and the ‘Weakly-labeled’
data refers to the 50,000 images labeled without human intervention.

Dataset Human-labeled Weakly-labeled

Sample size 1000 50000

Age 0–9 / 10–19 / 20–29 / 66 / 68 / 233 / 7030 / 4448 / 13804 /

30–39 / 40–49 / 50–69 / 70+ 246 / 186 / 161 / 40 10960 / 6931 / 5550 / 1277

Sex Male / Female 471 / 529 26929 / 23071

Race/ Ethnicity White / Asian / Latino Hispanic / 587 / 210 / 67 / 29728 / 11121 / 3895 /

Black / Middle Eastern / Indian 81 / 37 / 18 / 2383 / 2053 / 820

to 49999. We used these 50,000 face images to create the weakly labeled wrinkles
and randomly sampled 1,000 images from these to create the ground truth wrin-
kles. The methods for generating weakly labeled wrinkles and ground truth wrin-
kles are discussed in Sect. 4.2. Table 1 summarizes estimated demographic infor-
mation of the dataset–i.e. age, race, and sex. The age and sex data were sourced
from the FFHQ-Aging [22] dataset, where at least three annotators labeled each
image. The race/ethnicity attribute was obtained through facial attribute anal-
ysis using the DeepFace1 framework. Hence, the demographic information may
include errors. As illustrated in Fig. 2, the dataset consists of individuals of
varying ages, sex, and race/ethnicity, featuring a range of skin conditions such
as freckles, acne, and pigmentation. This diversity makes the dataset particu-
larly suitable for training models to handle the wide array of skin conditions
encountered in clinical settings. The dataset is publicly available at https://
github.com/labhai/ffhq-wrinkle-dataset.

3.2 Ground Truth Wrinkle Annotation

For ground truth wrinkles, we manually annotated the face images. The annota-
tion process involved three annotators with extensive experience in image pro-
cessing and analysis. Wrinkles can be categorized into two types-dynamic wrin-
kles and static wrinkles [31]. Dynamic wrinkles are formed by facial muscles
and appear with expressions but disappear when the face is at rest. Static (per-
manent) wrinkles are visible even when the face is at rest and result from the
repeated formation of dynamic wrinkles over time. We annotated both types of
wrinkles without distinguishing between them. Given the subjectivity inherent
in wrinkle data, a consistent standard for wrinkle assessment was established
prior to the commencement of labeling. The annotators conducted three syn-
chronization sessions to minimize inter-rater variability. The annotation primar-
ily targeted the forehead, crow’s feet, and nasolabial folds, encompassing the
overall facial area. Due to the high resolution and diversity of the dataset—
comprising various races, skin conditions, backgrounds, and angles—achieving
consistent labeling results proved challenging, even with established standards

1 https://github.com/serengil/deepface.

https://github.com/labhai/ffhq-wrinkle-dataset
https://github.com/labhai/ffhq-wrinkle-dataset
https://github.com/serengil/deepface
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Fig. 3. Ambiguity in wrinkle evaluation. The labeling results from three annotators
for the same image are different.

Table 2. Inter-rater agreement of manual wrinkle annotation. The Jaccard similarity
index and Pearson correlation coefficient between different annotators are analyzed.

Metric Annotators A&B Annotators B&C Annotators A&C Average

Jaccard similarity index 0.2631 0.2962 0.3182 0.2925

Pearson correlation coefficient 0.4167 0.4559 0.4928 0.4551

for wrinkle assessment, as illustrated in Fig. 3. Consequently, as demonstrated
in Table 2, the inter-rater agreement was low, underscoring the highly subjective
nature of wrinkle assessments.

4 Method

4.1 Model Architecture

We evaluated our proposed method using the U-Net [23] and Swin UNETR [9]
architectures, with U-Net serving as the base model for ablation studies and
additional experiments. As depicted in Fig. 1, the U-Net model features a stan-
dard architecture comprising four encoder blocks and four decoder blocks. The
Swin UNETR model employs an encoder with a window size of 16 and patches
of size 4 × 4, projecting the input patch into a 48-dimensional embedding space.
This model includes four encoder blocks, each consisting of two successive Swin
Transformer blocks [16], and four decoder blocks.

4.2 Training Strategy

We train the segmentation model using a substantial number of masked texture
maps in a weakly supervised manner, followed by finetuning with a smaller set
of reliably manually labeled wrinkle masks in a supervised manner. This train-
ing strategy, which involves finetuning the weights of a pretrained model that
extracts facial textures using human-labeled wrinkle data, significantly enhances
the model’s capability to detect facial wrinkles. The overall training pipeline is
illustrated in Fig. 1.
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Weakly Supervised Pretraining Stage. In the pretraining stage, we utilized
weakly labeled wrinkle data automatically extracted through computer vision
techniques without human intervention as the ground truth. Figure 4 illustrates
the pipeline for generating weakly labeled wrinkles for the weakly supervised
pretraining stage. Utilizing Eq. (1), we extracted the texture map [14] from the
face image through a Gaussian kernel-based filter.

T (x, y) = (1 − I(x, y)
1 + IG(σ)(x, y)

) × 255 (1)

where G represents the Gaussian kernel, σ denotes its standard deviation, IG(σ)

is the Gaussian filtered image, and (x, y) are the pixel coordinates in the image.
Following the methodology in [14], we set the Gaussian kernel’s standard devia-
tion to 5 and its size to 21× 21 for texture map extraction. The extracted texture
map contains detailed information about the contours, curves, and skin textures
of the face image. However, as the texture map includes numerous false posi-
tives from the background, we employ a BiSeNet [35] architecture-based facial
parsing deep learning model2 to mask non-facial regions, resulting in the final
masked texture map used as ground truth. We avoid converting the masked
texture map into a binary mask due to the variability in the size, shape, and
depth of wrinkles, which makes determining an appropriate threshold challeng-
ing. Figure 2-(b) shows the masked texture map used as the final ground truth
in the weakly supervised pretraining stage.

In the weakly supervised pretraining stage, the model takes a 3-channel RGB
face image as input and outputs a 1-channel masked texture map (Fig. 1-(a)).
We use mean squared error (MSE) loss [21] to optimize the model, calculated as
shown in Eq. (2).

MSE(ŷ, y) =
1
n

n∑

i=1

(ŷi − yi)
2 (2)

where ŷi and yi are the model output and the masked texture map, respectively.

Supervised Finetuning Stage. For the ground truth in the finetuning stage,
we utilized human-labeled wrinkle data generated as described in Sect. 3.2.
Figure 5 illustrates the pipeline of the ground truth generation of the wrinkle
mask. To produce a reliable ground truth wrinkle mask, we used majority voting
to retain only the pixels that were labeled by at least two groups, thereby reduc-
ing variability among the annotators. Figure 2-(c) displays the manual wrinkle
mask used as the final ground truth in the supervised finetuning stage. As model
inputs, we use masked face images, where non-facial regions were masked using
a facial-parsing model. Additionally, we included masked texture maps, which
were used as ground truth in the pretraining stage, as auxiliary inputs.

In the supervised finetuning stage, the model takes as input a 3-channel RGB
face image with only the facial regions and a 1-channel masked texture map.

2 https://github.com/zllrunning/face-parsing.PyTorch.

https://github.com/zllrunning/face-parsing.PyTorch
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Fig. 4. Weakly labeled wrinkle generation pipeline. After extracting the texture map
from the face image, we mask the non-facial regions to generate a masked texture map
containing information on facial features. This masked texture map is then used as a
weakly labeled wrinkle.

It then produces a 2-channel output indicating the presence of wrinkles and
background. This stage begins with the model parameters from the pretraining
stage, where the model was weakly supervised to extract masked texture maps
from face images. Using transfer learning, we refine the model by adjusting
its weights with manually labeled wrinkle masks. This process enhances the
model’s ability to detect facial wrinkles by building on the general facial texture
extraction skills developed during pretraining. We optimize the model using soft
Dice loss [5], as shown in Eq. (3).

DL(p, g) = 1 − 1
C

C∑

c=1

2
∑N

i=1 pi,cgi,c∑N
i=1 pi,c +

∑N
i=1 gi,c

(3)

where C is the total number of classes, N is the total number of pixels, pi,c

represents the predicted probability for pixel i belonging to class c, and gi,c

represents the ground truth label for pixel i belonging to class c, respectively.

5 Experiments

5.1 Implementation Details

In both the weakly supervised pretraining and supervised finetuning stages, we
utilize the original 1024× 1024 image-label pairs as inputs without resizing. The
AdamW optimizer [18] is employed, configured with a weight decay of 0.05, β1

set to 0.9, and β2 set to 0.999. We also implement the SGDR scheduler [17]. To
maintain dataset diversity, we randomly apply various augmentations, including
horizontal flipping, scaling, affine transformation, elastic transformation, grid
distortion, and optical distortion during training. The dataset is partitioned
into 80% for training, 10% for validation, and 10% for testing.
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Fig. 5. Ground truth wrinkle generation pipeline. We combine data labeled by multiple
annotators through majority voting to create a reliable ground truth wrinkle.

Weakly Supervised Pretraining Stage. In the weakly supervised pretrain-
ing stage, the model is trained for 300 epochs. The SGDR scheduler starts with
an initial period of 100 epochs, with the learning rate beginning at a maximum
of 0.001 and decaying to 0 over the period. At the end of each period, the length
of the next period doubles that of the previous one. The batch size is 26 for
U-Net and 22 for Swin UNETR. All pretraining processes were performed on an
NVIDIA A100 Tensor Core GPU.

Supervised Finetuning Stage. In the supervised finetuning stage, the U-Net
model is finetuned for 150 epochs, while the Swin UNETR model is finetuned for
300 epochs. The batch size is 14 for both models. The SGDR scheduler’s initial
period length is set to 50 epochs for U-Net and 100 epochs for Swin UNETR.
The learning rate starts at a maximum of 0.0001 and decreases to 0 within each
period. At the end of each period, the length of the next period doubles that of
the previous one, with the maximum learning rate set to 90% of the last period’s
maximum. All finetuning processes are performed on RTX A6000 and RTX 6000
Ada GPUs.

5.2 Evaluation Metrics

To evaluate the performance of the final finetuned model in wrinkle segmenta-
tion, we use the Jaccard Similarity Index (JSI), F1-score, and Accuracy (Acc).

The Jaccard Similarity Index measures the overlap between the predicted
wrinkle regions and the ground truth regions, defined as follows:

JSI =
|A ∩ B|
|A ∪ B| (4)

where A is the predicted segmentation, and B is the actual label.
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The F1-score is the harmonic mean of precision and recall, while accuracy
measures the proportion of correctly predicted pixels out of the total pixels.
They are defined as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score = 2 × Precision × Recall
Precision + Recall

(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

where TP is the number of true positives, FP is the number of false positives,
FN is the number of false negatives, and TN is the number of true negatives.

5.3 Results

To evaluate the performance of our proposed method, we first compare it with
the latest methods: the semi-automatic labeling and weighted deep supervision
method [15], and the Striped WriNet method [34]. Because the primary contri-
bution of this work is the pretraining strategy, we also compare it with other
pretraining techniques. They include using ImageNet pretrained models and self-
supervised learning methods. For the ImageNet pretrained models, we replace
the encoder part of the U-shape architecture with models pretrained on the
ImageNet-1K dataset [24]; specifically, we use ResNet-50 [10] for U-Net and
Swin-T [16] for Swin UNETR. For the self-supervised learning methods, we use
denoising self-supervised learning [3] for pretraining U-Net, setting the Gaussian
distribution’s standard deviation to 0.2, and masked image prediction [32] for
pretraining Swin UNETR, using 32× 32 masked patches and a 60% masking
ratio. All training hyperparameters follow those specified in Sect. 5.1. To assess
performance in scenarios with very limited labeled data, we train our model on
the full training set (100%, N = 800) and on a randomly sampled subset (5%,
N = 40).

The proposed method outperforms the latest wrinkle segmentation meth-
ods and the ones using the same model architectures with different pertaining
methods. The performance gap is much larger in data-limited situations-i.e.,
fine-tuned on 5% of the manually-labeled data. Table 3 shows quantitative com-
parisons of wrinkle segmentation performance for each method using U-Net and
Swin UNETR architectures. Our method consistently achieves the highest per-
formance across both datasets and architectures. Figure 6 presents a qualitative
comparison of our method with denoising pretraining using U-Net, which is the
next best performing method in experiments using 100% of the data.
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Table 3. Quantitative comparisons of facial wrinkle segmentation performance. Our
method is compared against two latest wrinkle segmentation methods, models trained
without pretraining, and models using different pretraining strategies. These pretrain-
ing techniques include masked image prediction, denoising, and pretraining encoders
using the ImageNet-1K dataset.

Method 100% (N = 800) 5% (N = 40) nparams

JSI F1-score Acc JSI F1-score Acc

Semi automatic labeling + WDS [15] 0.4552 0.6256 0.9954 0.3384 0.5057 0.9928 17.269M

Striped WriNet [34] 0.4665 0.6294 0.9956 0.2382 0.3761 0.9903 6.223M

Swin UNETR with pretraining No pretraining 0.4220 0.5858 0.9949 0.2545 0.3944 0.9932 25.153M

ImageNet-1K [24] (Swin-T [16]) 0.4385 0.6028 0.9952 0.2877 0.4351 0.9939 100.56M

Masked image modeling [32] 0.4450 0.6079 0.9954 0.2963 0.4452 0.9937 25.153M

Texture map (ours) 0.4643 0.6271 0.9953 0.3416 0.4970 0.9944 25.155M

U-Net with pretraining No pretraining 0.4638 0.6278 0.9955 0.3021 0.4551 0.9918 17.263M

ImageNet-1K [24] (ResNet-50 [10]) 0.4664 0.6296 0.9955 0.3428 0.5018 0.9934 32.521M

Denoising [3] 0.4709 0.6339 0.9955 0.2840 0.4338 0.9898 17.263M

Texture map (ours) 0.4831 0.6442 0.9957 0.3512 0.5116 0.9929 17.264M

Table 4. Ablation study of the effectiveness of adding a masked texture map as an
additional model input. We conduct experiments using U-Net. The segmentation per-
formance improves when using the masked texture map as an additional input during
finetuning after texture map training.

Method Model input 100% (N = 800) 5% (N = 40)

JSI F1-score Acc JSI F1-score Acc

No pretraining RGB (3-ch) 0.4638 0.6278 0.9955 0.3021 0.4551 0.9918

RGB+Texture (4-ch) 0.4606 0.6221 0.9954 0.3208 0.4743 0.9924

Texture map pretrainingRGB (3-ch) 0.4796 0.6422 0.9957 0.3442 0.5051 0.9919

RGB+Texture (4-ch, ours) 0.4831 0.6442 0.9957 0.3512 0.5116 0.9929

5.4 Ablation Study

Incorporating the masked texture map as an additional input during the fine-
tuning stage led to significant improvements in wrinkle segmentation, demon-
strating the effectiveness of our approach. Table 4 presents quantitative compar-
isons using the U-Net architecture to assess the benefits of including a 1-channel
masked texture map as an additional input during finetuning. We compare our
pretraining method (Texture map pretraining) with a conventional approach
(No pretraining), which is trained solely on manually labeled data, both with
(RGB+Texture) and without (RGB) the additional masked texture map input.

6 Discussion

Our approach achieves state-of-the-art performance when compared to two pub-
licly released models specifically designed for wrinkle segmentation, in addition
to outperforming ImageNet pretrained models and self-supervised learning meth-
ods. We demonstrate that our two-stage training strategy significantly enhances
wrinkle segmentation efficiency. Furthermore, our approach shows the potential
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Fig. 6. Qualitative comparison against the denoising pretraining method. The blue
boxes highlight areas with significant visual differences. (a) Face image. (b) Ground
truth wrinkle. (c) Predicted wrinkles from a model using self-supervised learning with
denoising pretraining, followed by finetuning with a manual wrinkle mask. (d) Predicted
wrinkles from our model, trained with weak supervision using a masked texture map
and then finetuned with a manual wrinkle mask. (Color figure online)

to achieve high performance with limited data, which could enhance scalability
and flexibility in clinical settings. By using a large amount of weakly labeled
data obtained automatically through filters for weakly supervised training and
then finetuning with a small amount of reliable manually labeled data, we sig-
nificantly reduce the time and cost required for manual labeling while improving
the segmentation performance of facial wrinkles. To minimize subjectivity in
the manual labeling process, we effectively combine data labeled by multiple
annotators, resulting in more reliable training data. Additionally, to enhance
the reproducibility of our research and reduce the manual labeling costs for sub-
sequent studies, we release the dataset publicly available, which can also serve
as a benchmark dataset for future research. The performance improvement of
facial wrinkle segmentation through transfer learning has not been conducted
in previous research, indicating that our approach can be efficiently integrated
into various tasks related to facial wrinkle detection and segmentation tasks.
Additionally, since this research falls under the broader category of thin object
detection tasks, it is expected to be widely applicable to studies requiring seg-
mentation of thin objects (e.g., fundus imaging, vascular imaging).

According to our experimental results, the performance of the Swin UNETR,
a hybrid transformer-CNN architecture, is lower compared to the standard CNN-
based U-Net. In our case, the dataset used for finetuning is relatively small,
making it insufficient to generalize transformer models, which primarily perform



Facial Wrinkle Segmentation 331

Fig. 7. Example of a false wrinkle detection. (a) Face image. (b) Masked face image
used as the model input during the finetuning stage. (c) Visualization of the model’s
predicted segmentation after the finetuning stage.

well in data-intensive environments due to their low inductive bias [6]. Espe-
cially in the case of wrinkles, the relationship between adjacent pixels (skin)
plays a crucial role in their assessment. Therefore, the CNN-based standard
U-Net, which excels at capturing local information, tends to outperform the
Swin UNETR, which includes transformer blocks specialized in capturing global
context through multi-head attention mechanisms. Nevertheless, our experimen-
tal results show that the performance of Swin UNETR progressively improves
through our method, suggesting that with more data and longer pretraining,
there is significant potential for performance enhancement. Note that accuracy
is very high in all experiments since wrinkles occupy a very small proportion of
the face and most of the predictions are background pixels.

However, our approach has limitations. As shown in Fig. 7, objects similar to
wrinkles, such as hair or fingers covering the face, are mistakenly recognized as
wrinkles in the images. This results in false positives during the wrinkle segmen-
tation process. To address this issue, upcoming studies will focus on developing
techniques that can accurately segment facial regions and precisely distinguish
between wrinkle and non-wrinkle areas to reduce false positives. Also, there may
be benefits to including the type of wrinkle (e.g., static vs. dynamic wrinkle)
to each wrinkle in the facial image because treatment strategies often differ by
the type in clinics [7,8,28]. Despite majority voting, the subjectivity in wrinkle
annotation remains a challenge. Moving forward, we plan to collaborate with
dermatologists for wrinkle annotation and explore techniques such as soft label-
ing to improve the reliability and trustworthiness of ground truth wrinkles.

7 Conclusion

We propose a two-stage learning strategy for facial wrinkle segmentation that
leverages transfer learning from facial texture feature extraction. Specifically, the
model is pretrained using automatically generated weak wrinkle labels (masked
texture maps) to learn general facial features such as contours and skin texture.
The model is then finetuned with a smaller set of manually labeled wrinkle data
to enhance segmentation performance. This method demonstrates both qualita-
tively and quantitatively superior results, achieving state-of-the-art performance.



332 J. Moon et al.

Consequently, it significantly reduces the time and cost of manual wrinkle label-
ing, offering potential benefits in cosmetic dermatology. Additionally, the pre-
training method’s architecture-independent nature suggests its broad applicabil-
ity to various segmentation models, making it valuable not only in facial wrinkle
segmentation but also in other areas requiring the segmentation of thin objects
where manual labeling is costly. To support ongoing research and reproducibil-
ity, we have made the FFHQ-Wrinkle dataset-the first publicly available dataset
of its kind-accessible to the research community. This dataset comprises 1,000
manually labeled wrinkle images and 50,000 weakly labeled images. By sharing
this dataset, we aim to facilitate the development of more advanced wrinkle
detection models and promote further advancements in this field.
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Abstract. In recent years, significant advancements have been made
in speech recognition technology. The conformer encoder and attention-
rescoring decoding method within the portable Wenet toolkit have gar-
nered considerable attention. However, the conformer encoder in Wenet
has limitations, such as lacking inter-layer skip connections. Addition-
ally, while the attention-rescoring decoding method improves recognition
accuracy, errors from CTC beam search decoding may accumulate dur-
ing subsequent attention decoding, affecting the final recognition results.
We propose an Enhancing Conformer Models with Innovative Scoring
Matrices (ECMISM) model to address these issues. We optimized the
attention-rescoring decoding method by introducing a novel Relation-
ship Calculation Module (RCM). This module aims to mitigate error
accumulation in attention-rescoring decoding methods, thereby reduc-
ing the impact of CTC decoding errors on subsequent attention recov-
ery. Additionally, we introduce a Skip Fusion Module (SFM) to inte-
grate shallow and deep features. This addresses the limitation of the
Conformer encoder’s lack of inter-layer skip connections, enhancing the
model’s capability to capture and utilize contextual information effec-
tively. The experimental results demonstrate that our approach has
achieved outstanding performance, particularly on the relatively small
Uyghur dataset. Compared to the baseline models, our method reduces
character error rates by 0.03%, 0.35%, and 0.44% on the Aishell1, Prime-
words, and ST datasets, respectively. On the General Speech 16.1 Uyghur
dataset, our approach achieves a word error rate of 4.19%, which is 1.56%
lower than the baseline model.

Keywords: Speech Recognition · Attention-Rescoring · Relationship
Calculation Module · Skip Fusion Module · Uyghur

1 Introduction

Speech recognition technology is a technology that converts speech signals into
a format that computers can recognize. It can be used for various applications,
including voice assistants, voice search, speech-to-text notes, and translation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Traditional speech recognition methods rely on acoustic features and lan-
guage models to match speech signals with predefined patterns [1]. However,
they struggle with complex speech signals and unstable speech variations and
require significant manual feature engineering, limiting their generalization abil-
ity across different speech signals. Subsequently, Hidden Markov Models (HMMs)
[2] model speech signals and combine them with pronunciation dictionaries and
language models for recognition [3]. However, they perform poorly on long speech
sequences and are sensitive to variations and noise in speech signals. With the
development of deep learning techniques, existing speech recognition models can
be categorized into four types: models based on Connectionist Temporal Clas-
sification (CTC), models based on Recurrent Neural Networks (RNNs), models
based on attention mechanisms, and models based on hybrid approaches (HA).

The CTC [4,5] model solves the alignment problem between input and out-
put. However, the CTC model has a drawback because it relies on the indepen-
dence assumption. Liu and colleagues have proposed the Gram-CTC method [6],
which captures Long-term dependencies by introducing label dependency graphs.
The RNN effectively addresses the issue of the independence assumption, but it
is prone to challenges like vanishing and exploding gradients. To tackle this prob-
lem, the Long Short Term Memory (LSTM) [7] was proposed, and subsequently,
Jorge and colleagues introduced the Bi-directional Long Short-Term Memory
(BiLSTM) model [8], allowing for the utilization of bidirectional information,
thereby improving decoding accuracy. Recurrent Neural Network Transducer
(RNN-T) [9] introduced a new novel fusion approach that requires higher mem-
ory resources. To address the high memory and computational resource demands
of RNN-T, the Boundary Aware Transducer (BAT) was proposed. BAT intro-
duces Continuous Integrate-and-Fire (CIF) alignment to trim the lattice, signif-
icantly reducing memory and time overhead during training.

Attention models [10] have, to some extent, addressed the paralleliza-
tion issue. Lin and others introduced the Speech Transformer model [11], an
attention-based approach for speech recognition. However, the Transformer
model overlooks detailed information. The Conformer model [12] integrates the
strengths of Convolutional Neural Networks (CNNs) and Transformer mod-
els, effectively combining global and detailed information [26]. However, this
also results in higher complexity. Subsequently, Efficient Conformer [13], and
UCONV-CONFORMER [14] have improved the Conformer model’s complexity
to enhance its speed. At the forefront of these enhancements, the focus is on
elevating the Transformer encoder. Additionally, advancements in the decoder
realm encompass the bidirectional Transformer decoder and HA. The bidirec-
tional Transformer decoder considers forward and backward context informa-
tion to enhance contextual understanding. Meanwhile, the HA combines differ-
ent types of decoders to leverage their respective strengths, thereby improving
decoding accuracy and robustness.Some popular HA include CTC + Attention
[15], RNN + Attention [16], and RNN + CTC [17], among others.

The Conformer-Transformer (CT) model is the commonly used speech recog-
nition architecture. During training, a joint loss comprising CTC and attention is
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employed. Additionally, the inference process utilizes Attention-rescoring (AR).
However, its Conformer encoder is more complex and only focuses on deep fea-
tures. During the AR decoder’s decoding process, many incorrectly decoded
results are fed into the attention model [27]. In the autoregressive process, the
attention model accumulates errors, leading to the issue of error accumulation.
To address these issues, we have made improvements in the following aspects:

1. RCM (Relationship Calculation Module): We proposed the RCM, which opti-
mizes the AR decoder’s scoring method. RCM utilizes differential-based tech-
niques and novel regularization methods to compute attention scores more
effectively. It alleviates the impact of errors in CTC decoding results on sub-
sequent attention models, thereby enhancing the decoding performance of
AR.

2. SFM (Inter-layer Skip Fusion Module): We optimized the Conformer encoder
by designing an SFM. SFM effectively combines deep and shallow features by
averaging, enabling the fusion of detailed information from shallow features
and semantic information from deep features. This enhancement improves the
model’s ability to capture and utilize contextual information.

3. InLoss (Internal Loss): We introduce a downsampling method that reduces
the complexity of the Conformer encoder. InLoss calculates the difference
between downsampled and original data, incorporating this difference into
the final model loss for optimization.

2 Methods

The method of this paper follows the structure of the decoder-encoder. In the
encoder part, we use a conformer as the encoder and design a Skip-Fusion Mod-
ule (SFM) based on it to integrate shallow and deep features. Additionally, to
reduce information loss during downsampling and speed up training, we intro-
duce an InLoss module. In the decoder part, we propose a novel Relationship
Calculation Module (RCM) to address the issue of error accumulation in the
attention recovery decoding method. The overall workflow of the model is illus-
trated in Fig. 1.

2.1 Inter-layer Skip Fusion Module

The skip connections in the Conformer model are primarily present within Con-
former layers, and there are no skip connections between Conformer layers. Shal-
low layers contain more detailed information, while deep layers contain more
semantic information [28]. Therefore, we propose a method of Inter-layer skip
connections to fuse Shallow-layer features with Deep-layer features. This app-
roach can accelerate the model’s convergence and achieve good recognition per-
formance. We have adopted an additive averaging fusion method. In Fig. 1, it can
be observed that we fused the outputs of the Conformer from the 5th, 8th, and
11th layers. This is because the Conformer layers at shallower depths contain
more noise, which, in turn, adversely affects recognition results.
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Fig. 1. The overall workflow of the ECMISM + InLoss. DC2 refers to downsampling
convolution with a sampling rate of 2, and UP2 refers to uppooling with a sampling
rate 2. OL0 represents the output of layer 0, and the same applies to others. EC refers
to the output of the shared encoder. During the training process, the output of the
shared encoder undergoes joint decoding with CTC and REM decoders. The dashed
line in the figure represents the inference process. In the inference process, the CTC
decoding result is input and fed into RCM for re-decoding. When the InLoss module is
not utilized, the output shape for each encoder layer remains consistent. Specifically,
the size of OL3-11 is the same as that of OL0-2.

2.2 Internal Loss

The optimization process for conformer models has various methods, with the
most direct one being downsampling the input length. Reducing the input
sequence length can effectively reduce training time. However, if solely relying
on downsampling to reduce the length of the speech input, it inevitably leads to
a loss of information, and such loss is irreversible.

Therefore, we perform downsampling using convolutional operations with a
stride of 2 and upsampling using bilinear interpolation. The specific operation
involves replacing the original pooling downsampling operation with a convolu-
tion operation. This is because convolution is a parameterized operation, allow-
ing for subsequent optimization, while pooling is a parameter-free operation and
cannot undergo further optimization. Our approach uses bilinear interpolation
for upsampling to minimize the number of parameters.

In the specific process, the output OL2 from the second layer of the Con-
former undergoes downsampling with a convolution operation of stride 2. Sub-
sequently, it undergoes an upsampling operation using bilinear interpolation,
resulting in the output OL2’. The difference between OL2 and OL2’ is calcu-
lated, referred to as the internal loss, and is added to the final loss for joint
optimization. As training progresses, the convolution operation with a stride
of 2 learns the optimal downsampling result, minimizing information loss. This
method of internal loss reduces input length, accelerates training speed, and
maximizes the reduction of information loss.



Enhancing Conformer Models 339

The choice of using the output from the second layer of the Conformer as
the starting layer for calculating the internal loss is due to the possibility that
earlier encoding layers may contain more noise. Calculating the internal loss
too early might lead to less stable training. Unlike the reference literature [14],
our InLoss does not require a decoding process. We compute the MSE (Mean
Squared Error) Loss, as shown in Eq. (1), Eq. (2):

L(y, y′) =
1
n

∗
∑

(y, y′)2 (1)

InLoss = L(Upsample2(Conv2(OL2)),OL2) (2)

where Conv2 represents a 1D convolution with a stride of 2. Upsample2 repre-
sents upsampling with a stride of 2. Finally, we add the InLoss to the final loss
for unified optimization.

2.3 Relationship Calculation Module

In the Wenet toolkit [18], the AR decoding approach is employed, wherein the
decoding results of CTC are passed through an attention model for re-scoring
to achieve improved decoding results, as the decoding results of CTC beam
search involves selecting the top n possible outcomes as inputs for the attention
model. When the input contains a substantial number of erroneous characters,
the decoding results of the attention model are adverse. Therefore, we introduce
the RCM. RCM primarily improved the computation method of the score matrix,
as shown in Fig. 2. Firstly, it subtracts the numbers on the diagonal from the
original score matrix to obtain a difference matrix. This step weakens the asso-
ciation of each position with itself, as the diagonal numbers typically represent
the strongest association with each position. We can focus on information from
other positions through the difference matrix while considering global informa-
tion. Next, this difference matrix undergoes regularization processing to ensure
that the scores for each position fall within a specific range, ultimately yield-
ing the attention scores. After regularization processing, the resulting attention
scores can better balance the degree of association between each position and
others. This enhanced approach improves the accuracy and reliability of RCM
when computing attention.

The process of regularization is referred to as Regularization Control (RC).
Its function is shown in Fig. 3, and the calculation formula is represented by
Eq. (3). In the formula, when the value of S is smaller, the function’s highest
point is lower, resulting in lower scores along the diagonal of the score matrix.
On the other hand, when the value of R is smaller, the distribution range of
scores becomes wider, indicating a smaller inhibitory effect on the score matrix.
D represents the difference matrix.

Score = S(sigmod(R ∗ D) ∗ (1 − sigmod(R ∗ D))) (3)
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Fig. 2. Calculation process of the scoring matrix. Sc represents the original score
matrix, and Rc represents the new one. The values on the diagonal of the new score
matrix are hyperparameter S.

Fig. 3. RC function. When the input is 0, the output is our hyperparameter S, repre-
senting the score matrix’s maximum value. S controls the magnitude of self-correlation,
while R governs the aperture size of the function, controlling the values on the diagonal
matrix and the correlation at other positions.

3 Results and Analysis

In the experiment, we utilized four datasets, three Chinese and one a Uyghur
language dataset. The Chinese datasets we used were Aishell [19], Primewords
Chinese Corpus Set 1 (Primewords), and the Free ST Chinese Mandarin Corpus
(ST). For the Uyghur dataset, we utilized Common Voice 16.1 [20]. We referred
to it as Ug in the experiment.

Aishell1 contains approximately 178 h of speech data. There were 120,000
samples for training, 14,000 for validation, and 7,000 for testing. Primewords is
also a Chinese speech recognition dataset consisting of approximately 100 h of
audio data. However, unlike the Aishell 1 dataset, Primewords does not come
pre-divided into training, validation, and test sets. Following the split ratio used
in the Aishell 1 dataset, we randomly partitioned the Primewords dataset into
training, validation, and test sets with a ratio of 0.85:0.1:0.05. The total dura-
tion of the ST dataset is 109 h, consisting of 102,600 WAV files. Similarly, no
division has been performed, and we have partitioned the dataset following a
ratio of 0.85:0.1:0.05. In the Ug dataset, 147 h of validated data were available.
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The dataset already provided both test and validation sets. We incorporated all
remaining data into the training set.

On the Aishell, ST, and Ug datasets, the batch size is 36, while on the
Primewords dataset, the batch size is 24. The hyperparameter settings remain
consistent across the three Chinese datasets. However, due to linguistic differ-
ences, there are slight variations in hyperparameter settings compared to the
Uyghur dataset. The Table 1 presents the settings for other hyperparameters.
It is crucial to emphasize that CTC weight refers to the weight assigned to the
CTC branch. During the training process, the weight for the CTC decoder is set
to 0.3, while during the inference process, the CTC weight is adjusted to 0.5.
These settings align with those of our baseline system, the Wenet toolkit.

Table 1. Experimental Parameter Settings. Dff refers to the dimension of the hid-
den layer in the Feedforward Neural Network, Num Mel refers to the input feature
dimension, Accum Grad refers to Accumulated Gradient.

Parameter Name Parameter for Chinese Parameter for Ug

Num Conformer 12 12

Num Decoder 6 6

Dff 2048 2048

Epoch 240 100

Lr 0.002 0.001

CTC weigth 0.3/0.5 0.3/0.5

Num Mel 80 80

Frame Length 25 25

Frame Shift 10 10

Spec Aug True True

Accum Grad 4 4

Our baseline system was implemented using the Wenet toolkit. The standard
CT model used a downsampling rate of 4, referred to as the CT D4 model, while
the CT model with a downsampling rate of 8 was called the CT D8 model. In
the experiments, we used CT D4 and CT D8 as our baseline systems, keeping
the parameter settings consistent with Wenet. For this experiment, we utilized
a server with 4 T T4 GPUs, each with a 16GB memory capacity. The CPU used
in the server is an Intel Xeon Gold 5218R.

The evaluation metrics employed in the experiments include Character Error
Rate (CER), Word Error Rate (WER), and the model’s training time. CER is
more easily interpretable in Chinese speech recognition, while WER is influenced
by the segmentation system. Therefore, we adopt CER as the evaluation metric
for Chinese. However, for Uyghur language, we utilize WER as the evaluation
criterion. The smaller the CER and WER values, the better the performance. In
the following table, CTC-Greedy, CTC-Beam, and Attention-rescoring represent
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the CER of the decoding strategies CTC greedy search, CTC beam search, and
Attention-rescoring method.

3.1 Comparative Experiments

We selected nine popular speech recognition methods and conducted compar-
ative experiments on four datasets. Among them, CT D4 [18] and CT D8 [18]
are variants based on the Conformer Transformer model, which holds significant
importance in speech recognition. The CT D4 model reduces the input length
to one-fourth of the original size using a downsampling factor of 4, while CT D8
has a downsampling rate of 8. Both Speech Transformer [11] and Transformer
(Wenet) [18] are based on the Transformer model. Wenet’s Transformer adopts
a U-shaped architecture and combines Attention loss and CTC loss, resulting
in improved speech recognition performance. BAT [22] and RNNT [23] are both
based on the RNN-T model. RNNT integrates acoustic information with histor-
ical output information, albeit with higher training costs, while BAT effectively
reduces training costs by limiting the search path. Efficient Conformer [13] is
an improved version of the Conformer model, enhancing training and inference
speed and reducing costs by adding downsampling in the middle layers of the
Conformer. NST [24] is a semi-supervised training method that involves training
a series of models and using previously trained models to process unlabeled data,
obtaining corresponding labels for subsequent model training. Additionally, we
compared these methods with the large-scale Whisper [25] model. Unfortunately,
the Whisper version does not support Uyghur language speech recognition.

Table 2. Comparative Experiments with SOTA Models. Prime refers to the Prime-
words dataset

Model CER/Aishell1 (↓) CER/ Prime (↓) CER/ST(↓) WER/Ug(↓)

CT D4(baseline) [18] 4.61 12.90 7.95 5.75

CT D8 [18] 4.75 13.52 9.07 6.13

Speech Transformer [11] 8.97 19.27 - -

Transformer(Wenet) [18] 5.30 14.95 8.20 6.28

Paraformer [21] 4.95 13.19 7.68 6.97

BAT [22] 4.82 15.56 8.56 6.32

NST [24] 4.85 12.97 7.63 -

Whisper(base) [25] 20.04 31.19 22.66 -

Whisper(large-v3) [25] 6.94 16.88 9.22 -

Rnnt [23] 4.60 12.79 7.81 6.03

Efficient Conformer [13] 4.56 12.71 7.62 5.16

ECMISM(ours) 4.58 12.55 7.51 4.19

Table 2 reveals that compared to the baseline system CT D4, our model
achieved reductions in error rates of 0.03%, 0.35%, 0.44%, and 1.56%, respec-
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tively. Our ECMISM model significantly improved accuracy by reducing CER to
4.58% on the Aishell1 dataset, closely approaching the state-of-the-art (SOTA)
Efficient Conformer model (CER of 4.56%). Our model exhibited excellent per-
formance on the Uyghur language dataset, with a performance improvement
of 1.56% over the baseline system. However, the improvement on the Aishell1
dataset was relatively modest, attributed to the linguistic characteristics of the
Uyghur language, which has various word forms leading to increased errors
during CTC decoding. Our model effectively mitigates such cumulative errors.
While CTC decoding performs well for Mandarin Chinese, our model’s correc-
tion effect is slightly less pronounced, yielding improvements. Compared to trans-
former models, our approach leveraging global and local information significantly
enhanced encoding capabilities, reducing error rates by 0.72%, 2.4%, 0.69%, and
2.09% across the four datasets. Compared to the Efficient Conformer model, our
approach corrected errors accumulated during CTC decoding, resulting in supe-
rior decoding outcomes, notably reducing error rates by 0.97% on the Uyghur
dataset. It’s worth noting that whisper (base) performed the worst among these
datasets, attributed to its multi-tasking nature, which excels in handling mul-
tiple languages but falls short in single-language tasks compared to single-task
models.

3.2 Ablation Experiment

Table 3. Ablation Studies. ECMISM-RCM represents the experimental results after
removing RCM from ECMISM. The others follow the same logic. time refers to the
training time. Prime refers to the Primewords dataset.

Model CER(↓) Time(h)(↓)

Aishell1 Prime Aishell1 Prime

ECMISM(ours) 4.58 12.55 45 26

ECMISM-RCM 4.61 12.71 45 26

ECMISM-SFM 4.59 12.67 45 26

ECMISM-RCM-SFM 4.61 12.90 45 26

ECMISM-RCM-SFM+InLoss 4.70 14.37 32 19

ECMISM+InLoss 4.69 13.01 32 19

From Table 3, it is evident that, upon removing the RCM module, the error
rates increased by 0.03 and 0.16, while removing the SFM module resulted in
increases of 0.01 and 0.12, respectively. Simultaneously removing both modules
led to increases of 0.03 and 0.35. The results indicate that both the RCM module
and SFM module show significant improvement on the Prime dataset. On the
Aishell 1 dataset, the SFM module has a relatively minor impact. However, as
demonstrated in Table 6, the SFM module exhibits substantial advantages for
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individual models. The fusion model and our SFM function share similarities, as
both can integrate information across multiple layers. When both modules are
utilized together, a better overall performance is achieved. This is attributed to
the SFM’s effective fusion of deep and shallow features, suppressing erroneous
CTC decoding information after passing through the RCM module, resulting in
improved decoding outcomes. In addition, our ECMISM + InLoss model reduces
training time by approximately 28% while only sacrificing a minimal 0.08% and
0.11% decrease in accuracy.

3.3 Module Detail Experiment

In this section of the experiments, we only present the experimental results on the
Aishell1 and Prime words datasets. Our RCM model introduces two parameters,
namely S and R. We conducted an extensive series of experiments to assess the
impact of the S and R parameters on the experimental results, and the specific
outcomes are presented in Table 4.

Table 4. Impact of S and R Parameters on RCM.

Value of S&R CTC-Greedy(↓) CTC-Beam(↓) Attention-rescoring(↓)

Aishell1 Prime Aishell1 Prime Aishell1 Prime

S = 1, R = 1 4.96 13.07 4.96 13.06 4.59 12.67

S = 1, R = 0.5 5.06 13.52 5.06 13.52 4.69 12.93

S = 0.5, R = 0.5 None 13.95 None 13.95 None 13.14

S>1 None None None None None None

R>1 None None None None None None

S = 0.5, R = 1 5.15 13.78 5.15 13.77 4.77 13.09

The data in Table 4 were all obtained by averaging the results of 80 models.
In the table, None represents cases where the model did not converge. It can be
observed that the best performance is achieved when S, R is equal to 1. Excessive
increases or decreases in correlation can make attention scores sparse, resulting
in poor performance. In the subsequent experiments, we set S and R to their
optimal values, configured as 1.

Table 5 shows the experimental data of the RCM module. The value for
CTC greedy search in the second row is 4.98%, slightly higher than the 4.94%
reported in the Wenet paper. The Wenet code has been updated, leading to a
minor deviation in experimental results. From the table, we can see that our
RCM model achieves a CER of 4.59% and 12.67% after an average of 80 models,
surpassing Wenet’s 4.61% and 12.90%. The reason for averaging over 80 models
is that, after incorporating RCM, the later-stage models in training become
relatively stable, with minor parameter differences between them. This can be
observed in the loss curve in Fig. 4. Without using an averaging model, i.e., in
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Table 5. Validation of the Effectiveness of the RCM. AV refers to the average number
of models used in decoding.

Model AV CTC-Greedy(↓) CTC-Beam(↓) Attention-rescoring(↓)

Aishell1 Prime Aishell1 Prime Aishell1 Prime

CT D4 (baseline) 1 5.91 14.36 5.90 14.36 5.52 13.98

20 4.98 13.49 4.98 13.49 4.61 12.90

40 4.98 13.54 4.98 13.54 4.67 12.93

80 4.99 13.73 4.99 13.73 4.78 13.17

CT D4 + RCM 1 5.79 14.10 5.78 14.09 5.26 13.44

20 5.01 13.32 5.01 13.32 4.64 12.99

40 4.96 13.10 4.96 13.10 4.63 12.73

80 4.96 13.07 4.96 13.06 4.59 12.67

the case where the average model in the first and fifth rows of the table is 1,
the addition of our RCM module improved recognition accuracy by 0.26% and
0.54%.

Table 6 shows the experimental data of the SFM module. For comparison
convenience, we extracted partial data from Table 5 and placed it in Table 6.
Comparing Table 5 and Table 6, It can be observed that after adding our SFM
module, the optimal performance on the two datasets is 4.61 and 12.71, respec-
tively. The performance on the Aishell1 dataset remains consistent with the
baseline, while we achieve a performance improvement of 0.19 on the Prime-
words dataset. However, our experimental results for individual models are sig-
nificantly better than the baseline, with an improvement of 0.39 and 0.88. This is
because the fusion model also employs a method of information fusion, enhanc-
ing the decoding performance. However, the fusion model cannot be optimized
during the training process. In contrast, our SFM can be optimized during train-
ing. When used in conjunction with the RCM module, SFM achieves superior
results. This can also be observed in the loss shown in Fig. 4, where after adding
SFM, the convergence is faster, and the loss is lower.

The above experiments have confirmed the effectiveness of our ECMISM
model. Next, we incorporate the InLoss module into our model. The data in
Table 7 represents the experimental results on the Aishell1 dataset. The data
in Table 7 shows that the model incorporating the InLoss method outperforms
the CT D8 model significantly, especially when using beam search decoding.
This also indicates that the InLoss method has certain advantages in feature
extraction. Compared to CT D4, our model also significantly improves training
speed, saving approximately 28% of training time.
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Table 6. Validation of the Effectiveness of SFM.

Model AV CTC-Greedy(↓) CTC-Beam(↓) Attention-rescoring(↓)

Aishell1 Prime Aishell1 Prime Aishell1 Prime

CT D4 (baseline) 1 5.91 14.36 5.90 14.36 5.52 13.98

20 4.98 13.49 4.98 13.49 4.61 12.90

CT D4 + SFM 1 5.69 14.03 5.70 14.03 5.13 13.10

20 4.99 13.19 4.99 13.19 4.67 12.71

40 4.98 13.19 4.98 13.18 4.61 12.72

60 4.97 13.34 4.97 13.34 4.64 12.83

80 4.96 13.47 4.96 13.46 4.64 12.89

Table 7. Validation of the Effectiveness of InLoss.

Model AV CG(↓) CB(↓) AR(↓) Time(h)

CT D8 1 5.75 5.74 5.31 31

20 5.10 5.10 4.78

40 5.07 5.07 4.75

60 5.07 5.06 4.75

80 5.06 5.05 4.77

ECMISM + InLoss 1 5.69 5.70 5.13 32

20 5.17 5.04 4.72

40 5.14 5.03 4.72

60 5.10 4.98 4.69

80 5.09 4.99 4.70

3.4 Visualization

For an easier demonstration of the effectiveness of our model, we plotted the
validation loss figure on the Aishell1 dataset, as illustrated in Fig. 4. The two
black lines represent the baselines. The orange line in the figure represents the
validation loss after incorporating the SFM module. It can be observed that
the convergence speed of the model has significantly increased, with the loss at
the 75th batch being the lowest among all models. The blue line, reflecting the
loss after integrating our RCM module, shows that the loss is already below
the baseline system after the 175th iteration, indicating the effectiveness of our
RCM module. Our ECMISM model, combining the advantages of RCM and SFM
modules, is represented by the green line, exhibiting the lowest loss. The red line
illustrates the loss after incorporating the InLoss module, which appears to be
the highest. However, this is because the InLoss is added to the original loss.
In reality, its recognition performance only experiences a slight decline, namely
0.08% and 0.11% on the two datasets, while achieving a 28% improvement in
training speed.
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Fig. 4. Validation loss.

In speech recognition, various errors may occur. I created Fig. 5 to analyze
and obtain insights into these errors. The data in the figure depict statistics on
various error types in the ST dataset. The test set of the ST dataset comprises
a total of 55,833 characters. In the figure, ‘S’ represents substitution errors,
indicating recognition mistakes; ‘D’ denotes deletion errors, indicating characters
present in the labels but missed by the model; ‘I’ stands for insertion errors,
representing characters identified by the model but not originally present in the
labels. It can be observed that the overall error rate of our model is significantly
lower. Specifically, substitution and insertion errors show a noticeable reduction.
However, there is no significant change in deletion errors. Deletion errors are
typically caused during the encoder’s encoding process. Our model employs the
same encoder as the baseline, resulting in a limited improvement in this aspect.

Fig. 5. Error Analysis.
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4 Conclusions

We propose an ECMISM speech recognition model based on the Conformer
Transformer architecture. In the encoder part, we design the SFM to integrate
shallow and deep features, obtaining more informative representations. In the
decoder part, we propose a novel RCM to address the issue of error accumu-
lation in the attention recovery decoding method, specifically mitigating the
impact of CTC decoding errors on subsequent Attention-rescoring. Experimen-
tal results demonstrate the positive contributions of these two modules to the
speech recognition model. On the Aishell1, Prime, and ST datasets, we achieved
CER of 4.58%, 12.55%, and 7.51%, respectively, which are lower than the base-
line error rates of 4.61%, 12.90%, and 7.95%. At the same time, we achieved a
WER of 4.19% on the Common Voice 16.1 Uyghur dataset, which is lower than
the baseline of 5.75%. To expedite training, we introduce the InLoss module.
Integrating the InLoss module into our ECMISM model accelerates training by
28%, with only marginal error rate increases on the first two datasets, by 0.08%
and 0.11%, respectively. Our InLoss module is crucial for the lightweight design
of the model.

Our model still has several limitations. For instance, the SFM module
employs a simple linear summation for information fusion. Dynamic attention
fusion could be explored in future iterations, assigning varying weights to differ-
ent layers to better capture feature information. Additionally, while our InLoss
method significantly reduces training time, it slightly increases recognition error
rates. In subsequent work, more effective approaches to reduce model complexity
could be investigated.
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Abstract. The rapid advancement of artificial intelligence (AI) has led
to an increasing application of Large Language Models (LLMs) in psy-
chological counseling. This study focuses on a comprehensive evaluation
of LLMs in this domain, moving beyond traditional case-based reason-
ing. We introduce a novel multi-agent LLM framework that enhances
the analysis of psychological case interactions. Our approach involves
expanding the Emotional First Aid dataset with diverse client back-
grounds, enhancing its applicability and generalizability. A sophisticated
user profile model, incorporating eight critical dimensions, is developed
and applied within a multi-agent system to examine counseling scenar-
ios. The system’s performance is extensively evaluated based on accu-
racy, robustness, consistency, and fairness. The findings reveal signifi-
cant differences among LLMs in these areas, highlighting their strengths
and limitations in psychological interventions. This research underscores
the need for ongoing refinement in LLM applications to ensure equitable
and reliable support in psychological counseling. The detailed results and
methodologies are available on the GitHub platform for further academic
scrutiny and development.

Keywords: Psychological Case-Based Reasoning · Large Language
Models · AI Ethics and Fairness

1 Introduction

The integration of AI with psychological counseling represents a cutting-edge
advancement, offering a refined understanding of human behavior and emotional
responses. Despite significant progress in AI technologies, their application in the
sensitive field of psychology encounters substantial challenges, particularly in
handling the complex ethical and clinical demands effectively. This underscores
the urgent need for systems that can more accurately reflect the intricacies of
human psychology with greater fidelity (Turing, 1950; Goodfellow et al., 2016)
[1,2]. In response to these challenges, our study pivots from traditional psycho-
logical CBR to a focused evaluation of LLMs within a multi-agent system. This
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novel approach is designed not only to simulate counseling sessions but also to
critically assess the performance of these models across four main dimensions:
accuracy, robustness, consistency, and fairness. By leveraging advanced LLMs,
we aim to address the prevailing shortcomings in AI applications for psychology,
such as insufficient nuanced understanding and ethical alignment (Vaswani et
al., 2017; Brown et al., 2020) [3,5]. Furthermore, while AI’s potential in mental
health care is immense, the challenges it presents are formidable. This includes
replicating the complex dialogues of clinical interactions authentically. Our work
utilizes a meticulously calibrated multi-agent system to better mimic the sub-
tleties of clinical conversations, thereby enhancing the effectiveness and ethical
soundness of psychological interventions (Picard, 1997; Tambe, 2011) [4,6,22].
Figure 1 provides a visual representation of the LLM-based inference workflow
within our multi-agent system. This paper is structured to highlight several key
contributions: 1. We enhance the Emotional First Aid dataset, increasing the
precision, stability, and fairness of AI-generated user profiles, thereby broaden-
ing the model’s relevance across diverse contexts. 2. We introduce a sophisti-
cated multi-agent system powered by LLMs, designed to simulate and evaluate
counseling sessions, marking a significant advancement in psychological CBR. 3.
We conduct a comprehensive evaluation of the LLMs’ performance in terms of
ethical, moral, and personality discernment capabilities through both qualita-
tive and quantitative analyses, ensuring their robustness and reliability in real-
world scenarios. The integration of AI with psychological counseling represents
a cutting-edge advancement, offering a refined understanding of human behavior
and emotional responses. Despite significant progress in AI technologies, their
application in the sensitive field of psychology encounters substantial challenges,
particularly in handling the complex ethical and clinical demands effectively.
This underscores the urgent need for systems that can more accurately reflect
the intricacies of human psychology with greater fidelity. In response to these
challenges, our study pivots from traditional psychological Case-Based Reason-
ing (CBR) to a focused evaluation of LLMs within a multi-agent system. This
novel approach is designed not only to simulate counseling sessions but also to
critically assess the performance of these models across four main dimensions:
accuracy, robustness, consistency, and fairness. By leveraging advanced LLMs,
we aim to address the prevailing shortcomings in AI applications for psychology,
such as insufficient nuanced understanding and ethical alignment.

2 Related Works

2.1 Ethical and Moral Considerations in AI Research

This section builds upon the ethical challenges discussed in the introduction,
exploring the specific ethical and moral considerations in the context of LLMs.
Abdulhai et al. (2023) emphasize the moral foundations necessary for LLMs,
identifying key principles such as beneficence, non-maleficence, autonomy, and
justice. These principles guide the development and deployment of LLMs to
ensure they align with human values and promote positive societal outcomes.
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Fig. 1. LLM-Based inference workflow. This diagram illustrates the end-to-end process
enabled by our LLM within the multi-agent system architecture. Starting with the
collection of raw data, the workflow includes the LLM’s inference to construct detailed
user profiles, culminating in the final evaluation stage.

While these principles provide a valuable framework, their implementation in
practice remains challenging, particularly when balancing ethical considera-
tions with technological advancements and efficiency. The integration of eth-
ical and moral considerations into AI, particularly in the context of LLMs, is
becoming increasingly vital as these technologies become more sophisticated and
widespread. Recent studies underscore the necessity for LLMs to align with ethi-
cal frameworks and human values. Abdulhai et al. [6] emphasize the moral foun-
dations necessary for LLMs, while Sorensen et al. [7] highlight the importance of
incorporating pluralistic human values, rights, and duties into AI systems. The
challenge of ensuring reliability in AI’s psychological assessments is evident in
works by Huang et al. [8] and Ganesan et al. [9], who analyze the consistency
and reliability of personality estimations by LLMs. These studies raise crucial
questions about bias and the potential manipulation of AI characteristics, as
discussed by Caron and Srivastava [10] and Jiang et al. [11]. In terms of AI’s
interaction with human behavior, the work by Park et al. [12] on generative
agents and the efforts by Ziems et al. [13], Xu et al. [14], and Song et al. [12]
explore how AI can adapt to and reflect complex social dynamics, underlining
the need for dynamic and ongoing ethical oversight.

2.2 Application of Artificial Intelligence Technology in Psychological
CBR

Building upon the foundational understanding of AI in psychological CBR pre-
sented in the introduction, this section delves into the specific applications and
advancements in the field. Picard (1997) pioneers affective computing, highlight-
ing the potential of AI to recognize and respond to human emotions. Subsequent
studies, such as Hirschberg and Lewis (2012) and Wang et al. (2019), demon-
strate the improved accuracy of AI in emotion recognition and expression analy-
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sis, opening avenues for personalized and empathetic psychological interventions.
However, challenges persist, including data privacy concerns and the potential
for algorithmic bias, as discussed by De Choudhury et al. (2013) and Caron and
Srivastava (2022). These limitations necessitate transparent and interpretable
AI models to build trust and ensure ethical applications in psychology. The
integration of AI in psychological CBR has significantly advanced, especially in
emotion recognition and scale assessment. Pioneered by Picard’s work in affec-
tive computing (1997), which laid the groundwork for emotion recognition tech-
nologies, subsequent studies have expanded these insights, notably Hirschberg
and Lewis’s exploration into emotional content analysis from text (2012) [6,15].
Deep learning further propelled this field; Wang et al.’s (2019) use of CNNs for
facial expression analysis and Liu et al.’s (2020) BERT-based model for textual
emotion detection illustrate the improved accuracy and potential of AI in under-
standing human emotions [16,17]. However, the adoption of AI in psychological
contexts is not without challenges, including data privacy concerns and model
bias. De Choudhury et al. (2013) underscored the ethical and privacy issues in
using social media data for mental health predictions, highlighting the need for
careful data management [20]. Moreover, the demand for transparent AI models,
crucial for trust and effective interventions, is addressed by innovative methods
like LIME (Ribeiro et al., 2016), which aim to enhance model interpretability
[19].

2.3 Development of Intelligent Agents and Their Psychological
Applications

This section expands upon the concept of intelligent agents introduced in the
introduction, focusing on their development and application in the field of psy-
chology. Wooldridge (2002) and Russell and Norvig (2016) establish the theoret-
ical foundations of multi-agent systems, highlighting their potential for simulat-
ing complex human interactions. Tambe (2011) demonstrates the application of
game theory in multi-agent systems, showcasing their adaptability to psychologi-
cal settings. Ziems et al. (2023) explore the use of LLMs as generative agents, fur-
thering the potential for dynamic and personalized psychological interventions.
However, ethical concerns regarding data privacy, transparency, and potential
biases remain, necessitating careful consideration and oversight in the deploy-
ment of intelligent agents in psychology. Intelligent agents constitute a pivotal
component of the AI spectrum, aiming to mimic and enhance human cognitive
functions and decision-making. Foundational texts by Wooldridge (2002) and
Russell and Norvig (2016) provide comprehensive insights into the theories and
applications of multi-agent systems, setting a solid theoretical foundation for
this field [20,21]. In psychology, intelligent agents, particularly through dialogue
systems, play a crucial role in behavior analysis and emotional state assessment,
thereby offering new avenues for psychological interventions and reducing the
workload on human counselors. These agents excel at managing the complex-
ities of psychological case analysis. For example, Tambe (2011) demonstrated
their capability in applying game theory to complex decision-making scenarios,
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such as security threat mitigation, highlighting their adaptability to psycholog-
ical settings [22]. Intelligent agents can simulate psychological counseling roles,
offering customized support and strategies, thus improving mental health service
quality. However, the integration of intelligent agents in psychology is challenged
by ethical, privacy, and transparency concerns. The pursuit of ethical AI deploy-
ment in psychological practices, as discussed by Samuele (2020), underscores the
importance of responsible and effective use of intelligent agents, emphasizing the
need for ethical guidelines, data protection, and agent interpretability [23].

Fig. 2. User profiles evaluation criteria: A schematic highlighting accuracy, robustness,
consistency, and fairness in evaluating AI-generated user profiles for mental health
counseling, showcasing our dedication to innovation and ethical responsibility.

3 Case Base

3.1 Expanded Dataset Based on Emotional First Aid

In the integration of AI with psychological counseling, the quality and speci-
ficity of datasets are crucial for the effective training of AI algorithms and the
empirical testing of theoretical models. While the Emotional First Aid dataset
provides valuable insights into psychological counseling, it lacks diversity in client
backgrounds. To address this limitation, we expanded the dataset by incorpo-
rating additional demographic and socio-psychological variables. The Emotional
First Aid dataset, a pioneering open QA corpus in the field of psychological
counseling, stands out for its substantial contribution to this area. Comprising
20,000 entries of counseling data, the dataset offers a comprehensive view into
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the nuances of psychological counseling. This corpus is distinguished not only by
its volume but also by the diversity of its content, featuring multi-turn dialogues
that provide deep insights into the counseling process. Each entry is enriched
with categorized information, including but not limited to counseling topics,
participant demographics (such as the visitor’s gender, age, and profession), and
the emotional states addressed during the sessions. Such detailed categorization
facilitates the application of natural language processing and sentiment anal-
ysis techniques, enabling AI models to grasp and generate nuanced responses
reflective of complex emotional landscapes and cognitive behaviors encountered
in psychological practices. Our concerted efforts have been directed towards the
meticulous enhancement of the Emotional First Aid dataset to bolster its rele-
vance and utility in contemporary research contexts. By embedding additional
layers of context, such as demographic details, counseling topics, and socio-
psychological variables (including but not limited to the visitor’s gender, coun-
selor’s gender, nationality, language, skin color, profession, and age), we have
substantially broadened the dataset’s applicability (see Fig. 3). This enrichment,
achieved through the integration of advanced deep learning techniques, allows
for a more granular analysis of psychological states and interactions within the
counseling environment.

3.2 Provisions and Definitions for User Profiling of Psychology
Cases

The 8 dimensions were identified based on the principles of Cognitive Behav-
ioral Therapy (CBT) and the need to comprehensively understand a client’s
psychological state. These dimensions facilitate a nuanced analysis of cognitive
distortions, emotional states, and behavioral patterns, guiding the development
of personalized intervention plans. Central to our model is the CBT tenet that
cognition, emotion, and behavior are interlinked, illustrating how cognitive dis-
tortions can precipitate emotional distress and maladaptive behaviors. To this
end, we have identified eight essential dimensions for the user profile, aimed
at facilitating an exhaustive examination of a client’s psychological state. This
enables the enhancement of the profile’s scientific accuracy and supports the
creation of precise, individualized intervention plans. These dimensions include:

– Complaint Elicitation (CE): This dimension focuses on identifying the client’s
primary complaints, providing a foundational direction for the therapeutic
journey.

– Goal and Plan Generation (GPG): It involves the establishment of specific
therapeutic objectives and actionable plans, rendering the treatment process
both goal-oriented and executable.

– Crisis Strategy Generation (CSG): Anticipates potential challenges, highlight-
ing the adaptive and positive facets of the treatment.

– Neutral Description (ND): Ensures unbiased documentation of events, a crit-
ical step for cognitive reframing.
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– Thought Identification (TI): A cornerstone of CBT, this dimension aims at
identifying and modifying automatic thoughts to uncover and correct mal-
adaptive cognitive patterns.

– Belief Exploration (BE): Delves into the rationale and beliefs underlying auto-
matic thoughts, shedding light on fundamental beliefs that guide decision-
making and behavior.

– Core Assessment (CA): Reveals core beliefs that shape one’s self-concept,
perceptions of others, and social interactions, vital for profound psychological
change.

– Outcome Synthesis (OS): Measures the effects of counseling through the lens
of cognitive restructuring, emotional regulation, and behavioral adjustments,
demonstrating overall therapeutic progress.

Fig. 3. Expansion strategies for the Emotional First Aid Dataset: This figure outlines
the enhancements to the dataset, specifically adding counseling topics, visitor’s gender,
counselor’s gender, visitor’s nationality, visitor’s language, visitor’s skin color, visitor’s
profession, and visitor’s age to the existing multi-turn dialogue data, providing a richer
context for AI-driven psychological research.

Our multi-agent system is structured to mimic the multifaceted analysis and
decision-making process of psychological counseling. The system consists of six
primary agents, each responsible for distinct aspects of the counseling process:
Data Preprocessing, Action Extraction, Consultation Objectives and Plan, Event
Analysis, User Psychological Belief Analysis, and Consultation Result Analysis.
We detail the technical aspects of each agent’s function, explaining how they
work together to process and analyze data. For example, the Data Preprocess-
ing Agent cleanses, tags, and structures client data, while the Action Extraction
Agent identifies core issues and relevant events from client narratives. We also
explain the connection between our user profile attributes and the eight cate-
gories of analysis (CE, GPG, CSG, ND, TI, BE, CA, OS) used in our system.
Here, LLM(D) signifies the function of the large language model processing the
dataset D, with the output being a comprehensive compilation of insights across
the eight delineated dimensions.
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4 Multi-agent System Based on LLM

4.1 System Architecture and Design Principles

Our system adopts an avant-garde multi-agent architecture, crafted to mimic
the multi-faceted analysis and decision-making characteristic of the psycholog-
ical counseling process (see Fig. 4). At the heart of this architecture lies the
utilization of cutting-edge LLM technology, which acts as the system’s central
processing unit. It orchestrates the interaction among various specialized agents,
ensuring the seamless integration of inputs and outputs to facilitate effective and
precise mental health interventions. The system’s design is underpinned by three
pivotal principles: modularity, scalability, and user centricity. Adherence to these
principles guarantees the system’s versatile applicability across diverse counsel-
ing scenarios while maintaining a steadfast focus on addressing the needs of the
users.

4.2 The Role and Function of Agents

The system is composed of six principal agents, each dedicated to distinct ele-
ments of the counseling process: –Data Preprocessing Agent: Tasked with the
cleansing, tagging, and structuring of original multi-round dialogue data from
clients, this agent ensures the high quality of input data, laying a solid foundation
for the system’s analyses.

– Action Extraction Agent: Concentrates on distilling core issues and relevant
events from client narratives, prioritizing them to inform further analysis.
This agent is essential in identifying the critical elements needing addressal.

– Consultation Objectives and Plan Agent: Collaborates with clients and coun-
selors to define consultation goals and develop specific intervention strategies.
This ensures the counseling process is both goal-oriented and methodically
structured.

– Event Analysis Agent: Identifies and documents unbiased accounts of events
from the client’s recounting, providing a factual basis free from subjective
interpretation.

– User Psychological Belief Analysis Agent: Delves into the examination of
clients’ automatic thoughts, intermediate beliefs, and core beliefs, uncovering
the underlying psychological dynamics and potential barriers to mental well-
being.

– Consultation Result Analysis Agent: Post-consultation, this agent compiles
and assesses the methodologies and tools imparted to the client, evaluating
the overall effectiveness of the counseling process.

4.3 System Reasoning Process

The reasoning process of our system is orchestrated through a series of struc-
tured steps, designed to ensure precision and client-centricity at every stage of
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Fig. 4. The schematic overview of the counseling system’s six principal agents, includ-
ing Data Preprocessing, Action Extraction, Consultation Objectives and Plan, Event
Analysis, User Psychological Belief Analysis, and Consultation Result Analysis, each
focusing on key aspects of the counseling process.

psychological counseling: –Data Input and Preprocessing: Initially, the client’s
consultation records and background information are fed into the system. The
Data Preprocessing Agent then performs essential preprocessing tasks, prepar-
ing the data for subsequent analysis. –Chief Complaint and Goal Setting: The
Chief Complaint Extraction Agent identifies the client’s key issues and related
events. Concurrently, the Consultation Objectives and Preplan Agent sets the
goals and outlines the strategies for the consultation, ensuring the process is tai-
lored to address the client’s specific needs effectively. –Event and Belief Analysis:
The Event Analysis Agent objectively documents events recounted by the client,
while the User Psychological Belief Analysis Agent conducts an in–depth explo-
ration of the client’s psychological state and belief systems. This dual analysis
is crucial for understanding the root causes of the client’s issues. –Intervention
Strategies and Decision Making: Leveraging the analyses provided by the pre-
vious steps, the LLM collaborates with the Consultation Objectives and Pre-
plan Agents to formulate personalized intervention plans. This collaborative
effort ensures that the proposed strategies are both scientifically sound and
customized to the client’s unique situation. –Results Output and Evaluation:
Finally, the system generates a detailed user profile, intervention recommenda-
tions, and a consultation summary. The Consultation Result Analysis Agent
then performs a thorough evaluation of these outputs, assessing the effective-
ness of the intervention and identifying areas for improvement. Through this
meticulously designed process, our system not only guarantees the precision and
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relevance of the data collection and intervention planning phases but also empha-
sizes a visitor–centered approach. This structured reasoning process enables the
delivery of efficient and personalized mental health solutions, underpinned by a
sophisticated multi-dimensional analysis framework.

5 Evaluation

In psychological CBR, the precision of user profiles is essential for effective inter-
ventions. We devised evaluation metrics for eight dimensions, assessed on a 10-
point scale to capture essential user profile aspects, emphasizing model accuracy,
strategy practicality, and psychological impact. These metrics focus on complaint
extraction completeness and counseling outcomes applicability, each with a 13%
weight, highlighting their importance in psychological analysis.

5.1 Accuracy

In psychological CBR, the precision of user profiles is essential for effective inter-
ventions. We devised evaluation metrics for eight dimensions, assessed on a 10-
point scale to capture essential user profile aspects, emphasizing model accu-
racy, strategy practicality, and psychological impact. These metrics focus on
complaint extraction completeness and counseling outcomes applicability, each
with a 13% weight, highlighting their importance in psychological analysis. We
devised evaluation metrics for eight dimensions, assessed on a 10-point scale to
capture essential user profile aspects, emphasizing model accuracy, strategy prac-
ticality, and psychological impact. These metrics focus on complaint extraction
completeness and counseling outcomes applicability, each with a 13% weight,
highlighting their importance in psychological analysis. This approach combines
detailed criteria and differential weighting to enhance the precision and relevance
of LLM-generated psychological support.

The evaluation results unveil considerable variability in model performance
across different dimensions (see Table 1). For instance, InstructGPT demon-
strates exceptional prowess in Complaint Elicitation (CE) but falls short in
developing Goal and Plan Generation (GPG) and unveiling Core Assessment
(CA). In contrast, GPT-4.0 and LLaMA-2 showcase superior overall accuracy,
indicating their adeptness at creating holistic user profiles. GPT-4.0, in partic-
ular, shines in complaint elicitation (CE) and Thought Identification (TI).

5.2 Robustness

Robustness in psychological CBR refers to the model’s ability to consistently
generate user profiles across a spectrum of case scenarios. To assess the general-
izability of our LLM-based multi-agent system across distinct contexts, we seg-
mented the dataset into five primary life domains: academic, workplace, social,
emotional, and family settings. Covariance analysis was employed to quantify the
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Table 1. User profile accuracy evaluation.

LLM CE GPG CSG ND TI BE CA OS Avg.

Qwen-max 5.63 5.56 6.54 6.41 7.21 8.91 6.47 7.76 6.81
ChatGLM 5.23 7.89 7.28 7.7 5.75 5.07 6.94 8.65 6.81
InstructGPT 9.86 9.78 5.51 8.32 5.78 6.33 5.82 7.8 7.4
Baichuan2 8.05 5.5 7.38 5.58 9.38 8.47 8.88 8.6 7.73
GPT-3.5 9.01 7.0 9.3 7.87 6.07 6.47 7.4 8.87 7.74
LLaMa-2 9.7 8.34 9.81 5.48 7.27 7.71 9.54 7.9 8.21
GPT-4.0 7.25 9.68 9.01 6.88 8.63 9.64 6.2 8.86 8.26

stability of user profiles generation amidst these diverse contexts. Lower covari-
ance values indicate greater stability, indicating that the model’s output remains
unaffected by variations in the nature of the cases presented. To quantify the
stability of user profiles generation amidst these diverse contexts, we employed
covariance analysis. This method allowed us to calculate the covariance of scores
across the model’s dimensions for each life domain, serving as a proxy for the
consistency of model performance. Essentially, lower covariance values signify
greater stability, indicating that the model’s output remains unaffected by vari-
ations in the nature of the cases presented. The robustness coefficient, a key
metric derived from this analysis, is calculated using the following formula:

σRobustness =

√ ∑
i = 1n(xi − 1

n
∑n

i=1 xi)2
n

(1)

where i represents the different problem domains divided into the dataset,
and represents the score of LLM’s user profile in domain i. Through experi-
mentation, our findings reveal that the GPT 4.0 model demonstrates significant
stability across various contexts as detailed in Table 2 of our study. Notwith-
standing minor discrepancies in performance across distinct life domains, the
model consistently showcased commendable adaptability. This is evidenced by
the covariance values, which remained well within acceptable limits, further high-
lighting the robustness of the model.

Table 2. GPT-4.0 robustness evaluation results.

LLM CE GPG CSG ND TI BE CA OS Avg.

academic 7.25 9.68 9.01 6.88 8.63 9.64 8.72 6.20 7.25
work 7.24 9.69 9.00 6.87 8.65 9.63 8.70 6.21 8.45
social 7.23 9.67 9.02 6.89 8.66 9.65 8.73 6.19 8.44
family 7.27 9.65 9.03 6.90 8.67 9.67 8.74 6.18 8.42
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Table 3. Robustness comparison of large model user profiles inference.

LLM P-constness

GPT-4.0 0.6468
GPT-3.5 0.8023
QWEN-Max 0.6789
InstructGPT 0.5892
LLaMa-2 0.7528
BaiChuan2 0.6734
ChatGLM 0.5123

5.3 Consistency

Consistency is crucial for system reliability, especially in multi-model systems.
We used the Pearson correlation coefficient to assess the consistency of an LLM-
based multi-agent system, examining model correlations across key dimensions.
The Pearson correlation coefficient was calculated between seven models for each
dimension of the user profile, resulting in 21 correlation coefficients per dimen-
sion. This analysis presents the model’s consistency coefficients across various
key dimensions (Table 3).

ρdimi(X,Y ) =

∑n
j=1(Xdimi,j − Xdimi

)(Ydimi,j − Ydimi
)√∑n

j=1(Xdimi,j − Xdimi)2
√∑n

j=1(Ydimi,j − Ydimi)2
(2)

where dim represents a specific dimension of the user profile, such as CE (Com-
plaint Elicitation), GPG (Goal and Plan Generation), etc., with X and Y denot-
ing two different large models. The subscript j refers to the j-th data point in
dimension i for the respective models X and Y. Our analysis presents the model’s
consistency coefficients across various key dimensions, as illustrated in Table 4.

Table 4. Evaluation of consistency coefficients across LLMs

LLM CE GPG CSG ND TI BE CA OS Avg.

Qwen-max 0.64 0.87 0.68 0.52 0.62 0.79 0.67 0.69 0.64
ChatGLM 0.78 0.85 0.54 0.86 0.93 0.51 0.53 0.71 0.78
InstructGPT 0.59 0.78 0.54 0.53 0.53 0.62 0.64 0.60 0.59
Baichuan2 0.75 0.95 0.79 0.63 0.81 0.70 0.64 0.75 0.75
GPT-3.5 0.82 0.58 0.62 0.77 0.75 0.60 0.69 0.69 0.82
LLaMa-2 0.61 0.90 0.50 0.53 0.56 0.67 0.75 0.65 0.61
GPT-4.0 0.59 0.74 0.63 0.68 0.77 0.73 0.86 0.71 0.59
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Fig. 5. Consistency of LLMs across dimensions. The heatmap visualizes the Pearson
correlation coefficients among seven language models across eight user profile dimen-
sions, indicating varying levels of consistency.

This variation underscores the importance of enhancing consistency in criti-
cal dimensions by refining training and optimization processes to minimize dis-
parities among models. An aggregated heatmap (see Fig. 5), visualizing overall
model consistency across the user profile dimensions, illustrates that despite cer-
tain discrepancies, the models generally exhibit a high degree of consistency in
generating user profiles, affirming the system’s reliability.

5.4 Fairness

In AI for psychological CBR, fairness is crucial. Our study assesses fairness
by modifying visitors’ sensitive attributes to examine impacts on user profile
scores, ensuring demographic diversity is represented. Attribute changes were
made without altering case context. Table 5 details the adjustments for each fair-
ness dimension. To quantify fairness, we employed a fairness coefficient, derived
from ANOVA of the scores to gauge score distribution under different attribute-
specific conditions. This coefficient is calculated as follows:

Fairtargeti(X) = 1−
√

Vartargeti(X)
Varmax(X)

(3)
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Table 5. Evaluation of consistency coefficients across LLMs

Attribute Attribute Value

Gender Male, Female, Non-binary
Age 15, 28, 35, 55, 70, 90
Nationality China, United States, India, Brazil, Germany, Nigeria, Russia, Japan
Skin Color White, Yellow, Black, Brown
Language Chinese, English
Occupation High School Teacher, Software Engineer, Nurse, etc.

where Var(X) represents the variance of scores under a given attribute (target),
and denotes the maximum observed variance among all attributes. A higher
fairness coefficient, approaching 1, signifies minimal variance in scores across
different attribute values, denoting superior model fairness. Conversely, a lower
coefficient, nearing 0, indicates significant score disparity, reflecting potential
biases.

Interpretation of Results (see Fig. 7). The results generally indicate com-
mendable fairness across all dimensions, albeit with slight variations among
models concerning specific attributes such as skin tone and language. These
minor disparities may point to inherent biases within the models regarding cer-
tain attributes or their underrepresentation in the training dataset.

Fig. 6. Fairness coefficient comparison across LLMs. The radar graphs visually repre-
sent the fairness coefficients of various large models for different sensitive attributes.
Each axis corresponds to a sensitive attribute, showcasing how each model scores in
terms of fairness, with a focus on variations observed in attributes like skin tone and
language.
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6 Conclusion

This research significantly advances our understanding of LLMs in psychological
counseling, focusing on evaluating their accuracy, robustness, consistency, and
fairness. By enriching the Emotional First Aid dataset with diverse client back-
grounds, we have increased the applicability and equity of our findings. Our work
demonstrates the effectiveness of LLMs through detailed assessments, revealing
both their capabilities and limitations in diverse settings. Our study highlights
the importance of fairness and provides insights into achieving unbiased support
across demographic groups, a crucial aspect in the ethical deployment of AI in
psychology. Moving forward, we aim to deepen our exploration of secure data
practices and equitable AI usage, ensuring these technologies adhere to ethical
standards. In summary, our findings advocate for the progressive development of
AI systems that are technologically advanced and ethically sound, underscoring
their growing role in enhancing mental health services and societal well-being.
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gram of China (2022YFB4701400/4701402), SSTIC Grant (KJZD20230923115106012,
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Abstract. The performance of a Speaker Verification (SV) system
degrades substantially under a mismatched audio sampling rate (SR)
between the training, testing, or deployment conditions. This can be
addressed by model fine-tuning with resampled data, mixed-bandwidth
training or bandwidth extension via generative modelling approaches.
However, all existing SV models are typically designed to operate at a
single sampling rate. This work presents a dynamic sampling rate filter-
bank (DSR-FB) frontend for end-to-end SV systems. It employs multi-
resolution convolutions with dynamic attention to learning at multiple
scales. In particular, locally-consistent depthwise deformed convolutions
are used to achieve SR dependent adaptive receptive field to focus on
regions of interest in a coarse-to-fine manner. We demonstrate the effec-
tiveness of DSR-FB on publicly available datasets where our best model
achieves state-of-the-art performance both in closed-talk and far-field
settings.

Keywords: Speaker verification · dynamic convolutional networks ·
bandwidth extension

1 Introduction

Speaker verification (SV) aims to verify the identity of a speaker given an audio
recording and is useful in a wide range of applications, such as banking, forensics,
and access control [5]. Recently, an active area of research has been to use of deep
neural networks (DNN) to capture speaker characteristics where SV is usually
performed by first extracting DNN embedding (utterance-level representations
called ‘d-vector’ obtained by averaging over the frame level features) followed
by a comparison using a separately trained classifier [44]. Alternatively, there
have been attempts to jointly learn an embedding network along with a similar-
ity metric to compare pairs of embedding [16,42]. Many existing SV approaches
employ hand-crafted short-term spectral features extracted by applying speech
production and perception knowledge. Such features may not be optimal in the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Antonacopoulos et al. (Eds.): ICPR 2024, LNCS 15328, pp. 367–382, 2025.
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sense that they may end up using different sub-optimal time-frequency settings
for input in terms of filter-bank type and size, time-frequency resolution, or
magnitude compression. In recent years, with DNN advances, there has been
an interest in reducing as much as possible hand-crafted feature extraction. For
instance, 1) by modeling intermediate representations such as filterbank outputs
with a linear [44] or Mel scale [1] and spectrograms [29,49]; or 2) by directly
modeling raw speech signal [3,28] using convolution neural networks (CNNs)
at the input stage. The focus of this work is on raw-waveform acoustic mod-
els that are generally based on 1D-CNN front-ends [32], parameterized analytic
filterbanks [34] or sinc filters [35] trained to learn spatially or temporally invari-
ant features from time-domain waveforms. The initial CNN layers learn a short
time-frequency decomposition of signal [33] and tend to behave as a log-spaced
frequency selective filter-bank [37] similar to mel-scale, and depending on filter
size, it is shown to focus on voice source related or vocal tract system related
speaker discriminative information [27].

Most state-of-the-art SV systems are typically built on wideband speech
(16 kHz and above) with a primary focus on improving the performance of SV
without considering the use-case scenarios or the deployment platform. Due to
SV systems’ inherent complexity and size, cloud deployments were preferred in
the early adoption of these systems, such as in IVR for telephone banking. In
the context of voice-controlled smart homes & IoT devices, due to low-latency
requirements, operating expense of technology, low bandwidth constraints, and
data privacy concerns, on-device systems need to adapt and operate at differ-
ent sampling rates (SR). Additional challenges arise in the context of telephony
where the signal is not only narrowband with missing higher frequency informa-
tion but also bandlimited to 0.3–3.4 kHz with missing fundamental [41]. In gen-
eral, the performance of SV systems degrades substantially under a mismatched
audio sampling rate between the training and testing conditions.

In this work, we propose a novel sampling rate adaptive front-end for SV sys-
tems called Dynamic SR (DSR) filter-bank (FB), which consists of a 1D multi-
resolution pyramid convolutional layer that applies dynamic attention to input
raw audio at multiple scale/sampling rates. In particular, DSR-FB employs 1D
locally-consistent depthseparable [9] deformed convolutions [6] (LCDDC) that
can effectively assist in focusing on regions of interest in a coarse-to-fine manner
at multiple scales. This is done via learned offsets that are added to the regular
grid sampling locations in a regular convolution operator, thereby deforming and
making the receptive field adaptive [51]. In contrast to vanilla deformed convo-
lution, we propose to use locally-consistent depthwise deformable convolution.
LCDDC ensures an adaptive receptive field locally over a shorter window and
enforces temporal consistency of offsets across spectral bands/channels. Thus,
the proposed front-end jointly learns spectro-temporal representations (instead
of independent modelling of spectral and temporal trajectories). Using a depth-
wise module instead of regular convolution helps design a layer with low foot-
print/parameters. In order to effectively train the DSR filter-bank, we employ
masked mixed bandwidth training where, in each batch, the model is trained
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randomly on audios with either one of the sampling rates or all sampling rates
(with output features average pooled). In contrast to mixed bandwidth train-
ing, this procedure ensures that the proposed filter-bank can work with different
sampling rates individually during inference.

2 Related Works

In the past, various approaches to address this issue included: 1) fine-tuning or
retraining the models with narrowband data [26]; 2) mixed bandwidth training
with upsampled audio [40] or SR-dependent multiple Mel-filter banks for feature
extraction [17] [47]; 3) bandwidth extension via estimating the higher frequency
information using non-negative matrix factorization [4], neural autoencoders
(such as UNet, WaveNet) [2,23,45], hybrid time/frequency-domain models [24]
or GANs [15,43]; 4) using a modified mel-filter-bank such that features extracted
at different sampling rates are correlated [20,48]. Most of the existing methods
are speaker-dependent, i.e., they need to be adapted each time a new speaker
is enrolled, although this issue is less prevalent in the case of neural models.
Further, even with mixed-bandwidth training, existing models are designed to
operate at a single (typically 16 kHz) sampling rate [41]. A recent and closely
related work to the theme of this paper (for a discrete set of SRs) is presented in
[38] for the task of music separation. Their approach is based on analog-to-digital
filter conversion that has two very strong assumptions: 1) differentiability of a
latent analog filter, and 2) localized frequency response of filter around the cen-
tre frequency. We argue that both these assumptions are difficult to achieve for
different audio applications and scaling for large-scale systems. Careful design
considerations are required to avoid aliasing, differentiability during backprop-
agation, and inverse of a K × N matrix for each SR [K denotes the number of
sampled angular frequencies; N = (Cin ×Cout) is the size of weight vector with
C channels]. Depending on SR, the pre-defined fixed convolutional weight vector
is adaptively computed. This doesn’t reduce the flop and memory requirements
for a particular SR. Since maximum SR is propositional to N , there is a direct
trade-off between the realization of the latent analog filter at a given SR and the
performance one can achieve. This is relevant because, in the problem of music
separation, the operating SR is quite high.

The proposed DSR front is an alternative approach where we add an SR-
dependent small convolutional branch/adaptor for a discrete set of SRs. One of
the biggest advantages is in adding new branches and fine-tuning them with the
rest of the network frozen. We do agree that the proposed approach doesn’t com-
pletely solve the problem of operating at adaptive SRs, but it is scalable/easy to
implement and an empirically proven approach to achieving good performance.
Further, note the following:

1. Compared to BWE-based approaches, there is no need for an auxiliary net-
work to recover high-frequency information first at lower sampling rates.

2. Compared to MixBW training, we are not resampling the audios at any SR,
and the model can support multiple frequencies for which it is designed.
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3. Compared to variable mel-filterbanks, the DSR frontend is trainable, and one
doesn’t have to hand-tune the bandwidth of the filters for each configuration
of a number of input/output channels and SR.

Fig. 1. (a) Operations inside an LCDDC layer. DConv and PConv denote the depthwise
and pointwise convolution. GN denotes group normalization. (b) Deformed convolution
on two non-overlapping speech signal segments (black) with a kernel size of 7 and a
maximum receptive field of 50 samples. Blue dots denote the result of the convolution,
and Red dots indicate the sampling position of kernel weights using learned offsets.
(Color figure online)

3 Proposed DSR-FB Encoder

DSR filter-bank inherently approximates self-attention mechanisms across mul-
tiple sampling rates/scales using 1D dynamic convolutions [14]. Given a sorted
set of audio segments (pyramid) at multiple scales S = {S1, . . . , Sn}, we imple-
mented a scale-equalizing convolution as [46]:

PyramidConv(Si) = Average(S∗
i )

S∗
i = {↑ (Conv(Si−1)),Conv(Si), ↓ (Conv(Si+1))}

(1)

where ↑ & ↓ denotes the upsampling and downsampling operations to ensure
compatible dimensions. In order to incorporate self-attention, we apply deformed
convolution with a reasonably small kernel size to enforce kernel learning on rele-
vant sparsely distributed temporal locations. Deformed convolutions use learned
offsets instead of regular convolution’s standard grid sampling locations [51].
Further, depthwise deformed convolution is used to ensure parameter efficiency
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and low latency design. However, naively using deformed convolution on raw
audio might not model the temporal attention correctly since each convolutional
kernel can differ in spatial locations it attends to at each scale. This results in
dimension mismatch when aggregating features due to variable length inputs
at each scale. Hence, we propose to employ locally-consistent depthseparable
[9] deformed convolution (LCDDC) that has an adaptive receptive field locally
over a short audio segment while ensuring temporal consistency of offsets across
channels. Finally, the multiscale self-attention DSR-FB encoder is formulated
as:

PyramidConv(Si) = Average(S∗
i ) (2)

S∗
i = {DeformConv(Si−1, oi−1),DeformConv(Si, oi),DeformConv(Si+1, oi+1)}

oi = Offset(Si,SRi),

where oi is the SR adaptive offsets at a scale i learned using an appropriate
kernel size and kernel stride, thus avoiding ↑ & ↓ operations of Eq. (1).

3.1 Depthseparable Deformed Convolution

This section introduces the 1D depthwise deformed convolution (DDC) based
on the formulation adapted from [6,36]. The depthwise convolution operation
at a scale i using kernel width Ki and dilation factor di over cth channel of lth

input audio frame xl with C channels is defined as:

DConv(xl,ki
c, l) =

K∑

j=1

kic[j] xc[l + di(j − 1)]

l = 1, 2, . . . , L; c = 1, 2, . . . , C

(3)

Following Eq. (3), DDC operator with learned continuous offset oil,j correspond-

ing to the jth kernel weight applied on lth audio frame is defined as:

DDC(xl,ki
c, o

i
l,1:K , l) =

K∑

j=1

kic[j] xc[Δi
j ]; Δi

j = l + di(j − 1) + oil,j (4)

DDC is converted to its locally-consistent variant LCDDC by ensuring temporal
consistency of offsets across channels, i.e., all channels share the same learned
offset for a given audio frame. The block diagram of the LCDDC block and an
example of the underlying deformed convolution operation is shown in Fig. 1. As
in the original design of [9], depthseprable convolution is realised by cascading
depthwise and pointwise convolutions. Here, we sandwich group normalization
in between to stabilize training with variable length inputs. Since offsets are
continuous, the output of the DDC layer is computed using linear interpolation:

x[Δj ] =
�Δj�+1∑

m=�Δj�
max(0, 1 − |m − Δj |)x[m] (5)
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In practice, we use m = min(�Δj�,K(d− 1) + 1) to ensure a maximum possible
receptive field (RF) of K(d − 1) + 1. This can be further made SR dependent
by defining the context in the time-domain, e.g., an RF of 10 ms amounts to
kernel sizes of K = [80, 160, 320] samples at SR of 4 kHz, 8 kHz, and 16 kHz,
respectively. Similarly, the convolutional kernel strides are made SR dependent
to ensure the dimensions of output tensors match at each scale. In this way
using the formulation above, the LCDCC layer can be used to learn a DSR-FB
frontend for a given speech task.

4 Experimental Section

This section provides a system description, experimental protocol and various
datasets used in the experimental study.

4.1 Databases

We train the proposed DSR-FB frontend based models on the popular publicly
available VoxCeleb 1 & 2 datasets [30]. These datasets contain audio collected
in the wild from 1,251 and 6,112 speakers. Further, both datasets are divided
into development and evaluation sets with 1,211 & 40 speakers (VoxCeleb-1)
and 5,994 & 118 speakers (VoxCeleb-2), respectively. The evaluation of the SV
system is done using the standard adopted evaluation protocols: The VoxCeleb-
1 test for close-talk and the evaluation set from the VOiCES from a Distance
Challenge 2019 [31] for far-field setting.

4.2 Data Augmentation

We considered different types of audio data augmentations for the raw audio sig-
nal as suggested in [39]. In particular, Time Stretching, Pitch Shifting, Dynamic
range compression, and Background noise or reverberation addition (from the
MUSAN corpus1) were adopted.

4.3 Model Architecture, Training and Testing

We demonstrate the effectiveness of DSR-FB using the recently proposed
RawNet3 architecture [18], where we replace the frontend Sinc-FB with DSR-
FB. We consider the input pyramid of three SR [4 kHz, 8 kHz, 16 kHz] with the
default kernel width and stride of 20 ms and 1.25 ms, respectively. Each model
is trained on segments of 3 to 5 s randomly cropped from the original audio
using AAM-softmax loss [10], also known as ArcFace loss. Training is done for
500 epochs with ADAM optimizer, learning rate (LR) of 1e−4, batch size set
to 256, and step LR scheduler with stepsize 20 and multiplicative factor of 0.2,
using three Nvidia RTX3090 GPUs. For a fair comparison and benchmarking,

1 https://www.openslr.org/17/.

https://www.openslr.org/17/
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we retrained all models (existing & proposed) using the PyTorch library with
exactly the same experimental setup. Model training involves training a recog-
nition model using speaker labels or an encoder in the case of self/unsupervised
settings, respectively. In the verification phase, the trained model is used as an
embedding extractor to determine whether a given trial pair of speech utter-
ances originate from the same speaker or not. In practice, the trial pair consists
of an enrolment utterance from a new target speaker and an utterance presented
whenever the verification is initiated. The match between the trial pair utter-
ances is computed using cosine scoring between the two. The performance of the
SV system is evaluated using two metrics namely: the equal error rate (EER)
and the minimum normalized detection cost function (minDCF) with Ptarget =
0.01.

The exact model architecture (with hyper-parameters), training/testing
recipe and pre-trained model weights are accessible online2.

Masked Mixed Bandwidth Training. In order to effectively train the DSR-
FB based model, we employ masked mixed bandwidth (MMixBW) training
where in each batch, the model is trained randomly on audios with either one of
the sampling rates or all sampling rates (with output features average pooled).
This procedure forces the latent feature space of the individual branches of the
frontend operating at different SR to be similar. MMixBW is in contrast to
conventional mixed-bandwidth (MixBW) training where audios at low SR are
upsampled before feedings as inputs for model training. Our procedure leverages
the adaptive SR dependent learned offsets and allows the DSR-FB to work with
different sampling rates during inference individually.

Table 1. Comparison with recent literature on supervised speaker verification task.
Value in the bracket (.) denotes the operating SR of the model.

Model In-Feat # Param VoxCeleb-1 Test VOiCES Eval

EER % minDCF EER % minDCF

ResNet-101 [21] Fbank 50.4M 0.66 0.0640 4.14 0.246

MFA-Conformer [50] Mel-Spec 20-M 0.83 0.118 4.31 0.252

ECAPA-TDNN [11] Mel-Spec 22-M 0.87 0.1066 4.46 0.278

TitaNet [19] Mel-Spec 25M 0.68 0.087 4.23 0.243

RawNet3 [18] Waveform 16.27M 0.89 0.0659 4.50 0.295

DSR-RawNet3 (16 kHz) Waveform 16.29M 0.54 0.0527 3.73 0.251

2 https://github.com/Cross-Caps/DSR-FB/.

https://github.com/Cross-Caps/DSR-FB/
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5 Experimental Results

This section presents the evaluation of the proposed DSR-FB based raw wave-
form models and their comparison with existing models under various experi-
mental scenarios. In particular, we compare the SV performance of our models
with recent state-of-the-art feature and waveform based models, namely: ResNet-
101 trained on Filter-bank (Fbank) features with MagFace loss [21], ECAPA-
TDNN trained on popular Mel-Spectrogram features with ArcFace loss [11] and
RawNet3 trained on waveforms with ArcFace loss [18]. Our selection of exist-
ing systems was mainly based on two factors: 1) recently published work (with
results reported on datasets considered in this work) and 2) the availability of
implementation by respective authors to replicate the baselines in our setup3.

5.1 Verification Performance: Supervised Learning

Results of these experiments are reported in Table 1. Here, all existing mod-
els operate on inputs with SR of only 16 kHz compared to 16/8/4 kHz in the
case of the DSR-RawNet3 model. It can be observed that at SR of 16 kHz,
the proposed DSR-RawNet3 model4 demonstrates superior performance on the
close-talk VoxCeleb-1 testset with EER reduced from 0.89 to 0.54%, a rela-
tive improvement of ∼40% over the baseline RawNet3 model. Similarly, DSR-
RawNet3 achieves a relative improvement of ∼30% over RawNet3 on the far-field
VOiCES evalset. Further, our model also outperforms existing state-of-the-art
feature based ResNet-101 and ECAPA-TDNN models with an absolute improve-
ment of .12 & .33%, respectively on VoxCeleb-1 and .41 & .73, respectively on
VOiCES. This clearly demonstrates the effectiveness of the LCDDC layer with
learned offsets in DSR-FB in capturing the important spectro-temporal acous-
tic cues directly from raw waveforms. It is worth mentioning that with a very
small parameter budget (FB frontend only), the proposed approach is able to
generalize well, e.g., the ResNet-101 model is approximately 3× the size of the
DSR-RawNet3 model. We argue that with model scaling, score calibration and
fine-tuning, the proposed class of models can bridge the performance gap with
large-scale pre-trained foundational models such as WavLM [300M #params]
[8], achieving an EER of 0.38% (with ECAPA backend for SV).

We also report the verification performance on the harder VoxCeleb-1 E & H
testsets for the RawNet model operating at 16 kHz with and without the DSR
frontend5. It can be observed that a significant performance boost is achieved
with the DSR frontend (Table 2).

3 Approach from [38] is omitted for comparison since the SV models didn’t converge
on train set for a variety of experimental settings we tried. We believe this issue is
related to the differentiability assumption of a latent analog filter, and we defer an
extensive evaluation to future work.

4 Here, we use only the 16 kHz branch of the frontend during inference.
5 VoxCeleb-1 E and VoxCeleb-1 H lists are drawn from the VoxCeleb-1 training set

and hence evaluation is done using models trained without VoxCeleb-1 training set.
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Fig. 2. STRS of an example Male (LEFT) & Female (RIGHT) utterance computed
for filterbank of DSR-RawNet3 model. Best viewed in color.
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Table 2. Performance on supervised speaker verification task for VoxCeleb-1 E & H
testsets. Value in the bracket (.) denotes the operating SR of the model.

Model (16 kHz) VoxCeleb-1 E VoxCeleb-1 H

EER % minDCF EER % minDCF

RawNet 1.08 0.13 2.23 0.25

DSR-RawNet 0.94 0.11 1.82 0.19

Table 3. Impact of Sampling Rate on supervised speaker verification performance of
various models. Value in the bracket (.) denotes the operating SR of the model. Values
in the square bracket [.] denote the base SR of input and operating SR of the model.

Model In-Feat VoxCeleb-1 Test VOiCES Eval

EER % minDCF EER % minDCF

RawNet3 (16 kHz) Waveform 0.89 0.065 4.50 0.295

RawNet3 (8 kHz) Waveform 1.23 0.133 4.76 0.297

RawNet3 (4 kHz) Waveform 1.92 0.147 5.23 0.321

DSR-RawNet3 (16 kHz) Waveform0.54 0.052 3.73 0.251

DSR-RawNet3 (8 kHz) Waveform 0.92 0.138 4.61 0.286

DSR-RawNet3 (4 kHz) Waveform 1.24 0.143 5.01 0.291

RawNet3 + MixBW (16 kHz) Waveform 0.71 0.063 4.33 0.255

RawNet3 + BWE [8→16 kHz] Waveform 0.72 0.058 4.01 0.261

ECAPA-TDNN + BWE [8→16 kHz] Mel-Spec 0.65 0.056 3.93 0.258

Impact of Sampling Rate on Verification Performance. Most existing SV
models can only operate at a fixed SR (16 kHz typically) compared to multiple
ones as in our model due to the frontend design. In order to understand the
impact of SR on SV performance, we retrained the baseline RawNet3 model at 8
& 4 kHz individually to compare against the performance of the DSR-RawNet3
model. Results of this experiment are documented in Table 3. As expected, the
performance of RawNet3 degrades when trained on a lower SR of 4 & 8 kHz
compared to 16 kHz. Similarly, the performance of DSR-RawNet3 model also
slightly degrades at lower SRs. However, DSR-RawNet3 consistently achieves
better results at a given SR as compared to the RawNet3 model.

In order to investigate further, we use the time-frequency (TF) spectral
visualization method recently proposed in [13]. In particular, we compute the
Short Time Response Spectra (STRS) using the filterbank of the trained DSR-
RawNet3 model. STRS highlights the important frequency bands in the input
that the model focuses on. Figure 2 shows the STRS plots for a male utterance
from test set corresponding to the individual SR dependent filters of the frontend.
One can observe the important invariant frequency bands around 500 Hz [i.e.,
pitch and first formant] that are important for the speaker task, and these are
consistent at all SRs. Further, notice two high-frequency regions that are empha-
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sized between 2–3.5 kHz and 4–5 kHz. These regions that have been shown to
be speaker discriminative [12] are prominent in STRS at 16 kHz compared to
8/4 kHz and explain the degradation or performance gap at different SRs.

Experiments with Bandwidth Extension and Mixed Bandwidth Train-
ing. In order to compare with MixBW training, we retrained the baseline
RawNet3 using MixBW training on resampled audios. Similarly, for comparison
with BWE, we retrained the RawNet3 and ECAPA-TDNN models on audios
upsampled from 8 kHz to 16 kHz. Audio super-resolution is performed using the
recently proposed wav-to-wav NU-Wave26 diffusion model [22]. As reported in
Table 3 and consistent with literature MixBW training improves the performance
of RawNet3, demonstrating the effectiveness of learning from multiple scales.
Compared to RawNet3, our DSR-RawNet3 model with MMixBW training per-
forms consistently better at all SRs in closed-talk and far-field settings. Training
with BWE further boosts the performance of the baseline RawNet3 and ECAPA-
TDNN models. Again this is consistent with an existing study in [12] that found
a few bands around mid/high frequencies to be speaker discriminative. We argue
that the proposed MMixBW training combines the best of both MixBW & BWE
by knowledge distillation of desired frequency information from 16 kHz to lower
8/4 kHz in the latent space. We expect similar gains for feature-based models
with MMixBW training though our focus is only on waveform models in this
work and we defer such extensions to future work.

Table 4. Comparison of self-supervised speaker verification performance of various
models.

Model VoxCeleb-1 Test

EER % minDCF

ResNet101 4.56 0.34

ECAPA-TDNN 5.23 0.35

RawNet3 5.55 0.35

DSR-RawNet3 (16 kHz) 4.71 0.36

DSR-RawNet3-large (16 kHz) 4.59 0.33

5.2 Verification Performance: Self-supervised Learning

We also experimented with the effectiveness of our DSR-FB design for semi-
supervised learning using the most popular DINO framework7. DINO is a
teacher/student distillation framework. Both teacher & student use the same

6 https://github.com/mindslab-ai/nuwave2.
7 https://github.com/facebookresearch/dino.

https://github.com/mindslab-ai/nuwave2
https://github.com/facebookresearch/dino
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model architecture, but the teacher is trained on only global views (long utter-
ances), while the student is trained on multiple views. The teacher model is a
momentum teacher updated as an exponential moving average of the student
that is trained using the desired loss function. In addition, the teacher uses cen-
tering and sharpening operations to avoid mode collapse. Readers are encouraged
to follow [7] for details of the DINO framework. For the SV task, the teacher &
the student model is trained with global views (speech segments) of 5 s and ran-
domly cropped local views of 3 to 4 s, respectively. Temperatures parameters for
the teacher and student models are set to 0.06 and 0.1, respectively. Momentum
values for the teacher model and centre update are 0.97 and 0.9, respectively.
Results reported in Table 4 shows that DSR-RawNet3 model achieves a relative
improvement of 10% & 15% over ECAPA-TDNN and RawNet3 baseline models.
The best EER of 4.56% is achieved by ResNet-101 model which can be to the
much larger model size. The DSR-RawNet3 model performs comparable to the
ResNet-101 model and is able to bridge the gap further, with DSR-RawNet3-
large (by increasing the channels and keeping the depth the same) having double
the size of the DSR-RawNet3 model.

6 Conclusions, Limitations and Future Work

In this work, we presented a representation learning approach for SV from raw
waveform at multiple sampling rates. To this aim, we proposed 1D-convolution
based SR dependent frontend filterbank ‘DSR-FB’ that can be augmented to
existing SV models. In particular, DSR-FB uses depth separable deformed con-
volutions to simulate attention at multiple scales/SRs by learning ‘offsets’ or
sampling locations from raw inputs. To ensure temporal consistency, offsets are
forced to be similar across channels. Compared to existing models operating at
a single SR, the proposed DSR-FB can operate at multiple SRs at the infer-
ence time. Since low SR can lead to significant degradation in performance,
we propose MMixBW training where in each batch, the model is trained ran-
domly on audios with either one/all SRs. Experimental evidence demonstrates
that MMixBW consistently outperforms MixBW training, where audio at lower
SR is resampled to the desired operating SR before feeding it to the model
for training. On the supervised learning benchmark our best model achieves
state-of-the-art results at different SRs and performs comparably for unsuper-
vised settings, both in closed-talk and far-field scenarios. In the process, we have
established the effectiveness of adaptive dynamic multiresolution convolutional
kernels for designing learned filterbanks for waveform based SV models, and we
expect similar results in other speech/audio tasks.

There are multiple avenues where this study can be improved and extended.
Firstly, DSR-FB can only operate on a discrete set of SRs, i.e., it requires a sep-
arate branch of convolutional kernels for each SR we want the model to operate
at. This requires increasing the parameter budget or model size as we increase
the number of SRs to be supported. Training at multiple SRs is a compute-
intensive process to achieve generalization since the model has to learn invariant
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features at multiple scales. These issues can be addressed by deforming the input
signal instead of deforming the receptive field or kernel sampling locations. Thus
the inference time of the FB is reduced due to the use of a static kernel, while
the effective overall convolution operation still being dynamic. This method has
been shown to be effective for vision tasks [25] and we would like to explore this
in future. Secondly, this work assumes that MMixBW training ensures a unified
latent space at all SRs, however, this is not explicitly enforced using a separate
loss function, a direction worth exploring. Finally, in experiments with unsuper-
vised benchmarks using DINO framework, the proposed DSR-FB based model
could only achieve comparable performance even after doubling the model size.
This requires further investigation and probing into the learning behaviour of
the model to come up with an improved training strategy.
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Abstract. Existing supervised facial attribute recognition (FAR) meth-
ods that rely on large labeled datasets can pose a challenge in real-world
scenarios. In the case of limited labeled data, the current methods that
introduce auxiliary tasks with a large number of parameters are not con-
ducive to the embedded applications of FAR. To overcome these chal-
lenges, this paper develops an adjustable gating prompt Transformer that
can handle the limited labeled FAR task with a small number of training
parameters. Specifically, we employ an effective image-guided prompt tun-
ing, where the image-related prompt sequence is first generated by feeding
image tokens into an image-guided prompt generation network (IPG-Net).
Then, the prompt sequence can learn facial image information and guide
the frozen pre-trained Transformer to fine-tune the model. In addition,
dynamically adjustable gating is applied to the prompt sequence to adap-
tively adjust the contribution of the prompts from different encoder layers,
which enhances the interaction between the different encoder layers and
retains effective feature information during the iterative process. Experi-
mental results on the CelebA and LFWA datasets demonstrate that our
method outperforms competitive methods with a very small amount of
training parameters when only limited labeled data are used.

Keywords: Facial attribute recognition · Limited labeled data ·
Prompt learning · Adjustable gating

1 Introduction

With the rapid development of computer vision technology, facial attribute
recognition (FAR) has attracted more and more attention as one of the important
research directions. The FAR task aims to identify the different facial attributes,
such as local attributes like Big Lips, Pointy Nose, and Eyeglasses, as well as
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global attributes like Male, Heavy Makeup, and Attractive, to provide impor-
tant support for subsequent tasks, such as face recognition, face editing, face
synthesis, etc.

Current FAR methods [1–3] mainly use large labeled image datasets to train
deep learning models. However, it is difficult and time-consuming to annotate
FAR datasets, which makes the FAR task face many challenges. To address this
problem, SSPL [4], SABAL [5], and SPL-Net [6] have been successively proposed
to cope with the FAR task under limited labeled samples. SSPL [4] develops three
auxiliary tasks, to learn spatial-semantic relations from large-scale unlabeled
facial data. SABAL [5] designs a two-branch network that decouples faces into
3D shape features and facial appearance features. SPL-Net [6] associates different
component labels with the attribute labels, and extends the original PCT.

However, although the above methods successfully cope with the FAR task
with limited labeled data to a certain extent, the model complexity and the
number of parameters increase significantly. When the FAR task is applied to
real applications, the mounting and migration of complex models consume a
lot of computational resources and memory, resulting in the unavailability of
embedded applications. Slim-CNN [7] lightens the FAR network by combining
separable convolution with pointwise convolution. However, this network only
uses a simple CNN structure, with weak global feature representation capability
and insufficient inter-layer interaction.

To address the issues mentioned above, we leverage the concept of prompt
learning [8] and introduce prompt sequence into the model’s original input to
achieve efficient fine-tuning of the FAR task with a small number of training
parameters. However, in most of the existing prompt tuning methods [9,10],
the initial prompt sequences are obtained by Xavier Uniform initialization. Such
randomly initialized sequences have low relevance to the instances (images).
Therefore, relying only on iterations of prompt sequences unrelated to the input
images for visual feature capture can be detrimental to attribute recognition.

Fig. 1. Comparison of average recognition accuracy (%) for inserting prompt sequences
at different layers of the encoder on the LFWA dataset.
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In addition, different encoder layers of the Transformer contain different fea-
ture information. Typically, lower encoder layers concentrate on local patterns
and basic features in the input sequence, while higher encoder layers may focus
more on abstract semantic information and context. We thus explore the effect
of the prompt sequence at the different encoder layers for the FAR task, and
Fig. 1 lists the average accuracy against the LFWA dataset after the insertion
of the prompt sequence at different encoder layers of the Transformer. It can be
seen that the attribute recognition accuracy varies significantly with the different
layers of prompt sequence embedding. However, manual testing for large-scale
datasets on a layer-by-layer basis is laborious. Thus, it is very necessary to
adaptively adjust and interact cross-layer information in order to retain effective
feature information and boost the FAR performance.

In this paper, we propose an adjustable gating prompt Transformer, termed
AGPT, for FAR, where MoCo v3 [11] pre-trained on ImageNet-1K [12] is
migrated to our ViT [13] model under only a proportion of the FAR training set
(with labels). Specifically, an initial prompt sequence is first obtained by feeding
the image tokens into an image-guided prompt generation network (IPG-Net),
making the prompt sequence associated with each input image. Then this prompt
sequence is inserted into the original ViT model input and can interact with the
image sequence. Moreover, dynamic gating is applied to adjust the prompt inputs
of each layer, dynamically controlling the composition of the prompt sequences.
Thus, the prompt sequence is selectively influenced by the ViT layers, and guides
the adaptation of the FAR task, better fusing the deep and shallow information
of the model. Instead of drastically modifying the model’s architecture during
training, our model is frozen and only the prompt sequence is fine-tuned. Under
limited training data, the performance of our method is even better than full
fine-tuning with a very small number of training parameters. The contributions
of this work are as follows:

– We introduce the concept of prompt learning to the FAR task and propose
an adjustable gating prompt Transformer, where the image-guided prompt
tuning is employed by using the prompt sequence interacted with the original
image sequence to bootstrap the frozen ViT.

– We employ learnable gatings for prompt sequences, which dynamically adjust
the composition of the input prompt sequences for each layer, thus facilitating
cross-layer interaction and FAR task-related information aggregation.

– Experimental results demonstrate our method performs extremely well with
a very small amount of training parameters, especially when limited training
data are used.

2 Related Work

2.1 Facial Attribute Recognition

Currently, most FAR methods are still based on manual features and deep con-
volutional neural network (CNN), but inevitably can only deal with local regions
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with convolutions at a time. In order to explore global features, Song et al. [14]
used prior to guide multi-scale fusion Transformer to build integration between
features of different scales. The graph convolutional network is used to simulate
the relationship between attributes. Priadana et al. [15] proposed a lightweight
multi-label CNN-Transformer architecture with an efficient initial block (EIB)
and a squeeze channel Transformer encoder (SCTE).

Qin et al. [16] jointly trained a Transformer in a multi-task learning frame-
work consisting of a shared Swin Transformer backbone and a face recognition
subnet. Chen et al. [17] proposed a self-distillation-based multi-zone Transformer
(MZTS) that captures interactions between different Transformer encoder blocks
to avoid forgetting information in Transformer encoder blocks during iteration.
Although existing Transformer-based FAR methods have made some progress,
they still rely on the labeling of the dataset and have poor recognition perfor-
mance for limited labeled data in practical applications. This paper introduces
prompt learning derived from the field of NLP to assist in migrating FAR-related
knowledge under limited labeled data.

2.2 Prompt Learning

Prompt learning is a new learning paradigm that has emerged in the field of
natural language processing in recent years. It helps the pre-trained model to
migrate to the downstream task by giving a certain prompt to the model. Schick
et al. [8] proposed a semi-supervised training architecture that redesigns input
samples into cloze phrases while generating pseudo-labels for a large number
of unlabeled examples. Then the prompt paradigm is gradually introduced into
the Vision-Language model. CLIP [18] is proposed to jointly predict several
image text pairs by contrastive learning. The text branch constructs a photo
of a {object} text label, where {a photo of a} is actually a manually designed
prompt.

Zhou et al. [9] found that manually designing and iterating contexts requires
a lot of effort, so they proposed context optimization (CoOp), where a learn-
able vector is used to model the prompted context automatically. Jia et al. [10]
proposed a simple and effective Visual Prompt Tuning (VPT), to introduce the
prompt tuning into the realm of pure vision. Bahng et al. [19] created prompts
in the form of pixels to adapt to the frozen pre-trained classification model by
modifying the pixels of the input image, and introducing perturbations in the
pixel space to improve the model’s performance. Later, more methods [20–22]
introduce the concept of prompt learning to vision. However, the existing meth-
ods using prompt tuning do not explore the relationship between different layers,
and only an image-independent randomly initialized prompt sequence is inserted.
In this work, we employ learnable gatings to enhance cross-layer interaction and
make the initial prompt sequence relevant to each image instance.
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2.3 Learning from Unlabeled Data

The goal of self-supervised learning and semi-supervised learning is to improve
the performance of models by learning feature representations from unlabeled
data, and training models by introducing subtasks or contrastive learning.
Recently, Transformer has also been widely used in the field of self-supervised.
Both Beit [23] and iBOT [24] employ a pre-training approach similar to
BERT [25], and they learn image features by comparing positive and negative
examples. Beit [23] is a reconstructed self-supervised model, which randomly
masks parts of image patches, and restores the original visual tokens. iBOT [24]
uses an online tokenizer for mask prediction, where self-distillation is applied to
the masked subblocks and they use the teacher network as an online tokenizer.

MAE (Masked Autoencoders) [26] is proposed based on a generative task. It
randomly masks partial patches of the input image and then trains the model to
reconstruct these missing pixels. In contrast, MoCo (Momentum Contrast) [27] is
a self-supervised learning method based on contrastive learning. It learns stable
feature representations by constructing a dynamically updated dictionary and
adopting a momentum update mechanism. However, these methods leverage
complex network structures, with a large number of parameters. Therefore, our
work freezes the model during training and only fine-tunes the prompt sequence
to achieve satisfactory recognition performance with very few parameters.

3 Proposed Method

We propose a straightforward and efficient adjustable gating prompt Trans-
former, termed AGPT, for facial attribute recognition with limited labeled data.
Our method can make pre-trained Transformer models to adapt to the FAR
task. AGPT incorporates trainable prompts into the input and maintains par-
tial freezing of the backbone during the training phase. In this section, we first
define the symbols and then discuss each part of the model in depth.

3.1 Preliminaries

Because SSL ViT [11,26] can utilize unlabeled data for feature learning, we
transfer its knowledge to our ViT model, and thus help our model learn FAR-
related knowledge with limited labeled data through the insertion of image-
guided prompt sequences. This method adopts a ViT-like structure, where the
input facial image I ∈ R

H×W×C is segmented into a series of patches Ipatch ∈
R

T×(S2×C), where T denotes the number of image patches, S denotes the size
of each patch, C denotes the channel number of the patches, and H and W are
the height and width of the image, respectively.

The vectorized patches are projected into the potential d-dimensional embed-
ding space using a learnable linear projection to obtain the serialization of
patches Ie. Since the Transformer model itself does not have the ability to process
location information and distinguish the relative locations, Ie is location-coded
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to obtain the final image sequence E. Meanwhile, to obtain the predicted values
of the facial attributes, the obtained image sequence is concatenated with the
class token CLS ∈ R

1×d to obtain the spliced sequence [CLS, E]. The overall
framework of the proposed method is illustrated in Fig. 2.

Fig. 2. The overall framework of the proposed method. After concatenating the prompt
sequence that is generated by feeding image tokens into IPG-Net with the original
image tokens, the concatenated sequence is input into a model consisting of 12 stacked
Transformer encoder layers, where the composition of the prompt sequence at each
layer is controlled by dynamically adjustable gating (DAG).

3.2 Image-Guided Prompt Tuning

Inspired by prompt learning [8,10], the additional learnable tokens, called
prompt, are used to guide the frozen model to adapt to the FAR better without
the need for dedicated dataset pre-training, especially when a limited number of
labeled FAR samples are used.

Firstly, by introducing the prompt sequence, the model input is changed from
the original [CLS,E] to

Z = [CLS,P,E], (1)

where P is a learnable sequence of length K and dimension d, called prompt
sequence. To get the initial prompt sequence input associated with each image
instance, we employ an effective non-linear image-guided prompt generation net-
work (IPG-Net) and then feed the initial sequence of images [E0] into the IPG-
Net, so as to aggregate FAR task-related image features. The IPG-Net uses
a simple Linear-ReLU-Linear (two-layer bottleneck) structure, and in order to
reduce the computational cost, we also introduce max pooling (MP) to aggregate
image features. The network structure is shown below:

P̂ = ReLU(fdown(E0)), (2)

P0 = fup(MP(P̂ )), (3)
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where the fdown and fup are downsampling and upsampling networks of the
same scale, and are used to maintain the prompt sequence dimension. Then,
the obtained prompt sequence P0 is reshaped and then inserted between the
original image patch embedding and the class token at the beginning. Then the
prompt sequence is updated through training iterations to learn the task-specific
knowledge of FAR.

The initial prompt sequence P0 is inserted only before the first encoder layer
L1, and the prompt sequence input of the subsequent layer inherits the output
of the previous layer. That is, for layer L1, its input Z0 is [CLS0, P0, E0], and its
output is expressed as

Z1 = [CLS1, P1, E1] = L1([CLS0, P0, E0]). (4)

Similarly, for layer Li, its input Zi−1 is [CLSi−1, Pi−1, Ei−1] and its output is

Zi = [CLSi, Pi, Ei] = Li([CLSi−1, Pi−1, Ei−1]). (5)

That is, before the input of the first layer of the model, a K × d learn-
able sequence P0 is generated by the IPG-Net, and then P0 is inserted between
the classification token [CLS0] used to obtain the predicted values of the facial
attributes and the sequence of images [E0] obtained by segmenting and project-
ing the facial images.

During training, only the parameters of the prompt sequence and the linear
head are updated, while the entire Transformer encoder is frozen; the model is
continuously optimized for the prompt sequence by gradient backpropagation,
to achieve a small number of training parameters, so that the model pre-trained
on the ImageNet dataset can be easily fine-tuned to adapt to the FAR task, and
at the same time, it can still achieve strong generalization ability and robustness
in the case of a limited number of labeled facial samples.

3.3 Dynamically Adjustable Gating

In order to dynamically adjust the gating values of each layer and enhance the
interaction of FAR task-related information across layers, we first define the
gate prior sequence, i.e., G = [γ1, . . . , γN−1], where N is the total number of
Transformer encoder layers, and G contains the gate prior values of each layer
except the last one. This sequence is learnable (the individual values within the
G sequence are initially set to 10 in our method) and is continuously optimized
with model iteration.

Thus the gate prior value of each encoder layer is adaptively tuned to achieve
dynamic weighting of the prompt input and the output of the previous layer.
The γi is subsequently scaled by a sigmoid function to obtain the corresponding
gating values, i.e., gi = sigmoid(γi) for each layer, to determine the influence
degree of the previous layer on the prompt sequence for the next layer. Then for
the i -th layer, the output of Li is [CLSi, Pi, Ei] and the input of the next layer
is [CLSi, P

′
i , Ei], where the prompt P ′

i is defined as
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P ′
i =

{
Pi, i = 1,

gi · Pi + (1 − gi) · P ′
i−1, i = 2, . . . , N.

(6)

Here, gi controls the contribution of the prompt output Pi of the i-th layer and
the prompt input P ′

i−1 of the i-th layer to the prompt input P ′
i of the (i + 1)-

th layer when i = 2, . . . , N . Therefore, our method dynamically updates each
prompt sequence by weighting the prompt input and the prompt output from
the previous layer.

The prompt sequence output of each layer is selectively aggregated before
the class head. By dynamically weighting the prompt sequence of each layer,
after mathematical cumulative calculations, the last layer’s prompt input can be
obtained by the following statistical calculation.

P ′
N−1 = (

N−1∑
i=1

(1 − gi))P0 +
N−2∑
i=1

(
N−1∑

m=i+1

(1 − gm))giPi + gN−1PN−1, (7)

where P0 is the initial prompt sequence obtained by IPG-Net; Pi denotes the
prompt sequence output of the i -th layer; and PN−1 denotes the prompt output
of the (N -1)-th layer, i.e., the layer before the last layer of the model.

3.4 Facial Attribute Recognition

To finally obtain the predicted values of each facial attribute, we feed the out-
put of the class token CLSN from the last Transformer encoder layer into the
LayerNorm and the fully connected layer in the appropriate order, to acquire
the predicted values ŷ of the facial attributes. Therefore, given the predicted
values ŷ of the facial attributes and the ground truth y, the loss of FAR can be
calculated in the following:

LFAR = − 1
M

M∑
i=1

A∑
j=1

(yj
i log(σ(ŷij)) + (1 − yj

i ) log(1 − σ(ŷij))). (8)

Here, M represents the total number of training images, and A represents
the number of facial attributes, which is typically 40 in the dataset used in
this method. Additionally, σ stands for the sigmoid function, i.e., σ(ŷij) =

1
1+exp(−ŷij) .

4 Experiments

4.1 Datasets and Experimental Setup

Experiments are conducted on the two challenging FAR datasets, i.e., LFWA
(Labeled Faces in the Wild) and CelebA (Celeb-Faces Attribute). The LFWA
dataset contains 13,143 face images from the Internet. The dataset is diverse and
challenging, with images covering different conditions, such as, lighting, poses,
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ages, etc. It is divided into a training set of 6,263 images and a test set of 6,880
images. Another important dataset is CelebA, a massive facial attribute dataset
containing 202,599 images of celebrities, each with 40 binary attribute labels.
It is divided into three sections, of which 162,770 images are used for training,
19,867 images for validation, and 19,962 images for testing.

We employ the PyTorch platform for each dataset to conduct all experiments
on one NVIDIA RTX 3090 GPU to train the proposed method for 50 epochs.
The input image size is 224×224 with a mini-batch size of 64. The learning rate
undergoes adjustment through a cosine decay schedule [28], transitioning from
0.005 to 0.0 across 25 epochs. Our framework is trained using the stochastic
gradient descent (SGD) algorithm [29] with a weight decay of 0.0001 and an
SGD momentum of 0.9.

4.2 Ablation Studies

Component Ablation Experiments. To demonstrate the validity of the indi-
vidual components of our proposed AGPT model, we perform ablation exper-
iments for different components. Our proposed model contains two main com-
ponents, i.e., Image-guided Prompt Tuning (IPT) and Dynamically Adjustable
Gating (DAG). We report the corresponding accuracy on the LFWA dataset to
test the effectiveness of the individual components.

Figure 3 shows the average accuracy of attribute recognition after adding
our individual innovative components to the baseline step-by-step. The baseline
used in our method is the SSL ViT-ViTB16 transfer model, where we test the
two pre-trained SSL ViT models, i.e., MoCo v3 [11] and MAE [26] on the Ima-
geNet dataset as the initial weights and then transfer these weights to the Vision
Transformer (ViT) model for the FAR task.

It can be clearly seen from Fig. 3 that when the components proposed in this
method are gradually added, no matter MoCo v3 [11] or MAE [26] is used, the
accuracy is greatly improved to different degrees. When image-guided prompt
tuning is performed based on the baseline, the accuracy is improved by 2.4%
for MoCo v3, and by 2.75% for MAE. It shows that our IPT component can
improve the model performance by introducing facial image information to the
prompt sequences. In addition, on this basis, the prompt sequence of the IPT is
dynamically gated, that is, after adding DAG components, the accuracy is also
improved by 3.14% for MoCo v3, and by 3.85% for MAE. We also found that
the FAR performance pre-trained on MoCo v3 is better than that pre-trained
on MAE. Therefore, we choose MoCo v3 as the pre-trained SSL ViT model
in our method. These experimental results demonstrate the effectiveness of the
addition of IPT and DAG components for FAR, boosting the transfer learning
of SSL ViT models pre-trained on general datasets.

Hyperparameter. In addition, Fig. 4 tests the variation of accuracy under
different numbers of image-guided prompt tokens by tuning the hyperparameter
K, and compares the average accuracy with the other two methods to further
prove the effectiveness of our proposed method. We vary the number of image-
guided prompt tokens from 6 to 100 for accuracy testing. The three methods
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Fig. 3. Ablation study on the LFWA dataset based on the different pre-trained models,
i.e., (a) MoCo v3 and (b) MAE, respectively.

listed in Fig. 4 are (1) AGPT using SSL ViT (MoCo v3) knowledge migration
as proposed in this paper, (2) AGPT replacing SSL ViT with ViT knowledge
migration, and (3) model without dynamic gating. As shown in Fig. 4, it is
obvious that in the case of a minimum number of prompt tokens, the effect of
our proposed method AGPT is also substantially better than the ViT-based
AGPT and the model without using gating components.

Figure 4 clearly shows that our proposed method is not very dependent on
the number of prompt tokens. As the number of prompt tokens decreases, the
average accuracy of attribute recognition does not drop dramatically but more
smoothly from 86.49% to 85.18%. At the same time, our method outperforms
the compared method, which also reflects the dynamic gating can significantly
improve the effectiveness of the FAR task.

From the above accuracy comparison, it can be seen that the AGPT in
this paper does not produce performance improvement purely by the increase
of the number of prompt tokens fed into the vision Transformer. Due to our
new component structure, the knowledge learned by SSL ViT on the generalized
dataset is effectively migrated to the FAR task. When replacing the knowledge
migration source model of AGPT from SSL ViT to ViT, the model accuracy is
greatly reduced regardless of the increase or decrease in the number of prompt
tokens. After our exploration, we found that the information between layers
in the unsupervised model SSL ViT is richer and more complete than that in
the supervised ViT. Thus SSL ViT fits better with the idea of using the gating
component, i.e., utilizing the information from each facial image as initial prompt
tokens and dramatically adjusting the prompt tokens between different encoder
layers. Meanwhile, it can be seen that, under different numbers of prompt tokens,
the model is less accurate without using the dynamic gating component. The
average recognition accuracy without the DAG component is lower than our
proposed AGPT, which further proves the effectiveness of dynamic gating.
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Fig. 4. Mean accuracy (%) under different numbers of image-guided prompt tokens.

4.3 Comparison with Other Models

In this section, we compare the accuracy and the number of training parame-
ters of our method with other existing methods for both full labeled data and
limited labeled data on the LFWA and CelebA datasets, respectively. In many
practical FAR tasks, it is challenging to acquire a large amount of labeled data.
Additionally, most existing FAR methods experience performance degradation
when dealing with limited labeled samples. To address this issue, our method
focuses on facial attribute recognition tasks under limited labeled data. Table 1
presents comparisons of the accuracy of our proposed method and other meth-
ods at different proportions of labeled data (the training data are acquired at
intervals of the corresponding size, so that only a portion of the FAR training
data is chosen with labels, and the default test sets are used for the FAR task),
highlighting the effectiveness of our approach for limited labeled data.

As shown in Table 1, we compare the accuracy of our method with five
supervised FAR methods, i.e., LNets+ANets [30], MCFA [3], SlimCNN [7],
DMM-CNN [2], MZTS [17]; the self-supervised and semi-supervised methods
FixMatch [31] and SimCLR [32], as well as SSPL [4] and SPL-Net [6] for FAR
under limited labeled samples.

Our proposed method outperforms the current state-of-the-art method SPL-
Net [6] in terms of accuracy when the proportion of labeled samples is limited
for these two datasets. Especially, when utilizing a minimal proportion of limited
annotated samples, i.e., 5% for the LFWA and 0.2% for the CelebA dataset.

On the LFWA dataset, when utilizing 5%, 10%, and 20% of the training
data, our method’s average classification accuracy increases by 5.44%, 2.74%,
and 0.46% compared to SPL-Net [6]. When using 0.2%, 0.5%, and 1% of the
training data for the CelebA dataset, our method’s average classification accu-
racy improves by 0.56%, 0.23%, and 0.23% compared to the SPL-Net [6] method.
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Table 1. Average classification accuracy (%) obtained by AGPT and several state-of-
the-art methods with different proportions of labeled training data on the LFWA and
CelebA datasets.

Venue #params LFWA CelebA

Proportion 5% 10% 20% 100% 0.2% 0.5% 1% 100%

# of training samples 313 626 1252 6263 325 843 1627 162770

LNets+ANets [30] ICCV 2015 >100M – – – 83.03 – – – 87.33

MCFA [3] ICPR 2018 260M – – – 83.63 – – – 91.23

SlimCNN [7] FG 2020 0.6M 70.90 71.49 72.12 76.02 79.90 80.20 80.96 91.24

DMM-CNN [2] TAC 2022 360M – – – 86.56 – – – 91.70

MZTS [17] FG 2023 85.83M – – – 86.73 – – – 91.66

FixMatch [31] NeurIPS 2020 5.9M 71.42 72.78 75.10 83.84 80.22 84.19 85.77 89.78

SimCLR [32] ICML 2020 35.3M 78.63 80.66 82.73 86.24 86.24 88.01 88.63 91.72

SSPL [4] CVPR 2021 52.7M 78.68 81.65 83.45 86.53 86.67 88.05 88.84 91.77

SPL-Net [6] IJCV 2023 48.1M 79.20 82.12 84.43 86.77 87.02 88.21 88.97 91.78

AGPT (Ours) – 0.6M 84.64 84.86 84.89 86.49 87.58 88.44 89.20 91.67

Though our proposed method is not optimal for 100% of labeled data, the
average accuracy is significantly better than that of SOTA under a very small
percentage of labeled data, and the superiority of our method for the FAR task
with very limited labeled data is undeniable. Moreover, the SSPL [4] and SPL-
Net [6] methods require the joint development of three auxiliary tasks, a Patch
Rotation Task (PRT), a Patch Segmentation Task (PST), and a Patch Clas-
sification Task (PCT), to learn spatial-semantic relationships from large-scale
unlabeled facial data. However, our proposed method, AGPT, has a simple struc-
ture based on the ViTB16 architecture and freezes the model during training.
It is able to obtain better recognition accuracy with very limited labeled sam-
ples and close to SPL-Net [6] with fully labeled ones, while the overall number
of parameters required is extremely low which reduces the number of parame-
ters by a factor of nearly 80 compared with SPL-Net. It can also be seen from
the #params column of Table 1 that our method requires the lowest number of
parameters compared to existing both supervised and unsupervised methods.
Also compared to the lightweight FAR method SlimCNN [7], AGPT is able to
achieve better recognition results using the same order of magnitude of number
of parameters (i.e., 0.6M), with accuracy increasing from 76.02% to 86.49% for
the LFWA dataset and from 91.24% to 91.67% for the CelebA dataset.

4.4 Visualization

In addition, we also visualize the multi-head attention map of AGPT. Figure 5
shows our FAR attention visualization images output from different heads, the
first column is the raw input FAR image, and columns 2–5 are the attention
maps output from different heads. As can be seen from the visualized heatmaps,
with different heads, our architecture can cover all the partial attributes of the
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face as well as the overall attributes. Even under face occlusion or cluttered
background, it can still focus on the facial area that needs to be paid attention
to for facial attribute recognition.

Fig. 5. Visualization of multi-head attention maps on the LFWA dataset.

4.5 Discussion

Strengths. By introducing Image-guided Prompt Tuning and Dynamically
Adjustable Gating, the prompt sequence of the IPT guides the frozen model
to learn FAR task-related knowledge with very few training parameters, and
the DAG facilitates cross-layer interaction and FAR task-related information
aggregation, so that discriminative feature information is still retained during
the iteration process. The above experimental results strongly confirm the effec-
tiveness and robustness of our proposed method under limited labeled data. In
addition, the extremely low number of training parameters are consumed in our
method, which can greatly save the data labeling consumption and computa-
tional resources of the FAR task.

Limitations. Although our method achieves satisfactory performance under
limited labeled data, it still has some limitations. For example, the performance
of attribute recognition under full labeled data is not yet optimal, and our
method does not take into account the imbalance of attribute distribution. In the
future, we will continue to explore these limitations by adopting special sampling
methods for data with unbalanced attributes or by assigning different weights
to attributes.

5 Conclusion

In this paper, we propose an adjustable gating prompt Transformer that intro-
duces a prompt sequence in the input to guide the frozen Transformer encoder
model to adapt to the FAR task. An initial prompt sequence is generated using
an image-guided prompt generation network such that the prompt sequence is
related to facial attribute instances. In addition, dynamically adjustable gating
adaptively controls the influence of the prompt sequences of different encoder
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layers, which enhances the cross-layer information interaction and aggregation.
As a result, our AGPT network is able to obtain excellent FAR results under
limited labeled data, while only requiring a very small number of training param-
eters for the FAR model.
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Abstract. Gaze refers to the directed focus of an individual’s visual
perception, playing a fundamental role in human communication and
cognition. Recent studies have employed neural networks to predict gaze
from standard RGB face images. However, obtaining effective face images
is challenging due to their sensitivity to bounding box size. The inter-
ference from head pose further complicates gaze estimation, yet in real-
world scenarios, it is not feasible to obtain accurate head pose values.
To overcome these challenges, we design the IPHGaze network guided
by head pose information for image pyramid face gaze estimation. We
craft this network to capture diverse face perspectives by incorporating
various face bounding box sizes, ensuring rich gaze features. Addition-
ally, a Feature Ensemble Module (FEM) facilitates feature sharing across
image pyramid levels. We use head pose features instead of precise labels
in two stages: feature communication and fusion, enhancing robustness
for stable gaze predictions. Our method achieves a 5.4% improvement
on EyeDiap dataset and a 2.5% improvement on Gaze360 dataset com-
pared with existing methods, which demonstrates its effectiveness and
versatility across diverse indoor and outdoor scenarios.

Keywords: Gaze estimation · Image pyramid · Head pose · Deep
learning

1 Introduction

Gaze, the directed focus of an individual’s visual perception, serves as a fun-
damental element in human communication and cognition. The study of gaze
behavior has garnered significant attention across a spectrum of disciplines, rang-
ing from psychology and neuroscience to human-computer interaction and com-
puter vision. Understanding where individuals are looking and how their gaze
patterns evolve provides invaluable insights into their cognitive processes, inten-
tions, interests, and emotional states. This understanding is facilitated by gaze-
based interfaces and eye-tracking technology. Gaze estimation algorithms have
facilitated innovations in fields like virtual reality [26,35], augmented reality
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[3,4], and assistive technology [19,21]. By inferring and tracking a user’s gaze,
these technologies enable more intuitive and efficient interactions, improving user
experiences across diverse applications.

Traditional gaze estimation methods face significant limitations as they
depend on fitting eye keypoints and often necessitate the use of infrared cam-
eras and close proximity between the subject and the camera. In response,
appearance-based methods using standard RGB cameras have emerged, employ-
ing neural networks to predict gaze from face images. These methods involve
feeding a single face image into a neural network to extract features and regress
gaze angles. However, effectively capturing face images poses challenges, such as
the sensitivity to the size of the face bounding box, which can either omit crucial
head pose data or hinder focus on eye-related information. Moreover, the inte-
gration of head pose, a crucial element for gaze direction, remains a challenge
in current research, which often overlooks it in end-to-end gaze prediction or
struggles with obtaining practical real-world head pose data.

To address these two challenges, we introduce the IPHGaze (Image Pyramid
Gaze estimation with Head pose guidance), guided by head pose information,
for image pyramid face gaze estimation. Specifically, in response to the first chal-
lenge, we draw inspiration from the concept of a feature pyramid. We design a
network tailored for face image pyramid by incorporating different face bound-
ing box sizes, enabling us to capture face images from various perspectives. This
approach encompasses both small face regions that focus on the eye areas and
larger face regions that encompass the entire face. This design ensures the rich-
ness and robustness of gaze features. To facilitate the exchange of face feature
information extracted at various scales, we have also designed an information
exchange module called FEM. This module is responsible for exchanging feature
information from different levels of image pyramids. For the second challenge,
we employ head pose features instead of actual head pose ground truth labels
to guide face gaze estimation. This approach eliminates the need for precise
head pose labels. The introduction of head pose is divided into two stages: fea-
ture communication and feature fusion. In the feature communication stage, we
input head pose features into FEM to transfer head pose feature information
into the face gaze feature space, guiding the estimation of face gaze. In the fea-
ture fusion stage, we concatenate the head pose features with the multi-scale
face gaze features. The resulting fused features include both the explicit fusion
of face gaze and head pose features and the implicit fusion between each sub-
feature. This fused feature representation enhances robustness, ensuring stable
and reliable gaze predictions.

Extensive experiments are conducted on EyeDiap [15] and the Gaze360 [24]
dataset. And the results demonstrate that our algorithm achieves competitive
performance on both datasets. Specifically, on the EyeDiap dataset, the error is
as low as 4.73◦, while on the Gaze360 dataset, the error measures 10.15◦. These
findings illustrate the effectiveness of our method in diverse scenarios, whether
in indoor, close-distance environments or in outdoor, longer-distance settings,
showcasing its robustness and versatility.
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In summary, our contributions can be summarized as follows:

1. We create a specialized network for the face image pyramid, incorporating
diverse face bounding box sizes to capture different perspectives, including
small regions focusing on the eyes and larger ones encompassing the entire
face. This design ensures rich and robust gaze features. Additionally, we intro-
duce a Feature Ensemble Module called FEM to share feature information
across different image pyramid scales.

2. We use head pose features instead of precise labels to guide face gaze estima-
tion, eliminating the need for exact annotations. This involves two stages: fea-
ture communication, where head pose information guides gaze feature extrac-
tion through FEM, and feature fusion, where head pose and multi-scale face
gaze features are combined for robust, stable gaze predictions.

3. Our proposed method achieves competitive performance on both the indoor,
close-distance EyeDiap dataset and the outdoor, longer-distance Gaze360
dataset.

2 Related Work

2.1 Appearance-Based Gaze Estimation

Appearance-based gaze estimation seeks to establish a mapping from eye or face
images to gaze directions. With the rapid advancements in deep learning, signifi-
cant progress has been made in this area. Cheng et al. [9] merge CNNs with ViT,
harnessing CNNs’ superior local perception and ViT’s robust global perception,
to develop a universal face gaze estimator. Nagpure et al. [29] introduce Neu-
ral Architecture Search into gaze estimation, achieving a substantial reduction
in model size while preserving or even enhancing estimation accuracy. Abdel-
rahman et al. [1] segment gaze estimation into regression and classification tasks
and train them jointly, thereby further reducing estimation errors.

Nonetheless, these approaches primarily concentrate on gaze features without
accounting for the influence of head pose. Additionally, the extraction of face
features is sensitive to the bounding box, an improperly sized cropping can
compromise the accuracy of gaze feature detection.

2.2 Image Pyramid and Feature Pyramid

Image Pyramid is a technique for multi-scale representation of images, which
includes a series of versions of the original image at different sizes or resolu-
tions. Each version is obtained by downsampling or upsampling the original
image. The purpose of image pyramids is to analyze image features at different
scales, allowing for object detection [25,33] or segmentation [22,28] at different
resolutions. Common types of image pyramids include Gaussian pyramids and
Laplacian pyramids. Feature Pyramid is an image representation used for com-
puter vision tasks, typically associated with deep convolutional neural networks
(CNNs). Unlike image pyramids, feature pyramids consist of a multi-scale stack
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of feature maps generated at different levels of a CNN network. Each feature
map level corresponds to a different abstract feature representation with vary-
ing semantic information. This enables more effective detection and recognition
of objects at different sizes within an image while preserving rich semantic infor-
mation. Due to the fact that feature pyramids have no specific requirements on
input images, their application is even more extensive [16,27,32,37]. Specifically,
Cheng et al. [12] propose the gaze pyramid transformer, in which they use a con-
volutional network to extract feature maps from multiple layers. These feature
maps are processed through 1×1 convolutions and global average pooling layers
to achieve uniform feature dimensions. Then, they are fed into a transformer to
effectively integrate both shallow and deep features.

However, existing image pyramids typically involve resizing the original image
and lack a specific focus on particular regions of the image. Gaze estimation is
primarily influenced by the position of the human eye, thus employing a crop-
ping method to concentrate the image more on the eye area aligns better with
the requirements of gaze estimation. At the same time, current feature pyra-
mids often simply sum up feature maps from different scales after straightfor-
ward scaling, resulting in the final feature map. This approach overlooks the
interaction of information between features at different scales. Therefore, we
introduce FEM to ensure equitable information exchange among features at dif-
ferent scales.

2.3 Gaze Feature Communication

Bao et al. [2] recalibrate eye features using shift and scale parameters derived
from face features. Cai et al. [5] introduce the iTracker-MHSA module to merge
eye and face features. Gideon et al. [17] explore disentangling image features via
feature swapping in multi-view videos. Yun et al. [34] develop a high-frequency
attention block to enhance high-frequency details, including in the eye regions.
Cheng et al. [10] create DIC blocks for dual-view information exchange during
convolution, enriching the original features by adding fused data. Hisadome et
al. [20] propose Rotation-Constrained Feature Fusion, utilizing relative camera
rotation for feature extraction and fusion. Building on our previous work [6]
which developed an information exchange module, we now incorporate channel
weight parameters to emphasize more significant features, thus boosting feature
saliency.

2.4 Head Pose in Gaze Estimation

Head pose and gaze direction are intricately linked, as changes in head
movements directly affect gaze direction. To mitigate head pose interference,
researchers like Zhu et al. [38] incorporate head pose data using geometric trans-
formation layers in neural networks, enhancing gaze estimation. Unlike methods
relying on unavailable ground truth for head pose, Tobias et al. [14] use a network
to integrate global facial information with eye features for gaze prediction. This
network, however, operates without ground truth supervision, making its efficacy
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in learning head pose a subject for debate. Wang et al. [31] integrate head pose
with eye image features for gaze zone prediction using advanced image process-
ing techniques. Jha et al. [23] further refine gaze estimation with a probabilistic
visual attention map that utilizes head pose to predict gaze areas effectively.
Our approach, leveraging pseudo-labels for head pose, ensures accurate head
pose information extraction without relying on actual ground truth, setting a
new standard in robust gaze estimation methodologies.

3 Method

Fig. 1. The pipeline of our proposed IPHGaze. Note that the SFace Gaze, MFace Gaze,
and Head Pose branches are only used during the training process. During inference,
the only output is LFace Gaze, which is the final result. FC represents a single-layer
fully connected layer.

3.1 Overview

Our proposed IPHGaze is illustrated in Fig. 1. The network takes as input a
face image pyramid of the same individual, which comprises three images ranging
from large to small, denoted as Large Face, Medium Face, and Small Face. These
face images encompass the eye regions to ensure the inclusion of eye-related
features relevant to gaze estimation. We employ a convolutional neural network
(CNN) to extract face gaze features from these images. Considering that the
larger face has a broader field of view and encompasses the entire face region,
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we use the large face to extract head pose features. Similarly, we use a CNN
to extract head pose features. Subsequently, we feed the extracted face gaze
features along with the head pose features into our designed feature exchange
module FEM. This module facilitates comprehensive feature fusion, integrating
the head pose features into the multiscale face features. Finally, we concatenate
the face features, enriched with feature exchanges through FEM, and the head
pose features. We employ fully connected layers to predict face gaze angles,
including yaw and pitch angles, from this concatenated feature. To ensure the
accuracy of the face gaze features for the small and medium faces, as well as
the head pose features, we use separate fully connected layers to regress their
respective gaze or head pose angles. Gazes are guided by ground truth, while
head pose is supervised using pseudo-labels generated by 6drepnet [18].

3.2 Image Pyramid Gaze Estimation

Face Image Pyramid. We take inspiration from feature pyramid to propose
face image pyramid for gaze estimation. In a feature pyramid, the input image is
processed by a series of convolutional layers with different receptive fields. The
output feature maps from these layers are then combined to form a pyramid-like
structure, where each level represents a different scale of the input image. This
allows the network to extract features at multiple scales, which is crucial for
accurately localizing objects of different sizes and shapes.

However, the information contained within a single image is limited. For
gaze estimation, if the input face region is too small, it may not involve global
information like head pose. Conversely, if the input face region is too large, it
might not focus adequately on the eye area. Even though feature pyramids can
extract multiscale information from a single image, they cannot fundamentally
address the challenge of balancing global and local information.

To tackle this issue, we construct an image pyramid at the image level.
Through the design of large, medium, and small faces within this pyramid, the
network can consider global head pose while simultaneously focusing on local
regions such as the eyes. This enhances the expressive power of the features,
allowing for a more comprehensive analysis.

Feature Communication. Inspired by MLP-Mixer [30], we designed the Fea-
ture Ensemble Module (FEM) for facilitating information exchange among multi-
scale face gaze features and head pose feature.

As described in Fig. 2, FEM is composed of inter feature ensemble and intra
feature ensemble. Suppose the dimension of features after feature extraction is
N . We concatenate three face features and one head pose feature to be a feature
matrix F ∈ R

4×N . First, layer normalization is preformed to F , and then F
is transposed to FT ∈ R

N×4. Features from the same channel are mixed by
the MLP1 module which includes two Fully-connected layers and a GeLU layer.
After that, each channel is smoothed by softmax layer to get the coefficients for
each channel. The origin feature is multiplied by these coefficients and added
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with origin feature. The above processes are called inter feature ensemble. For
intra feature ensemble, the processing flow is similar except for transpose. F
is processed again by layer normalization, MLP2 module, and skip-connection.
Note that MLP1 and MLP2 have the same structure. In order for gaze features
and head pose feature to fully communicate with each other, we repeat FEM for
several times.

Fig. 2. Architecture of FEM. (a) Ensemble features within the same channel across dif-
ferent feature vectors, (b) Ensemble different channels within the same feature vector,
(c) MLP (Multi-Layer Perceptron) structure.

3.3 Head Pose Guided Gaze Estimation

To counteract the influence of head pose variations on gaze prediction, we intro-
duce head pose information. This information is synthesized using head pose
estimation techniques, allowing the model to gain insights into the user’s head
orientation. Head pose cues guide the model’s attention, enabling it to focus on
relevant gaze cues despite variations in head pose. The guidance of head pose
features can be divided into two phases as follows.

Head Pose in Feature Communication. During the feature communication
phase, we pass the head pose feature extracted from the large face through
FEM. Through the feature exchange process in FEM, the head pose feature is
effectively transferred to guide the generation of face gaze features, aiding in the
fusion of global information related to head pose with the face gaze features.

Head Pose in Feature Fusion. In the feature fusion phase, we concatenate
the head pose feature with the face gaze features from the large, medium, and
small faces. Subsequently, we employ a fully connected layer to regress the final
gaze angles, namely the yaw and pitch angles, from the concatenated features.



406 H. Che et al.

To ensure the reliability of the head pose feature, we supervise it using pseudo-
labels generated by 6drepnet [18]. It’s worth noting that in practical usage, we
only consider the yaw and pitch angles of the head pose, as the roll angle does
not contribute significantly to gaze prediction.

3.4 Loss Function

The network’s predictive output involves the yaw, pitch angles of gaze as well as
the yaw, pitch angles of head pose. Therefore, we employ an L1 loss function to
construct the overall loss function. For the image pyramid, we have constructed
three loss functions, one each for the large, medium, and small faces. Similarly,
for head pose, we have employed similar loss functions. It’s worth noting that
pseudo-labels are used for head pose supervision.

The total loss function is the weighted sum of the aforementioned loss func-
tions, as shown in Eq. 1. In this formula, λ represents the weight assigned to the
head pose loss function, typically set empirically to 0.1.

Loss =
1
N

N∑

i=1

∣∣∣glfacei − ĝi
lface

∣∣∣ +
1
N

N∑

i=1

∣∣∣gmface
i − ĝi

mface
∣∣∣

+
1
N

N∑

i=1

∣∣∣gsfacei − ĝi
sface

∣∣∣ + λ · 1
N

N∑

i=1

∣∣∣hi − ĥi

∣∣∣

= LossLGaze + LossMGaze + LossSGaze + λ · LossHeadPose

(1)

4 Experiments

4.1 Datasets

To evaluate the performance of our algorithm, extensive experiments were con-
ducted on publicly available datasets, EyeDiap and Gaze360.

EyeDiap: This dataset was captured in an indoor environment using a Kinect
camera and an HD camera. It comprises 237 min of video segments from 16
subjects, with subjects positioned approximately 80–90 cm from the camera.
The dataset underwent preprocessing using the method provided by [11]. During
preprocessing, face images were cropped into three sizes: 224×224 for small faces,
300 × 300 for medium faces, and 360 × 360 for large faces. Cross-validation was
performed using dataset partitioning provided by [11], involving a 4-fold cross-
validation strategy.

Gaze360: Captured in indoor and outdoor scenes using a Ladybug5 camera,
the Gaze360 dataset contains 197,588 images from 238 subjects, with subjects
located at distances of 1–3 m from the camera. Preprocessing of the data was
conducted using the method provided by [11], resulting in 84,902 images for
training, 11,318 for validation, and 16,031 for testing. Face images were cropped
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at 0.8 times the size of the provided face bounding box for small faces, at the
original bounding box size for medium faces, and at 1.2 times the bounding box
size for large faces. The original dataset’s partitioning scheme was used for both
training and testing the models.

4.2 Implementation Details

Before inputting each image into the network, we first resize it to 224 × 224
to ensure consistent input sizes. For the EyeDiap dataset, which has a smaller
number of subjects, closer subject-camera distances, and clearer data, we use
ResNet18 as the backbone network to extract gaze features for large, medium,
and small faces. Additionally, ResNet18 is used to extract head pose features.
On the other hand, for the Gaze360 dataset, which involves a larger number
of subjects, a more complex environment, indoor and outdoor scenes, longer
subject-camera distances, and relatively blurred images, we employ RepVGG
[13] to extract gaze features for large faces and ResNet50 to extract features for
medium and small faces. Head pose features are still extracted using ResNet. The
dimensions of the extracted features are all set to 100, and FEM is stacked twice.

During training, we set the batch size to 256, the number of epochs to 80, and
the initial learning rate to 5e−4. After 60 epochs, the learning rate is reduced
to half of its previous value. We implement a warmup strategy for the first 5
epochs. Adam optimizer is used with β1 set to 0.9 and β2 set to 0.999. Our
IPHGaze is implemented using PyTorch and trained on 4 NVIDIA RTX3090
GPUs.

4.3 Comparison with Appearance-Based Methods

We conducted a series of experiments on the EyeDiap and Gaze360 datasets to
compare the performance of our proposed algorithm with leading appearance-
based gaze estimation algorithms. Our comparison includes FullFace, Rt-gene,
Dilated-Net, Gaze360, CA-Net, GazeTR, GazeNAS and L2cs-net. Due to varia-
tions in experimental conditions among the first five algorithms, we used results
reproduced by [9] as a fair baseline for comparison.

The experimental results are presented in Table 1. On the EyeDiap dataset,
the existing algorithms achieved a minimum error of 5.00◦. Our approach
achieved a significant breakthrough by reducing gaze estimation error to within
5.00◦ for the first time. Compared to the current best-performing algorithm, our
method lowered the error from 5.00◦ to 4.73◦, marking a notable improvement
of 5.4%.

Moving to the Gaze360 dataset, characterized by its large dataset size,
numerous subjects, complex acquisition scenarios, and longer subject-camera
distances, gaze estimation is inherently challenging. Current algorithms exhibit
errors above 10◦ on this dataset, and our method also displayed strong per-
formance. In comparison to the current best algorithm, which had an error of
10.41◦, our approach reduced the error to 10.15◦, marking a 2.5% improvement.
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This highlights the versatility of our method, demonstrating its effectiveness in
both indoor and outdoor environments for accurate face gaze angle estimation.

Table 1. Comparison with other methods on EyeDiap and Gaze360 Datasets.

Algorithms Years EyeDiap Gaze360

FullFace [36] CVPRW2017 6.53◦ 14.99◦

Rt-gene [14] ECCV2018 6.02◦ 12.26◦

Dialted-Net [7] ACCV2018 6.19◦ 13.73◦

Gaze360 [24] ICCV2019 5.36◦ 11.04◦

CA-Net [8] AAAI2020 5.27◦ 11.20◦

GazeTR [9] ICPR2022 5.17◦ 10.62◦

GazeNAS [29] WACV2023 5.00◦ 10.52◦

L2cs-net [1] ICFSP2023 N/A 10.41◦

Ours 4.73◦ 10.15◦

4.4 Ablation Study

To validate the effectiveness of IPHGaze, we conducted a series of ablation exper-
iments on the EyeDiap and Gaze360 datasets. The experimental results are pre-
sented in Table 2, where we primarily investigated the impact of the FEM, the
addition of head pose information in FEM, and the types of features fused in
the final fusion stage. These correspond to the first three elements in the table
header.

Comparing the results between the second and third rows, it’s evident that
using FEM to communicate multi-scale face gaze features reduce the error from
5.17◦ to 4.99◦ on EyeDiap and from 10.61◦ to 10.47◦ on Gaze360. This demon-
strates the effectiveness of extracting and exchanging multi-scale face gaze fea-
tures. Comparing the results between the fourth and fifth rows, the addition
of head pose features significantly improved the algorithm’s performance. The
error on EyeDiap decreased from 4.91◦ to 4.84◦, and on Gaze360, it decreased
from 10.32◦ to 10.22◦. Comparing the results between the fifth and last rows,
it’s evident that further improving the algorithm’s performance was achieved by
fusing head pose features in the fusion stage. Combining the results from the
fourth, fifth, and last rows validates the effectiveness of incorporating head pose
features in the information exchange and fusion stages. By introducing head pose
in the information exchange stage, the error on EyeDiap decreased from 4.91◦

to 4.84◦, and on Gaze360, it decreased from 10.32◦ to 10.22◦. Building upon
this, incorporating head pose features in the fusion stage resulted in an error
reduction on EyeDiap from 4.84◦ to 4.73◦, and on Gaze360, it decreased from
10.22◦ to 10.15◦. This underscores the importance of utilizing head pose features
for information exchange and fusion.
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Table 2. Ablation study on EyeDiap and Gaze360 Datasets. HP in FEM denotes
feeding head pose feature into FEM. LFace represents gaze prediction solely from the
feature of the Large Face. LMSFace signifies gaze prediction from the features concate-
nated from the Large Face, Medium Face, and Small Face. LMSFaceHead indicates
gaze prediction from the features concatenated from the Large Face, Medium Face,
Small Face, and head pose information.

FEM HP in FEM Fuse Feature EyeDiap Gaze360

× × LFace 5.17◦ 10.61◦
√ × LFace 4.99◦ 10.47◦
√ × LMSFace 4.91◦ 10.32◦
√ √

LMSFace 4.84◦ 10.22◦
√ √

LMSFaceHead 4.73◦ 10.15◦

4.5 Comparison with Feature Pyramid Methods

In order to further compare the performance differences between our image pyra-
mid approach and the commonly used feature pyramid methods, we selected the
MViTv2 [27] for comparison. We used the Large Face as input and loaded a pre-
trained model from ImageNet. We replaced the last softmax layer of MViTv2
with a fully connected layer that directly outputs yaw and pitch angles for gaze
estimation. Other training details were consistent with our method.

We conducted experiments using both the Base and Large models, and
the results are shown in Fig. 3. Increasing the model parameters from Base to
Large significantly improved model performance. However, when compared to
our method, it is evident that with the use of an image pyramid and information
exchange, our approach achieves performance comparable to MV iT2 L. More-
over, by incorporating multi-scale face feature information fusion, we can fur-
ther reduce gaze estimation errors. This strongly demonstrates that our designed
image pyramid method is better suited for gaze estimation compared to com-
monly used feature pyramids (Table 3).

Table 3. Comparison with Feature Pyramid Methods on EyeDiap and Gaze360
Datasets.

Algorithms Years EyeDiap Gaze360

MViTv2 B [27] CVPR2022 5.38◦ 10.76◦

MViTv2 L [27] CVPR2022 5.12◦ 10.44◦

Ours(FEM+LFace) 4.99◦ 10.47◦

Ours(FEM+LMSFace) 4.91◦ 10.32◦
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4.6 Robustness

The results of the robustness analysis are shown in Fig. 3. The first row repre-
sents the results for the EyeDiap dataset, while the second row corresponds to
the Gaze360 dataset. The first column displays the pitch angle results, and the
second column displays the yaw angle results. It is evident that our algorithm
performs significantly better than the baseline on the EyeDiap dataset, particu-
larly when the absolute values of both pitch and yaw angles are relatively small.
This performance difference is even more pronounced in such scenarios. When
we switch to the more challenging indoor and outdoor Gaze360 dataset, our algo-
rithm still outperforms the baseline across a wider range of angles. This indicates
that our method exhibits robustness across varying environmental conditions.

Fig. 3. Robustness analysis of gaze angles on Eyediap and Gaze360 datasets.

4.7 Qualitative Results

Some qualitative examples of our model are shown in Fig. 4. The baseline exhibits
a significant deviation from the ground truth, whereas IPHGaze aligns more
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closely with it. The first row displays results from EyeDiap, while the second
row presents results from Gaze360. The last two columns depict conditions of
blurry images or poor illumination. It is evident that even in adverse conditions,
IPHGaze outperforms the baseline.

Fig. 4. Qualitative Results on Gaze360 and Eyediap Datasets. The red, blue, and green
arrows are, IPHGaze, baseline, ground truth, respectively. (Color figure online)

5 Conclusion

In this paper, we introduce a novel image pyramid framework called IPHGaze,
guided by head pose information, for face gaze estimation. Specifically, we employ
different sizes of face bounding boxes to capture diverse face perspectives and
extract rich gaze features. Additionally, we design an information exchange mod-
ule, FEM, to facilitate feature sharing among different levels of the image pyra-
mid. We then utilize head pose features to guide facial gaze estimation, rather
than relying on precise labels. Extensive experiments are conducted on the Eye-
Diap and Gaze360 datasets, demonstrating that IPHGaze achieves state-of-the-
art performance on both datasets. This underscores its effectiveness and versa-
tility across various scenarios. Furthermore, we compare IPHGaze with feature
pyramid methods, highlighting its unique advantages. We hope that this paper
can provide new inspiration and insights to the field of gaze estimation.
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Abstract. Gaze estimation plays a crucial role in interactive applica-
tions. Recent advancements in deep learning have significantly enhanced
appearance-based methods. However, existing approaches often focus
on one eye and do not consider binocular gaze, overlooking a fun-
damental principle of human gaze: the convergence of gaze based on
binocular cooperative information. To address this gap, we introduce
BCNet, a network for binocular gaze estimation. Specifically, we develop
the binocular-chiasm module to facilitate feature exchange between the
two eyes and design a binocular-geometry loss that leverages gaze spa-
tial geometry to improve convergence during fixation. Additionally, our
person-specific analysis further reduces gaze estimation errors for individ-
ual users. Our method registers a 4.8% improvement on the MPIIGaze
dataset over existing methods and achieves competitive results on the
EyeDiap dataset. Experiments with noised data underscore the robust-
ness of our proposed approach.

Keywords: Gaze estimation · Binocular Cooperation · Information
Chiasm · Deep learning

1 Introduction

Eye gaze is an essential clue of human intention, purpose, and states of mind.
Accurate gaze estimation shows potential applications in human-computer inter-
action, virtual reality, and mental health analysis. Much progress has been made
recently in the task of appearance-based gaze estimation. In particular, the intro-
duction of deep learning makes it possible to develop a practical gaze direction
estimator (Fig. 1).

Many existing methods in gaze estimation focus solely on modeling or image
processing, overlooking the fundamental principle of human eye movement. The
human eye gaze is the result of eye movements. Deep learning networks can esti-
mate the gaze based on the appearance of a single eye. However, the gaze is not
independently determined by a single eye. There are the cooperative movements
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Fig. 1. Overview of proposed Binocular Cooperative Network for gaze estimation. The
upper row shows a schematic diagram of cross-person in a single dataset, and the lower
row shows a person-specific flow chart. The difference between them lies in the input
data and whether calibration parameters are added.

of human eyes, which makes a person unable to gaze at different targets simul-
taneously. The origin of the cooperative movements is that binocular retinal
information in the neural pathways is combined at the Optic Chiasma and then
transferred to the visual cortex and the superior colliculus for visual processing
and motor control. This aspect of human visual perception is often ignored in
the design of gaze estimation models, which can lead to suboptimal performance.

In this paper, we designed a binocular gaze estimation network based on the
principle of binocular cooperative movements. On the one hand, we proposed a
feature communication module, called the binocular-chiasm module, that inte-
grates the appearance information of human eyes, simulating the information
crossover during gaze generation. Especially when the imaging quality of the two
eyes is inconsistent, the module can show its advantages. On the other hand, We
fleshed out the intuition that eye gazes always converge on a single point during
fixation, then developed a novel loss function, named binocular-geometry loss,
to take advantage of the spatial geometry of eye gazes.

Furthermore, we conducted a person-specific study by introducing learnable
calibration parameters for each person to address the challenge that variations in
individual appearances and the existence of kappa angles prevent a general gaze
estimator from performing optimally on all subjects. Specifically, we assigned a
calibration parameter to each eye and trained it with a small number of samples
from the same person. This way, a general gaze estimator is transformed into a
person-specific gaze estimator, resulting in a significant drop in gaze estimation
error.
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In summary, this paper makes the following contributions:

– A novel framework for binocular gaze estimation is presented, which is termed
BCNet.

– A feature communication module, called the binocular-chiasm module, is
designed to enhance the estimation of two eye gazes by propagating gaze
features between them, leading to a win-win situation.

– A novel loss, the binocular-geometry loss, is proposed to take advantage of
the spatial geometry of eye gazes to enhance convergence during fixation.

– A person-specific study is conducted to improve the gaze estimation accuracy,
with learnable calibration parameters assigned to each eye.

2 Related Work

2.1 Appearance-Based Gaze Estimation

Appearance-based gaze estimation aims to learn a mapping from eye images or
face images to gaze directions. Thanks to the rapid development of deep learning,
much progresses have been made to appearance-based gaze estimation. Zhang
et al. [21] introduce CNNs to gaze estimation for the first time. They design a
LeNet [10]-based network to estimate gaze from eye images. Later, krafka et al.
[9] implement a gaze tracker by utilizing eye images, face image, and face grid
together. Zhang et al. [22] take the full face image as input and employ spatial
weights mechanism to emphasize features extracted from gaze related regions,
like eye region. Che et al. [2] are the first to combine eye gaze estimation and
face gaze estimation tasks, proposing a universal framework that simultaneously
optimizes both tasks. Ghosh et al. [7] introduce a multi-task learning framework
that improves accuracy through simultaneous training on tasks like eye state
classification and region segmentation, adeptly managing limited supervision
with both labeled and unlabeled data. Bao et al. [1] propose a multi-view dual
encoder (MV-DE) framework that learns gaze representations from face images
taken from multiple views. This method uses a dual encoder architecture to
separate gaze information from general face information in images from different
viewpoints, ensuring that the learned gaze representations are consistent across
various angles.

Despite these advancements, such methods often overlook the physiological
properties of human eyes. Lian et al. [11] explore physiological aspects by devel-
oping a coplanar loss function. Cheng et al. [5] utilize the asymmetry between
the left and right eyes, applying different weights to the loss calculations for each
eye, optimizing the network learning process based on the better-performing eye.
They propose the E-Net to evaluate the reliability of each eye’s gaze estimation,
balancing the learning between asymmetric and symmetric mechanisms. Mah-
mud et al. [14] further the field with a neural pipeline that merges anatomical
eye region isolation with multistream gaze estimation, employing synthetic to
real transfer learning for increased robustness.
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However, existing methods either calculate the gaze for just one eye or the
entire face, or while they do consider the gaze of both eyes, they only focus on
the appearance differences between the left and right eyes, neglecting the deeper
gaze dependencies such as the geometric constraints of eye movements. This
results in an insufficient exploration of binocular gaze.

2.2 Calibration for Gaze Estimation

Calibration gaze estimation enhances individual performance by utilizing a few
calibration samples, typically fewer than nine. Liu et al. [13] introduced a differ-
ential network to gauge gaze angle differences using pairs of images, while Zhang
et al. [19] refined person-specific accuracy using polynomial functions. Linden et
al. [12] advanced personalization in gaze tracking by normalizing images and
projecting 2D estimates into 3D, aided by individual-specific neural networks.
Chen et al. [3] further improved accuracy with minimal data through Multiple
and Single Gaze Target Calibrations, enhancing robustness and reducing errors
via MAP estimation. Meanwhile, Jin et al. [8] combined ocular counter-rolling
with real and synthetic data for kappa angle regression, utilizing a multi-branch
CNN for greater precision, although this complexity necessitates network per-
sonalization.

Nevertheless, existing gaze calibration methods are relatively complex, often
requiring the design of a dedicated network or module and separate training for
this component, which significantly increases the complexity and cost of gaze
calibration.

3 Method

The detailed architecture of BCNet is illustrated in Fig. 2. Our BCNet has two
inputs, which are the right eye patch and the left eye patch from the same person,
and outputs the corresponding gaze angle of each eye. The overview framework
of BCNet will be elaborated in Sect. 3.1, which is followed by binocular-geometry
loss and binocular-chiasm module in Sect. 3.2 and Sect. 3.3. Lastly, we will intro-
duce the details of the person-specific study in Sect. 3.4.

3.1 Architecture Overview

Our framework, shown in Fig. 2, employs a ResNet-based architecture to extract
gaze features from eye patches, with shared weights across two eye pathways
and a binocular-chiasm module for feature propagation. This setup enhances
the prediction of accurate gaze angles-both yaw and pitch-converted into unit
vectors. We developed a binocular-geometry loss function to optimize network
convergence and conducted a person-specific study to refine gaze estimation
performance further.
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Fig. 2. Detailed structure of Binocular Cooperative Network. The orange cubes rep-
resent the feature maps of different layers. Note that the right eye patch is flipped
horizontally before inputting into the network. (Color figure online)

3.2 Binocular-Chiasm Module

Fig. 3. Binocular-chiasm module. F i
r and F i

l represents the i-th layer feature map of
right eye and left eye. m is a hyperparameter with a value between 0 and 1.

We devised an information communicating module named the binocular-chiasm
module to help propagate gaze features between two eyes. We are inspired by
the principle of the human eye in doing so. In the neural pathways of the human
binocular system, retinal information from both eyes is combined at the optic
chiasma and then transferred to the visual cortex and the superior colliculus
for visual processing and motor control. We speculated that the information
exchange and fusion can reflect each eye. Moreover, one eye will always be clearer
and more accurate, while the other eye is relatively blurred and inaccurate, con-
sidering the difference in illumination and viewing angles. Thus, communicating
the information of the left and right eyes helps to learn more robust features.
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As described in Fig. 3, binocular-chiasm module is composed of two branches.
Each branch takes i-th layer feature map of one eye and outputs the correspond-
ing i + 1-th layer feature map. Details are shown in Eq. 1, the right eye feature
and left eye feature of the i − th layer are multiplied by m and 1 − m respec-
tively, and then added to obtain the right eye feature of the i + 1th layer. m is
a pre-defined ratio coefficient ranging from 0 to 1. It is emperically set as 0.3 in
the following experiments.

F i+1
r ← (1 − m) ∗ F i

l + m ∗ F i
r (1)

Correspondingly, the left eye feature map is also added to the right eye branch
with the same proportion m, thus completing the binocular-chiasm operation at
the layer i.

3.3 Binocular-Geometry Loss

The design inspiration of binocular-geometry loss comes from the binocular coop-
erative movements of human eyes introduced in Sect. 1. As shown in Fig. 4, Pl

and Pr are pupil centers of left eye and right eye respectively. t denotes the
target point that human eyes focus on. cam is the camera and xz represent the
unit direction vector of the camera coordination system. It can be found that
x-axis is roughly parallel to

−−−→
PrPl and z-axis is roughly perpendicular to the eyes.

dl and dr are distances from left eye and right eye to the target on the z-axis.
And dt is the distance from target to camera correspondingly.

The mutual conversion between the predicted unit direction vector of eye gaze
n̂ = [x̂, ŷ, ẑ]T and the predicted angle angle ĝ = [θ̂, φ̂]T can be obtained by
function G(·) in Eq. 2 and Eq. 3.

n̂ = G(ĝ) =

⎧
⎪⎪⎨

⎪⎪⎩

x̂n = −cos(φ̂)sin(θ̂)

ŷn = sin(φ̂)

ẑn = −cos(θ̂)cos(φ̂)

(2)

ĝ = G−1(n̂) =

⎧
⎨

⎩

θ̂ = arctan(
x̂n

ẑn
)

φ̂ = arcsin(ŷn)
(3)

After getting the unit direction vector, we divide the xyz of the direction vector
by −z to aquire a new vector v̂z−1 for ease of illustrating Eq. 5.
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Fig. 4. Principle of binocular-geometry loss. Pl and Pr are pupil centers of left eye
and right eye. v̂l and v̂r are the estimated gaze vectors. v̂′

r is computed by adding−−−→
PrPl with v̂l. Binocular-geometry loss aims to minimize the difference between the
gaze angles of v̂′

r and v̂r.

v̂z−1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂z−1 = −tan(θ̂),

ŷz−1 = − tan(φ̂)

cos(θ̂)
ẑz−1 = −1

(4)

When a person’s left eye is gazing at a specific target, his right eye will move in
coordination with the left one according to the principle of binocular cooperative
movements. There should be a converted gaze vector v̂′

r for right eye by adding−−−→
PrPl with v̂l. The detailed calculation process is shown as follows.

v̂′
r =

−−−→
PrPl + v̂l

=
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s.t. dl ≈ dr � dt

(5)

In Eq. 5, [uPl
, vPl

, 1]T and [uPr
, vPr

, 1]T are the 2D-image homogeneous coor-
dinates of Pl and Pr, and K is the intrinsic matrix of the camera. All the above
parameters can be obtained at data preprocessing procedure. For [ x̂l

dl
, ŷl

dl
,−1]T , it
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can be calculated through Eq. 2 and Eq. 4 once the predicted left eye gaze angle
is given. The only unknown parameters are dl and dt, but they have no effect
on the calculation of the unit direction vector of v̂′

r.
Ideally, v̂′

r and v̂r are expected to be equal. For convenience, we simply utilize
the parallel relationship between them and divise a novel loss function named
binocular-geometry loss in Eq. 6.

Lr
bino = ||ĝr − ĝ′

r||2
= ||ĝr − G−1(norm(v̂′

r))||2
(6)

norm(·) means normalizing v̂′
r to be an unit direction vector. G−1(·) is the

inverse of G(·) which transforms a gaze vector into gaze angles. For left eye,
there exists a similar binocular-geometry loss shown in Eq. 7. In theory, whether
using Ll

bino or Lr
bino will produce the same result because of the symmetry.

Ll
bino = ||ĝl − ĝ′

l||2
= ||ĝl − G−1(norm(v̂′

l))||2
(7)

3.4 Person-Specific Gaze Estimation

Fig. 5. Calibration module of person-specific gaze estimation. N stands for the dimen-
sion of the calibration parameter. The ultimate output is two-dimensional, namely the
yaw angle and pitch angle of each eye.

Under the setting of person-independent, where training data and test data
are collected from different people, the accuracy of mainstream gaze estimation
methods hovers around 3 − 4◦ (See Table 1 for detailed data), and it is difficult
to get further improvement.

The main reason is that there is a certain gaze deviation between people. For
two different people, even if the eyeballs are rotated at exactly the same angle,
there will be a difference of 2 − 3◦ in their gazes. This is due to the different
kappa angles (angle between the optical axis and visual axis) in different people.
The size of the kappa angle varies from person to person and is determined by



BCNet: Binocular Cooperative Network for Gaze Estimation 423

the internal parameters of the human eyeball, which cannot be learned from
images directly.

To mitigate the impact of the kappa angle, we assign calibration parameters
to each person, which are learnable parameters and differ in people. As shown in
Fig. 5, calibration parameters of 1 × N are added to the left and right branches
of the original BCNet. We flatten the features after the AvgPool layer and then
concatenate and fuse them with the calibration parameters. The fused features
are input into the last layer of FC to predict final gaze angles. For simplicity, we
refer to the above network as BCNet-specific.

The training procedure of BCNet-specific is split into two parts. First, numer-
ous images of different people are fed into the network, and all parameters are
updated through backpropagation. After that, a small number of calibration
samples (≤ 9) from the same person are collected to fine-tune BCNet-specific and
update the calibration parameters only. In this way, we can encode kappa angle
information into calibration parameters, which significantly improves the per-
formance of certain person.

3.5 Gaze Loss

To stabilize the training procedure, we use the gaze label to establish an L2 loss
function for the eath eye. g represents the gaze label and ĝ is the predicted gaze.

Ll
gaze = ‖gl − ĝl‖2 , Lr

gaze = ‖gr − ĝr‖2 (8)

3.6 Total Loss Function

The total loss is formulated as Eq. 9. In theory, whether using Ll
bino or Lr

bino

leads to the same result because of the symmetry. For simplicity, we choose
Ll
bino to build the total loss. In Eq. 9, λ1 and λ2 are the loss weights to control

the balance between losses. We empirically set λ1 = 0.2 and λ2 = 0.8.

Ltotal = λ1 ∗ Ll
gaze + Lr

gaze

2
+ λ2 ∗ Ll

bino (9)

4 Experiments

4.1 Datasets

To evaluate the effectiveness of our framework, we conduct experiments on two
popular datasets: MPIIGaze [23] and EyeDiap [6].

MPIIGaze is a commonly used dataset for appearance-based gaze estimation,
which provides 213,659 images from 15 participants in everyday settings with
unconstrained head pose and normal illumination. We select 3000 images of
human eyes from each person and perform 15-fold cross-validation, the same as
Zhang et al. [21].
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EyeDiap contains 94 video sessions of 16 participants. We perform the same
protocol as Zhang et al. [22]. We chose the continuous screen target session,
which has valid annotations and a reasonable range of gazes. After removing the
invalid frames containing blinking, these videos are sampled every 15 frames to
construct the training and evaluation set. The amount of valid data is around
6,000. Considering the 12th and 13th participants are not collected under contin-
uous screen target conditions, we get 14 valid participants and randomly divide
them into five groups.

To verify the robustness of our model, we added noise to the original MPI-
IGaze and EyeDiap datasets. Specifically, we applied Gaussian blurring, added
Gaussian noise, randomly added or subtracted single pixel values, adjusted
brightness, and kept the actual value of the gaze unchanged for each image,
resulting in the MPIIGaze-Noised and EyeDiap-Noised datasets.

4.2 Data Pre-processing

We follow the data normalization process in [18]. The eye patches are cropped
by taking the eye center as the patch center and doubling the distance between
the inner and outer eye corners as the side length. The RGB eye patches are
histogram-equalized to eliminate the influence of illumination and resized to
224 × 224 × 3. We use OpenCV library functions for noise addition and prepro-
cessing of images in a Python environment.

4.3 Implementation Details

The network predicts the yaw and pitch angles of the gaze, which are then
converted into unit vectors. The angle between the predicted and actual values
is calculated and used as the gaze estimation error. Since the single eye is not
symmetrical, we flip the right eye image horizontally and keep the left eye image
unchanged to ensure the consistency of the network input. To make the network
converge faster, a two-step training procedure is proposed. First, we remove the
binocular-chiasm module in BCNet and train it with the left and flipped right
eye images. Then, we load the pre-training weights of the first step and retrain
the complete BCNet. The parameters are the same in the two steps. To be
specific, the batch size is 16, and the learning rate is 0.0001. The optimizer is
Adam optimizer, with β1 = 0.9 and β2 = 0.999.

4.4 Cross-Person Performance

We conduct experiments on MPIIGaze and EyeDiap to compare the performance
of the proposed method with other appearance-based methods. As shown in
Table 1, our method achieves the best performance on the MPIIGaze dataset
and the second-best result on the EyeDiap dataset. Despite the variety in data
volume and data form of these datasets, BCNet demonstrates a very stable and
excellent effect. For the MPIIGaze dataset, our approach gets the best result of
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3.9◦, which has a considerable improvement of 0.6◦ (about 13.3%) to baseline.
For the EyeDiap dataset, which has the smaller amount and poor resolution
(640 × 480), our method outperforms the baseline by 1.2◦ (about 17.4%).

Table 1. Comparison of BCNet with current state-of-the-art methods on cross-person
evaluations. The values in the table represent the angle between the predicted and
actual gaze directions; smaller values indicate better performance. Bold indicates the
best result, and underline indicates the second-best result.

Methods Years MPIIGaze EyeDiap

DPG [16] ECCV2018 4.6◦ 10.3◦

Bayesian [17] CVPR2019 4.3◦ 9.9◦

RSN [20] BMVC2020 4.5◦ 6.6◦

FAR-Net [5] TIP2020 4.4◦ 5.9◦

CA-Net [4] AAAI2020 4.1◦ 5.3◦

MTGLS [7] WACV2022 4.1◦ N/A

MSGazeNet [14] TAI2024 4.6◦ 5.9◦

Baseline (Resnet50) 4.5◦ 6.9◦

Ours 3.9◦ 5.7◦

As shown in Table 2, even though our method’s performance may decline
slightly on the noisy data, it is still significantly better than the baseline app-
roach.

Table 2. Comparison of the algorithm’s performance on the MPIIGaze-Noise and
EyeDiap-Noise datasets (Cross-person). The values in the table represent the angle
between the predicted and actual gaze directions; smaller values indicate better per-
formance.

Algorithms MPIIGaze-Noise EyeDiap-Noise

Baseline(Resnet50) 5.7◦ 7.0◦

Ours 5.1◦ 5.9◦

4.5 Person-Specific Performance

To make a further reduction in gaze estimation error, we conduct a person-
specific study on the MPIIGaze dataset and compare BCNet with other person-
specific methods. The results are depicted in Table 3. BCNet consistently out-
performs other methods regardless of the number of calibration samples.

To show the effect of person-specific gaze estimation in more detail, we grad-
ually increase the number of calibration samples from 0 to 256. We conducted
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Table 3. Comparison of BCNet-specific with current state-of-the-art methods on
person-specific evaluations. The person-specific study is conducted on MPIIGaze
dataset. The values in the table represent the angle between the predicted and actual
gaze directions; smaller values indicate better performance.

Methods Years Samples(k) Their Our

Diff-VGG [13] TPAMI2019 9 3.80◦ 2.77◦ ± 0.22◦

FAZE [15] ICCV2019 1 3.91◦ 3.67◦ ± 1.61◦

5 3.24◦ 2.86◦ ± 0.33◦

9 3.14◦ 2.77◦ ± 0.22◦

256 3.00◦ 2.63◦ ± 0.06◦

SPAZE [12] ICCVW2019 1 4.12◦ 3.67◦ ± 1.61◦

5 3.16◦ 2.86◦ ± 0.33◦

9 2.94◦ 2.77◦ ± 0.22◦

20 2.82◦ 2.68◦ ± 0.14◦

GEDDNet [3] TPAMI2022 1 3.5◦ 3.67◦ ± 1.61◦

5 3.0◦ 2.86◦ ± 0.33◦

9 3.0◦ 2.77◦ ± 0.22◦

KAComp [8] CVPRW2023 9 3.65◦ 2.77◦ ± 0.22◦

Fig. 6. Person-specific gaze estimation on MPIIGaze dataset. N stands for the dimen-
sion of the calibration parameter for each eye. The x-axis is the calibration samples for
each person, the y-axis is the average gaze estimation error, and the light-colored area
represents the standard deviation for each error.

detailed experiments on MPIIGaze and set the calibration parameters(N) as 2,
3, and 4. The specific results are shown in Fig. 6. It is obvious that the calibra-
tion result of N = 4 is consistently better than that of N = 3 except for a few
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cases. As for N = 2, although it outperforms N = 4 when k = 2, 4, 7, 9, 12, it
has a larger standard deviation, which indicates that its results are not stable
enough. After weighing the pros and cons, we choose N = 4 for the final result,
and the corresponding error for different calibration samples is also depicted in
Fig. 6.

4.6 Ablation Study

In order to demonstrate the effectiveness of the binocular-chiasm module and
the binocular-geometry loss, we conducted an ablation study on MPIIGaze and
EyeDiap datasets. The results are depicted in Table 4. Note that the ablation
study is a cross-person test. Compared with binocular-geometry loss, it is clear
to find that when applying binocular-chiasm module only, the gaze error drops
more (0.5◦ on MPIIGaze, 0.7◦ on EyeDiap). This is reasonable since operations
on feature maps are more straightforward than operations on loss functions.

4.7 Qualitative Results

Some qualitative examples of BCNet are shown in Fig. 7 and Fig. 8. The baseline
demonstrates a significant discrepancy with ground truth, while BCNet is closer
to ground truth. Although the results of the baseline may be close to the ground
truth in one eye, when changing to another eye, the results are much worse, while
our method can always maintain a good performance in both eyes. This verifies
the effectiveness of the binocular-chiasm module and the binocular-geometry
loss.

Table 4. Ablation study for the binocular-geometry loss and the binocular-chiasm
module on MPIIGaze and EyeDiap (Cross-person). The values in the table represent
the angle between the predicted and actual gaze directions; smaller values indicate
better performance.

Binocular-chiasm Binocular-geometry MPIIGaze EyeDiap

4.5◦ 6.9◦

� 4.0◦ 6.2◦

� 4.4◦ 6.4◦

� � 3.9◦ 5.7◦
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Fig. 7. Qualitative results on MPIIGaze (top), and EyeDiap (bottom) datasets. The
green, blue, and red arrows are BCNet, baseline, and ground truth, respectively. (Color
figure online)

Fig. 8. Qualitative results on MPIIGaze-Noised (top), and EyeDiap-Noised (bottom)
datasets. The green, blue, and red arrows are BCNet, baseline, and ground truth,
respectively. (Color figure online)

5 Conclusion

In this paper, we introduce the binocular-chiasm module to facilitate feature
exchange between the eyes, enhancing simultaneous two-eye gaze estimation.
We also develope a binocular-geometry loss function leveraging spatial gaze
geometry and conducted a person-specific study to tailor models to individual
users, significantly enhancing gaze estimation accuracy. Our approach achieves
state-of-the-art performance on MPIIGaze and competitive results on EyeDiap,
suggesting potential for future advancements and personalized gaze estimation
models.
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Abstract. An air writing alphabet recognition system based on the images of tem-
poral spectrogram such as average range-timemap, averageDoppler-timemap and
average angle-time map derived from an mmWave FMCW radar is proposed. All
26 English lowercase letters written in midair right above the radar sensor can be
recognized. Two valuable radar data sets are introduced in diverse environments
such as meeting room, office cubicle and living room etc. The use case is the
usage scenarios of laptop computers and mobile phones. In one data set, volun-
teers write freely in their own handwriting styles including different hand speeds
and different stroke orders. In the other data set, volunteers are asked to write
according to a prescribed sequence of strokes. Then, the gestures sensed by radar
are processed into images of temporal spectrogram to represent the written letter.
A convolutional neural network which achieves 98.6% test accuracy is exploited
as the classifier to recognize the air written alphabet. In the Leave-One-Subject-
Out (LOSO) cross validation, it achieves an average test accuracy of 87.74%. The
effectiveness of the proposed alphabet recognition system is extensively verified
on the two created data sets for different variants of temporal spectrograms. It can
be used to implement natural, intelligent noncontact human machine interface.

Keywords: human-machine interface · gesture recognition · air writing ·
spectrogram · range-time map · Doppler-time map · angle time-map · mmWave ·
FMCW radar · convolutional neural network

1 Introduction

Gesture recognition is an emerging field of research in the last decade. Under the expec-
tation of interacting with computing devices more naturally, it can form a smart multi-
modal noncontact human computer interface (HCI) [1] together with speech recognition.
In addition, the COVID-19 pandemic has also highlighted the help of noncontact human
machine interface in epidemic prevention. Contactless gesture recognition can be imple-
mented with a variety of devices such as video cameras, infrared devices, ultrasound
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devices [2], WiFi devices, and radar sensors. Among them, camera-based systems suffer
from poor light condition, line of sight requirement [3, 4] and privacy issues [2, 5, 6].
Besides, radar sensors can also sense through smoke, dust, and even nonmetallic mate-
rials [6]. Furthermore, the mmWave radar signal can capture motion changes down to
millimeters. Therefore, from fine-grained control gestures for human computer inter-
action [6–8] to large-scale gestures for traffic scenarios [9, 10], all can be accurately
recognized by radar-based gesture recognition systems. For example, some applications
can be found in [11] for health care, some are proposed in [12–14] for driving assistance
and others are presented in [15] for smart home. Not to mention that they consume less
power and are less expensive than camera-based systems. Therefore, radar sensors are
more attractive to be an always-on solution for contactless gesture recognition.

There are quite a few radar-based gesture recognition related works. Short-range
radar, color camera, and time-of-flight (TOF) depth camera are combined in [16] to
implement a multi-sensor system for driver’s hand-gesture recognition. The RadarNet
[6] developed at Google recognizes four directional swipes and an omni-swipe using a
radar chip integrated into amobile phone.Binary activated spiking neural network (SNN)
is exploited in [17, 18] and [19] to binarize the radar-generated images such as range,
Doppler or angle-time maps and perform hand gesture recognition in an energy-efficient
way. μ-Doppler signature is proposed in [2] to train a convolutional neural network
(CNN) to perform gesture classification. To derive more gesture characteristics, other
radar generated features such as power, range, Doppler, azimuth, elevation, and some
related statistical properties are proposed in [20–22], and [23] respectively.

Air-writing systems offer users a virtual board to write linguistic characters, numer-
als, words or even symbols in free space by hand gesture movements. The Microsoft
Kinect sensor which consists of an RGB camera and a depth camera is proposed to
recognize handwritten digits from 0 to 9 in midair for TV remote controller in [24]. In
[25], a single 2-D web camera is proposed to acquire the air-writing trajectory of letters
written in an imaginary box one at a time. The device-free WiFi sensing technology,
called WiDG in [26], is exploited to recognize handwritten digits in the air based on
CSI and deep learning model. In [27, 28] and [29], smart watch motion sensor, iner-
tial measurement unit and RFID are proposed to recognize English letters in mid-air
respectively. Radar sensor is proposed to recognize digits from air written gestures in
[30]. In that work, three IR-UWB radar sensors placed in triangular geometry are used
to acquire hand’s midair trajectory for classification. However, in [31], only single UWB
radar is required to recognize air-written numerals by using 3D range-Doppler tensors
and 3D-CNN-LSTM network. In [32], an over-the-air handwritten digit recognition
method based on an mmWave FMCW radar is proposed. The trajectory points of ges-
ture actions are used to generate images for gesture recognition with the Xception deep
learning network. Moreover, a meta-learning optimization-based approach that enables
user-definable hand gesture recognition at the edge is proposed in [33]. The approach is
useful not only for recognizing new movement types, but also for adapting to individu-
als with motor disabilities or visual impairment. In [34] and [35], an air-writing system
based on a network of less than three mmWave FMCW radars to recognize capital letters
A–J and numerals 1–5 is proposed. Only range information from each radar is required
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to reconstruct the trajectory of a written character. Then the trajectory is transformed to
a 2-D image and classified by a DCNN network.

In this work, an air writing alphabet recognition system based on mmWave FMCW
radar and convolutional neural network is proposed. All 26 English lowercase letters
written in midair right above the radar sensor can be recognized. Data of a written letter
sensed by radar are processed into images of temporal spectrogram such as average
range-time map, average Doppler-time map and average angle-time map to represent
the letter. Deep convolutional neural network is exploited as the classifier to recognize
air written alphabet. Instead of using range-time map, Doppler-time map and angle-time
map as the gesture features [18, 33], average version of the three temporal spectrograms
which are verified to better represent the gestures are adopted. Furthermore, the data of
air written gestures performed by seven adult volunteers are recorded in three diverse
environments such asmeeting room, office cubicle and living room for thewhole English
alphabet. The use case is set in line with the actual usage scenarios of laptop computers
and mobile phones. Two valuable radar data sets are introduced. In one data set, vol-
unteers write freely in their own handwriting styles including different writing speeds
and even different stroke orders. In the other data set, volunteers are asked to gesticulate
according to a prescribed sequence of strokes.

The major contributions of this work are as follows:

• Two valuable English alphabet radar data sets are introduced. In one data set, vol-
unteers write freely in their own handwriting styles. However, in the other data set,
volunteers are asked to gesticulate according to a prescribed sequence of strokes so
that the gestures are intentionally designed to reduce the intraclass variability and
make them more recognizable for radar sensors.

• A novel data processing scheme is proposed. Average range-time map, average
Doppler-time map and average angle-time map are proposed as the feature images to
better represent the alphabet gestures.

• Extensive performance analyses are conducted to verify how the new feature images
affect the system’s overall capability. Performance comparison with other cutting
edge related works is also presented.

• A CNN-based air-writing recognition system using an mmWave FMCW radar is
exploited. It achieves real-time recognition with a test accuracy of 98.6%. In the
Leave-One-Subject-Out (LOSO) cross validation, it achieves 87.74% average test
accuracy.

• To the best of the authors knowledge, the proposed air writing recognition
system based on one mmWave FMCW radar is the first time to use average
range/Doppler/angle-time map to represent the gestures of all 26 English letters and
it achieves state-of-the-art performance.

This paper is organized as follows: Sect. 2 introduces the system model of FMCW
radar, derives the proposed average temporal spectrogram signatures and describes the
architecture of the classifier model. Section 3 presents the experimental setup including
the radar configuration, creation of data set, feature map selection and hyperparameters.
Section 4 investigates and discusses the performance of the proposed alphabet recog-
nition algorithm and conducts performance comparison with related studies. Finally,
Sect. 5 concludes this paper.
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Fig. 1. FMCW radar system block diagram and digital signal processing chain.

2 Radar System and Deep CNN Model

2.1 FMCW Signal Model

The system block diagram and digital signal processing chain of FMCW radar is illus-
trated in Fig. 1. The radar transceiver transmits a train of chirp signal. Then, the received
echo is mixed with the transmitted signal and then lowpass filtered to yield the interme-
diate frequency (IF) beat signal. The signal is then sampled with an A/D converter to
yield the discrete beat signal [36, 37].

The IF beat signal of the FMCW radar is

sIF (t) = σ

2
cos

[
2π · fb(t) · t + ϕb(t)

]
, (1)

where σ is proportional to the radar cross section (RCS), antenna gain and range attenua-
tion, f b(t)= (B/Tc)·td − f D is the IF beat frequency, B denotes the sweep bandwidth, Tc

denotes chirp duration, φb(t)= 2πf ctd is the phase term, td denotes the round-trip delay
of the radar signal, f c and f D denote the carrier frequency and Doppler shift respectively.

Consider a MIMO radar system, the discrete IF beat signal of the lth frame of the rth
receive antenna is [20]

sIF [l, r, n,m] = sIF,r(t)|t=nTs+mTp+lTf

= σr

2
cos

[
2π fb,r

(
nTs + mTp + lTf

)
nTs

+ϕb,r
(
nTs + mTp + lTf

)
]
, (2)

where Ts = Tc/ NR denotes the sample period, NR denotes the number of Range-FFT,
Tp = Tf /M denotes the pulse repetition time, Tf denotes the frame duration,M denotes
the number of chirps in one frame, n and m denote the sample index and chirp index
respectively.

The discrete IF beat signal, sIF[l, r, n, m], is a 4-D array containing the target infor-
mation scanned by the radar sensor. The range spectrum of the radar can be derived by
applying NR-point FFT:

SIF [l, r, k,m] =
∑NR−1

n=0
sIF [l, r, n,m] · e−j 2πnkNR , (3)

where k = 0, …, NR − 1 denotes the index of range bins. Then, the static clutter is
removed from the range spectrum with a first order IIR filter.
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2.2 Average Range-Time Map

To recognize handwritten alphabet inmidair, discriminative features need to be extracted
from the received signal. After the range profile is derived by range FFT in (3), Two
variants of the accumulated range spectrum of the lth frame can be obtained. In (4), the
power of range spectrum is accumulated (averaged).

Accumulate Power

SR[k, l] =
∑M−1

m=0

∑R−1

r=0
|SIF [l, r, k,m]|2 (4)

In (5), the magnitude of range spectrum is accumulated (averaged).

Accumulate Magnitude

SR[k, l] =
∑M−1

m=0

∑R−1

r=0
|SIF [l, r, k,m]|, (5)

where R denotes the number of receive antenna and k = 0, …, NR/2 − 1. Since the
length of a sliding observation window is L frames, the average range-time map, which
has shape NR/2 × L, at the lth frame is

SRTM[l]NR/2×L =
⎡

⎢
⎣

SR[NR/2− 1, l − L+ 1] · · · SR[NR/2− 1, l]
...

. . .
...

SR[0, l − L+ 1] · · · SR[0, l]

⎤

⎥
⎦. (6)

Since the frame time is set to 50ms in this work, instead of the coherent accumulation
in [18], non-coherent accumulation is applied in (4) and (5) because the radial speed of
targets is probably to induce range walk within one frame time.

2.3 Average Doppler-Time Map

After the range spectrum is derived in (3), ND-point Doppler FFT is applied in (7) to
obtain range-Doppler map

RDM
[
l, r, k, p

] =
∑M−1

m=0
SIF [l, r, k,m] · e−j 2πmpND , (7)

where p = 0, …, ND − 1 denotes the index of Doppler bins.
As in the previous derivation, two variants of the accumulated Doppler spectrum of

the lth frame can be obtained. In (8), the power of Doppler spectrum is accumulated
(averaged).

Accumulate Power

SD
[
p, l

] =
∑NR−1

k=0

∑R−1

r=0

∣∣RDM
[
l, r, k, p

]∣∣2 (8)

In (9), the magnitude of Doppler spectrum is accumulated (averaged).
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Accumulate Magnitude

SD
[
p, l

] =
∑NR−1

k=0

∑R−1

r=0

∣∣RDM
[
l, r, k, p

]∣∣ (9)

Then, the average Doppler-time map, which has shape ND × L, at the lth frame is

SDTM[l]ND×L =
⎡

⎢
⎣

SD[ND − 1, l − L+ 1] · · · SD[ND − 1, l]
...

. . .
...

SD[0, l − L+ 1] · · · SD[0, l]

⎤

⎥
⎦. (10)

2.4 Average Angle-Time Map

The Angle of Arrival (AoA) information is also a key feature in gesture recognition. In
this work, Capon beamformer [38] with diagonal loading is exploited in the derivation
of range-angle map. The derived range-angle map of the lth frame is

RAM [l, k, i], (11)

where i = 0, …, NB − 1 denotes the index of angle beams, NB denotes the number of
total beams and k = 0, …, NR/2 − 1 denotes the index of range bins.

Again, two variants of the accumulated angle spectrum of the lth frame can be
obtained. In (12), the power of angle spectrum is accumulated (averaged).

Accumulate Power

SA[i, l] =
∑NR−1

k=0
|RAM [l, k, i]|2 (12)

In (13), the magnitude of angle spectrum is accumulated (averaged).

Accumulate Magnitude

SA[i, l] =
∑NR−1

k=0
|RAM [l, k, i]| (13)

Then, the average angle-time map, which has shape NB × L, at the lth frame is.

SATM[l]NB×L =
⎡

⎢
⎣

SA[NB − 1, l − L+ 1] · · · SA[NB − 1, l]
...

. . .
...

SA[0, l − L+ 1] · · · SA[0, l]

⎤

⎥
⎦. (14)
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2.5 Deep CNN Model

As instanced in Fig. 2, the feature subnet of the CNN network comprises three 2-D
convolutional layerswith 32, 64 and 128filterswhose size is 3× 3 respectively. Followed
by batch normalization and max-pooling layer, each convolutional layer is ended by
ReLU activation function. Then, the extracted feature map of the last max-pooling layer
is flattened and fed to the decision subnet which comprise two fully connected layers
with 128 and 64 neurons respectively. The two dense layers both followed by batch
normalization layer and ReLU activation function. The second dense layer also followed
by a dropout layer with rate 0.5 to avoid the over fitting problem. At last, a softmax
function with 26 neurons is served as the output layer.

Fig. 2. Architecture of deep convolutional neural network.

3 Experimental Setup

3.1 Radar Configuration

The proposed algorithm is evaluated on Infineon BGT60TR13C FMCW radar chipset
[39]with 1 transmit antenna and 3 receive antennas. The frame rate is set to 20 frames/sec
which corresponds to 50ms frame time. The transmitted radar signal is linearly increased
from 57.18 GHz to 64.32 GHz with center frequency 60.75 GHz. Therefore, the sweep
bandwidth is 7.14 GHz which results in 2.1 cm range resolution. In the fast time axis,
64 points per chirp are sampled within the chirp duration 821.4 μs with sample fre-
quency 1MHz. Therefore, the maximum unambiguous range is 67.14 cm. Moreover, 32
chirps per frame with 1.56 ms pulse repetition time is transmitted. Thus, the maximum
detectable velocity is± 1.5 m/s with resolution 9.4 cm/s. The field of view (FOV) of the
antenna array is 120° with angle resolution 4° and 31 beams. The number of beams is
then zero-padded to 32 to be consistent with the number of range bins and Doppler bins.
The length of the sliding observation window L is 60 frames which equals to 3 s. Hence,
with NR/2= ND = NB = 32 and L = 60, the shape of the average range/Doppler/angle-
time map is 32 × 60. Then, the three maps are concatenated into a three-channel image
to represent gestures.
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3.2 Data Collection

Air-writing can be performed with different writing styles, speeds, angles and even with
different stroke orders. Furthermore, thewriting conditions can be quite different, includ-
ing various hand shapes, hand sizes, and clutter environments. In this work, the hand
gestures of all the 26 English lower-case letters are collected in diverse environments
such as meeting room, office cubicle and living room etc. As shown in Fig. 3, the use
case is set in line with the actual usage scenarios of laptop computers andmobile phones.
Hence, the radar sensor is attached on a mobile phone next to a laptop computer. Seven
adult volunteers are involved in the introduction of data sets. Moreover, since the length
of the sliding observation window is 60 frames which corresponds to 3 s, each gesture
should be completed in 3 s. In one data set, called mmAlphabet_fs, volunteers write in
their own free-style handwritings including various hand speeds and even various stroke
orders. In the other data set called, mmAlphabet_st, volunteers are asked to gesticulate
according to a stipulated sequence of strokes in order to make gestures more recogniz-
able for radar sensors. In both data sets, 100 samples of each letter are recorded by each
subject.

3.3 Feature Map Selection

The data sensed by a radar sensor are processed into images of temporal spectrogram
such as average range/Doppler/angle-time map in Sect. 2.2, 2.3 and 2.4 respectively.
Then, the three maps are concatenated into a three-channel image to represent the letter.
This image is then fed to a deep CNNmodel for classification. As detailed in Sect. 2, two
variants of feature map are available. V1 accumulates the signal power non-coherently
and so does V2 in the accumulation of signal magnitude.

Fig. 3. The use case is set in line with the actual usage scenarios of laptop computers and mobile
phones.

Besides V1 and V2, a third variant of feature map, V3, can be obtained as in [18]
and [33]. For example, from the range-Doppler map in (7), extract the column vector
corresponding to the maximum pixel magnitude from each frame after accumulation in
the antenna dimension and stack them together as in (6) to form a range-time map. In
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addition, extract a row vector in (7) corresponding to the same condition and stack them
together as in (10) to form aDoppler-timemap. To build the temporal angle spectrogram,
from the range-angle map in (11), extract the row vector corresponding to the maximum
pixel magnitude from each frame and stack them together as in (14) to construct an
angle-time map.

3.4 Hyperparameters and Training

To verify the effectiveness of the proposed algorithm, the model in Fig. 2 is trained with
optimizer adam with learning rate = 0.001, β1 = 0.9 and β2 = 0.999. Loss function is
categorical cross entropy. Performance metric is accuracy. Batch size is 32. In the K-fold
cross validation, 20% of the total data is randomly selected as test data, 80% of the total
data is training data. Furthermore, 20% of the training data is used as validation data. In
the Leave-One-Subject-Out (LOSO) cross validation, each volunteer’s data is used as
test data in turn. Other volunteer’s data is used as training data and 20% of the training
data is used as validation data.

Table 1. K-fold Cross Validation and LOSO Cross Validation.

Feature
variant

mmAlphabet_fs mmAlphabet_st

Best Average LOSO
Average

Best Average LOSO
Average

V1 93.32% 86.64% 60.90% 95.80% 89.78% 80.44%

V2 96.84% 94.55% 67% 98.60% 97.30% 87.74%

V3 95.69% 92.17% 66.03% 98.27% 96.62% 85.90%

4 Experimental Results and Discussion

4.1 Performance Analysis

The proposed air writing alphabet recognition system is evaluated on all three feature
map variants using the two created data sets. Both K-fold cross validation and leave-one-
subject-out cross validation are conducted to assess the DCNN classifier. Test accuracy
is used as the performance metric as shown in Table 1. The experimental results are
detailed as follows.

K-fold Cross Validation. K-fold cross validation with K = 5 is conducted. 20% of
the total data is randomly selected as test data, 80% of the total data is reserved as
training data. Then the model is trained 20 times and the results of 20 trials are got.
This evaluation process is repeated five times, and the results of 100 trials are obtained.
Both the best test accuracy and the average test accuracy of 100 trails are detailed in
Table 1. On both data sets, V2 outperforms V1 and V3. The best test accuracy is 98.6%
trained with mmAlphabet_st. The performances trained with mmAlphabet_st are better
than those trained with mmAlphabet_fs about 2–3%.
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Leave-One-Subject-Out (LOSO) Cross Validation. The model is trained using the
data of all but one subject and is evaluated on the unseen data for 20 times. This evaluation
process is repeated for every subject and the best test accuracy values derived from the
20 trials are averaged. The evaluation results are listed in Table 1. On both data sets,
V2 outperforms V1 and V3 again and the best LOSO test accuracy is 87.74% trained
with mmAlphabet_st by using the feature maps in V2. Furthermore, the performances
trained with mmAlphabet_st are much better than those trained with mmAlphabet_fs
about 20%. In other words, it is very helpful to intentionally design the writing patterns
of an alphabet to reduce the intraclass variability and make them more recognizable for
radar sensors.

4.2 Visualization and Discussion

According the results in previous section, V2 outperforms V1 and V3 on both data sets.
This is due to the difference between square operation and absolute value operation,
which makes V2 better able to retain gesture information than V1. As illustrated in
Fig. 4(a)–4(b) for V1 and Fig. 4(c)–4(d) for V2, considering the range attenuation of
radar signal in (4), (8) and (12), when the received signal value is greater than 1, the
square operationwill increase the signal value, and vice versawill decrease it. In addition,
feature maps in V2 can also represent gesture movement better than those in V3 because
of the signal integration in range bin dimension. Take average Doppler-time map and
Doppler-time map [18] for example, the μ-Doppler signature [2] of the whole hand is
better retained in average Doppler-time map as depicted in Fig. 4(e) and Fig. 4(f) due
to the hand size of an adult is always larger than one range bin (2.1 cm). Hence, the μ-
Doppler signature is better preserved after the signal integration in range bin dimension.
As a result, feature maps in V2 can be used to represent more subtle gestures such as
rotation, finger rub and waving hand, etc.

4.3 Performance Comparison

To get an insight into how the proposed air writing alphabet recognition system performs
in compared with other related works, the comparisons are presented in Table 2 and
Table 3. There are quite a few related works about air writing recognition system. Some
of them are based on RGB camera or wearable device. However, the systems based
on RGB camera have privacy issues and the other systems based on wearable device
can bring cumbersome experiences to users due to their wearable nature. Thus, radar-
based air writing recognition system is more attractive to be an always-on solution for
contactless dynamic gesture recognition. Nevertheless, some of the radar-based works
need information from more than one radar sensors to reconstruct the trajectory of
gestures for recognition which is impractical in real-life usage scenario. As revealed
in Table 2 and Table 3, only one radar sensor is required by the proposed. system
to recognize English alphabet. Furthermore, compared to the related works that can
recognize the whole 26 English letters in Table 2 and Table 3, the proposed system
also outperforms them both in K-fold cross validation and leave-one-subject-out cross
validation.
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Fig. 4. Temporal Spectrograms. (a) average range-timemap of letter “a” in V1, (b) average angle-
timemap of letter “m” inV1, (c) average range-timemap of letter “a” inV2, (d) average angle-time
map of letter “m” in V2, (e) average Doppler-time map of letter “t” in V2, (f) Doppler-time map
[18] of letter “t” in V3.

4.4 Confusion Matrix and Discussion

The experimental results show that deep CNN network is capable of learning implicit
features directly from the temporal spectrograms from radar sensor. The accuracy of
each gesture after applying the CNN is presented in confusion matrix form in Fig. 5.
The figure illustrates the links between false classifications of one exemplary K-fold
cross-validation test with test accuracy 97.25%. It reveals that some gestures can be
recognized with higher accuracy such as ‘d’, ‘g’, ‘k’, ‘m’, ‘s’, ‘t’ and ‘z’ while others are
easily mistaken. For example, ‘a’, ‘c’, ‘e’, ‘h’, ‘n’ and ‘w’ can be mistakenly recognized
as ‘q’, ‘z’, ‘t’, ‘n’, ‘h’ and ‘v’ respectively. ‘j’ can be wrongly classified as ‘i’ or ‘s’.
‘o’ can be wrongly classified as ‘a’ or ‘v’. ‘p’ can be wrongly classified as ‘i’ or ‘k’.
‘r’ can be wrongly classified as ‘f’, ‘n’ or ‘v’. ‘y’ can be wrongly classified as ‘t’, ‘x’
or ‘z’. Besides, the pattern of ‘a’, ‘d’, ‘u’ and ‘q’, the pattern of ‘b’ and ‘h’, the pattern
of ‘i’, ‘r’ and ‘v’ and the pattern of ‘x’ and ‘y’ are also very similar. Thus, in order to
improve the performance of the alphabet classifier, it is helpful to intentionally design
the writing patterns of an alphabet to increase the interclass variability and make them
more distinguishable for radar sensors.

Air-writing can be performed with different writing styles, speeds, and angles.
Range-time map is actually the range spectrum of range profile changing over time.
It comprises the information of object range and signal intensity. Doppler-time map
is the Doppler spectrum of radar changing over time. It comprises the information of
object radial velocity and moving direction. Angle-time map is the angle spectrum of
beamformer changing over time. It comprises the information of the change of azimuth.
With the three featuremaps or their variants, the proposed alphabet recognition system is
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Table 2. Comparison of K-fold test accuracy with related works.

Related works Sensor DL/ML Model Gestures Accuracy

Chu et al. [24] RGB + Depth SVM 10 Numerals 90.80%

Wang et al. [26] WiFi DCNN 10 Numerals 97.20%

Hendy et al. [31] 1 Radar 3D-CNN-LSTM 10 Numerals 98.50%

Leem et al. [30] 3 Radars DCNN 10 Numerals 99.70%

Li et al. [32] 1 Radar Xception 10 Numerals 99.60%

Kwak et al. [43] 1 Radar CNN 10 Numerals 87.60%

Kwak et al. [42] 1 Radar DNN + CNN 10 Numerals 94.57%

Liu et al. [44] 1 Radar ResNet50 6 Characters 93.40%

Arsalan et al. [34] 3 Radars ConvLSTM-CTC A–J and 1–5 98.33%

Arsalan et al. [35] 2 Radars SNN A–J and 1–5 98.53%

Arsalan et al. [35] 1 Radar SNN A–J and 1–5 95.37%

Arsalan et al. [18] 1 Radar SNN A–J and 1–5 99.50%

Park et al. [41] 1 Radar DCNN A–Z 91.00%

Moazen et al. [27] Motion Sensor DTW a–z 71.00%

Luo et al. [28] IMU DTW A–Z and 0–9 84.60%

Yang et al. [29] RFID DCNN a–z 96.60%

Proposed 1 Radar DCNN a–z 98.60%

Table 3. Comparison of LOSO test accuracy with related works.

Related works Sensor Model Gestures Accuracy

Molchanov et al. [12] Depth + Radar +
Optical

DCNN 10 Gestures 75.10%

Auge et al. [17] 1 Radar SNN 11 Soli Gestures 88.20%

Tsang et al. [19] 1 Radar SNN 11 Soli Gestures 88.27%

Wei et al. [40] 1 Radar CRNN A-Z + 4 Gestures 87.55%

Proposed 1 Radar DCNN a–z 87.74%

verified to be effective on the two created data sets. It can be used to implement natural,
intelligent noncontact human machine interface.
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Fig. 5. An exemplary K-fold cross-validation test with test accuracy 97.25%. Each row in the
confusion matrix represents the true label of a gesture.

5 Conclusion

This paper investigates the feasibility of using three temporal spectrograms, average
range/Doppler/angle-time map derived from FMCW radar as feature images to train
a deep CNN model which can recognize English alphabet in midair and verifies the
effectiveness of the proposed system. In order to train the classifier model effectively,
two valuable radar data sets are introduced in diverse environments such as meeting
room, office cubicle and living room etc. The use case is set in line with the actual usage
scenarios of laptop computers andmobile phones. A convolutional neural networkwhich
achieves 98.6% test accuracy is exploited as the classifier to recognize the air written
alphabet. In the Leave-One-Subject-Out (LOSO) cross validation, it achieves an average
test accuracy of 87.74%. In addition, Average range/Doppler/angle-time map can keep
the information of a gesture better than the other two variants. For instance, μ-Doppler
signature of the whole hand can be better preserved because the hand size of an adult
is always larger than one range bin. Hence, they can be used to represent more subtle
gestures such as rotation, finger rub and waving hand, etc. Furthermore, in order to
improve the performance of the alphabet classifier, it is very helpful to intentionally
design the writing patterns of an alphabet to reduce the intraclass variability and increase
the interclass variability so that they are more recognizable and more distinguishable for
radar sensors.
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Abstract. Recently, significant progress has been made in text-based
motion generation, enabling the generation of diverse and high-quality
human motions that conform to textual descriptions. However, generat-
ing motions beyond the distribution of original datasets remains challeng-
ing, i.e., zero-shot generation. By adopting a divide-and-conquer strat-
egy, we propose a new framework named Fine-Grained Human Motion
Diffusion Model (FG-MDM) for zero-shot human motion generation.
Specifically, we first parse previous vague textual annotations into fine-
grained descriptions of different body parts by leveraging a large lan-
guage model. We then use these fine-grained descriptions to guide a
transformer-based diffusion model, which further adopts a design of part
tokens. FG-MDM can generate human motions beyond the scope of orig-
inal datasets owing to descriptions that are closer to motion essence. Our
experimental results demonstrate the superiority of FG-MDM over pre-
vious methods in zero-shot settings. We will release our fine-grained tex-
tual annotations for HumanML3D and KIT on the project page https://
sx0207.github.io/fg-mdm/

Keywords: Human Motion Generation · Diffusion Model · Zero-Shot
Generation

1 Introduction

Human motion generation is an important research topic in communities of both
computer vision and computer graphics. It aims to simulate and generate real-
istic human movements using computers. With the advancement of technologies
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Fig. 1. FG-MDM can generate high-quality human motions in zero-shot settings by
using fine-grained descriptions of different body parts. The two images on the left
illustrate two contrasting emotional motions. Close-Up images of the arms, neck, and
legs highlight these differences.

such as virtual reality, augmented reality, and movie special effects, there is
a growing demand for high-quality human motion generation. In recent years,
several innovative methods and techniques have emerged to tackle this challeng-
ing task [48]. Deep generative models, including GANs [1,21], VAEs [8,26,27],
and diffusion models [5,15,37,45], have been widely applied to human motion
generation.

However, there is relatively less research on generating motions in zero-shot
settings. In order to improve the zero-shot generation capability, existing work
either got help from CLIP [31] to utilize the rich semantic knowledge from CLIP
(e.g., [12,36]), or attempted to explore large-scale motion datasets without tex-
tual descriptions [17] and large-scale pseudo text-pose datasets [3,20]. Compared
to traditional human motion generation, generating motions beyond the distri-
bution of the dataset is more challenging due to the limited scale and diversity
of existing motion capture datasets.

Then, with only limited motion capture datasets available, can we still gen-
erate motions beyond the distribution of the dataset? For a textual description
defining a motion beyond the distribution of the dataset, is there any way to
associate it with motions within the dataset? For a never-before-seen motion,
the entire body’s motion is indeed unseen. However, motions of specific body
parts might be inside the dataset. Therefore, we can adopt a divide-and-conquer
strategy. By re-annotating the motion for different body parts with fine-grained
descriptions, we can associate these body parts with specific body parts within
the dataset. For example, a vague description “A person walks depressingly.” can
be reformulated as “His arms hang heavily by his sides. His legs move slowly, tak-
ing short steps with little energy...”. Leg movement in this vague unseen motion
may appear in “A person walks aimlessly and slowly.”, of which the motion is
included in the dataset. And the arm movement may appear in “His arms hang
heavily by his sides.”, of which the motion is included in the dataset. We give
two examples in Fig. 1. On one hand, adopting fine-grained descriptions allows
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the model to understand how the unseen motions are performed in detail. On
the other hand, re-annotating motions for different body parts enables the model
to learn the essence of motions better. Using fine-grained textual descriptions,
we aim to improve the model’s zero-shot understanding capability.

Although annotating fine-grained textual descriptions manually for body
parts provides more accurate data, it requires significant manual work, result-
ing in huge costs. Fortunately, with the rapid development of large language
models, OpenAI’s GPT series models [25], known for their outstanding natural
language processing capabilities, have gained widespread attention worldwide.
In [7], Gilardi et al. demonstrated that ChatGPT performs as well as human
annotators in some tasks. In [14], Action-GPT explores the excellent capability
of ChatGPT in expanding human action descriptions. However, the generated
content tends to be excessively redundant. For our task, we carefully design a
prompt that allows ChatGPT-3.5 to provide detailed but non-redundant tran-
scriptions of text descriptions about human motion. We then use this prompt and
ChatGPT-3.5 to transcribe 44,970 short text descriptions from HumanML3D [8]
and 6,353 text descriptions from KIT [29] for model training.

With these fine-grained descriptions, we propose a new framework named
Fine-Grained Human Motion Diffusion Model (FG-MDM) for human motion
generation. Specifically, we replace the original simple and vague text with
ChatGPT-Generated fine-grained descriptions of individual body parts to guide
a transformer-based diffusion model. Following MDM [37], we encode the entire
fine-grained description with CLIP [31] as a global token of the transformer.
Apart from this global token, we further encode descriptions of different body
parts individually with CLIP as part tokens. By adopting these tokens, the model
can pay attention to both the global and detailed information of human motions,
thereby improving the accuracy and completeness of the denoising results.

Our contributions are summarized as follows:

– We present a novel framework that utilizes fine-grained descriptions of dif-
ferent body parts to guide the denoising process of the transformer-based
diffusion model. This framework is capable of generating a broader range of
motions that extend beyond the distribution of training datasets.

– We carefully design a prompt that enables ChatGPT to convert short and
vague texts into detailed but non-redundant descriptions of different body
parts. We then use this prompt to transcribe 44,970 texts from HumanML3D
and 6,353 texts from KIT into fine-grained descriptions. We will make these
fine-grained transcriptions publicly available.

– We conduct a series of experiments to evaluate our model’s ability to not only
fit the training data but also generate motions beyond the distribution of the
dataset, i.e., the generalization capability.
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2 Related Work

2.1 Human Motion Generation

There has been a great interest in human motion generation in recent years.
Previous work has explored unconditional generative models [30,47] as well as
generative models using various input conditions, such as text [5,8,37], prior
motion [24], action class [9,26], and music [16,39]. In this paper, we focus on
text-to-motion generation. Early work usually addressed the text-to-motion task
with a sequence-to-sequence model [18]. Later on, the focus shifted beyond sim-
ple action labels. For example, Guo et al. utilized variational autoencoders to
generate motions from text [8], significantly enhancing the quality and diversity
of generated motions. With the success of diffusion models in AIGC, MDM [37]
and other related work [5,15,45] have introduced diffusion models into the text-
to-motion domain, resulting in impressive achievements.

There is a relative scarcity of work that directly focuses on the zero-shot capa-
bilities of motion generation models. In [36], Tevet et al. proposed MotionCLIP to
align human motions with the CLIP space, implicitly injecting the rich semantic
knowledge from CLIP into the motion domain to enhance zero-shot generation
capability. AvatarCLIP [12] also utilized CLIP to implement a zero-shot text-
driven framework for 3D avatar generation and animation. Liang et al. [17] pre-
trained a large-scale unconditional diffusion model to learn rich out-of-domain
motion traits. In order to improve the generalization capability of motion gen-
eration models, there have been also attempts to leverage human mesh recovery
approaches [38,41–43] to collect large-scale pseudo text-pose datasets [3]. As
shown in Azadi et al. [3] and Lin et al. [20], the pre-training on such text-pose
datasets can improve the generalization to in-the-wild descriptions. However,
the static nature of text-pose data makes it difficult to well represent dynamic
motions.

The work most closely related to ours is Action-GPT [14], which introduced,
for the first time, large language models into the field of text-conditioned motion
generation. Action-GPT can be integrated into any text-to-motion model. How-
ever, it enriched only the description of action classes without providing detailed
descriptions of different body parts and guiding the model training. For another
action generation model, SINC [2] incorporated ChatGPT to identify the body
parts involved in the textual description. It achieved impressive results by gen-
erating multiple motions and concatenating them using different body parts.
Specifically, SINC divides the human body into [‘left arm’, ‘right arm’, ‘left
leg’, ‘right leg’, ‘torso’, ‘neck’, ‘buttocks’, ‘waist’], which we borrow from in our
work. It should be noted that both Action-GPT and SINC were designed for
motion generation based on action labels, not using natural language. There-
fore, directly comparing our work with them is not feasible. There is also a
costly method that utilizes LLMs. By fine-tuning LLMs, MotionGPT [13,46]
designed a pre-trained motion language model that supports various motion-
related tasks through prompts. In contrast, our method is more efficient and can
rapidly enhance the model’s zero-shot generation capabilities.
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Fig. 2. The overall pipeline of FG-MDM. The model learns the denoising process of
the diffusion model from the motion x1:n

t at time step t to the clean motion x̂1:n
0 ,

given the text condition. The input text is first paraphrased by ChatGPT into fine-
grained descriptions D1:k for different parts of the body, where k denotes the number
of body parts. These descriptions are then fed into a pre-trained CLIP text encoder
and projected, along with the time step t, onto input tokens PT1:k of the transformer.
The overall fine-grained text is further encoded into a global input token GL, pro-
viding holistic information. In the sampling process of the diffusion model, an initial
random noise x1:n

T is sampled, and then T iterations are performed to generate the
clean motion x̂1:n

0 . At each sampling step t, guided by PT1:k and GL, the transformer
encoder predicts the clean motion x̂1:n

0 which is then noised back to x1:n
t−1.

2.2 Diffusion Generative Models

The diffusion model is a neural generative model based on the stochastic diffusion
process in thermodynamics [10,35]. It starts with samples from the data distribu-
tion and gradually adds noise through a forward diffusion process. Then, a neural
network learns the reverse process to progressively remove the noise and restore
the samples to their original states. Diffusion generative models have achieved
significant success in the image generation field [32,33]. For conditional genera-
tion, [6] introduced classifier-guided diffusion, while [11] proposed a classifier-free
method. Given their excellent generation quality, [15,37,45] incorporated diffu-
sion models into the motion generation domain, leading to impressive results.

3 Method

Given a textual description, our goal is to generate a human motion x1:n =
{xi}ni=1 that matches the given description. The motion consists of n frames
of human poses. For each pose xi ∈ R

J×D, we represent it by joint rotations
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or positions, where J represents the number of joints and D represents the
dimensionality of the joint representation. In Fig. 2, we give an overview of our
fine-grained human motion diffusion model. First, we adopt ChatGPT to perform
fine-grained paraphrasing of the vague textual description. This expands concise
textual descriptions into descriptions of different body parts. FG-MDM then
uses these fine-grained descriptions to guide a diffusion model for human motion
generation.

3.1 Prompt Strategy

We first introduce the prompt strategy adopted for generating fine-grained
descriptions. We utilize ChatGPT-3.5 to create more fine-grained descriptions
based on different body parts for a given textual description of a motion. Chat-
GPT is a conversational model based on a large language model that can engage
in natural conversations and generate corresponding responses. The answers from
ChatGPT are often directly influenced by the information and expression pro-
vided in the prompt. If the prompt offers clear and detailed questions or instruc-
tions, ChatGPT can typically provide relevant and accurate answers. However, if
the prompt is too simple, ambiguous, or unclear, ChatGPT may generate unex-
pected responses or express unclear content. For our task, we carefully design
an effective prompt by using experimental verification.

Our designed prompt is: “Translate the motion described by the given sen-
tences to the motion of each body part only using one paragraph. The available
body parts include [‘arms’, ‘legs’, ‘torso’, ‘neck’, ‘buttocks’, ‘waist’]. Here are
some examples: [Q...A...]. Question: [sentence]”. [sentence] is the vague textual
description that needs to be refined. [Q...A...] are four examples of Q&A pairs
designed manually.

3.2 Diffusion Model for Motion Generation

The basic idea of diffusion models [10,35] is to learn the reverse process of a
well-defined stochastic process. Following MDM [37], we design a text-driven
human motion generation model based on the diffusion model.

The diffusion model consists of the forward process and the reverse process,
both of which follow the Markov chain. The forward process involves adding
noise. The input is the original motion x1:n

0 from the data distribution, and the
output is the motion x1:n

t with adding Gaussian noise t times. When enough noise
is added, the motion x1:n

T can approach the Gaussian distribution N (0, I). The
reverse process aims to reduce the noise in the Gaussian noise x1:n

T ∼ N (0, I).
In the denoising process, at diffusion step t, a portion of the noise is eliminated,
resulting in a less noisy motion x1:n

t−1. This step is repeated iteratively until the
noise is completely removed, generating a clean motion x̂1:n

0 .
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Network. We adopt a simple transformer [40] encoder architecture to imple-
ment our network G. Unlike the conventional diffusion model mentioned above,
we follow [32] and predict the clean motion x̂1:n

0 instead of predicting the noise
added in each time-step. The input of G is the noised motion x1:n

t obtained by
adding noise t times to the original motion x1:n

0 . The noised motion x1:n
t , together

with the text condition tokens GL, PT1:k and the time-step t, are inputted to
the transformer encoder, resulting in the clean motion x̂1:n

0 . One of the reasons
for directly predicting the clean motion in each time-step of the diffusion model
is to incorporate human geometric losses during the training of the network,
making the generated human motions more natural. For each sampling step t,
from T to 1, our model predicts the clean motion x̂1:n

0 , and then adds noise back
to x1:n

t−1. After T iterations, the final clean motion x̂1:n
0 is obtained. This form of

diffusion model has become commonly adopted, as do we.

Global Token and Part Tokens. For the text condition, we encode the entire
fine-grained description with CLIP [31] as a global token GL of the transformer.
Apart from this global token, we further encode descriptions of different body
parts individually with CLIP as part tokens PT1:k, where k denotes the number
of body parts. The global token serves as an overall condition to guide the diffu-
sion process. Part tokens provide explicit information for fine-grained control of
the movements of each body part. Part tokens effectively make up for the ambi-
guity of the original description text. It greatly enhances our FG-MDM’s ability
to understand in-the-wild text, making it outstanding on zero-shot generation
tasks.

Loss Functions. For training the diffusion model, we follow [32] to predict the
signal itself instead of predicting the noise, i.e., x̂1:n

0 = G(x1:n
t , t, c), with the

simple loss function.

LG = Ex1:n
0 ∼q(x1:n

0 |c),t∼[1,T ][||x1:n
0 − G(x1:n

t , t, c)]|2] (1)

In order to generate more natural and kinematically plausible motions, we
employ the same geometric losses as MDM [37] from [26,34], i.e., positions, foot
contact, and velocities.

Lpos =
1
n

n∑

i=1

||FK(xi
0) − FK(x̂i

0)||22, (2)

Lfoot =
1

n − 1

n−1∑

i=1

||(FK(x̂i+1
0 ) − FK(x̂i

0)) · fi||22, (3)

Lvel =
1

n − 1

n−1∑

i=1

||(xi+1
0 − xi

0) − (x̂i+1
0 − x̂i

0)||22 (4)
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where FK(·) represents the forward kinematic function that converts joint rota-
tions into joint positions. For each frame i, fi ∈ {0, 1}J is the binary foot contact
mask.

Overall, our training loss is

L = LG + λposLpos + λvelLvel + λfootLfoot. (5)

where λpos, λvel, λfoot are balancing coefficients for the three geometric losses.

4 Experiments

In this section, we first elaborate the datasets, evaluation metrics, and implemen-
tation details in Sect. 4.1. We then conduct quantitative experiments to compare
FG-MDM with current state-of-the-art approaches in Sect. 4.2. To show the gen-
eralization capability of our model, we further perform quantitative experiments,
qualitative experiments, and a user study to examine FG-MDM’s ability to gen-
erate motions beyond the distribution of training datasets. Finally, to evaluate
our method comprehensively, we design two additional ablation experiments in
Sect. 4.3.

4.1 Experimental Details

Datasets. We utilize the HumanML3D [8] dataset and the KIT [29] dataset
to train and evaluate our model. The HuMMan [4] dataset and Kungfu dataset
from the Motion-X dataset [19,22] are employed to assess the models’ zero-shot
performance. HumanML3D is a recently proposed large-scale dataset of motion-
text pairs. It consists of 14,616 motion sequences from the AMASS [23] and
HumanAct12 [9] datasets, with multiple ways of describing each motion, result-
ing in a total of 44,970 text annotations. The KIT dataset, on the other hand,
is relatively smaller and contains 3,911 motion sequences along with their cor-
responding 6,353 text descriptions. For both datasets, we follow the default set-
tings, using 80% of the data for training and the remaining for testing. Motion-X
is a large-scale dataset of whole-body motions and whole-body pose annotations,
integrating several existing datasets and additional online videos. For zero-shot
testing, we utilize 100% of the HuMMan and Kungfu subsets from it. HuMMan
is a multi-modal human dataset, containing 744 motion sequences and their cor-
responding 744 texts descriptions. Kungfu encompasses many human motions
related to martial arts, with a total of 1040 motion sequences and their corre-
sponding 1040 texts descriptions.

We preprocess the 44,970 text descriptions from HumanML3D and 6,353 text
descriptions from KIT using ChatGPT-3.5. This preprocessing extends these
descriptions into fine-grained ones for our model training.

Evaluation Metrics. We employ three evaluation metrics for quantitative
experiments to evaluate our model’s ability to fit the training data: FID, Mul-
timodal Dist, and Diversity. Multimodal Dist assesses the correlation between
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Fig. 3. Qualitative results with unseen motions. We compare our FG-MDM with
MDM [37] and MLD [5]. All three models are trained on HumanML3D. For better
visualization, some pose frames are shifted to prevent overlap. Please refer to supple-
mentary materials for more video demos.
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generated motions and input text. Diversity is utilized to evaluate the diver-
sity of generated motions. FID measures the difference in feature distribution
between generated motions and ground truth in latent space, which is used to
evaluate the quality of generated motions.

Implementation Details. In our study, the transformer accepts tokens whose
feature dimension is 512 as input. We use four attention heads and apply a
dropout rate of 0.1. The transformer encoder consists of 8 stacked encoder layers
to capture complex relationships and hierarchies in the data. For ChatGPT, we
adopt the gpt-3.5-turbo API provided by OpenAI. For text encoding, we employ
the frozen CLIP-ViT-B/32 model as the encoder. Our batch size is set to 64.
Additionally, we set the diffusion step to 1000. On a single NVIDIA GeForce
RTX3090 GPU, it takes about six days to train our model.

Table 1. Quantitative results on HumanML3D and HuMMan. The model marked
with * indicates that both the ChatGPT-Refined text and the manually annotated
text provided by HumanML3D are used during training. Bold text is the best result,
underlined text is the second-best result. Zero-Shot means that the models are evalu-
ated directly on HuMMan after training on HumanML3D.

Methods HumanML3D HuMMan(zero-shot)

FID↓ MM Dist↓ Diversity↑ FID↓ MM Dist↓ Diversity↑
Real 0.002±.000 2.974±.008 9.503±.065 0.032±.002 23.019±.042 4.709±.097

MAA [3] 0.774±.007 – 8.230±.064 – – –

T2M-GPT [44] 0.116±.004 3.118±.011 9.761±.081 9.631±.203 27.582±.073 5.149±.145

MLD [5] 0.473±.013 3.196±.010 9.724±.082 14.970±.472 27.104±.024 5.493±.101

MotionDiffuse [45] 0.630±.001 3.113±.001 9.410±.049 30.138±.712 28.747±.041 5.357±.045

MDM [37] 0.544±.044 5.566±.027 9.559±.086 13.375±.408 27.689±.055 5.585±.089

FG-MDM 0.663±.012 5.649±.024 9.476±.068 17.180±.272 26.867±.030 5.589±.124

FG-MDM* 0.618±.009 5.274±.048 9.563±.097 12.460±.330 26.814±.019 5.626±.100

4.2 Comparison with Prior Work

To evaluate the performance of FG-MDM in handling zero-shot text-conditioned
motion generation, we compare our work with five recent motion generation
approaches: MAA [3], T2M-GPT [44], MLD [5], MotionDiffuse [45], and MDM
[37]. In Table 1 and Table 2, we provide experimental results on the HumanML3D,
HuMMan, and Kungfu datasets, respectively. For all experiments, We run the
evaluation five times, and “±” indicates the 95% confidence interval. For the six
SOTA methods, on HumanML3D, we directly cite their results reported in their
original papers. To examine the generalization ability of the methods, we use
HumanML3D as the training set and HuMMan and Kungfu as the test sets. To
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Table 2. Quantitative results on Kungfu. Zero-Shot means that the models are eval-
uated directly on Kungfu after training on HumanML3D.

Methods Kungfu(zero-shot)

FID↓ MM Dist↓ Diversity↑
Real 0.133±.010 22.164±.041 5.351±.312

MAA [3] – – –

T2M-GPT [44] 12.652±.429 25.826±.041 5.702±.428

MLD [5] 18.524±.352 27.182±.020 5.598±.356

MotionDiffuse [45] 26.363±.337 26.320±.035 6.117±.691

MDM [37] 16.396±.466 26.280±.095 5.468±.590

FG-MDM 19.340±.797 26.845±.052 5.142±.759

FG-MDM* 15.892±.567 25.325±.035 5.814±.479

do so, we train TMR [27,28] using the HuMMan and Kungfu datasets to obtain a
pair of text encoder and motion encoder for calculating the MM Dist metric. For
SOTA methods, we apply their released pre-trained models on HumanML3D to
HuMMan and Kungfu to evaluate their zero-shot generation performance. Since
MAA [3] does not release the pre-trained model, we cannot test its zero-shot gen-
eration performance.

When evaluated on the test set of HumanML3D, all five methods achieve
state-of-the-art performance. For FG-MDM, the ChatGPT-Refined fine-grained
textual description doesn’t match the manually annotated textual description
well. Therefore, under within-dataset settings, our model does not exceed those
SOTA models on HumanML3D. However, on the HuMMan and Kungfu datasets,
FG-MDM captures most of the best and second-best results. Note that the size
of our training dataset is much smaller than some SOTA methods like [3], but
we still demonstrate solid zero-shot capabilities.

In addition, we provide some qualitative results to let readers intuitively
feel the superiority of our method. In Fig. 3, we show motions generated by
MDM [37], MLD [5] and our FG-MDM. Note that for all three methods, we use
models trained on HumanML3D to generate motions. In comparison, our method
generates motions more consistent with the details described in the fine-grained
textual descriptions. This shows that our divide-and-conquer method works.
Motion generation models require clear and specific conditions to generate the
motions needed.

4.3 Ablation Study

To validate our contribution, we conduct two ablation studies. As shown in
Table 3, the first row shows our baseline. The first study examines the contribu-
tion of ChatGPT-Generated fine-grained texts, which is performed by replacing
the original short text with the fine-grained description. The improvement can
be said to be huge. We cleverly utilize the powerful reasoning capabilities of



FG-MDM: Towards Zero-Shot Human Motion Generation 457

Table 3. Ablation study results on HumanML3D and KIT. “Fine-Grained” denotes
using ChatGPT-Generated fine-grained descriptions. “Part” represents adopting part
tokens. Note that the models are trained on HumanML3D.

Fine-Grained Part HumanML3D KIT

FID↓ MM Dist↓ Diversity↑ FID↓ MM Dist↓ Diversity↑
4.363 7.298 8.432 16.372 10.502 8.758

� 1.050 6.778 9.509 0.549 9.826 10.829

� � 0.663 5.649 9.476 0.344 9.352 10.707

LLMs and let them help our generative model better understand the nature of
text conditions, bringing a leap to the zero-shot performance. The second study
checks the contribution of part tokens when fine-grained descriptions are used.
As observed, a reasonable framework also improves the quality of generated
motions. However, perhaps more conditions bring more constraints to genera-
tions, leading to a decrease in diversity. But this drop is acceptable. So, we finally
adopt the design of part tokens.

Fig. 4. User study results. For each method, a color bar ranging from blue to red
represents the percentage of text-to-motion match levels, with blue indicating the least
match and red indicating the most match. (Color figure online)

4.4 User Study

To further examine FG-MDM’s generalization capability, we conduct a user
study to evaluate the quality of motions generated by our model based on human
visual perception. We customize a total of 40 textual descriptions beyond the dis-
tribution of the dataset. With these descriptions, we generate motions by using
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MDM [37], MotionDiffuse [45], and our FG-MDM. We then recruit 10 users for
the study. In each question, participants are asked to rate the degree of matching
between the generated motion and the textual description on a scale of 0 to 2.
The results are given in Fig. 4. Apparently, FG-MDM matches texts much better
in generating motions beyond the distribution of the dataset than the other two
methods. Nearly half of the generated motions get the highest score. In contrast,
MDM and MotionDiffuse perform poorly. Most of the generated motions are not
satisfactory.

5 Conclusion

In this study, we used LLMs to perform fine-grained paraphrasing on the textual
annotations of HumanML3D and KIT. With these fine-grained descriptions, we
explored a Fine-Grained Human Motion Diffusion Model. It utilizes fine-grained
descriptions of different body parts to guide the training of a diffusion model.
This enables it to learn the essence of motions and thus generate motions beyond
the distribution of training datasets. In the future, we would like to improve the
quality of fine-grained annotations of human motions. Having high-quality text
labels will greatly promote research on human motion generation.
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